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Abstract: In this paper, we present an energy management framework for building climate
comfort systems that are interconnected in a grid via aquifer thermal energy storage (ATES)
systems in the presence of two types of uncertainty, namely private and common uncertainty
sources. The ATES system is considered as a large-scale storage system that can be a heat source
or sink, or a storage for thermal energy. While the private uncertainty source refers to uncertain
thermal energy demand of individual buildings, the common uncertainty source describes the
uncertain common resource pool (ATES) between neighbors. To this end, we develop a large-
scale uncertain coupled dynamical model to predict the thermal energy imbalance in a network
of interconnected building climate comfort systems together with mutual interactions between
the local ATES systems. A finite-horizon mixed-integer quadratic optimization problem with
multiple chance constraints is formulated at each sampling time, which is in general a non-convex
problem and hard to solve. We then provide a computationally tractable framework based on an
extension to the so-called robust randomized approach which offers a less conservative solution
for a problem with multiple chance constraints. A simulation study is provided to compare two
different configurations, namely: completely decoupled, and centralized solutions.

Keywords: ATES, Smart Grids, Multiple Chance Constraints, Robust Randomized.

1. INTRODUCTION

Aquifer thermal energy storage (ATES) is a less well-
known sustainable storage system that can be used to store
large quantities of thermal energy in underground aquifers.
It is especially suitable for climate comfort systems of large
buildings such as offices, hospitals, universities, musea and
greenhouses. Most buildings in moderate climates have a
heat shortage in winter and a heat surplus in summer.
Where aquifers exist, this temporal discrepancy can be
overcome by storing and extracting thermal energy into
and out of the subsurface, enabling the reduction of energy
usage and CO2 emissions of climate comfort systems in
buildings (Jaxa-Rozen et al., 2016).

Smart Thermal Grids (STGs) have been studied implicitly
in the context of micro combined heat and power systems
(Ummenhofer et al., 2017), building with a dynamical
storage tank (Van Vliet, 2013), termocline thermal energy
storage systems (Powell and Edgar, 2013), or general
smart grids, e.g., see Larsen et al. (2013), Larsen et al.
(2014) and the references therein. A deterministic view
on STGs was studied by a few researchers (Rivarolo
et al., 2013), (Lund et al., 2014), (Sameti and Haghighat,
2017). STGs with uncertain thermal energy demands have
been considered in Farahani et al. (2016), where a model
predictive control (MPC) strategy was employed with a
heuristic Monte Carlo sampling approach to make the
� This research was supported by the Netherlands Organization for
Scientific Research (NWO) under the grant number 408-13-030.

solution robust. A dynamical model of thermal energy
imbalance in STGs with a probabilistic view on uncertain
thermal energy demands was established in Rostampour
and Keviczky (2016), where a stochastic MPC with a
theoretical guarantee on the feasibility of the obtained
solution was developed.

ATES as a seasonal storage system has not, to the best of
our knowledge, been considered in STGs. In Rostampour
et al. (2016a) and Rostampour et al. (2016b), a dynamical
model for an ATES system integrated in a building cli-
mate comfort system has been developed. Following these
studies, the first results toward developing an optimal
operational framework to control ATES systems in STGs
is presented here. In this framework, uncertain thermal
energy demands are considered along with the possible
mutual interactions between ATES systems, which may
cause limited performance and reduced energy savings.
The main contributions of this paper are twofold: 1) We
develop a novel large-scale stochastic hybrid dynamical
model to predict the dynamics of thermal energy im-
balance in STGs consisting of building climate comfort
systems with hourly-based operation and ATES as a sea-
sonal energy storage system. Using an MPC paradigm,
we formulate a finite-horizon mixed-integer quadratic opti-
mization problem with multiple chance constraints at each
sampling time leading to a non-convex problem, which
is difficult to solve. 2) We develop a computationally
tractable framework to approximate a solution for our
proposed formulation based on our previous work in Ros-
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tampour and Keviczky (2016). In particularly, we extend
the framework in Rostampour and Keviczky (2016) to
cope with multiple chance constraints which provides a
less conservative solution compared to the so-called ro-
bust randomized approach in Margellos et al. (2013). Our
framework is closely related to, albeit different from the
approach of Schildbach et al. (2013). In Schildbach et al.
(2013) the problem formulation consists of an objective
function with multiple chance constraints, in which the
terms in objective and constraints are univariate. In con-
trast the objective function in our problem formulation
consists of separable additive components.

2. SYSTEM DYNAMICS MODELING

2.1 Seasonal Storage Systems

We consider an ATES system consisting of warm and cold
wells to store warm water during warm season and cold
water during cold season, respectively. Each well can be
described as a single thermal energy storage where the
amount of stored energy is proportional to the temperature
difference between stored water and aquifer ambient water.
Stored thermal energy from the last season is going to be
used for the current season and so forth. Depending on
the season, the operating mode (heating or cooling) of an
ATES system changes, by reversing the direction of water
between wells as it is shown in Fig. 1.

We first define the volume of stored water, Vh
a,k,V

c
a,k[m

3],

and the thermal energy content, Sha,k, S
c
a,k[W], of warm

and cold wells to be the state variables of an ATES system,
and then, propose the following model dynamics:

Vh
a,k+1 = Vh

a,k − (uh
a,k − uc

a,k) ,

Vc
a,k+1 = Vc

a,k + (uh
a,k − uc

a,k) ,

Sha,k+1 = ηa S
h
a,k − (hh

a,k − hc
a,k) ,

Sca,k+1 = ηa S
c
a,k + (cha,k − cca,k) ,

(1a)

(1b)

(1c)

(1d)

where ηa ∈ (0, 1) is a lumped coefficient of losses,
uh
a,k [m

3h−1], and uc
a,k [m

3h−1] are control variables cor-
responding to the pump flow rate of ATES system during
heating and cooling modes at each sampling time k, re-
spectively. hh

a,k [W], cha,k [W] denote the amount of thermal
energy that is extracted from warm well and injected into
cold well of ATES system during heating mode, respec-
tively. cca,k [W], hc

a,k [W] are the amount of thermal energy
that is extracted from cold well and injected into warm
well of ATES system during cooling mode, respectively.
We also define ha,k [W] and ca,k [W] to be the amount
of thermal energy that can be delivered to the building
during heating and cooling modes, respectively. They are
determined using the following relations:{
ha,k = αuh

a,k

ca,k = αuc
a,k

,

{
hh
a,k = αh u

h
a,k

cca,k = αc u
c
a,k

,

{
hc
a,k = αh u

c
a,k

cha,k = αc u
h
a,k

,

where αh = ρw cpw (Th
a,k−Tamb

a,k ), and αc = ρw cpw (Tamb
a,k −

Tc
a,k) are the thermal energy coefficients of warm and

cold wells, respectively. α = αh + αc is the total thermal
energy coefficient, ρw, and cpw are density and specific

heat capacity of water, respectively. Th
a,k [◦C], Tc

a,k [◦C]

and Tamb
aq,k [◦C] denote the water temperature of warm well,

cold well and aquifer ambient, respectively.

