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Abstract
The advent of collaborative robots allows humans and robots to cooperate in a direct and physical way. While this leads
to amazing new opportunities to create novel robotics applications, it is challenging to make the collaboration intuitive
for the human. From a system’s perspective, understanding the human intentions seems to be one promising way to get
there. However, human behavior exhibits large variations between individuals, such as for instance preferences or physical
abilities. This paper presents a novel concept for simultaneously learning a model of the human intentions and preferences
incrementally during collaboration with a robot. Starting out with a nominal model, the system acquires collaborative skills
step-by-step within only very few trials. The concept is based on a combination of model-based reinforcement learning and
inverse reinforcement learning, adapted to fit collaborations in which human and robot think and act independently. We test
the method and compare it to two baselines: one that imitates the human and one that uses plain maximum entropy inverse
reinforcement learning, both in simulation and in a user study with a Franka Emika Panda robot arm.

Keywords Inverse reinforcement learning · Physical human-robot interaction ·Human-robot collaboration · Human-centered
planning

1 Introduction

Physical human-robot collaboration (pHRC) is becoming
increasingly popular, as it has the potential to increase flex-
ibility and efficiency in industrial automation (Hanna et al.,
2022) as well as support people in home environments (Fitter
et al., 2020). To realize a fluent and intuitive collabora-
tion, such novel robot systems should ideally be capable of
understanding the intentions of the human partner, and to
adapt their behavior accordingly. From a system’s perspec-
tive, autonomously learning to interpret human intentions
will make it easier and more intuitive for humans to engage
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in joint tasks, an important step towards cooperative intelli-
gence (Sendhoff & Wersing, 2020). This requires a learning
algorithm that is fast, needs little data, and learns in a way
that is safe for both the robot and its environment.

In cooperation, the success of a task depends on the com-
bination of what all actors do. Moreover, how a task is best
completed depends additionally on the individual actors’
preferences and the interaction dynamics. A team learning
to work together needs to learn how the ‘system’ (including
their colleagues) is responding. They need to learn how to
follow/express their preferences within the bounds imposed
by both the task and their teammates’ preferences and capa-
bilities.

This paper addresses the challenge of enabling a robot to
learn to cooperate with a human. In the setting we consider,
the robot does not know the exact intention of the human and
simultaneously attempts to act according to the human’s pref-
erences. We make an explicit distinction between intentions:
what (sub)goal someone currently has, and preferences: how
the person likes to approach the (sub)goal. Figure1 shows
two example scenarios: The robot needs to learn how to help
the human move the object, a clothes hanger or a wheel, to
the goal intended by the human.
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Fig. 1 Two cooperative scenarios: The robot needs to learn how best
to assist the human to move the object between support points A, B,
and C. Two colors of arrows indicate different paths along which the

human may prefer to move the object (the clothes hanger on the left a,
the wheel on the right b). The dashed lines indicate how the preferences
may generalize when the goal is different

We consider the problem on the abstract level where the
two agents (human and robot) have pre-learned/programmed
skills, e.g., grasp the object, or, pull towards x, y, z in space.
Compliant control lets the success of actions depend on the
physical interaction. This allows us to focus on the learn-
ing problem in this paper, without simultaneously having
to consider the specific mechanics of physical human-robot
interaction.

This paper’s first contribution is a novel method for
learning a humanpreferencemodel for intention-aware coop-
eration, from collaborative episodes. The method (1) learns a
personalizedmodel of a humanpartner fromphysically coop-
eratingwith this partner, from scratch or improving a nominal
model; (2) models human preferences as an explicit func-
tion of intention, enforcing inherent intention awareness; (3)
applies two-level Theory of Mind (ToM) reasoning to model
the human’s preferences separate from the robot’s, resulting
in explicit partner awareness. This allows the robot to opti-
mize an objective different from the human for improved
cooperative behavior. The process is iterative: after each
collaborative episode, the robot updates its internal models
based on the observed partner response and the intention
observed in hindsight at the end of the episode. As its inter-
nal models improve, so does the robot’s response. Sincemost
optimization is done internally in the modeled environments,
the robot requires very few experimental episodes for learn-
ing. We achieve this by combining existing Reinforcement
Learning (RL) and Inverse Reinforcement Learning (IRL)
methods in a novel way.

Secondly, we contribute by testing our method in a user
study with a diverse group of mostly novice users. We com-
pare our “Learner” to an “Imitator” baseline which lets the
robot merely imitate its partner. Users were free to choose

their preferences (within the limits of the setup). We evaluate
the user experience and the performance both quantitatively
and qualitatively. In simulation, we additionally try our
method in a scenario with increased complexity for further
evaluations and insights for directions of future work.

Section 2 discusses the related literature. Then, themethod
is presented in Sect. 3. Implementation considerations are
discussed in Sect. 4. We describe the scenarios shown in
Fig. 1 in Sect. 5, on which we evaluate our method’s perfor-
mance in a user study in Sect. 6, and in additional simulations
in Sect. 7, before we conclude in Sect. 8.

2 Related work

Before we present our method to learn a behavioral model
of a human partner for improved intention-aware planning,
we will first discuss relevant literature in the three main
directions related to our work: intention-aware planning,
behavioral modeling, and model learning.

2.1 Intention-aware planning

Literature on intention estimation for human-robot cooper-
ation (HRC) tends to fall into one of the following three
categories: (sub)goal estimation–predictingwhich (sub)goal
out of a set of possibilities the human is trying for (Karami et
al., 2009; Malik et al., 2018); action prediction – predicting
which (primitive) action the human will take next (Hawkins
et al., 2014; Gienger et al., 2018; Belardinelli et al., 2022);
motion extrapolation – predicting how fast the human will
continue in which direction (Duchaine & Gosselin, 2007;

123



Autonomous Robots            (2024) 48:11 Page 3 of 21    11 

Bai et al., 2015), or along which trajectory (Ranatunga et al.,
2015; Park et al., 2019).

The last category is useful for collision avoidance (e.g.,
to independently navigate the same environment (Bai et al.,
2015; Park et al., 2019)), and formotion following (e.g., steer-
ing a single tool (Duchaine & Gosselin, 2007; Ranatunga et
al., 2015)). More abstract level planning needs higher-level
action predictions. On the top level, an estimate of the goal
the human wants to reach will allow a robot to plan further
ahead. Somewhere in between are reaching and placement
tasks, where the intention encodes both the motion and the
goal (Koert et al., 2019), and, in the pHRI case, the interaction
forces (Lai et al., 2022; Haninger et al., 2022).

Instead, we consider tasks consisting of a chain of actions,
and different possible goals can each be reached in multiple
ways.We seek to learn humanpreferences in (physical) coop-
eration while we have no direct access to the human partner’s
intention. Similar to Koppula et al. (2016); Park et al. (2019),
we define the problem as aMarkovDecision Process (MDP).
Intentions can be incorporated as a ‘hidden state’, resulting in
a Partially Observable MDP (POMDP) (Karami et al., 2009;
Bai et al., 2015), or a Mixed Observability MDP (MOMDP)
(Ong et al., 2009). This definition allows us to use standard
techniques for learning a fitting robot policy, determining
when it will take which action given the observations.

For robot-robot cooperation in the MDP domain, Multi-
Agent Reinforcement Learning (MARL) techniques have
been derived from single-agent techniques (Buşoniu et al.,
2010). Some of those methods could be applied to human-
robot cooperation problems, but have the disadvantage of
requiring a large number of trials which is impracticable for
learning in interaction.

2.2 Human behavior modeling

For directed cooperation, a robot needs a model of the agents
with whom it should cooperate (Choudhury et al., 2019).
Agents can be modeled by a black box model, such as a
neural network (Schmerling et al., 2018; Zyner et al., 2019).
Although such a model can give accurate predictions, col-
lecting sufficient representative data in a pHRC scenario is
expensive from a human perspective. More recently, Shih et
al. (2022) and Xie et al. (2021); Wang et al. (2022); Parekh
et al. (2022) solved this by learning a low-rank latent space
in different ways from few demonstrations which allows for
interpolation to predict previously unseen partner policies or
strategies respectively. Shih et al. (2022) and Parekh et al.
(2022) show the effectiveness of the approach with human
subjects. Nevertheless, these models still require a consider-
able amount of sufficiently diverse data, which is challenging
to obtain in pHRC. Furthermore, it is not straightforward to
set up the representation learning such that the latent space
covers all the preferences the human partnermay have.As the

methods do show great promise, it is an interesting direction
for future work to research how this approach could incorpo-
rate hidden but leading partner intentions, and how suitable
training data could be generated for such methods to handle
pHRC scenarios as addressed in this paper.

