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Abstract

Real-time systems are bound to timing constraints. These constraints are meant
to ensure that the application exhibits predictable behavior by having bounded
response times. The worst case execution time (WCET) is an important prop-
erty of programs, which must be bounded to allow for a response time analysis
of tasks. While estimation of the WCET is a difficult problem, modern com-
mercial off-the-shelf processors with multiple processor cores make the WCET
estimation problem even harder to solve, because of the existence of shared
hardware resource contention among co-running tasks.

This work proposes a parametric WCET estimation tool, with which configur-
able and reproducible experiments can be created to investigate the co-runners’
problem for specific task sets. The created tool runs on two hardware platforms,
both featuring ARM Cortex quad core processors. Three different benchmarks
suites are implemented in the tool, which can be configured to run in arbitrary
combinations on the processor cores. These are a set of synthetic benchmarks
meant to stress the memory system, a subset of the Mälardalen WCET bench-
mark suite and a subset of the San Diego vision benchmark suite.

The value of the tool is demonstrated through three sets of experiments. With
these experiments, the effects of shared hardware resources are investigated in
detail. We show that the experienced slowdown is highly dependent on multiple
factors. First, a major factor is the sensitivity to the co-runners’ effects of the
task itself. Two extremes are investigated, from a task being insensitive to a
task being highly sensitive. Another factor is the size of the input data, which
is shown to be a major contributor to the experienced slowdown. Finally, we
evaluate the delayed execution of co-running tasks, which in some cases has a
significant effect on the experienced slowdown. When we consider a task’s slow-
down as a function of the delayed execution of its co-runners, the knowledge on
this function’s behavior for specific tasks provides an optimization strategy that
could be used to mitigate the problem of shared hardware resource contention.
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Preface

In our daily lives, computer systems are getting more and more ubiquitous. At
the same time, their complexity is growing in a likewise fashion. This trend also
holds true for embedded systems. When we speak of embedded systems, the
user is normally not aware of any computer system, while he or she must still
rely on the embedded system to be safe under all circumstances.

One aspect of a system’s safety is the existence of any timing constraints that
apply to applications running in a dynamically changing environment. Example
applications are seen in the aviation or the automotive industry, which must
have bounded response times to ensure that the embedded computer system’s
behavior remains both correct and on time.

A research problem that focuses on the timing of programs is called the worst
case execution time (WCET) estimation problem. For modern off-the-shelf
commercial processors, which are typically found in our daily lives, the WCET
estimation problem is even more difficult. This is where this work hopes to add
a contribution; by the creation of an analysis tool which can be used to evaluate
configurable task sets.

This report describes the thesis project, which I have been doing for the last
year. I would like to thank my supervisor for the project, dr. Mitra Nasri. First
of all for providing me with the research topic and ideas, but also for her never
ending dedication to her students.

My gratitude also goes out to my family and friends for bearing with me
through all these years of studies. A special thanks goes to my girlfriend, who
has unwillingly become knowledgeable in the real-time systems domain, because
of my abundant real-time systems chatter and her proofreading of my texts.
Finally, the most important thank you is reserved for my daughter, who has
heard me say “I have to study” all too often.

Caspar Treijtel

Haarlem, The Netherlands
November 3rd, 2020
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Chapter 1

Introduction

The field of real-time systems is concerned with the correctness and efficiency
of time-critical applications. In this context, correctness is defined as not only
exhibiting functional correct behavior, also all timing constraints must be met.
Typical examples of these applications can be found in the aviation or auto-
motive domains. In real-time systems, tasks (system functionalities) require to
interact with dynamic environments which must be monitored and acted upon,
like the altitude of an aerial vehicle or the speed of a car. Since the environment
is changing very fast, a task’s response time must be bounded.

Typically, an application consists of multiple tasks, each of which has its own
timing constraint denoted by a deadline. Some tasks may be more important
than others, which is why tasks often have priorities over one another. Since
each task needs the system’s resources to do its work, its response time will
depend on other tasks in the system that have a higher priority. Higher-priority
tasks will take precedence over lower-priority tasks, and will only give up the
system’s resources once they are finished. They may even preempt lower-priority
tasks, where the lower-priority task is suspended and will have to wait for the
higher-priority task to finish.

To know if a given task set can successfully run in a time-critical system, the
response time of each task in the system must be determined. The worst-case
response times must always be smaller than the task’s deadline. To determine
the response time for each task, a response time analysis is performed, which is a
theoretical analysis to obtain the worst-case response time of a task throughout
the system’s lifetime.

The corner stone of a response time analysis is notion of the worst-case execu-
tion time or WCET. Each task in the application executes software in the form
of a compiled program binary. The program consists of a sequence of instruc-
tions that are executed by the system’s processor. Each program, and therefore
each task, has an associated WCET. It is defined as the longest time the task
will ever spend on its execution. Normally, the true WCET is not known be-
cause the specific set of input data and sequence of executed instructions that
lead to the WCET are generally unknown [34]. For most programs of reasonable
complexity, the search space is simply too large. Instead, a task’s WCET upper
bound is used in the response time analysis. Without such an upper bound, no
the response time analysis can be performed.

Determining the WCET upper bound has been an active area of research in
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the past couple of decades [17], [6], [21], [24]. For single processor architectures,
methods and tools exist that are able to analyze the program binary and produce
a safe upper bound under strict assumptions [34]. The upper bound is said to
be safe, if an analysis of the program binary proves the bound to be greater
than any execution time of the program.

However, when dealing with multiprocessor architectures, methods and tools
to determine the WCET’s upper bound fall short [12], [17], [27] [31]. The
added complexity of multiple processor cores makes a static analysis of the
program binary very difficult. This especially holds true for systems where the
multiprocessor is a commercial off-the-shelf (COTS) processor, because of the
high levels of optimization combined with little disclosure on the inner workings
of the processor. To be able to reliably use these powerful and economically
attractive multiprocessors in a real-time systems context, the WCET estimation
problem must be solved.

A key aspect of the WCET estimation problem on multiprocessor architec-
tures is the problem of shared hardware resources. Multiple tasks simultan-
eously running in the multiprocessor, called co-running tasks or co-runners,
create contention for these shared hardware resources. The contention created
by co-runners can potentially add an unknown time to the execution times of
tasks, in comparison to a scenario where the task runs in isolation. This makes
the determination of the WCET upper bound very difficult. Prior work done
by Bechtel and Yun has shown that tasks potentially suffer a slowdown of more
than 300× when compared to the same tasks running in isolation [6]. A more
recent study by Iorga et al., shows an even more pessimistic slowdown of nearly
400× as the worst-case result [21].

These results are alarming. The goal of these specific studies was to stress
the system in order to find the highest possible slowdown due to contention for
shared hardware resources. Not only are the slowdowns very high, since these
studies were done with dynamic measurements, they still do not provide the
system designer with a safe WCET upper bound. However, the derivation of a
safe WCET upper bound is extremely hard [3], [34]. While for hard real-time
systems the WCET upper bound must be safe, a recent survey of 120 industry
practitioners in the field of real-time embedded systems shows that the industry
heavily relies on measurement-based WCET estimation [1].

We postulate that the problem of shared hardware resource contention is very
much dependent on the exact circumstances in which the task set runs. There
are many factors that can influence the execution times of tasks, e.g. the specific
set of other tasks that are running simultaneously, the operating system used,
and the specific multiprocessor architecture on which the system runs.

That is why we propose a parametric WCET estimation tool, with which
system designers are able to create reproducible experiments that are repres-
entative for their specific use cases; the task set and multiprocessor platform
that constitute the system to be run in a real-time environment. This tool
should offer the following functionality:

• The analysis of tasks in combination with freely chosen (arbitrary) co-
running tasks;

• The variation of multiple hardware platform parameters that may influ-
ence execution times.
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In addition, we identify an important shortcoming in the current state of the
art of analysis tools. To the best of our knowledge, there has not yet been any
study on the relative starting times of co-running tasks with respect to each
other. Our work is the first to consider the effects of delayed execution of co-
running tasks. Delayed execution of co-runners could potentially help mitigate
the heavy slowdowns. We note that during the execution of a task, the usage
of shared hardware resources will not always be uniformly distributed. We
therefore propose to view the potential slowdown due to resource contention as
a function of the alignment of the relative starting times of co-running tasks,
by proposing a tool that allows for:

• The analysis of co-running tasks that vary in their relative starting times
with respect to each other.