Remark 1. There is always only one operating mode active
in ATES systems, which leads to: uh

a,k u
c
a,k = 0 , ∀k .

2.2 Building Climate Comfort Systems

Thermal energy demand, QB
d,k [W], of a building climate

comfort system at each sampling time k is determined by
using our developments in Rostampour et al. (2017b) via

QB
d,k = fB(p

B
s ,T

B
des,k, ϑk) , (2)

where pBs , TB
des,k [◦C] denote a parameter vector and a

desired indoor air temperature of building, respectively.
ϑk = [TB

o,k, Io,k, vo,k,Qp,k,Qe,k] ∈ R5 is a vector of un-
certain variables that contains outside air temperature,
solar radiation, wind velocity, the thermal energy pro-
duced due to occupancy by people and total electrical
devices/lighting installation inside the building.

Remark 2. We are interested in capturing the variation
of thermal energy demand w.r.t. the outside air tem-
perature TB

o,k. Therefore, the uncertain variable in (2),

ϑk, is assigned to TB
o,k, and the rest of the variables are

fixed to their nominal (forecast) values at each sampling
time k. From (2), it follows that the mapping from the

uncertain variable ϑk to the thermal energy demand QB
d,k

is measurable, so that QB
d,k can be viewed as a random

variable on the same probability space as ϑk.

Remark 3. The operating modes (heating or cooling) of
building climate comfort system are determined based
on the sign of QB

d,k at each sampling time k. QB
d,k with

positive and negative signs, represents the thermal energy
demand during heating mode and the building surplus
thermal energy during cooling mode, respectively. QB

d,k =
0 , is related to the comfort mode of building, and thus,
no heating or cooling is requested. We also distinguish
between the thermal energy demand of building during
heating mode hd,k, and cooling mode cd,k, using the

relation: QB
d,k = hd,k− cd,k . Moreover, the thermal energy

demand can be only either for heating hd,k, or cooling cd,k
modes, which leads to: hd,k cd,k = 0 , ∀k .

3. ENERGY MANAGEMENT PROBLEM

3.1 Energy Balance in Single Agent System

Consider a single agent (i.e. building) i ∈ {1, · · · , N} that
is facilitated with a boiler, a heat pump, a storage tank
for the heating mode, and a chiller, a storage tank for
the cooling mode together with an ATES system that is
available for both operating modes (see Fig. 1). For a day-
ahead planning problem of each agent, we consider a finite-
horizon Nh with hourly steps, and introduce the subscript
t in our notation to characterize the value of the quantities
for a given time instance t ∈ {k, k + 1, · · · , Nh + k}.
For each agent i one can rewrite the proposed dynamics
of ATES system in (1) in a more compact format:

xa
i,t+1 = aaix

a
i,t + baiu

a
i,t , (3)

where xa
i,t =

[
Vh

a,t Vc
a,t Sha,t Sca,t

]� ∈ R4 denotes the state

vector, ua
i,t =

[
uh
a,t uc

a,t

]� ∈ R2 is the control vector, and
aai , b

a
i can be obtained via (1). An important operational
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model for an ATES system integrated in a building cli-
mate comfort system has been developed. Following these
studies, the first results toward developing an optimal
operational framework to control ATES systems in STGs
is presented here. In this framework, uncertain thermal
energy demands are considered along with the possible
mutual interactions between ATES systems, which may
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model to predict the dynamics of thermal energy im-
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systems with hourly-based operation and ATES as a sea-
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tampour and Keviczky (2016). In particularly, we extend
the framework in Rostampour and Keviczky (2016) to
cope with multiple chance constraints which provides a
less conservative solution compared to the so-called ro-
bust randomized approach in Margellos et al. (2013). Our
framework is closely related to, albeit different from the
approach of Schildbach et al. (2013). In Schildbach et al.
(2013) the problem formulation consists of an objective
function with multiple chance constraints, in which the
terms in objective and constraints are univariate. In con-
trast the objective function in our problem formulation
consists of separable additive components.

2. SYSTEM DYNAMICS MODELING

2.1 Seasonal Storage Systems

We consider an ATES system consisting of warm and cold
wells to store warm water during warm season and cold
water during cold season, respectively. Each well can be
described as a single thermal energy storage where the
amount of stored energy is proportional to the temperature
difference between stored water and aquifer ambient water.
Stored thermal energy from the last season is going to be
used for the current season and so forth. Depending on
the season, the operating mode (heating or cooling) of an
ATES system changes, by reversing the direction of water
between wells as it is shown in Fig. 1.

We first define the volume of stored water, Vh
a,k,V

c
a,k[m

3],

and the thermal energy content, Sha,k, S
c
a,k[W], of warm

and cold wells to be the state variables of an ATES system,
and then, propose the following model dynamics:

Vh
a,k+1 = Vh

a,k − (uh
a,k − uc

a,k) ,

Vc
a,k+1 = Vc

a,k + (uh
a,k − uc

a,k) ,

Sha,k+1 = ηa S
h
a,k − (hh

a,k − hc
a,k) ,

Sca,k+1 = ηa S
c
a,k + (cha,k − cca,k) ,

(1a)

(1b)

(1c)

