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Abstract 
This study applies model-free reinforcement learning (RL) on a case study based in Utrecht province in 

the Netherlands to optimize for on-site renewable energy. This aims at reducing the interaction of net 

zero-energy buildings with the grid as a result of an increase of heat pump installations and renewable 

energy systems (RES) integration. It is believed that this will become increasingly more important since 

the regulations regarding 2020 ascribe significant increase in energy efficiency of the built environment. 

On-site RES self-consumption is therefore a central lead in this research. The project data comprise air 

source heat pump and solar energy data of 6 different households for the months June to November 

2016. The RL learning algorithm was applied to the different data sets to derive an optimized individual 

and generalized control strategy. Simulations were carried on, to acquire the resulting energy 

consumption, self-consumption, and self-sufficiency. The results show an increase of individual self-

consumption between 17% and 348% and self-sufficiency between 18% and 72%. This results in an 

additional monetary benefit for the occupants based on the transition proposals of 2020 for the 

renewable energy generation net-metering abolishment in the Netherlands. Furthermore, reducing the 

grid interaction implies benefits for the grid operators in terms of investments required for grid 

reinforcement. 
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Summary 
The renewable energy share is increasing significantly in the residential built environment energy sector 

which implies an expected increase in grid interaction. Much effort has been invested in building energy 

demand reduction through many efficient building design concepts and strategies such as zero energy 

buildings. However, research has shown that a significant performance gap is evident between predicted 

and actual building energy performance. Occupant behaviour is believed to play an important role in this 

matter. This has a negative influence on the objective of net Zero Energy Buildings (nZEB) for these 

concepts are formulated, amongst other, according to a simulated share of the renewable energy source 

(RES) of the total residential energy consumption. It is therefore crucial to predict the building energy 

consumption accurately in order to arrive at an accurate nZEB building energy performance. In addition, 

the inaccuracy of renewable energy consumption results in a larger than expected feed to the grid.   

 Moreover, the installation of electrical heating systems such as heat pumps is projected to 

increase substantially. With the objective of large scale implementation in nZEB concepts, this implies a 

significant increase in grid interaction as a result of both the electrification of nZEBs and the installation 

of renewables challenging the stability of the utility grid. Optimizing control strategies is therefore 

necessary to be applied to regulate the building energy loads in order to implement peak shaving to 

reduce the need for grid reinforcement. As a result, this will allow for larger integration of RES in the 

residential built environment. Additional advantages hold a reduction of required storage capacity. 

 The majority of the research in this field relies on optimization of load matching by means of 

rule-based control and model-predictive control. These methods have the disadvantage of being poorly 

generalizable for system specifications and lack the potential to incorporate accurate predictions for the 

occupant behaviour. It is argued that data-driven methodologies such as reinforcement learning 

algorithms (RL) are therefore more suitable for such applications. One advantage of model-free learning 

algorithms over model-based approaches, is that it provides generalisability whilst physical models are 

built based on specific cases. This makes them generalizable and not domain-specific.  

 In order to accurately incorporate the stochastic nature of occupant behaviour and enhance 

generalisability, model-free RL algorithms will be applied in order to find the optimal control strategy for 

an air-source heat pump (ASHP) for the domestic hot water (DHW) load for a case study in Soesterberg 

in the Netherlands. The available data for the case study comprises data of June to November of 2016 

for 6 different houses.   

 The optimal control strategy is required to optimize for solar energy self-consumption and self-

sufficiency, facilitated by the ASHP and hot water storage vessel. The occupant comfort and the 

efficiency of the ASHP are two limitations for the optimization. Hence, the self-consumption is not 

supposed to increase by means of dissipating solar energy.  

 

The results show a significant reduction in the grid interaction as a result of the optimized solar energy 

consumption. The solar energy self-consumption increased by 91% on average compared to the baseline 

values. This leads to a rise in the self-sufficiency of around 36% on average reaching final an average self-

sufficiency of 89% in summer. The ability of the algorithms to incorporate the occupant behaviour proofs 

to improve ASHP control strategies for maximizing on-site renewable energy consumption. Therefore, 

applying this algorithm on a cluster level provides promising results for the objectives of the study in 

terms of profitability for the grid operators and the occupants.  
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List of abbreviations  

 
ASHP – Air Source Heat Pump 

COP – Coefficient Of Performance 

COP21 – Paris Climate Conference 2016 

DG – Decentralized Generation 

DP – Dynamic Programming 

DHW – Domestic Hot Water 

DSM – Demand Side Management 

DSO – Distribution System Operator 

EBC – Energy in Buildings and communities 

HVAC – Heating Ventilation And Cooling 

IEA – International Energy Agency 

MDP – Markov Decision Process 

MPC – Model Predictive Control 

NREAP – National Renewable Energy Plans 

nZEB – Net Zero Energy Buildings 

PV – Photo-voltaics 

RED – Renewable Energy Directive 

RES – Renewable Energy Systems 

RL – Reinforcement Learning 

TD – Temporal Difference 

TES – Thermal Energy Storage 

 

List of symbols 

 
Q0  - Action Value Function for action 0 

Tm – Midpoint temperature 

Tset – Maximum Set point to which the vessel is reheated  

Tthreshhold – Minimum temperature the vessel is allowed to reach 
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1. Introduction 
Recent developments in the global policies regarding CO2 and climate are evident from representations 

such as the Paris climate conference (COP21) held in 2016 [1]. The mandate stated in Paris portrays a 

global willingness for taking action in the context of shifting towards a low carbon economy [1]. 

Renewable energy technologies are being integrated on an increasingly larger scale as time progresses as 

shown for the European case in fig.1 [2]. The European statistics show a gradual increase for the 

individual National Renewable Energy Plans (NREAPs) of the European member states complying to the 

Renewable Energy Directive (RED) [2].  

This progress corresponds with international and local policy development, such as those in the EU, 

prescribing binding directives carving a path for a larger integrated renewable energy share [3]. The 

development towards a carbon free energy market is realized by reforming the different energy sectors. 

The European energy market is divided in four main sectors comprising the residential built 

environment, industry, transportation and services [4]. Different policies are directed for each of these 

sectors according the current and projected production and consumption. The energy consumption of 

European households alone comprises around 26 % of the final energy consumption. Therefore, like for 

the other segments of the energy sector, policies have been stated regarding energy conservation in the 

residential built environment. The most determining directive indicates that all new building must be 

nearly zero energy buildings by 2020 [5]. Furthermore, when the nearly zero energy concept is 

developed, it could be further extended to a net zero energy buildings performance concept. A net Zero 

Figure 1. Energy mix 1990 – 2015 [2] 
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Energy Building (nZEB) concept provides that the energy consumption beyond the high energy 

conservation, the remaining energy consumption of the building is compensated by onsite energy 

generation [6]. In the IEA SHC Task 40/ECBCS Annex 52, several criteria have been set for defining zero 

energy buildings concepts. This is due to the large variety of building energy sources and sinks making up 

the total energy balance. The focus of this thesis will rely on the energy segment of the nZEB that is 

provided by the renewable energy source at stake for that segment is highly dependent on load 

matching.  

 

1.1. R&D and policy 

The policies mentioned in the previous section give shape to subsequent measures aiming at achieving 

energy conservation objectives depending on the responsible institution and specific location. The 

International Energy Agency (IEA) is one of the prominent organisations promoting research and 

development serving as an advisory source for policy makers in 29 member countries [8]. Accordingly, 

the IEA has established several programmes initiating objectives for research in this field. A relevant 

programme for this paper is the Energy in Buildings and Communities (EBC) programme established as a 

result of its predecessor program, the Energy Conservation in Buildings & Community System (ECBCS) 

and the Solar Heating and Cooling Program (SHC) programme. These programmes are initiated in 

recognition of the significance of energy consumption in buildings executed through a series of annexes 

in the EBC programme and Tasks in the SHC program [9]. The projects extend the IEA objectives 

concerning renewable energy, to building related energy and building integrated solar power 

applications. Additionally, IEA sets up a heat pump program (IEA Heatpump Program) providing an 

international information service for heat pumping technologies, applications and markets [10]. A third 

interesting programme set up by the IEA correlated with building energy efficiency, is the IEA Demand 

Side Management Energy Efficiency Technology Collaboration Program (DSM TCP) aiming at developing 

and promoting opportunities for demand-side management [11].   

 

Projects likes these provide the required R&D to serve as support and framework for policy change in the 

context of the residential built environment. These developments are especially crucial for enhancing a 

large-scale deployment of renewable energy and energy efficient technologies in the pursuit of reducing 

greenhouse gasses emissions. The 28 EU member states have increased the share of the final energy 

consumption generated by renewables from only 14.4 % in 2004 to 16 % in 2014 [12]. Currently, the EU 

has set their mission to increase the renewable energy share to be 20% of the final energy consumption 

in 2020 [3]. The requirement for faster transition to a carbon free energy mix indicates the 

unquestionable key influence of policies on the energy market. This total European RES share is 

effectuated by allocating specific energy from renewables targets to the different member states. The 

individual targets have been set according to the individual GDP, modulated to reflect the individual 

starting points, and by accounting in terms of gross final consumption of energy with account being 

taken of the individual past efforts with regards to the use of energy from renewable energy sources 

[13]. The targets vary between 10% to 49% of the final consumption.  

1.1.1. The Dutch context 

A target of 14% has been fixed for the Netherlands for 2020 given the limited current share of 

renewables of around 5.8% [14]. The Dutch government followed by initiating policies aiding this goal. 

The first regulation to mention is the SDE+ subsidy allocation of euro per unit of energy for enterprises, 
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companies and institutions generating renewable energy. A budget of € 4 milliards is allocated in total to 

cover the subsidy applications comprising renewable energy generated from biomass, geothermal, 

water, wind, and solar. Different conditions apply to each of these different sources of energy [15]. The 

second stimulation measure, the EIA, is given in the form of a tax reduction to the revenue tax of 58% for 

investing in energy saving and renewable energy technology. On average this tax reduction could save up 

to 14 % of the cost resulting from energy consumption and taxes [16]. A total budget of €161 million is 

allocated for this scheme. An additional created incentive is a subsidy for individuals purchasing a solar 

water heater, heat pumps, biomass boiler, and pellet heaters [17]. Whereas the previously mentioned 

subsidies hold for enterprises and companies, the ISDE subsidy is open for individuals interested in 

investing in energy saving technologies such as for their own households or offices.  

Other measures include the increase of taxes on oil and natural gas and covering the cost related to risks 

of drilling in unsuitable locations for geothermal applications [18]. All of these measures hold up until 

2020 in order to meet the directive’s goals.  

 Similar goals have been set for the built environment to enhance the improvement of energy 

efficiency and deployment of renewables. The main aim of the national policy regarding this issue is 

reach nearly zero energy buildings towards the end of 2018 to 2020. In order to reach this goal, the 

standards for the energy performance has been tightened since January 2015 [19]. Government 

buildings have to be transformed to nearly zero energy buildings by the end of 2018 and all other 

buildings will follow from 2020 and on.    

1.2. nZEB grid interaction and the role of grid operators 

Given the aforementioned directive concerning the nZEB implementation and the directive of a share of 

20% renewable energy in the final energy consumption in 2020, a change in the energy infrastructure is 

necessary to accommodate this significant increase of volatile power to the grid. Generally, it is argued 

that in order to reach significantly large shares of renewables, the current infrastructure should be 

transformed from a centralised to a decentralised generation (DG) system that would utilise renewable 

energy technology sources [20]. This is due to the rise in locally generated energy compared to the 

traditional centralised power plants, adding new actors to the energy system. Moreover, aiming at 

increasing energy efficiency, energy consumption close to the source is favourable to avoid transmission 

and distribution losses as a result of necessity to transport the generated energy to the load over long 

distances.  

Figure 2. Hourly electricity consumption from a random sample of 1000 residential utility consumers, for a typical weekday [21] 
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The rise in decentralised energy generation imposes risk for the grid reliability as a result of power 

congestion caused by the volatile renewable energy resources. The high power fluctuation of renewable 

energy sources such as wind solar power pose several challenges on the power quality and have 

therefore to be carefully implemented [20]. Moreover, residential energy demand patterns are often not 

matching the power production patterns of the renewable energy sources. In fact, an average European 

load demand of a residential building is known for having two dominant peaks, one in the morning and 

one in the evening as shown in figure 2 [21]. These peaks are not synchronous with daily solar radiation 

patterns which has a peak around noon.  

This could be addressed by integrating more storage facilities and reinforcing the grid components such 

as the transformers and cables which, given the required RES goals of 2020 and beyond, implies 

significant investments. The weak link in this area of renewable energy generation is the lack of large 

scale storage capacity due to its relatively high cost. Also, increasing the size of the grid components is a 

similarly costly procedure. However, it is believed that the necessity for a costly reform of the energy 

infrastructure could be reduced and substantially spread over a larger period of time if the variety of 

decentralised actors could be centrally monitored and managed [74]. The need for centrally monitoring 

and managing the variety of power sources and sinks in the grid has introduced the concept of Smart 

Grids [74]. Smart Grids are required to facilitate real-time monitoring and steering tools so as to allow 

the distribution and transportation capacity of the grid to progress in a more flexible fashion.  

 In the traditional top-down approach of the energy system, the Distribution Systems Operators 

(DSO) is the main responsible for the operation and maintenance of the distribution system. However, 

the need for Smart Grids imposes the need for a change in this role to a more pro-active grid 

management. This introduces new service opportunities for grid operators. Connecting a large number 

of nZEB buildings with fluctuating individual energy generation is one such example of locally generated 

energy that adds to the volatility of the grid power for which grid operators could monitor and manage. 

Smart grids enable buildings to respond and provide current operation data to the grid [76].  

An nZEB is a technical concept introduced to reduce the energy required due to the conservative nature 

of the design. Nevertheless, studies have shown that nZEBs could even perform less efficiently than 

technically poorly performing building designs if the occupants fail to steer the concept to its full 

potential [22], [23], [24], [83]. This particular matter has been investigated by different approaches all 

aiming at increasing building energy flexibility and improving building energy performance. Research in 

this area ranges from fully automated building energy discarding occupant behaviour, to smart metering 

objectives aiming at increasing occupants’ energy performance awareness, and control strategies based 

on electricity prices signals etc [26], [27], [28], [73].  

 Also, the integration of renewables and high efficiency HVAC devices is expected to amplify the 

interaction of residential built environment with the grid. Therefore, one of the main goals of the IEA EBC 

Annex 67 is to arrive at a common definition of building energy flexibility. This concept is currently 

defined as ‘the ability of a building to manage its demand and generation according to local climate 

conditions, user needs and grid requirements’ [25]. Considering these facts, the deployment of nZEB 

should be better monitored and analysed in order to achieve the standards aimed at initially. The 

managing role of grid operators allows it to provide services for the transforming of the residential built 

environment to a more economically and technically feasible energy sector.  
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1.2.1.  Economic aspects nZEB grid interaction 

Grid-tied renewable energy sources in the residential built environment influence not only the technical 

aspects of the power system but has also implications for the economics of it. Excess renewable 

generated power is fed to the grid and power deficit is replenished by power from the grid. Since 

currently the interaction between grid operators and the consumer is transforming, the economic 

aspects are changing accordingly. Concerning the consumer, feed-in tariffs and metering methods are 

utilised to compensate for the delivered power by on-site renewable sources to the grid. Depending on 

the local regulations regarding these two methods, power delivered to the grid might be more profitable 

compared to maximised onsite renewable energy consumption as will be illustrated in the next section. 

In contrast, a maximized onsite consumption allows for a reduction in the interaction with the grid and 

therefore enhances the goal of increasing the share of renewable energy. The same principle holds for 

optimizing on-site renewable energy consumption in the residential built environment. An nZEB concept 

reduces the net annual building operation energy significantly, however, does not take the matching 

between energy consumption and production into account as long as the consumption is compensated 

over a certain period of time. Nevertheless, increasing the share of renewables in the built environment, 

requires peak shaving strategies in order to reduce the volatile power surges from and to the grid. 

Consequently, reducing grid interaction delays the need for reformations necessary to the contemporary 

energy infrastructure given the development towards a fully renewable energy infrastructure. Hence, it 

is of interest to investigate the potential of maximal onsite renewable energy consumption in order to 

recommend for the future role of grid operators for this energy sector.  

