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Abstract—In this paper, a multiple-symbol parallel variable
length decoding (VLD) scheme is introduced. The scheme is
capable of decoding all the codewords in an -bit block of
encoded input data stream. The proposed method partially breaks
the recursive dependency related to the VLD. First, all possible
codewords in the block are detected in parallel and lengths are
returned. The procedure results redundant number of codeword
lengths from which incorrect values are removed by recursive
selection. Next, the index for each symbol corresponding the
detected codeword is generated from the length determining the
page and the partial codeword defining the offset in symbol table.
The symbol lookup can be performed independently from symbol
table. Finally, the sum of the valid codeword lengths is provided
to an external shifter aligning the encoded input stream for a new
decoding cycle. In order to prove feasibility and determine the
limiting factors of our proposal, the variable length decoder has
been implemented on an field-programmable gate-array (FPGA)
technology. When applied to MPEG-2 standard benchmark
scenes, on average 4.8 codewords are decoded per cycle resulting
in the throughput of 106 million symbols per second.

Index Terms—Critical path, design, gate array, image pro-
cessing, reconfigurable systems, video processing.

I. INTRODUCTION

THE ULTIMATE purpose of compression is to represent
a set of symbols with a minimum number of bits. This is

achieved by representing frequently occurring symbols with
shorter codewords. Such a coding method results in variable
codeword lengths, hence, the name variable length coding
(VLC). The theoretical lower bound on the average number of
bits required to represent a symbol in the given set is defined
by entropy [1]. In order to reach entropy, noninteger codeword
lengths are needed. Suboptimal compression can be obtained
with integer codeword lengths and a coding method providing
the shortest integer length codewords is Huffman coding [2].

The inverse process for VLC is variable length decoding
(VLD) where the codeword length is detected from a block of
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Fig. 1. Block diagram of a generalized VLD.

the variable length coded input stream and this codeword is
used to determine the actual symbol with the aid of predefined
codeword values, i.e., codeword table. The input stream is
then aligned for the next decoding iteration as illustrated in
Fig. 1. In general, there is no explicit boundary information for
detecting the end or beginning of the codeword in the coded
data stream. Therefore, the length of the current codeword
should be known before the next codeword can be decoded.
This feature complicates the decoder design substantially and
limits the performance.

A traditional VLD method is to decode one symbol at time in
symbol-serial fashion. Two principal approaches exist: the bit-
serial tree-based processing resulting in constant input/variable
output rates decoding [3]–[5] and the bit-parallel approach with
variable input/constant output rates [6]. In multiple-symbol de-
coding or symbol-parallel schemes, the major design issue is to
break the data dependencies between codewords. Another issue
is the management of the increasing hardware and control com-
plexity, especially when large codeword tables and long code-
words are used.

Often a block of bits in the input stream contains more
than one codeword. This fact has been exploited in a variable
input/variable output rate multiple-symbol decoding schemes
for short codewords [7], [8], which operate on a buffer whose
size is equal to the longest codeword. An alternative method
is to keep the output rate constant [9], [10]. However, in the
current multiple-symbol approaches, the performance is limited
due to the fact that the arbitrary length input buffers are not
exploited. In the previous methods, either only short codewords
are decoded concurrently or the number of symbols is limited.

In this paper, a novel multiple-symbol parallel VLD scheme
is proposed and applied in MPEG-2 VLD. The work is based on
the work reported earlier in [11]. The main contributions of this
paper are the following.

1) Multiple-symbol parallel decoding scheme: Decodes all
the complete codewords in an arbitrary length block of
input data.

2) Multiplexed add unit: Reduces the number of logic levels
in the critical path of the parallel/serial codeword detec-
tion.
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3) MPEG-2 decoder demonstration on a field-pro-
grammable gate array (FPGA): Proves the feasibility
and illustrates the limitations of the approach. It is shown
that a technology independent hardware description on
the FPGA technology results in a cycle time of 45 ns. On
average, the demonstration can detect 4.8 symbols of the
5.6 potential symbols when a 31-bit input buffer is used.

The remaining of the discussion is organized as follows. The
previous work is outlined in Section II. In Section III, the pro-
posed decoding scheme is introduced and the theoretical perfor-
mance is estimated. Decoder design is described in Section IV
and experimental results are discussed in Section V. Finally, the
conclusions are presented with a glance to future work in Sec-
tion VI.