(1d)

where ηa ∈ (0, 1) is a lumped coefficient of losses,
uh
a,k [m

3h−1], and uc
a,k [m

3h−1] are control variables cor-
responding to the pump flow rate of ATES system during
heating and cooling modes at each sampling time k, re-
spectively. hh

a,k [W], cha,k [W] denote the amount of thermal
energy that is extracted from warm well and injected into
cold well of ATES system during heating mode, respec-
tively. cca,k [W], hc

a,k [W] are the amount of thermal energy
that is extracted from cold well and injected into warm
well of ATES system during cooling mode, respectively.
We also define ha,k [W] and ca,k [W] to be the amount
of thermal energy that can be delivered to the building
during heating and cooling modes, respectively. They are
determined using the following relations:{
ha,k = αuh

a,k

ca,k = αuc
a,k

,

{
hh
a,k = αh u

h
a,k

cca,k = αc u
c
a,k

,

{
hc
a,k = αh u

c
a,k

cha,k = αc u
h
a,k

,

where αh = ρw cpw (Th
a,k−Tamb

a,k ), and αc = ρw cpw (Tamb
a,k −

Tc
a,k) are the thermal energy coefficients of warm and

cold wells, respectively. α = αh + αc is the total thermal
energy coefficient, ρw, and cpw are density and specific

heat capacity of water, respectively. Th
a,k [◦C], Tc

a,k [◦C]

and Tamb
aq,k [◦C] denote the water temperature of warm well,

cold well and aquifer ambient, respectively.

Remark 1. There is always only one operating mode active
in ATES systems, which leads to: uh

a,k u
c
a,k = 0 , ∀k .

2.2 Building Climate Comfort Systems

Thermal energy demand, QB
d,k [W], of a building climate

comfort system at each sampling time k is determined by
using our developments in Rostampour et al. (2017b) via

QB
d,k = fB(p

B
s ,T

B
des,k, ϑk) , (2)

where pBs , TB
des,k [◦C] denote a parameter vector and a

desired indoor air temperature of building, respectively.
ϑk = [TB

o,k, Io,k, vo,k,Qp,k,Qe,k] ∈ R5 is a vector of un-
certain variables that contains outside air temperature,
solar radiation, wind velocity, the thermal energy pro-
duced due to occupancy by people and total electrical
devices/lighting installation inside the building.

Remark 2. We are interested in capturing the variation
of thermal energy demand w.r.t. the outside air tem-
perature TB

o,k. Therefore, the uncertain variable in (2),

ϑk, is assigned to TB
o,k, and the rest of the variables are

fixed to their nominal (forecast) values at each sampling
time k. From (2), it follows that the mapping from the

uncertain variable ϑk to the thermal energy demand QB
d,k

is measurable, so that QB
d,k can be viewed as a random

variable on the same probability space as ϑk.

Remark 3. The operating modes (heating or cooling) of
building climate comfort system are determined based
on the sign of QB

d,k at each sampling time k. QB
d,k with

positive and negative signs, represents the thermal energy
demand during heating mode and the building surplus
thermal energy during cooling mode, respectively. QB

d,k =
0 , is related to the comfort mode of building, and thus,
no heating or cooling is requested. We also distinguish
between the thermal energy demand of building during
heating mode hd,k, and cooling mode cd,k, using the

relation: QB
d,k = hd,k− cd,k . Moreover, the thermal energy

demand can be only either for heating hd,k, or cooling cd,k
modes, which leads to: hd,k cd,k = 0 , ∀k .

3. ENERGY MANAGEMENT PROBLEM

3.1 Energy Balance in Single Agent System

Consider a single agent (i.e. building) i ∈ {1, · · · , N} that
is facilitated with a boiler, a heat pump, a storage tank
for the heating mode, and a chiller, a storage tank for
the cooling mode together with an ATES system that is
available for both operating modes (see Fig. 1). For a day-
ahead planning problem of each agent, we consider a finite-
horizon Nh with hourly steps, and introduce the subscript
t in our notation to characterize the value of the quantities
for a given time instance t ∈ {k, k + 1, · · · , Nh + k}.
For each agent i one can rewrite the proposed dynamics
of ATES system in (1) in a more compact format:

xa
i,t+1 = aaix

a
i,t + baiu

a
i,t , (3)

where xa
i,t =

[
Vh

a,t Vc
a,t Sha,t Sca,t

]� ∈ R4 denotes the state

vector, ua
i,t =

[
uh
a,t uc

a,t

]� ∈ R2 is the control vector, and
aai , b

a
i can be obtained via (1). An important operational
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Heat 
Pump

Chiller Boiler

Fig. 1. Heating and cooling operating modes of building
climate comfort system with an ATES system during
warm (left) and cold (right) seasons.

limitation of ATES systems is that the sum of injected
and extracted thermal energy over a specific period of time
(typically a year), Ny, has to be zero:

∑Ny

t=k
(hc

a,t − cca,t) = 0 ,
∑Ny

t=k
(cha,t − hh

a,t) = 0 . (4)

This restriction imposed by the government to prevent any
long-term changes/effects in the aquifer ambient temper-
ature and to make the ATES system sustainable Bloe-
mendal et al. (2014). These constraints should be satisfied
within one calendar year or longer periods of time (once
in each five years). To handle such a constraint, one can
use shrinking-horizon dynamic programming Skaf et al.
(2010). In our proposed model (1), the amount of thermal
energy content in each well is defined to be the state
variable of an ATES system. This yields an advantage to
reformulate (4) as follows:

Sha,t + Sca,t ≤ S̄a + ei,t , Sha,t + Sca,t ≥ S̄a − ei,t , (5)

where S̄a corresponds to the initial amount of thermal
energy in the wells of ATES system, ei,t is introduced
as an auxiliary control variable for each agent i at each
sampling time t to soften the formulated constraint (5). It
is important to mention that the proposed reformulation
(5) is not meant to be an equivalent constraint as (4). This
is due to the fact that (4) has to be satisfied within a longer
period of time, whereas (5) is imposed along the prediction
horizon. We however state here that (5) may be equivalent
with (4), whenever the prediction horizon is long enough
(a year) and it is imposed only at the final step.