1.2.2. Dutch metering policy 

Dutch policy regarding this issue provides a metering approach by which the cost of the excess energy 

provided behind the meter to the grid, is deducted from the cost of the total power delivered to the 

consumer. The cost per unit of power is equal for delivering and consuming power i.e. no additional 

taxes are applied for power delivered to the grid. However, this type of metering goes up until a 

delivered power quantity equal to the annual power consumption of the consumer [29]. Power delivery 

beyond the quantity of the total annual consumption is compensated according to a different regulation 

dictating the distribution system operators (DSOs) to compensate the producer with a fair feed-in tariff 

which is to be determined by the DSO. This whole regulation scheme could also be described as a net 

feed-in tariff compensation scheme; Only surplus electricity is sold to the grid for a fixed price which is 

determined by the DSO. This implies that for an individual household, it is very much profitable to 

generate electricity in the range of their own consumption and beyond. This regulation reduces the 

energy bill significantly and so it stimulates an increase in renewable energy installation. In turn, this 

reduces the need for power generated from conventional resources. In the long run, this regulation is 

expected to be abolished by 2020 [29]. By then, plans for new measures for maintaining the profitability 

of renewables installations will be established. The reason for this, is the increase in pressure on the grid 

utility as the penetration of on-site renewable energy is expected to increase causing congestions and 

large fluctuations.   

In conclusion, grid interaction has not only an influence on the technical aspects but the economic 

factors related are equally important for policy shaping aiming at increasing the share of renewables. 

This illustrates the importance of grid interaction management in the field of the residential built 

environment and the enhancement of direct consumption of renewable energy. As grid interaction in 
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this field originates from the balance between the building load and the onsite renewable energy 

generation, this balance has to be further investigated.      

1.2.3. Heat pumps in nZEB concepts  

An important starting point for building energy performance examination is to identify the individual 

influence of each of the different energy sinks and sources in residential buildings in order to optimize 

the energy performance effectively. Indeed, studies have shown that the largest portion of end energy 

consumption in residential buildings consists of energy related to heating, ventilation, and cooling 

(HVAC) operation ranging between 42% and 68% of the end use on average followed by Domestic Hot 

Water (DHW) appliances ranging between 14% and 30% for the European average, UK, USA, Australia 

and Spain [30][35]. The DHW load share of the total energy end use in nZEB concept is higher than less 

efficient constructions as a result of the reduction of the energy needed for space heating [75]. 

Moreover, an extensive research on HVAC operation and optimization has been conducted in the various 

fields of the subject [31][32][33], however, less focus has been paid to DHW appliances when especially 

this is becoming increasingly more important for grid interaction, given the increased electrification in 

the field of hot water technologies for residential purposes such as heat pumps [34].  

Heat pumps and electric water heaters have been increasingly promoted by financial incentives and 

implemented in nZEBs as they operate with high efficiencies in proper conditions [35][36]. Amongst all 

type of heat pumps, Air Source Heat Pumps (ASHP) are implemented the most due to their relatively 

lower implementation cost [35]. Though, the performance of heat pumps is highly dependent on the 

site-specific conditions such as the heat source temperature and operation schemes, generally, ASHPs 

attain a higher coefficient of performance when the outside temperature is higher as there is more 

energy to exchange. Site-specific conditions were found to influence variation in domestic energy 

demand from ASHP by up to 13% [37]. Also, the carbon footprint has been found to be energy-related 

depending on the energy source. In order for heat pumps to be economically viable as domestic water 

heaters, their efficiency needs to be at least twice that of standard electric water heaters [35]. Typical 

heat pump efficiencies range between a coefficient of performance (COP) value of 2 and 4 [84]. 

Moreover, heat pumps increase the seasonal imbalance between PV power generation and load demand 

patterns resulting in higher grid interaction on seasonal level [38] as shown in figure 3.  

 
Figure 3. Monthly variation of energy produced by PV and required by 

an ASHP [38] 
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Overall, the increased electrification of DHW appliances in addition to the increasing trend of onsite 

power generation such as from PV in combination with the inefficient occupant behaviour is expected to 

increase the interaction with the grid and thereby affect the grid stability. It is therefore evident that the 

implementation of heat pumps requires maintaining ideal operation conditions as far as possible. 

Especially in the context of a country as the Netherlands where the outside temperatures are not 

predominantly high compared to lower latitudes, performance improvements need to come from 

controlling the operation patterns of the device.  

 It is estimated that a total of 500.000 heat pumps will be installed in the Netherlands by 2020, 

corresponding with 1 in 15 households [70]. Also, it corresponds with a total installed capacity of 22.5 

GW for auxiliary heating whereas the maximum allowed installed capacity is equal to 15 GW for the 

current grid capacity [70]. The central weakness concerning a large-scale installation of heat pumps, is 

the timing of the operation scheme. In extreme scenarios in which all heat pumps are activated 

simultaneously, the peak demand surpasses the capacity limit of the grid. Black-outs will occur more 

often implying the need for grid reinforcement. Evidently, managing the operation of heat pumps on 

district level is necessary to guarantee a certain level of grid reliability and safety which emphasizes the 

importance of a centralised monitoring entity such as the DSO. This is to avoid a high monetary 

investment which is associated with large-scale grid reinforcement [69].  

 The majority of the heat pumps are installed with a heat buffer around one 100 litres for DHW 

purposes [70]. This allows for a larger potential for load shifting for the DHW. The thermal inertia of the 

dwelling is also often used as a thermal storage tool in nZEBs to manage the operation of 

thermostatically controlled loads [85]. Additionally, the evident increase of RES installation for nZEBs as 

mentioned previously will allow for less electricity uptake from the grid if the energy generation is 

matched sufficiently with the consumption profile. It is therefore interesting to investigate the potential 

of load shifting applied to heat pump installations backed up by renewable energy sources as a service 

applied by grid operators.   

1.3. ASHP automatic control systems 
Limited research has been conducted to simulate realistic consumption profiles for ASHPs domestic 

water heating purposes [36]. The majority of the research in this field is conducted by means of 

simplified rule-based models based on assumptions on the expected load profile [34], [67], [72]. Not only 

there is a lack of actual experimental data of the thermal performance of the accompanying storage 

tanks but also a lack of a developed field of research regarding occupant behaviour patterns [36]. As a 

result, the thermal performance of ASHPs is expected to be insufficiently correlated with real case actual 

performance given the results in [22], [23], [24]. Moreover, studies that make use of more sophisticated 

data-driven modelled occupant behaviour, apply control to thermodynamic models [71], [73]. However, 

thermodynamic models are built upon physical parameters that are not only site dependent but also 

depend on the physical characteristics of the whole installation. Generalising this type of simulations is 

therefore challenging and adaptation to individual cases is problematic. Instead, reinforcement learning 

(RL) based approaches could learn the occupant behaviour and the thermal response using data from 

individual houses [36], [71], [77]. Based on this, an optimal control policy for heating is learnt optimizing 

the energy consumption by the heat pump. Learning the optimal control policy for the heating device by 

this approach tackles most of the aforementioned challenges related to generalisability and inaccuracy 

due to the lack of accurate occupant behaviour simulations. It is therefore believed that this approach is 

very much suitable to improve DHW appliance efficiency and perform load shifting.   
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 Therefore, the concept of reinforcement learning for optimizing for renewable energy 

consumption by means of an ASHP applied to DHW purposes will be central in this thesis. RL methods 

will be described in more detail in the methods section followed by the research problem and 

subsequent research questions. This will then be followed by a review of the literature on this field of 

research setting a context for the methodology and case study.   

1.4. Summarized problem statement 
The combined effect of the increased onsite power generation as a result of the expansion of nZEB 

concepts, increase of electrification in building energy installations and the stochastic occupant 

behaviour on the interaction of the residential built environment is expected to have a challenging 

impact on the grid. The significance of this issue is strongly emphasized by the notion that the 

implementation of this type of hybrid systems will have to increase as a result of the objective of 

reducing fossil fuel utilisation. Hence, the investigation of this matter is crucial for paving the path for 

increasing energy efficiency in the residential built environment by complying to the objective of 

increasing the share of renewable energy. An important indicator to be investigated is the coupling of 

actual occupant behaviour to the building performance and the resulting load pattern. To emphasize, 

applying rule-based control methods to building energy performance simulation do not accommodate 

accuracy in this field of research as described earlier [36]. This is illustrated by a significant performance 

gap which describes a large discrepancy between simulated energy performance and the measured 

energy performance [22], [23], [24]. This is attributed, for a great deal, to the lack of accurate occupant 

behaviour simulation. This emphasized that the occupant behaviour cannot be discarded from the 

energy performance analysis and this factor should be incorporated in the building energy systems 

simulations for more accuracy. Therefore, it is argued that the occupant behaviour could be optimally 

incorporated by acquiring real data of actual recorded behaviour. This will result in more accurate 

building energy performance simulation and the resulting control schemes for optimal utilisation of on-

site renewable energy. Therefore, it is expected to have a positive effect on the grid interaction and 

hence, on the profitability of the nZEB concept and its renewable energy components.  

This research will aim at addressing this interconnected matter in order to come up with a concept that 

integrates occupants’ behaviour to DHW utilisation and renewable energy generation. This is considered 

to be essential to reduce nZEB interaction with the grid which is expected to support the increase a total 

share of onsite produced renewable energy in the grid. In order to analyse this particular issue, a 

framework will be constructed for the research question in the next section aiming at analysing the 

different aspects of the matter. In addition, the research question will be broken-down by several sub-

questions aiming at supporting the different aspects involved in the research question.  
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1.5. Research framework 
The aforementioned problem will be analysed by the following research question: 

“How does reinforcement learning assist to match DHW loads to solar energy generation peaks to reduce 

the interaction of nZEBs with the grid and what are resulting benefits for the occupants and the grid 

operators?” 

This research question will be covered by the following sub-questions: 

1. What are the comfort standards that apply for DHW consumption? 

 

2. What is the potential of shifting the ASHP heating cycles from low to high energy generation 

hours to maximize solar energy consumption without violating the comfort standards for DHW? 

 

3. What is the effect of shifting the heating cycles on the grid interaction? 

 

4. What is the effect of the optimization on the number heating cycles and the resulting energy 

efficiency of the heat pump and hence, the energy efficiency of the dwelling? 

 

5. What is the influence of the individual DHW consumption on the performance of the algorithm?  

 

6. How could this methodology be applied on an aggregated level?  

 

7. What does this optimization imply for both the occupants and the grid operators? 

Analysing these aspects of the research poses the necessity to conduct a literature research in order to 

identify the various studies conducted in this field. This thesis will focus the research in the fields of 

optimal control and reinforcement learning applied to the residential built environment. The following 

section will fulfil this role in presenting the literature review on the advances reached on this matter to 

give position to the significance of the research framework in this field. 
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2. Literature review 
Energy efficiency in the built environment is a relatively mature field of science encompassing a wide 

range of methods for increasing energy efficiency. Generally, the different approaches are to be divided 

in three main categories of fields of improvement: 

1. Energy demand reduction 

2. Energy and material recycling  

3. Renewable energy production 

This field is made up of a large variety of research aiming at improving the building energy efficiency 

through building envelope improvements and smart and bioclimatic design in order to reduce the end 

use consumption related to the building energy performance [7], [48], [49], [50] and [51].  

Reducing the energy required for maintaining a comfortable indoor climate is the first step to start with 

for increasing the energy efficiency. A subsequent aspect is to install high efficiency technologies used 

for building energy performance operation such as HVAC and DHW appliances. These technologies 

increase the energy efficiency due to their high efficiency operation mechanisms and/or their energy 

recovery ability. Lastly, the remaining required energy is compensated for by producing energy from on-

site and/or off-site renewable energy sources.  

 Moreover, as stated previously, the share of renewable energy resources has to increase given 

the depletion of conventional energy resources and climate change mitigation. In addition to the 

drawback of RES of exhibiting large fluctuations in power generation, RES have lower energy density 

compared to conventional resources. The energy density is typically factor 100-1000 lower than that of 

fossil fuels [47]. This implies that a larger area for energy generation from RES is required. Limiting this 

effect in the residential built environment leads to another incentive for reducing the building energy 

consumption as much as possible. To serve this purpose, nZEBs have been studied in an extensive body 

of literature analysing its performance by means of a variety of indicators such as the heat exchange with 

the ambient, total energy end use etc [7], [48], [49], [50], [51]. 

 Nevertheless, different studies have shown a dominant discrepancy between the simulated 

building performance and actual performance of this type of high efficient building concepts [22], [23], 

and [24]. This discrepancy is believed to be the direct result of the lack of occupant behaviour 

incorporations in the simulations [36], [22], [23], [24]. Therefore, building energy performance is 

increasingly more approached from a demand response perspective. Demand response has therefore 

been studied from a variety of angles to acquire more understanding in the characteristics and extent of 

this factor on the building energy performance and consequently, grid interaction.  

 The next sections will elaborate further on the influence of the occupant behaviour on the 

discrepancy between the simulated and measured energy performance of nZEB concepts and its 

implications of demand response. 

2.1. Occupant behaviour  
Branco et al (2004) [60] studied a low energy multi-family complex data of three years that indicated a 

discrepancy between a predicted yearly gas consumption of 160 MJ/m2 and measured gas consumption 

of 246 MJ/m2. Moreover, in the design phase a solar coverage of 31% of the thermal energy supply was 

predicted whereas in reality solar energy covered only 19% of the thermal load. Subsequent detailed 

calorimetric simulation indicated the large difference to be, to a large extent, due to the lack of 

incorporation of the real conditions of utilisation. The study of Santin et al, 2009, [24] finds that the 
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influence of the occupant behaviour affect the energy use by 4.2%. Similarly, Haas et al (1997) [62] 

attributes the difference between predicted and measured energy demand to a so called rebound effect 

with respect to space heating. Taking the indoor temperature as an indicating parameter for the 

occupant behaviour, a linear relationship has been found between the indoor temperature settings and 

the thermal quality of the building. Hence, indoor temperature comfort requirements tend to be lower 

for occupant living in a poorly performing building which supports the theory of a rebound effect in high 

efficiency buildings. In addition, the authors conclude that this rebound is a direct effect of the lower 

prices of the services due to increasing energy efficiency. Another possible explanation for this 

phenomenon could lay in the frugal energy use for space heating in poorly insulated buildings. Since it is 

harder to capture the heat in all spaces in these buildings, the different spaces in these buildings are 

heated only when needed and not simultaneously which leads to less energy use.    

 In another study conducted by Zachary et al (2010) [22], investigated this phenomenon with 

focus on socio-psychological research to include the social character of occupant behaviour. The study 

found that the reason behind the demand for higher temperatures in high efficiency buildings, vary from 

lack of technical understanding of the high efficiency installations to different comfort standards to lack 

of adjustment to new habits that these installations impose. The influencing parameters could be further 

extended to whether the building was privately owned by the occupants or rented as found by Leth-

Petersen and Togeby (2001) [62]. The energy consumption of rented dwellings is higher than for owned 

dwellings. This was linked to the energy cost that is usually included in the rent whilst homeowners have 

full insight in the periodic energy consumption. Both these studies indicate the relationship between the 

occupant engagement and the energy consumption. In addition, the studies discussed so far, state many 

different factors influencing the occupant behaviour which indicates that it is rather stochastic of nature 

and should ideally be predicted by data-driven methodologies based on a sufficiently large dataset of 

measured indicators.  

2.2. Demand response in nZEBs 

It is proposed here that the optimal method to achieve high building performance efficiency, is not by 

controlling occupant behaviour such as is aimed for in most Demand Side Management (DSM) 

methodologies but to construct a control strategy for the building energy systems that would optimize 

the energy systems operation efficiency based on occupant behaviour data. This methodology needs 

therefore to capture the diversity, variability and randomness of occupant behaviour. Since HVAC is the 

largest portion of building energy demand, the relationship between occupant behaviour and HVAC has 

been widely studied by different methodologies [24], [46], [63]. It is therefore interesting to focus on 

other controllable components of the building energy demand. After space heating, both the total 

electricity use (lighting and appliances) and the DHW follow in significance. Lighting and appliances are 

less suitable to be controlled for optimization for onsite renewable generation for the instantaneous 

nature of electricity does not provide means for buffering unless when supplied with electrical storage. 

DHW on the other hand, could be easily controlled due to the inertia associated with heat transfer which 

provides an option for energy buffering. This feature is utilised in storage tanks which therefore are 

often applied to DHW appliances to increase their efficiency. Hence, DHW control is considered as a 

suitable approach for improving self-consumption of onsite generated renewable energy. It is therefore 

evident that increasingly more electricity-to-heat appliances are used for this application [34], [70].  