II. PREVIOUS WORK

Existing VLC decoders can be classified into three ap-
proaches as follows:

A. Serial Decoders

The serial architectures, also referred to as tree-based archi-
tectures, decode input data stream sequentially, bit-by-bit [3] or
in clusters of several bits [4]. The used algorithm is the inverse
interpretation of building the Huffman tree; coded input stream
is compared to a binary tree starting at the root of the tree. The
comparison is performed with a constant input rate, one bit per
cycle, until the entire codeword is detected in the corresponding
leaf node. Due to the variable codeword lengths, the serial pro-
cessing results in a variable output rate. Short decoding time
is achieved only with short codewords. However, under hard
real-time constraints, the required output rate should be fulfilled
also with long codewords, thus the performance is defined by the
latency of the long codeword processing. Furthermore, the se-
rial processing is not applicable for multiple-symbol decoding
due to the recursive dependencies between the codewords.

B. Parallel Decoders

For a constant output rate, the number of bits to be decoded
at a time should be equal to the longest codeword length
resulting in bit-parallel processing, which guarantees that one
codeword is detected at each cycle. Traditionally, codewords
are detected with pattern matching based on logical func-
tions [6]. The alignment of input stream for the next cycle is
performed according to the codeword length. Advances are
achieved by clustering bit patterns and utilizing tree-based
pattern matching [12]. Moreover, designs can be pipelined
into stages of codeword length determination and finding the
corresponding symbol since the length information is sufficient
to extract a codeword [13]. Furthermore, the traditional pattern
matching has been replaced with arithmetic operations utilizing
the properties of codeword table, e.g., leading characters and
numerical properties [14]–[16].

C. Multiple-Symbol Decoders

According to the properties of the VLC, most probably a
block of bits in the input stream contains more than one code-
word. This fact has been exploited in variable input/output rate
multiple-symbol decoding schemes for short codewords in [7],
[8]. The exponentially increasing control and hardware com-
plexity sets constraints to implementations, especially, when
large codeword tables are used. Hence, the number of bits to
be decoded is limited to the longest codeword length [7] or al-
ternatively the number of outputs is limited [8]. The increasing
complexity can also be managed by using symbol parallel de-
coding while keeping the output rate constant [9], [10].

In this paper, we propose a multiple-symbol VLD scheme
with the following properties; the scheme is: 1) parallel; 2) de-
codes multiple symbols; and 3) exploits arbitrary codelength
buffers and variable output rate. The property 1) is different
from serial decoders; property 2) is different from parallel de-
coders; and property 3) is different from existing parallel and
multiple-symbol decoders. Finally, we propose a specific hard-
ware mechanism, which shortens the critical path of the decoder
implementation.

III. DECODING SCHEME

The main challenge in the multiple-symbol parallel VLD is to
break the recursive dependencies between the codewords or at
least to minimize their effects to the throughput. The proposed
approach is to decode all the codewords in a block of input data
stream simultaneously. In this section, a VLD scheme is intro-
duced and illustrated with an example. A general hardware or-
ganization is proposed with an illustration and its performance
is discussed.

A. Algorithm

Let us assume symbols and the corresponding codewords
are collected into a codeword table

, . All the different codeword lengths
in the codeword table can be combined into a set defined as

. Let the minimum and maximum codeword
lengths be denoted by and , respectively. In addition, the
maximum number of codewords with equal length is denoted by

. We use a group-based approach for storing the symbols
into a symbol table; the symbols are grouped according to the
length of the corresponding codeword and each group is stored
into one page in the table. The size of the page is defined by

. In such an arrangement, the page where the symbol
is stored is determined by the length of its codeword, . The
symbols within a page are arranged in such a way that the offset
within the page is determined by the least significant bits (LSB)
of the codeword .

The input data stream for the decoding process is an encoded
binary vector , i.e., , . An

-bit sliding window is used to extract bits from the input
stream as , ,

where is the index to the first undecoded bit in the input
stream . Throughout the discussion, the sliding window is
assumed to be greater than the longest codeword, i.e., .
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Fig. 2. Example of proposed VLD. (a) Codeword table. (b) Symbol table. (c) Principle.

