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ABSTRACT

In seismic imaging, the need of efficient numerical techniques for solvingvéive equation is of vi-
tal importance when using techniques such as Reverse Time Migration owauéform Inversion.
Finite-difference methods (FDMs) are widely used because they at&vebleeasy to implement and
computationally efficient. Moreover, the use of explicit time stepping is nathi@vever, they rely
on Cartesian structured grids and that makes them less suitable for corepdeageneous geological
settings. When abrupt changes in the properties of the material arise @r fimgbence of complex to-
pography, the scheme loses its accuracy. This can be amended by ersifige grids at the expense of
computational time. Finite-element methods (FEMs) have some advantagdsiMerbecause they
rely on unstructured meshes and can more easily handle geometric orrstidetoontinuities. The use
of the finite-element Galerkin method for the semi-discretization of the secalef-wave equation
leads to a system of second-order ordinary differential equationsdeats to be solved with a suitable
time-discretization scheme. In particular, when an explicit time stepping is teeahass matrix arising
from the spatial discretization has to be inverted at each time step, whichrdraatit impact on the
efficiency of the scheme. In this work we consider two different finiteneliat formulations that can be
used to overcome the problem. The first consists in using continuous finiberds with mass lump-
ing. In this case, the mass matrix is replaced by a diagonal one that is triuiaktd. This technique is
straightforward for piecewise linear elements but requires particulatrqtizre rules and additional dis-
cretization nodes for higher-order schemes in order to preserve thiesay [2]. As a second approach,
we consider the Symmetric Internal Penalty Discontinuous Galerkin (SIPRER)od (see [3] for de-
tails), where each element of the mesh is decoupled from its neighbouds)dda a block-diagonal
mass matrix that is easily inverted. In both cases, we use a second-ordéntégu@ation scheme. This
choice leads to an energy conservative numerical scheme for the timanrs formulation [1]. The
stability limit values are computed on the reference tetrahedron and thepmgacable for the two
methods except for linear polynomials where SIPDG is much more restrittigeanalyze the accu-
racy and efficiency of the two methods and compare their performancesria t& CPU time. To this
end, we solve an initial value problem (no source term) with known exdatign on a regular 3-D
cubic domain with Neumann boundary conditions. The results in Fig. 1 shawatiatechniques have
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Figure 1: Ly, error norms, accuracy and computational times for the nootis and discontinuous FEMSs.

a similar performance in terms of accuracy and computational time. In factotiténaous methods
requires additional discretization points in the interior of the faces and timeels, increasing the
computational cost. The DG formulation uses the classical set of nodesdouites the computation of
additional fluxes on the faces of each element in order to preserve titiauity of the solution.

We finally address a more realistic 3 dimensional setting as shown in Fig. 2slextample, there is a
velocity inversion at depth containing a salt inclusion with high reflectivity.dbkee the wave field on
a set of meshes with decreasing maximum diameter by means of the two FEMi as aviEDM of gh
order in space. We estimate the relative errors as a measure of thecycandave compare the seismo-
grams of the solutions. The cubic finite elements start to outperform the fiffikeethce method when
considering a relative error smaller than 0.01. From the analysis of thmagiams, we observe how
the finite elements avoid the so-called “stair-case effect” typical for finiterdifice grids, as well as
the effect of the air layer that needs to be incorporated into the finiterelifte method but is embedded
in the boundary conditions of the FEM.
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Figure 2: Example of wave propagation in a heterogeneusurredi
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