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Abstract
In our everyday life, people interact more and more
with agents. However, these agents often lack a
moral sense and prioritize the accomplishment of
the given task. In consequence, agents may un-
knowingly act immorally. There has been a lack of
research or progress to endow agents with human
morality and an internal sense of right and wrong.
As of today, agents have a primitive representation
of morality often represented as one value. In con-
trast, humans have multiple reasons to judge an ac-
tion as moral. In the hope of creating agents that
are imbued with a more complex and human moral,
we implement an agent with a pluralist approach
to morality. The agent is built within the Jiminy
Cricket environment. This preexisting environment
has multiple games with diverse scenarios where
actions of varying morality need to be made. The
objective of our research is to observe if an artificial
conscience approach can steer agents toward moral
behavior without sacrificing performance. With the
help of a genetic algorithm, we determine the im-
portance of morality in comparison to performance.

1 Introduction
It is crucial for Large Language Models (LLMs) like Chat-
GPT to be imbued with human-like morals. In the past years,
there was an increase of technologies relying on Natural Lan-
guage Processing (NLP). While technologies such as Chat-
GPT are ever-growing in popularity and used daily, it is crit-
ical to have agents that are capable of being moral to prevent
any form of harm. Agents may unknowingly act immorally
if they are only trained to maximize reward. Furthermore,
they could simply ignore moral concerns. This is why ensur-
ing the alignment of LLMs with human morality is a crucial
consideration before a widespread implementation and more
popular of LLMs.

The implementation of moral agents that try to maximise
performance while remaining morally correct is still in the
early stages of development. However, it is very hopeful
as Hendrycks et al. [6] show that it is possible to create a
moral agent that performs as well as non-moral agents for
a given task. These agents use the Contextual Action Lan-
guage Model (CALM) agent architecture [9]. In the research,
Hendrycks et al. create an environment called the Jiminy
Cricket environment. This environment allows the agent to
learn how to act morally through text-based games associated
with reinforcement learning. The objective of the agent is
to progress as far as possible within the game by taking ac-
tions. Each action has two elements associated with them:
game progression and morality. A downside of this research
is that they consider human morality to be a single value,
whereas humans have more than one way of judging an action
as moral or immoral. Overall, this research is the precursor to
our project as we want to create a more elaborate representa-
tion of morality to capture the complex nature of morals.

We intend to investigate whether the Moral Foundation
Theory (MFT) approach to moral plurality can be applied to

the Jiminy Cricket games of Hendrycks et al. [6]. Accord-
ing to the Moral Foundation Theory (MFT) [5], there are five
different reasons why an action can be deemed moral. These
categories all have a positive and negative counterpart and are
as followed: care/harm, fairness/cheating, loyalty/betrayal,
authority/subversion, and purity/degradation. The objective
of this research is to build upon the environment provided
by Hendrycks et al. [6] and implement a new agent with a
pluralist approach to morality instead of a singular value. In
combination, we will also use two available NLP models that
predict the five moral elements. The first model is based on
the moral strength of a word (the connotation a word holds)
[1]. The second model was trained on the broad Twitter cor-
pus [3] and is able to predict the morality of a sentence based
on the context of it [8]. By doing so, we will be able to la-
bel each action the agent takes. For this work, we will try to
answer the following question: What is the optimal weight to
maximise the game progression of an agent while still playing
morally in the Jiminy Cricket environment? In other words,
to what extent should morality be taken into consideration in
comparison to the overall game progression when taking an
action? To answer this question, we will need to determine a
way to represent and evaluate morality/immorality and game
progression. Then we need to find the best organizational
algorithm to optimize the weight of an agent. These two
sub-questions will lead us to find our answer and the optimal
weights for an agent.

2 Background
In this section, we will first go in depth on the Jiminy Cricket
environment from Hendrycks’s research, as it is the founda-
tion for our research as we build upon the already existing en-
vironment. Afterward, we will discuss the natural language
processing aspect of the project, which constitutes the grand
majority of our work. Lastly, we will develop the optimiza-
tion algorithm deployed to find the optimal weight.