1.1 Research questions

In an attempt to provide answers to the aforementioned problem of resource
contention among co-running tasks, we try to answer the following research
questions.

• What are the factors that influence the WCET of tasks on a multiprocessor
platform?

• How can we quantify these factors of influence?

In addition, the following hypotheses are tested to see if they hold true:

1. The distribution of the execution time of a task running in isolation is
significantly affected by the existence of co-running tasks.

2. The distributions of the execution times of tasks that are concurrently
running on multiple cores are significantly affected by the starting time
offset of these tasks.

1.2 Contributions

Our work will contribute to available WCET analysis tools in the following ways.
First, we propose to create the parametric WCET estimation tool, with which
researchers and system designers can analyze specific task sets, by measurement
of the execution times of tasks running in parallel. Second, we provide an
experimental study that uses the proposed tool in an attempt to provide answers
to the research questions listed above. These contributions are described further
below.

1.2.1 Parametric WCET estimation tool

Our parametric WCET estimation tool allows for flexible configurations, with
which experiments can be created and performed. The tool runs on two real
hardware platforms that both have a COTS processor at their foundation:

• The ARM Cortex A53: an in-order execution quad core processor;
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• The ARM Cortex A72: an out-of-order execution quad core processor.

These processors are found in the popular Raspberry Pi 3 model B and Rasp-
berry Pi 4 model B computers, respectively. With these popular platforms, we
believe to cover an representative part of available COTS processors, in which
co-runners have been shown to create heavy slowdowns.

To evaluate our analysis tool, three types of benchmarks are selected. These
are a subset of the Mälardalen benchmark suite [19], the San Diego Vision
benchmark suite [32], and a set of synthetic benchmarks created with inspiration
from prior work on timing predictability [6], [7].

1.2.2 Experimental study on co-runners’ effects

Our second contribution is an experimental study that we perform using the
proposed analysis tool. Specifically, we attempt to provide answers to the listed
research questions and we present evidence for showing that the hypotheses
listed above hold true, and explain the conditions under which they hold true.

Furthermore, our study indicates that the effect of co-runners is very much
dependent on the specific conditions under which the task is being run. In
our tool, we observe a worst-case slowdown of almost 150×, when compared to
execution of the same task running in isolation. The slowdown results heavily
depend on the specific parameters chosen in the estimation tool, such as the
size of the input data of the task in question and the amount of memory that
co-runners use.

Finally, an evaluation is presented of slowdown effects as a function of the
size of the start time delay of the co-runners. This evaluation serves as a first
investigation of a possible optimization strategy for shared hardware resource
contention, using delayed execution of co-running tasks.

1.3 Organization

The organization of this report is as follows. In Chapter 2, an explanation of
the co-runners’ problem is presented in more detail, along with an overview of
prior work on WCET research. Next, in Chapter 3 our problem statement is
formulated, including a description of our system model and assumptions that
apply to our solution. Chapter 4 presents our parametric WCET estimation
tool. Chapter 5 provides the results of our experimental evaluation using the
tool. Finally, Chapter 6 discusses our conclusions and directions for future work.
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Chapter 2

Motivation

This chapter describes the problem of determining the WCET and how the contention

for shared hardware resources makes this more difficult. The discussion explains our

motivation for proposing our solution of the parametric WCET estimation tool.

2.1 The WCET estimation problem

Each task in the application exhibits a variation of execution times. The vari-
ation stems from multiple factors, such as differences in the input data or the
external environment in which the application runs. In Figure 2.1, an example
distribution of execution times is shown that captures the most important con-
cepts related to the estimation of these execution times.

The worst possible execution time is called the worst-case execution time
(WCET), which is defined as the longest time the task will ever spend on its
execution. Likewise, the best possible execution time is called the best-case

Figure 2.1: The WCET estimation problem
Dynamic measurement-based WCET estimation, actual BCET/WCET and

lower/upper timing bounds by static analysis illustrated.

(Figure is derived from Wilhelm et al. [34])
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execution time (BCET). In our work, we focus on the problem of estimation of
the WCET.

Two strategies are used to determine the WCET. One strategy is to dynam-
ically execute the task under study and measure its execution times. As will
be clear from Figure 2.1, this strategy is not able to guarantee that the worst
possible execution time has been seen. The other strategy is to examine the
task through static analysis. Under some restrictions on the task’s implementa-
tion, a static analysis can determine an upper bound to the WCET. The upper
bound is said to be safe, if the static analysis proves that the upper bound is
guaranteed to be greater than the true WCET.

For single processor architectures, methods and tools exist that allow for a
static analysis of programs to provide safe upper bounds. A well known and
extensive discussion is given by Wilhelm et al. [34]. The static analysis methods
can produce safe upper bounds that are guaranteed to be greater than the
actual WCET of the analyzed program. This does not mean that the computed
upper bound is close to the actual WCET, in fact it can be quite pessimistic.
One reason for the pessimism is the complexity of modern commercial off-the-
shelf (COTS) processors, which are optimized for the average case performance.
These modern processors are optimized for being having high performance most
of the time, while under some circumstances, they can have far less performance.
The possible sources of this timing variation are described in Section 2.2.

An interesting survey that has been done recently by Akesson et al., sheds
light on the way industry is using methods and techniques from WCET re-
search [1]. Although many respondents claim to be operating hard real-time
systems, dynamic measurement-based WCET tools form the largest group of
used tools. The survey’s results support the claim that safe WCET estimation
by static analysis is difficult. This notion must be kept in mind when reading
Section 2.3 which describes prior work in the field of WCET research.

2.2 Sources of timing variation

The design of a processor is geared towards the principle of making the com-
mon case fast. This means that processors are optimized for the average case
performance. How this contributes to the problem of WCET estimation is dis-
cussed in the following, where the processor pipeline and the memory hierarchy
are explained.

2.2.1 Processor pipeline

Most processors implement a pipeline, in which the executed instructions are
divided into separate chunks of work that can operate in parallel. The deeper
the pipeline is, the greater the instruction level parallelism (ILP) can be. Since
the instruction stages are smaller in a deeper pipeline, the processor can run at a
higher frequency. There are trade-offs however, because the parallelism cannot
always be exploited to its full extent. The processor pipeline can be stalled
due to pipeline ‘hazards’ and memory stall cycles. Types of pipeline hazards
are [20]:

• Structural hazards: there is a combination of instructions in the pipeline
that are not supported by the lack of functional units or memory paths.
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• Data hazards: the execution of an instruction is dependent on a result of
a previous instruction that is not yet available.

• Control hazards: these are processor pipeline flushes that occur at branches
and jumps. Branch prediction and speculative execution try to avoid these
delays.

In Sprangle and Carmean [28], an example of a trade-off is described con-
cerning the depth of the pipeline. The deep pipeline allows for a high processor
frequency. However, the depth of the pipeline comes with a price, because a
branch misprediction results in a stall of the pipeline. The deeper the pipeline
is, the more instruction stages are flushed upon a branch misprediction.

The performance of a processor can be quantified by metrics, such as the
number of cycles the processor needs to complete one instruction (cycles per
instruction or CPI ). If we consider a processor that can issue a single instruction
at a time, the theoretical CPI is 1. However, hazards are bound to stall the
processor pipeline at times, which will result in a higher CPI (less performance).
The amount of stalls will depend on the specific program and the input data of
the program.

In some cases, a reordering of instructions can potentially avoid structural or
data hazards and keep pipeline stalls to a minimum, without effecting the func-
tionality of the program. For an in-order execution processor, the instructions
that are read from the program binary are executed in the exact same order
as read. Therefore, any reordering of instructions can only be statically done
by the compiler before runtime. Another type of processor is called the out-of-
order execution processor. This type of processor allows for dynamic scheduling
of instructions. This can lead to optimization of the running program on the
hardware level. This may seem like a very modern processor-ability, but the un-
derlying concept was first designed by Tomasulo for the System/360 architecture
from IBM [30].

Some processors will have the possibility to issue multiple instructions at the
same time, of which the superscalar processor is an example. For this type of
processor a different metric is generally used, the instructions per cycle or IPC.
The higher the IPC, the more performance the processor will have.

