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Resumo

Veículos Aéreos Não Tripulados (VANTs) apresentam uma elevada taxa de desenvolvimento tec-

nológico actualmente. Estes veículos podem ser utilizados para executar procedimentos de inspecção

perigosos e caros em estruturas de difícil acesso em vez de operadores humanos, mas ainda necessi-

tam de uma monitorização próxima. Esta tese aborda o problema de utilizar exclusivamente sensores

a bordo de VANTs para criar ferramentas de determinação de atitude e estratégias de seguimento de

trajectória. Primeiramente, este trabalho discute a percepção do mundo exterior pelo veículo e a for-

mulação de uma descrição matemática contendo informações sobre a sua posição e atitude relativos

à estrutura. Para este efeito, uma geometria é definida e o melhor ajuste aos dados fornecidos por um

sensor LiDAR é seleccionado, após um processo robusto de filtragem de pontos. Com esta informação,

são propostos vários métodos para obter a atitude. Estes incluem um estimador de guinada rápido e

completo, baseado em continuidade, e uma solução em forma fechada para o problema de Wahba e

um filtro não linear para a estimação de atitude completa, ambos no grupo das matrizes de rotação. Foi

dedicado um esforço significativo à análise de todo o procedimento através de simulação, da criação

dos dados laser à aplicação dos métodos, para fins de validação. Resultados simulados e experimen-

tais são fornecidos para a avaliação de desempenho dos algoritmos de percepção. Com base nesses

resultados, uma estratégia de controlo não linear é projectada com o objectivo de proporcionar um

controlo de trajectória preciso relativo à estrutura, com estabilidade assimptótica garantida.

Palavras-chave: VANTs, sensores LiDAR, ajuste geométrico, determinação de atitude, es-

tabilidade de Lyapunov, controlo de trajectória.

vii



viii



Abstract

Unmanned Aerial Vehicles (UAVs) present a high technological development rate nowadays. These

vehicles can be used to perform dangerous and costly inspection procedures in structures with difficult

access instead of human operators, but they still need a close monitoring. This thesis addresses the

problem of using exclusively sensors on board UAVs to derive attitude determination tools and trajectory

tracking strategies. Firstly, this work discusses the perception of the outside world by the vehicle and

the formulation of a mathematical description containing information regarding its position and attitude

relative to the structure. For this purpose, a geometry is set and the best fit to the data provided by a

LiDAR sensor is selected, after a robust outlier filtering process. With this information, several methods

for obtaining the attitude are proposed. These include a fast and comprehensive yaw estimator, based

on continuity, and a closed-form solution for the Wahba’s problem and a nonlinear filter for a full attitude

estimation, both on the group of rotation matrices. A significant effort was devoted to the analysis

of the entire procedure through simulation, from the creation of the LiDAR data to the application of

the methods, for validation purposes. Both simulated and experimental results are provided for the

performance evaluation of the perception algorithms. Building on these results, a nonlinear control

strategy is designed with the objective of providing an accurate trajectory tracking control relative to the

structure, with guaranteed asymptotic stability.

Keywords: UAVs, LiDAR sensor, geometry fitting, attitude determination, Lyapunov stability,

trajectory tracking.
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Chapter 1

Introduction

An Unmanned Aerial Vehicle (UAV), also known as a drone, is an aircraft without a human pilot

aboard. There are two types of UAVs, the autonomous and the remotely piloted aircrafts. The former is

characterized by an autonomous flight control through on-board computers without human interference,

currently not suited for regulation due to legal and liability issues. On the other hand, the latter depends

on a human pilot, either on ground or inside another vehicle, and it is subject to civil regulation under the

International Civil Aviation Organization (ICAO) and the relevant national aviation authority. [1]

Besides the aircraft itself, there are other important elements related with the operation of UAVs that

together form an Unmanned Aircraft System (UAS). Those include the associated support equipment,

control station, data links, telemetry, communications, and navigation equipment. A UAS is required in

order to have safe and reliable operations with these vehicles. [2]

UAVs were initially developed with military purposes, namely for situations where manned flight was

considered too risky or difficult [3, 4]. During these high precision tasks, they required a set of sensors

that would allow them to maneuver in the world as accurately as possible. As with other technology ad-

vancements, the world soon realized that these small vehicles, equipped with a great variety of sensors,

could be used in tasks other than warfare.

Meanwhile, numerous civil aviation uses have been developed, including surveying of crops for agri-

culture, footage capturing for film making, search and rescue operations, power line and pipeline inspec-

tions, wildlife counting, and many others. These vehicles have been becoming increasingly meaningful

in today’s society, by making several previously dangerous and costly tasks much more effective.

Regarding the sensors on board, they need to be able to create a digital awareness of the vehicle’s

movement in the world. The world as we know it is a three Dimensional (3D) space, where any move-

ment of a rigid body can be decomposed into a combination of translations and rotations along three

different axes. In an aircraft, the origin is usually at the vehicle’s center of mass and a rotation about its

longitudinal, lateral, and vertical axes is called roll, pitch, and yaw respectively. Usually, UAVs contain

an Inertial Measurement Unit (IMU) and a Global Positioning System (GPS), which are used to estimate

the information regarding the acceleration, velocity and position of the vehicle.

1



After covering the current status of this industry, Section 1.1 goes through some aspects concerning

the improvement of the systems that were described and are currently in place. Having a clear idea about

the relevance of their components and how they can be combined to generate enhanced alternatives,

an application and the motivations behind that choice are discussed in Section 1.2. Lastly, Sections 1.3

to 1.5 establish the main goals for the work developed from hereon and describe the contributions and

general structure of the thesis respectively.

1.1 Alternative Navigation Solutions

A Light Detection And Ranging (LiDAR) system is a sensor that measures distance by illuminating

a target with a laser and analyzing the reflected light. It can be seen as a combination of laser-focused

imaging with the ability of the Radio Detection And Ranging (RADAR) system to calculate a distance by

measuring the time-of-flight of a signal [5]. This sensor can target a wide range of materials, including

non-metallic objects, rocks, rain, chemical compounds, aerosols, clouds, and even single molecules [6].

Redundancy is the duplication of critical components or functions of a system, with the intention of

increasing reliability of the system, usually in the form of a backup or fail-safe [7]. During navigation

tasks, there is always the possibility of sensor failure due to unforeseen events. Moreover, given that the

accuracy of a sensor is never 100%, having different mechanisms to obtain a certain quantity may prove

itself a valuable feature in a control system, as it allows for data fusion in situations suspected to cause

ambiguous readings. Having an on-board GPS is one of the main reasons these vehicles are able to fly

autonomously, a feature that can become compromised in the vicinity of large infrastructures or under

bridges. This happens since the GPS signal can be easily occluded by these structures. The LiDAR can

be an interesting alternative, from the redundancy point of view, that may be used to overcome signal

propagation issues and even calculate relevant data in a more accurate way.

UAVs are rapidly evolving to become highly capable sensing platforms, able to navigate and track

trajectories with great accuracy. While the motion control of aerial vehicles in free flight is reaching its

maturity, new challenges that involve interaction with the environment are being embraced. Using local

sensors, such as IMUs, some quantities required for control tasks can be obtained depending entirely

on the vehicle. As controlling the full motion of an aerial vehicle is not usually viable with only an IMU,

this thesis aims to take that interaction with the environment one step further and obtain additional

measurements, from what the vehicle is perceiving of the world.

1.2 Innovative Structure Inspections

The technological evolution has led to an increase in the demand for more and larger wind turbines,

cellphone towers, and power lines, to name a few. All these large buildings and facilities are critical

infrastructures that require maintenance through structural inspections and health monitoring, which in

general requires complex and expensive routine inspections and monitoring procedures.
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Those processes can become inefficient in situations where the access is difficult, time-consuming,

and often dangerous. Some of these structures are hundreds of feet tall, making it difficult to get human

operators at the scene to conduct an inspection. Large structures also present a significant challenge,

since the process is extremely labor-intensive, due to the amount of area to cover. Structurally unsound

towers, buildings, or bridges can also be extremely hazardous. Information management may also be

a challenge since the inspection data may not have the proper detail, i.e. a wrong angle used when an

image was taken, and they maybe scattered into hundreds of files, which is difficult to manage. [8]

Accurate health monitoring and diagnosis of these infrastructures will increase the efficiency of main-

tenance and repair plans, with inherent benefits in terms of cost reduction and damage minimization in

case of disaster. Robotic surveying tools can be used to address this issue, namely UAVs equipped

with state-of-the-art sensors. Small vehicles such as these constitute a tailor-made solution, since they

should be able to perform high accuracy three-dimensional surveys of structures, with the objective of

producing accurate data sets, in real time, with the required spatial and temporal resolutions and thereby

providing quantitative information, vital for a well-founded diagnosis. Therefore, UAVs can be used to

perform structural inspections by looking for cracks, structural defects, and other visual information from

a bird’s eye, taking the skill out of flying the vehicle and allowing the inspector to focus on interpreting

the data.

The UAV senses its environment and maneuvers around the structure, while the operator determines

what to inspect and uses his or her knowledge to determine the results of the inspection. It can gather

data objectively from the same locations and precisely quantify it, meaning there will be repeatable,

reliable information. The inspection results are still interpreted by a qualified technician, but the time

invested in rigging and climbing the structure is eliminated from the routine inspection. The inspection

can be done faster, which means that more structures can be processed, and overall safety and reliability

can be increased. [8]

As critical structures increase in number and size, there must be a corresponding increase in struc-

tural assessment. Timely and accurate information can be costly and at times dangerous, due to the

complexity of accessing large structures. To increase safety and efficiency in structure inspections, by

using UAVs, is an important step forward. Moreover, the use of a LiDAR may present an interesting en-

hancement to structural inspections, since it provides a way to maintain a lock on the target. This relative

positioning method has the potential to be more effective and subject to less drift and error accumulation

over time than traditional absolute positioning systems, as it depends directly on LiDAR scans acquired

at a high frequency.

The basis for this thesis can be found in [9], where a LiDAR sensor was used to provide a relative

positioning solution to a structure and then to build the appropriated controllers. The idea of the current

proposal is to extend that relative description to the vehicle’s attitude, to allow a structure dependent

trajectory. Furthermore, the control techniques investigated in the aforementioned work rely on the local

linearization of a nonlinear system, used afterwards within a gain scheduling strategy. The present work

intends to compute a nonlinear controller, for the original system, that ensures asymptotic stability with

a large region of attraction.
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1.3 Objectives

There are three main goals to this work, the first of which is to develop laser-based methods for

landmark detection, creating the necessary algorithms and testing several alternatives, in order to obtain

a framework for perceiving the environment. The following objective is to estimate the attitude of the

vehicle, striving for speed of execution, ease of implementation and stability guarantees. The final aim is

to design the motion control of the vehicle in dynamic environments, such as the inspection of buildings

and industrial facilities. The idea is to build upon the previous achievements and provide a stability proof,

in order to enable the execution of maneuvers that involve close interaction with the environment and

require a reactive and compliant behavior.

1.4 Contributions

Several contributions can be derived from the objectives set in the previous section. Regarding the

landmark detection, the framework for processing data from a laser sensor is the first, which besides

being invaluable for this application it can be simply adjusted to work with different goals. It should

be noted that these tools will allow for a 3D attitude to be retrieved from a sensor measuring in a 2D

space. When it comes to the attitude estimation, the most relevant contribution is a nonlinear filter, that

computes the rotation matrix describing the motion of a vehicle based on the fusion of measurements

from several local sensors, including a LiDAR and separate components from an IMU. Finally, the motion

control design yields a trajectory tracking controller solely based on local sensory information, therefore

providing a relative positioning solution.

1.5 Outline

Concerning the organization of the thesis, firstly Chapter 2 discusses the detection part of the ap-

proach, more specifically how the vehicle perceives the world and translates it to an interpretation intu-

itive and accurate enough to be manipulated. For this purpose, the LiDAR sensor used for the devel-

opment of this work was investigated, to acquire a sense about its features and draw some conclusions

regarding its suitability for this application. After establishing the characteristics of the source infor-

mation, the pier detection consists of building a strategy based on the Split & Merge algorithm for the

extraction of landmark features. This procedure is paired with a robust outlier identification and removal

algorithm that intends to improve the performance of the detection stage. Then, a least square estima-

tion is compared with a reduced space Hough transform algorithm in the process of fitting the data to

build a description of the landmarks.

The following step is to actually process the data and derive several methods to obtain an attitude de-

scription consistent with the movement of the vehicle in Chapter 3, so that it can be used for establishing

control strategies later on. Among them, there is a history-based yaw tracker, a solution to the Wahba’s

problem on the group of rotation matrices, and a nonlinear observer with filtering capabilities and a proof
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of stability. Afterwards, Chapter 4 goes through an artificial simulated environment created especially for

testing these methods and visualize the behavior of the vehicle in a wide range of scenarios that may

be encountered. The following logical step towards validation is a proper evaluation of the previously

developed work, in Chapter 5, both in simulation and the real world.

Next, Chapter 6 discusses the control strategies developed and their implementation in both simu-

lation and the real world. The focus is on obtaining closed-loop solutions for the problem of trajectory

stabilization, with respect to a fixed target, by determining an error variable that adequately represents

the vehicle’s position and orientation error relative to it, in the inertial space. The concepts from Lya-

punov control theory are applied, to ensure the asymptotic stability of the derived control system. In the

end, the conclusions obtained from the results presented along the thesis are drawn in Chapter 7.
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Chapter 2

Environment Perception

In order to relate one object and its features with another in the world, there must must a frame of ref-

erence in which both can be represented. These frames can be chosen arbitrarily, however Section 2.1

describes those deemed necessary to understand and manipulate the elements at hand in this thesis,

such as the vehicle and the objects around it. After having the tools to make those connections, the

sensor with which the world is going to be observed needs to be analyzed and its accuracy established,

so that the precision limits of the developed methods can be known and the expectations towards its

performance may be appropriately scaled. Section 2.2 goes through the intuition behind the quality of

LiDAR measurements in certain situations and how the existing work on that field corroborates or not

those notions, since determining to what extent can the LiDAR data be relied upon is a very important

step.

The data points coming from the LiDAR measurements need to be converted into a description that

can be used to compute an attitude. Therefore, some assumptions have to be made regarding the

geometry of the structures in Section 2.3. With every sensor, there are measurement errors that cause

the data set to have outliers, which will then affect the processing stage and cause a deviation in the

results. Section 2.4 approaches this highly unpredictable and yet truly important subject and describes

the search for the best solution possible. Knowing the reliability of the sensor, the geometry of the

chosen structure, and which data points are valid, the final step in reconstructing the structure is to

estimate its identifying marks. This topic and two options are discussed in Section 2.5.

At last, all the necessary information before the data processing is available and must be unified.

Section 2.6 goes through this final hurdle in the task of providing a full description of what the sensor is

perceiving at a given moment, including the characteristic marks of the structure’s geometry and a piece

of information that will be useful for control purposes, the location of its center.

2.1 Reference Frames

There are several important reference frames during the LiDAR data processing, the first being the

Inertial Frame {I}, which for simplicity is considered to be the local tangent plane with the North East
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Down (NED) convention. There is also the Body Frame {B}, with the origin at the vehicle’s center of

mass, theX axis pointing forward along the longitudinal axis of the vehicle, the Z axis pointing downward

along its vertical, and the Y axis set to make this frame orthonormal. These two reference frames are

shown in Figure 2.1. Finally, there is the intermediate Horizontal Frame {H}, which can be interpreted

as a projection of {B} on the XY plane of {I}.

Ix

Iy

Iz

IpB

Bx

By

Bz

Figure 2.1: Representation of {I} and {B}.

The two main sensors used in this work, a LiDAR and an IMU, are mounted on board the vehicle

with an offset in the Z axis of roughly −10 cm and −2 cm respectively. For simplicity purposes, these

offsets and their consequent translation resulting from rotating the vehicle around its center of mass

are considered to be negligible. This means the LiDAR’s reference frame will be coincident with {B}.

However, besides sharing the origin, the axes of the IMU can have a different orientation when compared

with {B}, so a Sensor Frame {S} was defined to establish their independence.

2.2 LiDAR Reliability

The sensor’s precision, and consequently the quality of the measurements, is a very sensitive matter,

since it is one of the most relevant limiting factors in what concerns the accuracy of the data processing

and the following results.

In [10], the accuracy of the data points from a two Dimensional (2D) Hokuyo UTM-30LX LiDAR, a

sensor quite popular in small vehicles, was analysed while detecting moving cylindrical targets. This

sensor, whose scanning plane is illustrated in Figure 2.2, has an angle opening of 270◦, with a blind

cone of 90◦ around its 6 o’clock, an angular resolution of 0.25◦, a scanning frequency of 40 Hz, and a

range of 30 m, weighting roughly 200 g. The described approach was based on the detection of markers

belonging to a circular section from the data points provided by the LiDAR, after undergoing an outlier

avoidance method and a least-squares circular fitting.

The experiments carried out in that paper take into account the proximity to the target and its surface’s

characteristics. The former is rather self explanatory, while the latter is related with the curvature of the

object where the beams hit. Intuitively, the closer the target, the better the results. However, one of

the findings in the paper is that the error reaches its maximum value for distances between 0 and 2000

mm from the target. Beyond that distance, the error is relatively small and approximately constant.
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Figure 2.2: LiDAR scanning. [10]

Another interesting observation is that the LiDAR has its highest error in the 90◦ cone around its 12

o’clock. This error is maximum at the center and decreases in an approximately linear trend until the

end of the cone, after which that value is significantly lower and constant. As to ensure that the methods

developed later in this work are reliable enough, even in the most adverse conditions, the necessary

tests were performed preferably within the 2000 mm range and inside the 90◦ frontal cone, where the

highest errors are more prone to arise. Regarding the curvature of the target, a round object with a

small diameter has a lower probability to be properly detected by the LiDAR, since the abrupt curvature

in a smaller space can be incompatible with the LiDAR’s resolution. The conversion from an analog to a

digital signal implies the association between a continuous and a discrete domain, by rounding a given

continuous value to its closest discrete approximation. When the gap between two consecutive steps

of the discrete domain is large, i.e. the sampling frequency is not high enough, sudden jumps in the

data can be the result of quantization errors, which are one possible source of measurement noise in

these sensors. The paper verifies that a wider diameter leads, in fact, to better results and therefore

smaller errors. Additionally, the paper proposes a cooling method using an aluminum plate to prevent

the LiDAR from overheating and causing the measurements to deteriorate with time. That suggestion

was incorporated into the present work after the initial testing and the results in Chapter 5 were obtained

with it implemented.