Alternatively, gray box models have a structure which
offers insight into the prediction process and increases data
efficiency, if a proper structure is provided. A simple single
parameter can already improve a robot’s cooperative skills
(Nikolaidis et al., 2017a). More complex structures may be
derived from dynamics (Stouraitis et al., 2020) or from The-
ory of Mind (Choudhury et al., 2019). ToM originates from
the fields of psychology and philosophy (Baker & Tenen-
baum, 2014) and reasons about the reasoning of others. For
example, a robotmaymodel a human as an agentwith its own
internal model of the task and the world. When such a model
includes the human’s reasoning about the robot’s reasoning
about them, etc. (infinite regress), it is no longer practical.
Successful implementations limit the regress to one or two
levels (Buehler & Weisswange, 2018; Sadigh et al., 2016;
Malik et al., 2018). ToM can be considered as an IRL prob-
lem (Jara-Ettinger, 2019).We follow this example, using IRL
to learn a mental model of the human partner, which we can
then use to optimize our robot’s collaborative actions.

2.3 Inverse reinforcement learning

Inverse Reinforcement Learning focuses on inferring the
underlying reward function from demonstrated samples.
However, the problem of reward reconstruction is ill-posed:
more than one reward function could describe the same
demonstrated policy. Maximum Entropy IRL (ME-IRL)
offers a solution to this problem which is the least biased
on the demonstrations (Ziebart et al., 2008; Zhifei & Joo,
2012). Derived methods have been applied successfully to
learn from non-expert data (Boularias et al., 2011) or incre-
mentally update the model as data comes in (Jin et al., 2011;
Rhinehart & Kitani, 2018), or both and from physical inter-
action (Losey et al., 2022).

In Cooperative IRL (CIRL) as described in Hadfield-
Menell et al. (2016), the human and the robot optimize
the same Q-function. This is also the case in Malik et al.
(2018), where the human and the robot are modeled as dif-
ferent actors. Instead, we explicitly treat our robot and human
as independent agents by learning/keeping separate reward
functions for each, without giving up on the overall cooper-
ative objective.

Dynamic Game (DG) theory is used in autonomous driv-
ing to adequately respond to (independent) other road users,
whose behavior can be estimated by a single strategically
chosenparameter (Schwarting et al., 2019) or through Inverse
DG (IDG) (Peters et al., 2023; Mehr et al., 2023). In pHRC,
something in between was done by Nikolaidis et al. (2017b),
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where the human objective function is estimated while the
human is learning the “true global cooperative reward” ini-
tially known only by the robot. More recent work takes
the DG theoretical approach in haptic shared control, either
assuming a known human cost function (Musić & Hirche,
2020) or learning one through Inverse Optimal Control
(Franceschi et al., 2023). On the same motor-control level,
Hafs et al. (2024) apply IDG to estimate the human cost
function in collaboration with an exoskeleton. Development
of IDG for pHRC has been very recent, and focused so
far mainly on the motor-control level. To apply these meth-
ods to the more abstract task level considered in this paper,
including a hidden intention state, is a different direction of
research. It will be interesting to compare the methods in the
future.

3 Method

In order to optimize the robot response in cooperation, we
learn a model of the human partner’s behavior, including
their response to the robot. We break this loop into three
interconnected learning processes, indicated by the ellipses
in Fig. 2. We start off with a nominal (safe) robot policy πR

and an initial estimate of the human reward function RH.
After every episode we try the collaborative task, we update
our human reward estimate on the observed human actions in
ζ and intention ι. To the human reward estimate, we applyRL
to compute the most likely human response π̂H, which we
then use to compute an improved robot response πR. Thus,
we iterate.

Fig. 2 Method overview, showing the learning processes in ellipses,
other processes in dotted-lined rounded rectangles, models in solid-
lined rectangles, and functions and data on the arrows. The human
preference model RH is updated by the IRL process based on observed
state sequence ζ and intention ι. The two RL processes compute human
policy estimate π̂H and robot policy πR

A key element of the presented method is the explicit
modeling of the human’s intention, a variable which is not
directly observable but assumed to uniquely define a person’s
response. The intention ι is a discrete variable. We assume
the set of possible intentions I is known. The human prefer-
ence model, captured in RH, is a function of this intention,
which allows it to be inferred by comparing the model to the
observed actions. A real-valued parameter vector is updated
in RH after every episode to improve the feature match to the
observed paths from the start to the intended goal.

To summarize, the preferences are captured by the human
reward function RH learned through IRL, while the inten-
tions are captured by a variable ι that the robot cannot access
directly but needs to infer from observed human actions.

We consider a discrete state-action space, where the state s
is the combined state (for the robot, human, objects, environ-
ment, etc.) and we have separate actions for the robot aR and
the human aH. The states and actionswe employ in our exper-
iments are detailed in Sects. 4 and 5. As the model improves,
so does the robot’s response, decreasing cooperation effort.

First, Sect. 3.1 briefly recaps the necessary background on
MDPs, Q-iteration, and soft-max policy optimization. Sec-
tion 3.2 explains how these concepts have been modified to
fit our collaborative case with hidden intention. Section 3.3
briefly discusses ME-IRL and its application to our multi-
agent learner before Sect. 3.4 summarizes our algorithm.

3.1 MDPs and their model-based solution

An MDP is defined by the tuple {S,A, T , R, γ }, consisting
of a state space S containing states s, action spaceA contain-
ing actions a, transition model T (s′ | s, a), reward function
R(s, a, s′) and discount factor γ ∈ [0, 1). In themodel-based
case, where the entire tuple is available, the value indicating
the desirability of each state-action pair can be computed via
Q-iteration:

Q(s, a) ←
∑

s′∈S
T (s′ | s, a)R(s, a, s′) + γ V (s′), (1)

with value function V (s) = max
a∈A

Q(s, a).

The Q-function is a sound basis for extracting a policy
π(a | s) an agent can use to decide which action to take in a
state. We select our policies by taking the weighted soft-max
as described by Tijsma et al. (2016):

π(ai | s) = eτQ(s,ai )
∑

a e
τQ(s,a)

. (2)

The exponential relationship between an action’s Q-value
and its probability to be selected results in directed explo-
ration around the optimal policy. Exploration can be
decreased by weighting the Q-values by a temperature
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parameter τ ≥ 1. A small amount of directed exploration
tends to speed up learning. It will mitigate modeling errors
in cases multiple actions come up with similar values and
which one shows up best depends heavily on an inaccurate
model. This may very well happen in our case, since all inter-
nal MDPs depend on the human preference model, which is
being learned.

For the robot, we do restrict exploration with a lower
bound on the acceptable actionQ-value:η maxaR QR(s, aR).
This way, we prune potentially bad actions. Additionally, the
bound can be set to only allow actions with a value at least
as high as a baseline deterministic policy.

3.2 Multi-agent policy optimization with hidden
intention

In our collaborative case, there are two necessary adaptations
if we are to use the MDP principles of the previous subsec-
tion. First, we need to account for a collaborative partner
whose actions we assume we cannot control. Second, one
state variable —the intention— is hidden for the robot. We
assume the human knows their own intention, sowe treat it as
a regular state variable within the human model. However,
the robot does not know this true intention, and we hence
need to maintain the uncertainty over it in the robot model.

To solve the first problem,we extract the single-agent tran-
sition function for the agent we are interested in from the
combined transition function T (s

′ | s, aR, aH), where aR

is the robot’s action and aH the human’s. This is done by
substituting the partner policy. For the robot transition func-
tion TR we replace aH by an estimate of the human policy
π̂H, resulting in TR(s

′ | s, ι, aR) = T (s
′ | s, aR, π̂H(s, ι)).

For the human transition function TH we replace aR by the
robot policy πR, resulting in TH(s

′ | s, ι, aH) = T (s
′ |

s, πR(s, ι), aH). Note that the single-agent transition func-
tion is a function of intention ι because the partner policy
depends on the intention.

