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Dispersive stresses in turbulent flow over riblets

Davide Modesti1,2,†, Sebastian Endrikat1, Nicholas Hutchins1 and
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2Aerodynamics Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 2,
2629 HS Delft, The Netherlands

(Received 18 May 2020; revised 15 February 2021; accepted 4 April 2021)

We carry out direct numerical simulations of turbulent flow over riblets, streamwise-
aligned grooves that are designed to reduce drag by modifying the near-wall flow. Twenty
riblet geometries and sizes are considered, namely symmetric triangular with tip angle
30◦, 60◦ and 90◦, asymmetric triangular, blade and trapezoidal. To save on computational
cost, simulations are performed using the minimal-channel flow configuration. With this
unprecedented breadth of high-fidelity flow data near the wall, we are able to obtain
more general insights into the flow physics of riblets. As observed by García-Mayoral &
Jiménez (J. Fluid Mech., vol. 678, 2011, pp. 317–347), we confirm that the drag-change
curves of all the present groove geometries better collapse when reported with the
viscous-scaled square root of the groove area �+g , rather than the riblet spacing s+. Using
a two-dimensional generalization of the Fukagata–Iwamoto–Kasagi identity in difference
form we isolate the different drag-change contributions. We show that the drag increase
associated with dispersive stresses carried by secondary flows can be as important as the
one associated with the turbulent stresses and the pre-eminence of dispersive stresses can
be estimated by the groove width at the riblet mean height.

Key words: drag reduction, turbulent boundary layers, turbulence control

1. Introduction

A large proportion of the energy required in transportation and pipe systems is used to
overcome fluid-dynamic drag. In particular, skin friction constitutes approximately 50 %
of the total drag on aircraft and ships, up to 90 % for very large crude carriers (Monty
et al. 2016) and almost all the drag in pipelines. Hence, reduction in skin friction can
bring a substantial energy saving. Riblets are streamwise-aligned micro-grooves that can
reduce skin-friction drag by up to 10 % in laboratory conditions (Bechert et al. 1997) and
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approximately 5 % at full-scale conditions (Spalart & McLean 2011), and are therefore
considered one of the most promising techniques of passive drag reduction. Indeed, the
International Civil Aviation Organization in its 2019 environmental report (ICAO 2019)
explicitly mentions riblets as a promising passive technique for reducing drag over aircraft.
Pioneering studies on riblets can be traced back to the experiments of Kennedy, Hsu
& Lin (1973), who suggested that the mean wall-shear stress over a finned surface may
be reduced, due to the reduction of wall-shear stress towards the riblet trough. After
this seminal work a considerable amount of experimental (Walsh 1980, 1982; Bechert
& Bartenwerfer 1989; Bechert et al. 1997) and numerical (Choi, Moin & Kim 1993; Chu
& Karniadakis 1993; Goldstein, Handler & Sirovich 1995; García-Mayoral & Jiménez
2011; Bannier, Garnier & Sagaut 2015) studies appeared in the literature, but despite this
effort, riblets are not widely used in engineering applications, for different reasons. Flight
tests carried out on an aircraft with 70 % of its surface covered with riblets have shown a
drag reduction of approximately 2 % (Szodruch 1991), consistent with the aforementioned
5 % of 50 %, but this reduction in drag becomes only marginally convenient when
the additional costs of manufacturing and maintenance are considered (Robert 1992).
Therefore, in order to have riblets that are more cost-efficient, groove geometries capable
of larger drag reduction are desirable. At present, the maximum drag reduction achievable
by classical riblets is limited by our understanding of their flow physics.

Figure 1 shows the velocity shift with respect to the smooth wall �U+ and
the drag reduction DR ≈ −�U+√2Cfs (Spalart & McLean 2011) as a function of
the viscous-scaled square root of the groove area �+g ≡ �g/δv , �g ≡ √

Ag (where Ag is the
groove area, δv ≡ ν/uτ is the viscous length scale, ν is the kinematic viscosity of the
fluid, uτ ≡ √

τw/ρ is the friction velocity, τw is the mean wall-shear stress, i.e. drag per
unit wall-plane area, and ρ is the fluid density). The regime in which riblets reduce drag
is referred to as the viscous or linear regime as drag decreases linearly with the riblet size
up to an optimum (�+g ≈ 11). However, further increasing �+g leads to degradation of the
linear regime and riblets eventually increase drag. The drag reduction in the linear regime
has been extensively studied, and different authors seem to agree on the flow physics of
small riblets. Bechert, Hoppe & Reif (1985); Bechert et al. (1986) attributed the drag
reduction to the capability of riblets to inhibit the spanwise motion of streamwise vortices
in the viscous sublayer, z+ ≡ z/δv � 5–6, where z is the distance from the wall. A different
interpretation of basically the same drag-reducing mechanism has been given by Choi et al.
(1993), Suzuki & Kasagi (1994) and Goldstein et al. (1995), who showed that riblets lift
these vortices farther from the wall, with subsequent relief of the turbulent stress. These
vortices have a diameter of approximately 30δv (Lee & Lee 2001), in agreement with the
observation that riblets with a smaller spacing reduce drag by preventing the lodgement of
these vortices into the grooves. This interpretation progressed towards a more quantitative
idea that riblets reduce drag by shifting the location at which the streamwise turbulent
flow perceives the equivalent smooth wall, or virtual origin (Bechert & Bartenwerfer
1989). Different definitions of virtual origin are available in the literature which involve,
for instance, best fitting of the law-of-the-wall (Hooshmand, Youngs & Wallace 1983)
or matching the location of the maximum in the streamwise velocity fluctuations (Choi
et al. 1993). Luchini et al. (1991) showed that the appropriate quantity that relates to
the drag reduction, is the difference between the location of the virtual wall seen by
the streamwise flow and that seen by the spanwise flow, �h ≡ h‖ − h⊥. For small sizes
(s+ � 5), these virtual locations h‖ and h⊥, called protrusion heights, can be readily
calculated using the Stokes approximation and their difference is proportional to the drag
reduction DR ∼ �h+ (figure 1 and García-Mayoral, Gómez-de-Segura & Fairhall 2019).
The difference in protrusion heights can be used to design and optimize riblets in the
917 A55-2
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DNS of minimal turbulent channel flow over riblets
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Figure 1. Drag reduction curve at friction Reynolds number Reτ = 17 000 typical of aircraft wing (left axis)
and velocity shift with respect to the smooth wall �U+ (right axis) as a function of the viscous-scaled square
root of groove area �+g = �g/δv . Here, �U+ values are reported for the riblets data of Gatti et al. (2020, stars),
Bechert et al. (1997, triangles) and García-Mayoral & Jiménez (2012, (squares)). Straight lines indicate slopes
for infinitely small riblets of the four shapes calculated in the Stokes-flow limit (Luchini, Manzo & Pozzi 1991).

viscous regime, in which drag reduction increases indefinitely with riblet size, but fails to
describe the drag increase relative to the optimum.

Several mechanisms have been proposed to explain the disruption of the viscous-flow
regime, which in one way or another can all be traced back to turbulence, i.e. a
non-negligible inertial flow near riblets. Choi et al. (1993) inspected instantaneous
flow visualizations of the cross-stream plane and attributed the drag increase to the
lodgement of the streamwise vortices inside the riblets grooves when these become
larger than the vortices’ diameter (s+ � 20). They also observed the appearance of
non-zero mean (time-averaged) cross-stream velocities in the riblet grooves, similar to the
secondary motions found in non-circular ducts (Prandtl 1926), with the main difference
that the former only appear in the riblets vicinity, whereas the latter retain a large-scale
contribution, occupying the whole cross-stream section (Pirozzoli et al. 2018). Other
authors addressed the correlation between secondary velocities, or dispersive velocities,
and the drag increase over riblets. Suzuki & Kasagi (1994) carried out experiments
using three-dimensional particle tracking velocimetry and observed the formation of mean
cross-stream velocities over riblets operating beyond the drag optimum. They attributed the
drag increase to the additional momentum transport caused by these secondary velocities,
although they did not quantify their contribution to the drag variation. Goldstein & Tuan
(1998) used direct numerical simulation (DNS) to study the dispersive velocities, forming
over large-spaced riblets and attributed them to the drag increase, arguing that the loss
of performance occurring for large riblets could be tackled by disrupting these secondary
velocities which also contribute to the total stress. The additional stress carried by the
secondary, or dispersive, velocities is referred to as dispersive stress and is absent in
smooth-wall turbulent flows. Both the dispersive and turbulent stress can be traced back to
inertial momentum transfer, but the dispersive stresses represent spatial variations in the
time-averaged mean about the riblets, and turbulent stresses represent fluctuations about
this spatially varying mean.

Another mechanism has been proposed by García-Mayoral & Jiménez (2011), who
observed that large riblets also trigger the onset of spanwise-coherent vortical structures,
which are visible in the two-dimensional pre-multiplied velocity spectrum right above the
riblet crest, and are similar to Kelvin–Helmholtz rollers, which represent an additional
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contribution to the Reynolds stress. Their stability analysis over a modelled impedance
boundary condition shows that the growth rate of these rollers is proportional to the square
root of the groove area, which suggested the use of �+g as a scaling parameter to compare
drag reduction in riblets with different geometries (García-Mayoral & Jiménez 2011).

This literature survey shows that there is still little consensus on the physical
mechanisms responsible for the degradation of the riblets drag-reducing performance.
Given the more recent date of the study on Kelvin–Helmholtz-like rollers, this mechanism
has been considered the only cause of the linear-regime breakdown in recent years.
However, Endrikat et al. (2020, 2021) recently used the present DNS dataset to study
how the groove shape affects the Kelvin–Helmholtz-like rollers and found that they are
only active for certain riblet geometries, namely sharp triangles and blades. Nevertheless,
all riblet shapes exhibit the linear-regime breakdown eventually leading to a drag
increase, thus pointing to a possible route to performance degradation that is unrelated
to Kelvin–Helmholtz rollers.