 Recent studies have been conducted to analyse the potential of DHW controllability in demand 

response management. The study of Arteconi et al (2011) [34] applies a rule-based control system 

simulation to an air source heat pump coupled with thermal energy storage (TES) tank, based on thermal 
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models in TRANSYS. Although the control strategy used for this study does not simulate accurate 

occupant behaviour, this study is interesting for analysing the potential of heat pumps in reducing 

energy demand. The most notable results concern the difference between the control applied to a floor 

heating and a radiator. The large volume of the floor heating increases the thermal inertia of the system 

diminishing the need for a TES tank. The total energy consumed in the radiator model with a TES tank 

was 4% higher than for the floor heating model. However, the presence of a TES provides more 

controllability than the floor heating system. Thus, it is expected that utilising TES tank heat pump 

systems is a better strategy to perform load shifting. This emphasizes the importance of utilising a TES 

tank to improve thermostatic controllability of the DHW demand and optimize for the renewable energy 

self-consumption. Boait et al (2012) [64] conducted an empirical study to compare the operation 

efficiencies of different domestic water heating systems which amongst other include water immersion 

heaters and ground source heat pumps. These efficiencies are studied by means of applying different 

control strategies. Interestingly, the heat pump efficiencies showed a relatively strong dependency on 

the control strategy and the maximum power capacity. The maximum power capacity of the heat pump 

implemented in a building is determined by the size of the load demand of the building to increase the 

overall efficiency of the building. This implies that for a building with a high-energy performance, the 

maximum power capacity of the heat pump is minimized. Due to this low capacity, the heat pump will 

need more time heat up a unit water volume per unit of time. As a result, the water temperature set 

point hysteresis (which represents the threshold for the control system to be activated), is adjusted to a 

low value to maintain comfort. The low water temperature set point hysteresis results in an increase in 

heating cycles even when there is no active request for this hot water. This study points out the 

importance of an efficiency favourable control strategy of the heating appliance implemented. It is 

therefore a good practice to improve the control strategy by incorporating the occupant behaviour as 

the comfort is highly dependent on the activity of the occupant in the building; during the night, the 

occupants will have different comfort standards than during the day. 

In the next section, the different types of control strategy methodologies used in literature will be 

analysed and discussed. 

2.3. Optimization control strategies 
The three most important demand response methodologies are listed below [71]: 

1. Rule-based 

2. Model-based 

3. Model-free (learning-based) 

Rule-based control strategies comprise strategies based on a set of simple controls in the form of if, 

then, while conditions. These sets of algorithms have the advantage of being relatively simple and 

therefore less computationally-intensive. Generally, it requires no forecasting but is rather based on 

domain and case specific parameters that have to be tuned manually. This leads to its disadvantage of 

being hard to generalise for systems with different parameter setting. Additionally, since it does not rely 

on optimization, it is expected to be less suitable to be applied to load shifting/matching purposes. Most 

importantly, the objective of the load shifting at stake is to incorporate the occupant behaviour in order 

to acquire more accurate results concerning the nZEB and heat pump energy performance. This is 

however not applied in rule-based control algorithms and thus is expected to reduce its effectivity 

compared to data-driven approaches. Nevertheless, this type of algorithms is applied to certain case 

studies that put less emphasize on the occupant behaviour.  
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 The second group of control algorithms are made up of Model predictive control (MPC). MPC 

methods make explicit use of a mathematical model of the process dynamics [71]. Since these strategies 

rely on accurate models of the system dynamics, they provide more accurate results. On the downside of 

this characteristic, the model dynamics have to be modelled with great precision which could pose a 

limitation to its application as the model for the process dynamics could be only partially or completely 

not understood.  

 The main difference between the MPC and model-free methods is that model-free methods are 

completely based on data and do not require a model of the system dynamics. This gives it an advantage 

over MPC as it requires less work and is generalizable. The models in MPCs are case-specific and need to 

be adjusted when system environment changes. Renewable energy on-site self-consumption is regarded 

most effective if applied on a large scale. If the model parameters have to be adjusted from one case to 

another, MPCs will pose a limitation to large-scale implementation of the optimization [36]. Moreover, 

important for accounting for the stochastic nature of occupant behaviour, is to apply a control algorithm 

that would learn to improve its behaviour by getting more data rather than deploying a fixed control 

based on a physical model of the environment and the occupant behaviour. Examples of applications of 

these three types of control optimization methods on residential loads are presented in the next section. 

2.4. Optimization control strategies application studies 

The study of Ijaz Dar et al, 2014 [67] applies a rule-based control on a similar system setup with a storage 

vessel of 500 litre storage capacity. The results show an improvement of 6% for self-consumption and 

11.5% for the self-sufficiency on annual basis. Another study conducted by De Coninck et al 2013 [72], 

applies a rule-based control strategy resulting in an electricity consumption reduction of 3.4% compared 

to the baseline control on cluster level. These results seem to be less effective than necessary to mitigate 

the expected increase of the grid interaction of nZEB concepts. More results of rule-based methods are 

discussed in the review paper of Luthander et al, 2015 [68]. The authors present figure 4 in which an 

overview of different DSM studies based on model-based and rule-based scheduling results is shown. 

The results show a wide range of outcomes depending on the location of the conducted studies, the type 

and size of the PV supported system, the type of building and the considered shiftable appliances. These 

studies have in common that they do not use battery capacity to store power and perform load shifting 

instead. The overall conclusion of these studies is that the DSM approach lacks effectivity in improving 

onsite self-consumption to a great extent, compared to systems in which battery storage and no DSM is 

incorporated.  

 Studies conducted by MPCs, on the other hand, show significant improvements. In a study 

Figure 4. Different results of increase of self-consumption using load shifting found in other literature. [68] 
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conducted by Sossan et al, 2013[73], the research aim at optimizing on-site solar energy consumption for 

a single element electric heater by using a grey-box MPC strategy without including a model for the 

occupant behaviour. The results show a simulated increase for a spring day in May in Denmark of 293% 

of the baseline self-consumption. The study of van Houdt et al, 2014 [82] found an average rise in self-

consumption of around 8-29% and self-sufficiency of 5-25% compared to the baseline simple control by 

using an MPC approach. Moreover, grid interaction reduced on average by 15% for the energy injected 

to the grid and 4.5% of the energy extracted from the grid. These results show that MPCs indeed 

perform better than simple rule-based control as it’s expected given the theoretical differences. As 

mentioned before, MPCs have poor generalisability potential which gives them a disadvantage compared 

to learning-based methods. 

 Learning-based control strategies applied for load matching purposes are not a novel concept for 

building loads. These methods have been applied for a wide variety of objectives concerning the control 

of residential loads to facilitate the operation of smart grids. A majority of such studies focusses on 

learning control policies minimizing building energy operation cost for both generation to consumption 

[78], [79], [80], [81]. The results are directly reflected in the reduction of the energy bill ranging between 

16% and 47% for these studies.  

 RL is also applied to improving the energy efficiency of thermostatically controlled loads such as 

heat pumps such as in the study of Peng and Morrison, 2016 [77]. This study compares MPC based 

controlled strategy to a RL based strategy showing a reduction in the energy consumption by 10% for the 

summer and 6% for the winter when using an RL control which performed 2% less optimal than the MPC. 

The study of [36] using RL show similar results of 15% reduction of the energy consumption compared to 

the baseline control. These results show promising results for applying RL for learning and optimization 

purposes. Yet, it is also interesting to focus on the long-term benefits of applying this type of control 

strategies such as the benefit of reducing grid interaction of heat pumps and RES in nZEBs for the utility 

grid. The generalisability potential of RL makes it suitable for large-scale applications, facilitating the two-

way communication between grid operators and buildings which is believed to reduce immediate grid 

reinforcement cost. 

 The quantification of reducing grid interaction is, therefore, generally expressed in terms of the 

avoided grid reinforcement cost. This cost varies according to the location and the size of the system to 

be upgraded. A study by ECN in the Netherlands conducted by Pruisen and Kamphuis, 2010 [69] 

investigated the potential of a decentralized control of power consumption and generation technology 

(PowerMatcher) on reducing the grid reinforcement cost. The study is based on a case study of a 

neighbourhood with 1400 houses all provided with ground source heat pumps for HVAC and DHW 

purposes. The study investigates two extreme scenarios in which all heat pumps simultaneously require 

full capacity either as a result of a previous black-out or an extremely cold day. Such extreme events 

require the wiring to be 2-6 times larger in size with two distribution stations pf 630 kVA per 124 houses 

for that location. The projected costs of the location independent grid components are 20.000 euro per 

distribution station and a distribution cost of 5 Euro/kVA. The study assumes a total reduction of 50% of 

the total required capacity increase as a result of the PowerMatcher. This implies therefore a location 

independent cost mitigation of 250 thousand Euro for 1400 houses provided with heat pumps. These 

results are achieved by spreading the same energy consumption volume over the whole day rather than 

at specific moments. Nevertheless, the results illustrate the extent of the effect of the heat pumps on 

the grid reinforcement cost. Given the projected cost reduction for 1400 houses as in the study of ECN, a 

yearly reduction of the DHW load could therefore effectuate a substantial cost reduction for the grid 
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given that the DHW load comprises around 14% to 30% [30] of the end use of an average residential 

building.  

 It is therefore interesting to investigate the potential of using RL to optimize for on-site self-

consumption by means of the DHW load. RL methods are not only promising for aggregation purposes 

but allow the occupant behaviour to be incorporated in the assessment. The next section will introduce 

the case-study to which the research will be applied and elaborate more on the system setup.  

3. Case study: nZEB neighbourhood in Soesterberg, the 

Netherlands 
The housing market in the Netherlands exists of a relatively high percentage of around 30% of dwellings 

owned by housing corporations [42]. When considering district level energy efficiency improvement, this 

factor is of great help as the housing corporation could act as the project leader and integrate a large 

number of dwellings in the process. Governments can improve low energy performance neighbourhoods 

at once in a shorter amount of time compared to a more privatized building sector. One example of such 

projects in the Netherlands is conducted by housing corporation Portaal in the city of Soesterberg. “De 

Stroomversnelling” is a project implemented to refurbish low performing dwellings into nZEB concepts 

[43]. This is done by applying a high performing façade to the existing one and supplying the houses with 

each 28 solar panels. The houses are also fully disconnected from the gas network and operate therefore 

only on electricity. This project is therefore very interesting to investigate the effect of the increasing 

electrification of the built environment on the grid. Currently, BAM, Alklima/Mitsubishi Electric and 

Enervalis are collaborating in this project to accommodating these buildings with the necessary 

technology for a smart grid [44]. The heat operation schemes are investigated by BAM and Enervalis. 

This thesis research is conducted in this context in collaboration with Enervalis to investigate the 

possibilities for DHW demand response to optimize for onsite solar energy consumption by means of 

control applied to the ASHP.   

3.1. System setup and data 
An air source heat pump (ASHP) is installed to supply the hot water and special heating. The ASHP has a 

COP ranging between 3 and 5 for a temperature range of 45 ℃ and 50 ℃, depending on the outside 

temperature. The detailed specifications are presented in appendix B. Secondly, a hot water storage 

vessel of 200 litres is installed in the dwellings which is only used for DHW purposes. This vessel has a 

heat loss of 1.99 kWh per 24 hours in idle state which corresponds with -8.6 ℃/24hrs. The third system 

component are the 28 solar panels with each peak power capacity of between 4.5 and 5 kWp.  

The data is measured in uniform intervals of 5 minutes which could be subsampled if necessary. This 

data is gathered from four different sensors each measuring a different parameter: 

1. A hot water flow meter registers how much hot water is flowing at a certain rate 

2. A smart meter registers the power consumption of the heat pump at different modes and the 

power delivered by the PV panels 

3. An ambient temperature sensor 

4. A temperature sensor positioned midway in the storage vessel.  
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Available data comprises output parameters from the sensors for 6 different houses starting from the 

first of June. The setup is presented in figure 5. as presented in Kazmi et al, 2016 [36].  

The data is measured and sent to a central repository in which the baseline control and/or the 

optimization algorithm is embedded. The individual control action is calculated based on the embedded 

control strategy and subsequently sent as an action signal to the corresponding ASHP per house.  

3.2. Baseline control and comfort standards 
The default control strategy is a simple rule-based control algorithm given by eq. 1 [36]: 

𝐚𝑡 =  {
1, 𝑖𝑓 𝑇𝑚  < 𝑇𝑡ℎ

0, 𝑖𝑓 𝑇𝑚  ≥ 𝑇𝑡ℎ
      Eq. 1.  

In which 𝐚𝑡 is the action taken by the heat pump represented by 1 when it is heating and 0 when it is off. 

The ASHP also controls the HVAC operation alongside heating the water in the storage vessel. Other 

modes (2 and 3) of the HP involve therefore HVAC operation modes. The dataset shows additional mode 

6 indicating the Legionella heating cycle which happens regularly. Modes 2, 3, and 6 are therefore non-

controllable actions for the DHW operation. Considering the temperature in the vessel, T𝑚 is the 

temperature measured by the midway sensor in the vessel and T𝑡ℎ is the threshold temperature set 

point which is usually set to 45 – 50 ℃ [36].  

 The comfort standards applied by BAM dictate that if T𝑡ℎ is lower than 45 ℃, the ASHP initiates a 

reheat cycle. Additionally, the upper limit for T𝑚 was set threshold of 50 ℃ to which T𝑚 increases during 

a reheat cycle. Additional comfort standards determine the water content of the vessel containing the 

threshold temperatures. A minimum of 50 litres with temperature T𝑚 of at least 45 ℃ , was defined by 

BAM as a requirement to maintain occupant comfort. 

 The PV output is not considered in the default control strategy as the main goal of that control 

strategy is to comply to the comfort standards. The solar energy delivered is only considered for 

compensating the energy required from the grid in order to comply to the nZEB concept on annual basis 

[43].   

  

Figure 5. Schematic overview of the experimental setup [36]. 
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3.3. Optimization objectives 

The main objective for this study is to shift the DHW energy consumption towards high solar energy 

production hours in order to reduce the energy required during low production hours. It is also 

important to maintain a balanced ASHP consumption to not affect the nZEB concept by either violating 

the occupant comfort or a large rise in the energy consumption. Two main optimization indicators for 

this objective, are defined as the relative change in self-consumption and self-sufficiency compared to 

the baseline conditions. The following figure illustrates the two concepts of self-consumption and self-

sufficiency: 

Self-consumption is defined as the energy of the load that was covered by the solar energy expressed in 

either in kWh in absolute terms or as a percentage of the total generated energy. Self-sufficiency on the 

other hand, is defined as this same energy covered by the solar energy expressed either in kWh in 

absolute terms or a percentage of the total load. Additionally, the illustration in the figure shows the 

concept of load shifting which is defined as the total load allocated from low to high energy generation 

hours. In contrast, the concept of energy storage describes the excess generated energy by the 

renewable source that is stored to be used later than at the time of generation.  

The optimization aims at optimizing the default control strategy of the case study by refining the control 

to a more sophisticated approach in which several thermodynamic factors as well as occupant behaviour 

related factors are accounted for by extracting the necessary data. One of the important factors to be 

optimized for, is the actual demand rather than a default threshold. At times when the occupants 

require less hot water, for example during the night, the threshold could be lowered. Another important 

factor is the coefficient of performance (COP) of the heat pump which is higher when the ambient 

temperature (𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) is high. 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 will then be taken as signal to determine the required energy to 

heat up T𝑚 by 1 degree. Coupling of the ambient temperature might therefore provide optimization 

possibilities. Optimizing for solar energy consumption requires the PV production output to be an 

additional variable considered in the analysis in contrast to the baseline control.  

 These objectives will be approached by using RL methods which will be described in the methods 

section followed by the application to the problem described.  

Figure 6. Schematic overview of the daily net load (A+C), net generation (B+C), and absolute self-consumption (C) [69]. 
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4. Methods  
Machine learning is a subfield of computer science that deals with pattern recognition in data [39]. It 

gives computers the ability to learn without being explicitly programmed. This happens through the 

construction of algorithms that can learn and take decisions based on data rather than following 

programmed instructions such as in rule-based modelling. Different methods exist within this fields of 

study amongst which RL is one of these methods [40].  

RL is a collective term for an area of machine learning methods that build upon algorithms that learn 

how to behave optimally by interacting with the environment. The learning algorithm is called the agent 

whereas the environment is represented by states which value is influences by external parameters 

governing it. learning mechanism is established through rewards (positive or negative) representing how 

good a particular state is in which the environment landed after the agent took a certain action. Figure 7 

illustrates schematically the interaction between the environment and the agent. 

 

Applying this theory to the heat pump and storage vessel issue, the state is represented by the 

temperature of the water in the storage vessel. This temperature is arrived at as a result of thermal and 

physical interaction of the water body with the external environment. When the heat pump takes the 

action to reheat, the environment is then interacted with and the temperature of the storage vessel 

increases i.e. the storage vessel reaches a different state. This state is a function of the amount of 

withdrawn water per unit time, the heat loss to the environment, and the action taken by the heat 

pump; either remain idle or reheat. The algorithm learns the optimal sequence of actions also referred 

to as policy (π) by observing the rewards it receives taking a certain policy. The reward is determined 

based on whether or not the state falls within the comfort levels of the occupants. Each cycle starting 

from the initial state to the state that marks the end of the cycle is called the episode.  