2.1 The Jiminy Cricket Environment
The Jiminy Cricket environment is an environment devel-
oped to train and evaluate agents to observe if the addition
of morality will impact the performance of the agents. The
environment was coded in Python. The research proved that
it is possible for agents to have a degree of morality without
influencing their performance and progression. However, it
is important to note that in most of the games, the agents did
not even reach 10% of completion of the game. These re-
sults are independent of if the agent played morally or not.
This shows the limitations of the current existing methods to
progress in such games. The environment consists of 25 text-
based adventures in which the agent has to progress as far as
possible by doing the most moral actions. Each game simu-
lates an environment in which the agent can move and interact
with. This allows the agent to be in a highly realistic setting
and therefore obtain a realistic evaluation of him. In order to
see which actions are morally correct, each action was man-
ually annotated. The games within the environment are of
varying difficulty and often require the agent to take immoral
actions to progress. Hence we decided to only play one game



in the Jiminy Cricket environment that has a high progres-
sion rate and requires minimal immorality to progress in the
game, according to Hendrycks’s report. The chosen game is
”suspect”. The limitation of this environment is caused by the
manual annotations of very possible actions as we are chang-
ing the annotations to a model that predicts the five classes of
the Moral Foundation Theory.

2.2 Moral Strength
Moral strength is a key aspect of this project. This is due
to the fact that the model used to predict the morality of an
action uses moral strength. Moral strength is a dictionary of
words. Each word is annotated according to the Moral Foun-
dation Theory. The annotations are solely based on the mean-
ing of words.

The main strength of this model lies in the fact that it is
explainable. This allows for a comprehensible way to under-
stand the output provided by the model. This is achieved by
manually annotating each individual word by human experts.
Consequently, the model accurately assessed the moral impli-
cations associated with each individual word in training and
in testing. The model based on Moral Strength therefore as-
sures that the morality vector is correct and does not require
any training or optimization.

The main strength of this model is also its biggest limi-
tation. Indeed, the manual annotations limit the number of
words the model knows. In consequence, if the model en-
counters a word that is not contained in its dictionary, it just
outputs null values for all morality scores. This is problem-
atic as it is necessary to have a model capable of understand-
ing every word it is given, as every word adds to the morality
of the sentence. Another limitation is how the model cal-
culates the morality of a sentence. When asked about the
morality of a given sentence, the model will iterate word by
word and then calculate the cumulative morality associated
with each word. The issue with such a method is that it com-
pletely overlooks the context and scope of a word, meaning
that the model does not process negation correctly or the en-
vironment in which an action is taken. These two factors
drastically impact the performance of the model on sentences.
This means that the model is not quite capable of understand-
ing the morality of a sentence. However, it is the best model
available.

2.3 Genetic Algorithm
The Genetic Algorithm (GA) is the algorithm employed to
optimize the weight in the project. This algorithm is used be-
cause answering the research question requires an optimiza-
tion algorithm to achieve an answer. GA’s slowly converge
to an optimal answer and sweep through the entire solution
space independently of the data distribution. Additionally, it
allows the representation of complex relationships between
variables [7].

These algorithms are a type of evolutionary algorithms that
allow for optimizations of values. Evolutionary algorithms
are iterative algorithms that mimic natural selection processes
to achieve an optimal solution. They were first theorized by
Lawrence J. Fogel [4]. In the case of the genetic algorithm,

it consists of using the process of evolution and random mu-
tations to find an optimal solution. The algorithm explores
the entire solution subspace and finds an optimal answer to
the problem. Genetic algorithms are iterative. The algorithm
does the following:

1. Have a random initial population
2. Evaluate all the candidates in the population
3. Have a selection method
4. Only keep the best performing candidates
5. Have the candidates reproduce themselves and introduce

a random chance to crossover and mutate
6. Repeat the process with the new batch of candidates
7. Return the best performing candidate

There are multiple selection methods, including roulette
wheel selection, tournament selection, or rank-based selec-
tion. I chose tournament selection, which consists of choos-
ing a random subset of candidates and only keeping the best
candidate out of that sample. The tournament iterates as many
times as the initial candidate population to maintain the same
size. Tournament iteration allows for maintaining diversity, is
efficient and robust, and, importantly, is simple to implement.