While the pipeline architecture with its optimizations can be a source of
timing variation in its own right, this specific type of timing variation is not
directly related to our problem with co-runners. However, indirectly the highly
optimized processor with high IPC does contribute to the co-runners’ problem
in the following way.

The contribution to our problem lies within the fact that modern COTS
processors typically are superscalar processors with the ability to run multiple
threads and processor cores simultaneously. But since not all hardware resources
in the processor are multiplied, there are still shared hardware resources for
which contention among the tasks will be created. The highly optimized COTS
processor has the ability to schedule multiple memory requests at the same time,
while the memory system cannot handle that much requests simultaneously.
The memory is an therefore important contributor to the co-runners’ problem,
as will be described in the next section.

7



Figure 2.2: Memory hierarchy
The timings are indicative and show the order of magnitudes.

(Figure is derived from Patterson [26])

2.2.2 Memory hierarchy

Unfortunately, processor designers have to deal with the ‘memory gap’. This
expression refers to the fact that the speed of the processor has increased enorm-
ously over the years, while the speed of the memory has not. The result of the
memory gap is that the peak performance of the processor is difficult to attain.

In an attempt to bridge the gap between the fast processor and the slow
memory, a memory hierarchy is used. Processor designers can make use of very
fast memory called cache memory, but this type of memory comes at very high
cost and comes in very small (logical) sizes. Typically, the program and data will
not fit into the small cache memory. To be able to store the program and data,
larger memory is needed, which by definition is much slower. The spectrum of
the types of memory is called the memory hierarchy and can be visualized in a
pyramid structure, as shown in Figure 2.2.

Despite the fact that the program and data won’t fit into the small cache
memory, on average the processor can still achieve good performance. This is
due to the principle of locality. Normally, the processor will be operating on a
small working set of instructions and data, and will not randomly try to read
any location from memory. The working set has a much better chance of fitting
into the fast cache memory, which can lead to a high percentage of successful
reads from the fast cache memory.1 A successful read from the cache memory is
called a cache hit. Whenever a memory location needs to be read and it is not
found in the cache, a cache miss occurs. A cache miss will make the processor
read the memory location from the slower memory, and copy its contents to the
cache memory. If the cache memory was full, a less frequently used item will be
removed from the cache memory to make room for the new item. The principle
of locality equally applies to the larger (but slower) ‘L2’ cache, which is still
much faster (but also much smaller) than the RAM.2

On startup of the program, its instruction and data must be read from the
slowest type of memory (secondary memory). From there, the instructions and
data will be copied to the faster memories, until they reach the processor’s re-
gisters. From the processor’s point of view, these initial reads will all be cache
misses. This type of cache miss is called a compulsory cache miss, since it can

1Or writes to the fast cache memory.
2In some processor architectures more cache levels are present than shown in Figure 2.2.
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never be avoided. Another type of cache miss is the capacity cache miss. This
type of cache miss occurs when the cache is too small and data that was previ-
ously discarded must later be retrieved again. Finally, the conflict cache miss is
a special type of cache miss that occurs in specific cache memory organizations,
where memory locations are mapped onto cache sets. The conflict occurs when
data from the cache is discarded due to conflicting memory locations that map
to the same cache set. When the data must later be retrieved again, we speak
of a conflict miss.

In the case of capacity and conflict cache misses, old data must be replaced
by new data. The old data is said to be evicted from the cache. When the
cache is organized in sets, the processor must choose a cache line that is to
be replaced by the new memory block. A popular strategy to be used for
choosing a cache line is called the least recently used (LRU) strategy. Like the
name suggests, the cache line to be evicted is the one that has not been used
for the longest time. An important aside to the LRU replacement policy, is
that many processors implement a pseudo LRU replacement policy. This is an
approximation to a true LRU replacement policy, to avoid an overly complex
hardware implementation [26]. This distinction is important in the context of
static WCET analyses, as will become clear in Section 2.3, where the cache
analysis of programs is discussed.

For writes to memory, the cache and the main memory need to be kept in a
consistent state. There are two strategies that are used in practice. The easiest
strategy is called write-through. Here, the data is written to both the cache
and main memory. A fast write buffer can be used before writing the data to
main memory, in order to keep the pipeline from stalling. If writes are frequent
however, or if they occur in bursts, the write buffer cannot keep up and the data
must be written to main memory before the processor can continue.

A write-back strategy will write to the cache upon a cache hit, but will not
(yet) update the main memory. This leaves the cache in a ‘dirty’ state, which
is kept in an administration bit in the cache. When the cached data must be
replaced by new data, the main memory must be made consistent before the
new data can be written to the cache. This implies that a read miss can lead to
a write to main memory. The dirty cache must first be written to main memory
before it can be overwritten by the new data.

In the write-back strategy, a write buffer can also be used to minimize latency.
When a read miss occurs, the dirty cache is first copied to the write buffer after
which the memory can be read, filling the cache with the new data. Only then
the main memory is updated by the write buffer.

The strategy chosen for writing to the cache has consequences for a static
analysis of the task’s WCET. This is further described in the next section,
which contains an overview of research on WCET estimation.

2.3 Related work

In this section prior work is discussed that is related to our own work. First a
discussion of WCET estimation for single processor architectures is given. Then
we focus on multiprocessor architectures.
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2.3.1 Single processor architectures

In the following, a subset of prior work on WCET estimation for single pro-
cessor architectures is described. The work is classified according to the type of
analysis, either static or dynamic.

We start this section with a remark on the types of WCET analysis. A
common view of WCET analyses, is that static analysis methods will lead to
safe bounds, while dynamic measurement based techniques will lead to unsafe
bounds. This view is however over-simplified, and even called naive by Altmeyer
et al. [3]. The authors state that all WCET analysis methods have potential
sources of errors. For static analyses, the complexity of the hardware and the
sometimes lack of knowledge on its inner workings is a problem. Analysis of the
program source code is difficult because of compiler optimization. For dynamic
measurements, the problem lies in the fact that the technique relies on high
quality test data, which we cannot always be guaranteed to have.

Static analysis

As described in Chapter 2, the memory hierarchy is an important factor that
contributes to the execution time of a task. Therefore, a lot of prior work is
focused on the cache. The goal of these studies is to produce a WCET upper
bound that is more precise, when compared to an analysis that assumes that
all memory requests are cache misses and thus go through the main memory.
In this section, a small subset of prior work on cache analysis is described. We
note that a more extensive survey is to be found in Lv et al. [23].

To be able to reason about a program’s cache behavior without actually run-
ning it, the analysis must abstract away from concrete values. The amount of
possible input data value combinations is too large to analyze in general. A
technique that is used to reach the level of abstraction is called abstract inter-
pretation [10].

The first work to consider a more precise WCET by including a cache analysis
was done by Alt et al. [2]. Abstract semantics are applied to the program, to be
able to predict the contents of the cache throughout the program’s flow. With
this information, the analysis allows for replacing some memory requests with a
cache miss or cache hit event. This sharpens the otherwise pessimistic WCET
calculation, which assumes that all memory access go through main memory.

The cache analysis must have knowledge on the replacement policy imple-
mented by the cache architecture. With the information on the replacement of
each abstract cache line, a lower and upper bound of the cache line’s age can
be determined. An upper bound on the age of a cache line can lead to a certain
cache hit and a lower bound can lead to a certain cache miss. The upper and
lower bound derivation is also known as a must and may analysis, respectively.

The contribution of the work of Alt et al. is a generic cache analysis with
the cache replacement policy as a parameter. A similar work was published by
Ferdinand and Wilhelm [16] in a journal article, extended with experimental
results of a set of test programs.

In the context of real-time systems, the specific type of cache implementation
can have consequences. Take for example the write-back cache, the alternative
to the write-through cache. The write-back cache is a popular choice made by
multiprocessor designers, since this type of cache requires less memory band-
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width [20]. However, for a static analysis of the program, the write-back cache’s
behavior is harder to analyze because of writes that may or may not happen
some time in the future.

Blaß et al. [8] have extended the earlier work on cache analysis techniques, to
further improve the precision of the WCET upper bound for write back caches.
Blaß et al. state that instead of focusing on cache evictions, they focus on stores
to the cache. Since a store to an already dirty cache line does not lead to actual
write back to memory, their analysis is said to improve the precision.