We start the derivation of the algorithm by determining the max-
imum number of variable length codewords, , in an -bit
sliding window as

(1)

Let us denote the variable length codewords in the window by
where and the length of codeword
by . Moreover, let an index , ,

define a location where the codeword starts, i.e.,
.

Without losing generality, we may assume that the first code-
word is always located at the beginning of the window,
thus . The second codeword is located immediately
after the first -bit codeword and, therefore, can be found
starting from the index . This implies that the start index
of the codeword in is the sum of the previous codeword
lengths, i.e.,

(2)

However, the lengths of the codewords are not known in ad-
vance.

In order to avoid the recursive dependencies, a parallel search
is needed to find codewords from “arbitrary” positions in the
window. In general, all the candidates for indices for the code-
word can be represented with the aid of set defined recur-
sively as

(3)

which implies that a codeword can lie in any location in the
window defined by a set defined as

(4)

Since the maximum length of the codeword, , is known, we
need to extract at most -bit fields from the window starting
from all the locations defined by set . In each bit field, the
possible codeword is searched after by matching the bit field
with all the possible codewords. When a match is found, the

length of the codeword at position in the window , , is
returned as

if
otherwise

where , .
The start index, , of the each valid codeword in the

window can be defined with the aid of the lengths of the detected
codewords. Correspondingly, the length of is . The
symbol lookup is performed from the symbol table according
to index , which is formed by concatenating the length of
the codeword and its LSBs. By returning the sum of all the
valid codeword lengths, the input stream can be aligned for the
next decoding iteration by updating the sliding window index,

. The described procedure is iterated until the
entire input stream is decoded.

Decoding Example: Let us assume that a codeword table de-
picted in Fig. 2(a) is used, thus the set of codeword lengths is
defined as and the maximum number
of codewords in a 16-bit window is . In principle,
the proposed approach would result in a 5-bit index to symbol
table. However, the size of the symbol table can be easily de-
creased by noting that four LSBs are sufficient for each indi-
vidual index. The resulting symbol table consisting of seven
pages of two symbols is illustrated in Fig. 2(b). In the example
case, a codeword can lie in 14 bit fields starting at locations

as illustrated with the aid of boxes
below the window in Fig. 2(c). The fields at the end of the
window are shorter than the others since the number of available
bits in the window is less than . All the fields are matched
with all the codewords and the length and LSB of each detected
codeword are returned. The detected codeword in the bit field is
shown inside the corresponding box in Fig. 2(c). In the example
case, the lengths of the codewords at positions seven and eight
in the window are zero, which implies that the codewords
were not detected. The fields containing a valid codeword are
determined recursively using start indices defined in (2). The
first valid codeword is found from the first bit field at the
beginning of the window, i.e., the first start index is . The
second codeword can be found in one of the seven fields
starting at locations . Since the length
of is , the start index of is . In Fig. 2(c),
the detected valid codewords are marked with grey color. Index
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Fig. 3. Principal organization of scheme. (a) Generalized parallel/serial codeword detection. (b) 8–1 multiplexed add. (c) Entire decoder.

for the symbol lookup is formed by concatenating the length
and the LSB of the valid codeword, e.g., the length of is

and the LSB of the is 0 and, therefore, index is
1000 and D is fetched from the symbol table.

B. General Organization

The previously discussed sliding window is realized as a
-bit codeword buffer and the codeword detection is performed

by parallel codeword detector (CD) units. The input for
each CD is a bit field of at most bits, which is obtained from
the codeword buffer locations in the set defined in (4). All
the CDs detect codewords simultaneously and return the length
of the detected codeword. With this arrangement, the left-most
CDs up to location search after all the codewords in the
codeword table while, for the remaining CDs, it is sufficient to
detect only shorter codewords.

In order to select the valid codeword lengths, i.e., , from the
lengths of all the detected codewords, a cascade of multiplexers
is employed as depicted in Fig. 3(a). Each multiplexer should
have inputs (lengths) from all the CDs in the locations specified
by defined in (3). The first codeword length obtained from
the leftmost CD starting at bit location controls the
first multiplexer selecting the second valid codeword length .
Moreover, the output of the leftmost CD can be used to provide
the decoding status, i.e., if the codeword length is zero, either
the decoding is completed or an error has encountered. The other
multiplexers are controlled by the sum of the previous codeword
lengths according to (2). Hence, the computation of the sum of
the valid codeword lengths creates the critical path as shown in
Fig. 3(a).