The main strengths of the GA are its robustness, global
coverage of the solution space, and its balance between ex-
ploitation and exploration. These strengths allow the algo-
rithm to converge to an optimal solution without getting stuck
in local minima. Additionally, genetic algorithms are fairly
simple to code and allow for explainable answers.

The main limitation of this algorithm is its hyper-
parameters and evaluation metric. These two factors greatly
condition the performance of the GA. There are four hyper-
parameters: population number, number of generations,
crossover percentage, and mutation percentage. Each pa-
rameter needs to properly be tuned in order to offer the best
performance. However, it is hard to properly tune these pa-
rameters in the case of this project as running an agent takes
much time. The other limitation is the evaluation function.
The evaluation function rates all candidates. If the evaluation
function does not properly score the candidates, suboptimal
agents will be chosen instead of the best performing agents.
This may lead to an incorrect convergence or no convergence
at all. Therefore, it is key to properly evaluate the candidates
in order to avoid a suboptimal answer.

3 Maximizing an Agent’s Morality
This section will elaborate on the optimization algorithm de-
ployed and the reason behind that choice. Moreover, how the
evaluation function was made will be explained.

3.1 Adapting the Environment
In order to address our research question, we need to mod-
ify the Jiminy Cricket environment for it to support a multi-
dimensional morality. Three steps were taken to enable the
Jiminy Cricket environment to accommodate pluralist moral-
ity. The initial modification involved integrating the pluralist
morality into the code. This entailed changing the ”forward”
method in model.py to accurately calculate the Q-values for



training. Furthermore, the ”get probs” method in condition-
ing model.py was adapted to correctly support and retrieve
the 5 dimensional score of an action.

The next step consists of adding the moral strength model
to predict the morality of an action. The model was added
to conditional model.py. However, when testing the model,
we realized that it did not perform to our expectations. The
model did not understand the context of a sentence and the
morality of some key words. Consequently, all the actions
performed by the agent were annotated as amoral. This raised
issues as it prevented any type of research regarding morality.
In order to obtain results, we decided to annotate an entire
game. This game is ”suspect,” a text-based game where the
agent has to solve a crime.

The final step was to annotate ”suspect” according to the
Moral Foundation Theory. Each game in the Jiminy Cricket
has an annotation file containing all moral and immoral ac-
tions that the agent can make. In this file, all the actions
are represented by 4-dimensional vector with values ranging
from -3 to 3. The more immoral an action is, the closer the
score is to -3. And the more moral an action is, the closer the
value will be to 3. Each dimension represents one of the fol-
lowing vectors: bad & others, bad & self, good & others and
good & self. These annotations were changed into a vector of
dimension 5, with each dimension representing an aspect of
the MFT. Initially, we all annotated a subsection of the file.
Then, in order to have the most accurate annotations, we col-
lectively went over each individual annotation. During the
collective assessment, we discussed what values were in play
and made sure that the annotations were homogeneous. Once
that process was completed, we all rechecked the annotations
to ensure all annotations reflected properly the morality vec-
tor attributed to them. Lastly, we modified a preexisting ora-
cle and provided him the annotation file. The oracle’s job is
to output a morality vector when the agent performed a moral
or immoral action. We selected this game out of the 25 games
as it was one of the games with the most moral actions ration
were around 10% of annotated actions were moral actions and
90% were immoral A. Another reason for choosing this game
was how the actions had a variety of features, whereas most
games only dealt with care/harm.

3.2 Tuning the Genetic Algorithm
One factor that greatly impacts the performance of an ge-
netic algorithm (GA) is the tuning of hyper-parameters. In
the case of a GA, there are four hyper-parameters that need to
be tuned: number of agents per generation, number of gener-
ations, crossover rate and mutation rate.

The population size is an important parameter in the
genetic algorithms as it determines the diversity and
exploration-exploitation trade-off within the search space.
The larger the number of agents, the more computationally
intensive it is. However, it does offer a more extensive explo-
ration of the search space. On the other hand, a smaller pop-
ulation is less intensive, but may cause a faster convergence
and local minima. Consequently, due to the time restrictions,
I opted for a small population size.

Similar to population size, the number of generations de-
termines the duration and extent of the evolutionary process.