We note that although the static analysis should be able to provide a safe
upper bound to the WCET, the approach is not safe for many processor archi-
tectures with timing anomalies [34, sec. 2.1.3].

Dynamic analysis

In this section, prior work on dynamic analysis techniques is discussed. Most
of the prior work follows a hybrid approach, where measurements are com-
bined with static analysis of the program. This type of hybrid analysis is
also known as measurement-based timing analysis (MBTA), or a variant thereof
called measurement-based probabilistic timing analysis (MBPTA).

Measurement-based timing analysis (MBTA)
The work of Deverge and Puaut [14] is based on structural testing methods that
are able to generate input data, which are used to exhaustively test all possible
program paths. According to Deverge and Puaut, their method “would” pro-
duce safe and precise bounds. However, an important assumption that Deverge
and Puaut make, is that measurements of executions of the same program path
will always yield the same results, regardless of the input values. For this as-
sumption to hold true, the processor architecture must be controlled.

In Wenzel et al. [33], the program to be analyzed is divided into segments.
The segments are individually analyzed and measured, to be composed into a
final estimation of the WCET. The source code of the program under study is
instrumented, i.e. it is enriched with annotations. Wenzel et al. state that their
method allows for derivation of safe WCET estimations, even when dealing with
complex hardware. However, loops are not supported.

Measurement-based probabilistic timing analysis (MBPTA)
A variant of the MBTA technique is MBPTA, which is based on probability the-
ory. Instead of reasoning about the WCET, in MBPTA the bound is called a
probabilistic WCET (pWCET). The reasoning behind the concept of a pWCET
is that a violation of a bound is viewed as a system failure. The application as-
sumes acceptance thresholds to failure probabilities, and when the MBPTA ana-
lysis provides bounds with failure probabilities that fall beneath the thresholds,
the application can assume the bounds are safe.

Cucu-Grosjean et al. [11] propose to use the MBPTA technique. Their ap-
proach is based on Extreme Value Theory (EVT). The authors state that their
EVT-MBPTA technique is able to provide tight pWCET estimates.

2.3.2 Multiprocessor architectures

This section contains a selection of prior work that focuses on the problem
of WCET estimation for multiprocessor architectures. For completeness, the
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reader is referred to a survey done by Maiza et al. [24].
Several approaches to attacking the problem of resource contention have been

proposed. In the work of Andersson et al. [4], a formal model of co-runner
dependent tasks is presented, with which a schedulability test can be performed.
The model is expressive enough to assign a WCET to a task as a function of the
set of co-runners that execute at the same time. The authors’ contribution does
not focus on estimation of the WCET. Instead, Andersson et al. put co-runner
dependent WCET’s as parameters in the model, with which schedulability tests
can be run that have polynomial time complexity.

Davis et al. [12] propose a multicore response time analysis framework, in
which a time predictable architecture can be specified by a parameterized hard-
ware configuration. The performance of specified, time predictable multicore
systems is evaluated with the framework to guarantee time-predictable perform-
ance. The results are compared to a reference framework, which is designed for
average case performance. Being able to guarantee safe bounds on a multicore
systems is very attractive, however the assumption made by Davis et al. is that
the application can run on their new processor architecture. In our work we
assume that the application will run on a COTS processor.

Radojković et al. [27] also assume that the application runs on a COTS pro-
cessor. They were one of the first to propose a methodology to dynamically
quantify slowdowns due to shared resource contention in multi-threaded pro-
cessors. Their methodology consists of a set of specialized synthetic bench-
marks that are meant to stress shared hardware resources. Their study shows
that measurement-based timing analysis cannot be directly extended from single
threaded to multi-threaded architectures. Although their ideas are very similar
to our proposed solution, some important differences can be identified. First of
all, their synthetic benchmarks that are meant to stress the platform, are writ-
ten in assembly code which are very specific to the architectures under study.
Secondly, their methodology relies on running experiments on a full fledged op-
erating system (Linux). The choice of Linux implies more work with respect
to controlling the environment in which measurements are taken. Lastly, al-
though their results do show that on some architectures co-runners cannot be
run in a time-critical environment, newer studies on more modern processor
architectures show far worse slowdowns.

One such study is has been done by Bechtel and Yun [6]. They were the first to
show heavy slowdowns by a factor of more than 300×. Their experiments were
done on several modern COTS processors, with the worst slowdown measured
on the Raspberry Pi 3. Bechtel and Yun propose a mitigation solution to the
co-runners problem, which is based on MemGuard [36]. MemGuard allows
for the creation of a throttle for low priority tasks, to make sure that enough
bandwidth is reserved for high priority tasks. An interesting result reported by
Bechtel and Yun is the fact that in-order processor cores (like the ARM Cortex
A53, running the Raspberry Pi 3) are also susceptible to severe slowdowns due
to shared resource contention. Previous studies suggested that especially out-
of-order processor cores were vulnerable to the co-runners problem.

An example is the study that has been done by Valsan et al. [31]. They
have focused on a set of architectures with out-of-order processor cores. Valsan
et al. also propose a mitigation solution to deal with co-runners. The MSHR
register, which is part of the non-blocking LLC, is identified as the root cause
of the shared resource contention. The proposed solution is a combination of
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both system software and hardware modifications. Since hardware modification
is not possible in a COTS processor, Valsan et al. evaluate their solution by
implementing the hardware extension in a cycle accurate simulator. Despite
the efficiency of their solution, we consider a hardware modification as a very
difficult or even impossible undertaking. At least in the foreseeable future,
where COTS processor design is still mostly proprietary and governed by a
large commercial market wanting high performance processors at low cost.

A different mitigation strategy has been proposed by Xu et al. [35]. The
authors allocate shared hardware resources to tasks, in an attempt to find an
optimal trade-off between cache usage and memory bandwidth usage. Xu et al.
note that when a task is allocated more cache, its memory bandwidth demand
will be less (and vice versa). By grouping tasks with similar resource demand
characteristics, tasks can fully utilize the assigned resources. An important part
of the work of Xu et al. is finding an optimal resource allocation strategy. Tasks
are empirically evaluated in isolation, where they are throttled in their resource
usage to show their resource demand characteristics. The authors’ goal is to find
a near optimal processor utilization, by finding the maximum schedulability of
given tasks under resource constraints.

A recent study that can be compared to our own work has been done by
Iorga et al. [21]. Like in the work of Bechtel and Yun and in our own work,
Iorga et al. also create synthetic benchmarks that are meant to stress the shared
hardware resources, creating problems for the program under test. The authors
do not propose a mitigation strategy. Their focus is on creating a methodology
for WCET estimation of programs that run on a multiprocessor platform. The
authors describe an extensive evaluation, in which the results of Bechtel and
Yun are reproduced and even surpassed by their new synthetic benchmarks
(enemy programs). The selling point of the authors’ methodology is the fact
that their synthetic benchmarks are auto-tuned. Instead of manually creating a
highly specialized and effective enemy program, Iorga et al. rely on optimization
techniques for automatically finding the worst possible enemy program. We
recognize the attractiveness of their approach, but we note that in our work the
co-runners problem is viewed from a different angle. Our aim is not only to try
to approach the WCET in our estimations, but also to show that the relative
starting times of co-runners can be of significant importance. Prior knowledge
on timing variation as a function of tasks’ starting times could be used by a
scheduling algorithm in an attempt to optimize for processor utilization. This
idea is described in the next chapter, where we define our problem statement
and the system model that applies to our solution.
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Chapter 3

Problem statement and
system model

In this chapter, our problem statement is formulated and the system model is defined

that forms the basis of our proposed solution.

3.1 Problem statement

As described in Chapter 1, our work is focused on WCET estimation on COTS
multiprocessor architectures. When dealing with COTS multiprocessor archi-
tectures, we come into the realm of co-runners and the shared resource problems
they create. We are left with the dynamic estimation of the WCET, as shown
by the results of an industry survey [1]. Deriving a safe upper bound by means
of a static WCET analysis is generally considered to be infeasible for COTS
multiprocessor architectures, for reasons of complexity and lack of knowledge
about the inner workings of commercial processors (see e.g. [12], [17], [27] and
[31]).