For shortening the critical path, we introduce a multiplexed
add (MA) unit shown in Fig. 3(b). In principle, the MA com-
putes sum of two input operands, and , and the sum, ,

is used to control a multiplexer selecting one of alternative in-
puts, , to output . In order to illustrate the operation of
MA, let us assume two three-bit numbers and

. The sum denoted by controls
the selection of the output from inputs . Consequently,
the output can be expressed with the aid of sum of products
as

(5)

Closer examination of this decomposition reveals that each sum
of products can be performed with the aid of 2–1 multiplexers.
When MA is applied to the proposed VLD approach, the accu-
mulated sum of the valid codeword lengths, i.e., the start index

, can be computed concurrently with the selection of current
codeword length, .

When the codeword length is known the symbol lookup is
performed, i.e., a symbol corresponding to the valid codeword is
fetched from the symbol table. The symbol table is mapped into
a symbol memory as shown in Fig. 3(c). The symbol lookup can
be decomposed into two phases: address generation and symbol
fetch. Briefly, the address generation is used to form an address
to symbol table, , corresponding codeword . The address

consists of page and offset where page forms most signif-
icant part of . The page is the length of , , obtained
from MA units as seen in Fig. 3(c). The offset consists of the
LSBs of the codeword, which can be determined according to
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start index of the next valid codeword . If complex code-
word tables, e.g., MPEG-2, are used, additional logic may be
needed to form the page and offset. Finally, the symbol fetch
is a trivial read memory operation. In order to support parallel
symbol fetches, the symbol memory consists of separate par-
allel memory blocks, one for each decoder output, .

Decoder Example: The principal organization of the entire
VLD corresponding to the example illustrated in Fig. 2 is de-
picted in Fig. 3(c). In codeword detection, all the codewords in
the 16-bit codeword buffer are detected by 14 parallel CDs
in defined locations. Each CD returns only the length of the
detected codeword. The lengths of the valid codewords are se-
lected by a 7–1 multiplexer and six cascaded 5-bit MAs. Each
unit selecting has lengths from the locations defined by set

. These locations are depicted on the left side of the input bus
of the corresponding unit in Fig. 3(c). It should be noted that
if no codeword matches the obtained bit field the MA returns
zero, which is not, however, included into the number of alter-
natives denoted in the symbol of the MA. In the symbol lookup,
the length of the valid codeword, is used as a page. Since,
the LSB of the codeword is enough to identify the codeword
in Fig. 2(a), the LSB is extracted from the location
and used as an offset. Note that the extraction of the offsets
resembles the selection of valid codewords: multiplexing con-
trolled by accumulated length. Due to this similarity, the MA
can be used not only to compute the final sum but to select the
offset corresponding to the last codeword . Finally, the
symbol can be fetched from the memory according to ad-
dress .

C. Critical Path

According to Fig. 1, the length of the detected codewords is
used to align the data in the codeword buffer. This feedback path
forms the critical path since the alignment and codeword detec-
tion should be performed in a single cycle. The critical path, ac-
cording to Fig. 3(c), consists of a CD unit, multiplexer,
and a cascade of MA units. In order to approximate the critical
path independent of technology, we use the interpretation from
[17] where the delay is estimated with the aid of logical stages.
A logical stage is assumed to be equivalent to 3–4 AND–OR (AO)
and its delay is denoted by .

The number of AO stages in the CD unit is defined by
the codeword table, which is application-specific. However,
it is independent of . Therefore, the delay of CD unit, ,
is constant. The multiplexer contains
AO stages, thus the corresponding delay can be estimated
as . The codeword
buffer may contain at most codewords, thus the complete
decoder contains cascaded MA units. The critical path
through MA as seen in Fig. 3(b) consists of
full adders and a 2–1 multiplexer, thus the delay of MA is

. Therefore, the delay of the
critical path of the decoder, , is

(6)

Although, the variable according to the definition in (1) is
dependent on , we may interpret that defines the number
of outputs of the decoder, i.e., the maximum number of code-
words, which can be detected from the codeword buffer. There-
fore, by decreasing we may reduce the delay of the decoder.
This implies that sometimes the codeword buffer may contain
more codewords than we can decode, thus reducing the de-
coding rate. However, the loss of performance may be negli-
gible since the probability that the codeword buffer contains the
maximum number of codewords is low. The number of decoder
outputs can be optimized for given application, if statistics of
encoded data is available. This approach is used in our MPEG-2
demonstration discussed in the following section. Furthermore,
if is decreased and fixed, we find that the delay of the crit-
ical path is constant when where is an in-
teger. This implies that the length of the codeword buffer should
be chosen such that . In this case, MA units are
equipped with full adders.