Although most studies of riblets are mainly focused on two-dimensional straight
symmetric geometries, flow cases over three-dimensional riblets have been performed.
Bechert et al. (1986) argued that a staggered arrangement of short riblets may be able
to increase the maximum attainable drag reduction, due to a larger streamwise protrusion
height caused by a larger effective spanwise spacing. However, in a more recent experiment
(Bechert, Bruse & Hage 2000), they instead found lower drag reduction with respect
to the two-dimensional riblets. Sasamori et al. (2014, 2017) carried out experiments
and DNS of three-dimensional sinusoidal riblets and, despite the additional pressure
drag contribution, found higher drag reduction with respect to two-dimensional riblets.
Kevin et al. (2017) performed stereoscopic particle image velocimetry of developed
boundary layers over herringbone (large patches of converging–diverging yawed) riblets
and observed large-scale mean secondary flows in the cross-stream plane. Drag reduction
for this configuration has been quantified by Benschop & Breugem (2017), who carried
out DNS of channel flow over herringbone riblets and found that they can both decrease
or increase drag, depending on the wavelength of the spanwise texture, but the effect
of the large-scale secondary flow is always detrimental for drag reduction. Boomsma &
Sotiropoulos (2016) performed DNS of three-dimensional riblets that closely resemble the
denticles found on shark skin and found that three-dimensionality limits the drag reduction
due to the large increase in pressure drag.

Despite the extensive work carried out on riblets, the following fundamental aspects
of the flow physics are not yet fully understood: (i) the precise effect of the groove
shape, (ii) whether the mechanism of drag increase is universal and (iii) the effect of
spanwise asymmetry. On point (i), most parametric studies involving the effect of the
geometry have been carried out through experiments (Walsh 1982; Bechert et al. 1997),
which do not provide access to the three-dimensional flow field, whereas DNS studies
of two-dimensional riblets are limited to triangular and blade geometries (Choi et al.
1993; García-Mayoral & Jiménez 2011). On point (ii), different mechanisms have been
proposed for the breakdown in drag reduction, but often these are based on observations
from particular distinct riblet geometries. For example the analysis of Goldstein & Tuan
(1998) of secondary flows was based on DNS of triangular riblets, while the observations
of García-Mayoral & Jiménez (2011) of the Kelvin–Helmholtz instability were based on
DNS of blade riblets. In a recent study (Endrikat et al. 2021) we showed that not all
riblet shapes trigger the onset of Kelvin–Helmholtz rollers, revealing that the effect of
the groove geometry might be more important than previously thought. What is needed is
a systematic study across a broad parameter space to assess the validity and generality of
the various proposed mechanisms. To this end, we carry out DNS of minimal-channel flow
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DNS of minimal turbulent channel flow over riblets
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Figure 2. Computational mesh for different riblets: (a) asymmetric triangular AT50, (b) trapezoidal TA50,
(c) blade BL50, (d) triangular TI950, (e) triangular TI635, ( f ) triangular TI321. Here, zv indicates the riblet
valley.

over many symmetric riblet geometries, namely triangular, trapezoidal and blade riblets,
to understand if a common mechanism leading to the drag increase exists. On point (iii),
we study the flow over two-dimensional triangular riblets, asymmetric in the spanwise
direction (Walsh 1982). These riblets could induce a non-zero mean cross-flow that will
effectively behave similarly to yawed straight riblets, without pressure drag penalty.

2. Methodology

We solve the incompressible Navier–Stokes equations,

∂uj

∂xj
= 0,

∂ui

∂t
+ ∂uiuj

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂x2
j

+Πδi1, (2.1a,b)

where Π > 0 is the uniform and constant kinematic pressure gradient, driving the flow
in the streamwise direction. The streamwise, spanwise and wall-normal directions are
denoted as x, y, z, respectively and the velocity components in the corresponding directions
are u, v, w. Figure 2 shows the computational body-fitted mesh used for different riblet
geometries. All meshes are constituted by tetrahedral elements, in which adjacent cells
do not necessarily share the same number of nodes at the interface (hanging nodes)
(figure 2a,c).
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Flow cases are reported in table 1 and a representative case name is assigned to each
riblet groove. For asymmetric triangular riblets we use the acronym AT, for symmetric
triangular riblets TI, for trapezoidal riblets TA and for blades BL. Symmetric riblet cases
contain the tip angle α and the spacing in viscous units s+, whereas all other cases only
contain s+. For instance, triangular riblets with tip angle 30◦ and spacing s+ = 10 are
denoted as TI310, whereas blades riblet with spacing s+ = 20 are denoted as BL20. As for
the choice of the riblet geometry, for asymmetric triangles, triangles with tip angle α =
90◦, blades and trapezoids we fixed the ratio k/s = 0.5, and we also consider triangular
riblets with tip angle α = 30◦ and α = 60◦. We consider five asymmetric triangular riblet
sizes, and two triangular riblet sizes for each tip angle, as the former geometry has not
been previously studied, whereas extensive literature is available for the latter (Choi et al.
1993; Goldstein & Tuan 1998; Li & Liu 2018). Moreover, the dataset is skewed in favour of
riblets with larger sizes than those typically considered optimal in terms of drag reduction
�+g ≈ 11 (García-Mayoral & Jiménez 2011). This choice is motivated by our intention to
study the flow mechanisms responsible for the drag increase, which is less understood than
the viscous regime (which can be studied in terms of linear mechanism of Luchini et al.
1991).

The equations are discretized using the unstructured second-order finite-volume solver
CTI Cliff (Ham, Mattsson & Iaccarino 2006; Ham et al. 2007). The use of hanging nodes
allows a coarser mesh in the spanwise direction towards the channel centre, reducing the
computational cost (spacings given in table 1). The mesh spacing in the streamwise and
wall-normal directions are the ones typical of DNS, whereas in the spanwise direction
we use at least 32 points for each riblet period, below the riblet crest. The equations are
solved in a minimal-channel domain (Jiménez & Moin 1991; Flores & Jiménez 2010)
with dimensions Lx × Ly × δ (figure 3). Flow cases share the same computational box,
apart from trapezoidal riblets for which Lx is two times larger. This does not influence
minimal-channel results, as shown by the extensive analysis of MacDonald et al. (2017) on
the box size. Small computational domains are known to produce unphysical results in the
outer part of the flow, but the wall-normal extent of the unphysical region can be controlled
by changing the spanwise length of the box. In particular, Flores & Jiménez (2010) showed
that the turbulent flow statistics remain representative of the full channel flow up to a
critical wall-normal location z+

c ≈ 0.3L+
y , on a smooth wall. Chung et al. (2015) first

used this methodology to study rough walls and MacDonald et al. (2017) extended the
methodology, e.g. to open-channel flow, and showed that the minimal-channel results
match the ones of the smooth channel up to z+

c ≈ 0.4L+
y . The use of the minimal-channel

domain is here justified by the fact that the effect of roughness elements only extends to
the region in the immediate vicinity of the riblets, often referred to as roughness sublayer.
In this region the flow physics can be accurately represented using a minimal box, as long
as the spanwise size of the computational domain is chosen in such a way that the riblet
sublayer is below zc (Chung et al. 2015; MacDonald et al. 2016, 2017). The open-channel
height δ is fixed, defined as the distance from the top smooth wall to the riblet mean height,
thus the volume of the computational domain LxAc (where Ac is the fluid cross-sectional
area) is fixed and so is the mean wall-shear stress,

Ly
τw

ρ
= ΠAc ⇒ τw

ρ
= Πδ, where δ ≡ Ac

Ly
. (2.2)

As a consequence, the friction Reynolds number Reτ = δ/δv , for the same Π , δ
and ν. Here, Reτ = 395 for all cases. We consider four different riblet geometries,
namely, triangles with opening angle α = 30◦, α = 60◦, α = 90◦, asymmetric triangles
α = 63.4◦, trapezoid α = 30◦ and blades with spacing-to-thickness ratio s/t = 5

917 A55-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

31
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

U
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

, o
n 

21
 M

ay
 2

02
1 

at
 0

8:
19

:1
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.310
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


D
N

S
ofm

inim
alturbulentchannelflow

over
riblets

Marker Case s+ �+g k+ δ+ α �x+ �y+
min −�y+

max �z+
min −�z+

max L+
x L+

y Tuτ /δ �U+

Asymmetric triangular
AT15 15.0 7.50 7.50 395 63.4◦ 6.54 0.23 − 2.0 0.40 − 5.8 1027 250 45.4 −0.49
AT20 20.0 10.0 10.0 395 63.4◦ 6.54 0.37 − 1.9 0.40 − 5.8 1027 250 91.4 −0.50
AT30 30.0 15.0 15.0 395 63.4◦ 6.54 0.15 − 4.3 0.40 − 5.7 1027 250 47.5 −0.32
AT40 40.0 20.0 20.0 395 63.4◦ 6.54 0.45 − 2.7 0.40 − 4.9 1027 250 109.5 0.23
AT50 50.0 25.0 25.0 395 63.4◦ 6.54 0.32 − 1.7 0.40 − 4.4 1027 250 57.9 0.49

Triangular α = 30◦

TI310 10.0 9.75 18.8 395 30.0◦ 6.00 0.0570 − 1.52 0.0334 − 7.02 1027 252 69.4 −0.74
TI321 21.1 20.4 39.4 395 30.0◦ 6.00 0.1190 − 3.18 0.2270 − 6.94 1027 253 65.1 0.99