A typical optimization of a modern COTS processor is the non-blocking cache.
This optimization is identified as an important contributor to the shared hard-
ware resource problem by Bechtel and Yun [6]. In the following section, the
non-blocking cache is described.

Non-blocking cache

The non-blocking cache is an optimization that improves the processor’s per-
formance with respect to memory accesses. This type of cache will not block
other instructions upon a cache miss, instead it will be able to service other
memory accesses while data is being fetched from memory. As described in
Hennessy and Patterson [20], this optimization is a feature of processors that
have an out-of-order execution. However, the non-blocking cache is especially
beneficial in any multiprocessor architecture, since multiple processor cores can
issue memory requests simultaneously [6].

Naturally, there are limitations to the number of caches misses that the pro-
cessor can handle simultaneously. The limitation comes from the fact that the
processor has to remember outstanding memory requests. The implementation
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of the non-blocking cache is based on a write buffer and an auxiliary register
called the miss information/status holding register (MSHR) [22]. This is a re-
gister in which cache misses are recorded, until the data is read from memory.
With the information in this register, the cache is able to service other requests.

As reported in Bechtel and Yun [6], in the non-blocking cache, both the write
buffer and the MSHR will block the cache when either of them becomes full. The
non-blocking cache is identified as a major source of the co-runners’ problem,
acting like a bottleneck when many memory requests are issued by multiple
cores.

3.2 System model and assumptions

In this section our system model and underlying assumptions are described,
which serve as the foundation for our solution. Our system model consists of a
model of the processor and a task model.

Time-critical applications are classified according to the severity of failure
to meet the timing constraints. A hard real-time system is a system in which
deadline misses can lead to catastrophic conditions. In a firm or soft real-
time system, a deadline miss will not be critical but the system’s output or
performance can be degraded. In this work, we assume that the application is
classified as a firm real-time system.

3.2.1 Multiprocessor model

Our multiprocessor model consists of n processor cores. Each core has a local
instruction cache and data cache. The first core, core 0, will always run the
task that is being evaluated. The other cores are designated as ‘co-runners’,
they may create problems for the task running on core 0. The processor model
is graphically depicted in Figure 3.1.

3.2.2 Assumptions

Our task model consists of a set of at most m tasks and n processor cores, where
m 6 n.

Figure 3.1: Multiprocessor model
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Non-preemptive execution

Normally, the WCET applies to the longest execution time of the task when
running in isolation. When a preemptive scheduling algorithm is applied to
the task set, the analysis of the WCET must be extended with an analysis that
takes into account the overhead of context switches, due to preemption of higher
priority tasks. One type of overhead is called cache-related preemption delays
(CRPD). The contents of the cache could be replaced by higher priority tasks
upon preemption, incurring more execution time for the lower priority tasks.

In this work, non-preemptive execution is assumed and preemption overhead
is therefore not taken into account.
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Chapter 4

Parametric WCET
estimation tool

In this chapter, our parametric WCET estimation tool is described. First our goal

and requirements for the tool are presented, after which the specific functionality and

prerequisites are described. Finally, this chapter contains an overview of the technical

design that was made for the tool. Details of the implementation are described in

Appendix A.

4.1 Goal and requirements

Our primary goal for the research project is to investigate the effect of co-
runners for tasks that are run in a multiprocessor environment. We want to be
able to create reproducible experiments for arbitrarily chosen programs or task
sets. These tasks must be investigated when run in isolation and when run with
numerous co-runner configurations. Also, we want to be able to synchronize all
tasks running in the system and create delays for the co-runners. This way we
can evaluate the effects of delayed execution of the co-runners.

In order to meet our goal, we propose to create the parametric WCET es-
timation tool. In Figure 4.1, a global view of the tool is shown with inputs and
output. The inputs are (1) a set of tasks for each experiment that from the
task set, (2) a set of parameters that may influence the co-runners’ effect and
(3) the platform on which the experiment should run. These parameters will
be discussed in more detail in the next sections.

From our goal we can distill the main requirements for the tool. These are

Figure 4.1: Global view of the tool with main inputs and output
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Req nr Requirement Explanation

R1 Create experiments
User must have a user friendly interface to the tool
with which multiple experiments can be created.

R2 Flexible configuration
Arbitrarily chosen tasks or benchmarks can be incor-
porated into the tool.

R3 Multiple experiments
The tool must be able to automatically read and ex-
ecute multiple experiments.

R4 Multiple iterations
The experiments must be repeatable, i.e. the tool must
be able to create multiple iterations for the same ex-
periment.

R5 Parametric experiments
Parameters can be set in the tool that influence exe-
cution time, examples are MMU on/off, memory sizes,
etc.

R6 Measure cycles
The execution time of the tasks that run on all cores
must be measured, measurement unit is processor
cycles.

R7 Measure events
The events of interest to the experiment must be mon-
itored, example events are cache hits/misses, TLB
hits/misses, etc.

R8 Synchronized execution
Co-runners must be run in sync with the task being
evaluated.

R9 Delayed execution
Co-runners must be run with varying delayed execu-
tion, e.g. 1/10th of baseline, 2/10th of the baseline,
etc.

R10 Reporting functionality
The tool must be able create log files and graphical
reports containing information on the execution times.

Table 4.1: Global requirements for the parametric WCET estimation tool

listed in Table 4.1. In Section 4.2 these requirements are further described and
translated into more detailed functionalities and prerequisites.

4.2 Functionality and prerequisites

This section describes the functionality and prerequisites that apply to our para-
metric WCET estimation tool. Also, a set of benchmarks is described that are
used for evaluation of our tool. Appendix A contains more in-depth information
on the specific details of its functionality and implementation.

R1 — Create experiments

The user must have a friendly interface to the tool, with which multiple experi-
ments can be created. These experiments must also be reproducible, by which
we mean that we and other researchers must be able to reproduce experiments
under the same circumstances.

In terms of functionality, we have chosen a spreadsheet tool for the creation
of experiments. Each experiment is created by defining its configuration and
parameters row-wise.
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R2 — Flexible configurations

We require our tool to be flexible in its configuration. That means that the user
must be able to add new programs or benchmarks into the tool, for evaluation
of their sensitivity to co-runners. This requirement does not lead to a new func-
tionality, but leads to a prerequisite to the implementation; the new program
or benchmark is to be added to the framework with little porting effort.1

R3 — Multiple experiments

The tool must be able to automatically read and execute multiple experiments,
that are defined by the user in the spreadsheet. This contributes to the require-
ment of creating reproducible experiments without being labour intensive.

R4 — Multiple iterations

The experiments must be repeatable, i.e. the tool must be able to create mul-
tiple iterations for the same experiment. This translates into the functional
requirement that the tool automatically runs multiple iterations, where in each
iteration the same conditions are created.

R5 — Parametric experiments

Parameters can be set in the tool that influence execution time. The parameters
that must be configurable in the tool are:

• Benchmark configuration — Specify the configuration of benchmark
to processor core mapping.

• MMU — Turn the memory management unit (MMU) on or off. When
the MMU is turned off, the L1 and L2 data caches cannot be used. This
could have a significant impact on slowdown effects due to co-running
tasks.

• Screen — Turn on the screen functionality on or off. This may also have
an impact on the level of cache usage by cores and thus may influence
slowdown effects.

• Cache management — To be able to run multiple iterations, the same
conditions must be created for each iteration. For this the cache is man-
aged. However, the user must be able to turn the cache management
off.

• Input size — An important factor in the amount of slowdown could be
the size of the input data that the tasks receive. With this parameter, the
input data size can be controlled for each task.

• Experiment label — For each experiment, a user defined label can be
created, which is used in the reporting functionality described below.

1We assume that programs or benchmarks to be included are written in C.
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R6 — Measure cycles

The execution time of the tasks that run on all cores must be measured. In our
tool the metric for the execution time is the number of cycles spent by the task.

R7 — Measure events

The events of interest to the experiment must be monitored, that are indicator
for the performance of the processor cores. Example events are cache hits and
cache misses, memory accesses, TLB hits and TLB misses, etc. In Appendix A
the implemented events are listed.

R8 — Synchronized execution

The tool must be able to have the co-runners start synchronously with the task
being evaluated. This means that they have an equal starting time.