IV. MPEG-2 VARIABLE LENGTH DECODING DEMONSTRATION

The proposed decoding scheme results in a variable
input/variable output rate system and, therefore, the buffering
resources are needed in the input as well as in the output. Our
demonstration is targeted to an embedded system assuming
external buffering and alignment resources. Hence, only the
kernel decoder design consisting of codeword detection and
symbol lookup is considered. In order to estimate the perfor-
mance of the proposed scheme, it has been applied to MPEG-2
video coding standard [18] and this demonstration is described
in this section.

A. Requirements

Continuous preprocessed MPEG-2 data strings, which con-
sist only of the variable length code of the discrete cosine trans-
form (DCT) coefficients, have been chosen as the input for our
implementation. Several encoded MPEG-2 data streams were
analyzed and the obtained statistics are summarized in Table II.
This information has been used to derive the requirements for
the demonstration system.

The minimum size for the codeword buffer is the length of
the longest codeword, i.e., 24 bits in MPEG-2, which implies
that the MA units must be equipped with at least five full adders,
i.e., . In the demonstration, we have used this minimum re-
quirement. Therefore, the optimum size for the codeword buffer
from the critical path point of view is . The 31-bit code-
word buffer may contain at most 15 codewords but according to
statistics in Table II, 31-bit buffer can contain 5.6 codewords on
average and, therefore, the number of decoder outputs, , can
be decreased for shortening the critical path. In our case, the av-
erage is rounded upwards and the number of outputs is .

B. Hardware Modeling

The decoder has been described in behavioral-VHDL. Al-
though we target to an FPGA technology, the VHDL descrip-
tion has been kept as technology independent as possible. The
structure of demonstrator follows the general organization, i.e.,
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Fig. 4. Block diagrams for MPEG-2 demonstration. (a) Modified CD. (b) Selection of DC coefficient. (c) Modified MA. (d) Entire decoder.

the codeword detection and symbol lookup have been realized
as illustrated in Fig. 3(c) but some MPEG-2-specific modifica-
tions were included. These modifications are described in the
following.

1) Codeword Detector, CD: The CD unit has at most 12-bit
input, which is sufficient to detect all the MPEG-2 codewords,
from minimum length of two bits to 24 bits. The CD returns
three 6-bit values of a 5-bit codeword length and a 1-bit
end-of-block (EOB) status: two values for DC coefficient and
one value for ac coefficients. The MPEG-2 standard defines
four codeword tables, B.12 – B.15, and the selection of code-
word table is controlled by 2-bit VLC control signal vlcf, which
is the concatenation of the parameters intra_vlc_format and
macroblock_intra defined in [18]. The symbol for the modified
CD is depicted in Fig. 4(a).

The input BitField is checked for a possible codeword. If de-
tected codeword represents EOB, the EOB status is set “true”.
In intra decoding, two DC values, dcl for luminance and dcc for
chrominance are returned according to codeword tables B.12
and B.13, respectively. In nonintra decoding, dcc represents the
value of the DC coefficient. If codeword is not detected from the
bit field, zero-lengths are returned and EOB status is maintained
as follows. The codeword represents a DC coefficient only if the
previous codeword is EOB, thus EOB status is forced to “true.”
Correspondingly, the codeword is an AC coefficient only if the
previous codeword is not EOB and, therefore, EOB status is
forced to “false.”

2) Chrominance Format Counter, CFC: The CFC is used to
select the correct group of the DC candidates out of two pos-
sible groups, i.e., chrominance candidates chrc and luminance
candidates lumc. The realization is trivial; a counter returns the
chrominance control signal chr_ctrl for the next block according

to current block number bnr in a macroblock as specified in [18].
The maximum block number is controlled by parameter chromi-
nance format chrf. The block number is upgraded when EOB is
detected. In order to prevent the increase in block number when
EOB status is maintained, two previous EOB statuses given with
prEOBs are checked. The schematic of the CFC is shown in
Fig. 4(b) where DCcs denotes correct DC candidates.