Triangular α = 60◦
TI615 15.0 9.68 12.73 395 60.0◦ 6.00 0.0830 − 2.22 0.0408 − 7.05 1027 250 91.3 −0.82
TI635 35.0 23.0 30.3 395 60.0◦ 6.00 0.1610 − 4.93 0.0140 − 4.65 1027 245 93.6 0.66

Triangular α = 90◦
TI919 19.2 9.60 9.60 395 90.0◦ 6.00 0.1080 − 2.89 0.0471 − 7.06 1027 250 127.1 −0.60
TI950 50.0 25.0 25.0 395 90.0◦ 6.00 0.2300 − 7.05 0.0291 − 7.00 1027 250 150.3 0.79

Trapezoidal
TA18 17.9 11.8 8.93 395 30.0◦ 6.00 0.27 − 3.0 0.31 − 7.0 2054 250 50.2 −1.06
TA31 31.4 20.5 15.6 395 30.0◦ 6.00 0.47 − 2.4 0.31 − 7.0 2054 250 47.0 0.434
TA36 36.5 24.0 18.2 395 30.0◦ 6.00 0.55 − 29 0.31 − 7.1 2054 255 49.4 0.801
TA50 50.0 32.9 25.0 395 30.0◦ 6.00 0.76 − 3.9 0.31 − 7.1 2054 250 45.8 1.76
TA60 62.0 41.1 31.3 395 30.0◦ 6.00 0.45 − 4.9 0.31 − 7.1 2054 250 47.0 2.46

Table 1. For caption see next page.917
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Blade s/t
BL20 20.5 12.9 10.1 395 5.00 6.00 0.51 − 2.1 0.300 − 6.10 1027 264 88.0 −0.598
BL34 33.7 21.3 16.7 395 5.00 6.00 0.83 − 3.4 0.240 − 6.30 1027 266 94.7 0.600
BL40 39.6 25.0 19.5 395 5.00 6.00 0.97 − 3.9 0.300 − 6.50 1027 272 93.5 1.23
BL50 49.0 31.0 25.0 395 5.00 6.00 1.2 − 4.9 0.300 − 6.70 1027 294 118 1.89

Smooth wall SM — — — 395 — 6.00 3.0 0.21–4.70 1027 250 173 0

Table 1. DNS cases of minimal open-channel flow; s+ = s/δv and �+g = �g/δv , respectively, the viscous-scaled riblet spacing and square root of the groove area, �g ≡ √
Ag;

�x+ is the viscous-scaled mesh spacing in the streamwise direction and �y+
min −�y+

max, �z+
min −�z+

max the minimum and maximum mesh spacing in the spanwise and
wall-normal directions; L+

x and L+
y are the viscous-scaled dimensions of the computational domain in the streamwise and spanwise directions, respectively; T is the

time-averaging interval. Symbols in the first column indicate figure markers for different geometries.
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DNS of minimal turbulent channel flow over riblets

Slip

No-slip
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δ
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Ag

Ag
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Triangular

Asymmetric triangular

Trapezoidal

Blade

Flow

t

k

k

k

k

α

α

α

(a)

(b)

(c)

(d)

(e)

Figure 3. Sketch of the computational domain. Minimal open-channel configuration with box dimension Lx ×
Ly × δ. Different groove geometries are considered, from (b) to (e): asymmetric triangular with opening angle
α = 63.4◦, triangular with opening angle α = 30◦, α = 60◦, α = 90◦, blade with spacing-to-thickness-ratio
s/t = 5 and trapezoidal with opening angle α = 30◦.

(table 1 and figure 3). No-slip boundary conditions are imposed at the bottom riblet wall,
whereas a free-slip boundary condition is used at the top boundary and periodicity is
imposed in the streamwise and spanwise directions. The flow over riblets is initialized
by interpolating previous converged simulations of smooth channel flow, and simulations
are continued to statistically stationary conditions. Three-dimensional flow fields are then
stored each 0.25δ/uτ for dimensionless time intervals Tuτ /δ that are reported in table 1,
and independence from the initial conditions is a posteriori checked by shifting the
averaging time interval of T/4 and verifying that the variation of the mean wall-shear stress
is below 1 %. Ensemble averages (averages in time, streamwise direction and riblet period)
are indicated by the overline symbol, f̄ ( y, z) with y × z ∈ [0, s] × [zv, δ] (zv indicates the
location of the riblet valley), whereas plane averages (averages in streamwise and spanwise
directions and in time) are indicated as 〈 f 〉(z). Turbulent fluctuation is defined with
respect to ensemble averages, f ′ = f − f̄ . Variables normalized with respect to wall units
(δv , uτ ) are denoted with a + superscript. The ensemble-averaged cross-stream velocity
components v̄ and w̄ are hereafter referred to as dispersive or secondary velocities and v̄ ū,
w̄ ū are the associated dispersive stresses.

3. Drag reduction and virtual origin

Drag reduction can be quantified as the difference of the friction coefficients between
smooth and riblet walls,

DR = 1 − Cf

Cfsm
, (3.1)
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D. Modesti, S. Endrikat, N. Hutchins and D. Chung

where Cfsm and Cf are the friction coefficients over the smooth and riblet walls,
respectively, Cf ≡ 2τw/(ρU2

δ ) = 2/U2+
δ and U+

δ ≡ 〈u〉+(δ), the mean velocity at the slip
boundary. The use of the friction coefficients based on U+

δ allows us to directly relate the
drag reduction (3.1) to the shift in the velocity profile with respect to the smooth wall.
Further manipulation of (3.1) casts it as

DR = 1 − 1(
1 − �U+

U+
δsm

)2 , (3.2)

where �U+ = 〈u〉+sm(δ)− 〈u〉+(δ) is the velocity shift with respect to the smooth wall,
or the Hama roughness function, at z = δ. A positive �U+ therefore corresponds to
a drag increase, whereas negative values indicate drag reduction. Note that (3.2) and
evaluation of �U+ at z = δ is only valid for matched Reτ , whereas a different relation
can be written for matched Reynolds numbers based on the bulk velocity (Bechert et al.
1997; García-Mayoral & Jiménez 2011). Use of �U+ has the advantage that unlike DR,
it does not depend on the outer Reynolds number. This is a direct consequence of the
outer layer similarity hypothesis (Townsend 1976), which has been verified extensively
for rough-wall boundary layers (Flack, Schultz & Connelly 2007; Schultz & Flack 2007).
Use of �U+ allows easier comparison with other studies at different Reynolds number
and drag reduction can always be recovered using (3.2). For instance, if we consider
a wide-body long-range commercial aircraft with a mean aerodynamic wing chord of
7 m and a fuselage length of 60 m, flying at a cruise speed of 250 m s−1 with ν =
3.5 × 10−5 m2 s−1, we can estimate a Reynolds number of Rex ≈ 5 × 107 for the wing
and Rex ≈ 4 × 108 for the fuselage corresponding to a friction Reynolds number of Reτ ≈
17 000 and Reτ ≈ 80 000 (Schlichting (1979), (21.16) footnote), respectively. Equation
(3.2) shows that drag reduction depends on the Reynolds number through Cfsm = 2/U+

δsm
(Spalart & McLean 2011), thus 10 % of drag reduction at Reτ ≈ 400, typical of DNS, is
only 6 % at Reτ ≈ 17 000 (wing) and 5 % at Reτ ≈ 80 000 (fuselage). In the present work,
the use of the minimal channel does not allow the use of U+

δ to estimate the velocity shift.
Nevertheless, the Hama roughness function is constant above the roughness sublayer at
matched Reτ and Chung et al. (2015) showed that minimal-channel mean profiles match
those of full channel up to the critical height z+

c = 0.4L+
y in the log region. Therefore, we

measure the velocity shift at z+
c ,

�U+ = 〈u〉+sm(δ)− 〈u〉+(δ) ≈ 〈u〉+sm(zc)− 〈u〉+(zc). (3.3)

The second identity in (3.3) is accurate only if the smooth and rough velocity profiles are
approximately parallel above the roughness sublayer and below zc, such that the Hama
roughness function is constant in this region, indicating that it would be constant even
further up if a wider channel domain were used. In minimal-channel flow Ly < δ and the
critical height zc = 0.4Ly, therefore one typically has zc � δ. This does not impact the
accuracy of the second identity in (3.3), which only depends on the flatness of the Hama
roughness function between zc and δ. At low Reynolds numbers, such as the ones typically
achieved in DNS, these conditions depend on knowing the location of the virtual origin of
the flow (Raupach, Antonia & Rajagopalan 1991).