In the human case, we find ourselves at the second level
down the ToM. For predicting the human policy πH, we need
an estimate of how the human perceived the robot policy πR.
We cut the regression by using the most recent robot policy.
It is an overestimate of what the human can know, but it is
the best we have. If we would assume instead that the human
models the robot as a random agent, the human would be
modeled without any trust in the robot policy, which will
make it much harder to learn policies that actually rely on
the robot taking a certain action. Since our robot is learning,
we cannot model human learning of the robot reward as in
Nikolaidis et al. (2017b), nor can we follow Tian et al. (2023)
and disregard the large effect of our robot’s actions on the
discrete state transitions within the human model. Modeling
how the human partner would learn to trust the robot is out

of scope of the current paper, although interesting to explore
in future work.

The resulting human policy estimate π̂H(aH | s, ι) is
used to obtain the robot transition function. The robot
reward function RR(s, aR, aH, s

′
), additionally depends on

the human actions to explicitly encode cooperation objec-
tives. Here, π̂H is substituted in the same way as in the
robot transition function TR, resulting in RR(s, ι, aR, s

′
) =

RR(s, aR, π̂H(s, ι), s
′
).

The human policy estimate is a function of the intention,
which the robot cannot observe directly. We assume that
the human acts consistently under a given intention, which
enables the robot to infer the intention from observations of
the taken human actions. Since it is only one-dimensional and
very small-sized, it is computationally feasible to resolve this
second problem by computing the MDP and its solution for
each possible intention ι ∈ I. For larger problems, we advise
to adapt a MOMDP solver (Ong et al., 2009).

At runtime, a belief distribution is estimated over the pos-
sible intentions, using a Bayes filter:

b(ι′) = Cπ̂H(aH | s, ι′)
∑

ι∈I
P(ι′ | ι)b(ι), (3)

with normalizing constant C . The intention transition prob-
ability is the likelihood of the observed human action
combined with the chance of keeping or changing the inten-
tion:

P(ι′ | ι) =
{

β, ι′ = ι
1−β
n−1 , ι′ �= ι

(4)

with ‘intentionbias’β ∈ [ 1n , 1] andn possible intentions. The
closer β is chosen to 1, the harder it is for the robot to under-
stand, and thus adapt to, the situation when the estimated
intention does not match the human’s. This may happen
because the human changed intention, or the estimate may
have been wrong because of errors in the learned model.
Smaller β results in faster robot adaptation (at runtime), but
too small a β makes it impossible for the robot to effectively
exploit its intention parameterized internal model.

Having the belief estimate, the final robot Q-function is
obtained by superposition (Schweitzer & Seidmann, 1985):

QR(s, aR) =
∑

ι∈I
b(ι)QR

ι (s, aR). (5)

3.3 IRL humanmodel updates

The IRL objective is to maximize the total reward of the opti-
mal trajectory ζ ∗

ι , which in our case depends on the intention
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ι. The reward

∑

s j∈ζ ∗
ι

R(s j , ι) = θTφζ ∗
ι

= θT
∑

s j∈ζ ∗
ι

φ(s j , ι) (6)

is a linear combination of the features φ observed in the
trajectory given intention ι, weighed by θ . Expert demon-
strations ζ̃ι,i are assumed representative for the optimal
trajectory. ME-IRL maximizes the log-likelihood of the
observed trajectories (Ziebart et al., 2008):

θ∗ = argmax
θ

L(θ) = argmax
θ

∑

i

log P(ζ̃i | θ, T ), (7)

This can be solved by gradient descent θk+1 = θk + λ∇L ,
where∇L equals the difference in feature counts between the
observed trajectories and the expected feature counts accord-
ing to the model. The expected feature counts are computed
by internal soft-max Q-iteration, using the human transition
model TH. Here, we only consider the intention observed
during the episode. Like other incremental IRL methods (Jin
et al., 2011; Rhinehart & Kitani, 2018), we perform a single
gradient descent update after each episode.

In our interactive case, we must be somewhat selective
in providing demonstration data to the learning algorithm.
States are now visited because of both the human and the
robot action. If the robot made awrong choice and the human
had to wait or correct, this should not be interpreted as opti-
mal, just because it was observed. To resolve this, any loops
between states that are visited multiple times are assumed
to be caused undesirably by inexperience, and are therefore
removed before updating the human model.

3.4 The combined algorithm

Algorithm 1 shows the full method. After initialization of the
human model (L. 1), the lifelong learning loop starts. The
robot models are extracted (L. 3–4) and the Q-functions are
optimized per intention (L. 5). During a cooperative episode
(initialized in L. 6), the robot Q-values are computed for the
current state (L. 8). The policy in the current state is obtained
(L. 9) using the bounded soft-max discussed in Sect. 3.2.
When the robot and the human have performed their actions
and the state is updated (L. 10), so are the robot belief (L.
11) and the state-action trace ζ (L. 12). The episode contin-
ues until a goal is reached (L. 13), then the state-action trace
and the human intention (the reached goal) are returned to
the model environment (L. 14). States are selected for learn-
ing (L. 17) and the human transition model is extracted (L.
18). The IRL step updates the feature weights of the human
preference model (L. 19) using the state-action sequence
observed during the latest episode and the human transi-
tion model given the observed intention. The human reward

Algorithm 1 Learning human-aware cooperation
Require: T (s′ | s, aR,H), RR(s, aR,H, s′), φ(s, ι)
1: θ = θ0, RH(s, ι) = θTφ(s, ι), π̂H(s, ι) ← U(s)
2: while True do
3: TR(s′ | s, ι, aR) = T (s′ | s, aR, π̂H(s, ι))
4: RR(s, ι, aR, s′) = RR(s, aR, π̂H(s, ι), s′)
5: QR

ι (s, aR) ← QIter(TR, RR) ∀ι ∈ I
6: s0, b0(ι) ← U(ι), ζ ← ∅
7: while Collaborative Episode do
8: QR(st , aR) = ∑

ι b(ι)Q
R
ι (st , aR)

9: πR ← BoundedSoftMax(QR)

10: st+1, aHt , aRt ← DoAction(πR)

11: bt+1 ← UpdateBelief(bt , st , aHt )

12: ζ ← UpdateStateActionTrace

13: if isGoalState(s) then
14: return ζ, ιH

15: end if
16: end while
17: ζ̃ ← SelectStatesForLearning(ζ )

18: TH(s′ | s, ι, aH) = T (s′ | s, πR(s, ι), aH)

19: θ ← IRL(ζ̃ι, TH(ιH), θ)

20: RH(s, ι) = θTφ(s, ι)
21: QH(s, ι, aH) ← QIter(TH, RH)

22: π̂H(s, ι) ← SoftMax(QH)

23: end while

model (L. 20), Q-function (L. 21), and policy estimate (L.
22) are updated, and the cycle repeats.

4 Implementation

We test our method in two different scenarios in which a
human and a robot cooperatively need to move an object
from one support to another. The robot knows where the
supports are, but not which one the human intends to move
to. This section describes howwemodel such scenarios as an
(MO)MDP for learning. In the final subsection (Sect. 4.6), we
describe the baselines we compare our learning method to.

4.1 States

The physical states s are defined from the perspective of
the manipulated object, defining its position p, orientation
q, and affordance (Koppula et al., 2016) —in our case its

manipulability μ: s = [
pT qT μ

]T
. We consider positions

in 3D (x, y, z). The orientation q can be a single angle or a
quaternion.Themanipulability defines how theobjectmaybe
moved depending on by whom it is held (e.g., the object may
only be moved if it is held by both human and robot). Con-
cretely, μ is an integer encoding who is holding the object.

The object must be held by both human and robot anytime
it is not resting on a support, which may be anything that
will keep the object in a stable position without the help of
an actor. Each support provides a possible start or goal state,
with a specific object position and orientation. The human
may intend to put the object on any of these supports.
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Table 1 Actions and their necessary state conditions

Action State pre-conditions

a0 wait/passive

a1 grasp Object resting, not held by actor

a2 let go Object resting, held by actor

a3 take off (support) Object resting, held by both actors

a4 put on (support) Object at mounting point1

a5 rotate2 Object held in free space

a6 move over3 Object held in free space

a7 move up/down4 Object held in free space

The actions are illustrated in Fig. 3 1 next to support, oriented correctly
2 around a single axis 3 to waypoint at same height 4 to waypoint at
same (x, y)-coordinate

In between these supports, a small number of strategically
chosenwaypoints definekey locations in space.Examples are
the position from which to mount the object onto a support
—which is assumed to be the same as the position to which
the object can be unmounted— or a position below such a
“mounting point” at a height which is comfortable for the
human to carry the object. The space in between waypoints
is assumed to be free of obstacles.