3) Multiplexed Add, MA: The MA unit is modified to select
also between AC ACcs and DC candidates DCcs. The candi-
dates consist of the values from all the CDs defined by set .
The 2–1 multiplexing between AC and DC candidates is con-
trolled by the previous EOB status EOB and it can be performed
in parallel with the full adder computing the sum of the LSBs
of the input operands. The symbol of the modified MA is illus-
trated in Fig. 4(c). Otherwise, the operation of the MA is similar
to the principal operation, i.e., output nxt_EOB_L is selected ac-
cording to the sum nxt_S of the previous sum and the previous
length .

4) Memory Address Generator, MAG: The MAG unit re-
turns an 11-bit MAG_code, which may contain memory address
or bits that are required for returning the symbol, for each code-
word. In order to decode DC coefficient in intra decoding, 11
bits are extracted from the codeword buffer. The bits to be ex-
tracted are located according to intermediate sums.

The extracted bits are processed depending on the length and
the interpretation of the codeword. If the codeword represents
DC coefficient in intra decoding, it specifies the number of bits
to be selected according to [18, table B.12 or B.13]. The se-
lected bits are extended to 11-bit MAG_code as a two’s comple-
ment number. Otherwise, the extracted bits contain a complete
or partial codeword, which is used to generate the address to the
symbol memory.
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TABLE I
MEMORY ADDRESS GENERATION

For describing the memory mapping and address generation
method used in the demonstration, let the extracted bits be enu-
merated from the left to the right and denoted as EB(0:10).
Both tables, B.14 and B.15, include at most 16 different code-
words of a specific length and consequently, the identification
of the codeword requires four bits. However, when combining
the codeword tables and mapping them into unified memory, the
chosen bits may identify two different codewords depending on
the table. In order to distinguish the codewords in different ta-
bles, a table bit, , defined as

if B.15
otherwise

(7)

is used to specify the table. Altogether, a 3-bit page as well as
the 5-bit offset are generated according to length as shown in
Table I. Although, the sign bit is not needed to point the mag-
nitude of the symbol stored into the memory, it should be prop-
agated further for determining the correct level. Therefore, the
memory address and sign are embedded into MAG_code.

Since only one codeword per cycle can represent symbol ESC
in a 31-bit codeword buffer, a shared unit is utilized for ex-
tracting ESC and forwarding the 18-bit ESC_Sym consisting of
possible symbol whose value is not predefined. Similarly, the
EOB statuses are propagated further.

5) Symbol Fetch, SF: The symbol fetch consist of three par-
allel dual-port memory banks and the resources to return the
correct symbol. The symbols in tables B.14 and B.15 excluding
EOB and ESC are mapped into each memory bank. MAG_codes
are read in rising clock edge. If the EOB status is true, it is re-
turned and “run” and “level” are forced to zero. If the length
of the codeword is equal to 24 implying ESC, a 6-bit “run” fol-
lowed by 12-bit signed “level” in ESC_Sym are returned. For the
DC coefficient in intra decoding mode, “run” is forced to zero
and MAG_code is returned as a “level”. Otherwise, the symbol
is read from the memory location defined by the address, which
is embedded into MAG_code. The predefined symbols stored in
the memory can be represented with 11 bits, i.e., 5-bit “run” and
the 6-bit absolute value of “level”. Therefore, the “run” is ex-
tended to six bits and “level” is converted to 12-bit signed value
before returning the actual 18-bit symbol.

6) Entire Decoder: The block diagram of the entire
MPEG-2 decoder is illustrated in Fig. 4(d). The codeword

detection consists of 29 CD units, which have inputs from
buffer locations shown above the CDs. The seven left-most
CDs can detect all the possible codewords, next three CDs
detect up to 21-bit codewords, and the remaining CDs detect
only shorter codewords until the last or the right-most CD
detects only 2-bit codewords.