Simulations were conducted with matched fluid volumes (i.e. the nominal origin from
which δ is measured is the riblet mean height, located �2

g/s below the crest). The riblet
mean height is the location at which a smooth channel with the same cross-sectional
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DNS of minimal turbulent channel flow over riblets
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Figure 4. Turbulent stress 〈u′w′〉+ (a,c,e,g) and Hama roughness function 〈u+〉sm − 〈u+〉 (b,d, f,h), for
triangular (a,b), asymmetric triangular (c,d), blade (e, f ) and (g,h) trapezoidal riblets. Profiles are reported
with respect to the constant volume origin at z = 0 (black solid line) and with respect to the origin of the
turbulent stress at z = zt − �T (black dashed line). Colour from light to dark indicates increasing riblets spacing
s+ (table 1). The smooth wall minimal-channel turbulent stress (red dashed dot line thick) is also reported in
(a,c,e,g). Profiles are shown from above the crest. z+

c = 0.4L+
y ≈ 100 (table 1), represented by the red dashed

line, is the critical height at which �U+ is measured. Here, zt indicates the location of the crest and �T the
location of the virtual origin, measured downward from the crest.
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area Ac would be located. This choice corresponds to the location where the extrapolated
total stress equals τw, but in general the location of the equivalent wall perceived by the
turbulent flow might be at a different height. Moreover, the velocity shift obtained with
riblets is typically small, in the range �U+ ≈ −1 to 1, making the measurement of �U+
rather sensitive to the wall-normal location. For these reasons, a correct estimation of
the location of the virtual origin of the riblet wall is necessary. Several methods have
been proposed to estimate the virtual origin of the flow: the centroid of the total stress
(Thom 1971; Jackson 1981), the virtual origin of the Stokes spanwise flow (Luchini
et al. 1991), using the Fukagata–Iwamoto–Kasagi (FIK) identity (Bannier et al. 2015),
or where the turbulent stress vanishes (Nepf et al. 2007; MacDonald et al. 2018). In this
work we follow the latter, the physical idea being that the main effect of riblets is to lift
up the turbulent eddies in the viscous sublayer, thus reducing the turbulent stress. This
concept is only strictly valid for small riblets, for which the effect of the texture reduces
to an origin shift (García-Mayoral et al. 2019). Consistently with this interpretation we
identify the location of the equivalent smooth wall by shifting the turbulent stress profile,
〈u′w′〉 = 〈uw〉 − 〈ū w̄〉 of the smallest riblet geometries (TI310, TI615, TI919, AT15, BL20,
TA18) to match the smooth wall. We interpret this length, measured downward from the
riblet crest, as the virtual origin of turbulence and we denote it with �T . The virtual origin
of the larger cases is then obtained by fixing the ratio between the origin of turbulence
and the riblet height �T/k for geometries of the same family (triangular with fixed tip
angle, asymmetric triangular, blade and trapezoidal). Figure 4(a,c,e,g) shows the original
turbulent stress profiles (solid lines) and the shifted ones (dashed lines) for all flow cases.
The shifted Reynolds stress profiles match the smooth wall with good agreement, whereas
minor differences are observed for increasing riblet size. The effect of the virtual origin
shift on the Hama roughness function is reported in figure 4(b,d, f,h), which shows that
〈u〉+sm − 〈u〉+ becomes substantially flatter with respect to the original profile, when the
virtual origin correction is taken into account, allowing us to measure�U+ as in (3.3) with
more confidence, reducing the aforementioned low-Reynolds-number effects. The virtual
origin shift relative to the mean height is typically small, in the range z+

t − �+T ≈ 2–20
depending on the riblet size and geometry, but at this relatively low Reynolds number the
effect on the mean velocity profile is relevant.

Figures 5(a) and 5(b) show the velocity shift �U+ as a function of s+ and �+g ,
respectively, for different riblet geometries, compared to experimental data for triangles
α = 60◦ from (Bechert et al. 1997) (grey filled triangle) and DNS data for blades
s/t = 4 from (García-Mayoral & Jiménez 2011) (grey filled square). DNS data for
drag-reducing blades (BL20) and triangles with α = 60◦ (TI615) predict slightly larger
drag reduction with respect to previous DNS of blade riblets (grey filled square) and
experiments (grey filled triangle). For the blades this can be traced back to the different
blade thicknesses, s/t = 5 in our case, and s/t = 4 in García-Mayoral & Jiménez (2011),
consistent with the idea that thinner blades yield larger drag reduction. As for the
triangles, the experimental values of �U+ have been extracted from the drag reduction
curves of Bechert et al. (1997), assuming that the riblet and smooth wall have the
same Reynolds number based on bulk velocity (García-Mayoral & Jiménez (2011),
(3.2) in that paper), which could explain this minor discrepancy. Even though the drag
curves are traditionally reported as a function of s+ (Walsh 1982; Luchini et al. 1991;
Bechert et al. 1997), García-Mayoral & Jiménez (2011) showed that a better collapse
between different geometries can be obtained using the viscous-scaled square root of the
groove area, �+g . In particular, García-Mayoral & Jiménez (2011) analysed experimental
data for several riblets geometries and showed that �+g collapses the drag curves of different
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DNS of minimal turbulent channel flow over riblets
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Figure 5. (a) Value of �U+ as a function of the viscous-scaled riblet spacing s+ and (b) as a function of the

square root of groove area �+g = �g/δv , where �g = √
Ag. Symbols represent different flow cases: , triangles

α = 30◦; , triangles α = 60◦; , triangles α = 90◦; (red), trapezoids α = 30◦; (blue), blades s/t = 5;
(orange), asymmetric triangles α = 63.4◦; (grey), experimental data for triangles α = 60◦ (Bechert et al.

1997); , DNS data for blades s/t = 4 (García-Mayoral & Jiménez 2011).

geometries close to the drag optimum �+g ≈ 10–11 and related this scaling to the onset
of a Kelvin–Helmholtz-like instability above the riblet crest for blade riblets. Figure 5
shows that the present DNS data also confirm the improved collapse of �U+ when this is
reported as a function �+g rather than s+. In addition to the previously observed improved
collapse near the drag optimum we also note a better agreement between different groove
geometries in the drag-increasing regime (i.e. case TI321 triangles at 30◦, case TI950
triangles at 90◦ and cases AT40 and AT50 red asymmetric triangles at 63.4◦).

Although reporting the drag curves as a function of �+g improves the collapse between
different grooves, differences between riblet shapes are still visible. The optimum drag
occurs at �+g ≈ 11 for all riblet shapes, but �U+ depends on the groove geometry and
can be partially predicted from the difference in protrusion heights (Luchini et al. 1991).
The maximum drag reduction is achieved by the trapezoidal riblets with �U+ = −1.06,
whereas the asymmetric triangular riblets have the least drag reduction with �U+ =
−0.49. In the same region, symmetric triangular riblets with α = 30◦, 60 ◦ and 90◦ achieve
�U+ = −0.74, −0.82 and −0.60, respectively, and blades �U+ = −0.60. The drag
curves of large riblets show a different trend and for �+g ≈ 20: asymmetric triangular riblets
exhibit the smallest drag increase (�U+ ≈ 0.2), compared to trapezoidal (�U+ ≈ 0.4),
blades (�U+ ≈ 0.6) and triangular with α = 30◦ (�U+ ≈ 1), α = 60◦ (�U+ ≈ 0.7)
and α = 90◦ (�U+ ≈ 0.8). The drag curves highlight the general idea that sharp riblets
provide larger drag reduction, which stems from the Stokes-flow theory (Luchini et al.
1991), but this does not hold in the nonlinear regime. For instance at �+g ≈ 20, the
sharp triangular riblets with α = 30◦ are the ones providing the largest drag increase,
whereas the blunt asymmetric riblets with angle α = 63.4◦ are the ones with the smallest
drag increase. Hence, the analysis confirms that the linear theory cannot explain the drag
curves of large riblets in which inertial flow penetrates the riblet grooves.

4. Roughness sublayer and secondary velocities

A relevant length scale in rough-wall turbulence is the roughness or riblet sublayer δr,
representing the region of direct influence of the riblets in the wall-normal direction,
namely the wall-normal distance between the virtual origin and the location at which
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Virtual origin
�T

δr z
z

y

y

Riblet wall

Smooth wallzt

zv
Riblet mean height

Spanwise homogeneous

Figure 6. Sketch of the roughness sublayer δr, measured from the virtual origin of turbulence. The virtual
origin of turbulence is located �T downward from the crest. The equivalent smooth wall is also shown for
reference.

the flow becomes statistically homogeneous in the wall-parallel directions, (figure 6).
Although the notion of roughness sublayer is rather intuitive, many definitions are
available in the literature. Raupach et al. (1991) identify the roughness sublayer as the
region in the range 2k–5k, where k is the roughness height. Nikora et al. (2001) and
Pokrajac et al. (2007) relate the roughness sublayer to the dispersive velocities, whereas
Cheng & Castro (2002) define the roughness sublayer as the wall-normal distance at
which the ensemble-averaged velocity profile becomes homogeneous in the wall-parallel
directions. In the present work we follow the approach of Cheng & Castro (2002) and
we define the riblet sublayer as the wall-normal location at which the ensemble-averaged
streamwise velocity above the crest becomes homogeneous in the spanwise direction,

max
0≤y≤s

∣∣∣∣∂ ū
∂y
( y, z − (zt − �T) = δr)

∣∣∣∣ = 0.5uτ
s

. (4.1)

We use the threshold 0.5uτ /s because the spanwise velocity variation ∂ ū/∂y ∼ uτ /s,
and the value 0.5 has been chosen from visual inspection of the spanwise variation in
velocity across the span of the riblet. Figure 7 shows the ensemble-averaged streamwise
velocity profiles across the riblet span for flow cases BL50 and AT50, highlighting that
(4.1) accurately captures the distinct separation between the region of direct influence of
the riblet and the overlying spanwise-homogeneous flow. Although the upper limit of the
roughness sublayer can be clearly identified in figure 7, the definition of the lower limit is
more blurred and multiple choices are possible. In (4.1) we measure the roughness sublayer
starting from the virtual origin of turbulence, but in the following we also consider the
roughness sublayer measured from the riblet mean height, δ+r − �+T + z+

t (figure 6), as
this is easier to calculate in experiments, where �T might be difficult to estimate. A visual
impression of δ+r − �+T + z+

t can be gained from the sketch in figure 6, which shows the
position of the mean riblet height and the virtual origin with respect to the smooth wall.
The virtual origin can be interpreted as the wall-normal location at which the outer flow
perceives the equivalent smooth wall.