Define uh
i,t =

[
hboi,t him,t

]� ∈ R2, to be the vector of

control variables during heating, uc
i,t =

[
cchi,t cim,t

]� ∈ R2

to be the vector of control variables during cooling mode
in each agent i at each sampling time t, respectively. hboi,t,
cchi,t, him,t , and cim,t denote the production of boiler,
chiller, the imported energies from external parties during
heating and cooling modes, respectively. We also consider
to have freedom to decide about the on-off status of boiler
and chiller by vi,t = [vboi,t vchi,t]

� ∈ {0, 1}2. Moreover, the
startup cost of boiler and chiller are taken into account by

csui,t =
[
csuboi,t csuchi,t

]� ∈ R2 for each agent i at each time

step t. Consider xh
i,t = hs,t − hf

d,t , and xc
i,t = cs,t − cfd,t to

be the imbalance errors of heating and cooling modes in
each agent i at time step t. hf

d,t, c
f
d,t, hs,t, and cs,t represent

the forecast of thermal energy demand, the level of storage
tank during heating and cooling modes, respectively. hs,t,
and cs,t have the following dynamics:

hs,t+1 = ηhs x
h
i,t + ηhs (hboi,t + him,t + αhpha,t) ,

cs,t+1 = ηcsx
c
i,t + ηcs (cchi,t + cim,t + ca,t) ,

where ηhs , ηcs ∈ (0, 1) are the thermal loss coefficients,
and αhp = COP(COP− 1)−1 represents the effect of heat
pump. COP stands for the coefficient of performance of
heat pump. Substituting hs,t, cs,t into xh

i,t , x
c
i,t, we derive

the dynamical behavior of imbalance errors:

xh
i,t+1 = ahi x

h
i,t + bhi u

h
i,t + bhi,au

a
i,t + chi w

h
i,t ,

xc
i,t+1 = acix

c
i,t + bciu

c
i,t + bci,au

a
i,t + cciw

c
i,t ,

(6a)

(6b)

where ahi = ηhs , aci = ηcs , bhi =
[
ηhs ηhs

]
∈ R1×2,

bci = [ηcs ηcs ] ∈ R1×2, bhi,a =
[
ηhs αhp α 0

]
∈ R1×2, bhi,a =

[ηcs α 0] ∈ R1×2, chi = −1 , and cci = −1. The variables
wh

i,t = hf
d,t+1 and wc

i,t = cfd,t+1 refer to the forecast of
thermal energy demand during heating and cooling modes
in the next time step, respectively. The only uncertain
variable in each agent i is considered to be the deviation of
actual thermal energy demand from its forecast value, and
therefore, wh

i,t and wc
i,t represent uncertain parameters. For

each agent i the system dynamics can be written as:

xi,t+1 = aixi,t + biui,t + ciwi,t , (7)

where xi,t =
[
xh�
i,t xc�

i,t xa�
i,t

]� ∈ R6 denotes the state

vector, ui,t =
[
uh�
i,t uc�

i,t ua�
i,t csu�i,t ei,t

]� ∈ R9 is the

control vector, and wi,t =
[
wh

i,t wc
i,t

]� ∈ R2 is the
uncertainty vector. The system parameters ai, bi, ci , can
be readily derived from their definitions and we omit them
in the interest of space.

We are now in a position to formulate an optimization
problem for each agent i at each sampling time t. We
however refer the interested reader to the formulation
in (Rostampour and Keviczky, 2016, Problem 3) for the
detailed representation of constraints, such as the status
change of production units (boiler, chiller), limitations on
the production capacity (box constraints), together with
the constraints in (5). We here associate a quadratic cost
function with each agent i at each sampling time t as
follows:

Ji(xi,t, ui,t) = x�
i,t Qi xi,t + u�

i,t Ri ui,t , (8)

where Qi = diag
([
qhi qci 01×4

])
∈ R6×6, Ri = diag (ri) ∈

R9×9 denote diagonal matrices with the weighting co-
efficients of imbalance errors, and the cost vector ri =[
rboi r

h
im rchi r

c
im rha rca 1 1 1

]� ∈ R9 , on their diagonals,
respectively. rboi (rchi) relates to the cost of natural gas
that is used by boiler (chiller), rhim (rcim) denotes to the
cost of imported thermal energy from an external party
during heating (cooling) mode, and rha (rca) corresponds to
the electricity cost of pump of ATES system to extract the
required thermal energy during heating (cooling) modes.
Consider xi ∈ R6Nh=nx , ui ∈ R9Nh=nu , vi ∈ R2Nh=nv ,
andwi ∈ R2Nh=nw to be the concatenated vectors of state,
control input, binary variables, and uncertain variables
along the prediction horizon of each agent i, respectively.
Note that wi is a possible realization (scenario) of the
uncertainty for agent i throughout a finite-horizon. The
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total cost function Ji(xi,ui) for the full prediction horizon
at each sampling time t is given by

Ji(xi,ui) = x�
i Qixi + u�

i Riui ,
where Qi and Ri are two block diagonal matrices with Qi

and Ri on the diagonal for each agent i. We are now able
to formulate a finite-horizon chance-constrained mixed-
integer quadratic optimization problem for each agent
i = 1, · · · , N , in a condensed format:

min
ui,vi

Vi(xi,ui) = Ewi

[
Ji(xi,ui)

]

s.t. Eiui + Fivi + Pi ≤ 0,

Pwi

[
Aixi,k +Biui + Ciwi ≥ 0

]
≥ 1− εi ,

∀wi ∈ Wi ,

(9a)

(9b)

(9c)

(9d)

where Ei , Fi , Pi are matrices that are built by concate-
nating all constraints, and εi ∈ (0, 1) is the admissible
constraint violation parameter. Note that given an initial
state vector xi,k at each sampling time t, we eliminate
the state variables from the dynamics (7), and obtain the
system dynamics as in (9c). The exact form of Ai, Bi and
Ci matrices are omitted in the interest of space and can
be found in (Borrelli et al., 2011, Section 9.5).

Assumption 4. Following Remark 2, wi , is defined on
some probability space (Wi,B(Wi),Pwi), where Wi ⊆
Rnw , B(·) denotes a Borel σ-algebra, and Pwi is a proba-
bility measure defined over Wi.

Remark 5. Ji(·) is a random variable, and thus, we con-
sider Ewi [Ji(·)] to obtain a deterministic cost function.

Remark 6. The index of Ewi
,Pwi

denotes the dependency
of the state trajectory xi on the string of random scenarios
wi for each agent i. It is worth to mention that for
our study we only need a finite number of instances of
wi, and we do not require the probability space Wi and
the probability measure Pwi

to be known explicitly. The
availability of the number of scenarios from the sample
space Wi is enough which can for instance be obtained
from historical data.

We refer to the proposed optimization problem (9) as
a single agent optimization problem, and whenever all
agents solve this problem separately in a receding horizon
fashion without any coupling constraints, it is referred to
as the decoupled solution (DS) in the subsequent parts. It
is important to notice that the proposed problem (9) is
in general a non-convex problem and hard to solve. In the
following section, we will develop a tractable framework to
obtain an εi-feasible solution for each agent i.