The first valid EOB and length, , is obtained from
the left-most CD but selection between the two DC candidates
is needed introducing a 2–1 multiplexer controlled by chromi-
nance control pre_chr_ctrl from the previous cycle. Similarly,
a 2–1 multiplexer controlled by the EOB status pre_EOB from
the previous cycle is employed to select between AC and DC
candidates. The other values are selected from CDs
in buffer locations . The correct DC candidates out of lumi-
nance and chrominance candidates are selected according the
control provided by the corresponding CFC. A 2–1 multiplexer
and one 21–1 multiplexer select from AC and DC
candidates. For the outputs - , the modified
MAs are used to select valid values. The MA for the third output

is the most complex having candidates from 26 CDs.
Let us remark that the right-most MA is used to provide the ex-
tracted bits for the last codeword and to compute the final
sum of the detected codeword lengths.

For the symbol lookup, the variable length coding format
vlcf, chrominance controls, the EOB statuses, and lengths of
the codewords are forwarded to the MAG with the intermediate
sums in order to generate the MAG_codes for each codeword.
Apart from MAG_codes, the MAG returns possible escape value
ESC_Sym and the EOB statuses EOBs. During the symbol fetch,
the EOB is interpreted according to the EOB status, which is
also returned. The codeword representing the intra DC coeffi-
cient is determined from the most significant bit (MSB) of vlcf
and the EOB status of the preceding codeword. The ESC can be
identified from the MSB’s of the length. Otherwise, the actual
symbol is fetched from the symbol memory.

In general, the MPEG-2-specific modifications are not in
the critical path, thus the discussion on decoder delay on the
previous section applies to the demonstration. Generation of
MAG_codes, except the last one, can be performed in parallel
with MAs and, therefore, the MAG is not a separate pipeline
stage. However, symbol fetch is pipelined since synchronous
memories have been used.

V. EXPERIMENTAL RESULTS

The proposed VLD scheme has been experimented with a
parametrizable simulation model in Matlab and with an FPGA
implementation. The simulation model is exploited to analyze
the dependencies and behavior of the scheme. The results are
given in cycle domain meaning that information on timing or re-
quired resources is not considered. The FPGA demonstrator is
used to prove the feasibility of the scheme and estimate the hard-
ware complexity. The results are obtained by using Modelsim
HDL simulator and Exemplar LeonardoSpectrum. The perfor-
mance figures of the demonstrator are estimated in time domain.

The highest input rate is obtained when the codeword buffer
can be completely updated at each cycle, i.e., if the accumulated
length of the complete codewords in the buffer is equal to the
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TABLE II
PROPERTIES OF MPEG-2 BENCHMARKS AND EXPERIMENTAL RESULTS

Fig. 5. Experimental results. (a) Throughput of the proposed approach and (b) distribution of symbols over the decoder outputs.

buffer size. Assuming such an ideal data stream, the theoretical
upper bound for the throughput is equal to buffer size divided
by the average codeword length given in column ”W/31b” in
Table II. In practice, however, the buffer may contain a partial
codeword, which cannot be detected at current cycle. Therefore,
it should be kept in the buffer and processed at the next cycle
when the remaining bits are fetched into the buffer. When ap-
plying the proposed scheme to our benchmarks in Table II, the
effect of the buffer size to the throughput is illustrated in Fig. 5.

The number of outputs has been decreased in the demon-
strator based on statistics and by recognizing the fact that the
shorter codewords may not be decoded although they may exist
in the buffer. The distribution of the codewords over decoder
outputs, i.e., the proportion of cycles returning certain number
of symbols, with different decoder configurations is illustrated
in Fig. 5(b). The left-most group “15 outputs” represents the the-
oretical approach, i.e., the scheme with 31-bit codeword buffer
and 15 decoder outputs. When experimented with the bench-
mark data, the proportion of cycles returning more than nine
symbols is negligible. Therefore, the experimental results sup-
ports the statistical conclusion to decrease the number of the
decoder outputs.

In Fig. 5(b), the remarkable drop in proportion can be ob-
tained after seven outputs. The resulting distribution over out-
puts “7 outputs” is balanced to return from 4 to 7 symbols but,
on the other hand, the cycles with the largest proportion are re-

turning five symbols, although with small difference. The bal-
anced proportion between cycles is advantageous if the cycle
time is predefined and seven codewords can be detected in the
given cycle time. However, the detection of the seventh code-
word may increase the critical path and the given cycle time is
exceeded.