In order to understand the relation between the groove shape and the roughness sublayer,
in figure 8 we report δ+r as a function of s+ and �+g . Figure 8(a) shows that DNS data for
different groove geometries support a linear relationship between the roughness sublayer
and the riblet spacing,

δ+r = as+, (4.2)
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DNS of minimal turbulent channel flow over riblets
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Figure 7. Mean velocity profiles over the riblet at all spanwise locations (grey solid lines), from the lower
(orange solid line with circles), to the upper (blue solid line with triangles) curve envelope, for flow case (a)
BL50 and (b) AT50. The location of the roughness sublayer δ+r (red dashed line) as defined in (4.1) is also
reported. The vertical lines in the riblet sketch refer to the spanwise location of the lower and upper curve
envelopes.

where a = 0.62 is the least-squares fitting constant obtained from present DNS data.
A slightly larger scatter instead is observed when δ+r is reported as a function of �+g
(figure 8b). In the context of roughness, a similar result has been reported by Chan et al.
(2018), who observed that δr is half the spanwise roughness wavelength of egg-carton
roughness in fully developed pipe flow. The roughness sublayer can be interpreted as
the wall-normal distance above which the flow does not perceive the groove geometry,
but rather the mean wall-shear stress induced by the riblets. In this respect (4.2) allows
us to relate a flow parameter, δ+r , to a geometrical parameter, s+, and it shows that the
wall-normal location at which the mean flow becomes spanwise homogeneous depends
only on the riblet spacing and not on the detailed groove geometry. However, the relation
between�U+ and δ+r is more complex. As also noted by previous authors, there is no fixed
relationship between�U+ and s+ (and therefore also not between �U+ and δ+r ). Instead,
�U+ of different grooves geometries scales better with �+g than with s+ and (4.3) shows
that �+g and δ+r are related through the mean riblet height. The linear relationship (4.3) can
be traced back to the fact that the concept of virtual origin is strictly valid for infinitely
small riblets, whereas in the turbulent case inertial flow might penetrate below the virtual
origin and measuring the roughness sublayer from the riblet mean height partially accounts
for this effect. In this sense �+g has the role of a fitting parameter and, being an average of
the groove geometry, it accounts for this correction. We also observe that the roughness
sublayer measured from the riblet mean height follows a different trend and DNS data
show a linear relationship with the square root of the groove area,

δ+r − �+T + z+
t = b�+g , (4.3)

where b = 1.47 is the least-squares fitting constant obtained from present DNS data
(figure 8d). On the contrary, a slightly larger scatter of the data can be observed when
δ+r − �+T + z+

t is plotted against the riblets spacing (figure 8c). Figure 8(d) shows that
the roughness sublayer measured from the riblet mean height is linearly proportional to
�+g , and therefore related to velocity shift �U+. To further investigate the relationship
between the riblet sublayer and the secondary flows, we focus on the ensemble-average
flow field, with particular focus on the non-zero dispersive velocities v̄ and w̄. Figures 9
and 10 show v̄+ and w̄+ in the cross-stream plane for all riblet cases, where the red
dashed line denotes the height of the roughness sublayer. The mean wall-normal velocity
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Figure 8. Roughness sublayer δ+r as a function of the viscous-scaled riblet spacing s+ (a) of the viscous-scaled
square root of the groove area �+g (b). Value of δ+r − �+T + z+

t (roughness sublayer measured from the riblet
mean height) as a function of s+ (c) and �+g (d). In panels (a,d) the linear fittings δ+r = 0.62s+ and δ+r − �+T +
z+

t = 1.47�+g (grey solid line) are also reported. Symbols indicate different geometries: , triangles α = 30◦;

, triangles α = 60◦; , triangles α = 90◦; (red), trapezoids α = 30◦; (blue), blades s/t = 5;
(orange), asymmetric triangles α = 63.4◦.

component w̄+ (figure 9) is spatially organized into two lobes, one positive close to the
riblet crests and one negative at the centre of the groove. On the other hand, the mean
spanwise velocity component v̄+ (figure 10) is constituted by four lobes with alternating
sign, which together with w̄+ form two ensemble-averaged counter-rotating vortices laying
in the riblet groove, as shown from the streamfunction ψ (figure 11). For small riblets the
flow is dominated by viscosity (Stokes flow) and the leftward and rightward spanwise flows
cancel out due to symmetry, whereas for Stokes flow the mean cross-stream velocities
are exactly zero. The Stokes-flow limit is only valid for infinitely small riblets, therefore,
for a turbulent flow, we find v̄ /= 0 and w̄ /= 0, even for the smallest riblet cases under
scrutiny. Nevertheless, for small riblets the intensity of v̄ and w̄ is approximately an order
of magnitude smaller than the colour scale in figures 9 and 10 and therefore not visible. For
large riblets inertia prevails and the instantaneous leftward and rightward spanwise flows
are different (flow separation can occur), leading to non-zero mean secondary velocities.
The presence of these vortices clearly shows that large grooves are dominated by inertial
flow, whereas viscous flow dominates over small riblets. Ensemble-averaged secondary
velocities over large riblets have also been reported in DNS of triangular riblets (Choi
et al. (1993), figure 9 that paper), in DNS of cusped shape riblets (Goldstein et al. 1995,
figure 3g in that paper) and experiments of trapezoidal riblets (Suzuki & Kasagi 1994,
figure 6 in that paper), supporting the idea that this mechanism might characterize the
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Figure 9. Mean wall-normal velocity component w̄+ in the cross-stream plane. Dashed contour lines indicate negative values. The red dashed line indicates the location of
the roughness sublayer as defined in (4.1). Here, z − zv is the wall-normal distance from the riblet valley. The green tick (�) indicates drag-decreasing cases, the red cross
(×) drag-increasing cases.
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Figure 10. Mean spanwise velocity component v̄+ in the cross-stream plane. Dashed contour lines indicate negative values. The red dashed line indicates the location of
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Figure 11. Cross-flow streamfunction ψ+ = ψ/ν, v̄ = ∂ψ/∂z, w̄ = −∂ψ/∂y. Dashed contour lines indicate negative values. The red dashed line indicates the location of
the roughness sublayer as defined in (4.1). Here, z − zv is the wall-normal distance from the riblet valley. The green tick (�) indicates drag-decreasing cases, the red cross
(×) drag-increasing cases.
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AT15 AT20 AT30 AT40 AT50

al 0.502 0.505 0.524 0.530 0.539
ar 0.498 0.495 0.476 0.470 0.461

Table 2. Fraction of the leftward al and rightward ar flow for conditional averages of asymmetric triangular
riblets, conditioned on the instantaneous spanwise flow.

flow physics of riblets in the nonlinear drag-increasing regime. A similar mechanism has
been observed in liquid infused surfaces, in which the interface between the two fluids
prevent the penetration of the secondary flows inside the grooves (Arenas et al. (2019), see
figure 9 in that paper), promoting reduction of the skin friction. The connection between
drag increase and dispersive velocities seems also to be supported by the recent numerical
experiments of Di Giorgio et al. (2020), which show that supressing the normal velocity
at the crest (and therefore the penetration of inertial flow inside the groove) extends the
linear drag-reducing regime beyond the optimum.

Goldstein et al. (1995) and Goldstein & Tuan (1998) attributed the drag increase to
these mean secondary velocities, whereas other authors (Choi et al. 1993; Lee & Lee
2001) focused on the instantaneous flow field. Lee & Lee (2001) tracked the centre
of turbulent vortices, noticing that they are more frequently located below the riblet
crest for drag-increasing riblets. Similarly, Choi et al. (1993) attributed the breakdown
of drag reduction to turbulent vortices descending inside the riblet groove, providing
instantaneous flow visualization as supporting evidence of this mechanism. The two
proposed mechanisms seem similar, but the first (Goldstein et al. 1995; Goldstein & Tuan
1998) is focused on the time-averaged flow and the second on instantaneous turbulent
structures (Choi et al. 1993; Lee & Lee 2001). In order to shed light on the connection
between the time-averaged and instantaneous flow, we study the dynamics of the secondary
vortices in figure 11 to understand if their mean flow topology exists in the instantaneous
flow or if it is an artefact of the time averaging.

To this end, we average the flow field conditioned on the direction of the spanwise flow
at the crest, as shown by García-Mayoral & Jiménez (2011) for blade riblets,

v̄ = alv̄l + arv̄r, (4.4a)

w̄ = alw̄l + arw̄r, (4.4b)

where al and ar indicate the fraction of leftward and rightward flow contributing to the
total. For symmetric riblets al = ar = 0.5 on average, whereas for asymmetric riblets the
values are reported in table 2.

Figure 12 shows the streamfunction based on the conditional average. With the exception
of the asymmetric riblets, all averages are shown only for the spanwise flow from left
to right. For the asymmetric riblets (where ar /= al), figure 12( f – j) shows the averages
with flow from right to left. To ease comparison, these plots are mirrored. We note that, in
agreement with figure 6 in García-Mayoral & Jiménez (2011), the conditional-averaged
flow over small riblets is very similar to the Stokes flow and no recirculation regions
(negative streamfunction values) are present. Large riblets show the presence of large
recirculation regions, indicating that turbulence penetrates inside the groove. We also note
that the penetration depth of the recirculating flow depends on the riblet geometry. As a
reference, the red dotted line in figure 12 indicates the location of the riblet mean height.
All drag-increasing cases (red cross in figure 12) show a recirculation bubble extending
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Figure 12. Streamfunction of the mean conditional cross-flow, conditioned to the direction of mean spanwise flow at the riblet crest. The mean flow just above the groove
is from left to right for all cases, apart from asymmetric riblets ( f – j) which show the flow from right to left. To ease comparison these plots are mirrored. The lines
are for constant values of the conditional streamfunction in the cross-section ψ+

r = (0.2, 5.2, 10.2, 15.2, 20.2)× 10−3 (solid lines) for counter-clockwise rotation and
ψ+

r = (−6,−1)× 10−4 (dashed lines) for clockwise rotation. The red dotted line indicates the riblet mean height. The green tick (�) indicates drag-decreasing cases, the
red cross (×) drag-increasing cases.
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D. Modesti, S. Endrikat, N. Hutchins and D. Chung

below the riblet mean height, almost reaching the groove ground, except for the sharp
triangular riblets of flow cases TI321 and TI635 (figure 12u,w).