3.2 ATES in Smart Thermal Grids

Consider a regional thermal grid consisting of N agents
with heterogeneous parameters as it was developed in the
previous part. Such a STG setting however can lead to
unwanted mutual interactions between ATES systems as
it is illustrated in Fig. 2. We therefore need to introduce
a proper coupling constraint between neighboring agents,
that makes use of the following assumption.

Assumption 7. Each well of an ATES system is considered
as a growing reservoir with respect to the horizontal axis
(Fig. 1, black solid line). We therefore assume to have a
cylindrical reservoir with a fixed height �[m] (filter screen
length) and a growing radius rha,t , r

c
a,t[m] (thermal radius)

for each well of an ATES system.

Agent 1

Agent 3
Age

nt 2

Fig. 2. Three-agent ATES system in a STG. Each agent
has a single ATES system which consists of a warm
and a cold well. Horizontal cross sections of warm
and cold wells are shown with red and blue circles.
The black dashed lines represent the unwanted mutual
interactions between neighboring ATES systems.

Using the volume of stored water in each well of ATES
system, one can determine the thermal radius using:

rha,t =

(
cpw Vh

a,t

caq π�

)0.5

, rca,t =

(
cpw Vc

a,t

caq π�

)0.5

, (10)

where caq = (1 − np)csand + npcpw is the aquifer heat

capacity. csand [Jkg−1K−1] relates to the sand specific
heat capacity, and np [−] is the porosity of aquifer. Let
us now define the set of neighbors of agent i by Ni ⊆
{1, 2, · · · , N} \{i}. We impose a limit on the thermal
radius of warm well rha,t and cold well rca,t of ATES system
in each agent i, based on the corresponding wells of its
neighbor j ∈ Ni :

(rha,t)i + (rca,t)j ≤ dij , j ∈ Ni , (11)

where dij is a given distance between agent i and its
neighbor j ∈ Ni. This constraint prevents overlapping
between the growing domains of warm and cold wells of
ATES systems in a STG setting. Due to the nonlinear
transformation in (10), we propose the following reformu-
lation of this constraint to simplify the problem:

(Vh
a,t)i + (Vc

a,t)j ≤ Vij − δ̄ij,t , (12)

where Vij = caqπ� (dij)
2/cpw denotes the total volume of

common resource pool between agent i and its neighbor
j ∈ Ni . δ̄ij,t = 2caqπ� (r̄

h
a,t)i (r̄

c
a,t)j/cpw represents a time-

varying parameter that captures the mismatch between
the linear and nonlinear constraint relations. The following
corollary is a direct result of the above reformulation.

Corollary 8. If (r̄ha,t)i and (r̄ca,t)j represent the current
thermal radius of warm and cold wells of ATES system
in agent i and j, respectively, then constraints (11) and
(12) are equivalent.

Proof. The proof is straightforward by substituting the
corresponding relationships. Notice that the thermal ra-
dius is always greater than or equal to zero (rha,t)i ≥ 0,

∀i ∈ {1, · · · , N} and thus, δ̄ij,t ≥ 0. �
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Definition 9. We define δij,t to be a common uncertainty
source between each agent i and its neighboring agent
j ∈ Ni, using the following model:

δij,t := δ̄ij,t (1± 0.1 ζ) , (13)

where ζ is a random variable defined on some probability
space, δ̄ij,t is constructed by using two given possible
(r̄ha,t)i , (r̄

c
a,t)j realizations that can be obtained using his-

torical data in the DS framework. Since the mapping (13)
from ζ to δij,t is measurable, one can view δij,t as a random
variable on the same probability space as ζ.

3.3 Problem Formulation in Multi-Agent Network

We now formulate the energy management problem for
ATES systems in STGs as follows:

min
{ui,vi}N

i=1

N∑
i=1

Vi(xi,ui)

s.t. Eiui + Fivi + Pi ≤ 0 ,

Pwi

[
Aixi,k +Biui + Ciwi ≥ 0

]
≥ 1− εi ,

Pδij

[
Hixi +Hjxj ≤ V̄ij − δij

]
≥ 1− ε̄ij ,

∀wi ∈ Wi , ∀δij ∈ ∆ij , ∀j ∈ Ni ,

∀i ∈ {1, 2, · · · , N} ,

(14a)

(14b)

(14c)

(14d)

(14e)

where Hi, Hj are matrices of appropriate dimensions,
V̄ij ∈ RNh is the upper-bound on the total common
resource pool, δij is a vector of common uncertainty
variables, and ε̄ij ∈ (0, 1) denotes the level of admissible
coupling constraint violation, for each agent i and ∀j ∈
Ni. V̄ij can be expressed as V̄ij = 1Nh

⊗
Vij , using

the Kronecker product. It is important to notice that
the index of Pδij

denotes the dependency of the state
trajectories on the string of random common scenarios
δij = [δij,k, δij,k+1, · · · , δij,k+Nh

] ⊆ RNh=nδ .

Assumption 10. Following Definition 9, δij is defined on
some probability space (∆ij ,B(∆ij),Pδij

), where ∆ij ⊆
Rnδ , B(·) denotes a Borel σ-algebra, and Pδij is a proba-
bility measure defined over ∆ij .

Assumption 11. wi ∈ Rnw and δij ∈ Rnδ are two in-
dependent string of random scenarios from two disjoint
probability space Wi and ∆ij , respectively.

We refer to the proposed optimization problem (14) as a
multi-agent network problem, and whenever the proposed
problem (14) is solved in a receding horizon fashion,
it is mentioned as the centralized solution (CS) in the
following parts. However, the feasible set in (14) is in
general non-convex and hard to determine explicitly due
to the presence of chance constraints (14c), (14d). In
what follows, we develop a tractable framework to obtain
probabilistically feasible solutions for all agents.

4. COMPUTATIONALLY TRACTABLE
FRAMEWORK

Consider yi = (ui,vi) ∈ R(nu+nv)=ny , y = col(yi)
N
i=1,

where col(·) is an operator to stack elements. Define
w = col(wi)

N
i=1 ⊆ W to be the private uncertainty

sources for a network of agents, δi = col(δj)j∈Ni
⊆ ∆i

to be the common uncertainty sources for each agent, and

δ = col(δi)
N
i=1 ⊆ ∆ to be the common uncertainty sources

for a multi-agent network, where

W :=

N∏
i=1

Wi , ∆i :=
∏
j∈Ni

∆ij , ∆ :=

N∏
i=1

∆i .