The distribution with six outputs, noted as “6 outputs,” rep-
resents our demonstration. The cycles with largest proportion
are returning the maximum number of symbols, i.e., six sym-
bols and the difference to the second largest proportion is al-
ready remarkable. Furthermore, the most of the cycles are de-
coding five or six codewords. In order to decode maximum
number of codewords during the most of the cycles, the number
of outputs should be restricted to five as shown with the group
“5 outputs” in Fig. 5(b). When the number of outputs is de-
creased further, it is obvious that the largest proportion is in-
creasing until symbol-serial decoders are returning one symbol
per cycle with proportion of one. However, it should be noted
that also the number of cycles required to complete decoding is
increased and utilization of codeword buffer is decreased. Alto-
gether, these effects are against our original objective.

The experimental results with scheme and demonstrator in
cycle domain are summarized into Table II. Column “Scheme”
contains the practical upper bounds for the performance of the
scheme with a 31-bit buffer and 15 outputs. The required cy-
cles and achieved throughput for the demonstrator with a 31-bit
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TABLE III
CHARACTERISTICS OF MPEG-2 DECODER DEMONSTRATION

buffer and 6 outputs are depicted in column “FPGA.” On av-
erage, 4.8 codewords per cycle are detected and decoded while
the theoretical and practical throughputs in cycle domain are 5.6
and 5.0 codewords per cycle, respectively.

The previous discussion is based on behavioral models and
the timing accuracy on unit cycles. However, the critical path
defining the cycle time is an important measure for determining
the absolute throughput, i.e., the amount of data processed in a
time unit. In order to estimate the maximum clock frequency,
the VHDL model of the demonstrator has been synthesized on
Xilinx Virtex-II FPGA (device 2V4000bf957) [19]. The CD
units turn out to be application-specific pattern recognizers
based on lookup-tables (LUTs). The CFC is also based on
LUTs while each MA is synthesized onto a 5-bit ripple carry
adder parallel with multiplexer tree. Consequently, the delay of
each MA is about the same, i.e., delays of five full adders and
one 2–1 multiplexer, although the size of the multiplexer tree
varies depending the number of candidates. When the entire
design has been synthesized, 2 940 CLBs out of 23 040 were
allocated.

Three dual-port Block SelectRAM memories with 160 rows
of 11 bits are generated using Xilinx CORE Generator for
symbol memories. In an ideal memory mapping, each symbol
has location of its own and the number of nonused locations and
replicated symbols are zero. In such a case, a 7-bit address space
is enough for 111 different predefined symbols. In practise,
however, many mapping functions results in nonused locations
and some symbols are located in two different locations due to
two different codewords representing same symbol. In order
to ease the design work, 8-bit address space has been used in
the demonstrator. The synthesized design resulted in a critical
path of 45.11 ns. The characteristics of the demonstrator are
summarized in Table III.

We would like to note that straightforward and fair compar-
ison with other reported decoders is impossible due to different
implementation approaches, e.g., different codeword tables, IC
technologies (ASIC versus FPGA), design styles (synchronous
versus asynchronous), and different compression ratios. Finally,
we indicate that the proposed scheme is implemented in the pro-
totype MOLEN FPGA processor [20].

VI. CONCLUSIONS

In this paper, a parallel multiple-symbol decoding scheme for
variable length codes has been proposed. The proposed scheme
is applied to MPEG-2 benchmark scenes for experimenting and
estimating the behavior and performance. It has been shown

that the throughput rate of the scheme is proportional to the
size of the codeword buffer and, for 31-bit buffer, the average
throughput is 5.0 symbols per cycle. The MPEG-2 variable
length decoder demonstration has been described in VHDL
and mapped onto Xilinx Virtex-II FPGA. The evaluated results
indicate that 4.8 symbols out of the 5.6 average symbols present
in the 31-bit buffer can be detected per cycle. The critical path
of 45 ns proves the feasibility and potential of the approach. In
the future, we intend to parameterize the demonstrator and con-
centrate on configurability like different application-specific
codeword tables, adaptive coding, and balancing the data flow
while decoding several data streams in parallel. Furthermore,
data access and buffering techniques need to be studied for
using the proposed scheme in MOLEN processor.
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