We further note that the streamfunction of the conditional-averaged flow is very different
from the mean flow one in figure 11 (although the weighted average of the rightward and
leftward flows returns the mean flow, as from (4.4)), suggesting that the mean flow inside
the groove is mainly an artefact of the time averaging and the symmetric counter-rotating
vortices previously observed are not present in the instantaneous flow. Therefore, the
dispersive velocities as they appear in the time average, are the result of a dynamic process
in which turbulent spanwise motions at the riblet crest give rise to preferentially located
and asymmetric eddies within the riblet groove. Furthermore, the conditional averages
show that the recirculation bubble penetrates down to the groove bottom for certain
geometries (trapezoids, blades, asymmetric triangles, triangles with tip angle 90◦), but
not for others (triangles with tip angle α = 30◦, 60◦), which is not evident from figure 11,
in which non-zero values of the mean streamfunction are mainly limited to the crest.

Moreover, the flow over asymmetric riblets shows similarities with both the flow over
symmetric triangles and blades. The large asymmetric triangular riblet AT50, figure 12(e)
exhibits a large negative patch, similar to the flow over BL50, figure 12(s), suggesting
that the flow over the vertical side of asymmetric riblets is similar to the flow on the
vertical side of the blades. On the contrary positive isolines in figure 12( j) are very similar
to the ones over the triangular riblet TI950 in figure 12(y). Hence, the cross-flow over
asymmetric triangular riblets can be thought as the weighted average of the flow over
symmetric triangular grooves and blades. Table 2 shows that the flow is preferentially
skewed towards the left and the flow asymmetry increases with the riblet size. We also
note, however, that the drag curve of asymmetric riblets (figure 5) does not seem to reflect
this similarity, as both near the optimum and in the drag-increasing regime, �U+ of the
asymmetric riblets follows a different trend from blades and asymmetric triangles.

5. Contributions to the change in drag

In order to quantify the contribution of the dispersive velocities to the degradation of the
drag-reducing performance we consider the streamwise mean-momentum equation,

−Π + ∂ ū v̄
∂y

+ ∂ ū w̄
∂z

+ ∂u′v′

∂y
+ ∂u′w′

∂z
= ν

(
∂2ū
∂y2 + ∂2ū

∂z2

)
. (5.1)

Equation (5.1) can be written in vector form as

−Π + ∇yz · τD + ∇yz · τT = ν∇2
yzū, (5.2)

where ∇yz = (∂/∂y, ∂/∂z), ∇2
yz = ∂2/∂y2 + ∂2/∂z2, are the two-dimensional divergence

and Laplacian operators, respectively, τD = (ū v̄, ū w̄) and τT = (u′v′, u′w′) are the
dispersive and turbulent contributions to the mean-momentum balance. In order to
quantify the relative contribution of the terms in (5.2) to �U+ we use the approach of
Modesti et al. (2018), who generalized the FIK identity to arbitrary complex geometries.
Indeed, the mean-momentum balance (5.2) can be interpreted as a Poisson equation for
ū, in which the terms on the left-hand side are the source terms from DNS, representing
the laminar, dispersive and turbulent contributions to the mean velocity. Therefore, the
associated velocity fields ūD, ūT and ūL, induced by dispersion, turbulence and pressure
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DNS of minimal turbulent channel flow over riblets

gradient, respectively, can be obtained as solutions of three separate Poisson problems,

−Π = ν∇2
yzūL, ∇yz · τD = ν∇2

yzūD, ∇yz · τT = ν∇2
yzūT , (5.3a–c)

where homogeneous Dirichlet and zero gradient boundary conditions are used at the wall
and at the top boundary, respectively, and periodicity is used in the spanwise direction.
Note that the first two of (5.3a–c) are constrained by Green’s identity and thus ūD and ūT
do not contribute to the mean wall-shear stress. This approach coincides with the classical
FIK identity in the case of smooth channel flow, as shown in appendix A. The total mean
velocity field can be recovered by summing the three contributions,

ū = ūL + ūT + ūD, (5.4)

owing to the linearity of the Laplacian operator. We first focus on the intensity and spatial
distribution of the dispersive velocity ūD, induced by the divergence of the dispersive
stresses ∇yz · τD. Figure 13 shows that ∇yz · τD is organized in two lobes, a positive
lobe at the crest and a negative one in the groove, with a magnitude that increases with
the riblet size. The source term and the solution of a Poisson equation tend to be locally
anti-correlated, therefore positive values of ∇yz · τD tend to induce negative values of
ūD. Figure 14 shows that ūD acts to increase the streamwise velocity in the valley and
decrease the streamwise velocity at the crest. Moreover, we note that, even though non-zero
values of ∇yz · τD are only confined below the roughness sublayer, they contribute to
the streamwise velocity in the entire field. Indeed, large riblets show a uniform negative
(drag-increasing) dispersive velocity above the roughness sublayer, attaining values in the
range −2 � ū+

D � −0.5, depending on their size and shape. These values are comparable
to the total �U+ of large riblets in figure 5, suggesting that the dispersive stresses
are an important mechanism contributing to the degradation of drag reduction. We
further note that, although ∇yz · τD and ∇yz · τT represent the contributions of turbulent
secondary flows and turbulent fluctuations, they have the same effect on the mean flow,
namely they transport momentum. The equalizing effect of turbulence emerges in uD
and uT , which are both negative above the roughness sublayer and therefore represent
velocity deficits compared to uL. Hence, ∇yz · τT and ∇yz · τD are two aspects of
inertial momentum transport, which we interpret respectively as turbulent fluctuations
or as riblet-scaled recirculating regions caused by spanwise velocity fluctuations. In the
roughness community dispersive stresses are interpreted as due to the spatial variations
of the time-averaged flow. This definition is a direct consequence of the triple velocity
decomposition, but it leads to two possible physical interpretations of the dispersive
velocities. In the first, dispersive velocities have no dynamics and are a steady-state pattern
in the background of the turbulent flow. In the second, dispersive velocities are the product
of a dynamic process in which spanwise velocity fluctuations are preferentially located in
the groove and on average they give rise to the two counter-rotating vortices we observed
in figure 11. The conditional averages show that secondary flows are characterized by
a rich dynamics, which eventually determines their time-averaged intensity and spatial
distribution. The time-averaged contribution of this dynamic process is represented by
∇yz · τD in the streamwise mean-momentum balance. Instead, the fluctuations around this
time-averaged contribution are absorbed into the turbulent stress ∇yz · τT . An equivalent
velocity decomposition can be obtained for the smooth wall using (5.3a–c),

ūsm = ūsmL + ūsmT , (5.5)

where the dispersive contribution is zero. The two-dimensional velocity Hama roughness
function can be obtained by shifting the riblet velocity contributions (5.4) in the
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Figure 13. Divergence of the dispersive stresses ∇+
yz · τ+

D = ∇yz · τD/(u2
τ /δv) (5.3a–c). Dashed contour lines indicate negative values. The red dashed line indicates the

location of the roughness sublayer as defined in (4.1). Here, (z − zv) is the wall-normal distance from the riblet valley. The green tick (�) indicates drag-decreasing cases,
the red cross (×) drag-increasing cases.
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wall-normal direction, to match the origin of turbulence �T , and subtracting (5.4) from
(5.5),

�U+ = �U+
L + �U+

T + �U+
D, (5.6)

where

�U+
L = ū+

smL( y, z)− ū+
L( y, z − (zt − �T)), (5.7a)

�U+
T = ū+

smT ( y, z)− ū+
T ( y, z − (zt − �T)), (5.7b)

�U+
D = −ū+

D( y, z − (zt − �T)), (5.7c)

and the coordinate system for smooth and riblet walls is sketched in figure 6. Figure 15
shows the total velocity of the smooth-wall case (figure 15a) and riblet case TI950
(figure 15e), decomposed into the laminar (figure 15b, f ), turbulent (figure 15c,g) and
dispersive (figure 15d,h) contributions from (5.3a–c). Figure 15(e–h) shows the riblet
velocity fields, shifted upwards by zt − �T with respect to the mean height, and provide
a visual interpretation of the concept of the virtual origin of turbulence. Indeed, we note
that the shifted riblet contours for the turbulent contribution approximately match the
smooth-wall contours away from the wall, supporting the idea that the outer turbulence
perceives the riblets as a shift of the equivalent wall location. The contributions to
the Hama roughness function (5.7) are obtained by subtracting the riblet velocity fields
from the smooth-wall ones, figure 15(i–l). The figures show that the Hama roughness
function is uniform above the roughness sublayer, consistent with the analysis of the
one-dimensional profiles in figure 4, allowing us to measure the velocity shift and its
FIK contributions at a wall-normal location δr ≤ z ≤ zc. Nevertheless, the contributions
in (5.6) are different from the ones obtained using the standard one-dimensional FIK
identity in velocity difference form (MacDonald et al. 2016; Gómez-de-Segura &
García-Mayoral 2019). In fact, integrating the spanwise-averaged momentum equation
from the crest above, a total slip contribution naturally emerges �U+