Consider now the proposed optimization problem in (14)
in a more compact format:

min
y

∑N

i=1
Vi(xi,ui)

s.t. Pw

[
y ∈

N∏
i=1

Yi(wi)

]
≥ 1− ε , ∀w ∈ W

Pδ


y ∈

N∏
i=1

⋂
j∈Ni

Y̆ij(δij)


 ≥ 1− ε̄ , ∀δ ∈ ∆

(15a)

(15b)

(15c)

where ε :=
∑N

i=1 εi ∈ (0, 1), ε̄ :=
∑N

i=1

∑
j∈Ni

ε̄ij ∈ (0, 1).

Yi(wi) ∈ Rny is the local feasible set of each agent i
and can be described by constraints (14b) and (14c).
Yij(δij) ∈ R2ny is the common feasible set between each
agent i and its neighbor j ∈ Ni and can be determined
via (14d). It is important to notice that Y̆ij(δij) ∈ R2nyNi

represents the cylindrical extension 1 of Yij(δij). In the
subsequent parts, we refer to the constraint (15b) as the
agents’ private chance constraints, and to the constraint
(15c) as the agents’ common chance constraints.

The proposed formulation (15) is a mixed-integer quadratic
optimization problem with multiple chance constraints,
due to the binary variables {vi}Ni=1, and the chance con-
straints (15b), (15c). It is worth to mention that the index
of Pw and Pδ denote the dependency on the string of
random scenarios w ∈ W and δ ∈ ∆, respectively.

Building upon our previous work in Rostampour and Ke-
viczky (2016), we extend the so-called robust randomized
approach in Margellos et al. (2013) to be more applicable
to handle a problem with multiple chance constraints.
The proposed optimization problem (15) is a stochastic
program with multiple chance constraints, where Pw and
Pδ denote two different probability measures for private
uncertainty and common uncertainty sources, respectively.
In summary, the formulation in (Margellos et al., 2014,
Proposition 1) considered a worst-case chance constraint
defined by

max
k∈NMCP

P [fk(y, ·)] ≥ 1− ε̃ , (16)

where ε̃ = mink∈NMCP{εk}, fk(y, ·) denotes the k-th
chance constraint function, and NMCP is the set of indices
of chance constraint functions formulated in the proposed
optimization problem (15). However, this procedure leads
to a considerable amount of conservatism, due to the fact
that it requires the solution to satisfy all constraints with
the highest probability 1−ε̃. We instead employ the robust
randomized approach for each chance constraint function
fk(y, ·), k ∈ NMCP, separately. Our framework is closely
related to, albeit different from the approach of Schildbach
et al. (2013), since the feasible set in (15) is non-convex.
Moreover, the problem formulation in Schildbach et al.
(2013) consists of an objective function with multiple
chance constraints, in which the terms in objective and
1 Cylindrical extension simply replicates the membership degrees
from the existing dimensions into the new dimensions.
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Definition 9. We define δij,t to be a common uncertainty
source between each agent i and its neighboring agent
j ∈ Ni, using the following model:

δij,t := δ̄ij,t (1± 0.1 ζ) , (13)

where ζ is a random variable defined on some probability
space, δ̄ij,t is constructed by using two given possible
(r̄ha,t)i , (r̄

c
a,t)j realizations that can be obtained using his-

torical data in the DS framework. Since the mapping (13)
from ζ to δij,t is measurable, one can view δij,t as a random
variable on the same probability space as ζ.

3.3 Problem Formulation in Multi-Agent Network

We now formulate the energy management problem for
ATES systems in STGs as follows:

min
{ui,vi}N

i=1

N∑
i=1

Vi(xi,ui)

s.t. Eiui + Fivi + Pi ≤ 0 ,

Pwi

[
Aixi,k +Biui + Ciwi ≥ 0

]
≥ 1− εi ,

Pδij

[
Hixi +Hjxj ≤ V̄ij − δij

]
≥ 1− ε̄ij ,

∀wi ∈ Wi , ∀δij ∈ ∆ij , ∀j ∈ Ni ,

∀i ∈ {1, 2, · · · , N} ,

(14a)

(14b)

(14c)

(14d)

(14e)

where Hi, Hj are matrices of appropriate dimensions,
V̄ij ∈ RNh is the upper-bound on the total common
resource pool, δij is a vector of common uncertainty
variables, and ε̄ij ∈ (0, 1) denotes the level of admissible
coupling constraint violation, for each agent i and ∀j ∈
Ni. V̄ij can be expressed as V̄ij = 1Nh

⊗
Vij , using

the Kronecker product. It is important to notice that
the index of Pδij

denotes the dependency of the state
trajectories on the string of random common scenarios
δij = [δij,k, δij,k+1, · · · , δij,k+Nh

] ⊆ RNh=nδ .

Assumption 10. Following Definition 9, δij is defined on
some probability space (∆ij ,B(∆ij),Pδij

), where ∆ij ⊆
Rnδ , B(·) denotes a Borel σ-algebra, and Pδij is a proba-
bility measure defined over ∆ij .

Assumption 11. wi ∈ Rnw and δij ∈ Rnδ are two in-
dependent string of random scenarios from two disjoint
probability space Wi and ∆ij , respectively.

We refer to the proposed optimization problem (14) as a
multi-agent network problem, and whenever the proposed
problem (14) is solved in a receding horizon fashion,
it is mentioned as the centralized solution (CS) in the
following parts. However, the feasible set in (14) is in
general non-convex and hard to determine explicitly due
to the presence of chance constraints (14c), (14d). In
what follows, we develop a tractable framework to obtain
probabilistically feasible solutions for all agents.

4. COMPUTATIONALLY TRACTABLE
FRAMEWORK

Consider yi = (ui,vi) ∈ R(nu+nv)=ny , y = col(yi)
N
i=1,

where col(·) is an operator to stack elements. Define
w = col(wi)

N
i=1 ⊆ W to be the private uncertainty

sources for a network of agents, δi = col(δj)j∈Ni
⊆ ∆i

to be the common uncertainty sources for each agent, and

δ = col(δi)
N
i=1 ⊆ ∆ to be the common uncertainty sources

for a multi-agent network, where

W :=

N∏
i=1

Wi , ∆i :=
∏
j∈Ni

∆ij , ∆ :=

N∏
i=1

∆i .