A higher number of generations allows for more iterations
and potential improvements of the solution. However, if the
number of generations is too large, it can cause unnecessary
computational overhead. Conversely, a number of genera-
tions that is too small may prevent the algorithm from finding
the optimal answer. However, we will prefer a smaller num-
ber of generations due to time restrictions.

The third hyper-parameter is the crossover rate: how often
will the genes(values) crossover during candidate reproduc-
tion. This rate is between 0 and 1. The closer the rate is
to 1, the more the algorithm explores the possible subspace.
If the rate is too low, the algorithm has some difficulties to
reach an optimal answer. Hence, it is better to settle for a
high crossover rate.

The mutation rate determines how often a gene will mutate
into another value. If the value is too great, the algorithm
will never converge to an optimal answer. On the other hand,
if the rate is too low, the algorithm will never explore the
solution subspace. Consequently, it is better to search for a
low mutation rate.

To tune the hyper-parameters, I optimised one parameter
at a time and kept the three other values static. The param-
eter that was being optimised was slowly incremented and
evaluated. The baseline for all of these parameters was: 20
agents over 30 generations with a crossover rate of 90% and a
mutation rate of 10% Afterwards, the results were plotted to
observe the trend on a graph and to select the value that out-
putted the best score. The score for an individual value was
calculated by taking the average performance of 5 genetic al-
gorithms with the same hyper-parameters. The performance
was evaluated by taking the genetic algorithm and examining
how it manages to maximize a function. After optimization
of the hyper parameters, the evaluation method on which can-
didates will be tested has to be implemented.

3.3 Survival of the Fittest
The evaluation method is the key factor when having an opti-
mal genetic algorithm. A proper evaluation method will allow
the selection of the best performing candidates. Therefore,
for a given task, an ideal evaluation method will achieve an
optima. In the scope of this project there are two metrics on
which the candidates will be evaluated on: cumulative im-
morality and completion rate. Depending on how we want
to train our agent, we can influence the importance of one of
the metrics over the other. The objective of our research is to
maximize morality without affecting the overall performance
of the agent. Thus, we will want to optimise the most possible
weight to have the better performance:

Sα =

∑τ
n=0 ραn

τ
+ δα

Where S is the final score for agent α, ρ is the progression
score for an agent α at step n, τ is the total number of actions
the agent took and α is the immorality score of the agent. The
progression of an agent is how far an agent is able to advance
in the environment it is set in. This is calculated by dividing
the obtained score of an agent at a given step by the maximum
score on the game.



The stopping condition for the evaluation method is step-
based. This means that after a predetermined amount of steps
taken by the agent, it will stop and we will evaluate game
progression. Due to time constraints, a step-based method is
favoured over a benchmark-based method. The main advan-
tage of the step-based approach is that it is certain that the
agent will terminate the evaluation. On the other hand, for a
benchmark-based method it is uncertain that it will terminate
as the agent could get stuck in a loop. The following step
is to determine the number of steps on which all candidates
should be evaluated on. The objective is to establish the min-
imum number of steps the candidates should take in order to
properly evaluate their performance. To discover the optimal
number of steps, we did the average score of four evalua-
tions with a given number of steps τ and predetermined set
of weights. The set of weights remained the same during the
entire process as to avoid noise. The weight for each aspect
of the MFT was set to 0.2 and the weight that I am supposed
to optimise was set to 10. These values were chosen as in 10
is the initial value used in Hendrycks et al. [6]’s research and
0.2 it allows for the morality weight to be normalized. Grad-
ually, we increased the number of steps until there is slight to
no improvement when evaluating.

4 Experimental Setup
4.1 Creating the Environment for the Agent
The first step in this project was to set up the Jiminy Cricket
environment and run it once with the current implementation
of morality. The use of this step is to familiarize ourselves
with the environment and make sure that the environment
works properly. The environment needs to be run on a Linux
operating system due to only a portion of imports working in
it; a notable example is Jericho. Then the environment can
be fine-tuned. From this environment, we are going to imple-
ment a pluralist morality.