4.1. Types of reinforcement learning algorithms 

RL algorithms that satisfy the Markov property are called the Markov Decision Processes (MDP). The 

Markov property assumes that the current state is independent of the path that leads to that particular 

state. Hence, in Markovian problems a memoryless property of a stochastic process is assumed. In 

practice it means that the probability distribution of the future states depends only on the current state 

and not on the sequence of events that preceded. This is a useful property for stochastic processes as it 

allows for analysing the future by setting the present  

 An MDPs consist of state (s), action (a) sets and given any state and action to be taken, a 

transition probability function of each possible next state (s’) illustrated in figure 8. In addition, each 

Figure 8. State transition from state s to the 

next state s’[41] 
Figure 7. Agent – Environment interaction RL [41] 
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taken action to arrive to the next state is rewarded giving each of all possible actions a reward value 

depending on the type of action. Each visited state is accredited by a value given to it according to a 

value function V(s) which represents how good it is for an agent to be in a given state. The value of a 

state s under a policy π is then denoted as Vπ(s) which in theory denotes the expected return when 

starting in state s and following a sequence of states to be visited according to the order defined in π 

thereafter. When this theorem is applied to a model-free control problem, the state-value function may 

not suffice as it does not show what action was taken for the state value to be acquired. Therefore, a 

similar function has been introduced representing an estimation of the value of each possible action in a 

state. This is described as the action-value function for policy π Qπ(s,a). Figure 9 illustrates an example of 

the relationship between the action-value function and the state-value function. In 9.a. the action-values 

are shown for each direction of the propagation, North, East, South, and West respectively. The state-

value function represents then the highest action-value possible in that state which is the action North in 

the example.  

 

 

 

 

 

 

 

The optimal policy is denoted as the superscript asterisk to the action-value-function Q(s,a) and state-

value-function V(s). Formally, the optimal value function is then given by [40]: 

𝑉∗(𝑠) =
𝑚𝑎𝑥

𝑎
𝑄∗(𝑠, 𝑎)            Eq. 2 

Where Q*(s,a) is given by:          

𝑄∗(𝑠, 𝑎) =  ∑ 𝑇(𝑠, 𝑎, 𝑠′)[𝑅(𝑠, 𝑎, 𝑠′) +  𝛾𝑉∗(𝑠′)]𝑠′       Eq. 3 

 

Herein, T(s, a, s’) is the transition probability to the next state s’ given state s and action a. γ presents the 

discount factor which is usually smaller than 1 and is used to discount for earlier values in order to assign 

higher values for sooner rewards. This is necessary to converge the algorithm.  

Substituting equation 3 in 2 gives the Bellman equation [40]:  

 

 𝑉∗(𝑠) =
𝑚𝑎𝑥

𝑎
 ∑ 𝑇(𝑠, 𝑎, 𝑠′)[𝑅(𝑠, 𝑎, 𝑠′) +  𝛾𝑉∗(𝑠′)]𝑠′       Eq. 4 

These updates will be appended to the states that were visited resulting (after a significant number of 

iterations) in state values showing how good to be in that state. In order to be able to choose between 

the states to select a policy, as many states as possible need to be visited in order to converge to an 

accurate estimation of the state value. Acquiring the highest reward depends on these visited states and 

the reward accumulated. However, in order to discover more states and potentially higher rewards, the 

𝑽(𝒔) = 𝟎. 𝟗 

                        Q(s, North)=0.9 

 

 

Q(s, West)=0.78          Q(s, East)=0.6 

 

        Q(s, South)=0.1 

Figure 9.a. action-values of state s Q(s,a). Figure 9.b. state-value of state s V(s). 
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agent needs to take actions it has never taken before. This is referred to as the trade-off between 

exploitation and exploration. This trade-off could be achieved by setting a variable denoted as Epsilon (ε) 

which gives the extent of exploration versus exploitation. A fully exploiting policy is referred to as an 

epsilon-greedy policy and holds a value of 0 for ε. Correspondingly, a fully exploring policy gives a value 

of 1 to ε and is referred to as an epsilon-soft policy. The learning can therefore be tuned between these 

two extremes in order to allow for convergence towards an optimal value by occasionally exploring new 

states and actions.  

4.2. Classes of RL algorithms 

RL knows three fundamental classes of methods for solving these learning problems:  

1. Dynamic Programming (DP) 

2. Monte Carlo methods 

3. Temporal-difference learning 

Dependent on the problem at stake, each of these methods could be more suitable than the other. DP 

methods are model-based and require therefore a complete and accurate model of the environment i.e. 

all the aforementioned functions of the environment need to be known to initiate learning. However, 

the environment is not always defined prior to the learning process which poses a challenge to this 

method. This is where the two other model-free learning methods come in handy. The Monte Carlo 

algorithms only require an experience sample such as a data set in which the states, actions and rewards 

of the (simulated) interaction with the environment. In comparison with DP methods, no model of the 

transition probability function is required and neither the dynamics of the environment. Monte Carlo 

algorithms solve the RL problem by averaging sample return of each episode. Only after the termination 

of an episode, that the value estimation and policies are updated. Hence, it is based on averages of 

complete returns of the value functions of each state. This class of algorithms does not exploit Markov 

property described before and is therefore more efficient in non-Markovian environments [65]. On the 

other hand, Temporal-Difference methods do also not require a model of the environment but are like 

DP solving for incrementing step-by-step rather than episode-by-episode. Hence, TD methods exploit the 

Markovian property and perform usually better in Markovian environments.  

 The choice between these two classes of model-free RL algorithms very much depends on the 

type of data set available. For continuous processes in which there are no fixed episodic transitions, 

Monte Carlo methods may not be the optimal solution as they average the return only at the end of each 

episode. TD algorithms might then be a better solution as they assign a reward incrementally over each 

state. This allows them to converge faster towards an optimal policy for large data sets with a large 

number state spaces.  

4.3. On-policy and off-policy TD control 
TD algorithms comprise two important RL classes of algorithms divided in Off-Policy and On-Policy TD 

control algorithm classes. The difference between the two lays in the policy that is learned from the 

simulation or set of experiences (data). On-Policy TD control algorithms are often referred to as SARSA 

algorithms in which the letters refer to the sequence of State, Action, Reward associated with the state 

transition, next State, next Action. This sequence is followed in each time-step and is used to update the 

action-value of these two states according [40]: 

𝑄(𝑠𝑡,𝑎𝑡) ← 𝑄(𝑠𝑡,𝑎𝑡) +  𝛼[𝑟𝑡+1 +  𝛾𝑄(𝑠𝑡+1,𝑎𝑡+1) −  𝑄(𝑠𝑡,𝑎𝑡)]       Eq. 5.  
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Here, α represents the step-size parameter which functions as the exponentially moving average 

parameter. It is especially useful for non-stationary environments for weighting recent rewards more 

heavily than long-past ones. This could also be illustrated by rearranging the above equation to [40]:  

𝑄(𝑠𝑡,𝑎𝑡)  ← (1 − 𝛼)𝑄(𝑠𝑡,𝑎𝑡) +  𝛼[𝑟𝑡+1 +  𝛾𝑄(𝑠𝑡+1,𝑎𝑡+1)]      Eq. 6.  

If α is a number smaller than one for non-stationary environments which indicates that recent updates 

weight more than previous ones. This transition happens after every nonterminal state. The 𝑄(𝑠𝑡+1,𝑎𝑡+1) 

components of every terminal state is defined as zero. Hence, every terminal state has an update value 

of 0.  

 

SARSA is called an on-policy algorithm because it updates the action-value-function according to the 

policy it is taking in every step. Therefore, it takes the epsilon-policy into account in order to arrive the 

optimal policy for a certain problem. Off-policy algorithms approximate the best possible policy even 

when that policy is not taken by the agent. Hence, Off-Policy algorithms base the update of the state-

action-value function on the assumption of optimal behaviour without taking into account the epsilon-

policy (the chance to take a negative action). Figure 10 shows a suitable example given by Sutton and 

Barto (1998) [40] and which illustrates the policy outcome differences between the two types of TD 

algorithms.  The cliff represents states with high negative reward. Since SARSA takes the epsilon policy 

into account, it learns that at some instances a non-optimal action will be taken which results in a high 

negative reward. Hence, it will learn to take the safe path rather than the optimal path. Q-learning 

algorithms on the other hand, will take the optimal path by which the highest total reward could be 

achieved. This is because it does not take the epsilon probability into account of taking an extremely 

negative action. This class of algorithms is denoted by the following equation: 

𝑄(𝑠𝑡,𝑎𝑡) ← 𝑄(𝑠𝑡,𝑎𝑡) +  𝛼[𝑟𝑡+1 +  𝛾
𝑚𝑎𝑥

𝑎
𝑄(𝑠𝑡+1,𝑎) −  𝑄(𝑠𝑡,𝑎𝑡)]     Eq. 7.  

This difference will inevitably influence the suitability for the type of application. Applying these methods 

to the problem of this paper, in which occupant comfort is at stake, taking the stochasticity of occupant 

behaviour into account is crucial for complying to the comfort standards of the occupants. It is therefore 

argued that SARSA is more suitable for this type of application compared to Q-learning to avoid 

operating along a path with a probability of breaching occupant comfort even if that path would lead to 

the highest total reward.  

4.4.  Eligibility traces 
In essence, the difference between MC and TD is the number of steps over which 𝑉𝜋 is backed-up with 

the observed rewards. The one-step back-up TD class of algorithms could be seen as one extreme and 

the episodic MC class of algorithms as the other extreme. The back-up steps of the TD algorithms could 

Figure 10. Cliff-walking example (Sutton and Barto, 

1998)[40] 



 
 

29 
 

be increased according to the most suitable number of back-up steps applicable for a certain data set 

type. Additionally, an update could be composed of an average of different n-step updates. This 

approach is represented by the forward view of TD(λ) class of algorithms which average the return of the 

different n-step backups according to: 

𝑅𝑡
𝜆 = (1 − 𝜆) ∑ 𝜆𝑛−1𝑇−𝑡−1

𝑛=1 𝑅𝑡
𝑛 + 𝜆𝑇−𝑡−1𝑅𝑡         Eq. 8. 

The backward view of the TD(λ) algorithms applies this theorem by introducing a new factor 

representing the frequency of occurrence of a certain state. This is referred to as the eligibility trace 

given by: 

𝑒𝑡(𝑠) =  {
𝛾𝜆𝑒𝑡−1(𝑠)                 𝑖𝑓 𝑠 ≠  𝑠𝑡

𝛾𝜆𝑒𝑡−1(𝑠) + 1         𝑖𝑓 𝑠 = 𝑠𝑡 
  

γ represents the discount factor as presented before and λ represents the trace decay parameter. 

Together the two parameters add a trace to the visited state-action pair to include how frequent and 

how recent a state-action pair is visited. This makes recently and frequently visited states attribute more 

to the total update. In contrast to the one-step TD methods in which only the last action taken in a 

sequence is emphasized, the eligibility traces emphasize the whole sequence of taken actions. The level 

of emphasis is determined by the 𝛾𝜆-factor. This makes TD(λ) algorithms more efficient than one-step TD 

or Monte Carlo algorithms.  

4.5. Function approximation 

TD(λ)-algorithms solve for model-free RL problems for a variety of applications in different fields of 

theory. Model-free RL is very much suitable to be applied for highly stochastic problems such as the 

heating patterns of heat pump and hot water storage vessels. However, the previously described 

algorithms hold a disadvantage for being tabular methods which refers to the table look-up fashion by 

which the control policy is determined. The best action to take is then determined from the state-action 

pair values Q-matrix, as shown in example table 1 in which a set of possible temperatures is defined as 

the states and the actions as a binary set of 0 or 1. The action with the highest Q-value is then chosen as 

the optimal action for that particular state.  

 

 

 

 

 

 

However, a drawback to this tabular method is evident when the state-space increases significantly 

resulting in many possible states. The probability of a state to occur decreases accordingly which results 

in an unknown policy for unseen states. In the case of the control strategy for the ASHP, the states are 

made up of a combination of a set of variables such as the temperature, water consumption and the 

State-Action 
pair matrix               

Action 

0 (ON) 1 (OFF) 

St
at

es
 

(T
em

p
er

at
u

re
) 57.00 1.19 0.28 

56.00 0.64 0.76 

55.00 0.64 0.50 

54.00 0.92 0.92 

53.00 -2.27 0.38 

52.00 0.65 0.55 

Table 1. State-Action pair matrix (Q-matrix) example 
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solar energy. Hence, the number of possible states is then equal to temperature state-space multiplied 

by the water consumption state-space and the solar energy state space. This results in significantly large 

state-set of which sizes depends on the measured data. The more variables to compose the state, the 

more possible states which reduces the chance for all states to be seen significantly. Consequently, the 

uncertainty in the control strategy increases which indicates a reduced generalisation potential. This 

problem is solved by applying function approximation to the seen states in order to approximate for 

surrounding unseen states. A state is then represented in a feature based representation describing the 

properties of that particular state. The Q-function then becomes [40]: 

Q(s,a)=w0 + w1f1(s,a)+w2f2(s,a)+…..+wnfn(s,a)       Eq. 9.  

Here, wn is the weight of the features f1 of the states. Features should not be too specific as they then 

challenge the generalisability. Hence, features should be carefully selected.  

These methods allow for learning the optimal heating policy without the need to build the 

thermodynamic model of the system which in turn offers a higher generalisability potential as the 

learning algorithm could be applied to systems with different physical parameters. Furthermore, learning 

the optimal policy for the heat pump to operate in, could provide energy savings by adjusting the heating 

cycles and enhance in this way the building energy performance to reach the goal of an nZEB. Lastly, 

when in a grid-tied nZEB, PV power generation is used to power the heat pump, this learning algorithm 

could be used to optimize for onsite PV power consumption. This allows for a reduction in grid 

interaction which helps to integrate a larger share of renewable energy. These methods will therefore be 

applied in this thesis paper to examine the extent of these methods to meet these objectives. 
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5. Application to case study 
The control algorithm that is aimed at in this study, is an algorithm that optimized for onsite solar energy 

consumption. The aim is therefore to utilise the hot water storage vessel similarly to a storage capacity 

for the PV energy. Hence, it is important to use as much PV energy as possible during the high solar 

energy production hours of the day. To achieve this, a SARSA(λ) as described previously is applied with a 

reward function that takes several parameters regulating the vessel state, into consideration. The overall 

optimization strategy planning is presented in the flowchart shown in figure 11.  

 

 

The next sections will present the pseudocode used to achieve this alongside a detailed description of 

the reward function and corresponding conditions applied to achieve the results.  