Next to the physical state s, there is the human intention ι

encoding the desired goal to put down the object. Thismay be
any of the available supports. The robot has no direct access
to this variable. The initial intention estimate is set to zero at
the initial support and distributed uniformly for the others.

4.2 Actions

The general set of high-level actions and their pre-conditions
are listed in Table 1. It depends on the state which actions are
allowed. In free space, where the object is only supported by
the robot and the human, neither is allowed to let go. Rota-
tion is allowed around a single axis at a time. Movement
between waypoints is allowed either horizontally or verti-
cally, along straight-line trajectories. We made this choice
purely for demonstration purposes, to define easily distin-
guishable possible preferences while keeping the state space
small. From and to a support, the motion is defined based on
the geometry of the object and the support.

Figure 3 illustrateswhat the actions look like in the clothes
hanger scenario. As long as the hanger is hanging at one of
the supports (illustrated at B), the robot and the human can
change their grasp on the object (a1, a2), each on their own
side. If the hanger is held by both actors, it can be taken off the
support (a3). The hanger can only be put on the support from
the adjacent state if the orientation matches—the hanger can
be mounted onto A from s1, but not from s2. In any state in
free space (s1, s2, . . . , s12), actions a5, a6, a7 are possible, as
illustrated in s4.

Fig. 3 Schematic overview of the different actions connecting a subset
of states as defined on one preference in the clothes hanger scenario
(Fig. 1a). States s1 and s2 are at the same position p, but have a dif-
ferent orientation q. The same holds for s3 and s4, and s5 and s6. The
different states at each support differ only in μ. The actions are num-
bered as defined in Table 1. From s4, a6 can be taken in two different
directions, towards A and C respectively (a6 towards C is not part of
the shown preference). Similarly, a7 can be defined towards multiple
different heights, as is the case in thewheel scenario. The clothes hanger
scenario considers only two different heights

In simulation, we only consider the discrete states con-
nected by the abstract actions. On the hardware, the way the
robot grasps and lets go of the object is pre-programmed.
The other actions are defined along straight-line trajectories,
either in linear or in rotational space, and tracked apply-
ing disagreement-aware variable impedance (DAVI) control
(Van der Spaa et al., 2022). In order to track the straight-line
trajectories between our states in a robust waywith our 7DoF
robot arm, we extend the DAVI controller with the follow-
ing null-space component: We train a Gaussian Process (GP)
(Williams&Rasmussen, 2006) on a small set of feasible arm
configurations (one per gripper pose) to obtain an approxi-
mate inverse kinematics (IK) mapping. During actions, we
control both the gripper position and orientation (6 DoF)
and the joint configuration (7 DoF), one set of DoF with
lower impedance than the other to resolve the redundant con-
trol. Close to state positions and orientations, the Cartesian
impedance on the gripper dominates the joint impedance, to
make sure the robot reaches the state. As the distance to the
known states increases, so does the impedance on the joints,
while theCartesian impedance on the gripper is reduced. This
way we smoothly bend our straight-line trajectories a little
bit to avoid joint limits and allow the elbow of the robot arm
to change side when necessary.

The robot always has the option not to act. In this “pas-
sive mode”, the robot just compensates the gravity with zero
stiffness and the human is free to drag the robot around with
the object.

4.3 Transitions

The abstract physics of the problem, considered by the inter-
nal model, are simple: an object can be moved if both actors
have a grasp on it. A robot action may either have the
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desired effect or no effect at all, if the human counteracts
the action. The DAVI controller ensures smooth transition-
ing from active to passive in case of counteractive action, so
the human is always in control of where the object is moved
to.

If the robot is in passivemode, the human fully determines
the transition. The human can also choose to passively follow
the robot. Human partners are instructed only to do actions
which end up in a valid next state.

4.4 Observations

In simulation, the abstract states and actions are observed
directly. In the robot experiment, the closest abstract state is
considered to be the state arrived at. This state is used to infer
the action the human took to realize the transition, and to esti-
mate the next abstract human action and choose a matching
abstract robot action. The corresponding motion trajectory
is always planned from the actual robot position and orien-
tation, not from the abstract one the robot is expected to be
at.

At the supports, there is the additional bound that the actual
position should be close to the expected one. Furthermore, the
velocity and interaction forces must be close to zero before
letting go of the object is allowed, assuming the human will
stop trying to move the object when it is stably supported,
and using that as a sign that it is safe for the robot to let go.

In the experiment, the robot does not directly observe the
human grasp on the object. Instead, we generally assume
the human is holding the object, until the object has been
non-moving for a number of seconds. We instruct our users
to keep a hold on their end of the object when the robot is
active on the task, and make sure not to activate the robot
when they have not, so that the assumption holds.

4.5 Rewards

As described in Sect. 3, we have separate reward functions
for the human and the robot. The human reward, RH(s, ι), is
defined by the learned preference model (Sect. 3.3), which
is a function of features describing each state’s relation to
the start, the intended goal, and unintended alternative goal
candidates. The features in the human preference model are
the product of two Gaussian Radial Basis Functions (RBFs)
and a binary component. The first set of RBFs are a measure
of linear distance and are centered at points defined relative
to the intended goal support, another support, or the world
(e.g., comfortable carrying height). These points cover the
waypoints, but multiple waypoints relative to different sup-
ports map to the same feature point if the supports are not
the intended goal. The second set of RBFs are a measure of
angular distance and are centered at the allowed absolute ori-
entations and at the final intended orientation. The standard

deviations of the RBFs are chosen at 2 cm and 10◦ respec-
tively. The binary component indicates the manipulability.
With our choice of waypoints, this results in a total of 26
features. The feature vectors are normalized per state, θ is
scaled to −1 ≤ θ i ≤ 1, and initialized at 0.1 at the intended
support, −1 at the other supports, and 0 elsewhere.

The reward the robot receives for state transitions, RR(s,
aR, aH, s

′
), punishes actions which are counteracted by the

human, or do not change the state, by r− = −1. Passive
behavior, when a supportive alternative exists, is punished
less severely, by r0 ∈ (−1, 0). The reward factor r0 is
deciding for the robot behavior. A smaller magnitude makes
passive robot behavior more desirable as, relatively, the pun-
ishment for choosing a wrong action increases: the robot is
“more afraid” of taking a wrong action. If r0 = r−, the robot
does not care about taking wrong actions and the benefit of
learning an internal model disappears. The effect of different
values of r0 is evaluated in Sect. 7.

4.6 Baseline agents

Both in simulation and the real-world experiment, we com-
pare our Learner agent to (1) an Imitator, (2) aPassive agent,
and (3) a plain ME-IRL agent.

The Passive agent (Algorithm 2) is hard-coded to grasp at
the start (L. 2–3) and let gowhen the object rests at a different
support (L. 4–5). In between it just compensates the gravity,
i.e., is in “passive mode” (L. 7). This passive policy is also
the internal baseline the robot compares its actions to when
computing its policy.

The Imitator agent (Algorithm 3) follows the passive pol-
icy in stateswhere it has yet to observe a humanaction (L. 5b).
Otherwise, it takes the action it has observed most recently
when coming from the same start support (L. 5a), stored in
the observed-state-action set after each episode 
 (L. 14).
This can capture most of the preference, but because it has
no notion of intention, it will always have a chance of nι−1

nι

—with nι the number of possible intentions— of choosing
wrongly in the deciding state. If the human decides to return
the object to the start support, the Imitatorwill not understand
and keep trying to move elsewhere (if it observed an action
in that state before, coming from the same start support). The
way we defined the Imitator, allowing the start support to be
also a goal support would mean that the robot will not hold
on to the object to let the human move it away from the start,
as it does not have an internal model to consider that option.