S = 〈usm〉+(�+T )−
〈u〉+(z+

t ), which is the difference between the velocity on the smooth wall at the
virtual origin �T and the velocity at the riblet crest zt (figure 6). The slip contribution
�U+

S has an important physical meaning because the drag-reducing mechanism of
riblets can be traced back to their ability to increase the velocity at the crest as
compared to a smooth wall (�U+

S < 0, indicates drag reduction). For this reason, it is
convenient to rewrite (5.6) to explicitly have a �U+

S contribution. We first note that
the laminar contribution in (5.6) corresponds to the slip contribution of Luchini et al.
(1991) in the limit of small riblets �U+

L ( y, zc) = ū+
smL( y, zc)− ū+

L( y, zc − (zt − �T)) ≈
〈usmL〉+(�+T )− 〈uL〉+(z+

t ) ≈ �+T − �+u ≈ h+
⊥ − h+

‖ . Therefore �U+
S ≈ �U+

L . However,
this identity breaks down for increasing riblet size, as the turbulence and dispersive stresses
also contribute to the slip at the crest. In order to obtain a split which explicitly accounts for
�U+

S at all riblet sizes, we define slip contributions for each velocity component (laminar,
turbulent and dispersive),

�U+
SL = 〈usmL〉+(�+T )− 〈uL〉+(z+

t ), (5.8a)

�U+
ST = 〈usmT 〉+(�+T )− 〈uT 〉+(z+

t ), (5.8b)

�U+
SD = −〈uD〉+(z+

t ), (5.8c)

and the total slip is the sum of these three terms,

�U+
S = 〈usm〉+(�+T )− 〈u〉+(z+

t ) = �U+
SL + �U+

ST + �U+
SD. (5.9)
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Figure 15. (a) Mean streamwise velocity over the smooth wall ū+
sm = ū+

smL + ū+
smT + ū+

smD and its FIK
contributions: (b) laminar ū+

smL, (c) turbulent ū+
smT , (d) dispersive ū+

smD . (e) Mean streamwise velocity over
the riblet case TI950 ū+ = ū+

L + ū+
T + ū+

D and its FIK contributions: ( f ) laminar ū+
L, (g) turbulent ū+

T ,
(h) dispersive ū+

D . (i) Hama roughness function and its FIK contributions: ( j) laminar �U+
L = ū+

smL − ū+
L,

(k) turbulent �U+
T = ū+

smT − ū+
T , (l) dispersive �U+

D = ū+
smD − ū+

D .
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Adding and subtracting the second identity in (5.9) from (5.6) we can recast the FIK
identity as

�U+ = �U+
S + �U+

T + �U+
D , (5.10)

where

�U+
T = �U+

T − �U+
ST , (5.11a)

�U+
D = �U+

D − �U+
SD. (5.11b)

Equation (5.10) explicitly accounts for the slip velocity which allows easier comparison
to standard one-dimensional FIK identity (MacDonald et al. 2016; Abderrahaman-Elena,
Fairhall & García-Mayoral 2019) and to the linear theory of Luchini et al. (1991) for
which one should have �U+

S ≈ �U+
L ≈ h+

⊥ − h+
‖ and �U+

ST ≈ �U+
SD ≈ 0. The main

difference between this approach and the one-dimensional FIK is that, by solving the
Poisson equations (5.3a–c), we retain the flow contributions below the crest and we also
quantify the deviations of �U+

S from the linear theory.
Figure 16 shows that, for small riblets, the slip contribution (♦, green) amounts almost

to the total (◦, black), �U+ ≈ �U+
S , consistent with the idea that riblets operating in

the linear regime reduce drag by increasing the mean velocity at the crest, relative to the
turbulence, with respect to the flat wall (Luchini et al. 1991) and hence the bulk flow
velocity. For riblets of moderate size (10 � �+g � 30) the slip contribution increases with
the riblet size, but so do the turbulent (�, red) and dispersive (�, blue) contributions,
leading to the degradation and eventually the breakdown of drag reduction (�+g � 11). The
turbulent contribution�U+

T shows a non-monotonic trend for increasing riblet size (figure
16d–f ) and we find �U+

T < 0 (drag reducing) for the large trapezoidal case TA60. The
term �U+

T becomes negative because it only accounts for the turbulence above the crest,
whereas turbulence below the crest also contributes to the degradation of the slip term
�U+

S , which becomes nearly positive (drag increasing) for the large trapezoidal riblets
TA60.

Figure 16 shows that the relative contribution of turbulence and dispersion depends on
the riblet geometry. The triangular riblets with opening angle α = 30◦ and α = 60◦ and,
to a lesser extent, the blades (figure 16a,b, f ), show a larger turbulent contribution�U+

T >

�U+
D . On the contrary, triangles with opening angle α = 90◦, asymmetric triangles and

trapezoids (figure 16c–e) show a larger dispersive contribution �U+
D > �U+

T .
These observations suggest that the riblet geometry influences the preferential

contribution of turbulence or dispersion to the drag increase. Data suggest that ‘shallow’
riblets with a large fluid spacing promote the penetration of turbulent flow below the crest
resulting in a preferential location of turbulence inside the groove, allowing the formation
of mean secondary velocities. On the other hand, ‘deep’ riblets are characterized by nearly
stagnant fluid inside the groove, suppressing the formation of secondary flows. The idea
that turbulence is suppressed in proximity of narrow corners has been verified for turbulent
flow in fully developed triangular ducts (Eckert & Irvine 1956; Daschiel, Frohnapfel &
Jovanović 2013) and in the case of riblets it can be traced back to the fact that the value
of the Reynolds number based on the local groove width is much lower than s+. The
viscous-scaled local groove width seems a good indicator for determining if the flow
inside the groove is dominated by viscous or inertial effects and in particular we take as
reference the viscous-scaled groove width at the riblet mean height, W+ (red dotted line in
figure 12). For instance, for flow case TI321 W+ = 10.6, whereas for TI635 W+ = 17.5
and for TI950 W+ = 25, which correlates very well with the trend of �U+

D observed
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Figure 16. Contributions to total �U+ (◦, black) from (5.10): turbulence �U+
T (�, red), dispersion �U+

D
(�, blue), slip �U+

S (♦, green), for (a) triangles α = 30◦, (b) triangles α = 60◦, (c) triangles α = 90◦,
(d) asymmetric triangles α = 63.4◦, (e) trapezoids α = 30◦ and ( f ) blades s/t = 5.

in figure 15(a–c). This observation suggests that to have inertial flow inside the riblet
groove (and therefore formation of secondary flows) one should have a groove width at the
riblet mean height W+ � 20. Figure 17 shows �U+

T and �U+
D of drag-increasing riblets

(�U+ > 0) as a function of the groove width at the riblet mean height W+, where the
vertical dashed line indicates W+ = 20. Data show a clear separation between riblets with
a predominant �U+

T or �U+
D , occurring for a local width at the mean height W+ ≈ 20.

The values of �U+
T and �U+

D are also compared to data of García-Mayoral & Jiménez
(2011) (filled blade symbols), for which only one drag-increasing case is available and it
shows close agreement with the present blade data.

We also note that the value of �U+
T is inversely proportional to �U+

D , suggesting that
inertial flow over riblets can occur in two fashions. If the groove width at the mean height
W+ � 20 inertial flow does not penetrate deeply into the groove, but is limited to the
crest region. If W+ � 20 inertial flow descends to the groove bottom, turbulent eddies
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Figure 17. Contributions to total �U+ from (5.10): turbulence �U+
T (a), dispersion �U+

D (b), as a function
of W+, the viscous-scaled groove width at the riblet mean height. Only drag-increasing cases (�U+ > 0) are
reported. Filled symbols refer to the s/t = 4 blade riblets data of García-Mayoral & Jiménez (2011).

preferentially station inside the riblet groove and on average they give rise to the mean
cross-stream velocities in figures 9 and 10. Notably, the groove classification based on W+
is complementary to the recent analysis of Endrikat et al. (2021) on Kelvin–Helmholtz
rollers. Sharp triangles and blades, which have the smallest �U+

D , are the only shapes
for which Endrikat et al. (2021) observe the formation of Kelvin–Helmholtz rollers at the
riblet crest, thus demonstrating that the degradation of drag reduction can be attributed to
different inertial flow mechanisms depending on groove type. The conditional averages in
figure 12 strongly support this mechanism. For drag reducing riblet cases the negative
streamfunction isolines, indicating flow recirculation inside the groove and therefore
inertial effects, never penetrate below the riblet mean height. As for drag-increasing riblets
the penetration depth of the recirculation region depends on the groove geometry. For flow
cases TI321 and TI635 (figure 17), which have W+ � 20, the negative isolines do not
penetrate below the riblet mean height, whereas all other drag-increasing cases, which
have W+ � 20, show large flow recirculation inside the groove, penetrating down to the
riblet bottom. We point out that both drag-reducing and drag-increasing cases can have
W+ � 20, therefore W+ is not suitable for indicating the breakdown of drag reduction,
which is instead well captured by the viscous-scaled square root of the groove area �+g .
The groove width W+ applies to riblets beyond the drag optimum and it can be used to
determinate if the drag degradation is caused by turbulent flow at the crest or turbulent
flow descending inside the groove.

We also note that at sufficiently high s+ we expect that any riblet shape will eventually
develop secondary flows inside the groove, but for certain geometries (e.g. triangular
riblets with α = 30◦) the value of s+ for which this happens is well beyond the drag
optimum and therefore for these cases inertial flow at the crest is responsible for the
degradation of drag reduction (García-Mayoral & Jiménez 2011; Endrikat et al. 2021).