Consider now the proposed optimization problem in (14)
in a more compact format:

min
y

∑N

i=1
Vi(xi,ui)

s.t. Pw

[
y ∈

N∏
i=1

Yi(wi)

]
≥ 1− ε , ∀w ∈ W

Pδ


y ∈

N∏
i=1

⋂
j∈Ni

Y̆ij(δij)


 ≥ 1− ε̄ , ∀δ ∈ ∆

(15a)

(15b)

(15c)

where ε :=
∑N

i=1 εi ∈ (0, 1), ε̄ :=
∑N

i=1

∑
j∈Ni

ε̄ij ∈ (0, 1).

Yi(wi) ∈ Rny is the local feasible set of each agent i
and can be described by constraints (14b) and (14c).
Yij(δij) ∈ R2ny is the common feasible set between each
agent i and its neighbor j ∈ Ni and can be determined
via (14d). It is important to notice that Y̆ij(δij) ∈ R2nyNi

represents the cylindrical extension 1 of Yij(δij). In the
subsequent parts, we refer to the constraint (15b) as the
agents’ private chance constraints, and to the constraint
(15c) as the agents’ common chance constraints.

The proposed formulation (15) is a mixed-integer quadratic
optimization problem with multiple chance constraints,
due to the binary variables {vi}Ni=1, and the chance con-
straints (15b), (15c). It is worth to mention that the index
of Pw and Pδ denote the dependency on the string of
random scenarios w ∈ W and δ ∈ ∆, respectively.

Building upon our previous work in Rostampour and Ke-
viczky (2016), we extend the so-called robust randomized
approach in Margellos et al. (2013) to be more applicable
to handle a problem with multiple chance constraints.
The proposed optimization problem (15) is a stochastic
program with multiple chance constraints, where Pw and
Pδ denote two different probability measures for private
uncertainty and common uncertainty sources, respectively.
In summary, the formulation in (Margellos et al., 2014,
Proposition 1) considered a worst-case chance constraint
defined by

max
k∈NMCP

P [fk(y, ·)] ≥ 1− ε̃ , (16)

where ε̃ = mink∈NMCP{εk}, fk(y, ·) denotes the k-th
chance constraint function, and NMCP is the set of indices
of chance constraint functions formulated in the proposed
optimization problem (15). However, this procedure leads
to a considerable amount of conservatism, due to the fact
that it requires the solution to satisfy all constraints with
the highest probability 1−ε̃. We instead employ the robust
randomized approach for each chance constraint function
fk(y, ·), k ∈ NMCP, separately. Our framework is closely
related to, albeit different from the approach of Schildbach
et al. (2013), since the feasible set in (15) is non-convex.
Moreover, the problem formulation in Schildbach et al.
(2013) consists of an objective function with multiple
chance constraints, in which the terms in objective and
1 Cylindrical extension simply replicates the membership degrees
from the existing dimensions into the new dimensions.
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constraints are univariate w.r.t. the decision variables. In
contrast the objective function in our problem formula-
tion (15) consists of separable additive components and
constraint functions are also separable w.r.t. (15b), (15c)
between each agent i = 1, · · · , N and ∀j ∈ Ni.

We define Bi, B̄ij to be two bounded sets for each agent i,
respectively. Bi, B̄ij are assumed to be axis-aligned hyper-
rectangular sets. This is not restrictive and any convex
set with convex volume could have been chosen instead as
in Rostampour et al. (2017a). We parametrize Bi(γ) :=
[γ,γ] by γ = (γ,γ) ∈ R2nw , and B̄ij(λ) := [λ,λ] by

λ = (λ,λ) ∈ R2nδ , and formulate two chance-constrained
problems similarly to (Rostampour and Keviczky, 2016,
Problem 8). Following the so-called scenario approach
in Calafiore and Campi (2006), one can determine the
number of required uncertainty scenarios to formulate
a tractable problem, (Rostampour and Keviczky, 2016,
Problem 9), using Ns =

2
ε (ξ+ ln 1

ν ), where ξ is the dimen-
sion of decision vector, ε, ν are the level of violation, and
the confidence level, respectively. The optimal solutions
(γ∗ ,λ∗) of the proposed tractable problem are proba-
bilistically feasible for the chance-constrained problems,
(Campi and Garatti, 2008, Theorem 1). Moreover, γ∗, and
λ∗ also characterize our desired probabilistic bounded sets
B∗
i and B̄∗

ij , respectively.

Assumption 12. Si and S̄ij are two collections of random
scenarios that are i.i.d.

After determining B∗
i and B̄∗

ij for all agents i ∈ {1, · · · , N},
we are now able to reformulate the robust counterpart of
the original problem (15) via:

min
y

∑N

i=1
Vi(xi,ui)

s.t. y ∈
N∏
i=1

⋂

wi∈{B∗
i

⋂
Wi}

Yi(wi) ,

y ∈
N∏
i=1

⋂
j∈Ni

⋂

δij∈{B̄∗
ij

⋂
∆ij}

Y̆ij(δij) .

(17a)

(17b)

(17c)

Note that the aforementioned problem is not a randomized
program, and instead, the constraints have to be satisfied
for all values of the private uncertainty in {B∗

i

⋂
Wi},

and common uncertainty in {B̄∗
ij

⋂
∆ij}. The proposed

problem (17) is a robust mixed-integer quadratic program.
In Bertsimas and Sim (2006), it was shown that the
robust problems are tractable and remain in the same
class as the original problems, e.g. robust mixed-integer
programs remain mixed-integer programs, for a certain
class of uncertainty sets, such as in our problem (17),
the uncertainty is bounded in a convex set. The following
theorem quantifies the robustness of solution obtained by
(17) w.r.t. the initial problem (15).

Theorem 13. Let εi , ε̄i , ε̄ij , ε , ε̄ , βi , β̄i , β̄ij , β , β̄ ∈ (0, 1),
∀ j ∈ Ni , i = 1, 2, · · · , N be chosen such that ε =∑N

i=1 εi , β =
∑N

i=1 βi , ε̄i =
∑

j∈Ni
ε̄ij , β̄i =

∑
j∈Ni

β̄ij ,

and ε̄ =
∑N

i=1 ε̄i , β̄ =
∑N

i=1 β̄i . If y
∗
s is a feasible solution

of the problem (17), then y∗
s is also a feasible solution for

the chance constraints (15b) and (15c), with the confidence
levels of 1− β and 1− β̄, respectively.

