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Turbulent Kinetic Energy Evolution
in the Near Field of a Rotating-Pipe
Round Jet

R. Mullyadzhanov, S. Abdurakipov and K. Hanjalić

1 Introduction

Using Large-Eddy Simulations (LES) and Proper Orthogonal Decomposition (POD)
we study a turbulent round swirling jet issuing from an axially rotating pipe at
Reynolds number Reb = 5300 based on the bulk velocity Ub and diameter D of the
pipe flow. The Reynolds number is chosen to match the available Direct numerical
simulations (DNS) database for a pipe flow. The rotation rate is defined by the swirl
parameter N = Uw/Ub varying from 0 to 0.75 where Uw is the azimuthal velocity of
the inner wall of the pipe. The aim is to explore the physics of a swirling flow when
the inflow conditions of the problem are well defined. The broad literature on the
subject of swirling jets suggests that the incoming velocity profile and the level of
turbulence strongly affect the dynamics of the flow. Thus, the most important feature
is the way one produces the swirl (e.g. tangential swirlers, rotating honeycombs
etc.). The majority of configurations give the case-dependent velocity profiles in
experiments which are hard to reproduce in computational studies. Here we study a
jet flow issuing from a long rotating pipe. Thus, the incoming velocity profile is well
defined. The main emphasis of this work is on coherent structures depending on the
swirl intensity. The study in many ways follows the spirit of [1] who studied similar
configuration but for low Reynolds numbers (laminar inflow).
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2 Computational Details and Results

We consider a fully turbulent canonical rotating-pipe jet configuration (see Fig. 1,
[2, 3]). The flow from a long clockwise-rotating pipe with the Reynolds number
of 5300 is represented with a 1D pipe fragment. The total computational domain
represents a cylinder of 12D in diameter and 16D in length. The convective outflow is
imposed at the exit boundary, while constant pressure is imposed on the open lateral
boundary. A small co-flow of Uco = 0.04Ub is imposed at the bottom x = −1D.
The LES grid has a DNS-like resolution in the near-nozzle area and consists of
252 × 282 × 264 cells (∼ 16.7 × 106) in the radial, axial, and azimuthal directions,
respectively, with the majority clustered in shear layers and near-wall regions with
the stretching factor being less than 5 percent. The minimum axial spacing x =
0.005D is at the nozzle exit. Figure 1 also shows the mean axial and tangential pipe
velocity profiles used at the inflow. Axial velocity displays some dependence on N
and tendency to laminarization with higher N , while tangential velocity normalized
with bulk velocity and N is almost insensitive to the rotation rate in this range.

The LES is performed using the TU Delft unstructured finite-volume computa-
tional code T-FlowS. The filtered Navier-Stokes and continuity equations for incom-
pressible fluid are closed by the dynamic Smagorinsky subgrid-scale model. The
diffusion and convection terms in the momentum equations are discretised by the
second-order central-difference scheme, whereas the time-marching is performed
using a fully-implicit three-level time scheme.
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Fig. 1 Left: Half of the computational domain, cylindrical coordinate system (r, φ, x) and time-
averaged axial and tangential velocity profiles from precursor LES of a periodic fully-developed
turbulent pipe flow used as boundary conditions. The instanteneous field of a passive scalar is
visualised. Cyan lines show the walls of the rotating pipe fragment. Right: Mean axial and tangential
inflow pipe velocity profiles normalized with bulk velocity (tangential velocity is also normalized
with N )
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Fig. 2 The visualization of vortical structures near the nozzle of the jet using two isosurfaces of
the Q-criterium with Q = 0.5 (transparent violet) and Q = 1.5 (orange) for various rotation rates.
Black arrows show the clockwise rotation direction of the inner wall of the pipe

Figure 2 shows vortex structures in the near field of the jet. Vortices are visualized
by constant levels of the Q-criterium where Q = (Ωi jΩi j − Si j Si j )/2 with Ωi j and
Si j being the rotation rate and the rate-of-strain tensors, respectively. The pipe flow
supplies the streamwise streaky structures which can be traced in the range of 0 ≤
x/D ≤ 1. For N = 0 the interaction of streaky structures and the shear layer of the jet
leads to the formation of the large-scale harpin-like structures at x/D > 0.5. Harpins
are slightly tilted for low rotations N = 0.25 and can hardly be recognized for higher
swirl. For relatively high rotation rates (N = 0.75) structures existing in the pipe are
immediately destroyed by a strong azimuthal shear layer in the vicinity of the nozzle
edge.

We perform Fourier decomposition with respect to φ and POD at various axial
stations of the jet flow to get the information on the evolution of the amplitude
and spatial distribution of modes corresponding to each azimuthal wavenumber m.
We consider 32 stations starting from x/D = 0 with the last position at x/D = 10.
The spatial step close to the nozzle is Δx/D = 0.25 while in the end it is fixed
to Δx/D = 0.5. While most of low harmonics |m| ≤ 7 grow with x along all of
the distance, high m reach their saturation at x/D = 1 − 2 (not shown here). For
N = 0 the axisymmetric mode m = 0 after exponential growth at x/D < 1 displays
only some mild variations with x having the smallest λ among |m| ≤ 6. Along
0 ≤ x/D ≤ 10, there is a competition between the eigenvalues for different m. We
can say that m = 1, 2, 3 contain the most of the turbulent kinetic energy, although,
probably all low modes |m| ≤ 7 have to be taken into account to reflect the dynamics
correctly. At the same time, each high harmonic contains the more energy, the smaller
the value of m. The higher the value of N , the stronger is the separation of m = 1 − 3
and other modes.