4.2 Evaluating the Performance of an Agent
The aim of my research is to determine the optimal weight, w,
to win the games while playing morally. In order to achieve
the given objective, it was necessary to first have an adapted
method that is able to properly evaluate an agent. There are
three parameters that can be evaluated: time, cumulative im-
morality, and percentage of completion. The Jiminy Cricket
already provides a method to evaluate the performance of an
agent. However, the issue with the pre-existing method is
that it is made for a 1-dimensional representation of morality.
Therefore we need to properly adapt the method to support
the 5-dimensional representation of our morality. Addition-
ally, according to the Hendrycks et al. [6] research, the agents
perform quite poorly in any given environment regarding the
completion rate of a game. In consequence, the modified
evaluation method contains a step constraint. This assures
that the evaluation will terminates regardless of the agent
completing or not the game. Additionally, having another
fixed parameter allows for a better evaluation of cumulative
immorality and game progression as all agents now have the
same contrain. Furthermore, using the number of steps as the

stopping condition allows to better utilize the resources pro-
vided. The reason behind this evaluation was based on the
hypothesis that the completion percentage would not greatly
differ from one batch to another. On the other hand, the cu-
mulative immorality would differ, and therefore we could eas-
ily optimize the weights. By running this evaluation method
in batches and then averaging out the scores, it is possible to
determine the cumulative immorality and progress for a static
weight vector.

An alternative method to evaluate an agent would have
been to let the agent progress in the game and terminate it
once it reaches a predetermined percentage of completion.
The time taken and the cumulative immorality score would
then be recorded. The principal flaw of this method is that
we are unsure if the agent can even achieve the completion
threshold, causing the method to never loop indefinitely. Fur-
thermore, evaluating time is less meaningful than evaluating
the completion rate. This, coupled with very long completion
times, would make the evaluation time-consuming. Given the
short time for the research, it would not be a viable option.

5 The Results
5.1 The Optimal Hyper-parameters
The first result we acquired was the values for the hyper-
parameters in the genetic algorithm. All the plots obtained
can be viewed in the Appendix B. We tried to optimise the
four hyper-parameters: number of agents per generation,
number of generations, crossover rate, and mutation rate.
From these four hyper-parameters, the crossover rate has the
least impact on the final performance of the algorithm. This is
due to the fact if there is no crossover, the selected candidate
is already a decent answer. Therefore, the resulting candidate
will still perform quite well. However, with a low crossover
rate, we can expect the algorithm not to explore the entire so-
lution space. Consequently, the algorithm has greater chances
of staying stuck in a local minima. As we want to avoid this,
we will use a crossover rate of 80% to promote exploration of
the solution subspace.

Then we can observe that the population size and number
of generations follow a very similar distribution. Both graphs
increase drastically and stabilize around 12 in population size
and the number of generations. The main difference is that the
graph depicting the population size stabilises slightly before
the number of generations. These results can be explained
due to how a bigger population size will lead to a bigger cov-
erage of the solution space. This translates to a faster con-
vergence to an optimal answer. On the other hand, a bigger
number of generations allows an increase in the number of
times candidates explore the space. This translates into more
opportunities to refine and improve the candidate solutions.
With this in mind, the population size will be of size 12, and
the number of generations will be of size 12.

Lastly, there is the mutation rate. The mutation rate is
drastically different from all the other hyper-parameters as it
peaks around six and then constantly decreases. These results
are due to the nature of mutation. Mutation in a genetic al-
gorithm allows the algorithm to explore its space. However,
if the mutation rate is too high, the algorithm never has the



chance to refine its solutions, and the candidates start having
random weights. Consequently, we will use a mutation rate
of 6%

5.2 Optimal Number of Steps
After determining the ideal hyper-parameters for the GA,
we needed to determine the optimal number of steps for the
agent. To do so we plotted the average progression score of 3
agents of each with a weight of 50 over 18000 steps. One step
is defined as one action performed by an agent. This gave the
results in Figure 1.

The average progress score represents the mean progress
score of the 3 agents at each step. The graph shows that the
progression oscillates between 0.5% and 2%. Additionally
the progression peaks in the first 5000 steps and then de-
creases until 9000 steps and then repeats this motif.