R9 — Delayed execution

The tool must facilitate a varying delayed execution for the co-runners. The
delayed execution will be one or more fractions of the baseline WCET. The
baseline WCET is defined as the worst execution time when the task to evaluate
is run in isolation.

R10 — Reporting functionality

The tool must be able create log files and graphical reports containing inform-
ation on the execution times. Specifically, for each iteration, the following data
is produced:

• Experiment label;

• Configuration of benchmark to core mapping;

• Benchmark name;

• Number of cores taking part in the experiment;

• Core number;

• Number of cycles spent;

• Co-runners’ starting time offset (delayed execution);

• Iteration number;

• Event type en number of recorded events;

The produced log files must be created in the CSV format. They must be
further analyzed for the creation of basic statistics of the experiment. These are
the median, the maximum (WCET) and the standard deviation of all measured
cycles during each iterations.

Additionally, a linear chart must be created from the data for each experiment,
in which the number of cycles for each iteration is shown. This type of chart
will allow for evaluation of the validity of the experiment, because all iteration
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measurements should be independent of one another. If the data shows an
increase or decrease with growing iteration number, the experiment may not be
valid. A typical example is the ‘warming up’ of cache memory, where subsequent
iterations show improved performance when compared to previous iterations.

4.2.1 Prerequisites

In addition to the described functionality, the following prerequisites apply to
our tool. First of all, as described in Section 3.2.2, we assume a non-preemptive
scheduling algorithm. That means that when a task (or a co-runner’s task)
starts, it must not be preempted. The system must therefore make sure that
the tasks are not interrupted during execution.

Furthermore, the tool must be resilient against system failures. When for
whatever reason an experiment goes wrong, the tool has to be able to recognize
the failure and automatically repeat the same experiment.

Finally, we note that users of our tool should fall within our user target
group, these are experienced computer users or software developers. Examples of
typical users are researchers or research software engineers, with some knowledge
and experience of the C programming language.

4.2.2 Benchmarks for evaluation of the tool

In this section, the benchmarks are described that are used for evaluation of the
parametric WCET estimation tool. The benchmarks fall into three categories,
these are synthetic benchmarks, benchmarks from the Mälardalen benchmarks
suite and benchmarks from the San Diego vision benchmark suite.

Synthetic benchmarks

The synthetic benchmarks are created in this work. The purpose of these
benchmarks is to stress the platform, by continuously reading and writing to
memory. The following benchmarks are implemented, with inspiration from
prior work [6], [7].

1. linear array read — continuously read from memory, by reading from
an array. The memory locations are chosen to be 64 bytes apart on each
iteration in the for loop, thereby ‘optimally’ stressing the cache, because
of the 64 bytes cache line size in the chosen processor architectures;

2. linear array write — continuously write to memory, analogous to the
linear array read described above;

3. random array read — continuously read from memory, but from ran-
domly chosen memory locations. When the benchmark is being run, the
random locations are already prepared beforehand, in an attempt to only
stress the memory.

4. random array write — continuously write to memory, analogous to the
random array read described above.
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Mälardalen benchmark suite

The Mälardalen benchmark suite, created by the Mälardalen WCET research
group, is a benchmark suite that was created to be able to compare WCET
tools from different paradigms [19].

The benchmarks from the Mälardalen benchmark suite listed below have been
ported to our tool:

1. bsort100 — bsort100 is a Bubblesort program. It tests basic loop con-
structs, integer comparisons and simple array handling by sorting integers.

2. ns — Search in a multi-dimensional array. Here, deep loop nesting is
tested, 4 levels deep.

3. matmult — Matrix multiplication of two 2-dimensional matrices. The
benchmark tests multiple calls to the same function, nested function calls
and triple-nested loops.

4. fir — Finite impulse response filter. Among the tests are an inner loop
with varying number of iterations, and loop iteration dependent branching.

San Diego vision benchmark suite

The San Diego vision benchmark suite (SD-VBS) [32], created by the University
of California, San Diego, is not directly related to WCET research. It is a
benchmark suite intended for the research on the performance and efficiency
of computer vision algorithms, in an era of growing numbers of multiprocessor
architectures.

The following benchmarks from SD-VBS have been ported to our tool:

1. disparity — disparity map computes depth information in an image us-
ing dense stereo. It is characterized by the authors as being data intensive.

2. mser — maximally stable extremal regions (MSER) is used as a method for
detection of similarities between images from different viewpoints. While
this benchmark is part of the open source distribution of SD-VBS, it is
not described in [32].

3. svm — supervised learning method for classification, is a machine learning
algorithm. It is characterized by the authors as being computationally
intensive.

4. stitch — stitch overlapping images using feature based alignment and
matching. The benchmark is characterized by the authors as being both
data and computationally intensive.

4.3 Overview of technical design

In this section the technical design is presented at the global level. Specific
implementation details can be found in Appendix A.

The main components which together form our parametric WCET estimation
tool are (1) a Raspberry Pi as the experimental platform, (2) a computer
running the tool’s main program and reporting functionality, (3) an Arduino
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Figure 4.2: Main components that together form the tool

that controls the hardware platform’s reset pins, and (4) a TFTP server which is
used to be able to boot the Raspberry Pi from the network. These components
are schematically depicted in Figure 4.2.

Raspberry Pi

The heart of our tool is the Raspberry Pi, a popular and economically attractive
single board computer [18]. Our tool supports two models of the Raspberry Pi:

• Raspberry Pi 3 model B — containing the ARM Cortex A53 quad
core processor, featuring in-order execution of instructions;

• Raspberry Pi 4 model B — containing the ARM Cortex A72 quad
core processor, featuring out-of-order execution of instructions.

Both processors present in the Raspberry Pi 3 and 4 are SoC (system on chip)
processor architectures, which implement the ARMv8 instruction set architec-
ture [5].

On startup, the Raspberry Pi starts executing the main scheduling algorithm.
This algorithm starts the task set. After each iteration, the results of the exe-
cution is written to the computer through a serial connection.

Computer

The computer acts as the control center for the experiments. From the computer
the defined experiments, which are administered by the use of a spreadsheet,
are read by a Python script that globally takes the following steps, illustrated
in pseudo code:

foreach line in spreadsheet:

read parameters from line

foreach parameter in parameters:

set compilation option for parameter

compile sources

send signal to Arduino to reset the Raspberry Pi
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while input line from Raspberry Pi:

read input line

output line to log file

if enough observations read:

send signal to Arduino to reset the Raspberry Pi

After the experiments have been performed, the user can start the automatic
generation of the reports.

Arduino

The Arduino is an easy to use open source electronics platform. It is based on
a 8-bit microcontroller, specifically the ATmega328p. The Arduino is added to
the platform for the sole purpose of being able to reset the Raspberry Pi by
sending it an external signal to the RUN header of the Raspberry Pi board.2

2For detailed instructions, see [25]
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Chapter 5

Experimental evaluation

In this chapter, our experimental evaluation is presented. This chapter starts with a

description of the experimental setup, in which the evaluation platform and our method

for hypothesis testing are explained. Following, three different series of experiments

are presented, these are (1) the evaluation of the Mälardalen bsort100 benchmark,

(2) the evaluation of the SD-VBS disparity benchmark, and (3) the results of the

delayed execution of the Mälardalen matmult and the SD-VBS stitch benchmarks.

5.1 Experimental setup

As described in Section 4.2.2, our parametric WCET estimation tool consists
of three categories of benchmarks. These are synthetic benchmarks, a selection
from the Mälardalen benchmark suite and a selection from the San Diego vision
benchmark suite.

5.1.1 Choice of benchmarks to evaluate

While our proposed tool contains twelve separate benchmarks in total, we limit
the experimental evaluation of the co-runners’ shared hardware resource prob-
lems to a subset of these benchmarks. The experiments are centered around the
research questions and the hypotheses that we want to validate. The hypotheses
are:

1. The distribution of the execution time of a task running in isolation is
significantly affected by the existence of co-running tasks.

2. The distributions of the execution times of tasks that are concurrently
running on multiple cores are significantly affected by the starting time
offset of these tasks.