A second LiDAR was briefly used during the testing stage, in order to investigate the effect of a

different sensor in the structure detection. The chosen equipment was a Sick LMS100-10000, which

has the same angle opening and angular resolution but a lower scanning frequency of 25 Hz and range

of 20 m, weighting around 5.5 times more than the previous sensor. Comparing the output of both

LiDARs, naturally there is not a significant difference in the data points gathered given the similarity in the

specifications, which verifies their functioning and validates the data. Besides that, the lower sampling

frequency definitely caused a deterioration in the results, specially with the methods that rely on the

history behind the current time step, because this way there is a higher interval between consecutive

measurements, in which more changes can occur.
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2.3 Detection Strategies

Detecting a structure and obtaining the pertinent information, needed to determine the vehicle’s

attitude, greatly depends on the knowledge of its geometry. Considering the most common types of

infrastructures, first a cylindrical and then a cuboid geometry were analyzed, where the former was

discovered to have some limitations. These two different options on how to process the collected data

are approached in Sections 2.3.1 and 2.3.2 respectively, with its pros and cons duly weighted.

It should be noted that a raw LiDAR scan contains all the data points within the angle opening of the

sensor, however the research team at the Institute for Systems and Robotics (ISR), in Instituto Superior

Técnico (IST), already has routines in place to perform the basic clustering of the set and yield the

closest cluster at each step, which is assumed to be the starting point of the following work.

2.3.1 Cylindrical Structures

Taking into account that a vast extension of structures, throughout the world, has piers designed

with a constant circular section along its height, the cylinder comes as a natural choice concerning

the geometry of possible landmarks to inspect. Its geometrical properties are also appealing from a

modeling perspective.

2.3.1.1 Geometrical Recognition

While analyzing a cylindrical structure, the LiDAR gathers a set of measurements belonging to either

a circle or an ellipse, depending on the current attitude. In level flight, the intersection of the LiDAR

scanning plane with the pier is a circle, whereas with a pitch or a roll angle that shape will shift to an

ellipse.

With the data points from the LiDAR scan, the parameters that describe the best fitting ellipse can be

acquired through its general quadratic equation. In [11], a numerically stable non-iterative algorithm to fit

ellipses to data points was developed, inspired and built upon the work presented in [12]. This approach

avoids the numerical instability of its predecessor and it is based on a least squares minimization, having

been validated with data containing noise.

The idea behind attitude determination is that a specific movement, in roll or pitch, has an indepen-

dent impact on the length of the ellipse’s major or minor semi-axis. According to the magnitude of that

movement, these axes can switch, but they are always perpendicular to each other, with one of them

being parallel to the vector uniting the center of the vehicle’s reference frame and the center of the pier.

It can be seen that a movement in roll will have a direct effect on the semi-axis along the perpendicular

to that vector and one in pitch on the semi-axis along the parallel.

2.3.1.2 LiDAR Experiment #1

The first experiment was conducted using a cylindrical PVC tube, with a 0.235 m diameter, placed

about 0.8 m from a quadcopter. It consisted of maintaining the vehicle in a fixed position, regarding
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the tube, and manually performing three different movements, with the rotors off, to evaluate the data

resulting from them. The first two were decoupled movements in roll and pitch, along the positive

direction of the corresponding axes, whereas the last was the combination of both.

In the beginning of the experiment, a sample corresponding to a leveled state was retrieved and

shown in Figure 2.3. After an initial observation, it can be concluded that the LiDAR detects slightly

less than 180◦ of the pier most of the times. Additionally, the LiDAR’s resolution and inherent noise,

together with the fact that the data points at the boundaries of the set suffer from reflections and have

an unpredictable erroneous location, cause the fit of the ellipse through the least-squares algorithm not

to be consistent with reality, given the absence of maneuvers. On the other hand, the circle obtained

by forcing a circle fit with the available data points matches very closely the actual section of the pier,

corroborating the results from the paper mentioned in Section 2.2. There is only one ellipse that best

fits a given data set even with only almost 180◦, so these however small variations in the data set have

a large impact on the fitted ellipse, consequently greatly affecting the lengths of the semi-axes. Besides

those lengths, also the orientation of the ellipse regarding the longitudinal axis becomes tilted, making

this semi-axis not to be aligned with the vector linking the quadcopter and the pier, which was the basis

for the attitude determination.

The sample in Figure 2.3 was chosen to illustrate the most common cases, although there were

situations where the fit was much more unrealistic. The scarcity of realistic results indicates that this

approach is neither accurate nor stable enough.
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Figure 2.3: Cylindrical pier detection during the first experiment.
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2.3.2 Cuboid Structures

Considering piers with a rectangular section is a good alternative for LiDAR-based perception and

control, given the wide range of landmarks in which the curvature does not play a role in the fitted shape,

as with cylindrical structures.

2.3.2.1 Geometrical Recognition

Facing these structures, the LiDAR will hit one or two faces of the pier, depending on its relative pose,

and the intersection of this sensor’s plane with these faces will result in two straight lines, which from

hereon will be called edges. Similarly to the alternative discussed in Section 2.3.1, when the vehicle

performs a movement, in roll or pitch, there is an impact on both the length of the edges and the angle

between them. Once again, that effect can be interpreted as the contribution of these two components,

but this time not with such a clear separation as with an elliptical section. The first stage is related with

identifying how many edges the vehicle is encountering at each moment. For that purpose, a strategy

based on the Split & Merge algorithm, which can be found in [13] and was originally proposed in [14],

was developed and then presented in Algorithm 1.

Algorithm 1 Split Edges

1: procedure SPLITEDGES(M , ecorner, nedge)
2: γ ← tan−1

(
M(end,1)−M(1,1)
M(1,2)−M(end,2)

)
3: n← [cos(γ), sin(γ)]

T

4: c← −M(1, :) · n
5: e←M · n+ c
6: emax ← max(‖e‖)
7: imax ← max

i
(‖e‖)

8: M1 ←M(1 : imax)
9: M2 ←M(imax : end)

10: if emax < 0.2 · ecorner then
11: M1 ←M
12: M2 ← [0, 0]
13: else
14: if length(M1) < nedge then
15: M1 ←M2

16: M2 ← [0, 0]
17: else if length(M2) < nedge then
18: M2 ← [0, 0]
19: end if
20: end if
21: end procedure

This algorithm takes a set of measurements in the XY plane, denoted byM , a distance ecorner, and

a minimum number of points for an edge nedge. The principle is to determine if the LiDAR is detecting

one or two edges, in order to divide the set accordingly and isolate each edge. Ideally, the boundary

point at each end of the LiDAR scan corresponds to a corner of the section. A straight line in R2 can be

defined as
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px cos(γ) + py sin(γ) = ρ (2.1)

where ρ is the perpendicular range from the line to the origin, γ is the angle to the positive X axis, and

any point within is of the form p =
[
px py

]T
. Using this representation, the polar parameters of the line

that contains the two boundary points can be found. In Cartesian coordinates, the perpendicular offset

from a point to a line is given by

pTn+ c = e, with ‖n‖ = 1 (2.2)

where n =
[
nx ny

]T
is the unit vector normal to the line, c is the perpendicular offset from the line to

the origin, and the error e is the actual offset, being null for points belonging to it. Expanding the vectorial

notation of Equation (2.2) into X and Y coordinates, it is simple to obtain the Cartesian parameters from

the polar ones. In the algorithm used in this work, the error e from every point on the data set to that

line can then be calculated by direct substitution. The point furthest away will be the corner candidate,

which upon confirmation can be used to split the data set into two smaller ones. This verification can be

performed using the distance between a corner and the diagonal uniting the closest two other corners

in a rectangle, defined as

ecorner =
L1L2√
L2

1 + L2
2

(2.3)

where Li with i = 1, 2 are the dimensions of the pier, known beforehand. In order to distinguish whether

the LiDAR is witnessing one or two edges of the pier, 20% of ecorner was established as the threshold,

yielding the best outcomes upon the verification of a number of cases from several experiments, one of

which being described in Section 2.3.2.2.

When the vehicle is facing one edge, the potential corner can be anywhere in the data set and its

error emax can still not be negligible as it would be expected, due to quantization errors. If that quantity

stays below the threshold, there is most likely only one edge and both subsets have to be merged into

the first whereas the second is left empty. In the remaining situations, the assumption is that there are

two edges, but this can also happen due to the presence of boundary points resulting from reflections or

measurement errors during the transition between one and two edges. Therefore, there is an additional

condition regarding a required minimum number of 15 points in each subset, to ensure a sufficiently

accurate edge. A subset is discarded when the amount of data points is not enough, otherwise both are

kept and there are indeed two edges.

2.3.2.2 LiDAR Experiment #2

A second experiment using the LiDAR consisted of placing a cardboard box, with a 0.177 × 0.177 m

square section, around 0.8 m from the quadcopter. The vehicle was moved manually, with the rotors off,

in an approximately 90◦ counterclockwise arc around the box, while attempting to maintain null roll and

pitch. The quadcopter started from a situation where both edges of the box made approximately a 45◦

angle to the longitudinal axis of the quadcopter, so the vehicle faced its diagonal at the beginning.
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Figure 2.4 presents the output of the pier detection mechanism, in two different time instants of

this experiment. The former is near the beginning, with both edges clearly visible, whereas the latter

corresponds to the transition stage, where the algorithm helps deciding how many edges there are. For

the sake of understanding what Algorithm 1 does, after selecting a potential corner and confirming its
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Figure 2.4: Cuboid pier detection during the second experiment.
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legitimacy in both cases, the data points at the far left of Figure 2.4b were rejected for lacking in quantity.

Continuing the movement around the pier, there would come a moment when the potential corner would

not be accepted anymore, due to its proximity to the line uniting the two closest corners.

It is possible to confirm the measurement errors in both situations of Figure 2.4, evidenced by the

resemblance of the data points to stairs at some points. In general, the line fits obtained are a really

close match with what the data suggests to be the edges of the box. Nevertheless, during the transition

stage and specially when facing only one edge, it is always expected to have larger errors than in the

remaining situations, because in these cases the occurrence of reflections and other false readings is

rather common and difficult to identify as outliers.

2.4 Outlier Identification and Removal

In the majority of locations around the pier, the detection strategy will consistently yield either one or

two well defined edges. However, reflections of the beams and noise in the measurements generates

outliers in the boundaries of the data set. With that in mind, Algorithm 2 was developed and applied

before the edge separation, improving the effectiveness of the previous task. This algorithm is meant to

filter the outliers from the beginning and end of the data set M , based on the relative distance between

data points and two separate criteria fpoint and fcluster. The initial task is to determine the distance

between one data point and the next, for the entire data set. The LiDAR will not always be at the same

distance to the structure, as it should in order to allow flexibility and robustness in the face of change,

therefore the magnitude of the point-to-point distance is bound to variate with the distance from the

target. Additionally, running the entire data set every time step to check for outliers can become more

computationally expensive than it needs to be. Relying on the observation of some tests, an estimation

regarding the number of outliers present in the data set at a given moment was made considering its

total size, yielding a linear empirical rule noutliers = moutliers nset1/2
+ boutliers, where moutliers = 0.1 is

the slope, nset1/2
is half of the number of points in the data set, and boutliers = 3 is the y-intercept.

At first sight, it might seem that because the number of points in an edge highly depends on the

angle with which it is being faced by the LiDAR, the best idea would be to detect outliers in each one

separately. However, the outliers do not appear with a well defined pattern, in fact it is extremely random

and at times very difficult to actually distinguish between a valid and an invalid data point. In other

words, the point density in each edge could not be significantly related with the distance between what

is considered as a point belonging to a real edge and an outlier. This means that there was no noticeable

difference in the distance of an outlier to the rest of the data set, when there was either a high or a low

point density. Moreover, proceeding with this approach would defeat the entire purpose of suppressing

the outliers before splitting the edges, which is one of the steps where the accuracy of the boundary

points matters the most, in this case to decide how many edges there actually are.

Thus, the whole data set should be dealt with simultaneously. But this invalidates any attempt to

do so, using the usual distribution tools to detect the centroid of a piece of data such as the mean

and standard deviation or even the Median Absolute Deviation (MAD), as suggested in [15], due to
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Algorithm 2 Trim Edges
1: procedure TRIMEDGES(M , fpoint, fcluster)
2: for i = 1 : length(M)− 1 do
3: d(i) =

√
(XY (i+ 1, 1)−M(i, 1))2 + (M(i+ 1, 2)−M(i, 2))2

4: end for
5: noutliers = moutliers length(M)/2 + boutliers
6: dmin = sort(d)
7: dpointmax = fpoint dmin(1 : noutliers)
8: dclustermax = fcluster dpointmax

9: i = 1
10: while i ≤ noutliers do
11: if d(i) > dclustermax then
12: d(1 : i) = []
13: M(1 : i, :) = []
14: i = 0
15: end if
16: i = i+ 1
17: end while
18: for i = 1 : noutliers do
19: if d(i) > dpointmax then
20: M(1, :) = []
21: else
22: break
23: end if
24: end for
25: i = 1
26: while i ≤ noutliers do
27: if d(end− i+ 1) > dclustermax then
28: d(end− i+ 1 : end) = []
29: M(end− i+ 1 : end, :) = []
30: i = 0
31: end if
32: i = i+ 1
33: end while
34: for i = 1 : noutliers do
35: if d(end− i+ 1) > dpointmax then
36: M(end, :) = []
37: else
38: break
39: end if
40: end for
41: end procedure

the difference in point density with the motion around the structure. Instead, a way to account for the

resolution of the LiDAR, depending on the distance from the target, is to find the minimum distance

between points, in the entire data set. But because only one value can easily be an exception, the

noutliers smallest distances were averaged out to provide a more accurate measure of this indicator.

It is worth mentioning that these outliers can appear either as isolated points, which is more common,

or small clusters of points, hence the existence of two different criteria. This leads to two different stages

of trimming, for both the beginning and the end of the data set, the first for small clusters and the

second for the remaining isolated points. The factors were set as fpoint = 5 and fcluster = 6, based on

experimental verification of a number of cases, where the latter is actually cumulative.

The final step is to go through the data set, from the outside to the inside at both ends, and remove

the points or groups of points whose distance to the next exceeds the respective thresholds. Each of the

two sequences stops as soon as there is one point that respects the threshold in the current direction,
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which in addition to the limitation on the number of outliers, would prevent wrongful removals deeper in

the middle of the data set, due to quantization errors or other unforeseen factors.

In order to provide an insight into the decision processes involved in this task, several examples of

LiDAR scans are given in Figures 2.5 and 2.6, for some of the most uncommon yet distinctive cases that

were found during the course of a comprehensive testing period.

Starting with a rectangular sectioned pier, it is interesting to notice the relationship between point

density and dimension for each edge in Figure 2.5a, which makes it difficult to treat both of them sepa-

rately based on relative distances, despite that being an intuitive tool available in this task. While moving

around the pier, Figure 2.5b shows the captured data points, when one of the edges is becoming oc-

cluded, as well as their unbalanced increase in relative distance. In situations similar to Figure 2.5c, the

appearance of such outliers is very frequent and can lead to a wrongful separation of the data set by

interfering with the threshold based on ecorner. Together with the previous case, the event depicted at

Figure 2.5d is one of the most severe cases if left untreated, since there is a cluster of three points at

the right and another point even further, none of them corresponding to actual intersections of the laser

beams with the pier. These are most likely the result of reflections, whereas the remaining three points

in that side are the only ones possibly real, but given their scarcity they would not yield an accurate fix

on the edge and should not be considered. Additionally, at the time of this test there was no specialized

filter for clusters, however the points within that batch had a sufficiently large relative distance to be

detected as regular outliers, when considering the high point density typical of the valid data points with

an angle so close to 90◦.

The two cases in Figure 2.6 portray the detection of a pier with a square section and are perfect

examples of situations that could hardly be predicted. In both of them, the outlier closest to the sensor

was actually perceived as the data point furthest to the left, i.e. as the last point of the scan, and

the outliers above were detected right before, after making a tight curve at the tip of the edge. This

causes the length of the associated edge to decrease dramatically, increasing the chances of being

rejected later. Furthermore, when this occurs in opposite edges in consecutive scans and they get

rejected, it would be interpreted as an instantaneous 90◦ jump, which is impossible. Despite the apparent

resemblance between both cases, the event in Figure 2.6b was actually the scan that originated the

cluster removal strategy. Looking closely, there are two data points almost overlapping in what could be

easily interpreted as only the closest outlier, at the left. Leaving that cluster would cause losing around

a third of the length of the edge, resulting in its rejection and in a angle shift after the next scan.

2.5 Geometry Fitting

After the data set separation, the identification implies defining the equation of the line for each

existing edge. For this application, two main alternatives were chosen to achieve the objective, one

based on least squares estimation and the other using the Hough transform, both being described in

Sections 2.5.1 and 2.5.2 respectively. In the end, Section 2.5.3 compares their efficiency, to rule the

verdict on which is more suited for this case, and applies the best choice to the data.
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(a) Holding in the initial position at approximately 45◦.
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(b) Losing the smaller edge at the left.
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(c) Facing the larger edge almost at 90◦.
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(d) Acquiring another smaller edge at the right.

Figure 2.5: Rectangular pier detection with outlier trimming
in several notoriously unusual cases of a 0.45× 0.9 m section.
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(a) Single outliers at inconsistent locations.
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(b) Mixed single and groups of outliers
at inconsistent locations.