  

Figure 11. Optimization strategy flowchart  
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5.1. Pseudo-code 

 

Firstly, the algorithm filters the controllable modes and their corresponding variables, 𝑇𝑚, Energy, Water 
consumption, and PV energy. Modes 2 and 3 have no influence on the vessel states and are therefore 
translated to mode 0. This results in representative episodes in most cases, however, this is not the case 
when the heating cycle (mode 1) is interrupted by these modes. The heating cycle is at times 
interrupted, giving HVAC modes priority when the indoor temperature comfort standards are at stake. 
Nevertheless, when this is completed, the heat pump will continue the water heating cycle until the 
upper threshold (51.5 ˚C) is reached. In these special cases, the interrupting modes are translated to 
action 1 so as to simulate the continuation of the heating cycle and avoid the compilation of false 
episodes. In contrast to the HVAC states, the legionella cycle which is indicated by mode 6, influences the 
vessel state and increases the water temperatures to around 66 ℃, however, is not a controllable but 

Get:  
Tm (℃), Energy (Wh), Mode (1,2,3,6),  
Water consumption (Liter), and PV energy (Wh) 

If 1< mode <6 (spatial heating): 
 Mode=0 

If vessel heating cycle is interrupted by spatial  
heating modes: 
 Mode=1 
If mode=6 (Legionella): 
 Mode=1 

Create episodes: 
While mode=0:  
 Episode is running 
If mode=1: 
 Episode ends 

Get: 

Cumulative water consumption in each episode  
 
Create array with Wh/K/episode with linear  
regression model: 

 Y ←  B + c1∆Tm + c2 ∑ Lt + c3Tambient 

Wh

℃
= Y 

 

 

Start Sarsa (λ): 

     Initialise parameters: 

• α, γ, λ, and Tlimit  
(Temperature set point for a heating cycle) 

• maximum water consumption  
in episode (Lmax) 

• action-space 
• state-space 

      For all episodes: 

• Q(s,a) ← arbitrary 

• e(s,a) = 0 

      Repeat (for each episode): 

• s(t) ← Tm(t) ,   ∑ Liter(t) , Solar (Wh)(t)   

• s(t+1) ← Tm(t+1) ,   ∑ Liter(t+1) , Solar (Wh)(t+1)   

• a(t) ← Mode(t) 

• a(t+1) ← Mode(t+1) 

    Collect reward 

    Perform update: 

• δ ← r + γQ(s′,a′) − Q(s,   a)  

• e(s,a) ←  e(s,a) + 1 

    For all s and a: 

• Q(s,   a) ←  Q(s,   a)  +  αδe(s,a) 

• e(s,a) ←  γλe(s,a) 

• s ←  s′ ; a ← a′ 

    Until s is terminal 

    For all Q(s,a) apply linear regression function 
approximation: 

• Q(s,a)= w0  + w1Tm  + w2∑ Lt+ w3Solart 

 

 

Figure 12. SARSA(λ) Pseudo-code applied to the case study  



 
 

33 
 

rather a timed action. It has therefore been decided to replace these modes with action 1 to avoid the 
simulation of an increase in temperature and falsly appending a negative reward to certain states when 
action 0 is taken.  
Once the correct modes and their corresponding variables have been filtered, the episodes are simulated 
accordingly. Each episode consists of the states during which the mode was 0 and ends with the state at 
which action 1 was taken. From this data, the features needed for the SARSA(λ) code, 𝑇𝑚(𝑡)

, cumulative 

water consumption per episode ∑ water(t), maximum water consumption threshold 𝐿𝑚𝑎𝑥, solar energy 

Solar (t), and energy required to heat up 𝑇𝑚 by 1 degree, are compilated. Every state is made up of a 

combination of 𝑇𝑚, ∑ 𝑤𝑎𝑡𝑒𝑟 and the solar energy production Solar (t).  

5.2. Reward function 

The reward function applied in this algorithm is presented in a flowchart fashion in figure 13. This reward 

will be appended to each action 0 to be taken. Action 1 leads to a terminal state which will lead by 

definition to a standard update of 0 as described by section 4.3. Consequently, if the Q-value of taking 

action 0 is higher than 0, action 0 is more favourable than taking action 1 and vice versa. A drawback to 

the binary action-space, is that action 1 could not be punished or rewarded. However, this is solved by 

amplifying the negative or positive reward for not reheating (action 0) instead. 

 

The reward function is defined as a function of all three parameters, 𝑇𝑚, ∑ 𝑤𝑎𝑡𝑒𝑟, and the solar energy 

𝑆𝑜𝑙. The relative weight of these parameters on the reward is based on the scenario at stake as shown in 

figure 13. A drawback to the binary action-space, is that action 1 could not be punished or rewarded to 

avoid enhanced reheating events. However, this is solved by amplifying the negative or positive reward 

for not reheating (action 0) instead as shown in the functions in figure 13.  

 To prevent the vessel to keep constantly reheating when there is high generation of solar 

energy, a temperature of 2 ℃ below 𝑇𝑠𝑡𝑎𝑟𝑡 is defined as the threshold temperature for the ASHP to 

reheat the vessel. This is equal to 49.5 ℃ when 𝑇𝑠𝑡𝑎𝑟𝑡 is set to 51.5 ℃ such as in the case in the default 

strategy. Therefore, two main scenarios are created this way, one describing a midpoint temperature of 

higher than 49.5 ℃ and one lower. Temperatures higher than 49.5℃ receive a constant high reward of 

25 points to ensure an idle state. On the other hand, to fully exploit the solar energy when available, if 

the temperature falls below this threshold and the solar energy available is higher than that is needed 

for rising the temperature of the vessel to 51.5 ℃ again, negative rewards are favoured to enhance 

Figure 13. Flowchart of reward function 
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reheating.   

 To accomplish this, the energy needed to reheat from 49.5 ℃ to 51.5 ℃ for each individual 

device has to be determined and compared to the available solar energy. The unit of energy required to 

raise 𝑇𝑚 by 1 degrees is determined through a linear model based on variables influencing the energy 

depletion and efficiency of the heat pump. These features comprise the total required temperature rise 

to reach the upper limit of 51.5 ℃, ∆𝑇, the cumulative water consumed during the reheat cycle ∑ 𝑤𝑎𝑡𝑒𝑟, 

and the COP of the ASHP which strongly correlates with the ambient temperature 𝑇𝑎. The correlation 

between the energy required for a reheat cycle and the corresponding features is given in table 2.  

Variable Pearson product-moment 
correlation coefficient (P-values) 

∆𝑻 (℃) 0.3380 

𝑻𝒂 (weather station) -0.073642 

∑ 𝒘𝒂𝒕𝒆𝒓 (L) 0.7713 

This shows that DHW consumed is the dominant variable controlling the energy required to reheat 𝑇𝑚 by 

1 degree. The second dependent variable is the temperature increase between the end of one episode 

and the start of the subsequent one (∆𝑇). 𝑇𝑎 is the ambient temperature as measured from a weather 

station close by Soesterberg. It is evident that the ambient temperature has a small negative correlation 

with the required energy. Hence, when the ambient temperature increases, the total required energy 

decreases slightly. This corresponds with the effect of the ambient temperature on the COP of an ASHP. 

However, in this case, this effect is small relative to the effect of the required ∆𝑇 and ∑ 𝑤𝑎𝑡𝑒𝑟. These 

three features have been selected for to represent the states of the vessel. Linear regression has been 

applied to these features to determine the resulting energy unit required for the reheat cycles per: 

Wh/˚C/episode = w0 + w1* ∑ 𝒘𝒂𝒕𝒆𝒓 + w2*∆𝑻 + w3*𝑻𝒂       Eq. 12 

 

 

The results are compared in figures 14 and 15.  With a root square value of 57%, it is evident that the 

energy unit required to raise 𝑇𝑚 by 1 degree is linearly correlated with the combined effect of ∑ 𝑤𝑎𝑡𝑒𝑟, 

∆𝑇, and 𝑇𝑎 with a. Hence, the linear model performs closely to the measured values and therefore, could 

estimate the episodic values of the required energy unit sufficiently adequate. This unit will allow for 

determining the difference between energy consumption and the solar energy production during the day 

Figure 14. Observed vs. predicted Wh/˚C   

  

Figure 15. Linear correlation of observed vs. predicted 
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to apply a corresponding reward. This model could be improved by adding the water temperature of the 

inlet of the storage vessel. This data is however not available in the current system setup.  

When the temperature falls below 49.5 ℃ and the solar energy available is higher than what is needed 

to increase 𝑇𝑚 by 2℃, the algorithm will append an increasingly negative reward to temperatures below 

49.5 ℃ of which negativity depends on the amount of water consumed. For this purpose, the water 

consumption threshold is set according to the comfort standards determined by BAM of at least 50 litres 

of water of at least 45 ℃ at all times in the vessel. Assuming a constant temperature profile between the 

midpoint and the outlet of the storage vessel with a content of 200 litres in total, it is assumed that at 

least 100 litres of water with the same temperature as the midpoint is available in the tank. Therefore, 

the water consumption threshold is set to be equal to 100 litres.  If the water consumed at time t is 

higher than this threshold 𝐿𝑚𝑎𝑥, a reward as a function of both 𝑇𝑚 and the water consumption is 

appended according to: 

𝑅 = (𝑇𝑛𝑒𝑥𝑡 − 𝑇𝑚𝑖𝑛) − (
𝐿𝑛𝑒𝑥𝑡

100
) − (

𝑆𝑜𝑙

100
)        Eq. 10. 

In which 𝐿𝑛𝑒𝑥𝑡 represents the cumulative volume of water consumed and 𝑇𝑚𝑖𝑛 represents the minimum 
midpoint temperature for that scenario. The solar and water parameters are divided by 100 to be 
normalized to the temperature range. 
In each of the scenarios, the temperature is punished to a different extent by adjusting 𝑇𝑚𝑖𝑛 so as to 
create a linear decrease in the reward for decreasing temperatures and increasing solar energy and DHW 
consumption. Also, in case of high solar energy generation in combination with a high DHW 
consumption, the weight of the solar parameter is increased to enhance reheating for these scenarios. 
Hence, reheat cycles are preferred when there is a sufficient amount of solar energy and 𝑇𝑚 is more than 
2 ℃ below 𝑇𝑠𝑡𝑎𝑟𝑡. In the scenario of temperatures above 49.5 ℃, the appended reward is always 
positive. 
This reward function is then applied to SARSA(λ) update which results in state-action pair values 
determining how favourable it is to reach a certain state at a particular action.  
 

5.3. Simulation 
The optimization algorithm will be applied to the vessel state model learned by the study of [66]. The 

vessel state model takes 𝑇𝑚 to which the vessel was reheated, ∑ 𝑤𝑎𝑡𝑒𝑟 since reheat, and the time 

passes since reheat in as parameters and returns the 𝑇𝑚 for that state. This model will therefore serve to 

simulate the output of the algorithm. The comparison between the baseline control output and the 

optimized control output will be based on the same solar energy and water consumption profile derived 

from the data of June to September for the houses. This serves to compare the potential of reducing grid 

interaction with the Sarsa(λ) control in the same context. Henceforth, the optimization control strategy 

will be applied to three other months with lower solar energy output and a different water consumption 

profiles to test its generalisability. The simulation setup is shown schematically in figure 16.  

 The output of the vessel state model will be used as an input for the function derived by linear 

regression from the Sarsa(λ) algorithm along with the solar energy production and water consumed. If 

the Q-value is positive, the idle state is favoured and the simulation of the next time step will continue 

incrementally over time. However, if the Q-value reaches a negative value, then a reheat cycle is 

initiated. The vessel state model simulated only the idle state of the vessel which results in lack of 

knowledge of the duration and energy of the required reheat cycle. Two linear models derived from the 

data will therefore be modelled for determining the required time for the reheat cycle and the required 
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energy. 𝑇𝑎, ∆𝑇, and ∑ 𝑤𝑎𝑡𝑒𝑟 at the start of the reheat cycle, will serve as input variables for both 

models. It is important to bear in mind that the accuracy of the simulation is dependent on the accuracy 

of the linear regression models presented.  

 Once the time required is determined, the total amount of water consumed during the reheat 

cycle could be determined along with the total amount of solar energy produced and the average 𝑇𝑎 

Figure 16. Simulation setup flowchart  
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during that period. 𝑇𝑎, ∆𝑇, and ∑ 𝑤𝑎𝑡𝑒𝑟, of the reheat cycle will then be used as input parameters for 

energy model to estimate the required energy for that reheat cycle. This could then be used to 

determine the extent of optimization.  

5.4. Limitations  
Perfect optimization is not assumed in this research as RL algorithms rely strongly on a substantial 

number of experiences. The available data set comprises data of 6 months which is relatively small to 

assume perfect optimization. The algorithm is therefore expected to be limited to a certain extent as a 

result. Additionally, in theory, optimizing for energy consumption during certain periods of the day could 

be achieved by dissipating power by substantially increasing the energy consumption of the ASHP. 

However, the energy efficiency of the nZEB is central to the optimization and is therefore taken as a 

limitation for the optimization. In other words, it is sought to find a delicate balance between the energy 

consumption of the ASHP and an optimized solar energy consumption. Another limitation posed by the 

performance of the nZEB is the occupant comfort. It is important to obtain optimal results without 

compromising the comfort of the occupants. Moreover, the former leads to perhaps the most important 

limitations which are posed by the uncertainties revolving around the type of occupant behaviour. As the 

occupant behaviour determines the amount and timing of the energy consumption, the optimization will 

be subject to this influence. Similarly, the amount of harvested solar energy is subject to seasonal and 

location related changes. As the case study is conducted with data derived from a location in the 

Netherlands, the results might vary when the algorithm would be applied to a location with a 

significantly different climate.    
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6. Results 
 

6.1. Algorithm and model setup analysis 

This section will provide a validation of the previously described optimization setup. Firstly, the Sarsa(λ) 

will be analyzed to validate its performance. Following this analysis, the linear models derived from the 

data will be analyzed and validated. This will allow for a performance analysis of the total model setup 

for analyzing the results of the optimization.   

6.1.1. Algorithm analysis 

The data-set applied to the algorithm comprises data from the first of June to the first of September as 

an example of a period of high solar production. The comparison will then be made with its performance 

during lower solar energy production months of September to December on cluster level. The data of 

house 1 will be applied to the Sarsa(λ) algorithm as an example for the validation since it shows an 

already significant concentration of consumption during high solar energy production hours. This allows 

for investigation of the potential of further optimization in such cases. Figures 17 shows the average 

daily total ASHP energy consumption profile including the legionella cycle scheduled every two weeks in 

the early mornings and the HVAC operation, against the average daily ASHP consumption profile of solely 

the DHW consumption for house 1. These profiles show that the ASHP is used primarily for DHW 

purposes in summer. Other slight energy use during the day may include floor heating purposes on cold  

summer days. Furthermore, the legionella cycle is an energy intensive process consuming significantly 

more energy than the other ASHP processes planned between 3 and 7AM.    

Figure 18 shows that the solar energy profile is around 10 times larger than the DHW profile in the 

summer. Therefore, if the DHW profile is optimized such that the reheat cycles would fall as much as 

possible during solar energy production hours, the electrical energy required from the grid could reduce 

significantly. The excess solar energy injected to the grid will reduce accordingly, providing additional 

flexibility.  
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6.1.1.1. Q-value analysis 

 The Q-value function (indicating how good action 0 is; §4.5) results for the summer months for house 1 

are shown in figure 19. A negative value (blue) suggests the start of a reheat cycle whereas a positive 

(green/orange) value favors the idle state. It is evident from the figure that temperatures higher than 

51.5 ˚C have always favor the idle state. Temperatures between 45 ˚C and 51.5 ˚C favor the idle state 

when there is no to low solar energy production and decreases in value as a function of the total water 

consumed and the solar energy produced.  

 

The most negative Q-values (most left corner) represent the least favourable states for the idle state. 

This shows that the algorithm learns to favour reheating when there is high solar energy generation. This 

effect is amplified when there is DHW consumption in the dwelling that causes the temperature to drop 

significantly. The Q-values in the most right corner of the plot show the most stable states which 

represent the states with high temperatures above 51.5℃.  

 The influence of the reward is visible this plot as the Q-values follow the strategy set in the 

reward function. Deriving from these results, it can be concluded that the algorithm learns the desired 

behaviour to enhance the heating cycles during high solar energy generation events while considering 

the occupant DHW use. This could also be shown by analysing the relationships between the Q-values 

Figure 19. 3D representation of the Q-values of house 1 summer months’ data 
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and the individual variables. The individual relationships of each of 

the variables ∑ 𝑤𝑎𝑡𝑒𝑟, 𝑇𝑚, and solar energy output with the Q-

function are shown in figures 20a-c. The midpoint temperature shows 

the highest linear correlation with the Q-value as it is weighted more 

than the other two variables in the reward function. It is also evident 

from the three plots that two different relationships with the Q-value 

are prominent in the algorithm. This is also to be traced back to the 

reward function as it was defined with two main conditions 

representing the solar energy production higher and below the 

minimum required energy to raise 𝑇𝑚 by 2 degrees Celsius.  This 

number fluctuates around 300 Wh as shown in figure 22. This is also 

shown in figure 20.c. as the values under 300 Wh are primarily 

aligned around the first linear trend. Values above this 300 Wh 

fluctuate around the second linear trend which represents the 

second condition in the reward function. Whereas the Q-value 

increases with increasing temperature, it decreases with both 

increasing water consumption and solar energy production as 

assigned in the reward function. This is to aid the optimization for 

high solar energy production and water consumption hours. 

 Concerning the cumulative water consumption profile, figure 

20.b. shows two linear trends until a consumption of 60 L after which 

the Q-value decreases at a higher rate. This is to be attributed to the 

co-linearity between the temperature and the water consumed in the 

vessel i.e. the higher the water consumption, the lower the 

temperature. Additionally, the higher the water consumption per 

time unit, the higher the mixing affects the state of the vessel which 

results in a non-linear relation as shown figure 21. In turn, this 

causes the relation between ∑ 𝑤𝑎𝑡𝑒𝑟 and the Q-value to become 

non-linear at higher water consumption rates. Hence, the midpoint 

temperature is weighted higher than the ∑ 𝑤𝑎𝑡𝑒𝑟 with regards to 

the Q-value. These results could alternatively be visualised as shown 

in figures 23.a-c. The algorithm shows an overall linear and positive 

correlation with the temperature on one hand governed by two 

different trends, one for 𝑇𝑚 higher than 49.5 ℃ and one for 

temperatures below this value. The influence of 𝑇𝑚 is weighted as 

the base trend to which the other variables contribute additionally. 

