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ABSTRACT

In seismic imaging, the need of efficient numerical techniques for solving thewave equation is of vi-
tal importance when using techniques such as Reverse Time Migration or FullWaveform Inversion.
Finite-difference methods (FDMs) are widely used because they are relatively easy to implement and
computationally efficient. Moreover, the use of explicit time stepping is natural.However, they rely
on Cartesian structured grids and that makes them less suitable for complex heterogeneous geological
settings. When abrupt changes in the properties of the material arise or in the presence of complex to-
pography, the scheme loses its accuracy. This can be amended by using very fine grids at the expense of
computational time. Finite-element methods (FEMs) have some advantages overFDMs because they
rely on unstructured meshes and can more easily handle geometric or structural discontinuities. The use
of the finite-element Galerkin method for the semi-discretization of the second-order wave equation
leads to a system of second-order ordinary differential equations thatneeds to be solved with a suitable
time-discretization scheme. In particular, when an explicit time stepping is used,the mass matrix arising
from the spatial discretization has to be inverted at each time step, which has dramatic impact on the
efficiency of the scheme. In this work we consider two different finite-element formulations that can be
used to overcome the problem. The first consists in using continuous finite elements with mass lump-
ing. In this case, the mass matrix is replaced by a diagonal one that is trivial toinvert. This technique is
straightforward for piecewise linear elements but requires particular quadrature rules and additional dis-
cretization nodes for higher-order schemes in order to preserve the accuracy [2]. As a second approach,
we consider the Symmetric Internal Penalty Discontinuous Galerkin (SIPDG)method (see [3] for de-
tails), where each element of the mesh is decoupled from its neighbours, leading to a block-diagonal
mass matrix that is easily inverted. In both cases, we use a second-order time-integration scheme. This
choice leads to an energy conservative numerical scheme for the discontinuous formulation [1]. The
stability limit values are computed on the reference tetrahedron and they are comparable for the two
methods except for linear polynomials where SIPDG is much more restrictive.We analyze the accu-
racy and efficiency of the two methods and compare their performances in terms of CPU time. To this
end, we solve an initial value problem (no source term) with known exact solution on a regular 3-D
cubic domain with Neumann boundary conditions. The results in Fig. 1 show that both techniques have
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Figure 1: L2 error norms, accuracy and computational times for the continuous and discontinuous FEMs.

a similar performance in terms of accuracy and computational time. In fact, the continuous methods
requires additional discretization points in the interior of the faces and the elements, increasing the
computational cost. The DG formulation uses the classical set of nodes butrequires the computation of
additional fluxes on the faces of each element in order to preserve the continuity of the solution.
We finally address a more realistic 3 dimensional setting as shown in Fig. 2. In this example, there is a
velocity inversion at depth containing a salt inclusion with high reflectivity. Wesolve the wave field on
a set of meshes with decreasing maximum diameter by means of the two FEMs as well as a FDM of 8th

order in space. We estimate the relative errors as a measure of the accuracy and we compare the seismo-
grams of the solutions. The cubic finite elements start to outperform the finite-difference method when
considering a relative error smaller than 0.01. From the analysis of the seismograms, we observe how
the finite elements avoid the so-called “stair-case effect” typical for finite-difference grids, as well as
the effect of the air layer that needs to be incorporated into the finite-difference method but is embedded
in the boundary conditions of the FEM.
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Figure 2: Example of wave propagation in a heterogeneus medium.
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