The riblet classification based on the local groove width is summarized by figure 18(b),
in which we report W+ as a function of �+g . For convenience, in figure 18(a) we also
report the mean velocity shift �U+ as a function of �+g . The viscous-scaled square
root of the groove area is the relevant parameter to classify the breakdown of drag
reduction and flow cases with �+g � 18 are drag reducing, whereas flow cases �+g � 18
are drag increasing. For drag-reducing cases both �U+

T ≈ 0 and �U+
D ≈ 0, whereas for

drag-increasing cases the relative importance of �U+
T and �U+

D depends on the local
groove width. If W+ � 20 the drag increase is caused primarily by turbulence and if
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Figure 18. (a) Mean velocity shift �U+ as a function of �+g and (b) viscous-scaled groove width at the riblet
mean height W+ as a function of the viscous-scaled square root of the groove area �+g for all flow cases. The
vertical black dashed line indicates �+g = 18, the vertical black dash-dotted line �+g = 11 and the horizontal red
line W+ = 20. The shaded region indicates the drag-increasing regime in which dispersion contribute more
than turbulence to the breakdown of drag reduction�U+

D > �U+
T . The filled symbol in (b) refers to the s/t = 4

blade riblets data of García-Mayoral & Jiménez (2011).

W+ � 20 by dispersion. We also note that, for these geometries, W+ is linear with
�+g for a given shape, therefore all geometries will eventually enter the shaded region
for increasing riblet size. The present data suggest the idea that the breakdown of drag
reduction is a continuous physical process starting at the optimum �+g ≈ 11 and eventually
leading to drag increase at �+g ≈ 18. For instance figures 9, 10 and 11(c) clearly show the
presence of secondary flows for a drag-reducing case at �+g = 15. Similarly, we observe
that the streamfunction of the conditional-averaged flow of the drag-reducing case TA18
in figure 12(k) (�+g = 11.8) is not exactly symmetric, indicating incipient flow separation
inside the groove. The linear-regime degradation is not characterized by a prompt onset of
the dispersive velocities, but by a gradual growth of the secondary flows’ intensity with
increasing riblet size. Likewise, the value W+ = 20 does not indicate a sharp transition
between two regimes and riblets with W+ ≈ 20 have �U+

T ≈ �U+
D . We also point out

that here we use the riblet mean height as a reference working location separating the
crest region from the groove bottom, but conclusions do not change when using the riblet
spacing at any height between k/2 and the groove bottom. Nevertheless, measuring the
width W+ inside the groove as opposed to the spacing s+ is necessary for isolating the
penetration of induced secondary flow from other inertial mechanisms at play at the crest.

6. Conclusions

We carried out DNS of minimal-channel flow over several riblet geometries to shed
light on the effect of the groove shape and on the physical mechanisms that lead to the
degradation of drag reduction. The use of the minimal-channel flow configuration has
been instrumental to develop a larger dataset than in previous studies, allowing us to reach
more general conclusions. Besides ‘classical’ groove geometries, we also considered the
case of triangular riblets asymmetric in the spanwise direction to investigate if a spanwise
variation can be beneficial in terms of drag reduction. Results show that asymmetric riblets
do not provide increased performance in terms of drag variation, apart from a gentler
increase in �U+, beyond the optimum �+g , compared to the symmetric geometries, and
the only notable (and expected) difference is the presence of a net mean spanwise flow,
which nevertheless has a negligible intensity compared to the mean streamwise velocity.
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As first observed by García-Mayoral & Jiménez (2011), we confirm that drag reduction
curves are more universal around the drag optimum, when reported with �+g than with
s+. We also find that the improvement in the fitting extends beyond the drag optimum,
up to �+g ≤ 30 and it applies to all riblet geometries here under scrutiny. As for the effect
of the riblet shape, trapezoidal riblets with opening angle α = 30◦ yield the largest drag
reduction among the shapes here tested, with �U+ ≈ 1, corresponding to approximately
6 % skin-friction drag reduction at Reτ ≈ 17 000, typical of aircraft wing. We further show
that the roughness sublayer measured from the virtual origin of turbulence is linearly
related to the riblet spacing δ+r ≈ 0.6s+, whereas the one measured from the riblet mean
height is linearly related to the square root of the groove area δ+r − �+T + z+

t ≈ 1.5�+g . As
a result, riblet grooves with the same δ+r − �+T + z+

t have similar�U+, suggesting that the
mean flow inhomogeneity within the roughness sublayer is relevant for understanding the
mechanisms of drag reduction. For this reason we use a generalized FIK analysis, which
retains the effect of the spanwise mean flow variation, to isolate the different contributions
to �U+ and gain additional insight into the flow physics of riblets.

In agreement with previous studies (Bechert et al. 1997; Li & Liu 2018), riblets operating
in the linear regime reduce drag by shifting the virtual origin of turbulence farther from the
wall, increasing the effective mean velocity at the crest, and thus the bulk flow velocity.
Large grooves instead operate beyond the viscous sublayer generating an inertial flow,
which inevitably carries additional stress.

For riblet cases beyond the drag optimum �+g � 11 inertial flow prevails, eventually
leading to the breakdown of drag reduction for �+g � 18. Different types of inertial flow
mechanisms exist, depending on whether the turbulent flow penetrates deeply into the
riblet groove or not. For one, the different drag between the crest and the groove bottom can
give rise to a strong shear, which favours the onset of a Kelvin–Helmholtz instability at the
crest (García-Mayoral & Jiménez 2011; Endrikat et al. 2021). Furthermore, we showed that
dispersive stresses, that cannot be mistaken for Kelvin–Helmholtz rollers, also contribute
to the drag of riblets. This picture of coexistence of mechanisms is not clear from previous
studies (Choi et al. 1993; Goldstein et al. 1995; Lee & Lee 2001; García-Mayoral &
Jiménez 2011), which suggest only one universal mechanism for all riblets. In order to
gauge the importance of secondary flows for drag, we consider the riblet mean height as
a reference depth from the riblet crest and we show that the value of the local groove
width at this height, W+, indicates if the flow inside the groove is turbulent. If W+ � 20,
the groove bottom is dominated by viscosity and the flow is only turbulent at the crest. If
W+ � 20, inertial flow penetrates most of the riblet and turbulent vortices preferentially
station in the groove, causing non-zero v̄ and w̄, which we denote as dispersive velocities.
The conditional-averaged flow inside the groove shows that the typical flow topology of
the dispersive velocities, constituted by two counter-rotating vortices, is merely an artefact
of the time averaging and that these structures are the result of a dynamic process, in which
turbulent fluctuations with riblet-scaled size are spatially locked inside the riblet groove.
Contrarily to the flow over a smooth wall or the flow over small riblets, in the case of large
grooves the left and right spanwise conditional averages do not cancel out, and show their
signature as dispersive stresses.

The analysis allows us to draw a regime diagram (figure 18) for determining if the
drag increase is primarily caused by turbulence or dispersion, depending on the value
of the viscous-scaled groove width at the riblet mean height W+. By their geometrical
definitions W+ and �+g are proportional, therefore all riblets are bound to enter a flow
regime in which inertial flow penetrates into the groove and dispersive stresses become
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important. A notable riblet geometry for which these conclusions might not apply are the
three-dimensional riblets (Sasamori et al. 2014, 2017), because defining a local groove
width is not straightforward as for two-dimensional riblets.
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Appendix A. Application of generalized FIK identity to smooth plane channel flow

In this appendix we discuss the relation between the FIK identity developed by Fukagata,
Iwamoto & Kasagi (2002) for smooth channel flow and the generalized FIK identity of
Modesti et al. (2018) used in § 5. Consider the mean-momentum equation for a smooth
plane channel flow,

du′w′

dz
−Π = ν

d2ū
dz2 , (A1)

where Π > 0 is the uniform pressure gradient, u′w′ the turbulent stress and ū the mean
streamwise velocity. The overline symbol indicates averaging in time and homogeneous
spatial directions. Due to the linearity of the second derivative one can split (A1) into

du′w′

dz
= ν

d2uT
dz2 , (A2a)

−Π = ν
d2uL
dz2 , (A2b)

where uL and uT are the laminar and turbulent contributions to the mean velocity,

ū = uL + uT . (A3)

We also note that integrating (A2a) across the channel we find that the first derivative of uT
at the wall is zero, (duT /dz)w = 0, namely uT does not contribute to the mean wall-shear
stress. Integrating (A3) allows us to find the bulk flow velocity,

ub = ubL + ubT = h2Π

ν
ub1 + ubT , ubX = 1

2h

∫ h

−h
uX dy, (A4a,b)

where u1 is the non-dimensional velocity,

− 1
h2 = d2u1

dz2 , (A5)

and the associated bulk velocity ub1 = νubL/(h2Π) = 1/3, both for full channel and
open-channel flow. In the case of minimal-channel flow, due to the altered mean velocity
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profile, the bulk velocity can be obtained by fitting a composite velocity profile for z > zc
(MacDonald et al. 2017). Introducing the skin-friction coefficientΠ = Cf u2

b/(2h) and the
bulk Reynolds number Reb = 2ubh/ν allows us to recover the original FIK identity for the
skin-friction coefficient (Fukagata et al. 2002),

Cf = 12
Reb

(
1 − ubT

ub

)
= CfL + CfT . (A6)

This analysis shows that the methodology used in § 5 coincides with classical FIK
identity in the case of smooth plane channel flow. The main difference with the standard
FIK identity is not in the procedure, but in the interpretation of the mean-momentum
equation. Interpreting the terms in the mean-momentum equation as sources of separate
Poisson equations has the advantage that the method can be applied to arbitrarily complex
geometries, such as riblets. In § 5 we focus on the contributions to �U+ rather than to the
skin-friction coefficient, therefore the analysis is limited to the velocities uL and uT .
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