 The correlation with the cumulative water consumption 

∑ 𝑤𝑎𝑡𝑒𝑟 is a negative sub-linear trend based on its influence on 𝑇𝑚. 

Furthermore, the fluctuations in the solar energy production cause 

similar fluctuations in the Q-value of the algorithm additional to the 

overall trend based on the temperature. A trend of 

increasing/decreasing solar energy production results in a 

decrease/increase in the Q-values on top of the persisting trend of  

𝑇𝑚’s influence. This lowers the threshold for reheating during high 

Figure 20. (a) Relation of 𝑇𝑚with Q-

value. (b) Relation of ∑ 𝑤𝑎𝑡𝑒𝑟 with 

Q-value. (c) Relation of Solar energy 

production with Q-value.  

Figure 22. Histogram of minimal 

required energy to raise 𝑇𝑚 by 2℃. 

Figure 21. Relation of 𝑇𝑚 vs. 

∑ 𝑤𝑎𝑡𝑒𝑟 



 
 

41 
 

production hours and vice versa. The influence of the solar energy production is therefore larger than 

the water consumption and smaller than 𝑇𝑚.  

 These plots show that the control algorithm is learning the desired behaviour concerning the 

optimization for the onsite solar energy consumption and reduction of the grid interaction. However, as 

mentioned earlier, the tabular output of the algorithm does not generate Q-values for unseen states and 

Figure 23. (a) 𝑇𝑚 vs. 𝑄0 (b) ∑ 𝑤𝑎𝑡𝑒𝑟 vs. 𝑄0 (c) Solar energy vs. 𝑄0 



 
 

42 
 

reduces generalisability with increasing number of states. This problem is solved by applying function 

approximation to generate a function that follows the behaviour of the algorithm and estimates the Q-

values for unseen states. The type of function is chosen based on the reward function. Since the reward 

function is a linear function, a linear model is generated to determine the Q-values output of the 

algorithm for all possible states. The linear model and its output will be further discussed in the next 

section. 

6.1.2. Linear model analysis 

Achieving generalisability with reinforcement learning methods requires the support of function 

approximation. That way, a general function is deduced by the algorithm’s output as an example and 

thereby approximating the values of unseen states. The reward function built in the algorithm is based 

on a linear function which suggests that the output of the algorithm should vary accordingly. Therefore, 

linear regression is applied to approximate the function of the algorithm. The same features as the 

algorithm were taken as the variables of the linear function per: 

 Q(s,a) = w0 + w1*𝑇𝑚(𝑠, 𝑎)+w2*∑ 𝑤𝑎𝑡𝑒𝑟 (𝑠, 𝑎) +𝑤3*Solar (s, a)      Eq. 13 

Herein, w1, w2, and w3 present the three coefficients to be approximated along with the intercept, w0. 

The comparison between the Sarsa Q-values and the linear Q-values are shown in figure 24 and 25. The 

3D representation of the approximated Q-values shows large similarities with the values of the algorithm 

shown in figure 19. The clearest differences lay in the transition from positive to negative values. The 

values of the Sarsa algorithm show sharp incline and decline in certain points in time whereas the 

transition of the linear model progresses in a smoother fashion. This difference is also visible in figure 25. 

Like the algorithm, the main course of the Q-values is primarily based on the progress of 𝑇𝑚.  

 
Figure 24. 3D representation of the linearly approximated Q-values of summer months’ data of house 1.  
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The algorithm awards temperatures of higher than 49 ℃ with high stable rewards after which it declines 

to another policy based primarily on the solar energy production. As long as 𝑇𝑚 is higher than around 45 

℃ and the solar energy production is too low, the Q-values remain positive and decline when the 

temperature decreases and solar energy increases. The linear model on the other hand, interpolates 

between these different policies to compose an overall linear policy. Therefore, the sharp declines are 

less evident in the linear model than in the algorithm. Hence, the Q-values of temperatures are less 

constant than in the linear model as they decrease and increase according to the weight of the solar 

energy and water consumed. This explains the increase of the difference shown, as an example, in the 

encircled area in which it clear that when the algorithm’s output declined sharply, the linear output 

continued to increase steadily following the increase in solar energy production. Additionally, the 

fluctuations due to the solar energy fluctuation are damped significantly in comparison with the 

algorithm. This results also in a slight delay in the transition to negative values. However, this does not 

pose a drawback to the model as the delay remains in the comfort level temperatures of higher than 

45℃ as shown in figure 26. In fact, the damping effect of the model could be considered as an 

improvement to the algorithm since it is less responsive to sudden fluctuations in the solar energy 

production.   

Figure 26. Comparison of 𝑇𝑚, Sarsa Q-values, and linear Q-values 

Figure 25. Sarsa Q-values vs. linearly approximated Q-values 
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These results show that the linear model for approximating the Q-values performs as aimed for and 

could even improve the robustness of the algorithm. This model will therefore be used for the simulation 

of the vessel state and the effect of the optimization on the timing and energy consumption of the 

reheat cycles.  

6.1.3. Simulation setup analysis 

Having established the approximated function of the Q-values, this function will be used as the 

optimization control strategy. This will be conducted according to the previously described setup (sec. 

5.3). In order to accomplish this, two additional linear models have been derived from the data. The first 

model is required to determine the duration of the reheat cycle in order to determine the total water 

consumed during the reheat cycle. This will be required as one of the features required for the second 

model which is derived to determine the required energy for the reheat cycle. The comparison between 

the linear model for the reheat cycle time and the observed required time is shown in figure 27.  

This model takes in ∆𝑇, ∑ 𝑤𝑎𝑡𝑒𝑟, and the ambient temperatures as input features and the time required 

per reheat cycle as output. Figure 27 shows that the model performs accurate for most of the cycles, 

however, underestimates high value events as shown in the encircled areas. This model underestimates 

for the same reheat cycles as the Wh/℃ model (fig. 14) underestimates for. Therefore, it could be stated 

that a feature other than ∆𝑇, ∑ 𝑤𝑎𝑡𝑒𝑟, and the ambient temperatures, is responsible for these high-

energy cycle events. A possible additional variable of influence on the time and energy required for the 

reheat cycles could be the inlet water temperature. The inlet water temperature is somewhat dependent 

on the ambient temperature, however, is also influenced by the indoor temperature amongst other 

factors. No data is available for the water inlet temperature to improve these models, nevertheless, as 

for the energy model, the model performs sufficiently adequate on average to approximate the time and 

energy required for the reheat cycles.  

 The required time for the reheat cycle is used to sum the water consumed during every reheat 

event. This is then used as input feature for the required energy model to determine the total required 

energy based on the ∆𝑇 required to reach 50 ℃ and the average ambient temperature during that 

event. By this means, the energy to and from the grid could be modelled in order to be compared with 

the data for the same months of June, July, and August with the optimization control strategy. The 

results of this optimization will be presented in the next section. 

Figure 27. Time required for reheat cycles as observed vs. predicted 
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6.2. Baseline versus optimization control 

The results of the energy consumption and the average daily number of reheat cycles for house 1 are 

shown in figures 28.a. and b. respectively.   

House 1 has the highest daily average water consumption, with most of its daily average energy 

consumption covered by the produced solar energy (assuming all solar energy is available for DHW). The 

optimization algorithm improves this further by increasing the number of reheat cycles around noon and 

thereby reducing the energy required later in the day. It is clear from both graphs that the algorithm 

optimizes for onsite solar energy consumption and self-sufficiency. The number of reheat cycles is 

increased in general. A significant rise of the reheating cycles increases the energy consumption of the 

ASHP accordingly due to enhanced heat loss to the environment. Moreover, enhanced heating cycles 

increase the wear and tear of the ASHP. However, the reheat cycles in the last third of the day occur at 

higher temperatures due to the reheating earlier in the day, which reduces the energy required for the 

later reheat cycles. This behaviour could also be seen in the simulation of the other houses, house 

numbers 2-6. The following graphs present the energy and reheat cycles comparison.  

Figure 28. (a). Comparison of energy consumption baseline vs. optimized, house 1. (b) Comparison of average 

daily number of reheat cycles per hour, house 1.  

Figure 29. (a). Comparison of energy consumption baseline vs. optimized, house 2. (b) Comparison of average 

daily number of reheat cycles per hour, house 2.  
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Figure 30. (a). Comparison of energy consumption baseline vs. optimized, house 3. (b) Comparison of average 

daily number of reheat cycles per hour, house 3.  

Figure 31. (a). Comparison of energy consumption baseline vs. optimized, house 4. (b) Comparison of average 

daily number of reheat cycles per hour, house 4.  

Figure 32. (a). Comparison of energy consumption baseline vs. optimized, house 5. (b) Comparison of average 

daily number of reheat cycles per hour, house 5.  
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The number of reheat cycles for houses 1 - 4 increased the least compared to the other houses. This 

could be explained by the concentration of the DHW consumption of these houses around the high 

energy generation hours and the additional enhancement of the shift of reheat cycles to the high 

generation hours. Hence, the reheat cycles coincide more often with the events of high DHW 

consumption. Moreover, the correlation between the timing of the reheat cycles and DHW consumption 

leaves little room for heat loss to the ambient. Additionally, the concentration of the reheat cycles 

around noon has the benefit of a higher COP given the ambient temperature profile which correlates 

with the solar energy profile. Consequently, the energy required to reheat is lower for high energy 

generation hours. As a result, the average daily required energy is reduced for all houses compared to 

the baseline control. The numerical representation of the optimization is given in table 3. 

 

 

House 
nr. 

Baseline 
total energy 
consumption 

Δ Total 
consumed 
energy 
(kWh) 

Δ Times 
turned 
on 

Δ Total 
energy 
withdrawn 
from grid 
(kWh) 

Δ self-
consumption 
(kWh) 

Δ self-
sufficiency 
(%) 

Δ Comfort 
violation 
(nr of 
times) 

Baseline 
control reheat 
with no 
consumption 

(kWh)         

1 133 
-6 168 -20 14 71% -325 

32/129 
-4% (+37%) (-52%) 15% 85%  (-79%) 

2 94 
-13 42 -30 17 58% -13 

60/120 
-13% (+12%) (-75%) 31% 88% (-15%) 

3 124 
-8 152 -34 25 58% -241 

33/128 
-7% (+34%) (-65%) 35% 84% (-71%) 

4 44 
13 50 -9 12 67% -11 

72/89 
3% (26%) (-63%) 41% 88% (-61%) 

5 53 
22 194 -37 60 28% -130 

40/65 
42% (+97%) (-97%) 410% 98% (-70%) 

6 91 
-1 230 -38 37 39% -147 

28/100 
-1% (+78%) (-69%) 106% 81% (-65%) 

Figure 33. (a). Comparison of energy consumption baseline vs. optimized, house 6. (b) Comparison of average 

daily number of reheat cycles per hour, house 6.  

Table 3. Complete numerical results of the optimization control strategy for Jun-Sep 
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The interaction of the ASHP load with the grid decreases significantly as a result of the optimization 

control strategy. The total required energy from the grid is reduced by 52% to 97% for house 1 and 5 

respectively. The contrast between the consumption profiles of these houses and the resulting 

optimization, reflects the influence of the individual DHW consumption on the grid interaction reduction 

potential.  

 Houses 1 - 4 have high energy consumption concentrated around the high solar energy 

generation hours. The optimized pattern for these houses changed less than for the other houses; 

enhancing the energy consumption during high solar energy generation hours and reducing when there 

is insufficient amount of solar energy. As can be read from the table, house 4 has the lowest energy 

consumption which is primarily controlled by the comfort threshold temperature of 45 ℃. House 4 has 

the highest percentage of reheating due to this control mechanism rather than the water consumption 

as can be read from the last column which indicates the number of times the ASHP turned on, solely for 

reaching the threshold temperature whilst there was no hot water consumption. The optimized energy 

profile (fig 31.a.) for this house did not change much during the high-energy generation hours for there is 

no significant DHW consumption in general. However, it has reduced energy consumption during low 

energy generation hours due to the reduction in reheating events triggered by reaching the threshold 

temperature. Hence, the optimization control strategy not only optimizes for maximizing on-site solar 

energy consumption and self-sufficiency, but also for reduction of reheat cycles during low generation 

hours and low DHW consumption.  

 As for houses 5 and 6, these houses have a relatively low energy consumption during the day 

and a peak in energy consumption in the evening hours. The optimization for these houses shows a 

reversed pattern; the energy consumption for house 5 reduces to nearly none and significantly lower for 

house 6 in the evening and early morning. This indicates that the energy consumption for these houses 

significantly shifted from low generation hours to high generation hours without posing a threat to the 

comfort standards as can be read from table 3. This is also reflected in the change of the self-sufficiency 

percentage. The highest rise in the self-sufficiency reflects the highest shift from low generation hours to 

high generation hours which can be seen for houses 5 and 6.  

 Overall, it is evident from the graphs and table 3, that the energy withdrawn from the grid is 

reduced primarily due to the optimized timing of the reheat cycles during high energy generation hours. 

The total energy injected to the grid by the solar panels (indicated by the self-consumption column) is 

therefore reduced accordingly. The highest increase in self-consumed energy is 410% larger than for the 

baseline control strategy for house number 5 and the lowest for 15% for house number 1. This supports 

the significance of the consumption pattern on the optimization potential furthermore.  

 The combined total amount of enhanced onsite solar energy consumption for these houses 

accounts for 165 kWh in the period of June to September. This would have alternatively been injected to 

the grid causing large peaks in the grid during high generation hours. Moreover, the number of comfort 

violation (𝑇𝑚 lower than 45℃ and water consumption is greater than 0L) is decreased significantly as a 

result of the optimization for all houses. This could be attributed to significant rise in the number of 

reheat cycles in order to maintain vessel midpoint temperatures of higher 49.5 ℃ during high generation 

hours as set in the reward function. Therefore, the reduction of the comfort violation is considered to 

account for part of the increase in total average daily required energy. 

 Perhaps the most notable effect of the optimization is visible in the self-sufficiency parameter. 

The optimization resulted in a remarkable increase in the self-sufficiency for all houses. House 5 even 

reached an increase of 70% in self-sufficiency to reach a total self-sufficiency of 99% of the load. The 
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lowest increase is evident for house number 1 with an increase of 14% which resulted in a total self-

sufficiency of 85%. The large difference could partly be explained by the high baseline self-sufficiency of 

house number 1 of 71% against that of only 28% for house 5. The lower the initial self-sufficiency, the 

larger the potential for optimization. Secondly, house 1 has significantly higher DHW consumption than 

the other houses which depletes the DHW storage tank much faster forcing it to reheat additionally 

during the low energy generation hours. Once more, the results emphasize the strong influence of the 

individual consumption pattern on the optimization potential.   

These results show that the algorithm learns the desired behaviour and thereby presents a suitable 

method for reducing power consumption from the grid and thereby enhancing onsite renewable energy 

consumption. This covers both objectives of the optimization, for improving the energy efficient building 

behaviour in order to comply to the nZEB label and reducing the pressure on the national grid. However, 

there is a large increase in the number of reheat cycles as a consequence of the optimization for solar 

energy consumption. The increase in number of cycles is required for maintaining a high temperature in 

the hot water storage vessel during high solar energy generation hours. This way, the storage vessel 

serves as an energy storage facility for the solar energy. However, this trade-off could be potentially 

decreased by increasing the comfort margin from a baseline temperature range of 43-50 ℃, to a larger 

range during high energy production hours. The next section will present the result of an analysis serving 

to investigate the potential of reducing this trade-off.  
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6.3. Number of reheat cycles versus grid interaction 

For the analysis of the trade-off between the number of reheat cycles and the grid interaction, the upper 

limit temperature to which the vessel reheats is adjusted to a higher temperature. This is meant to 

exploit the ability of the storage vessel to buffer energy and thereby reduce the number of heating 

cycles. Since the heat loss increases with increasing temperature, it is expected that his effect is limited 

at a certain vessel state in which the effect of the heat loss is balanced by the effect of the reduction of 

heating cycles. However, this investigation is limited to a certain extent for the DHW storage vessel 

model is limited for unseen states. In order to identify the limits of the states, the frequency distribution 

of the temperature data is analysed in figure 34.  

The frequency distribution shows that temperatures above 52 ℃ are highly underrepresented. The 

uncertainty for these states is inevitably high and the performance of the vessel model around these 

states is expected therefore to be underperforming. Therefore, a maximum of 52 ℃ is taken as a limit for 

this analysis.     