The experimental evaluation is divided in three series of experiments:

• The first hypothesis is investigated by running experiments with the Mälar-
dalen bsort100 benchmark (Section 5.2.1). The reason for choosing this
benchmark is its apparent insensitivity to the shared hardware resource
contention problem;
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• Next, the first hypothesis is shown from another perspective with an ex-
tensive evaluation of the SD-VBS disparity benchmark (Section 5.2.2).
The choice for disparity is quite the opposite when compared to the
first choice: disparity is particularly sensitive to the shared hardware
resource contention problem;

• Finally, the second hypothesis is evaluated by running experiments with
the Mälardalen matmult benchmark and the SD-VBS stitch benchmark
(Section 5.2.3). These experiments are meant to evaluate the second hy-
pothesis, in which delayed execution of co-runners is the central theme.

5.1.2 Experimental platform

As described in Section 4.3, we use two target platforms, the Raspberry Pi 3
model B and the Raspberry Pi 4 model B. To ensure that we have maximum
control over the runtime environment, we use a ‘bare metal’ solution in both
cases. We have built on two different open source platforms to run the system,
these are xRTOS [9] and circle [29] for the Raspberry Pi 3 and 4, respectively.
The two evaluation platforms are summarized in table Table 5.1.

Bare metal OS xRTOS circle

Single board computer Raspberry Pi 3 model B Raspberry Pi 4 model B

Processor ARM Cortex A53 ARM Cortex A72

Execution in-order execution out-of-order execution

RAM 1GB LPDDR2 4GB LPDDR4

L1 cache 32KB 32KB

L2 cache 512KB 512KB

Table 5.1: Summary of the two experimental platforms

When a task is run in isolation, we make sure that the other cores are idle.
In addition, we make sure that tasks run without preemption, by disabling any
interrupts during their execution.

5.1.3 Hypothesis testing

As mentioned in Chapter 1, we evaluate two hypotheses, that are meant to show
the existence of the co-runners’ effects. These hypotheses are:

1. The distribution of the execution time of a task running in isolation is
significantly affected by the existence of co-running tasks.

2. The distributions of the execution times of two tasks that are synchron-
ously running on two cores are significantly affected by the start time
offset of these tasks.

Our method for evaluation of the hypotheses is based on standard statist-
ical hypothesis testing, in which a null hypothesis (‘H0’) and an alternative
hypothesis (‘Ha’) are considered [13]. The null and alternative hypotheses are
competing propositions, they cannot both be true.
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Since in general, rejecting a hypothesis is easier than proving a hypothesis, we
assume that H0 is true and try to find evidence for rejecting it. If the statistical
test indicates that H0 can be rejected, we have evidence for suggesting that Ha

holds true.
The statistical test’s output is a probability called p. This probability stands

for the probability of making a type 1 error : this error is made when H0 is
incorrectly rejected. By convention, the probability of making a type 1 error is
called α, which is set to 0.05. When the result of the test p is lower than α, we
say that we have enough evidence to reject H0.

In our evaluation, we take the two distributions of measured execution times
(cycles) that we want to compare with each other. H0 is defined to be the op-
posite of the hypotheses that we want to prove, i.e. we assume for H0 that the
distribution of the measured cycles is not significantly affected by the presence
of co-runners. Since we cannot assume that the data sets are from a normal dis-
tribution, we use the non-parametric Mann-Whitney U test for testing H0 [15].

The first hypothesis is evaluated in the context of the Mälardalen bsort100

benchmark, the result of which is described in Section 5.2.1. The results of
evaluating the second hypothesis is presented in Section 5.2.3.

5.2 Experiments

In this section the evaluation of the hypotheses is presented, together with
a study on the factors that influence the WCET of a task that experiences
contention for shared hardware resources.

5.2.1 Mälardalen bsort100

The Bubblesort implementation by the Mälardalen WCET research group is
called bsort100. The ‘100’ stands for the number of elements in the original
source code. However, this number can be easily extended by a larger amount of
elements. The number of elements has a significant effect on the slowdowns due
to co-runners. In the following, we present the evaluation of the first hypothesis,
for running bsort100 with 2,000 and with 8,000 elements:

1. The distribution of the execution time of a task running in isolation is
significantly affected by the existence of co-running tasks.

bsort100 — 2,000 elements

With 2,000 elements, the median number of cycles spent by the algorithm when
run in isolation is 2.098e7 cycles. The measured WCET amounts to 2.126e7
cycles, which is larger then the median by a factor of 1.013.

When run in parallel with three co-runners that execute the linear array

write benchmark, the bsort100 task’s measured WCET is 1.00026× slower
than the measured WCET when run in isolation.

In Figure 5.1a, a boxplot is depicted, showing the quartiles of the distribution
of measurements. The left boxplot shows the measurements for the task when
run in isolation, the right boxplot shows the measurements for the task running
with three co-runners.
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(a) bsort100 with 2,000 elements (b) bsort100 with 8,000 elements

Figure 5.1: Boxplots of bsort100 measurement distributions in number of cycles.

Visually, the boxplots hardly show a difference. When we perform the statist-
ical Mann-Whitney U test on the both data distributions, the calculated p-value
is 0.3646. Since this is larger than α, we cannot reject H0 and we have no evid-
ence for supporting Ha. This means that in the case of bsort100 running on
2,000 elements, our first hypothesis cannot be confirmed.

bsort100 — 8,000 elements

With 8,000 elements, the median number of cycles spent by the algorithm when
run in isolation is 3.36e8 cycles. The measured WCET is 3.37e8 cycles, which
is larger then the median by a factor of 1.004.

When run in parallel with three co-runners that execute the linear array

write benchmark, the bsort100 task’s measured WCET has increased to
3.394e8, which is 1.00734× slower than the measured WCET when run in
isolation.

Figure 5.1b shows the boxplot for the experiment with 8,000 elements. In this
case the visual difference is clear between the experiment when run in isolation
and with the presence of co-runners. The Mann-Whitney U test now produces
a p-value of 4.472e-15, which is very small compared to α. This means that in
the case of bsort100 running with 8,000 elements, H0 can be rejected and we
have evidence to indicate that our first hypothesis holds true.

Evaluating hypothesis 1 with bsort100

This evaluation shows that the co-runners’ effects are very much dependent on
the circumstances. In the case of bsort100, the amount of input elements de-
termines whether or not the slowdown can be identified using statistical testing
of the measured cycles.

While in the case of 8,000 elements for bsort100, statistical methods can
identify the experienced slowdown due to co-runners, we have shown using our
tool that bsort100 is rather insensitive to co-runners. For other, real-world
tasks a similar evaluation could be performed to gain knowledge on the sensit-
ivity of tasks to co-runners.
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5.2.2 SD-VBS disparity

The disparity benchmark computes depth information in an image using dense
stereo. The authors of the benchmark characterize the benchmark as being data
intensive. The input data of disparity are two 2-dimensional images.

The disparity benchmark is an interesting benchmark to include in our
study. The experiment with the disparity benchmark is chosen for its high
level of data intensity. With this benchmark, the co-runners should create a lot
of problems for the task running disparity. Prior work reported very large
slowdowns of factors larger than 300 [6] and 400 [21]. With disparity, we
expect to be able to find proof for supporting hypothesis 1 under all circum-
stances.

In this section, the disparity benchmark is evaluated on both hardware
platforms, starting with the Raspberry Pi 3. On both platforms, disparity
is being run with the linear array access benchmark and with the linear

array write benchmark.

Running disparity on Raspberry Pi 3

Our work attempts to reproduce the slowdown reported by prior work. However,
as explained in Chapter 1, our research goal is different. Instead of obtaining the
highest possible slowdown, our work attempts to find the factors of influence
that steer the co-runners’ effects. To this end, we evaluate disparity with
different input sizes and show that the slowdown factor heavily depends on the
size of the input data.

Figure 5.2 shows the results of running disparity together with one to three
co-runners executing a linear array access. The experienced slowdown due
to co-runners is 1.9×, the slowdowns seems to be linear in the size of the input
data, but a non-linear growth of the slowdown is shown in the number of co-
runners.