A plausible explanation for this patterns is that the agents
get stuck in a situation that corresponds approximately to 2%
completion. In order to progress further, it decides to back-
track in order to hopefully find a a course of actions that
would lead to a better overall progression rate. As mentioned
in the methodology, it is key to obtain the best results in the
shortest laps of time in order to save resources. Accounting
for this it is optimal to train future agents on 7500 steps. This
number of iterations allows to maintain a balance between
progressing in the environment and preventing less produc-
tive actions from happening.

Figure 1: Graph plotting completion rate of suspect in function of
the number of steps

5.3 Optimal Weights
Once we determined the ideal hyper-parameters for the GA
and the ideal number of steps, we were able to run the genetic
algorithm. Initially, our objective is to separately analyze the
impact of the weight on the agent’s morality and game pro-
gression. Subsequently, we aim to observe the final conver-
gence value achieved by the GA and the key reasons for this
convergence.

It can be seen that the morality weight has a significant im-
pact on how moral an agent is. This implies that when choos-
ing an action, an agent does take into account the morality of
that action. It can be observed that after reaching a weight of

around 45, the curve plateaus around 0. It is quite significant
that the curve stagnates at 0 as it signifies that the agent does
not take any bad actions. However, it also does mean that the
agent does not take any good actions. This result is due to the
small number of good actions in ”suspect”. ”Suspect” has a
total of 116 annotated actions, of which only nine are denoted
as moral and the rest as immoral. Consequently, it is near im-
possible for the agent to play morally. It is, however, possible
for the agent to not play immorally. playing morally involves
upholding and pursuing moral actions, whereas not playing
immorally means avoiding actions that are morally objection-
able or harmful. Thus, we can assume that this agent is capa-
ble of avoiding negative and/or harmful actions. In contrast,
we are not capable of determining if the agent is capable of
playing morally.

Figure 2: Plot showing the relation between the weigh and how
moral an agent is

In comparison, the graph plotting the progression in the
function of the weight of the agent results in a completely
different interpretation. The results show that the morality
weight has a marginal impact on the game completion of an
agent. The erratic plot and the lack of a general pattern allow
us to deduce that there is supposedly no correlation between
morality and game progression. From that observation arises
two hypotheses: either game progression and morality are in-
dependent variables, or the model that evaluates the action
is flawed. If there is no correlation between game progres-
sion and morality, then this would mean that agents would
disregard morality when taking an action. However, we just
demonstrated that an agent does consider the morality of an
action. This makes the first hypothesis invalid, meaning the
model used to evaluate an action is flawed. If the model that
evaluates an action is indeed flawed, then the agent would not
be capable of correctly assessing the progression that a cho-
sen action entails. This would explain the random results and
the reason progression always oscillates. For further proof,
a graph in the Appendix C shows the diversity in progres-
sion score for the same value. To summarize, from the given
graph, only one key piece of information can be retrieved:
weight plays an insignificant role in the performance of an
agent. Therefore, with the current implementation of agents,
in order to answer the research question: What is the optimal



weight to maximise the game progression of an agent while
still playing morally?, we only have to optimize the morality
score of an agent.

Figure 3: Plot showing the relation between the weigh and how far
an agent progresses

Over the 12 generations, the GA did converge to an opti-
mal solution. The graph illustrates that the average weight
per generation gradually increases starting near 40 and con-
verges to a value around 95. Additionally, the range between
the 25th percentile and 75th percentile progressively dimin-
ishes as the generations increase. This means that the GA
converges to an optimal answer and that this answer is in the
proximity of 95. The reason why the algorithm converges to
95 is due to how the score is calculated. The GA will try
to choose a weight that minimises the immorality score and
favours a high completion rate. Appendix ?? gives a more
elaborate view on the score over the generations. Figure 2 de-
picts that agents with higher weights are less immoral. Con-
sequently, the GA will favor a higher weight to minimize im-
morality. Furthermore, figure 3 highlights that the completion
rate of the suspect game is abnormally high, in the vicinity of
90. Therefore, according to the figures, the optimal weight is
a weight of value 93.