The effect of the maximum temperature set point on both the number of heating cycles and the 

corresponding average daily energy consumption is shown in figures 35 a and b. It is evident that both 
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Figure 34. Frequency distribution of Tm for house 1  

Figure 35 (a) Relationship between Tset and average daily consumed energy (%). (b) Relationship between Tset 

and number of heating cycles (%).  
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parameters decrease with increasing temperatures of this range. Therefore, to optimize for these 

parameters, a temperature of 52 ℃ is set as an upper limit for the heating cycles for this analysis. The 

resulting energy profiles are shown in figures A.1 to A.6 in appendix A. The main visible difference 

between the plots in the appendix and the plots of figures 28 – 33, is the width of the reheating events 

which are wider for an upper limit for 𝑇𝑚 of 52 ℃. This results in smoother graphs and lower peaks 

during low solar energy events. Hence, more energy is stored during the high solar energy generation 

hours leading to lower energy consumption in the evenings and mornings. This is numerically 

represented in table 4.  

With this control strategy, the energy required from the grid reduced substantially for most of the 

houses. The reduction for house 1, 3 and 6 are amongst the lowest compared to the other houses similar 

to the previous control strategy. This is to be expected since the energy consumption profile is primarily 

controlled by the water consumption and less by the threshold temperature of the baseline control as 

presented in the last column. Therefore, reheat cycles at low energy generation hours are inevitable 

given the relatively higher DHW consumption.  

 Furthermore, the number of total heating cycles reduced for all houses compared to the 

previous optimization algorithm. This was expected since the maximum temperature is set higher which 

increases the comfort level range by 2 ℃ allowing the DHW tank to store more energy. As a result, the 

consumed energy is reduced for all houses compared to the previous optimization control. This 

reduction results in lower solar energy consumption compared to the previous optimized control which 

is reflected in the reduced self-consumption. Nevertheless, the reduction of the average daily required 

energy without violating the comfort standards is an improvement to the energy efficiency. The 

increased self-sufficiency shows that the improved algorithm performs better in terms of shifting the 

energy consumption from low generation hours to high generation hours complying thereby to the 

objectives of the optimization. This optimized control strategy could, therefore, find the balance 

between the energy efficiency and the onsite solar energy consumption. Most importantly, the number 

2 House 

nr. 

Baseline total 
energy 
consumption 

Δ Total 
consumed 
energy 
(kWh) 

Δ Times 
turned 
on 

Δ Total 
energy 
withdrawn 
from grid 
(kWh) 

Δ self-
consumption 
(kWh) 

Δ self-
sufficiency 
(%) 

Δ 
Comfort 
violation 
(nr of 
times) 

Baseline 
control 
reheat with 
no 
consumption 

(kWh)         

1 133 
-8 162 -24 16 71% -363 

32/129 
(-6%) (+36%) (-63%) 17% 89% (-88%) 

2 94 
-16 19 -33 17 58% -45 

60/120 
(-17 %) (+6%) (-82%) 31% 91% (-53%) 

3 124 
-16 123 -37 20 58% -287 

33/128 
(-13%) (+28%) (-70%) 28% 85% (-84%) 

4 44 
-0.2 44 -11 10 67% -13 

72/89 
(-0.5%) (23%) (-73%) 35% 91% (-72%) 

5 53 
13 135 -38 51 28% -132 

40/65 
(24%) (+67%) (-99%) 348% 100% (-70%) 

6 91 
-6 217 -37 32 39% -164 

28/100 
(-6%) (+74%) (-67%) 89% 79% (-73%) 

Table 4. Complete numerical results of the improved optimization control strategy for June-Sep.  
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of reheat cycles reduced significantly compared to the previous optimized control. Too many reheat 

cycles could increase the wear and tear in the ASHP reducing its lifetime and increase unnecessary heat 

loss. It is therefore important to achieve an optimization with as less number of reheat cycles as possible. 

Nevertheless, optimizing on-site solar energy consumption inevitability requires an increase in the 

reheat cycles around the high energy generation hours. A balance between these two objectives is 

therefore crucial as done in the second case by increasing the temperature upper limit of the reheating 

cycles. The second control strategy will therefore be applied rather than the first for further analysis.  

The presented results show that the RL algorithm improves the self-consumption and self-sufficiency 

significantly resulting in simulated self-sufficiencies between 81% and 100%. As a result, the energy 

withdrawn from the grid is reduced significantly. The energy injected to the grid is similarly reduced 

between 10 and 51 kWh (depending on the initial electricity use) for the months of June to September. 

These improvements are compared to the default control strategy which does not take the solar energy 

profile or the occupant behaviour into account. However, as stated previously in the introduction and 

literature review, studies show a significant performance gap between measured and modelled nZEB 

performance as result of inaccurate occupant behaviour modelling or incorporation. Due to the 

increasing electrification of the building energy services, the interaction of these buildings with the grid 

will therefore be larger than estimated by these models. This challenges the role of grid operators in the 

current top-down energy infrastructure as there is no control of the building services loads. RL was 

therefore proposed as a control strategy to reduce the grid interaction. The main advantage of using RL 

for domestic load control is the introduction of occupant behaviour in the assessment. It is therefore 

important to assess the influence of this factor on the optimization. The following analysis will therefore 

focus on the role of the occupant behaviour on the performance of the algorithm. 
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6.4. Occupant behaviour profile influence 

An important challenge for applying a fixed control strategy on a large scale, is the difference in the 

individual DHW consumption per household. The previous results have shown more than once that the 

consumption pattern plays an important role for the optimization potential. The Sarsa(λ) applies the 

rewards based on the states that are comprised of a combination of the midpoint temperature, water 

consumption and solar energy production. The linear model applied to reproduce the Q-values adapts its 

coefficients according to the algorithm’s output. Table 5 presents the coefficients reproduced by the 

linear model of the Q-values for the six houses individually. The values show clear differences from one 

house to the other.  

 

 

 

 

 

 

 

The solar energy production varies the least since the solar energy generation for the houses is nearly 

the same. The largest variation is evident in the value of the intercept and the temperature coefficient. 

Houses 1 and 4 show the greatest contrast for these two values, correlating with the greatest contrast in 

the DHW consumption of the houses. The significantly low water consumption of house 4 results in a 

temperature drop mainly due to heat loss to the environment rather than water consumption. 

Therefore, the storage vessel is at high temperatures for the majority of the states (as indicated in the 

last column of table 5), allowing for the lowest intercept and highest weight for 𝑇𝑚. This emphasizes the 

influence of the consumption pattern on the resulting control strategy. Discarding this effect will 

therefore lead to limited optimization.  

 This effect will be examined by applying average solar and DHW consumption profiles to the 

algorithm in order to compare the results with the occupant behaviour customized results. Conducting 

this analysis allows for investigating the influence of the occupant behaviour on the learning mechanism 

of the algorithm and its importance in control strategy optimization.   

6.5. Average profile states simulation 

An average monthly solar energy generation and water consumption profile are created from the 

available data-set in order to simulate the resulting states by using the vessel state model [66]. These 

states are then applied to the algorithm to produce the Q-values and compose the linear model. The 

linear model is then to be used to assess the potential reduction of required power from the grid and the 

injected energy on monthly basis. The optimization potential will be assessed on a monthly time-scale 

allowing for the comparison between the high and low solar energy generation months. The solar energy 

profiles show large differences between the warm and cold months for the latitude of the project 

location of Soesterberg as illustrated in figure 36. 

 

House Intercept Temperature 
coefficient 

Water 
coefficient 

Solar  
coefficient 

Percentage 
𝑻𝒎> 45℃ 

1.00 -42.02 1.08 -0.07 -0.0128 81% 

2.00  -59.75 1.42 -0.03 -0.0118 97% 

3.00 -49.27 1.21 -0.04 -0.0131 82% 

4.00 -83.47 1.93 -0.09 -0.0123 99% 

5.00 -45.49 1.12 -0.02 -0.0117 69% 

6.00 -47.65 1.19 -0.05 -0.0126 78% 

Table 5. Linear model coefficients and intercepts of each individual house 
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It is therefore natural that the optimization potential would vary significantly from summer to winter. A 

monthly averaged profile for the solar energy is therefore justified. Averaging the six different water 

profiles of the houses result in the following average daily profile for the 6 months: 

This profile and the average monthly solar energy profile are applied to the vessel state model [66] to 

generate the resulting midpoint temperatures by applying the optimization control strategy. The 

resulting state-action-pairs were applied to the Sarsa(λ) algorithm in order to generate an average linear 

regression model. This serves the purpose of providing a generalised control strategy that could be 

applied to all houses for different months. The generalisation potential of this approach is examined by 

applying the resulting linear regression model to the individual houses on monthly basis.  

  

Figure 36. Average monthly solar energy generation  

Figure 37. Average daily solar energy generation of all six houses for 6 months 
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Comparing the individual with the averaged profiles results of the summer months, results in the 

following for the total energy withdrawn and injected from/to the grid: 

  

The results show a consistent increase in the reduction of the grid interaction dominated by a large 

increase in self-consumption. The averaged profiles optimization policy thus keeps improving the 

interaction with the grid by reducing the total energy required from the grid and solar energy injected to 

the grid. However, the large increase in self-consumption is partly the result of the increase in the 

number of times the ASHP is turned on. Therefore, it could be said that the average profiles policy is 

effective in decreasing the grid interaction as aimed for, however increases the number of reheat cycles 

for most houses. This has the largest impact on houses with a relatively low energy consumption profile 

compared to the average consumption profile such as for house numbers 2 - 4 as can be seen in figure 

39.   

As stated before, a large increase in the number of heating cycles can have negative effects on the 

lifetime of the device and also on the energy efficiency. Houses with a consumption profile below the 

average will be affected the most, leading to overconsumption of solar energy. Therefore, including the 

occupant behaviour aids to achieve a more effective and customized control strategy performance. This 

proofs the effectivity of the learning mechanism of RL algorithms and illustrates its role in tackling the 

challenge of incorporating the stochastic nature of occupant behaviour. 
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Figure 38. (a) Total reduction of energy uptake from the grid for the summer months’ data, individual vs. averaged 

optimization. (b)  Total change in self-consumption for the summer months’ data, individual vs. averaged optimization. 

Figure 39. Percentage of change of reheat cycles compared to the baseline for the individual 

and averaged optimization strategies for June-Sep 
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6.6. Practical implementation  

6.6.1. Implementation setup 

In the system setup of the case-study, the data of all different houses is sent to one central repository in 

which the control statements are integrated. The control action is then determined based on the 

embedded control strategy and the individually received data and sent as a control signal to the 

concerned heat pump. This setup is alternatively shown in figure 40. 

The central gathering of the data is a useful tool for applying this method on cluster level. The derived 

control algorithm could then be integrated centrally to determine the control action for each individual 

heat pump. This approach makes it possible to learn the individually customized optimal control for each 

house. As a result, overconsumption or comfort violation of the individual households is avoided. The 

time-scale for the algorithm update could be performed on 24-hour basis to update for the gradual 

change in solar energy production and to include the changes in the DHW consumption profile. In order 

to maintain timely adaptation to the weather, it is most ideal if the update time-scale does not exceed a 

month. This is also important to perform to deal with large changes in the occupant consumption in 

cases like changing the occupants and/ or periods of absence.      

6.6.2. Generalisability 

The cluster of houses of this case-study comprise identical refurbished social housing dwellings. 

Therefore, the system size and parameters are all identical which will naturally result in control 

coefficients of which values lay relatively not far from each other. The only highly divergent variable on 

Fig. 40. Current centralized control and computing architecture 



 
 

57 
 

daily basis is the occupant behaviour. Nevertheless, like presented in §6.5, the algorithm learns the 

corresponding control strategy based on the individual data input. Therefore, this control strategy could 

also be applied to clusters with different and also divergent system parameters provided that the three 

parameters 𝑇𝑚, ∑ 𝑊𝑎𝑡𝑒𝑟, and the solar energy generation are available. In other words, the algorithm is 

generalizable and could be applied to any system that could provide these three parameters. The 

optimization potential will vary from one system to another based on the system parameters such as the 

insulation and the size of the water vessel, solar energy generation, type of dwelling, and the number of 

occupants of the dwelling. The aggregated results for the houses used in the case-study throughout the 

months of June to December will be illustrated in the next section. This is to illustrate the optimization 

potential for the specific net zero energy dwellings used in the case-study for the climate of the 

Netherlands and how this information could benefit grid operators and the occupants.  

6.7. Monthly aggregated optimization potential 

When applied to the study case, the acquired monthly grid interaction reduction potential differs from 

one month to the other following the changing consumption and generation patterns shown in figure 41. 

This figure shows the baseline spread of all six houses of energy injected to the grid (a) and withdrawn 

from it (b). 

The change of the energy consumption shown in fig. 41.b. is a result of the decreasing ambient 

temperatures throughout the months, leading to a lower COP of the ASHP and therefore a higher energy 

consumption. Since the ASHP load increases significantly in the colder months, the amount of required 

energy from the grid increases accordingly. Similarly, the self-consumption potential imposed by the 

algorithm decreases since the produced solar energy is decreased (fig. 41.a.). This could be seen in figure 

41 which shows the spread of the absolute amount of reduced energy injected to the grid (41.a.) and 

withdrawn from it after applying the algorithm on monthly basis.   

Figure 41. (a) Monthly spread of baseline total absolute energy injected to the grid of all six houses. (b) Monthly spread 

of baseline total absolute energy withdrawn from the grid of all six houses. 
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These results show that the grid interaction reduction potential created by the algorithm persists 

throughout the different months. For this case study, the optimization implies a minimum energy uptake 

reduction of around 10 kWh at the peak of summer which increases gradually following the energy 

consumption profile. The change in energy injected to the grid exhibits similar results for which the 

energy injection reduces from summer to winter with maximum average of around 25 kWh. When 

expressed in terms of self-consumption and self-sufficiency, the results show that the potential for both 

decreases towards winter (fig. 43(a) and (b)).  

 The reduction in the solar energy generation during the colder months reduces the potential for peak 

shaving from low generation hours to high generation hours. Hence, the optimization potential (%) for 

the energy uptake from the grid reduces since there is less solar energy available to supplement the 

consumption. Likewise, since the solar energy reduces, self-consumption becomes harder to achieve as 

can be seen in 43.a. Nevertheless, the optimization potential of the algorithm persists to be effective in 

reaching the goal of reducing grid interaction by shifting reheat cycle timings. 

  

Figure 42. (a) Monthly spread of optimized total mitigated energy injection to the grid of all six houses. (b) Monthly spread of optimized 

total mitigated energy uptake from the grid. 

Figure 43. (a) Monthly spread of optimized self-consumption of all six houses. (b) Monthly spread of self-sufficiency of all six houses. 
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6.8. Implications for the occupants 

Recalling the current Dutch net metering compensation scheme described in 1.2.2, selling excess solar 

energy is beneficial in all cases before 2020. Power sold to the grid is compensated against the total 

consumed power on annual basis. The excess power sold to the grid beyond the range of the total 

consumed power, is also compensated for a fair price determined by the DSO. This scheme is therefore 

stimulating consumers to invest in solar energy. As result, the consumers do not have to pay tax over 

their energy bill. This tax is estimated to account for 40 million Euros annually [29] which is funded by 

the Dutch tax system. It is therefore argued that this tax is paid for by tax-payers without solar panels 

[29]. Moreover, the scheme is not beneficial for grid operators on a long-term scale as a result of the 

need for grid reinforcement. It is therefore planned to diminish this scheme by 2020. Whilst currently 

reducing the power injected to the grid is not beneficial, it will become so according to the plans for the 

transition plan in 2020 [86]. Two main transition proposals are stated in the report state a reduced value 

for the excess sold power to the grid. The first proposal states a buying value of €0.22/kWh against a 

selling value of €0.06/kWh. The second proposal includes an additional feed-in tariff of €0.075 to the 

selling price. In both cases, on-site solar energy consumption will become more beneficial than selling to 

the grid. It is estimated by [86] that the monthly cost for nZEBs will increase, as a result of diminishing 

the net-metering scheme, by €40 given the current prices of solar technology and heat pumps and €30 

considering the expected price reduction of these installations. Load matching to increase on-site solar 

energy consumption increases therefore the feasibility of these building concepts for the occupants. An 

increase of 150% in summer and 75% in the colder months on average as a result of implementing the 

algorithm, therefore, is a cost-efficient way to promote the concept of nZEBs even without the net-

metering scheme. Table 6 presents the total reduction of the summed energy injection and uptake for all 

six houses in the period of June to December, against the monetary value in both scenario 1 and 2 of the 

proposal of [86]. Deducting the money missed due to the reduction of solar energy selling from the 

gained money due to the reduction of electricity uptake, results in a total benefit between € 4 - 24 in the 

first scenario and €1 - 9 in the second for the six houses for the period of June to December.   