Figure 2.6: Square pier detection with outlier trimming
in several notoriously unusual cases of a 0.425× 0.425 m section.
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2.5.1 Least Squares Estimation

The problem at hand is to minimize the sum of the squares of the perpendicular offset between the

points and fitted line. Therefore, determining the line for which that quantity is minimal comes down to

the constrained least squares problem in the form

Minimize
c,nx,ny

‖e‖2 =

N∑
i=1

e2
i

Subject to


1 x1 y1

...
...

...

1 xN yN



c

nx

ny

 =


e1

...

eN

 ,
n2
x + n2

y = 1

(2.4)

which can also be found in [16]. In the first constraint of this optimization, the matrix of the system is A,

the vector of unknowns is x and the right hand side is e. In order to account for the nonlinear constraint,

a QR decomposition such that A = QR with QTQ = I and R is upper triangular, can reduce the

problem to solving the reduced system

Ax = e⇔ QTAx = QTe⇔



r11 r12 r13

0 r22 r23

0 0 r33

0 0 0
...

...
...

0 0 0




c

nx

ny

 = y (2.5)

This is possible since the the 2-norm is invariant under orthogonal transformations y = QTe, so

‖y‖ = ‖e‖. Because the nonlinear constraint only involves two unknowns, Equation (2.5) yields the

problem

Minimize
c,nx,ny

r22 r23

0 r33

nx
ny

 ≈
0

0


Subject to n2

x + n2
y = 1

(2.6)

This new system can be seen as a minimization of ‖Bx‖, subject to ‖x‖ = 1. The value of the

minimum is the smallest singular value ofB and the solution is the corresponding singular vector. Then,

nx and ny can be determined by the Singular Value Decomposition (SVD) of a 2× 2 matrix. In the end,

the value of c can be found by setting y = 0 in Equation (2.5).

2.5.2 Reduced Space Hough Transform

The Hough transform is a feature extraction technique used in image analysis, computer vision, and

digital image processing [17]. The purpose of this technique is to find imperfect instances of objects,
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within a certain class of shapes, by a voting procedure. This voting procedure is carried out in a parame-

ter space, from which object candidates are obtained as local maxima, in a so-called accumulator space

that is explicitly constructed by the algorithm for computing the Hough transform. The Hough transform

has been extended to identify positions of arbitrary shapes, most commonly circles or ellipses, but its

simplest case is detecting straight lines.

There are several representations for a straight line in R2, one of which has already been presented in

Equation (2.1). Besides that, there is also the slope and y-intercept, as one of the most commonly used,

where the equation takes the form py = mline px + bline. Out of the two, the polar representation is the

most intuitive and easy to apply, considering a search in a restricted range of parameters. Furthermore,

vertical lines pose a problem with the y-intercept representation, as unbounded values of the slope

parameter m would arise.

The Hough transform algorithm uses an accumulator to detect the existence of a line, through the

polar representation. The dimension of the accumulator equals the number of unknown parameters, in

this case γ and ρ. For each point p, the idea is to determine if it is contained in the line described by

each set of polar parameters, from the defined accumulator space. If so, it will look for the corresponding

accumulator’s bin, where the parameters fall into, and increment its value. By finding the bins with the

highest values, typically by looking for local maxima in the accumulator space, the most likely lines can

be extracted and their approximate geometric definitions acquired [17].

The final result of the linear Hough transform is a two-dimensional array, where one dimension of this

matrix is the quantized angle γ and the other dimension is the quantized offset ρ. Each element of the

matrix has a value equal to the number of points that are positioned on the corresponding line, so the

element with the highest value indicates the most recurrent straight line [18]. A reduced space version

of this technique is implemented in Algorithm 3 and exemplified graphically in Figure 2.7.

Algorithm 3 Reduced Space Hough Transform

1: procedure REDUCEDSPACEHOUGHTRANSFORM(M , nrows, ncols, γ, δγ , εγ , ρ, δρ, ερ)
2: H ← 0nrows×ncols
3: γ ← (γ − δγ : εγ : γ + δγ)T

4: ρ← (ρ− δρ : ερ : ρ+ δρ)
5: for i = 1 : length(M) do
6: ρpoint ←M(i, 1) cos(γ) +M(i, 2) sin(γ)
7: ∆ρ← ρpoint 11×ncols − 1nrows×1 ρ
8: ∆ρmin ← min(‖∆ρ‖)
9: imin ← min

i
(‖∆ρ‖)

10: imin(∆ρmin >
ερ
2 , :)← []

11: H(imin)←H(imin) + 1
12: end for
13: ρ, γ ← max

i,j
(H)

14: n← [cos(γ), sin(γ)]
T

15: c← −ρ
16: end procedure

Before running this algorithm, some relevant quantities regarding the accumulator space need to be

defined. In this case, a very important information is the initial estimation of the line, or in the context of
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Figure 2.7: Example of an iteration of the reduced space Hough transform,
with δγ = 1◦, εγ =

δγ
2 [◦], δρ = 0.4 m, and ερ =

δρ
2 [m].

the Hough transform, the center of the accumulator space around which the polar parameters will vary.

A possibility is to split in half the data subset associated with an edge and determine the centroid of

each part. From there, these two centroids can be used to obtain a fast and rough estimate of the polar

parameters. Now that the central values are defined, it is necessary to decide what is the range δγ and

δρ allowed for each parameter to variate and the step εγ and ερ between two consecutive values. After

observing some cases, it was seen that setting δγ = 1.5◦, εγ =
δγ
15 [◦], δρ = 0.025 m, and ερ =

δρ
10 [m]

yielded a suited accumulator space with the sufficient flexibility. The dimensions nrows and ncols of the

accumulator space can then be easily found.

Algorithm 3 receives the data setM and all these aforementioned settings. The initial step inside the

routine is to initialize the accumulator H and expand the definition of γ and ρ to contain all the possible

values, where the former is a column vector and the latter a row vector. Then, an iteration is run for

every point, in which knowing every possibility for γ, the required ρpoint for the line to contain the point

is computed. There will be only one ρpoint per line, i.e. for each value of γ, so ∆ρ will now become a

matrix with the difference between this required ρpoint and the allowed ρ vector, for each line. Therefore,

the best suited bin within the accumulator will correspond to the minimum values of that differential. This

is done after ensuring that the minimum for each line is in fact lower than half the space between bins,

otherwise the first or last bin would be incremented because ρpoint did not fit in any, i.e. it was higher

or lower than the minimum or maximum allowed values respectively, but ended up being the closest

one. Finally, the optimal polar parameters can be found by locating the bin with the highest value in the

accumulator, after which they can be converted to its Cartesian representation.

2.5.3 Procedure Selection and Application

Both these procedures were applied and produced coherent results, however there are some dif-

ferences in their performance. On one hand, the least squares estimation is the fastest, whereas the

reduced space Hough transform takes 5 – 10 times longer to complete, due to its iterative nature. On the

other hand, the former is highly affected by existing outliers, as it tries to minimize the offset of all points

to the estimated line, while the voting mechanism in the latter is very efficient in detecting the points that

are most likely valid and adjusting the line only to them.
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In terms of effectiveness, despite definitely being a more accurate solution, the improvements of the

reduced space Hough transform against the least squares estimation translate into an almost negligible

change in the angle of the line, in the majority of cases. Therefore, the bottleneck in this situation comes

down to time. Since this procedure has to be applied to every scan of the LiDAR, the time difference

between these methods causes the Hough transform to become an inviable alternative, leading to the

choice of the least squares estimation.

After obtaining the line parameters for an edge, out of the entire data subset the only necessary data

points are the boundaries and the corner, if it exists. Unfortunately, the boundary points are the most

affected by uncertainties and measurement errors, what can never be truly avoided. These relevant data

points need to be corrected to p according to the obtained line fit through

p = p− ne = p− n(pTn+ c) (2.7)

in order to determine where they should have been in the first place. It should be noted that, if there

are two edges and consequently a corner, this point is shared by both edges and therefore needs to be

corrected using the information from the two fits to provide the best estimation of the intersection.

After correcting the data points, the estimation of the length of the edges can be made. Having two

edges, the following requirement is that both have to be larger than flength times the smaller real dimen-

sion, otherwise the smallest edge should be disregarded. This factor varies from 70 – 90% and has to

be tuned according to the circumstances. This verification occurs in order to exclude exceptional cases

where the data set identification’s conditions were passed but the result does not have true physical

meaning.

2.6 Complete Representation

The corrected boundary points and corner, if it exists, can be identified as the start and end points

of each edge, denoted here by psi and pei with i = 1, 2 respectively. The edges are represented by a

matrix Q, expressed in {B}, where its columns are the vectors Qi =
[
Qix Qiy

]T
with i = 1, 2, such

that Qi = pei − psi . Notice that all these variables are time-varying and depend on the motion of the

vehicle. In particular, the correspondence between boundary points and corner and the points psi and

pei can be obtained by knowing the initial condition, while encountering the pier, and observing it evolve

over time.

Planning a trajectory and navigating around a pier is a task highly dependent on the location of its

center, since it is the pier’s most logical fixed point for maintaining a reference. This location is ideally

invariant, relative to the movement of the vehicle, and it can be determined at all times given the real ge-

ometry of the pier and the knowledge regarding the number and details of the edges being encountered.

With that information, an estimate of the center location can be computed and later used for control

tasks, concerning the navigation around the structure. However, this measurement will unavoidably

fluctuate around the real location, which can cause some oscillations during the controlled flight.
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The entire process is summarized as a flow diagram in Figure 2.9, highlighting the most important

details of the stages that have been described along the current chapter.

The representation of the edges in {I} is also of great interest, so that they can be related through the

rotation matrix from {I} to {B}, denoted by B
I R, according to IQ = I

BR
BQ. As illustrated in Figure 2.8,

their projection in the XY plane of this reference frame corresponds to the section of the pier and can

be defined as li, where its norm is Li with i = 1, 2. Regarding the Z coordinate, represented by hi with

i = 1, 2, in {B} it is null but in {I} it is the direct result of the rotation the vehicle is exhibiting momentarily.

Therefore, the edges in {I} become

IQi = li ± hie3, for i = 1, 2 (2.8)

where e3 =
[
0 0 1

]T
is the versor of the Z axis. Knowing the dimensions of the pier and the length

of the edges, which is independent of the reference frame, the Z coordinate can be obtained through

hi =
√
‖BQi‖2 − L2

i , for i = 1, 2 (2.9)

There are two additional aspects that need to be clarified. Because the LiDAR measurements are

subject to errors, when the roll and pitch angles are close to null, it is possible that the identified edges are

smaller than reality. That would cause the Z coordinate calculation to yield an imaginary value, therefore

this component is taken as zero when such a situation occurs. Moreover, because the aforementioned

calculation is made with a square root, there are always two options for the value, according to the sign.

The approach to solve this ambiguity aims to maintain continuity, by choosing the closest value to the

previous one, assuming there are no swift movements around the leveled flight.

Testing this approach shows that the output of this calculation is more than often zero, meaning that

the edges are being seen as smaller than in reality. This will always be a concern for any roll or pitch

angles other than zero, due to the way the LiDAR works, since the last laser beam to intercept an edge

l1

I
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I
BR

BQ2

−h2e3
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Y

Z

Figure 2.8: Decomposition of the edges in {I}.
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Figure 2.9: Flow diagram of the process of obtaining the pier’s edges and center in {B},
distinguishing the trimming (red), the splitting (orange), the fitting (green), and the processing (blue).
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hits either exactly or a bit before the boundary. Therefore, assuming an optimal outlier removal, the

detected length is bound to be less than or equal to the real length, whereas most of the times it will be

slightly smaller. When the roll and pitch angles are close to zero, this effect is more noticeable because

the calculation will involve imaginary numbers and therefore yield a null Z coordinate for default.

However, this calculation only considers the length of the edges. One way to improve this compo-

nent’s detection is to use more information and create an optimization problem. An updated formulation

would contain Equation (2.9), for each edge, extended with the cross product of both edges, with infor-

mation on the angle between them. Each edge can be seen as the sum of two vectors, one known in the

XY plane and another in the Z axis trying to be found. Thus, using the distributive property of the cross

product, the crossed term involving the parallel vertical portion of both edges would disappear, keeping

this as a linear problem. The objective of the optimization, formulated as

Minimize
h2

1,h
2
2

‖ε‖2 =

3∑
i=1

ε2
i

Subject to


1 0

0 1

L2
2 L2

1


h2

1

h2
2

−


‖BQ1‖2 − L2
1

‖BQ2‖2 − L2
2

‖S(BQ1)BQ2‖2 − L2
1L

2
2

 =


ε1

ε2

ε3

 ,
h2
i ≥ 0 for i = 1, 2

(2.10)

is to minimize an error variable ε, relating properties of the edges in {I} and {B}. In Equation (2.10),

the S(.) function produces a skew-symmetric matrix, defined such that, for any vector ν, the S(ν1)ν2 =

ν1 × ν2 equality verifies.

It should be noted that the variables being optimized are the squares of the Z coordinates, naturally

being subject to non-negativity constraints, so in the end the desired result will be the square root of

their values. This also means the previous continuity verification still applies, given the sign ambiguity

of this operation. Originally with this approach, the length of the edges in {B} had a lower boundary

established, corresponding to their minimum nominal value, so when the obtained lengths were smaller

than their real dimension then they would be reset to that value, to prevent the aforementioned issues

with the imaginary results. However, using these constraints in the problem formulation eliminated the

need for that verification.

In this optimization, the third equation is clearly the most valuable, for containing information about

both edges simultaneously, making it the condition with the highest accuracy. An attempt was made

to convert this optimization into a weighted form, where each error component would have a different

importance factor assigned. This way, the relationship between them would drive the effort of the opti-

mization in minimizing those highest in ranking, which would have a larger error. In this case, a weights

vector w =
[
0.5 0.5 1.5

]
was applied, giving more relevance to the last equation. This course of

action brought some improvements to the results, however implementing this new optimization slowed

down the whole process, due to its computational complexity. In the end, the decision was to maintain

the original scheme, since the improvements were not high enough when compared with the loss in

speed of execution.
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An additional idea to make the optimization more robust and improve its result can be investigated

by assuming that, between consecutive time steps, the change in the Z coordinates is very small.

Considering that assumption, which is fairly reasonable for a short number of time steps, the n previous

samples can be incorporated into the current formulation. In other words, for the optimization of the

ith step, the constraints used for the n samples before that step could also be added to the current

one to provide a more stable and consistent result, creating a backward dependency on the condition

but not on the result itself. Of course, the number of samples n would be limited and for each step

that value would need to be further restrained to the number of available coherent measurements, i.e.

corresponding to not only the same relative position of edges but also to the same number of identified

edges. These requirements are essential, the former since in a corner shift the edges do not maintain

the same relationship between steps and the latter because in the transitory stage the fading edge

is intermittent, which means there would not be continuity between observations, for that edge, and

therefore the optimization would have a different degree of accuracy for each edge. In the end, this

means that until a maximum of n previous samples, those holding the proper conditions could be used

in the optimization, at each time step. Expanding the amount of information used in the optimization

shows a slight improvement of the results for increasing n, thus it was decided that using 4 backward

coherent samples would be the best compromise between the optimization’s stability and the vehicle’s

motion flexibility.
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Chapter 3

Attitude Determination Methods

The procedures involved in the detection, and consequent creation of a clear and intuitive mathe-

matical description of a structure, were elaborated on during Chapter 2. The next step is to analyze this

description and propose several methods capable of accurately extracting a partial or the full attitude of

the vehicle.

The first approach is to consider a decoupling of the vehicle’s movement into the XY plane and the

Z axis. Taking that into account, Section 3.1 describes a method for obtaining each of these two partial

movements using information from the LiDAR, where the second requires a high-level data fusion from

another sensor.

Section 3.2 goes one step further and elaborates on two additional options to compute the attitude

of the vehicle, this time considering the 3D world altogether. Both alternatives attempt at fusing data at

a low-level from other available sources, where the first is an out-of-the-box solution and the second is

developed specifically for this purpose, with the goal of getting improved results.

3.1 Partial Motion

The movements of the vehicle in the X and Y axes are the roll and pitch respectively, which can be

described based solely on LiDAR data as Section 3.1.1 shows. For that, the rotation matrix from {I} to

{B} needs to be derived, since it involves the two most important reference frames in this task. Knowing

the description of the edges in {B}, it becomes only a matter of relating those two pieces of information,

until the roll and pitch angles can be obtained.

On the other hand, the yaw movement is associated with the Z axis. This component of the vehicle’s

attitude can be computed as presented in Section 3.1.2, where information from the LiDAR is fused with

information from an IMU. This happens because on its own, the LiDAR data has the effect of the roll

and pitch movements embedded, and although those components have been chosen not to be retrieved

in this approach, their traces still need to be removed from the measurements before processing it.

Therefore, the way to obtain the roll and pitch angles from the IMU is explained first, followed by the

actual discussion of the method that yields the yaw angle.
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3.1.1 Roll and Pitch Estimator

The edges are detected with the LiDAR in the {B} frame, but their dimension is known and corre-

sponds to the norm of HQi = li with i = 1, 2. The rotation matrix from {B} to {H}, defined as

H
BR = Rxy = Ry(θ)Rx(φ)

=


cθ 0 sθ

0 1 0

−sθ 0 cθ




1 0 0

0 cφ −sφ
0 sφ cφ

 =


cθ cθsφ sθcφ

0 cφ −sφ
−sθ cθsφ cθcφ

 (3.1)

where sφ and cφ represent the sine and cosine of the roll angle φ respectively and the same applies to

the pitch angle θ, can be used to obtain the projection of the edges

‖Πe3

HQi‖2 = ‖Πe3

H
BR

BQi‖2 = L2
i , for i = 1, 2 (3.2)

where Πe3
= I − e3e

T
3 . Since H

BR is a function of both these angles, they can be estimated with (3.2).