The plain ME-IRL agent (Algorithm 4) learns its pol-
icy applying plain ME-IRL (Ziebart et al., 2008) on the
observed trajectories to learn its reward function, still incre-
mentally updating only once after each episode. It has no
explicit internalmodel of separate human rewards or a human
policy. The robot does not try to optimize a cooperation
reward as described in Sect. 4.5. Instead, it adopts what
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Algorithm 2 Coded passive behavior
1: procedure bePassive(s0, s)
2: if s = s0 then
3: return a = grasp

4: else if
[
pT qT

]T ∈ Ssupport \ {s0} and
grasped by robot ∈ μ then

5: return a = let go
6: else
7: return a = wait
8: end if
9: end procedure

Algorithm 3 Baseline agent: Imitator
1: 
 ← ∅
2: while True do
3: s0, ζ ← ∅
4: while Collaborative Episode do

5: aRt =
{


(s0, st ), (s0, st ) ∈ 


bePassive(s0, st ), (s0, st ) /∈ 


6: st+1, aHt , aRt ← DoAction(aRt )

7: ζ ← UpdateStateActionTrace

8: if isGoalState(s) then
9: return ζ

10: end if
11: end while
12: ζ̃ ← SelectStatesForLearning(ζ )

13: for (st , aHt ) ∈ ζ̃ do
14: 
 ← 
 ∪ (s0, st : aHt )

15: end for
16: end while

Algorithm 4 Baseline agent: plain ME-IRL
Require: T (s′ | s, aR, aH), φ(s, ι)
1: T (s′ | s, a) = T (s′ | s, a, a)

2: θ = θ0, R(s, ι) = θTφ(s, ι)
3: �(ι|s0, s) ← U(ι) ∀s0 ∈ Ssupport,∀s ∈ S
4: while True do
5: Qι(s, a) ← QIter(T , R) ∀ι ∈ I
6: s0, b0(ι) ← U(ι), ζ ← ∅
7: while Collaborative Episode do
8: Q(st , a) = ∑

ι b(ι)Qι(st , a)

9: πR ← BoundedSoftMax(Q)

10: st+1, aHt , aRt ← DoAction(πR)

11: bt+1(ι) ← �(s0, st+1)

12: ζ ← UpdateStateActionTrace

13: if isGoalState(s) then
14: return ζ, ι

15: end if
16: end while
17: ζ̃ ← SelectStatesForLearning(ζ )

18: θ ← IRL(ζ̃ , T , θ)

19: R(s, ι) = θTφ(s, ι)
20: �(ι|s0, s) ← UpdateLikelihood(s0, ζ̃ , ι)

21: end while

the Learner learns as RH (Sect. 4.5) as its own and only
R(s, ι) = θTφ(s, ι) (L. 2, 18–19). This is the same basic
principle as used in Losey et al. (2022), which we consider
to be the closest recent related work, as they also aim to learn
a model of human objectives/preferences from pHRI. How-

ever, we do not adopt their adaptations for online learning
during episodes. We follow classic ME-IRL in updating the
model after observing a full episode, as we cannot observe
the human intention (where the human wanted to go) before
observing the final state of the episode. We initialize the
feature weight θ0 as for the Learner and use the same
intention-parameterized features φ(s, ι).

Since plain ME-IRL does not allow for a second indepen-
dent actor, we let the agent assume maximum cooperation
—i.e., both actors should take the same (or matching)
actions— and use T (s

′ | s, a) = T (s
′ | s, aR = a, aH = a),

which no longer depends on the intention ι and therefore can
be computed outside the learning loop (L. 1). Because both in
reality and simulation the human actions override the robot
actions, this should result in the desired states for each inten-
tion to be updated correctly in R(s, ι) and the agent to plan
matching cooperative actions to pass through those states.
We use the same soft-max action selection as described for
the robot in Sect. 3.1 (L. 5, 8–9).

By lack of a human policy model, the plainME-IRL agent
obtains an intention belief by taking themaximum likelihood
estimate based on how often each intention occurred in the
current state given the start state �(ι|s0, s) (L. 3, 11, 20). A
more intelligent estimate would improve the agent’s behav-
ior. However, designing such an intention estimate is not the
topic of this paper. It could be interesting for future work.

5 Scenarios

We test our learning algorithm in two different cooperative
scenarios. The scenario of moving a clothes hanger (Fig. 1a)
has a state space that allows human users a number of dif-
ferent preferences while moving a clothes hanger between
three possible supports (intentions). We designed this sce-
nario such that we could run it on a Franka Emika Panda
robot arm, to test our algorithm in a user study.

The scenario of moving a wheel between stands (Fig. 1b)
has a larger state and action space, that allows human pref-
erences to include seemingly inefficient detours. In this
scenario, we test our algorithm only in simulation. In simula-
tion, we can also easily test the generalization to cases where
the stands change position and height.

In both scenarios, we use the following learning param-
eters: For the iterative IRL, a learning rate λ = 0.1 is used.
The robot action exploration is restricted by a soft-max tem-
perature τR = 5, and, for the robot, with an additional
bound η = 0.9. The human is assumed to explore even less,
τH = 25. The intention bias is chosen at β = 0.95.

The plainME-IRL baseline agent uses the same parameter
values for action selection as the robot model in the Learner.
The IRL learning rate is set at λ = 0.03 as a higher learning
rate was found to destabilize the agent’s learning.
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5.1 Clothes hanger scenario

In the “Hanger Scenario”, we use a quaternion to define the
object(=hanger) orientation. We consider just a single rota-
tion, around the vertical axis. There is no reason to not hold
the hanger with the hook on top, but the peg (A) (Fig. 1a) we
can hang it on is oriented differently than the rail on which
we have our support points B and C.

Supports B and C are at the same height, support A is con-
siderably lower. To each of the supports, there is a mounting
point (s1, s10, s12 in Fig. 3), a bit over a hanger ‘radius’ away
in ‘unhooking’ direction, so that the hanger is sufficiently
clear to be rotated. In between these mounting points, we
define additional waypoints in space by recombining their
(x, y) and z positions. With only the two distinct heights,
there are 24 states and between 2 and 6 actions per state,
including not acting.

We set r0 = −0.33, which gives us balanced behavior:
reasonably careful not to take wrong actions, yet not too
afraid to act. For learning, we use discount factor γ = 0.9,
for both Learner and plain ME-IRL agent.

5.2 Wheel scenario

In the “Wheel Scenario”, we describe the object(=wheel)
orientation by a single angle, around the axis pointing from
the robot to the human. The wheel can hang ‘vertically’ on
the rack, or be placed ‘horizontally’ on one of two stands
(Fig. 1b). The affordanceμ, whether the robot and the human
have a grasp on thewheel, is considered to be directly observ-
able.

The rack and the two stands are all at different heights,
respectively at 1.7, 1.0, and 1.2 m. Every episode, we ini-
tialize the positions of the stands at random, at a distance
between 1.6 and 3.6 m from the rack and between 1.0 and
2.2 m from each other. Intermediate waypoints are defined
as in the hanger scenario. Additionally, we define a “com-
fortable carrying height”, at 0.95 m, below each mounting
position. When working with real people, this height should
be adjusted according to how tall the user is. If a point in
space would collide with a stand, the point is projected in
negative x-direction by a bit over a wheel radius distance.

Moving up or down to different heights, are all separate
actions. At each height, there is the possibility to move over
towards each of the other supports. All actions, of both robot
and human, are assumed to be directly observable by the
robot. In total, there are 36 states and up to 8 possible actions
per state.

We test different r0. To better allow our human model to
capture detour preferences, and the robot model to support it,
we lower our discount factor to γ = 0.6 (for bothLearner and
plain ME-IRL agent). As the human model is learned from
demonstrations that reach a goal, and the robot receives pun-

ishment for not supporting the human, the learned policies
still terminate releasing the wheel at a support, despite the
low discount factor.

6 User study: clothes hanger scenario

6.1 Experiment

We did a user study with a Franka Emika Panda robot arm
and 24 users (16male, 8 female) of an age between 19 and 77
years old, with the median at 28 and the interquartile range
between 25 and 35. Five of the participants had participated
before in a user study involving a similar robot arm; one
participant had multiple years experience with collaborative
robot arms including the Franka Emika Panda, although not
in a setting that involved physical interaction; one other par-
ticipant had experience programming industrial robot arms;
and there was one participant with experience with physical
human-robot collaboration in terms of lane-keeping assis-
tance.

The hanger scenario was explained to the participants,
including that the robot would never be given the information
of where the users were asked to hang the hanger next (i.e.,
the intention). The users were informed that the robot could
perform only a few distinct actions between the supports and
six distinct points in the intermediate space.