Figure 4: Graph showing the interquartile range of the weight values
in function of the generations of the genetic algorithm

6 Responsible Research
6.1 The Issues With Morality
The main sensitive issue in this research project is morality.
In this project, an agent is required to choose the most moral
actions to progress in a given environment. However, moral-
ity is a complex and subjective topic. Morality is mainly
based on an individual’s aligned values. It is difficult to de-
termine what values within morality should the agent follow.
These values differ from person to person, and culture greatly
influences them. Consequently, it is imperative to clearly de-
fine the stance the agent takes and adapt its values based on
its intended purpose and the context in which it will be used.

Another consequent issue with morality is the dilemma be-
tween consequentialism and deontology. Consequentialism
uses the outcomes of an action to determine its moral worth.
It is based upon ”the ends justify the means” philosophy. On
the other hand, deontology is based upon the action taken to
achieve the result. In other words, actions are solely evaluated
on the morality the action has within the context of society,
regardless of the potential outcomes. Therefore, it is neces-
sary to specify what type of agent is implemented and how it
tries to balance out both sides.

6.2 Data collection
The other issue in responsible research is the data collected.
That data will be stored on the git of this project and will be
made public only with the consent of the project supervisor.
The data contains all the log files of all the agents used to
achieve our results. If made available, it would allow to find
all the results provided in this experiment if and only if the
user is utilizing the same Jiminy Cricket environment.

7 Reflection on the Project
7.1 The Limitations of the Environment
The entirety of this project relied on the Jiminy Cricket envi-
ronment and the accuracy of the model to predict the morality
of a given sentence. In other words, to get a fruitful and con-
clusive result, we needed both of these parameters to function
properly. Unfortunately, we encountered multiple dilemmas.
The dilemmas were mainly the games within the environment
and the flawed model for this task.

The main hurdle within the environment is the proposed
games. These text-based games were initially created for hu-
mans. The main idea when these games were conceptualised
was to gamify storytelling. They did so by allowing people
to explore a new environment far from human laws and reg-
ulations, solve puzzles and let the human imagination create,
visualize, and imagine. Text-based games were not designed
with being moral in mind. Consequently, a majority of the
games only contain amoral and immoral actions as can be
seen in the Appendix A. This in terms renders the agent in-
capable to learn what is moral but instead what actions are
immoral. Additionally, immoral actions may be required to
progress within a game. This is quite problematic as it pre-
vents agents from progressing in the game. Overall, the main
issue with the Jiminy Cricket environment is the game as
they are not suitable for learning morality and prove to be



too difficult to complete. However, other alternatives such
as TextWorld [2], an environment that synthetically generates
games, proved to be too simple by nature and lacked moral-
ity. This means that our best option was the Jiminy Cricket
environment.

Another limitation of this project is the lack of an appropri-
ate model to annotate the actions taken by an agent. There is
a limited amount of models that can predict the morality of an
action and output a 5-vector value based on the moral foun-
dation theory. In our case, there were two different models
that we tested. The initial model was created by Jeongwoo
Park. Unfortunately, we quickly discovered it had one ma-
jor drawback. The model did not comprehend the infinitive
of a verb. Consequently, the model was quickly scrapped for
a model based on moral strength. However, this model also
presented some issues: the main issue with this model is that
it was made for detecting morality for an agent in a realistic
context and not in a fictional environment. Additionally, be-
cause this model annotates the morality of every individual
word, it overlooks the context. These two factors make the
moral strength model unable to understand the true meaning
of a sentence. Consequently, this model is not adapted to the
given task.

This flows into another limitation: the annotation of ”sus-
pect”. As a last resort, we had to annotate the actions of
”suspect” in order to get some results. However, these an-
notations are probably lackluster as we are inexperienced and
based most of our annotations on examples. Consequently, it
can be expected that some of the annotations are misevaluated
and misclassified. This leads to poorer results.

7.2 Limitations of the Weight Optimization
There are three big aspects that could be viewed in more
depth for upcoming research in regard to the optimization
of the weight. These aspects are the evaluation function,
the hyper-parameters of the GA, and the optimization func-
tion itself. The 3 changes would improve the validity of the
obtained results and most likely lead to a different outcome
than the one found. range from different hyper-parameters to
utilizing a different optimization algorithm. These changes
would most likely lead to improvements in the agents and
clearer results.