Knowing the elements of this matrix, from Equation (3.1), the relationship between the angles and the

edges BQ is given by

HB r13

H
B r23

 =

sθcφ
−sφ

 =
[
BQ1

BQ2

]−1

±√‖BQ1‖ − L2
1

±
√
‖BQ2‖ − L2

2



⇔

θ
φ

 =


sin−1

(
±Q2y

√
Q2

1x
+Q2

1y
−L2

1∓Q1y

√
Q2

2x
+Q2

2y
−L2

2

(Q1xQ2y−Q1yQ2x )cφ

)

sin−1

(
±Q2x

√
Q2

1x
+Q2

1y
−L2

1∓Q1x

√
Q2

2x
+Q2

2y
−L2

2

Q1xQ2y−Q1yQ2x

)


(3.3)

It should be noted that the sign ambiguity occurs because there is a symmetry along the XY plane,

therefore Equation (3.2) is valid whenever the vehicle is detecting data points on the pier above its

altitude or their symmetric below.

However, this method heavily relies on the length of the edges, which greatly depends on the bound-

ary points, that in turn are subject to the highest measurement errors. Despite the lengths not being

accurate enough, the angle between the edges is also affected by the motion of the vehicle but it was

not used yet. This quantity does not depend solely on a pair of points, as the lengths, rather it is the

result of fitting an entire set of points, thus carrying less uncertainty.

3.1.2 Yaw Estimator

The output from the IMU is the rotation matrix from {I} to {S}. Given that this sensor is mounted

with its X and Z axes pointing forward and upward respectively, one additional operation needs to be

made in order to obtain the actual BI R. It consists of multiplying the initial rotation matrix
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S
IR = Rzyx = Rx(−φ)Ry(−θ)Rz(−ψ)

=


1 0 0

0 cφ sφ

0 −sφ cφ



cθ 0 −sθ
0 1 0

sθ 0 cθ



cψ sψ 0

−sψ cψ 0

0 0 1

 =


cψcθ cθsψ −sθ

cψsφsθ − cφsψ cφcψ + sφsψsθ cθsφ

sφsψ + cφcψsθ cφsψsθ − cψsφ cφcθ

 (3.4)

with B
SR, corresponding to an 180◦ rotation about the X axis. This operation yields

B
I R = B

SR
S
IR = Rx(π)SIR

=


1 0 0

0 cπ −sπ
0 sπ cπ




cψcθ cθsψ −sθ
cψsφsθ − cφsψ cφcψ + sφsψsθ cθsφ

sφsψ + cφcψsθ cφsψsθ − cψsφ cφcθ



=


cψcθ cθsψ −sθ

cφsψ − cψsφsθ −cφcψ − sφsψsθ −cθsφ
−sφsψ − cφcψsθ cψsφ − cφsψsθ −cφcθ



(3.5)

The roll and pitch angles can then be obtained, directly through the third column of BI R, according to

tan(φ) =
B
I r23
B
I r33

− sin(θ) = B
I r13

⇔

φ = tan−1
(
B
I r23
B
I r33

)
θ = sin−1(−BI r13)

(3.6)

The computation of the roll angle φ, resorting to the inverse tangent function, returns values in the

[−π/2, π/2] interval, disregarding possible quadrant information. Therefore, the implementation of this

calculation needs to account for the sign of BI r23 and B
I r33, through the four-quadrant inverse tangent

function, denoted by atan2. On the other hand, in Equation (3.6) the pitch angle θ is found with the

inverse sine function, whose result lies within the aforementioned interval. However, since the vehicle

never actually exceeds that range in pitch, and knowing that sin(−θ) = − sin(θ), the obtained values are

unique and do not need additional corrections.

Although the roll and pitch angles are no longer being determined based on the LiDAR, they can be

combined with data from that sensor, to provide a better estimate of the yaw angle ψ. This is useful since,

without the LiDAR measurements, the yaw is being acquired as a combination of the measurements

from gyroscopes and magnetometers, the latter being susceptible to electromagnetic disturbances and

having an unknown drift, in general.

Taking on an approach based on the angle between the edges rather than their length, the idea

behind the projection introduced in Equation (3.2) is revisited. Starting with the roll and pitch angles

from the IMU, the edges BQ can be projected to the XY plane of {H}, leaving the yaw angle ψ as the

only unknown. Given the fact that, no matter what roll and pitch the vehicle has in a given instant, the

projection of the data points to {H} will always result in two orthogonal lines, then the edge identification

step can be reformulated. Following this perspective, the data points can be rotated to {H} before the

constrained least squares problem instead of after, through
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HM = Πe3

H
BR

BM (3.7)

Having the data points matching two orthogonal lines, Equation (2.4) can be rewritten as

Minimize
c1,c2,nx,ny

‖e‖2 =

N1+N2∑
i=1

e2
i

Subject to



1 0 x1,1 y1,1

...
...

...
...

1 0 x1,N1 y1,N1

0 1 y2,1 −x2,1

...
...

...
...

0 1 y2,N2 −x2,N2




c1

c2

nx

ny

 =


e1

...

eN1+N2

 ,

n2
x + n2

y = 1

(3.8)

to consider the minimization of two straight orthogonal lines simultaneously. In this case, the QR de-

composition of matrix A leads to the reduced system

Ax = e⇔ QTAx = QTe⇔



r11 r12 r13 r14

0 r22 r23 r24

0 0 r33 r34

0 0 0 r44

0 0 0 0
...

...
...

...

0 0 0 0




c1

c2

nx

ny

 = y (3.9)

Taking into account the nonlinear constraint, updated for this situation, the problem assumes the form

Minimize
c1,c2,nx,ny

r33 r34

0 r44

nx
ny

 ≈
0

0


Subject to n2

x + n2
y = 1

(3.10)

With this approach, the least squares estimation becomes independent of the vehicle’s roll and pitch

angles and avoids the uncertainty of the angle between the edges, which corresponds to 90◦. This

means the error in the estimated heading to the structure can be reduced, since the data points of both

edges now contribute to an unified objective, with a joint error, rather than two separated goals with

unrelatable errors. The idea is no longer to find the angle of each individual edge, but instead the angle

of part of a known rectangular section, which carries great benefit in the two edges case. However, the

accuracy of the roll and pitch estimates, obtained from the IMU, will also have an impact on the accuracy

the yaw estimate. With the edges HQ, the rotation matrix from {H} to {I} given by
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I
HR = Rz = Rz(ψ)

=


cψ −sψ 0

sψ cψ 0

0 0 1

 (3.11)

is the last step towards having the edges IQ. Performing the rotation of an edge from {H} to {I} only

depends on the yaw angle ψ, whose estimate can be obtained through

IQi = I
HR

HQi ⇔ ψ̂ = tan−1

(
−
Qiy
Qix

)
, for i ∈ {1, 2} (3.12)

It should be noted that the yaw usually has its reference at the magnetic North, so applying this

method implies setting an artificial reference. In this case, it was chosen that the yaw angle would be

set relative to the edge of the structure initially at the left. Therefore, the initial yaw angle ψ should

be obtained using HQ1, which corresponds to IQ1, that in turn equals l1 in the starting leveled flight

condition.

Furthermore, when navigating around the structure, the LiDAR captures a sequence of time steps

corresponding to different views, forming a progression. Most of the times, there are effectively two

edges, but in the transition stage, the accuracy of the data points and the consequent identification can

originate misleading situations. As mentioned in Section 2.3.2.1, there are several reasons why there

could be an intermittent edge, depending on the existence of outliers and the fulfillment of the edge

splitting criteria. This leads to degenerated situations, where there is only one edge and it has a tilt from

the perfect 90◦ angle, with respect to the vehicle. In practice, the case at hand ends up being one of the

eight different possibilities from Figure 3.1, therefore Algorithm 4 was developed to detect these cases

and ensure a continuous transition scheme. This diagram was built as a basis for the algorithm and with

the objective of representing all the possible alternatives, for the sake of completeness, considering the

combinations of facing one or two edges in the previous and current steps, depending on the direction

of rotation as well.

Figure 3.1: Progression of the view around the structure with all the transition cases.
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Algorithm 4 Yaw Continuity

1: procedure YAWCONTINUITY(HQ,HQnew, ψ̂)
2: if ψ̂ = 0 then
3: ψ̂new = − atan2(HQ1ynew

,HQ1xnew
)

4: else
5: ψ̂1 = − atan2(HQ1y ,

HQ1x)

6: ψ̂1new = − atan2(HQ1ynew
,HQ1xnew

)
7: if HQ2 6= 0 and HQ2new

6= 0 then
8: dψ = ψ̂1new − ψ̂1

9: ψ̂new = YawShiftX2X(dψ, ψ̂, 45◦)
10: else if HQ2 = 0 and HQ2new

= 0 then
11: dψ = ψ̂1new − ψ̂1

12: ψ̂new = YawShiftX2X(dψ, ψ̂, 90◦)
13: else if HQ2 6= 0 and HQ2new

= 0 then
14: ψ̂2 = − atan2(HQ2y ,

HQ2x)

15: if ‖ψ̂1new − ψ̂1‖ < ‖ψ̂1new − ψ̂2‖ then
16: dψ = ψ̂1new − ψ̂1

17: ψ̂new = YawShiftX2YCW(dψ, ψ̂, ψ̂2, ψ̂1new )
18: else
19: dψ = ψ̂1new − ψ̂2

20: ψ̂new = YawShiftX2YCCW(dψ, ψ̂, ψ̂1, ψ̂1new )
21: end if
22: else if HQ2 = 0 and HQ2new

6= 0 then
23: ψ̂2new = − atan2(HQ2ynew ,

HQ2xnew )

24: if ‖ψ̂1new − ψ̂1‖ < ‖ψ̂2new − ψ̂1‖ then
25: dψ = ψ̂1new − ψ̂1

26: ψ̂new = YawShiftX2YCCW(dψ, ψ̂, ψ̂1, ψ̂2new )
27: else
28: dψ = ψ̂2new − ψ̂1

29: ψ̂new = YawShiftX2YCW(dψ, ψ̂, ψ̂1, ψ̂1new )
30: end if
31: end if
32: end if
33: end procedure

The algorithm receives the previous yaw angle estimate ψ̂ and the previous and current edges, HQ

and HQnew respectively, where the second vector of these matrices can be null in the one edge case.

The first time it runs, there is no history, so the yaw angle estimate ψ̂ is defined relative to the left edge

and it becomes the reference. The main idea is to take the previous yaw angle estimate ψ̂ and add the

yaw angle variation dψ perceived in the current step. When there is the same number of edges in the

previous and current steps, there is a straightforward relationship between the edges and they can be

easily associated. In those cases, the increment is simply the difference in the yaw angle provided by a

chosen edge.

However, if the vehicle is moving fast enough, it is possible that the one edge case may be missed

entirely, so there are two consecutive two edge cases that actually have a hidden 90◦ shift regarding

the yaw angle obtained. Therefore, if there is an increment higher than 45◦, the necessary correction is

applied. A similar situation occurs when the vehicle is close to facing one of the structure’s edges head

on. The ideal transition, considering that there are multiple instances with one edge, would be to have

the edge tilted one way in the first moment, followed by a perfect 90◦ angle in the next and then being

tilted in the other direction, completing the rotation. But again, because the probability of that middle

step actually happening is very slim, there will most likely be a discontinuity around the 180◦. This is
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due to the abrupt shift of the quadrant to which the edge belongs, which can be seen by remembering

the trigonometric circle and knowing that the edge always points outwards starting from the origin. This

means that a correction of π must be applied, which also depends on the direction of the rotation. Both

of these cases are dealt with using Algorithm 5, in which there is a transition with the same number of

edges before and after, the difference being the value of the condition and the correction that needs to

be applied.

When there is a transition between one and two edges or vice-versa, there are two situations that

can occur. The identification can wrongfully detect only one edge in an isolated step, which is exactly

the case depicted in the first transition of Figure 3.1, or a turn can actually be starting, as it happens

in the third transition. In either case, the task now is to find out which pair of edges leads to a smaller

increment dψ, meaning they probably refer to the same edge in different steps, and take that value as

the yaw angle variation. This is it if the algorithm is recovering from a misidentification, where it actually

needs to find the closer edge. When a turn is actually being made, there will be an shift higher than

45◦, so the increment becomes ∆ψ = ±(π ±∆ψ∗), where the sign depends on the direction of rotation

and ∆ψ∗ is now obtained with the other edge combination, since there is a quadrant shift of the relevant

edge. Algorithms 6 and 7 were developed for exceptions in which the number of edges before is different

from after, to implement the required verifications, depending on the direction of rotation.

Algorithm 5 Yaw Shift X2X

1: procedure YAWSHIFTX2X(dψ, ψ̂, dψmax)
2: if ‖dψ‖ < dψmax then
3: ψ̂new = ψ̂ + dψ
4: else if dψ > dψmax then
5: ψ̂new = ψ̂ + dψ − 2 · dψmax
6: else if dψ < −dψmax then
7: ψ̂new = ψ̂ + dψ + 2 · dψmax
8: end if
9: end procedure

Algorithm 6 Yaw Shift X2Y CW

1: procedure YAWSHIFTX2YCW(dψ, ψ̂, ψ̂i, ψ̂f )
2: if ‖dψ‖ < 45◦ then
3: ψ̂new = ψ̂ + dψ
4: else
5: ψ̂new = ψ̂ − (180◦ − (ψ̂f − ψ̂i))
6: end if
7: end procedure

Algorithm 7 Yaw Shift X2Y CCW

1: procedure YAWSHIFTX2YCCW(dψ, ψ̂, ψ̂i, ψ̂f )
2: if ‖dψ‖ < 45◦ then
3: ψ̂new = ψ̂ + dψ
4: else
5: ψ̂new = ψ̂ + (180◦ + (ψ̂f − ψ̂i))
6: end if
7: end procedure
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3.2 Full Motion

Considering the complete motion capabilities of a vehicle in attitude involves procedures which can

be more expensive, at a computational level.

First, taking on a problem known in spacecraft attitude determination for many years, Section 3.2.1

describes what this robust solution consists of and how it can be used for this purpose, with the in-

formation available from the LiDAR and specific components of an IMU. This formulation involves the

computation of the optimal rotation matrix from {I} to {B} in its closed-form solution, establishing the

relationship between the observations in their main reference frames.

The next is designed from scratch in Section 3.2.2, as an attempt to build a customized tool for

this application, where the stability principles and control theory behind it are explained as well. It is

also proven the convergence of this method, which is actually an observer fusing LiDAR data with raw

information from the IMU, based on the boundedness of the bias it incurs throughout time. Additionally,

its most important features and limitations are addressed.

The rotation matrix acquired from the IMU is a product of the combination of three types of sensors,

namely accelerometers, gyroscopes, and magnetometers. The data coming from accelerometers has

a high precision, but by depending on gravity, it cannot be used to describe the motion around the Z

axis. Using the information from the gyroscopes complements that description, however it implies the

integration of angular velocity over time, which is a process that accumulates errors and generates a

drift with growing significance. The magnetometers are supposed to provide an additional correction,

in the vertical axis, hereby completing the 3D attitude solution. Different combinations of these sensors

can be made, to obtain alternative descriptions of the vehicle’s attitude.

3.2.1 Wahba’s Problem Application

The challenge commonly known as Wahba’s problem refers to the determination of the three-axis

attitude of an aircraft, by estimating the proper orthogonal matrix B
I R̂ that minimizes the least squares

loss function

L(BI R̂) =
1

2

nobs∑
i=1

wi‖BOi − B
I R̂

IOi‖2 =

nobs∑
i=1

wi −
nobs∑
i=1

wi
BOT

i
B
I R̂

IOi (3.13)

where IO is the set of observations represented in {I}, BO is the same set but represented in {B}, w is

a vector with positive weights associated with each individual observation, and nobs is the total number

of observations [19]. The loss function is based on the idea that, if the measurements are free of errors

and the true rotation matrix B
I R is the same for all measurements, then BOi = B

I R
IOi,∀i.

Having the description of the edges in both {I} and {B}, they can be directly introduced in the

loss function. However, despite the fact that most of the times there are two edges that fully define

the attitude of the vehicle, when only one edge is being seen, an ambiguity arises due to an additional

Degree Of Freedom (DOF). The accelerometer within the IMU can be used to provide an extra piece

of information and obtain an unequivocal attitude, assuming that the vehicle’s acceleration is negligible
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relative to the gravitational acceleration. With that in mind, the input of the minimization will correspond

to the observations matrix ∗O =
[
∗Q ∗a

]
=
[
∗Q1

∗Q2
∗a
]
, where the additional observation is the

normalized acceleration vector and ∗ represents each of the two reference frames.

Considering a generic matrix H =
nobs∑
i=1

wi
BOi

IOT
i , the last term of Equation (3.13) becomes

− tr(BI R̂H
T ). In this expression, tr and the superscript T refer to the trace and transpose of a matrix

respectively. This transformation is possible due to the invariance of the trace of a product of matrices

under a cyclic permutation of the factors in the product. The SVD of matrix H is given by

H = USV T = U diag(s1, s2, s3)V T (3.14)

where U and V are orthogonal matrices and the diagonal elements of S respect s1 ≥ s2 ≥ s3. The

trace of BI R̂H
T can now be written in the form

tr(BI R̂H
T ) = tr(BI R̂V diag(s1, s2, s3)UT ) = tr(UTB

I R̂V diag(s1, s2, s3)) (3.15)

In order to minimize the aforementioned loss function, the trace of BI R̂H
T must be maximized,

according to the minus sign associated with that term. Taking into account the constraint det(BI R̂) = 1,

the closed-form solution of the rotation matrix estimate B
I R̂ is found through

UTB
I R̂V = diag(1, 1,det(U) det(V ))⇔ B

I R̂ = U diag(1, 1,det(U) det(V ))V T (3.16)

3.2.2 Rotation Matrix Observer

The magnetometers are very sensible to electromagnetic radiation and suffer from interferences that

cause disruptions, so replacing them with the LiDAR can lead to a more accurate attitude determination

tool. The LiDAR has its highest accuracy when it is used to estimate the movement about the Z axis,

whereas the information it yields for the remaining axes is more susceptible to measurement errors.

Thus, the accelerometer is the perfect addition to minimize those uncertainties.