All participants went through the same familiarization
phase in which they first moved the hanger around with the
robot in passive/gravity compensation mode. Next, the robot
would play a pre-programmed sequence of actions, letting
the human follow and feel how it feels when the robot is
maximally assistive. Then, the users were asked to follow
the same sequence of motions they had observed the robot to
lead previously, but this time with the robot trying to move
elsewhere in each of the decision points in space. This way,
the users would get comfortable disagreeing with the robot
in case it would not follow their preference or intention. The
participants could try each of the ‘modes’ until they felt com-
fortable with whatever the robot would do during the actual
experiment.

Now that the users felt somewhat familiar with the task
and the robot, they were asked to specify their preference,
segmenting the movement to the lower and rotated support
in {moving over horizontally, moving down, rotating} in the
order of their choice, as well as the way back. During the
remainder of the experiment, they were instructed to stick as
closely to this preference as they could manage, no matter
what the robot would do.

The actual experiment then consisted of moving the
hanger nine times to anext hangingpoint (as listed inTable 2),
while the robot would update its internal model in between.
The whole sequence took between 2.5 and 4min. This was
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Table 2 Experimental episodes

Nr From, to Remarks

1 B, A Initial behavior

2 A, B

3 B, A For the second time

4 A, C Starting from A with different intention

5 C, B New region in the state space

6 B, C Starting from B with different intention

7 C, A Starting from C with different intention

8 A,(B)A Changing intention: turning back halfway

9 A, B Starting from A like in episode 2

done once with the robot applying the proposed IRLmethod,
and once running an imitator baseline. Half of the users
experienced the Learner first, half of them the baseline,
approximately alternating between participants, to average
out the learning effect of the users. After each set of learning
episodes, the users filled out a questionnaire on what they
felt about the robot learning (on a 7-point Likert scale), and
the NASATLXquestionnaire to assess their personal experi-
ence. A demonstration of the experiment can be found here:
https://youtu.be/k-JYV4hyTs8.

The experiments were carried out in accordance with the
guidelines and regulations of the lab and the equipment. All
participants signed theirwritten informed consent before par-
ticipating. All collected data was anonymized before storage.

6.2 Hypotheses

TheLearner tries right from the start to beof assistance.When
in doubt of the user preference or intention, it does not act,
as the punishment is less for letting the human lead than for
choosing a wrong action, such that the waiting “action” has
largest expected reward. However, once close to a support
with little choice of actions left, it acts without needing to
observe the human first. Once it has observed previous roll-
outs of the task, the parameterized internal model tries to
generalize the learned preferences across the possible inten-
tions. So once a side of the rack appears to be chosen, the
robotmay provide assistancewithout before having observed
the human move in that direction. However, the awareness
of multiple possible intentions, with our choice of r0, leads
to there always being one state in which the robot leaves
the initiative to the human, necessary to observe/predict the
human’s intention.

The Imitator does not do anything until the task starting
from a support has been observed at least once. Then it copies
what it observed the previous time. When entering a new
region in the state space (coming from a specific support),
it stays again passive. Without a notion of intentions, once
starting the task froma support observed previously, the robot

never hesitates to act. It provides maximum support if the
human wants to go the same way. If not, the human has to
‘fight’ the robot, make it understand the desired action goes
elsewhere. This will be the case in the state where the human
chooses to take the turn to another support, and also in the
case the human moves back to the start support. The Imitator
is by design not capable of understanding the start support
as goal support (Sect. 4.6).

Based on these differences, we expect the Learner to be
overall more supportive in the sense of taking the right action
at the right time and being less passive in tasks and states
that were not observed before. We formulate the following
hypotheses (w.r.t. the Imitator baseline):
H1. The Learner will be better able to support the human
preferences and intention.

As a result, we expect:
H2. The Learner makes the task easier for the human, in
terms of reducing both physical and perceived effort.

Furthermore, we test if:
H3. The user feels more comfortable when cooperating with
Learner.

We test H1 objectively by comparing the relative number
of actions the robot initiated both correctly and wrongly. A
large percentage of correct actions indicates a match of pref-
erence, while a mismatch of intention increases the number
of wrong actions. Subjectively, we compare the question-
naire results on perceived understanding of preferences and
intentions, learning speed, and trust.

To test H2 objectively, we compare the force and torque
exerted on the robot integrated over the duration of the task.
For subjective evaluation, users graded how easy they felt
the robot made the task, next to filling out the NASA TLX
questionnaire. Additionally, the questionnaires allow us to
evaluate H3.

Next to these hypotheses, we will qualitatively check the
convergence of the learned policy.

6.3 Results

Figure 4 shows the percentage of ‘correct’, ‘passive’, and
‘wrong’ abstract actions taken by the robot, lightly colored
for the Imitator and darker colored for our Learner. For the
plain ME-IRL agent, we use the state sequences observed
with the Learner, which are most clean of the influence of
wrongly initiated robot actions, and compare the actions the
plainME-IRL agent would have taken. The results are shown
in gray.

Actions are considered ‘correct’ if the next recognized
proximal state corresponds to the state the robot started act-
ing towards in the previous state. This means an action is
registered as correct evenwhen in between disagreement was
detected and the robot aborted its action. Considerable ‘false
disagreements’ were detected when users found the robot

123

https://youtu.be/k-JYV4hyTs8


   11 Page 12 of 21 Autonomous Robots            (2024) 48:11 

Fig. 4 Percentages of different actions taken by the Imitator, Learner,
and plain ME-IRL agent, for the nine episodes of moving the hanger as
tabulated in Table 2. The bars show the average percentage of correct
actions taken (number of times when the next state recognized by the
robot coincided with the state the robot decided to act towards in the
previous state) in shades of blue and medium gray. The middle light
color denotes the percentageof actionswhen the robot remainedpassive.
The wrong actions (times when the next state did not match the initiated
action) are shown in red/dark gray. To indicate the spread of the data,
the dots represent the individual data points, where the wrong actions
in red are counted from above (Color figure online)

too slow or pulled the robot with some force to the same next
state but not via the straight line the robot tried to track. On
the other hand, users occasionally disagreed close enough to
the state the robot was acting towards to have the action reg-
istered as ‘correct’ before moving on to where they wanted
to go. In those cases, the wrong action taken is registered as
a ‘correct’ plus a passive action. Because of this effect, we
expect the number of wrong actions for the plain ME-IRL
agent to register slightly lower if they were recorded with the
actual users.

Episode 3 is the episode in which pure imitation should
give the optimal result (depending on the quality of the
demonstration in Ep. 1). It is the only episode in which the
intentionmatches the previous episode starting from the same
start state. Indeed, we observe for this one (and only) episode
that the Imitator outperforms the Learner. We see that the
plain ME-IRL agent overfits considerably on the policy it
thinks best. In many individual cases (dots in the figure),
it does as well as the imitator in Ep. 3. In most episodes,
it chooses more correct actions than the imitator, and in all
except the first episode, its percentage of correct actions is
closer to the Learner. However, as its learned model covers
the full state space, already at initialization, it chooses more
wrong actions than the Imitator in all episodes except Ep. 8,
where the intention is changed. In Ep. 9, the Imitator has
full state information, but no recent observation of the spe-
cific intention. In Ep. 4, many users moved quite close to
support B before moving over to C. This resulted in the Imi-
tator’s action going to B being registered as correct, while the
Learner waited to observe the intention, and then taking one
wrong action believing the user might intend to go to B. In all

Fig. 5 Questionnaire results to statements from left to right: The robot
made it easier for me to perform the task. The robot understood my
preferences, how I wanted to do the task. The robot was supporting me
to go where I wanted to go (intention). I was comfortable with what the
robot was doing. The robot learned fast. I trusted the robot. Significant
differences between the methods are indicated by * (p < 0.05) and **
(p < 0.01)

Table 3 Results of the questionnaires for the Learner and Imitator com-
pared with a one-tailed paired t-test

Statement p value

Robot made task easier 0.006

Robot understood preferences 0.035

Robot supported the user intention 0.007

User was comfortable with robot (0.068)

User thought robot learned fast 0.156

User trusted robot 0.031

Lower mental demand 0.760

Lower physical demand 0.143

Lower temporal demand (0.966)

Higher performance 0.036

Lower effort (0.086)

Lower frustration (0.087)

The statements are phrased for the Learner w.r.t. the Imitator, as per-
ceived by the users. P values < 0.05 are printed bold, indicating a
significant result. Values between parentheses indicate the answers to a
question were not normally distributed (with p < 0.1) for one or both
of the methods

the other episodes, we see the Learner take at least as many,
and often considerably more, correct actions. The plain ME-
IRL agent is seen to generalize its observations less well, as
it chooses fewer correct actions in most episodes. Over all
the episodes, the Learner takes as few or fewer wrong actions
compared to both the imitator and the plain ME-IRL agent.
These results support H1.