House 
nr 

Total reduced 
injection (kWh) 

Total 
reduced 
uptake 
(kWh) 

Δ Monetary 
benefit 
scenario 1 (€) 

Δ Monetary 
benefit scenario 
2 (€) 

1 79 89 14.84 8.915 

2 98 118 20.08 12.73 

3 102 137 24.02 16.37 

4 37 30 4.38 1.605 

5 164 104 13.04 0.74 

6 115 108 16.86 8.235 

 

 

  

Table 6. Overview of reduction of energy uptake and injection and the corresponding monetary benefit 

for the two scenarios proposed in [86] to replace the net-metering policy in the Netherlands in 2020.  
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6.9. Implications for grid operators 

The optimization results discussed in section 6.7 show a decrease of energy injection to the grid of a 

maximum of 25 kWh on average for the houses in summer and a minimum of 10 kWh for the period of 

September to December. The reduction of injected power to the grid translates directly to a reduction in 

the necessary cost for grid reinforcement. The required grid reinforcement cost comes from the size of 

the transformers and cables required to accommodate a large increase solar energy generation due to 

an increase in nZEB concepts. In addition, the installed heat pumps in these buildings add to the 

electrical load required from the grid, thereby increasing the pressure on the grid components. A 

decrease in this effect will therefore reduce the necessary grid reinforcement cost which depends on the 

size of cluster of houses, the grid components size already in place, and the location. The study of ECN 

[69] discussed previously in the literature review, presents the grid reinforcement cost mitigation as a 

result of a peak shaving technique of around € 250 thousand for a cluster of 1400 houses. This illustrates 

the large cost associated with a large increase in the grid interaction as a result of the nZEB concepts.  

Additional benefits for the grid operators relate to the real-time grid monitoring and steering role of the 

grid operators. Acquiring the data for the centralised control gives grid operators more information 

about the distributed generation and the consumption fluctuations of nZEBs. This provides the grid 

operators with the monitoring tools necessary to maintain grid resilience and avoid black-outs given the 

necessary changes in the top-down energy infrastructure.  
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7. Discussion 

7.1. Relevance of study 
Enhancing onsite RES energy consumption and self-sufficiency is an important optimization objective for 

the built environment for it allows a larger penetration of RES energy in the grid. In addition, the building 

sector is increasingly more being transformed into nearly zero energy concepts as described in the 

literature review. This transformation is aided by RES to complement the energy deficit for which the 

conservative architectural design cannot cover. The interaction between the built environment and the 

grid is therefore likely to increase posing grid reliability and performance challenges.  

 The built environment is likely to host PV energy technologies compared to other RES for its 

relatively low cost and easy integration in the architecture. Optimizing for maximum onsite solar energy 

consumption is therefore significant for reducing the pressure of the intermittent energy penetration in 

the grid from this sector. An additional benefit is relevant for the concept of nZEBs as the energy 

performance is improved even more to comply to the energy label standards. The analysis described in 

this study, examines the potential of reinforcement learning as an optimization tool for the control 

strategy for peak shaving by matching the load to the energy generation to reach these objectives. 

Reinforcement learning omits the need for a physical model of the system, saving thereby time and 

effort. Another benefit is that it provides generalisability whilst physical models are built based on 

specific cases. This entails the need to adapt the model from one case to another, reducing thereby its 

generalisability. In contrast, reinforcement learning algorithms are data-driven which makes them 

generalizable and not domain-specific.  

7.2. Technical assessment 

The studied indicators include the onsite self-consumption, self-sufficiency, and energy uptake from the 

grid. Two important limitations for the study comprise the number of reheat cycles and the comfort 

standards for the occupants. The number of reheat cycles has a direct influence on the total amount of 

energy required for the ASHP operation and the resulting efficiency. It is therefore important to maintain 

a balance between the on-site self-consumption and the energy consumption of the ASHP. As for the 

comfort standards, the optimization should not compromise the occupant comfort. The comfort 

standards as defined by BAM, entail a DHW temperature of at least 45 ℃. The temperature to which the 

ASHP reheats each cycle is set at 51.5 ℃.  

 The first optimization strategy shows significant optimization potential regarding the timing of 

the heating cycles. Figures 28 to 33 and A.1 – A.6. show that the algorithm reduces energy consumption 

during low energy generation hours whilst increasing the energy consumption during the afternoon. As a 

result, the self-consumption and the self-sufficiency improved substantially for the period of June to 

September. The self-consumption increased by 12% for house 1 compared to the initial value and 410% 

for house 5 (table 3). The self-sufficiency shows similar optimization as it increases to between 84% and 

98% for houses 1 and 5 respectively. This is achieved whilst the comfort standards were not violated 

additionally. In fact, the comfort violations were reduced by 15% to 79%. On the other hand, the results 

show an increase in the number of reheat cycles between 12% and 97% compared to the baseline 

results. In general, it holds that the higher the increase in the number of reheat cycles and the bigger the 

time gap between reheating and DHW consumption, the higher the energy loss to the environment. This 

effect is pronounced strongest in the results of house 5 in which an increase of 97% in the number of 

reheat cycles resulted in an increase of 42% of the energy consumption.  

 Moreover, the discrepancy between the rise in self-consumption and the reduction of the energy 
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uptake from the grid indicates that the rise in self-consumption is not solely the result of shifting the 

reheat cycles from low to high generation hours. It becomes therefore evident that the optimization 

algorithm results in overconsumption for houses 4 and 5 due to enhanced heat loss as a result of the 

increased number of reheat cycles. An improved optimization control strategy has therefore been 

deployed to reduce the number of reheat cycles whilst maintaining an optimal rise in self-consumption. 

This second optimization differs from the first in the temperature set point of 52 ℃ (as opposed to 

baseline 50 ℃) to which the vessel is reheated in each cycle.  

 The results given in table 3 show an improved behaviour. The number of reheat cycles and the 

total energy consumption of houses 4 and 5 reduced significantly compared to the first optimization 

strategy. This does not only provide an advantage for the life-time of the heat pump but improves the 

energy efficiency of the building to meet the nZEB labelling objectives and beyond. The self-

consumption, however, reduced to between 17% and 348% due to the reduction in total consumed 

energy. However, the further improvement of the self-sufficiency indicates that the algorithm improved 

in allocating the heating cycles from low to high energy hours which resulted in self-sufficiencies of 

between 85% to 100% compared to baseline 28% to 71%. Additionally, the comfort violations reduced 

furthermore. As a result of this optimization, the grid interaction was reduced substantially. As the DHW 

load is only around a tenth of the size of the solar energy generation in summer, the reduction in the 

energy injected to the grid is rather sparse. Nevertheless, the energy uptake from the grid reduced by a 

minimum of 54% to a maximum of 99%, complying thereby to the objectives to reduce grid interaction.  

 

All these results combined show that the second optimization strategy could find the balance between 

the energy efficiency and the objective of peak shaving without compromising the occupant comfort. By 

increasing the temperature set point of the DHW storage vessel, the vessel utilises more of its ability to 

act as buffer for the solar energy, reducing thereby the need for additional heating cycles. This is 

believed to be the reason for the improvement of the second optimization strategy over the first. The 

reduction of the average daily required energy is an indication for a significant potential to meet both 

objectives of maintaining and improving energy efficiency and enhancing on-site energy consumption.  

The required energy was reduced by 11% on average. Kazmi and D’Oca 2016 [36], conducted a study 

with model-based reinforcement learning to examine the potential for reducing the energy consumption 

of the same system setup used in this paper. The research finds a total simulated reduction of around 

15% and real-world reduction of 27% compared to the baseline results. This research was solely focussed 

on the reduction of energy consumption of the ASHP with no regards to maximizing on-site energy 

consumption. The similarity between the results shows that both objectives could go hand in hand 

without having to compromise one of the two goals. 

7.3. Results compared to outcomes found in literature 
Analysing the effectivity of the method in reducing grid interaction, the results are compared to the 

outcomes found in the literature discussed in the literature review. The different outcomes are provided 

in table 7. It is good practice to note that the outcomes depend not only on the methods used but also 

on the system size and components. The studies presented here have system components specifications 

of around the same size. The only exception is the study of [69] using the PowerMatcher. This study 

applies scheduling a methodology to control a cluster of 1400 houses to spread the loads over the whole 

day and avoid peaks.  

 Evident from the rule-based results found in both [67] and [72], that the resulting optimization 

potential is evident but less effective than MPC and RL methodologies. This emphasizes the drawback of 
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fixed control strategies as they lack the ability to adapt the control to changing patterns. MPCs on the 

other hand, show significant optimization potential. As discussed previously, MPCs utilise physical 

models of the system. This makes them more accurate in predicting the loads. Their optimization 

potential is therefore promising. One important drawback to MPCs concerns the need to apply these 

objectives to large scales. Since they require models of the system, they do not provide generalisability 

so they could be applied to systems with different system specifications. In comparison, the RL 

methodologies perform closely to the outcomes of the MPC methods. The study of [77] compares the 

results of both an MPC and RL algorithms and concludes that RL algorithms perform closely to the 

performance of MPCs. Their study results in RL performance of 2% lower than that of the MPC 

outcomes. This advantage of RL is also showed in the results of this thesis also indicate a significant 

optimization potential for the months of June to December on average (fig. 43). This potential is 

expected to decrease to a certain extent if the winter months will be included in the assessment. 

Nevertheless, this effect is expected to be limited since the results show a persistent grid interaction 

reduction throughout the analysed months. The optimization potential falls in the range of the results of 

[73], [82], and [69]. This shows significant potential of RL algorithms to be applied to case-studies with 

load matching purposes.  

Study Method Δ Self-consumption 
(%) 

Δ Self-sufficiency (%) 

Ijaz Dar et al, 2014 [67] Rule-based 6 11.5 

De Coninck et al 2010 
[72] 

Rule-based -  3.4  

Sossan et al, 2013 [73] MPC 293 - 

Van Houdt et al, 2014 
[82] 

MPC 8 – 29  5 – 25 

Peng and Morrison [77] RL - 12 

Kazmi and D’Oca, 2016 
[36] 

RL - 15 

Pruisen and Kamphuis 
[69] 

PowerMatcher 50 - 

Thesis results RL 17 – 348 18 – 72 

 

7.4. Learning mechanism of RL 

The main argument to use RL for this optimization is the learning aspect and generalisability of the 

method. The constantly changing solar and occupant behaviour patterns create a disadvantage for fixed 

optimization approaches such as MPCs and rule-based control methodologies. To test and proof the 

learning mechanism of the RL algorithm used, average occupant behaviour and monthly solar energy 

profiles were created from the individual profiles of the six houses. These profiles were then applied to 

the algorithm to simulate the results for each of the houses. The number of reheat cycles as a result of 

the averaged profiles optimization show remarkable results for being substantially amplified for houses 

with a low energy consumption profile. The large difference of the number of heating cycles between 

the individual and averaged profiles indicates the strong influence of the individual occupant behaviour 

Table 7. Overview of optimization outcomes found in literature [36],[67],[69],[72],[73],[77],[82], 

compared to the thesis results 
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on the performance of the algorithm. This emphasizes the significance of the learning behaviour of the 

algorithm as opposed to rigid approach of rule-based control optimization algorithms. The occupant 

behaviour determines the transition between the states which influences the occurrence of the states. 

As seen from the tables 3 and 4, higher states (higher 𝑇𝑚) dominate the state-space of the data set of 

the houses that have a low energy consumption profile and vice versa. This contrast is best evident from 

the results for house 1 and 4. This mechanism determines the relative weight of the three different 

parameters, 𝑇𝑚, ∑ 𝑤𝑎𝑡𝑒𝑟, and the available solar energy in the resulting linear model. When these three 

parameters are incorporated in a rule-based control algorithm, the relative weight of each of them 

would be fixed at a certain value. The efficiency of the heat pump could therefore be compromised when 

aiming at load shifting. Nevertheless, rule-based algorithms provide a solution when historic sensor data 

are not available to build a learning algorithm.  

7.5. Implementation analysis 

The current control strategy is organised through a centralized data gathering and computing 

architecture. This allows for applying the algorithm for each house individually to reduce the grid 

interaction for a cluster of houses. This way not only could the algorithm learn the individual 

consumption pattern of each house but also continue learning and adjusting the control strategy 

accordingly. Additionally, the centralised data gathering assists the grid operators in their grid 

monitoring role to ensure grid reliability by providing information about the consumption and 

generation patterns.  

 The optimization objectives of reducing the grid interaction are most effective when applied on a 

large-scale. Reducing the grid interaction on a large scale provides the tools to reduce the effect of the 

increasing electrification of the residential built environment as a result of implementing nZEB concepts. 

Henceforward, more nZEBs could be implemented to assist to improve the energy efficiency of the built 

environment and enhance the penetration of renewable energy without having to invest significant 

amount of money to reinforce the grid components.   

 Concerning the occupants, the Dutch government will abolish the current net-metering scheme 

for solar energy generation in 2020. Two transition plans are proposed instead to deal with injected solar 

energy to the grid. Both scenarios describe a lower selling price for generated electricity from solar 

energy compared to the buying price electricity per unit of energy (kWh). As shown in the results, the 

reduction of the grid interaction of the buildings, therefore, reduces the annual electricity bill in both 

scenarios. This adds to the incentive to reduce the grid interaction.  

 Overall, it could be concluded that the method proofed to be effective in complying to the 

objectives of reducing the grid interaction of the buildings, improved solar energy self-consumption and 

the efficiency of the ASHP with no negative consequences for the occupant behaviour.  

  



 
 

65 
 

8. Conclusions and recommendations 
Deriving from the results and discussion, using RL could provide means for improving the performance of 

nZEB to comply to the label standards and in the same time reduce the pressure on the grid as a result of 

the increasing electrification of the built environment without posing a threat to the occupant comfort. 

Providing these means for the utility grid not only reduces the need and cost for grid reinforcement, but 

allows for more renewable energy technologies to be deployed in the residential built environment.  

The results show an increase of individual self-consumption between 17% and 348% and self-sufficiency 

between 18% and 72% by applying DHW load shifting. This indicates a significant potential to reduce grid 

interaction to boost the implementation of RES in the residential built environment for the sake of 

increasing the share of renewables and also to improve the efficiency of the built environment by 

implementing more nZEBs. Additionally, considering the planned abolishment of the net-metering policy 

for solar power in 2020 in the Netherlands, reducing the grid interaction increases the monetary benefit 

for the residents. Moreover, this approach improves the monitoring potential of grid operators to avoid 

grid curtailment as a result of the increased electrification of the building loads and locally generated 

renewable energy.    

In this study the algorithm was trained on a data set with a length of 6 months. This provided promising 

results, however, the working principle of RL is that the algorithms improve behaviour when they acquire 

more experience. With changing occupant behaviour and weather patterns, the algorithm will fully 

exploit it potential and comply to its goal when provided with more experience on continuous or regular 

basis. Although in this current study only the DHW is considered, the other possible states of the ASHP 

could be incorporated in the algorithm to include the HVAC in the optimization. Additionally, the 

adaptable reward function provides an option to increase the weight of the available solar energy to 

provide additional flexibility when needed. In this study the total energy consumption of the ASHP is 

taken as a limitation for the optimization to maintain a high efficiency. However, when the goal is to 

provide positive flexibility to avoid grid curtailment, the algorithm could easily be modified to increase 

energy consumption. Negative flexibility, on the other hand, is represented by the acquired significant 

reduction in energy uptake from the grid as a result of the optimization. Hence, when applied to the 

complete electric load of the building, optimizing for on-site renewable energy consumption will 

inherently reduce the required negative flexibility.  
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Appendix A 

 

 

Figure A.1. House 1 power profiles baseline vs. optimized to 

𝑇𝑚𝑎𝑥 of 55 ℃.  

Figure A.2. House 2 power profiles baseline vs. optimized to 

𝑇𝑚𝑎𝑥 of 55 ℃.  

Figure A.3. House 3 power profiles baseline vs. optimized to 

𝑇𝑚𝑎𝑥 of 55 ℃.  

Figure A.4. House 4 power profiles baseline vs. optimized to 

𝑇𝑚𝑎𝑥 of 55 ℃.  

Figure A.5. House 5 power profiles baseline vs. optimized to 

𝑇𝑚𝑎𝑥 of 55 ℃.  

Figure A.6. House 6 power profiles baseline vs. optimized to 

𝑇𝑚𝑎𝑥 of 55 ℃.  
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Appendix B 
 

 

 

Fig. B1. Heat pump COP specifications 