As shown in [20], given the definition of angular velocity ω, the kinematics of the rotation matrix B
I R

are given by

B
I Ṙ = −S(ω)BI R (3.17)

The same system is replicated for the estimator of the rotation matrix B
I R̂, such that

B
I

˙̂
R = −S(ω̂)BI R̂ (3.18)

where ω̂ is yet to be determined. Assuming that ω(t) is a known input, Equations (3.17) and (3.18) are in

the form of a Linear Time-Varying (LTV) system, described by ẋ(t) = A(t)x(t), where A(t) corresponds

to −S(ω(t)), the skew-symmetric kinematics matrix computed from the ω(t) vector, whose dependency

on time will be omitted. It should be noted that these kinematics are built based solely on the integration
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of the angular velocity information from the IMU. Moreover, a variable R̃ = B
I R

B
I R̂

T
can be defined to

represent the error between the true rotation matrix and its estimate.

Theorem 3.1. Considering the system in Equation (3.17) and its estimator in Equation (3.18), if ω̂ is

defined as

ω̂ = ω +Kobs

3∑
i=1

S(BOi)R̃
TBOi (3.19)

where Kobs > 0 is a tunable gain, then the equilibrium point R̃ = I, from the error system, is almost

globally asymptotically stable.

Proof. The Lyapunov stability theory is based on the analysis of a function, generally associated with

the energy of the system at hand. In this case, an expression related with the error in the rotation matrix

such as

V (R̃) = tr(I − R̃) (3.20)

where I is the identity matrix, can be considered a reasonable candidate Lyapunov function to evaluate

the stability of the system. In order to guarantee the stability requirements for an equilibrium point R̃ = I,

the Lyapunov function needs to be positive definite, i.e. V (I) = 0 and V (R̃) > 0∀ R̃ ∈ SO(3) \ {I}, and

its derivative must be negative semi-definite, meaning that V̇ (I) = 0 and V̇ (R̃) ≤ 0 ∀ R̃ ∈ SO(3) \ {I},

and negative definite to reach asymptotic stability, verifying V̇ (I) = 0 and V̇ (R̃) < 0 ∀ R̃ ∈ SO(3) \ {I}.

The derivative of the Lyapunov function is

V̇ (R̃) = − tr
[
S(ω)R̃− R̃S(ω̂)

]
= tr

[
S(ω − ω̂)R̃

]
(3.21)

after using the distributive and associative properties of the trace of a matrix and skew-symmetric matri-

ces respectively. From that expression, it can be shown that

ω̂ = ω +Kobs

3∑
i=1

S(BOi)R̃
TBOi = ω +Kobs

3∑
i=1

S(BOi)
B
I R̂

IOi (3.22)

The latter expression for ω̂ was rearranged specially for implementation purposes, whereas the fol-

lowing reasonings will build upon the former. Making use of the skew-symmetric matrix inverse function

S−1, not to be confused with the inverse of a skew-symmetric matrix, the first description of ω̂ in Equa-

tion (3.22) can be rewritten as

ω̂ = ω +Kobs

3∑
i=1

S−1
(
R̃
TBOi

BOT
i − BOi

BOT
i R̃
)

(3.23)

knowing that, for any ν ∈ R3, the S(ν1)ν2 = S−1(ν2ν1
T − ν1ν2T ) property of skew-symmetric matrices

holds. Using Equation (3.23), the derivative of the Lyapunov function becomes
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V̇ (R̃) = tr

[
S

(
−Kobs

3∑
i=1

S−1
(
R̃
TBOi

BOT
i − BOi

BOT
i R̃
)
R̃

)]

= −Kobs

3∑
i=1

BOT
i

(
I − R̃2

)
BOi

(3.24)

which fulfills the stability requirements in the domain R̃ ∈ SO(3) : V (R̃) < 4 − ε ∀ 0 < ε < 4. The cyclic

permutation property of the trace of a matrix was one of the tools used during the simplification. In fact, it

can be shown that the error system is almost globally asymptotically stable, i.e. it is stable and attractive

except for a zero measure set of initial conditions [21].

The previously developed work, for treating the LiDAR data, yielded an edges matrix in {B}, which

then depended on what the sensor was encountering at a given time. When there are two edges, both

its vectors are filled, but when only one can be seen, its information is stored in the first vector, without

indication about which edge it refers to. In order to tackle this association issue and make it possible to

compute ω̂, and therefore B
I R̂, the edges in {I} being faced at the start have to be set and then updated

over time. When there is the same number of edges in the previous and current measurements, they

stay the same, but with transitions between one and two edges and vice-versa, the closest edge needs

to be found across measurements, so that the association can be made considering continuity and the

direction of rotation.

The integration of the measurements from the gyroscopes suffers from drift over time, with two dif-

ferent origins. On one hand, there is the apparent drift, due to the Earth’s rotation, and on the other, the

real drift, due to bearing friction and gimbal and mass unbalance. Additionally, carrying them over the

Earth’s surface causes a similar effect that depends only on latitude, named transport wander. While this

second factor might not be very meaningful in the scenarios where this application will take place, given

the approximately constant latitude, there is still a drift whose compensation in the IMU, by incorporating

data from other sensors, may not very effective. In the end, the estimate will converge to the rotation

matrix obtained from a biased angular velocity, which means the bias will still be present in B
I R̂ and there

will always be an error between the true and the estimated rotation matrix. This error will add up to the

effect that the magnetic field’s distortion causes on the data fusion with the magnetometers, within the

IMU.

The Rodrigues’ Rotation Formula is an efficient algorithm for rotating a unitary vector η in space,

given an axis and angle of rotation ξ. In this case, it can be used to describe R̃ through

R̃ = I + sin(ξ)S(η) + (1− cos(ξ))S(η)2 (3.25)

Theorem 3.2. Considering the estimator in Equation (3.18), if there is a biased angular velocity

ω = ω + δω such that ω̂ becomes

ω̂ = ω + δω +Kobs

3∑
i=1

S(BOi)R̃
TBOi (3.26)

then the estimation error is ultimately bounded.
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Proof. In order to determine what is the actual effect of the bias, in the behavior of the convergence

process, the biased angular velocity is considered in the Lyapunov function, leading to

ω̂ = ω + δω +Kobs

3∑
i=1

S−1
(
R̃
TBOi

BOT
i − BOi

BOT
i R̃
)

(3.27)

With this extra term in Equation (3.27), the simplification presented in Equation (3.24) needs to be

revisited. Replacing the vectorial sums with their matrix notation, the derivative of the Lyapunov function,

taking into account the bias, is

V̇ (R̃) = tr
[
S
(
−δω −KobsS

−1
(
R̃
TBOBOT − BOBOT R̃

)
R̃
)]

= tr
[
S(δω)

(
I − R̃

)
−Kobs

BOBOT
(
I − R̃2

)] (3.28)

where the fact that tr(S(ν)I) = 0 is used to add a term to the expression. Replacing the Rodrigues’

Rotation Formula into the the derivative of the Lyapunov function produces

V̇ (R̃) = tr
[(
I − R̃

)(
S(δω)−Kobs

BOBOT
(
I + R̃

))]
= tr

[
−
(
sin(ξ)S(η) + (1− cos(ξ))S(η)2

)(
S(δω)− 2Kobs

BOBOT −Kobs sin(ξ)BOBOTS(η)− (1− cos(ξ))Kobs
BOBOTS(η)2

)]
(3.29)

Developing Equation (3.29) through the application of the distributive property of multiplication, the

property of skew-symmetric matrices S(ν)3 = −(νTν)S(ν) = −S(ν) for ‖ν‖ = 1, the trigonometric

identity cos2(α)− sin2(α) = 1− 2 sin2(α), and once again the fact that tr [S(ν)] = 0 yields

V̇ (R̃) = tr
[
− sin(ξ)S(η)S(δω)−Kobs sin(ξ)(1 + cos(ξ))S(η)BOBOT

−2Kobs sin2(ξ)S(η)2BOBOT + (1− cos(ξ))S(η)2S(δω)
] (3.30)

A few more properties must be used, involving skew-symmetric matrices and the trace of a matrix.

Knowing that S(ν)2 = ννT − (νTν)I is useful to manipulate the third term, by introducing an additional

matrix, according to

tr
[
S(ν1)2ν2ν2

T
]

= tr(ν1ν1
Tν2ν2

T − ν1Tν1ν2ν2T )

= ν1
Tν2ν2

Tν1 − tr(ν2ν2
T )

= ν1
T
[
ν2ν2

T − tr(ν2ν2
T )I

]
ν1

= ν1
Tν2ν1 for ‖ν1‖ = 1

(3.31)

The aforementioned property also leads to tr [S(ν1)S(ν2)] = (ν1
Tν2) tr [1− I] = −2ν1

Tν2, which

can help simplifying the first term of the Lyapunov function’s derivative. Considering the trace of a

product, the second and forth terms in Equation (3.30) disappear, since tr [kS(ν)] = 0. With these

actions, the derivative takes the form

V̇ (R̃) = 2 sin(ξ)ηT δω + 2Kobs sin2(ξ)ηTBOη (3.32)
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where BO = BOBOT − tr(BOBOT ) is a negative definite matrix. For any given symmetric matrix ζ, the

Rayleigh-Ritz inequality says that λmin(ζ)ν2
Tν2 ≤ ν2T ζν2 ≤ λmax(ζ)ν2

Tν2, so taking into account the

properties of BO, the upper bound of −BO would be λmin(BO). Because the main idea was to analyze

the effect of δω in the derivative of the Lyapunov function and its consequences regarding stability, the

next step is determining its bounds through

V̇ (R̃) ≤ 2| sin(ξ)|‖δω‖ − 2Kobs| sin(ξ)|2λmin(BO)

= 2| sin(ξ)|
[
‖δω‖ −Kobs| sin(ξ)|λmin(BO)

] (3.33)

to find out how the precision limitation affects the convergence and what its biggest error can approxi-

mately be. It can be shown that the Lyapunov function’s derivative is negative definite while

‖δω‖ −Kobs|sin(ξ)|λmin(BO) < 0⇔ |sin(ξ)| > 1

Kobsλmin(BO)
‖δω‖ (3.34)

Thus, in the presence of sufficiently small angular velocity bias, the estimation error has an ultimate

bound [22].

It is worth noting that, even when the LiDAR is encountering only one edge, the accelerometer

provides an additional measurement. This prevents the BO matrix from having just one meaningful

column, which would lead to λmin(BO) = 0. Without bias and having at least two measurements, the

derivative of the Lyapunov function will be negative definite, whereas when bias is added this can only

happen when |sin(ξ)| is high enough to overpower the term with ‖δω‖, according to (3.34).

39



40



Chapter 4

Simulation

With the routines ready to implement, the next step is to build a simulation environment, suited

for testing them and remove the dependence on the actual hardware, so that new scenarios can be

evaluated and several parameters adjusted.

The simulation architecture is presented in Figure 4.1 and it is divided into five parts, where each

one will be described separately in Sections 4.1 to 4.5.

Rotation

Matrix

Kinematics Sensor

Data

Edge

Kinematics

3D

View

Yaw

Estimator

Kinematics

Rotation

Matrix

Observer

Kinematics

Wahba’s

Problem

Application

Kinematics

ω
B
I R

Ippier

ptraj

λ
BM
IM

Bppier
IpB

HQ
BQ
IQ

Bp̂pierc

ψ̂Y E

B
I R̂RMO

B
I R̂WPA

Figure 4.1: Block diagram of the simulation.

Before defining the several components of this diagram, some data structures have to be set. The

pier is defined by Ippier, which contains eight vertices representing its rectangular sections at the top and

bottom, composed by four points each. Those vertices are initialized in the beginning of the simulation,

knowing the characteristics of the rectangular section and the distance from the center of the pier to

the origin. The trajectory of the vehicle ptraj is also known beforehand, consisting of only an history of

distances and respective angle to the center of the pier.
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4.1 Rotation Matrix Kinematics

This block concerns the kinematics of the rotation matrix from {I} to {B} and it is visible in the

leftmost area of Figure 4.1.

The system receives as input the angular velocity ω =
[
ωx ωy ωz

]T
desired for the vehicle and

computes B
I R at each time, which is directly related with the attitude the vehicle exhibits.

This simulation, whose base is the naturally continuous-time system presented in Equation (3.17),

should run and produce all the data in discrete-time, with the same sampling time as the actual LiDAR.

Its discretization can be accomplished by considering the time varying ω vector as constant for an

infinitesimal period of time dt. All that is left is to take the exponential of the product of the system’s A

matrix, obtained from the unbiased angular velocity, with the sampling time, according to

B
I R(k + 1) = e−S(ω)hLiDARB

I R(k) (4.1)

It should be noted that the bias of the angular velocity was not estimated and then included in the

simulation, a task that is left for future work. Moreover, imposing a sampling time to the model, in order

to discretize it, does not prevent smooth transitions in the motion kinematics and leads to a proper

reproduction of the data set observed in the real world.

4.2 Sensor Data

The Sensor Data block matches the process that, given the rotation matrix from {I} to {B}, yields the

set of data points BM resulting from modeling the LiDAR, ready to be used in the previously presented

routines, together with all the data structures necessary for visualizing the events.

The fundamental idea is to compute the vehicle’s position IpB and attitude λ at each time, the former

using the knowledge of the desired trajectory ptraj beforehand and the latter given B
I R coming from the

previous block. Having the location of the pier Ippier as well, it is possible to determine the location of

the pier relative to the vehicle Bppier, which is as if the pier is being viewed from the vehicle’s Point Of

View (POV).

The next step is to mimic the process by which the LiDAR sensor actually acquires the data points.

According to the LiDAR’s data sheet, it emits 1081 beams between −135 and 135◦, with the origin

at the positive X axis in {B}. Therefore, knowing the angle of each beam, only the range remains

undetermined. Having the pier defined in {B}, the furthest point can be easily obtained and its distance

to the vehicle taken as the range used for every beam. There are toolboxes with functions especially

developed for computing the intersection between a ray and a 3D polyhedron available. Despite their

completeness, these solutions are exceedingly expensive at a computational level, in terms of time, to

apply for the total number of beams during a large amount of steps. With that in mind, a new method

was developed, with the goal of optimizing the speed of the data point acquisition, being implemented

in Algorithm 8 and exemplified graphically in Figure 4.2.
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Algorithm 8 Intersect Ray Polyhedron

1: procedure INTERSECTRAYPOLYHEDRON(α,n,pfacec , rbeammax ,Rzyx, L)
2: ubeam = [cos(α), sin(α), 0]

T

3: ipoint = 0
4: for i = 1 : length(α) do
5: for j = 1 : 2 do

6: rbeamj =
nTj pfacecj
nTj ubeam(i)

7: end for
8: if rbeam1

/∈
[
0, rbeammax1

]
and rbeam2

6∈
[
0, rbeammax2

]
then

9: continue
10: else if rbeam1 /∈

[
0, rbeammax1

]
then

11: Bf = −pfacec2 + rbeam2
ubeam(i)

12: If = RT
zyx

Bf

13: if ‖Πe3
If‖ < 0.5 · L2 then

14: ipoint = ipoint + 1
15: M(ipoint, :) = rbeam2Πe3u

T
beam(i)

16: else
17: if ipoint > 1 then
18: break
19: end if
20: end if
21: else if rbeam2 6∈

[
0, rbeammax2

]
then

22: Bf = −pfacec1 + rbeam1ubeam(i)

23: If = RT
zyx

Bf

24: if ‖Πe3
If‖ < 0.5 · L1 then

25: ipoint = ipoint + 1
26: M(ipoint, :) = rbeam1

Πe3
uTbeam(i)

27: else
28: if ipoint > 1 then
29: break
30: end if
31: end if
32: else
33: for j = 1 : 2 do
34: Bf j = −pfacecj + rbeamjubeam(i)

35: If j = RT
zyx

Bf j
36: end for
37: if ‖Πe3

If1‖ ≤ 0.5 · L1 and ‖Πe3
If2‖ ≤ 0.5 · L2 then

38: ipoint = ipoint + 1
39: M(ipoint, :) = min(rbeam)Πe3

uTbeam(i)
40: else if ‖If(1 : 2, 1)‖ ≤ 0.5 · L1 then
41: ipoint = ipoint + 1
42: M(ipoint, :) = rbeam1Πe3u

T
beam(i)

43: else if ‖If(1 : 2, 2)‖ ≤ 0.5 · L2 then
44: ipoint = ipoint + 1
45: M(ipoint, :) = rbeam2

Πe3
uTbeam(i)

46: else
47: if ipoint > 1 then
48: break
49: end if
50: end if
51: end if
52: end for
53: end procedure
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−pfacec2

rbeam2(i+ k)ubeam(i+ k)

Bf2(i+ k)

rbeam2(i)ubeam(i)

Bf2(i)

Figure 4.2: Example of the intersection of two beams (long dashed lines) in different steps with
the plane of the visible face on the right and their acceptance (green line) or rejection (orange line)

based on the comparison between the norm of the corresponding If2 and the length of the face’s edge.

In a given instant, there are always two faces of the pier which are closer to the vehicle, except when

it makes a perfect 90◦ angle to the pier, in which there is only one. Similarly as before, now the closest

point of the pier can be found from the complete 3D definition available, which in turn allows for the

associated faces to be known. This algorithm takes the set of the laser beam’s heading angles α, the

normal vector n and centroid pfacec of the two visible faces, a length threshold rbeammax for the beams,

the rotation matrix B
I R, and the length of each face’s edge L. Knowing that the dot product of a face’s

normal vector nj with a vector Bf j alongside that face is zero, it is possible to build the latter so that it

contains the information regarding the range of the beam rbeamj it took to intersect the plane where the

jth face is located. Finding the range of the ith beam, when it intersects the face’s plane, can be done

through

nTj
Bf j = nTj

[
−pfacecj + rbeamjubeam(i)

]
= 0⇔ rbeamj =

nTj pfacecj
nTj ubeam(i)

, for j = 1, 2 (4.2)

where ubeam(i) =
[
cos(α(i)) sin(α(i)) 0

]T
with i = 1, ..., 1081 is its direction vector. This way, Bf j is

the sum of the vector between the centroid pfacecj and the vehicle location, i.e. the origin of the reference

frame, with the vector between that location and the point where the beam intersects the plane. It should

be noted that the actual face is only a small portion of the infinite plane it is contained in, thus all the

intersections that fall outside the actual face must be disregarded. With a valid intersection, rotating
Bf j to {I} yields a vector whose norm along the XY plane is necessarily smaller or equal than half

44



of the length of that face’s edge Lj , which can be used for screening purposes. Additionally, because

the data points are contiguous, when the algorithm finds an intersection outside the boundaries after

starting to obtain valid matches, it means the pier has ended. Thus, the scan stops to prevent spending

time analyzing directions that will no longer yield relevant information.