Due to space limitation the proof is omitted, the reader is
referred to Rostampour and Keviczky (2017).

Remark 14. Following the approach in Rostampour et al.
(2015), we approximate the objective function empirically
for each agent i. Ewi [Ji(·)] can be approximated by
averaging the value of its argument for some number
of different scenarios, which plays a tuning parameter
role. To improve the objective value of our proposed
formulation, one can employ scenario removal algorithms,
leading a tradeoff between feasibility and optimality, see
e.g. Mohajerin Esfahani et al. (2015); Campi and Garatti
(2011).

Remark 15. A tractable formulation for DS framework in
(9), can be achieved by removing the robust coupling
constraint (17c) from the tractable problem (17). Notice
that, since there is no longer a coupling constraint, each
agent i can solve its problem, separately.

Remark 16. The solution of (17) is the optimal planned
input sequence {u∗

i,k, v
∗
i,k, · · · , u∗

i,k+Nh
, v∗i,k+Nh

}Ni=1. Based
on an MPC paradigm, the current input is implemented
as {ui,t, vi,t}Ni=1 := {u∗

i,k, v
∗
i,k}Ni=1 and we proceed in a

receding horizon fashion. This means (17) is solved at
each step t by using the current measurement of the state
{xi,k}Ni=1.

5. NUMERICAL STUDY

5.1 Simulation Setup

We simulate three problem formulations, namely: DS, and
CS, using the tractable framework (17). The simulation
time is one year with hourly-based sampling time. The
prediction horizon for DS and CS is considered to be a
day-ahead (24 hours). For comparison purposes, we also
simulate a deterministic DS (DDS), where we fixed the
uncertain elements (wi) to their forecast value for each
agent i = 1, 2, 3.

In order to generate random scenarios from the private
uncertainty sources, we use a discrete normal stochastic
process, where the thermal energy demand of each building
varies within 10% of its actual value at each sampling time.
A similar technique is used for the common uncertainty
sources. The simulation environment was MATLAB with
YALMIP as the interface Löfberg (2004) and Gurobi as
the solver.

5.2 Simulation Results

Fig. 3 depicts an a-posteriori feasibility validation of the
obtained results via DDS, DS, and CS, formulations for the
three-agent ATES-STG example. Fig. 3 (a)-(b) present the
results of thermal energy imbalance during heating mode
in agent 1, whereas Fig. 3 (c) shows the feasibility of the
coupling constraint between agent 1 and 2. Fig. 3 (a) shows
the obtained results for the last five days in March 2011,
and Fig. 3 (b) shows the results for one year simulation
from June 2010 until June 2011. In Fig. 3 (a)-(b) the ”red”
color denotes the solution of DDS, and ”black” color shows
the solution of CS.

Fig. 3 (a) focuses on a five-day period to allow a better
comparison between the results of DDS, and CS. It is
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Fig. 3. A-posteriori feasibility validation of the obtained
results via DDS, DS, and CS, formulations for the
three-agent ATES-STG example.

clearly shown that the obtained results via CS provide
a feasible (nonnegative) trajectory of the thermal energy
imbalance error during heating mode, whereas the solution
of DDS, leads to some violations throughout the simu-
lation time. In Fig. 3 (b), the complete one year results
of DDS, and CS, are shown. Two important observations
are as follows: the obtained results of CS have very small
number of violations, much less than our desired level of
violations, throughout the simulation time. This yields
a less conservative approach compared to the classical
robust control approach (see (Borrelli et al., 2011, Ch.14)).
As the second observation, in the results of CS one can
see a large non-zero imbalance error, which is expected.
By taking into account the coupling constraints between
agents, the solutions of agents are going to extract the
stored thermal energy from their ATES systems to prevent
the mutual interactions between their ATES systems as in
Fig. 3 (c). Fig. 3 (c) shows the evaluation of our proposed
reformulation in (12). We plot the obtained r̃h,1+r̃c,2 using
DS, and CS formulations. As it is clearly shown DS results
are violating the coupling constraint which leads to overlap
between the stored water in warm well of ATES system in
agent 1 and the stored water in cold well of ATES system
in agent 2.

It is worth to mention that Fig. 3 illustrates our two main
contributions: 1) having a probabilistic feasible solution
for each agent w.r.t. the private uncertainty sources as
it is encoded via (15b), and 2) respecting almost surely
the common resource pool between neighboring agents in
STGs as it is formulated in (15c); the first and second
outcomes are the direct results of our theoretical guar-
antee in Theorem 13. An important observation is that
one can use a longer prediction horizon which yields an
anticipatory control decision to improve the operation of
an ATES system. This is a subject of our current research
direction to improve our proposed control strategies.

Fig. 4 shows the results of a simulation study using a more
realistic aquifer simulation environment (Harbaugh, 2005,
MODFLOW) to validate our developed framework. The
impact of our control strategy, DS (red) and CS (blue),
on average thermal energy efficiency in each building is

Fig. 4. Impact of DS and CS on average thermal efficiency.

shown in Fig. 4, which illustrates that we can store and
retrieve the same amount of thermal energy in ATES
systems, in a more efficient way using the results of CS
formulation compared to DS. This is due to the fact that
the mutual interactions between wells lead to the loss of
stored thermal energy, which can be prevented using the
CS formulation.

6. CONCLUSIONS

This paper proposed a stochastic MPC framework for an
energy management problem in STGs consisting of ATES
systems integrated into building climate comfort systems.
We developed a large-scale stochastic hybrid model to cap-
ture thermal energy imbalance errors in an ATES-STG. In
such a framework, we formalized two important practical
concerns, namely: 1) the balance between extraction and
injection of energy from and into the aquifers within a cer-
tain period of time; 2) the unwanted mutual interaction be-
tween ATES systems in STGs. Using our developed model,
we formulated a finite-horizon mixed-integer quadratic
optimization problem with multiple chance constraints. To
solve such a problem, we proposed a tractable formulation
based on the so-called robust randomized approach. In
particular, we extended this approach to handle a problem
with multiple chance constraints. We simulated our pro-
posed framework using a three-agent ATES-STG example
which confirmed the expected performance improvements.
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