We seeH1 further supported by how the users graded dif-
ferent aspects of the robot performance (Fig. 5). The results
for the two methods are compared using a one-tailed paired
t-test, testing if the Learner was perceived as a significant
improvement over the Imitator. The p values are tabulated in
the top half of Table 3. Significant differences are indicated
by * and ** in the figure.
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Fig. 6 Linear impulse (interaction forces integrated over time) with
the Imitator and Learner for the nine episodes of moving the hanger as
tabulated in Table 2

The most significant results are: the users (1) found the
task easier to perform with the Learner compared to the Imi-
tator, and (2) felt their intentions were better understood by
the Learner. Additionally, with 0.01 < p < 0.05, the users
also felt their preferences were better understood, and they
trusted the Learner more than the Imitator.

As an objective measure of effort, we consider the forces
and torques integrated over the duration of the tasks. The
duration is measured from the moment the robot starts grasp-
ing until the robot has let go at the intended goal state. Since
the Imitator never let go between Episodes 8 and 9, these
episodes are separated manually. Time in which the robot
lost grasp on the hanger and was not moving is subtracted.
As the trend in the resulting linear and angular impulse look
very similar, we show only the linear impulse in Fig. 6.

In general, comparing Figs. 4 and 6, we see that the reg-
istered impulse increased when the robot was more active,
regardless of the quality of the actions taken, with the excep-
tion for Episode 3. This lack of support forH2may be largely
due to the preference mismatch on the action level. People
generally found the straight-line trajectories unnatural, and
several users seemed to prefer the robot to go faster. The pre-
sented method focuses on preferences on the level of discrete
states, extending it to additionally learn preferences on how
to transition between those states (Avaei et al., 2023), will
likely lead to improvement on this result.

Subjectively, when explicitly questioned about the effort
and demand of the task (Fig. 7, Table 3), the users did not
grade the methods significantly different. However, they did
feel they performed the task betterwith theLearner compared
to the Imitator. Furthermore, the users very significantly
found the task easier to perform with the Learner compared
to the Imitator (Fig. 5, Table 3). This does provide someweak
support to H2.

People did not report a significant increase in comfort with
the Learner, but they did trust the robot more and found it
easier to cooperate with. We can interpret this as a weak
support to H3.

Fig. 7 Results of the NASATLX questionnaire. A lower score is better.
Significant differences between the methods are indicated by * (p <

0.05)

To check if this trust is well placed, we have a look at
the policy the robot learned. We need to look at this per
preference, as the policy the robot learned is preference spe-
cific. Since our users were free to choose their preferences,
we have more data on some preferences than on others. Our
users chose 9 different preferences in total. To get the best
impression of the variance between the users and how well
the robot was able to learn, we look at the most frequently
chosen preference, which is marked in Fig. 1a by the blue
lines and shown again in Fig. 3. Important states, in which
different actions can be chosen, resulting in a different pref-
erence, are marked in Fig. 3 by s10 and s4 for the intentions
to go from support B to A, and by s1 and s3 from A to B.

Figure 8 shows the learned action probabilities in those
four critical states to those two intentions for the preference
chosen bymost users: From the rack to the peg (intention A):
first move down (top left), then move over (top right), and
finally rotate before hanging; and on the way back (intention
B): first move over (bottom left), then rotate (bottom right),
and finally move up before hanging the hanger on the rack.
The actions shown in the figure are the actions defining the
preference. The lines show the likelihood of the robot choos-
ing the correct action compared to not taking an action (the
dash-dotted line at 1.0). In blue,we show the expected relative
action probability obtained from 100 simulations where the
start and goal supports are chosen at random every episode,
but the human follows the said preference perfectly.

From the simulation results, we see that our learner is able
to capture some action preferences slower than others. This is
due to the feature parameterization we chose. Nevertheless,
in most of the critical states and with most of the users, the
robot learns within a few episodes to recognize the correct
actionwith a probability larger than the probability of staying
passive.

We need to make a distinction here between the states on
the left and on the right of Fig. 8. In states s10 and s1, in
Fig. 3, we see a dashed line, an alternative path, going to
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Fig. 8 The relative probability of the preferred action being chosen for
a specific intention, in the four states defining the preference that was
chosen by the largest number of participants, as it was learned over the
episodes. The states s10, s4, s1, s3 are marked in Fig. 3. The solid lines

show the data from the five individual users who had this preference.
The blue area is the interquartile region of a 100 simulations that were
run with random start and goal supports, the dashed line shows the
median (Color figure online)

intention C. The action the human will take in these states
depends very much on the intention, while the states visited
up to these states gave no information of the intention. In
states s10 and s1, the Learner will not know where its partner
wants to go. Not to accidentally choose a wrong action, we
expect the Learner to learn to wait in these states. The small
number of wrong actions shown in Fig. 4 indicates that this
is indeed generally the case. It means that unless the Learner
learns some really wrong behavior in these states, the final
performance is not visibly affected by the preference model
in these states. In these states we observe the largest effects
of preference unlearning for certain intentions.

Specifically,we see the following four cases inFig. 8 (from
left to right, top to bottom): In s10 (or the equivalent state

s12 when coming from C), the moving down action is only
observed for intention A, in episodes 1, 3 and 7 (Table 2). In
all other episodes, this preferred actions is slightly forgotten.
This is also clearly illustrated by the wide blue band of the
interquartile region of the simulated results. It suffices to
move to A once in a while to keep the unlearning in check.
Oncemoveddown to the height of the goal, in s4,movingover
is quickly learned with little variance. This action is shared
between all intentions as the next action to take. In s1 when
going to C (Ep. 4), it turned out to be physically very hard to
follow a more or less straight line to s5. In all of the recorded
cases, the users first moved to s3 before continuing to s5,
confusing the robot, and unlearning that the human wants to
move over directly in the direction of the intended goal. Our
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features could not capture the preference of choosing in state
s3 whether or not to continue on to C. In s3, learning to rotate
before moving up to the final intended height was somewhat
harder to learn than the moving over to A in s4. Mostly the
episodes going to Awere confusing here. Nevertheless, clear
learning of this preference is observed.

Additionally, there is a large dip at Episode 8. There, the
humanchanged intentionhalfway to goback.This optionwas
not included in the simulations shown in blue. At runtime,
we saw that the policy the robot learned is robust to such a
change of intention. However, it did confuse the model in
the learning update, as our model takes the final observed
intention as the baseline intention for the entire episode.

7 Additional simulation study: wheel
scenario

In this section, we demonstrate the effect of different choices
of r0, which we choose in Sect. 6 to maximize the learning
effect, as well as the effect on the learning performance of
people acting less as deterministic agents. Because we can
test with a larger state and action space in simulation, we can
now also investigate how well our Learner is able to capture
“inefficient” preferences, visiting more intermediate states
than strictly necessary.Also,we can easilymove our supports
around in the simulation to demonstrate that our state space
parameterization lets our agent generalize between contexts,
similar to Avaei et al. (2023).

Both human and robot are simulated using the world
model. The human can be controlled via a user interface,
but for testing, we use pre-programmed human policies.
Two human policies πH(s, ι) were provided to the simula-
tor, characterizing the different preferences shown in Fig. 9
(elaborating Fig. 1b).

Fig. 9 Two preferences for moving the wheel between supports: 1. take
the shortest path with the least changes of direction, rotating at the last
moment when necessary; 2. rotate the wheel to horizontal at the first
opportunity and move over at comfortable carrying height

To these preferences, we can add a probability of the
human being passive.

Of the different r0 we tested, we present the results to the
following values:

r0 = −0.25 Low punishment – the robot will wait when
unsure which action to take.

r0 = −0.50 Medium punishment – the robot may try an
action if it believes it could bebetter thanwait-
ing.