Another consequence of using planes that extend to infinity is that the calculation in Equation (4.2)

can yield both positive and negative values. Clearly only the former will have real physical meaning,

since they prolong the beam in its intended direction, whereas a negative rbeamj corresponds to an

intersection diametrically opposed, which can affect the sequential sampling of the points and cause a

premature ending of the algorithm. On the other hand, having complete knowledge about the location of

the pier, an upper boundary for the range of the beam can also be found. This way, rbeammaxj contains

the range along the XY plane of the furthest point within that face. Because the first task in each

step is obtaining this range, imposing these limits to rbeam can be used to reduce the computational

workload, by only considering one of the faces or even entirely skipping beams, depending on which

intersections meet the parameters. When both intersections are within acceptable values, most of the

times only one is actually valid. However, close to the perfect 90◦ angle it can happen that both of them

fulfill the necessary conditions thus far. This occurs because the difference in the closest corner is so

thin that one of the faces gets shielded behind the other and, for a few beams, this ambiguity arises.

The solution is ignoring the furthest intersection, because being behind another face it cannot actually

be seen. Implementing these verifications, to guarantee that only the relevant intersections are treated,

resulted into a reduction of the execution time to about 50% of the original duration of this algorithm.

These data points correspond to a perfect sampling of the outside world, therefore some noise needs

to be added to the measurements, in order to obtain data points closer to reality. Choosing a white noise,

with a standard deviation of 3 mm, provided data points very similar to those encountered during the

design of the data processing methods. In order to account for the reflection errors at the boundaries of

the pier, the last three data points at each end were given a white noise with respectively 4
3 , 5

3 , and 6
3 of

the standard deviation of the remaining measurements.

The last operation in this part is to obtain the data points in another reference frame. The sensor

provides the measurements in {B}, however to complement the representation of the environment, it is

necessary to use the aforementioned λ, to compute the set of data points IM as well.

4.3 Edge Kinematics

The block entitled Edge Kinematics in Figure 4.1 comprises the basis of the previously developed

work, in the form of a unified dynamic system defined as


Bp̂pierc(k)

HQ(k)

BQ(k)

IQ(k)

 = fLiDAR

BQ(k − 1)

IQ(k − 1)

 ,BM(k),λ(k)

 (4.3)
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This system has ten states and sixteen outputs, since each edgeQi with i = 1, 2 has two components

in {H} and {B}, due to the lack of Z coordinate in these reference frames, same as the location of the

pier’s center, and three in {I}. It receives as input the set of data points BM resulting from the latest

beam swipe and the current vehicle’s attitude λ. The function fLiDAR represents the processes involved

in the routines explained during Chapter 2.

4.4 Attitude Computation

This part is where the three main methods for attitude determination are implemented, each under the

form of a discrete-time system, working on the LiDAR’s sampling time and described in Sections 4.4.1

to 4.4.3.

4.4.1 Yaw Estimator Kinematics

The first method aims to obtain the yaw angle, as explained in Section 3.1.2. The function responsible

for this task is

ψ̂Y E(k) = YawEstimator(HQ(k − 1),HQ(k), ψ̂Y E(k − 1)) (4.4)

receiving the previous and current edgesQ in {H} and the previous yaw angle estimation ψ̂Y E . Because

during the simulation there is no access to the data from the IMU, the best measure for the true vehicle’s

attitude comes from the rotation matrix obtained through the integration of angular velocity, as presented

in Section 3.2.2. However, since during the simulation the angular velocity is assumed to be unbiased,

that attitude is considered the ground truth.

4.4.2 Rotation Matrix Observer Kinematics

The kinematics for this system follow from the explanation present in Section 3.2.2, that combined

with the discretization discussed in Section 4.1 yield

B
I R̂RMO(k) = e−S(ω̂(k))hLiDARB

I R̂RMO(k − 1) (4.5)

In this system, ω̂ depends on ω, which outside the simulation would be acquired through the IMU.

Since this source of data is not available in the simulation, the angular velocity will correspond to the

provided input. The angular velocity coming from the IMU is rather noisy, when compared to the sup-

plied constant step input, thus the simulation can yield results presenting smoother transitions than an

experiment with similar conditions.
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4.4.3 Wahba’s Problem Application Kinematics

This last method is also implemented as a function

B
I R̂WPA(k) = WahbasProblemApplication(BQ(k), IQ(k)) (4.6)

Its inputs are the current edges Q, in both {B} and {I}, yielding the rotation matrix that optimally

describes the transformation from the latter reference frame to the former.

4.5 3D View

The 3D View block is designed to provide valuable intuition, since it allows the visualization of the

whole interaction between the vehicle and the pier, in both {I} and {B}.

There are two viewing modes, the first in which the environment is displayed by considering {I} as

the reference frame, so the pier is fixed at a given known location and the vehicle can be seen moving,

according to its predefined trajectory around the pier. Additionally, λ is used to properly represent the

attitude of the vehicle, in this reference frame, and the data points collected by the vehicle are projected

in the pier. The alternative method of representing the surroundings is to take {B} as the reference

frame, where in this case the vehicle is fixed at the origin and the pier moves in relation to the vehicle,

as if it was being seen through its “eyes”. With this view, the data points remain in the same level as the

vehicle, since they are the result of a beam swipe.

Both these modes can be seen in Figures 4.3 and 4.4, in which the vehicle is performing a circular

trajectory around the pier, with a sinusoidal input to the angular velocities in the X and Y axes and a

constant angular velocity in the Z axis.

Figure 4.3: Visualization in {I} of a circular trajectory around the pier by the vehicle.
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Figure 4.4: Visualization in {B} of a circular trajectory around the pier by the vehicle.
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Chapter 5

Performance Evaluation

In Chapter 3, several methods were developed for attitude determination. Three of them demon-

strated potential and will be analyzed in Section 5.2, against what was being previously obtained from

the IMU. Before that, two more scenarios were planned and executed, both in a real and in a simu-

lated environment, with the goal of validating the aforementioned methods and are being described in

Section 5.1.

5.1 Testing Scenarios

With the intention of testing the methods in a wider range of conditions, several changes were made

starting from the initial experiments. These are being detailed in Section 5.1.1, whereas Section 5.1.2

goes through the necessary steps to mimic those conditions in the simulation discussed in Chapter 4.

5.1.1 LiDAR Experiment #3 and #4

These experiments go a step further than the last performed, discussed in Section 2.3.2.2, by con-

sidering an object with slightly larger dimensions, more specifically a cuboid cabinet with a rectangular

section of 0.95× 0.4 m. This is a relevant improvement, since a wider surface resembles more the future

structures to be inspected and allows for more data points to be collected, which makes the edge length

determination process more accurate. Similarly to Experiment #2, the idea is to start by facing both

edges with a 45◦ angle relative to the vehicle’s longitudinal axis and perform, with the rotors off, an about

90◦ counterclockwise arc around the object. However, this time the quadcopter was moved on a trolley,

which might contribute to additional stability and reduction of oscillations.

While Experiment #3 is made aiming at null roll and pitch angles in the image of Experiment #2,

with Experiment #4 the objective is to test the data gathering and attitude determination processes with

reasonable angles in the two axes related to these movements. For that purpose, the quadcopter was

placed on top of the trolley in a leveled position during the former experiment and tilted with wedges in

the latter, so that it would register a significant value of those angles.
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5.1.2 LiDAR Simulation #1 and #2

The idea behind these simulations is to mimic the conditions in place during the experiments, in

order to be able to establish a comparison and see how reliable the simulation platform actually is. The

input to the simulation consists of the angular velocity ω and the initial condition for the rotation matrix

kinematics.

The conditions of the experiments translate into angular rates along the axes in {B}, which are not

the same as angular velocities, since they refer to the axes in {I}. The relationship between those two

quantities is

ω = Q−1(φ, θ)λ̇⇔


ωx

ωy

ωz

 =


1 0 −sθ
0 cφ sφcθ

0 −sφ cφcθ



φ̇

θ̇

ψ̇

 (5.1)

therefore to approximate the behavior of the quadcopter during the experiments, the roll and pitch rates

are null and the yaw rate is a constant step of −4◦/s, corresponding to an approximately 90◦ rotation in

22.5 s, while the starting rotation matrix is build with a 45◦ yaw angle. Regarding Simulation #1, there

is φ = θ = 0◦ to compute ω and the initial condition of the rotation matrix, whereas to account for the

non-zero roll and pitch angles in Experiment #4, these values were modified to φ = 8◦ and θ = 12◦ in

Simulation #2.

5.2 Analysis of Methods

With the scenarios fully defined in both environments, the implementation of the methods can finally

be tested. These approaches were developed in Sections 3.1.2, 3.2.1 and 3.2.2 and will be evaluated in

Sections 5.2.1 to 5.2.3 respectively.

The IMU used during these tests is a MicroStrain 3DM-GX3-35. It provides several raw measure-

ments, associated with each sensor that composes it, as well as a set of quantities resulting from an

internal filter combining these measurements, such as a rotation matrix.

5.2.1 Yaw Estimator

The yaw angle ψ is now being compared between two possible sources, the rotation matrix from the

IMU and the continuity processing of the LiDAR data between consecutive steps. Figure 5.1 contains

the results for the two aforementioned experiments.

The yaw motion was performed with the objective of maintaining a constant velocity and conse-

quently a linear evolution of the corresponding angle, always in the same direction. Acquiring the yaw

angle ψ through the rotation matrix from the IMU, resulting from the combination of a gyro and magne-

tometers, proves not to be an entirely reliable method. This happens since the total traveled angles of

approximately 50◦ and 70◦, in the third and fourth experiments respectively, are much smaller than the

actually planned values of around 90◦ for the former and what ended up being slightly above that mark,

50



in reality, for the latter. Additionally, near the end of the experiment, the IMU shows an inversion in the

direction of the motion. This might be due to magnetic interference, in the testing environment, or poor

calibration of the algorithms running on the IMU, that fuse the data from the internal sensors to obtain

the attitude of the vehicle. On the other hand, the yaw angle ψ computed with LiDAR data presents

a realistic start and finish points, leading to a measure of the total traveled angle resembling the initial

goal, together with a closely linear slope decrease between these two instants, without motion inversion.

It should be noted that these two methods work according to different principles and have a natural

offset at the beginning, which was artificially removed for the purpose of a simpler visualization and

comparison. The relevant information retrieved from these results is the total traveled angle and how the

angle progresses along the way. Considering those parameters, the LiDAR data provides a description

much closer to reality, for what happened during the experiment. These remarks extend to both exper-

iments, with emphasis on the fact that this method was robust enough and yielded consistent results

even with significant roll and pitch angles.

Regarding the simulation, the results are present in Figure 5.2. Aside from the minor inevitable

variations of the slope, due to the artificially introduced noise that ended up being well attenuated, it is
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(b) Fourth experiment.

Figure 5.1: Experimental yaw angle of the quadcopter from the IMU and the yaw estimator.

Time [s]
5 10 15 20 25

Y
aw

 A
ng

le
 [d

eg
]

-50

-40

-30

-20

-10

0

10

20

30

40

50

Gyros
YE

(a) First simulation.
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(b) Second simulation.

Figure 5.2: Simulated yaw angle of the quadcopter from the gyroscopes and the yaw estimator.
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practically linear and a very good match with the experimental results, both with and without significant

roll and pitch angles.

Additionally, despite the rotation matrix used to compute the true attitude being derived from an

unbiased angular velocity in the simulation, what matters is how well the yaw angle obtained through

this method follows the chosen reference. This can be evaluated resorting to the quantitative analysis of

the yaw angle error in Table 5.1.

Error
Simulation

#1 #2

Mean −0.15◦ −0.16◦

Standard Deviation 0.10◦ 0.12◦

Maximum 0.48◦ 0.42◦

Table 5.1: Simulated yaw angle’s error of the quadcopter from the yaw estimator.

From that perspective, an error under 0.5◦, with an absolute mean and a standard deviation within

0.2◦, for both simulations, proves that this environment achieved its main purpose of providing a trust-

worthy representation of the results that would be obtained in an experiment, where the only difference

is that the rotation matrix would be coming from the IMU.

5.2.2 Wahba’s Problem Application

The attitude determination solution provided by the application of the Wahba’s problem takes the

measurements from the LiDAR and the accelerometer to calculate an optimal rotation matrix. It was

discussed in Section 3.2.1 and yields the results presented in Figure 5.3, for the experiments.

One of the first details to be noticed is the noise associated with the angles, specially regarding

the roll and pitch and despite the scale of the yaw. This method, by finding the optimal rotation matrix

that relates the measurements in both reference frames directly, at each time step independently, lacks

some really important filtering capabilities to provide a smooth description. This happens more evidently

to the movements in the XY plane, since there are more abrupt variations in the detail of the edges

that contribute to those calculations, their length. For the third experiment, the roll angle oscillates

predominantly in the positive values, whereas the pitch angle fluctuates around zero. When it comes to

the experiment with reasonable roll and pitch angles, both get higher variations. However, the former still

has a general tendency to be overestimated, while the latter becomes overall slightly underestimated.

Another point of interest is related with the integration of the data from the accelerometer. Without

this additional source, the ambiguity caused by having only one edge in some situations, and therefore

trying to resolve so many DOFs with so little information, would cause the results to be completely

unusable, with 90◦ jumps at these instants. Adding the acceleration vector to the observations led to the

quantitative analysis present in Table 5.2, where the error of each of the angles concerning movements

in the XY is kept below 10.1◦, with a mean between ±1.6◦ and a standard deviation lower than 2.6◦.
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Error

Experiment Simulation

#3 #4 #1

Roll Pitch Roll Pitch Roll Pitch Yaw

Mean −1.39◦ −0.26◦ −1.57◦ 1.52◦ 0.00◦ 0.00◦ −0.15◦

Standard Deviation 2.02◦ 1.47◦ 2.30◦ 2.58◦ 0.00◦ 0.00◦ 0.11◦

Maximum 10.02◦ 7.75◦ 7.37◦ 9.13◦ 0.00◦ 0.00◦ 0.48◦

Table 5.2: Experimental and simulated attitude’s error of the quadcopter
from the Wahba’s problem application.

Referring to the yaw angle in particular, it presents a very high resemblance to the previously pre-

sented method, which is a way to verify both results. Notice the slightly increased oscillations in this

angle during the fourth experiment, in contrast with a steadier response during the previous experiment.

The variations in the lengths of the edges mostly affect the roll and pitch angles, however they still have

an effect in the yaw angle, although with a reduced magnitude. Because there is no ground truth to

compare the yaw angle with, the error in this variable was left out of the quantitative analysis.

Given the properties of this method, such as the independence between steps and consequently the

intrinsic noise in the results, it should not be used for deriving an attitude description with the current

precision, despite all the three angles showing a close proximity to the expected values, in average.

Moreover, with a more accurate LiDAR sensor, both the noise and the error could be significantly reduced

up to a point where the use of this method would become feasible, with the advantage of a rather simple

implementation and low computational requirements.

Considering the simulated environment, for which the results are shown in Figure 5.4, there are a

few limitations while using this method. Because the simulation does not produce the equivalent to the

accelerometer measurements, a possible ambiguity cannot be resolved and the aforementioned jumps

will show up in the angles. For the first simulation, the intended roll and pitch angles are null so the Z

coordinate of the edges in {I} is naturally zero. In practice, setting these conditions is virtually the same

as removing a DOF from the problem, so the angle duality issue will never arise in this scenario due to a

lack of LiDAR measurements. Regarding the second simulation, the additional DOF is inherently present

and the issue may present itself when combined with the noise limitations. Despite the best efforts to

mimic its real behavior in the data, the noise is always unpredictable, given its statistical properties. It

specially affects the length of the edges, which is from where their Z coordinate in {I} is determined.

In the first simulation, the results are very accurate because of the roll and pitch conditions, with

these angles being null the entire time. The noise causes the lengths to be either really close or even

smaller than the real dimensions, which in the optimization discussed in the final part of Section 2.6

leads to a null vertical component. However, if the noise would cause a length larger than the pier’s

dimensions, it would originate an unrealistic Z coordinate, restoring the lost DOF and causing jumps.

These effects were not observed during this simulation, where the yaw angle also presented a great

match with the conditions set.
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(a) Third experiment.
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(b) Fourth experiment.

Figure 5.3: Experimental attitude of the quadcopter
from the IMU and the Wahba’s problem application.
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(a) First simulation.
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(b) Second simulation.

Figure 5.4: Simulated attitude of the quadcopter
from the gyroscopes and the Wahba’s problem application.
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On the other hand, the impact of the limitations that the noise imposes are specially visible during

the second simulation. Although the angles set for roll and pitch are considered significant from an

attitude perspective, their consequences on the length of the edges is still very small and comparable

to the previous simulation. Thus, the noise will cause the Z coordinate of the edges in {I} to oscillate

between their true and nominal values and the corresponding angles between their desired value and

zero. Closer to the end of the second simulation, the ambiguity of having only one edge and the noise,

that constantly changes the Z coordinate to zero back and forth, are the two factors that combined

originate the jumps observed in all three angles. It should be noted that, until the point when the jumps

started, the yaw angle followed the reference closely, but with an error regarding the previous simulation,

due to the small but existing effect of the lengths of the edges.

Considering the behavior observed during the last simulation, it makes sense to conduct a quantita-

tive analysis only on the first. The results from Table 5.2 show, as expected, a null error for the roll and

pitch. When it comes to the yaw angle, an error smaller than 0.5◦, with an absolute mean and a standard

deviation not reaching 0.2◦, also reveals a great modeling.

Based on all these findings, the simulated environment currently has a sufficient effectiveness to

represent this method in a real experiment with null roll and pitch angles. The same does not apply when

there are reasonable values of these angles, given the effects caused by the lack of accelerometer data

and the performance of the noise reproduction mechanism.