556 R. Mullyadzhanov et al.

Further we analyze the motion from separate azimuthal modes m. It is convenient
to operate in terms of propagating helical waves appearing as normal modes of the
form ei(mφ+kx x−ωt), where kx is the streamwise wavenumber and ω is the frequency.
In [4] they found the presence of single and double helix vortices which were sup-
posed to correspond to m = 1 and 2 in the far field of a non-swirling jet. Note that
the information obtained from a time sequence of two-dimensional slices of instan-
teneous velocity contains the mixture of co-rotating and counter-rotating modes with
opposite m values (see, for example, the Conclusions in [5]). To be able to separate
these helical patterns rotating in opposite directions, one may apply Fourier trans-
form with two variable x and φ. However, the Fourier transorm requires periodic
direction along the corresponding spatial variable. While possible, for example, for
the infinite pipe flow, the Fourier transorm is not applicable to jets due to a significant
radial expansion and evolution downstream. Recently, there was a successful attempt
to statistically describe the flapping against helical motion of the jet core based on
the information about the temporal amplitudes from POD [6].

Following [6], we analyze the temporal behaviour of a corresponding POD mode.
We exclusively deal with temporal amplitudes am

q , where q is the number of a POD
mode. Since they are complex-valued, the following representation is possible:

a(t) = η(t)e2π iγ (t), (1)

where η and γ are the time sequences of real numbers. It was previously shown [6]
that particular combinations of η and γ correspond to helical and flapping motion.
The ideal helical motion represents a rotation of the jet core with constant angular
velocity at some distance from the axis. Thus, one expects η to be constant and γ

linearly grow in time. In terms of two azimuthal modes with opposite m values it
means that one is present while the other cancels out. For the flapping motion both
modes are present with the same rotation speed but opposite directions. This results
in a more compicated behaviour of η and γ .

Figure 3 shows the behaviour of γ during 150 time units for first four q, m and
N = 0; 0.5. A striking feature of γ (t) is that it contains very long time intervals where
it varies linearly. As pointed out above, it means that the corresponding spatial mode
rotates around the jet core with some precession frequency. Dashed lines demonstrate
the slope for some characteristic regions. This slope is in fact the non-dimensional
angular velocity Ω . For example, three typical regions are shown in Fig. 3 (left) for
m = 1: Ω ≈ −0.87;−0.21; 0.076. For Ω ≈ −0.21 and γ = Ωt the corresponding
POD mode turns around in about 5 time units according to Eq. (1). These curves
of γ (t) for m = 1 demonstrate some intermittency showing changes of rotation
direction within short time intervals (say, t < 25 with the typical value of t = 5 − 10),
while in a long run the average rotation is non-zero. For higher m the behaviour is
more monotonic, with the maximum absolute values Ω ≈ −0.167 for m = 2 and
Ω ≈ 0.08 for m = 3. Similar trends can be found for N = 0.5.
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Fig. 3 The time history of the phase γ for different m and q (POD modes) for x/D = 6

3 Conclusions

We performed LES and POD analysis to get an insight into the coherent motion
of the near nozzle area in a canonical rotating-pipe jet at Re = 5300 and N =
0; 0.25; 0.5; 0.75. We may conclude the following:

• The near-wall streaky structures identified by POD in a pipe flow can be recognised
only along the first diameter of the pipe (x/D < 1) for low rotations N ≤ 0.5. The
azimuthal shear layer for a higher swirl (N = 0.75) immediately destroys pipe
structures. Harpin-like vortices observed for a non-swirling jet as the interation of
streaks and the shear layer are tilted at low rotation rates (N = 0.25) and cannot
be recognized for higher swirl numbers.

• A set of low harmonics with the azimuthal numbers |m| ≤ 7 are needed to describe
the dynamics of the jet; the kinetic energy of high wavenumbers does not grow
downstream. The kinetic energy for separate m grows linearly dowstream for first
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x = 5 − 8D. The higher the rotation rate, the more obvious is the separation of
energy between m = 1 − 3 modes and others.

• The phase of complex-valued POD temporal amplitudes a(t) informs on the rota-
tion dynamics of the corresponding mode around the axis of the jet. Low wavenum-
bers show two types of dynamics: “fast” and “slow” rotation. They differ in char-
acteristic time scales of the process with t < 25 (t = 5 − 10) for the former and
with up to t = 150 (or more) for the latter.

The described findings imply some important conclusions. As opposed to the
periodic pipe flow where Fourier modes in axial and tangential directions are imposed
by symmetries and represent basis functions in the form of propagating helical waves,
the jet flow is inhomogeneous in axial direction restricting that class of functions.
However, it is still possible to show that propagating helices are, indeed, the common
form of POD modes for low azimuthal wavenumbers. Finally, it is interesting that the
swirl does not ruin the helical structure of the jet. Probably it is due to the fast decay
of the azimuthal velocity downstream. Indeed, it is known that the decay rate of the
axial velocity in the far field of the jet is mainly governed by the axial momentum
conservation law leading to a x−1 dependence. At the same time the conservation
of angular momentum suggests the x−2 decay rate for azimuthal velocity. The same
dependence is valid in the far field for the deviations of the axial velocity from the
x−1 law if the jet nozzle is non-circular (see [7]). Thus, the conclusions made above
on the dynamical structure may cover a wide range of free swirling non-circular
turbulent jets which is to prove in following studies.
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