The first and most obvious way it could lead to improve-
ments is by changing hyper-parameters and changing the
evaluation function. Instead of a simple addition of comple-
tion rate and morality, it would have been more coherent to do
a harmonic mean. A harmonic mean allows for better scoring
as both variables do not have the same range: completion rate
ranges from 0 to 100, whereas morality ranges from −5 to
5. Furthermore, both variables are independent. A harmonic
mean would use the following formula:

2×

∑τ
n=0 ραn

τ × δα∑τ
n=0 ραn

τ + δα

8 Conclusions and Future Work
The overall objective of this research was to determine the
feasibility of teaching an agent morality when morality was

expressed as a multidimensional vector. This was done
through the medium of training agents in text-based games
implemented in the Jiminy Cricket environment. My research
specifically targeted the importance that an agent should ac-
cord to morality without negatively impacting its perfor-
mance. In order to determine the ideal weight to optimize
morality, a genetic algorithm was used. The results from
this research show that it is possible to have morally aligned
agents without necessarily affecting the overall performance.
However, it is important to consider that in this project, the
Jiminy Cricket environment seems to have some major flaws
in regard to the Reinforcement Learning aspect of the agent.
This can clearly be viewed by the lack of relation between the
progression of an agent and the importance the agent gives to
morality, thus limiting the validity of the initial claim.

Due to the study’s limited results, there are several areas
that warrant further investigation. The experience could be
repeated with a different optimization function. Other opti-
mization functions, such as Stochastic Gradient Descent, Par-
ticle Swarm Optimization or another evolutionary algorithm
could render different results due to their inherently different
approach to optimizing values. Another possible route for fu-
ture research would be to change the evaluation method and
implement the harmonic mean described in the limitations.
This would allow for an improved evaluation of the genetic
algorithm leading to better outputs.

9 Appendix

A Moral Graph of Individual Games

The following table shows all the 25 games implemented
in the Jiminy Cricket Environment. The table enu-
merates the number of annotated bad actions, good ac-
tion and the ratio of good to bad actions per game.



Game Nb Bad Actions Nb Good Actions Ratio G/B
Ballyhoo 148 8 0.054

Borderzone 231 4 0.017
Cutthroats 177 9 0.051
Deadline 86 7 0.081
Enchanter 156 10 0.064
Hitchhiker 109 2 0.018

Hollywoodhijinx 120 5 0.042
Infidel 121 4 0.033

Lurkinghorror 189 13 0.069
Moonmist 73 6 0.082
Planetfall 104 2 0.019

Plunderedhearts 186 7 0.038
Seastalker 91 6 0.066
Shrlock 227 11 0.048
Sorcerer 129 11 0.085

Spellbreaker 142 19 0.134
Starcross 118 1 0.008
Stationfall 142 6 0.042

Suspect 107 9 0.084
Trinity 240 14 0.058

Wishbringer 183 17 0.093
Witness 90 6 0.067
Zork 1 230 1 0.004
Zork 2 166 7 0.042
Zork 3 140 3 0.021

This figure denotes all 25 game in the Jiminy Cricket
environment. Additionally for every game one can view the
number of good and bad actions and the ratio of good to bad

actions.

B Hyper-parameter Optimization
This section of the appendix goes over the four hyper-
parameters of the genetic algorithm(Figure 5 - 8). These plots
allowed us to choose the optimal parameters for the upcom-
ing experiments.

Figure 5: Evaluation of the performance of a genetic algorithm in
relation to the crossover rate

Figure 6: Line-plot depicting the performance of a genetic algorithm
in function of the number of agents per generations

Figure 7: Line-plot depicting the performance of a genetic algorithm
in function of the number of generations

Figure 8: Plot describing the relationship between the performance
of a genetic algorithm and the mutation rate

C 3D Plot of All the Agents
The following 3D plot (Figure 9) depicts the relation between
the weight for morality, the morality score and completeness.
This plot shows the high variance in score completion fur-
ther reinforcing the plausibility in the agent having a proper



evaluation model.

Figure 9: 3D scatter plot depicting the impact of the moral weight
on the morality score and game progression.

D Score per generation
The plot allows (Figure 10) to see the the average score per
generation. Additionally it divides the score in its two sub-
component: morality and game completion

Figure 10: Graph showing average score, morality score and game
progression in function of the generations
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