5.2.3 Rotation Matrix Observer

This approach, described in Section 3.2.2, estimates the rotation matrix based on data from the

LiDAR, the gyroscopes, and the accelerometers, in order to compute the full attitude of the vehicle,

where the last two sensors are part of the IMU. The results using this method, for the experiments, are

presented in Figure 5.5.

The first observation concerning these results is the presence of the aforementioned drift in attitude

between the rotation matrix from the IMU and from the biased angular velocity. The trend remains the

same, but there is a notorious error over time in all three angles, also increasing with motion. This can be

verified specially by the large deviation in the yaw angle, probably resulting from a flawed internal com-

pensation regarding the magnetometers, again due to electromagnetic interference or malfunctioning of

the data fusing mechanisms within the IMU.

The estimation has the starting rotation matrix from the IMU as initial condition and it presents a

satisfactory convergence, in both experiments. These results can be seen as a filtered version of the

Wahba’s problem application, without all the noise derived from having a step independent approach,

where all the angles show the same progression mentioned earlier.

Regarding the roll and pitch angles, the convergence to the data from the gyroscopes is better

in the third experiment and their oscillations, in either of them, are once again due to the precision

limitations associated with the procedure used to determine the length of the edges. However, this

behavior corroborates the fulfillment of the aforementioned Lyapunov conditions for stability, where the

error caused by the bias seems to remain bounded. In the quantitative analysis of Table 5.3, the error in
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the roll and pitch angles is within 4.9◦ during either of the experiments, where its mean stays between

±1.6◦ and its standard deviation is kept under 1.7◦.

Error

Experiment Simulation

#3 #4 #1 #2

Roll Pitch Roll Pitch Roll Pitch Yaw Roll Pitch Yaw

Mean −1.41◦ −0.31◦ −1.58◦ 1.45◦ 0.00◦ 0.00◦ −0.07◦ 3.27◦ 4.75◦ 0.74◦

Standard Deviation 0.93◦ 0.67◦ 1.12◦ 1.64◦ 0.00◦ 0.00◦ 0.06◦ 3.13◦ 1.67◦ 0.55◦

Maximum 4.07◦ 2.64◦ 3.27◦ 4.88◦ 0.00◦ 0.00◦ 0.16◦ 8.54◦ 7.83◦ 1.53◦

Table 5.3: Experimental and simulated attitude’s error of the quadcopter
from the rotation matrix observer.

For the yaw angle, in the entire duration of both experiments the convergence is much higher, re-

vealing a great match to the product of biased angular velocity. The response is also almost identical

with the previous two methods, which validates the accuracy of this observer regarding the yaw motion,

despite its inherent drift originated from the gyroscopes. As observed with the previous method, there is

a negligible increase in oscillations from the third to the fourth experiment.

In the end, the proximity in the roll and pitch angles makes them reliable until a certain degree, similar

to the application of the Wahba’s problem. However, their smooth evolution is what differentiates both

methods, which may be enough to control the vehicle with a sufficient accuracy. Once more, improving

the LiDAR measurements would reduce the uncertainty in the length of the edges and contribute to a

more trustworthy representation of the vehicle’s attitude, taking advantage of this method’s great filtering

characteristics and relatively low computational effort.

When it comes to the simulation, the results shown in Figure 5.6 are relatively consistent with the

experiments. In this case, since the attitude is derived from unbiased angular velocity, the existent

deviations are only due to the lack of the acceleration and the artificial noise introduced in the data,

same as with the simulation of the previous method.

Regarding the roll and pitch angles, the explanation for this behavior is the same as discussed in the

final part of Section 5.2.2. In the first simulation, the conditions are favorable to a great accuracy, with

all three angles presenting a close tracking of the reference, for the whole duration, despite the number

of observations and the noise. However, this method has a consistent output even with only one edge

at times, due to its history and filtering capabilities. This means that, in the second simulation, a lack of

measurements will not have such a damaging effect on the angles, but will prevent a better convergence

throughout time. The deviation it incurs will naturally also be amplified by the noise generation system,

ending up to be rather significant. In terms of errors, the results in Table 5.3 are according to the expec-

tation, regarding the first simulation, where the null error, in both angles, follows the same reasoning as

with the application of the Wahba’s problem. However, this time the second simulation can be analyzed

and the error is lower than 8.6◦, with a mean between 3.2 and 4.8◦ and a standard deviation below 3.2◦.

Once more, the yaw angle presents an almost perfect match between the rotation matrix from the

estimation and the unbiased angular velocity, in both simulations. Nevertheless, there is a small error of
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(a) Third experiment.
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(b) Fourth experiment.

Figure 5.5: Experimental attitude of the quadcopter
from the IMU, the gyroscopes, and the rotation matrix observer.
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(a) First simulation.
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(b) Second simulation.

Figure 5.6: Simulated attitude of the quadcopter
from the gyroscopes and the rotation matrix observer.
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the second simulation with respect to the first, as observed with the Wahba’s problem application. For

the first simulation, the error in this angle does not reach 0.2◦, where its mean and standard deviation

are nearly null. When it comes to the second, the error has an upper bound of 1.6◦, with a mean and

standard deviation smaller than 0.8◦.

Considering these results, it can be concluded that the simulation properly represents the events

from the experiments, although with limitations. According to these scenarios in particular, it proved to

be less reliable in describing what actually happens to the attitude with significant roll and pitch angles.
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Chapter 6

Synthesis of Controllers

So far, the basic tools for interpreting LiDAR data and retrieving both position and attitude information

from it have been discussed in Chapters 2 and 3 respectively, being fully validated later in Chapter 5.

The last stage is to build upon that work and design the real-time controllers, in order to achieve the

objectives established at the beginning. Because the quadcopter already has a base code created by

the research team at ISR, to perform various tasks, Section 6.1 goes through the necessary planning

to combine it with the new framework and make sure everything runs properly. Two separate controllers

will be designed at this time, with different purposes. The first is explained in Section 6.2, consisting of a

simple heading following controller, for a structure matching the proper requirements, and whose goal is

to mainly observe the behavior of the detection routines, in real-time, and their compatibility with control

tasks. Afterwards, a more evolved controller detailed in Section 6.3 aims at more complex features, such

as tracking a desired trajectory, defined relatively to the object of inspection.

6.1 Framework Integration

As mentioned in Section 2.3, there is a pre-existing LiDAR processing within the code that runs in the

quadcopter, which is responsible for clustering the data. In order to assess how the current framework

affects the runtime of the working setup, the execution times need to be compared and the total duration

has to be compatible with the processing power of the on-board CPU. Additionally, the control cycle of

the quadcopter is being run at the same frequency as the IMU, so at each step its 50 Hz are the upper

limit, in terms of total time.

Until this point, all the code had been developed in MATLAB, whereas the CPU on board runs C

code. Therefore, the routines had to be rewritten in this new language so that it could run natively, in

the quadcopter. After converting the code, the execution times were revisited, only to find that the new

framework led to an increase of less than 20% in the total duration, when compared with the pre-existing

code, which meant a change from around 2.1 ms to 2.6 ms. The final value is still reasonably smaller than

the maximum of 20 ms allowed, despite these numbers only accounting for the LiDAR data processing.
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6.2 Heading Locking Controller

The control of the yaw motion of an aerial vehicle can be usually described by second order dynam-

ics, when considering an actuation in torque. Because the quadcopter used for the testing did not go

through an identification procedure, there is not a mathematical model for the dynamics of the system.

However, there is an internal controller that given an angular velocity input, generates the necessary

torques for the vehicle. Before proceeding to the real-time implementation of a controller capable of

maintaining a desired heading to a pier, it is a good policy to build a simulated version in order to predict

how the system would behave in reality. For that purpose, the yaw kinematics were modeled as a first

order system, whose closed loop transfer function is given by

ωz(s)

ωzd(s)
=

1

Tψ̇s+ 1
(6.1)

where Tψ̇ is the time constant of the model and was chosen as 0.2, in order to produce a behavior which

is typical in these vehicles. In principle, the difference in behavior between the real system and the

simulation will mostly come down to the relationship between their time constants. To actually control

this model, a P controller defined as

u = ωzd = KP α̃pierc (6.2)

was considered to be suited, where α̃pierc = αpiercd − α̂pierc is the error between the desired and the

true heading to the pier’s center and KP is the controller’s proportional gain. A very important part of

any control system is limiting the actuator inputs, via saturation of the signals. In particular, because

the heading of the vehicle with respect to the pier is being controlled and there is a dead zone in the

LiDAR angle opening, it is crucial to ensure that it never reaches that area of the LiDAR’s field of view,

otherwise it would lose sight of the pier and interrupt the entire process without guarantee of recovery.

Given that this mechanism is controlling the angular velocity, the saturation limits were set to −127◦/s

and 127◦/s, for reasons that will be discussed shortly.

The complete block diagram of this system, in its simulated version, can be seen in Figure 6.1,

in which the initial simulation environment, discussed in Chapter 4, is condensed in the Simulation

block, without the viewing data structures and unused methods. This trimming leaves as output the only

quantity of interest in this case, which corresponds to the position of the pier’s center. Because the actual

P
Controller

Yaw
Kinematics Saturation

Simulation atan2αpiercd

+

α̃pierc ωzd ωz

ωx = 0

ωy = 0

u ωz

Bp̂pierc α̂pierc

−

Figure 6.1: Block diagram of the heading locking controlled system distinguishing
the controller (green), and the system plus sensor and processing (brown).
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control variable is the heading angle of the pier’s center in the LiDAR’s angle opening, it can be simply

computed though an inverse tangent, using the coordinates of this point. Furthermore, the horizontal

components of the angular velocity are now null, in order to keep the vehicle in the same position, and

the signal from the control loop is being fed to the simulation, as the remaining vertical component.

Concerning the tuning of the controller, the proportional term led to no static error or oscillations. For

that reason, no integrative or derivative terms were necessary in the control mechanism. The tuning of

the gain is partly a trial and error task, but in the end setting KP = 1.3 produced a prompt response

to a setup input of 45◦, with a settling time lower than 2 s and no overshoot or steady state error, as

Figure 6.2a shows. The control effort that a controller requires from the system is also a significant

performance indicator, which in this case is seen in Figure 6.2b as having reasonable values.
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(a) Heading response.
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(b) Control input.

Figure 6.2: Simulated output of the heading locking controlled system to a step input of 45◦.
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With a successful simulation of the controlled system, the next step is to implement it in the real

quadcopter. Before doing so, some precautions were necessary, in order to make sure the site was

secure. A platform on which to bound the quadcopter was built, so that it could operate within specific

limits, imposed regarding its intended DOFs. For this controller in particular, only movement around the

Z axis was necessary. With this in mind, the platform consisted of a very low drag rotating tray, to which

the landing gear was strapped on. A photograph of this early setup is presented in Figure 6.3.

Figure 6.3: Experimental setup of the heading locking controlled system.

Additionally, a Guest User Interface (GUI) was designed to allow a better real-time tuning and visual-

ization of the events. This interface was developed by the research team in the Robot Operating System

(ROS) and can be seen in Figure 6.4. It contains a graphic with the evolution of the heading relative to

the pier, a 3D view of the LiDAR data points at each beam swipe, and a control area where the heading

reference, the P parameter, and the trust command could be adjusted, effective immediately.

There are some details that require further explanation at this point. A quadcopter, clear from its

designation, possesses four rotors that are responsible for the movement in the 3D space. Generating

motion in roll or pitch is rather intuitive, since it implies shifting power within a pair of opposite rotors,

from one side to the other. This makes the vehicle acquire a deviation from the horizontal and therefore

the lift force to gain a non-vertical component, with a direction from the higher to the lower power rotor.

However, in order to perform a maneuver in yaw, the idea is to have opposite rotors spinning in different

directions. Then, having motion in this axis is a matter of slowing down one pair of rotors relative to

the other. Moreover, usually these vehicles have a main trust source, called collective, and secondary

sources, known as cyclic. Because of these facts, there is a direct dependency between the speed to

which the movement is performed and the speed at which both the collective and the cyclic are spinning.

This means that the faster the rotors spin, the sooner the control operation will be completed.
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Figure 6.4: Experimental interface of the heading locking controlled system.

The trust input of the quadcopter has a scale between 0 and 255, corresponding to a range obtained

with a total of 8 bits (28 = 256), that works as a ratio, without a clear physical unit. It was decided

to conduct the tests using around 50% of the available thrust, which translated into an input of 125.

Regarding the input in the cyclic actuators of the quadcopter, their total variation is the same as the

collective actuator but now the range goes from −127 to 127. Again, this interval follows the principle of

a scale, between the minimum and the maximum power allowed, that behaves as an angular velocity

input, in degrees per second. Intuitively, this was the expectation while controlling the attitude with these

actuators and boundaries. Additionally, an interesting discovery made during the tuning was that there

is a dead zone on the cyclic inputs, which depends on its proportion in relation to the collective. For this

choice of the collective, the dead zone was between around −20 and 20.

For the controller itself, the first attempt was to include only a proportional term, as during the simu-

lated environment. The quadcopter’s response showed a relatively constant static error, independent of

the reference’s amplitude. The initial idea was to add an integrative term to try compensating the error,

but it only made the controller oscillatory. The fact that the magnitude of the error did not show a direct

dependency on the reference was already an indication that it was not a usual steady state error, which

actually led to the aforementioned discovery. Because of the dead zone, as the heading approached

the goal, smaller and smaller inputs were required, reaching a point when this input was so small it fell

inside that zone and the control action stopped. The behavior of the integrator made sense, because as

it never reached the threshold, it kept accumulating until the input was out of the dead zone. But then

that input was higher than it actually needed to be, so it pushed the heading too far, eventually leading

to the same situation in the opposite side, which created a perpetual oscillation around the goal. In

the end, the solution was to keep the P controller and set the gain high enough to fight the dead zone

effectively, without bringing an unwanted behavior to the response.
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The optimal response was obtained by setting KP = 5, which can be observed in Figure 6.5a,

together with the magnitude of the control action in Figure 6.5b. These show a very similar behavior to

the simulated environment, maintaining a settling time below 2 s, a reduced overshoot, and an almost

negligible static error. Therefore, the simulation provided a trustworthy representation of the dynamics

involved in this process.
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(a) Heading response.
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Figure 6.5: Experimental output of the heading locking controlled system to a step input of 45◦.
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6.3 Trajectory Tracking Controller

This new and more complete controller intends to track both the position and the heading of the

vehicle relative to a structure, thus a more detailed model of the interactions involved in this task is

required, for the positioning component. The trajectory of such a vehicle needs to be defined not only in

position and velocity, to indicate where to move and how fast to get there, but also in attitude, given the

way the vehicle generates motion is through angular offsets of the generated thrust. With this in mind,

the simplified model


ṗ = v

v̇ = ge3 − T
mr3

ṙ3 = −S(r3)RT

[
ωx ωy 0

]T (6.3)

attempts to provide a description of the internal system of the vehicle, where p is the position, v is the

linear velocity, r3 is the third column of the rotation matrix from {B} to {I}, denoted here by RT for

simplicity of notation, T is the thrust input, m is the mass, and g is the gravitational acceleration. In this

model, which represents the vehicle in {I}, the position is assumed to be the integral of the velocity and

the velocity is obtained by reducing the application of Newton’s Second Law to the gravitational force

and the thrust in the vehicle’s vertical axis, neglecting drag effects and the interaction with the angular

velocity. Furthermore, to describe the attitude, only the third column of the rotation matrix was used,

since it is the component that affects the linear dynamics. Using this quantity leaves room for the yaw

motion to be independently controlled, in parallel with this strategy.

It is common, in control tasks, to define a desired state and an error variable, with respect to the

real value of the state. For this case, a desired position pd and velocity vd were set, followed by the

computation of the error dynamics


p̃ = p− pd

ṽ = v − vd

r̃3 = r3 − r3d

⇔


˙̃p = ṗ− ṗd = v − vd

˙̃v = v̇ − v̇d = ge3 − T
mr3 − v̇d

˙̃r3 = ṙ3 − ṙ3d = −S(r3)RT

[
ωx ωy 0

]T
− ṙ3d

(6.4)

where r3d and Td are the desired third column ofRT and thrust input respectively. A desired acceleration

ad = v̇d at this moment and later a desired jerk jd = v̈d also appear, both which were chosen as null for

simplicity purposes.

The approach to stabilize this nonlinear system consists of briefly dividing it into two simpler sub-

systems, introducing a new state x =
[
p̃ ṽ

]T
for the first. The idea is to take this subsystem and find

a control law for the trust input that removes its dependence. This way, the stability of the complete

system only relies on r̃3, the remaining state. For this task, it is assumed full access to the states, i.e.

independence from the attitude estimation discussed in Chapter 3, and no saturation considerations are

being made at this point. Defining T as
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T = Tdr
T
3 r3d (6.5)

leads to the velocity dynamics

˙̃v = ge3 −
Td
m

(
r3r

T
3 − I

)
− Td
m
r3d − v̇d

= ge3 +
Td
m
S(r3)2r3d −

Td
m
r3d − v̇d

= ge3 −
Td
m
S(r3)2 [r3 − r3d ]− Td

m
r3d − v̇d

= ge3 −
Td
m
S(r3)2r̃3 −

Td
m
r3d − v̇d

(6.6)

The following step is to set r3d according to

r3d =
m

Td
F , withF = ge3 − v̇d +Kp̃p̃+Kṽṽ (6.7)

with the goal of eliminating the unnecessary terms from the ṽ dynamics. In this equation, a vector F

was used for simplicity of notation, where Kp̃ > 0 and Kṽ > 0 are the controller’s position and linear

velocity gains respectively. Because it is a column of a rotation matrix, r3d needs to be a unitary vector.