The start support and intention are chosen at random at the
start of each episode. In each simulation, our Learner starts
learning from an initial human model without initial pref-
erence (Sect. 4.5). The plain ME-IRL agent uses the same
initial model, but as its own, as it does not have an explicit
separate model for the human. Q-iteration on these models
supplies the initial robot policy, which leads to non-passive
initial robot behavior. The Imitator starts with an empty list
of actions to imitate, making it start like the Passive agent.

Figure 10a-b show the mean and interquartile regions of
the robot cooperation reward for a hundred simulations per
preference, for r0 = −0.25 and r0 = −0.5 respectively.
With a deterministic partner, we see our Learner converge
within 4–8 episodes. The Imitator, after it has observed every
combination of start and goal, settles down to take one wrong
action with a 50% chance per episode: in the state where
the human shows their intention. The plain ME-IRL agent
takes somewhat longer to converge to the same result as the
Imitator in the case Preference 1 and performs slightly worse
for Preference 2,with the detour.Here,we do not consider the
possibility of going back to the start support. Since moving
between supports B and C requires one action less (the wheel
does not need to be rotated), the passive policy shows an
interquartile range corresponding to the one passive action
difference.

For lowwaiting punishment, the learned robot policy con-
verges to waiting only in the state where the human shows
their choice of intended goal. For the longer route (Prefer-
ence 2), this may take up to six episodes, for the shorter
route, three episodes already suffice. This is really fast. For
mediumwaiting punishment, the robot is less hesitant to take
an action, even if it is not very certain it is correct, as long as
it could provide a higher reward. For a higher waiting punish-
ment, the Learner converges to a policy where, in the choice
state, it randomly selects a goal, performing similarly to the
Imitator. The optimal value for r0 depends on the scenario,
as well as on how careful or daring the human prefers their
robot partner to behave.

For sufficiently low waiting punishment, the Learner out-
performs the Imitator (and thus the plain ME-IRL agent).
Depending on the objective (provide as much active support
as possible or offer the least wrong support), the Imitatormay
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Fig. 10 Learning behavior compared, mean and interquartile regions comparing the Learner with the Imitator, Passive agent, and plain ME-IRL
agent for the two different punishments for not acting a, b, and c with a human who does not act for 20% of the time (Color figure online)

approach the Learner’s performance once it has seen which
actions to imitate, if there are few enough possible partner
intentions. Still, even if its average performance over time
is very similar to that of the Imitator (in this case where the
intention uncertainty is only between two goals), the Learner
never performs worse than the baselines, always converges
faster to its optimal performance, and in most cases con-
verges to value with a considerably smaller variance in its
cooperation reward.

The Imitator and plain ME-IRL agent show this vari-
ance because they lack a good model to estimate the human
intention and the uncertainty over it. Therefore, they cannot
capture choice states in which the same action is not always
right and where it may sometimes be better to not initiate an
action. Furthermore, as is, only the Learner is able to cope in
case the human changes intention. The Learner copes natu-
rally even with the extreme case where the human changes
intention to put the object back at the start support.

The Learner is also naturally able to cope well with cases
where the human might start to rely on the robot once it has
learned the preference to steer the large part of the trajectory
and the human can follow passively. The Imitator could be
programmed not to update its action table when the human

is passive, but this would add another prior. The beauty of
the proposed learning algorithm is that it does not need any
prior and learns very fast nevertheless.

In Fig. 10, the only prior is the nominal passive policy
which we used as a working baseline, but we obtained sim-
ilar results without it, or when we initialize with a different
preference. The plain ME-IRL agent is performing consid-
erably worse than the Learner, as it does not consider the
possibility for the human to take different actions than the
robot. Furthermore, the intention estimate is very simplis-
tic. Adding a more accurate human model and a more clever
intention estimate will improve these results, but basically
that is what the presented Learner does.

Figures 11 and 12 show the human policy estimate and
the robot policy in terms of action probabilities that should
be dominant in the states along the preferred trajectory, to
each of the cases in Fig. 10, as well as the learned agent
policy of the plain ME-IRL agent. For the Learner, we see
that in every case, the human policy estimate converges to
the same almost equally fast, even when the partner is par-
tially passive. The plain ME-IRL agent’s policies converge
slower, and especially in case of the “letting go” actions to
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Fig. 11 Learned human policy estimate (top) and resulting robot policy
(bottom) of Preference 1 (straight) for the two different punishments for
not acting a, b, and c with a human who does not act for 20% of the
time. The colored lines, with interquartile bounds, correspond to the
following state-action pairs, for the intention to go to rack A (Fig. 1b):
1. s = horizontal right above a stand (B or C), a = move over to rack;
2. s = horizontal low next to rack, a = move up to final height; 3. s =

horizontal high next to rack, a = rotate; 4. s = vertical high next to
rack, a = put on rack; 5. s = on rack, a = let go of wheel; for the
intention to go to a stand (B or C): 6. s = vertical high right next to
rack, a =move over to intended stand; 7. s = vertical high above stand,
a = move down to just above stand; 8. s = vertical right above stand,
a = rotate; 9. s = horizontal right above stand, a = put on stand; 10.
s = on stand, a = let go of wheel (Color figure online)

a much lower value. Partially, the lower learning rate can be
held accountable, but a higher learning rate destabilized the
learning.

In Fig. 12, we see our model has trouble capturing one
specific human action. This explains why our learner strug-
gles more to learn the presented detour case. In that state,
the robot remains unsure about which corresponding action
to take, resulting in an extra passive action most of the times
it passes through that state. As the plain ME-IRL agent has
trouble learning the same action, we can conclude that not
being able to capture this preferences is caused by the fea-
tures making up the reward function no being able to capture
this particular preference.

8 Conclusion

This paper presents a novel method for learning a human
preference model for intention-aware cooperation from col-
laborative episodes. This enables our robot system to learn
a personalized model of its human partner for improved
collaboration. Our main contribution is a concept for learn-
ing human preferences as an explicit function of intention,
exploiting two-level Theory ofMind reasoning. The acquired
model captures preferences of how to collaboratively move
objects, aswell as how to infer the human’s intention from the
collaborative actions. We could show that our model allows
the robot to take proactive actions that match both its part-
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Fig. 12 Learned human policy estimate (top) and resulting robot policy
(bottom) of Preference 2 (detour) for the two different punishments for
not acting a, b, and c with a human who does not act for 20% of the
time. The colored lines, with interquartile bounds, correspond to the
following state-action pairs, for the intention to go to rack A (Fig. 1b):
1. s = horizontal right above a stand (B or C), a = move to comfort
height; 2. s = horizontal low next to stand, a = move over to rack; 3.
s = horizontal low next to rack, a = move up to final height; 4. s =

horizontal high next to rack, a = rotate; 5. s = vertical high next to
rack, a = put on rack; 6. s = on rack, a = let go of wheel; for the
intention to go to a stand (B or C): 7. s = vertical high right next to
rack, a = rotate; 8. s = horizontal high right next to rack, a = move
down to comfort height; 9. s = horizontal low next to rack, a = move
over to intended stand; 10. s = horizontal low next to stand, a = move
up to just above stand; 11. s = horizontal right above stand, a = put on
stand; 12. s = on stand, a = let go of wheel (Color figure online)

ner’s preferences and intention, with fewer mistakes than an
imitation learner would make, or a plain ME-IRL learner
without a human model.

A user study revealed that participants using our learning
algorithm feel significantly more understood and supported
in their preferences and intentions compared to an agent that
just imitates their actions. Furthermore, the users felt that the
task was much easier to perform with our agent, and felt it
improved their performance. The fact that this was observed
during only nine episodes, with seven different combinations
of start position and intention, demonstrates how the general-

izing capabilities of our method make our agent learn really
fast.

The proposed concepts come with some limitations and
assumptions. Firstly, we overestimate the knowledge of the
human of the robot’s policy, by giving the model access
to the actual most recent robot policy. Secondly, prefer-
ence learning and intention estimation were restricted to
prescribed motions between a small set of predefined way-
points. Future work will focus on relaxing this assumption.
Thirdly, the large set of hand-designed features used in the
Inverse Reinforcement Learning limits the scalability of the
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method. Future work should explore and integrate learning
of a minimal set of optimal intention-parameterized features,
e.g., followingBobu et al. (2022). Despite these assumptions,
our methods enable a robot system to learn the user’s prefer-
ences as well as to estimate their intentions from only a very
few interactive episodes. This allows robots to quickly learn
how to provide people with personalized proactive support,
improving human-robot interaction and physical coopera-
tion.
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