This requirement can be easily fulfilled by defining Td as

Td = m‖F ‖ (6.8)

With these changes, the first subsystem assumes the form ẋ = Ax+B(Td, r̃3), where the kinematics

matrix A and the input matrix B follow from the updated system. Similarly as before, the stability can

be analyzed recurring to the Lyapunov stability theory. Building a quadratic Lyapunov function for this

subsystem yields

V1(p̃, ṽ) = xTPx (6.9)

where the symmetric weighting matrix P will be discussed shortly. The derivative of Equation (6.9) is

V̇1(p̃, ṽ) = xTP ẋ+ ẋTPx

= xT
(
PA+ATP

)
x+ 2xTPB(Td, r̃3)

= −xTΘx− 2Td
m

(
p̃TP 12 + ṽTP 22

)
S(r3)2r̃3

(6.10)

where the Lyapunov Equation was applied, in the transition from the second to the third step, to introduce

a new positive definite weighting matrix Θ. This matrix can be manipulated to tune the performance of

the system, since it establishes a relative importance between the errors in position and velocity and in

r3. In this function, the first remaining term is quadratic and negative. Thus, apart from the leftover term

in r̃3, that will be compensated while analyzing the complete system, the function fulfills the Lyapunov

requisites for asymptotic stability. At this point, transforming the kinematics of r3 to

ṙ3 = −S(r3)Πr3
ω = −S(r3)

[
−S(r3)2ω

]
= S(r3)3ω = −S(r3)ω (6.11)
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can help with further mathematical developments, where ω is an alternative input. The derivative of r3d

is also present at the r̃3 kinematics, which is given by

ṙ3d =
1

‖F‖
Πr3d

Ḟ = − 1

‖F‖
S(r3d)2Ḟ , with Ḟ = −v̈d +Kp̃

˙̃p+Kṽ
˙̃v (6.12)

Following a similar structure, a Lyapunov function for the remaining state can now be defined as

V2(r̃3) =
1

2
r̃T3 r̃3 (6.13)

where the only difference is that the weight is constant and equal to 1
2 . The derivative of the latest

Lyapunov function is

V̇2(r̃3) = r̃T3 ˙̃r3

= r̃T3

(
−S(r3)ω +

1

‖F‖
S(r3d)2Ḟ

)
= r̃T3

(
−S(r3)ω +

1

‖F‖
S((r3 − r3d) + r3d)S(r3d)Ḟ

)
= r̃T3 S(r3)

[
−ω +

1

‖F‖
S(r3d)Ḟ

]
(6.14)

which depends on ω, the bridge to the undefined inputs of the system. This variable can be set to

compensate the necessary terms in each function, in order to ensure asymptotic stability.

Theorem 6.1. Considering the system in Equation (6.4), if the input T is set according to Equation (6.5),

the references r3d and Td are given by Equations (6.7) and (6.8) respectively, and ω is defined as

ω =
1

‖F ‖
S(r3d)Ḟ − S(r3)

[
2Td
m

(P 12p̃+ P 22ṽ) +Kr̃3 r̃3

]
(6.15)

where F and Ḟ follow from Equations (6.7) and (6.12) respectively, P 12 and P 22 are constant design

matrices, and Kr̃3 > 0 is the controller’s third state gain, then the closed loop system is asymptotically

stable.

Proof. Writing a joint Lyapunov function, resulting from the sum of Equations (6.9) and (6.13), yields

Vf (p̃, ṽ, r̃3) = V1(p̃, ṽ) + V2(r̃3) = xTPx+
1

2
r̃T3 r̃3 (6.16)

Using Equation (6.15), the derivative of this function corresponds to

V̇f (p̃, ṽ, r̃3) = −xTΘx−Kr̃3
‖S(r3)r̃3‖2 (6.17)

which is composed of only negative definite terms, remembering that Θ is a positive definite weighting

matrix. Therefore, asymptotic stability is guaranteed, as originally intended.

The constant design matrices P 12 and P 22 from Theorem 6.1 correspond to the blocks of P that are

relevant to the control task. Using once again the Lyapunov Equation, they are given by
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PA+ATP = −Θ

⇔

P 11 P 12

P 12 P 22

 0 I

−Kp̃I −KṽI

+

0 −Kp̃I

I −KṽI

P 11 P 12

P 12 P 22

 = −fΘ

I 0

0 I


⇔

P 12 = fΘ

2Kp̃
I

P 22 = fΘ

2Kṽ

(
1 + 1

Kp̃

)
I

(6.18)

where its symmetry property was used and fΘ is a scaling factor. The input to the system dynamics can

now be defined as

u =
[
ωx ωy ωz T

]T
(6.19)

where
[
ωx ωy 0

]T
= −RS(r3)2ω, according to Equation (6.11), and ωz can be computed with the

controller developed in Section 6.2.

The saturation limits of the control signals will be the same used so far, although now the references

should be given conservatively, to avoid any unwanted behavior. This means that the angular velocities

will be restrained to the assumed boundaries of −127 and 127◦/s, as mentioned in Section 6.2.

Regarding the implementation of the new strategy in a simulated environment, it was necessary to

fully redesign the internal mechanisms, to accommodate the added dynamics and establish the required

control feedbacks. The block diagram for the new strategy is presented in Figure 6.6, where each

separate section is highlighted to provide a better understanding of how each component connects with

the next.

From the simulation built in Chapter 4, all the viewing tools were removed for the sake of simplicity,

together with the quantities deemed unnecessary for this application. Starting with the System block

group, it includes the well known Rotation Matrix Kinematics block and intends to replace the third

equation of the system presented in Equation (6.3). The relevant components of its output are being fed

to the added Quadcopter Dynamics block, which is not more than the first two equations of the same

system. In the Sensor zone, the trajectory of the vehicle is no longer a known and constant piece of

information, but rather the product of the dynamics of the system. The Processing block group keeps

the same core, when compared with the initial simulation, whose outputs are delivered to the newly

built Control zone. The latter is comprised of two controllers, the first from the previous section, where

the difference is that the saturation block was relocated, from within the Heading Controller block, to

act on all three angular velocity components later. The Position Controller block below receives the

desired position and velocity of the vehicle and computes the control law for the angular velocities in the

horizontal plane, designed according to Equation (5.1), and the trust, presented in Equation (6.5).

With this controller, the tuning process rests on choosing the best values for the gains Kp̃, Kṽ and

Kr̃3 , which are basically weights of the error variables, and the factor fΘ. The attitude subsystem,

concerning r3, constitutes the inner loop of the system, therefore it has to be faster than the position

subsystem. With that in mind, the parameters need to be chosen with the goal of keeping the errors

in position and velocity small, with respect to the attitude. Considering Kp̃ = 1.3, Kṽ = 2, Kr̃3 = 10,
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Figure 6.6: Block diagram of the trajectory tracking controlled system distinguishing
the controller (green), the system (orange), the sensor (red), and the processing (blue).
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and fΘ = 0.01 accomplished that objective and yielded a swift response, with a settling time under 4 s

and no overshoot or steady state error, as well as an acceptable control effort, shown in Figures 6.7a

and 6.7b respectively. Additionally, Figure 6.7c presents an overview of the trajectory traveled by the

vehicle, with the evolution of the position and heading combined, to offer a full realization of the control

task. It should be noted that, in order to reject disturbances in the heading angle, the gain from the

controller in Section 6.2 was retuned to KP = 2.3.

When it comes to the real setup, some upgrades had to be made to unlock the two additional DOFs,

necessary for the proposed motion of the quadcopter. For this purpose, the aforementioned tray, to

which the vehicle was strapped, was connected through a mechanical arm to a base, allowing it to

perform a radial movement around that point, as well as moving vertically. Moreover, the tray now had

a system of springs, providing the vehicle with a limited flexibility in roll and pitch and therefore allowing

it to move in the horizontal plane. The last additional detail is the presence of a low drag wheel on the

bottom of the tray, to easily maneuver the vehicle on low power settings. The latest version of the setup

is presented in Figure 6.8.

The GUI was also updated, as shown in Figure 6.9, and incorporates an additional graphic, showing

the evolution of the vehicle’s position, together with the necessary references and gains for this controller.

For the implementation of this controller in the quadcopter, the trials are currently in preparation, for

a complete testing, and experimental data can be found in future works.
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(a) Complete assemble.

(b) Platform.

(c) Base.

Figure 6.8: Experimental setup of the trajectory tracking controlled system.

Figure 6.9: Experimental interface of the trajectory tracking controlled system.

74



Chapter 7

Conclusions

This thesis proposed a solution to the problem of laser-based control of rotary-wing UAVs, consid-

ering the entire process comprising the acquisition and treatment of the sensor’s measurements, the

development of methods to compute the relevant quantities to describe the motion of the vehicle, and

the design and implementation of stable and effective controllers, based on that information.

The first chapter attempted at unveiling the status of UAVs in the world, briefly describing what these

vehicles are and what can people hope to achieve with them, considering their on-board equipment and

general characteristics. It was also mentioned how their stance in society is shifting towards more busi-

ness oriented tasks, that aim at reducing the amount of risk and money spent on essential procedures,

such as routine inspections. After exposing these motivations, a proposal was made regarding a relative

positioning solution, based on the available sensors, with several necessary stages until reaching the

established objectives.

Perceiving the environment was the topic of Chapter 2, where the work was laid out. First the

reference frames were established, crucial to later relate the measurements across several descriptions,

followed by an analysis of the sensor’s precision, paramount to being able to obtain consistent results

with the methods to be designed. There were some limitations regarding the accuracy of the LiDAR,

depending both on the distance between the objects and the sensor and on the location, in its field of

view, where they were being detected. More specifically, the errors were higher both when the object

was at less than 2 m to the sensor and when it was detected in its 45◦ frontal cone. The geometry

initially considered was a cylindrical section, with which the LiDAR could not provide data points accurate

enough. This led to the second and final geometry, the rectangular section, where its straight edges, only

varying in length, removed part of the unpredictability found in curvature of the previous shape, the circle.

The outlier detection was one of the tasks with simultaneously the higher amount of uncertainty involved

and future importance. The presence of outliers deeply affects the length of the edges being fitted,

which is exactly the source from where the vehicle’s attitude is being retrieved, with any of the methods

developed. These undesired data points may arise from the sensor’s noise, reflection of the laser beams

or even lighting conditions, and are very unpredictable. The strategy to identify and remove them went

through many stages, with every new experiment reveling new exceptions and requiring a threshold
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adjustment, until the ideal trade-off to obtain robust algorithms would be found. The edge splitting

and the outlier trimming were two deeply connected processes, so they needed to be carefully tuned

together. Regarding the geometry fitting, both a least squares and a reduced space Hough transform

algorithm were implemented, where the former led to a better ratio between quality of the results and

computational effort than the latter. In the end of this chapter, the full description of the edges of the

structure was built, in the appropriate reference frames. The representation in {I} heavily depended on

their constantly fluctuating length, due to outliers, therefore its calculation had to be carefully considered

through an optimization, using the available properties of this geometry and backward coherent samples,

in order to obtain smooth results.

The next stage was extracting the attitude from the structure’s description, in Chapter 3, using differ-

ent methodologies. At first, the idea was to provide the attitude regarding the horizontal plane, however

solely using the LiDAR measurements yielded results not reliable enough to be applied in a continu-

ous way, given the high variations observed. Taking advantage of their other properties, the attitude in

the vertical plane was investigated and after redesigning the least squares fitting, a fast and thorough

algorithm was created to describe the yaw motion, also merging data from the IMU at a high level.

Nevertheless, fusing data from this sensor at a lower level enabled the pursuit of a full attitude descrip-

tion, by initially applying an existing solution for the Wahba’s problem, on the group of rotation matrices,

and later designing a nonlinear filter, aiming at an increased accuracy. The application of the Wahba’s

problem relied in a very straightforward implementation, where its main concerns were the fact that it

considered each time step separately, possibly leading to a noisy response, and its need for at least

two measurements at each moment, otherwise there would be a DOF unaccounted for and therefore

an angle ambiguity in the attitude. On the other hand, the nonlinear observer made an estimation that

evolved throughout time and was expected to yield smooth results. This method was also evaluated for

its stability, with respect to the possibility of drift in the angular velocity being acquired from gyroscopes,

where a bounded bias was seen to lead to a bounded error in the final product.

Chapter 4 was in charge of building a complete simulation environment, to test the previously de-

veloped methods, without the need to call upon real hardware right away. This simulation focused on

modeling the vehicle dynamics with the rotation matrix kinematics. After these kinematics, the creation

of the LiDAR’s data points had to be mimicked, to simulate the internal functioning of the sensor, for

which an algorithm was designed. This algorithm was much more efficient than other external alter-

natives for the same base purpose, the intersection of a 3D shape by a line or beam. The rest of the

simulation was responsible for applying the procedures, discussed in Chapters 2 and 3, in the form of

independent systems, which would be useful later for a real implementation, where modularity is key.

Additionally, a visualization tool was added in parallel, to allow an extremely intuitive output of the whole

process in a continuous way, featuring the vehicle with its translation and rotation represented, together

with the acquired data points projected along the structure.

Two experiments were planned and presented in Chapter 5, with the intention of comparing the

methods in equal circumstances, through several scenarios. Because the attitude in the horizontal

plane maintains a strong dependence with the accuracy of the edge’s lengths, the first was conducted in
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null roll and pitch conditions, while the second considered reasonable values for these angles. This way,

the impact of the sensor’s noise and the effectiveness of the data treatment could be evaluated. Three

of the methods presented in Chapter 3 were tested, both in a real and in a simulated environment. The

yaw movement tracking presented a good performance in both environments, revealing an adequate

adjustment to real data and a proper simulation at the same time. However, despite being accurate and

having a low computational load, this method can only describe the motion in the vertical axis, which

led to the creation of the full attitude estimation alternatives. Considering the application of the Wahba’s

problem, the results of the experiments corresponded to the expectation, by achieving a close but noisy

description of the attitude, when compared to the reference from the IMU. When it comes to the sim-

ulation, because only the kinematics associated with the rotation matrix were being modeled and the

accelerometer was not available, the concerns initially raised with this method were confirmed. The lack

of sufficient measurements in the simulated environment, together with the artificial noise affecting the

length of the edges, led to an unrealistic reproduction of the behavior observed during the experiments.

The rotation matrix observer obtained the best results, where the attitude description obtained in the ex-

periments can be seen as a filtered version of the previous method, maintaining a similar proximity to the

reference. In the simulation, the absence of the accelerometer also degraded the response. However,

it only limits the convergence in the horizontal plane’s components of the attitude, since this method

does not have the same restrictions regarding the minimum number of measurements as the Wahba’s

problem application. Therefore, the simulated environment presents a reasonable representation of the

events carried out during the experiments. It should be noted that the oscillations in the last two meth-

ods, in the roll and pitch angles, are directly related to the uncertainties while determining the length of

the edges. Moreover, all methods presented a yaw motion description very similar among themselves

and to what was planned in reality, unlike what was obtained with the IMU. For implementation purposes,

the last method shows the most promising behavior.

The final stage of this thesis is discussed in Chapter 6 and concerns the integration of the procedures

in the vehicle and the design of controllers, set to achieve the initial goal of tracking a trajectory, defined

relatively to a structure. First, the code developed in MATLAB needed to be rewritten in C, to allow the

vehicle’s CPU to run it directly. This conversion process consisted of adding new code to what already

worked as a whole before, so it needed to have a compatible execution time and blend seamlessly with

the pre-existent framework. After ensuring a successful code migration, a target locking controller was

developed, with the objective of maintaining a certain heading to a pier. This control system was built

based on a first order model of the yaw kinematics. A simulated version of the controlled system was

designed, obtaining a prompt response to a step input, with no overshoot or steady state error, using a

P controller. For the real implementation, both an experimental setup with a single DOF in yaw and a

real-time controller interface for tuning were built. Because the vehicle had a dead zone, the gain of the

P controller needed to be high enough to compensate it and reach a satisfactory response, revealing a

great match between the simulation and the real system. The full position controller was then consid-

ered, where the simplification of the force balance that describes this system led to the error dynamics.

The approach to stabilize this nonlinear system consisted of briefly separating it into two simpler subsys-
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tems. This strategy was combined with knowledge derived from Lyapunov’s control theory, in order to

compute the inputs that guarantee the asymptotic stability of the system. The simulation of the new con-

trolled system was implemented, requiring a deep restructuring of the working simulated environment.

The missing step was to tune the parameters of the controller to obtain an optimal response. Reducing

the magnitude of the errors in position and velocity with respect to the third state achieved that goal,

yielding a swift response, with no overshoot or steady state error. After that, the experimental setup was

upgraded to unlock the additional two DOFs, necessary for the proposed motion of the vehicle, and the

interface was modified to accommodate the real-time tuning of the new parameters.

7.1 Future Work

Every stage yielded results that can be used on their own for a variety of other applications, given

the modularity effort employed throughout this work. The most significant contributions from this work

are the LiDAR data processing tools, including the geometry analysis and the data points treatment, the

methods to compute the attitude from a limited source of measurements, such as the rotation matrix

observer, and the trajectory tracking controller, guaranteeing the asymptotic stability of a nonlinear sys-

tem. Given their performance in both experiments and simulations, they could be brought to real world

applications.

The directions for future work focus on two fronts, the first being the completion of the experimental

testing of the trajectory tracking controller, currently in its final stages of planning. Afterwards, there are

the considerations concerning the improvement of the developed algorithms or the approaches them-

selves. A significant amount of the effort behind this thesis was put on treating the data from the LiDAR.

This data, more than often, presented new challenges and required an adjustment of the methodology

that had been planned so far. The use of more accurate LiDAR sensors, when they become available,

may lead to more predictable observations and therefore to an easier and more reliable processing of

the information. Besides that, there are many more strategies in place to deal with similar situations,

from which only a selected few were tested within this scope. A proposal would be to investigate what

other available methodologies have to offer, in terms of an increase in performance.

Although one of the main concerns, while testing every method, was to consider the a large number

of scenarios to make them robust, there are always unforeseen cases that can eventually cause an

exception in the routines. With the goal of making the transition of these controllers to real applications,

further testing in even more adverse conditions may also be a point of interest. Furthermore, employing

LiDAR sensors with a higher accuracy can also bring back the discussion on cylindrical structures and

therefore open the solutions developed in this thesis to a wider range of possibilities. As mentioned in

Section 2.3.1, the curvature of such structures makes it difficult to obtain meaningful results with the

current sensors, so future technological advancements in this area may benefit those scenarios.
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