In the following experiment, far worse slowdowns are measured. Figure 5.3
depicts the results of running the disparity benchmark, together with one to

Figure 5.2: Measured WCET slowdown of disparity and linear array access run
by 1 to 3 co-runners, experiment run on Raspberry Pi 3 model B, with the ARM
Cortex-A53.
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Figure 5.3: Measured WCET slowdown of disparity and linear array write run
by 1 to 3 co-runners, experiment run on Raspberry Pi 3 model B, with the ARM
Cortex-A53.

three cores running the linear array write benchmark. These results show
us that:

• The worst slowdown effect that was measured was 149.5× slower than the
same benchmark when run in isolation. This slowdown is much smaller
than the slowdown factor reported in [6] and [21]. We suspect that an
important factor in creating this difference is the fact that our benchmarks
run in a bare metal OS, instead of a full fledged OS such as Linux;

• The figure clearly shows that the worst slowdown occurs with input size
128×128, with three co-runners running in parallel. The input size 128×128
seems to be the sweet spot in terms of co-runners’ effects.

• When there is only one co-runner, the slowdown factor is relatively small
and linear in the benchmark’s input size. For two and three co-runners,
the slowdown factor is not linear in its input size anymore.

In an attempt to explain the behavior of the task running in parallel with
co-runners, we present some performance metrics in Table 5.2. The PMU event
counter is configured to count L2 cache accesses, L2 cache refills, bus accesses
and bus cycles. All metrics count the number of times that shared hardware
resources are required.

From the performance metrics data, the following observations can be made:

• An important factor in the experienced slowdown is the increased number
of L2 cache refills. Clearly, the task experiences shared L2 cache evictions
by the co-runners;

• The number of bus accesses are increased for the task when run with
co-runners. The task must rely more on slow memory operations;
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• The ratio between the number of bus cycles and bus accesses is increased
significantly, which shows that memory requests take longer when multiple
memory requests are issued in parallel.

Disparity 32x32 cycles 1core cycles 4cores slowdown factor

WCET 674,779 15,413,467 22.842
L2 cache access 6,349 6,224 0.980
L2 cache refill 464 828 1.784
Bus access 1,860 5,202 2.797
Bus cycles 397,788 7,771,207 19.536
Bus cycles/access ratio 213.865 1,493.888 6.985

Disparity 128x128 cycles 1core cycles 4cores slowdown factor

WCET 10,173,967 1,520,945,739 149.494
L2 cache access 534,184 519,889 0.973
L2 cache refill 14,204 61,974 4.363
Bus access 99,932 434,201 4.345
Bus cycles 5,147,525 760,477,260 147.736
Bus cycles/access ratio 51.510 1,751.441 34.002

Disparity 192x192 cycles 1core cycles 4cores slowdown factor

WCET 25,411,431 2,595,104,110 102.123
L2 cache access 1,158,374 1,147,208 0.990
L2 cache refill 141,800 225,369 1.589
Bus access 1,101,063 1,524,813 1.385
Bus cycles 12,766,275 1,297,616,331 101.644
Bus cycles/access ratio 11.595 851.000 73.397

Table 5.2: Measured cycles and events for disparity and 3 co-runners, experiment
run on Raspberry Pi 3 model B, with the ARM Cortex-A53.

Running disparity on Raspberry Pi 4

We are also interested in evaluating the disparity benchmark on the Cortex-
A72 processor. The A72 is a more advanced processor than the A53. It features
out-of-order processor cores, which may lead to different results for the evalu-
ation when compared to the A53 with in-order processor cores.

In Figure 5.4, the results of running disparity together with linear array

access co-runners are shown. Interestingly, the slowdown is not linear anymore
in the size of the input data. The input size 128×128 forms the worst case, with
a measured slowdown of factor 2.4. The slowdowns due to reading co-runners
are slightly worse when compared to the same experiment run on the Raspberry
Pi 3.

Figure 5.5 shows the result of running disparity on the Raspberry Pi 4 with
one to three linear array write co-runners. These results differ significantly
with the same experiment when run on the Raspberry Pi 3. The slowdown
effect is far less negative. In an attempt to understand the differences, Table 5.3
lists the same performance metrics as above. The most important difference
seems to be the less negative impact of co-runners on the memory bus, when
compared to the memory bus of the Cortex A53 processor.
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Figure 5.4: Measured WCET slowdown of disparity and linear array access run
by 1 to 3 co-runners, experiment run on Raspberry Pi 4 model B, with the ARM
Cortex-A72.

Evaluating hypothesis 1 with disparity

For disparity, the case for finding evidence to support hypothesis 1 is trivial. In
particular, when run on the Raspberry Pi 3, the linear array write synthetic
benchmark is a co-runner that has a profound effect on the task’s WCET.

The evaluation of the same experiments on the Raspberry Pi 4 show a very
different result. Evidence for supporting hypothesis 1 is still easily found, but
the negative impact of the linear array write benchmark is nowhere near
the negative impact of the same experiment running on the Raspberry Pi 3.

When looking at the results of the performance events in both cases, the
memory bus seems to play an important role. The Raspberry Pi 3 features 1
GB of LP-DDR2 RAM, while the Raspberry Pi 4 features 4 GB of LP-DDR4
RAM. We suspect that the higher throughput of the newer LP-DDR4 memory
is much better equipped to deal with many concurrent memory accesses, which
could be an explanation for the big differences between the two platforms.

Figure 5.5: Measured WCET slowdown of disparity and linear array write run
by 1 to 3 co-runners, experiment run on Raspberry Pi 4 model B, with the ARM
Cortex-A72.
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Disparity 32x32 cycles 1core cycles 4cores slowdown factor

WCET 465,289 550,539 1.183
L2 cache access 14,226 13,703 0.963
L2 cache refill 956 827 0.865
Bus access 6,380 5,904 0.925
Bus cycles 276,806 275,483 0.995
Bus cycles/access ratio 43.387 46.660 1.075

Disparity 160x160 cycles 1core cycles 4cores slowdown factor

WCET 10,317,812 31,610,133 3.064
L2 cache access 1,022,754 1,009,905 0.987
L2 cache refill 21,524 53,078 2.466
Bus access 180,560 484,484 2.683
Bus cycles 5,159,270 15,805,088 3.063
Bus cycles/access ratio 28.574 32.623 1.142

Disparity 192x192 cycles 1core cycles 4cores slowdown factor

WCET 18,216,552 54,303,336 2.981
L2 cache access 1,394,865 1,289,015 0.924
L2 cache refill 87,178 112,496 1.290
Bus access 645,796 980,808 1.519
Bus cycles 9,108,285 27,152,064 2.981
Bus cycles/access ratio 14.104 27.683 1.963

Table 5.3: Measured cycles and events for disparity and 3 co-runners, experiment
run on Raspberry Pi 4 model B, with the ARM Cortex-A72.

5.2.3 Delayed execution

The final set of experiments evaluate the delayed execution of co-running tasks.
In this experiment, we assume that the co-runners start after the task under
study. This is the central theme of the second hypothesis:

2. The distributions of the execution times of tasks that are concurrently
running on multiple cores are significantly affected by the start time offset
of these tasks.

In the following, a motivation is presented for the reasoning behind the im-
portance of delayed execution, after which the results of the experiments are
presented.

Motivation

The reasoning behind the experiments with delayed execution is an optimiza-
tion, which in some cases could mitigate the problems created by co-runners.
Since the memory hierarchy is largely responsible for the hardware contention,
the slowdown effects can be significant when the task has a data intensive profile.

If the data intensity could be visualized graphically as a memory usage profile,
we could have the hypothetical situation as depicted in Figure 5.6. The figure
shows a potential problem with two cores both running a data intensive task.
In Figure 5.6a, the moments in time in which both cores are running a lot of
memory operations coincide. However, as tasks could be both memory and
computationally intensive, in this hypothetical example task 2 should have a
delayed start time as shown in Figure 5.6b. With the delayed start time of task
2, the data intensive sections of both tasks do not coincide, potentially resulting
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(a) Without optimization

(b) With optimization

Figure 5.6: Memory footprints.

in a lesser slowdown caused by co-runners. The experiments that are described
next, show how our parametric WCET estimation tool can be used to analyze
tasks running with co-runners, in order to gain information that could be used
by a scheduling algorithm.

Evaluation of the second hypothesis

The first experiment within the final set of experiments, is designed to evaluate
our second hypothesis, which states that the distribution of execution times of
concurrently running tasks are significantly affected by the start time offsets
of these tasks. This evaluation is done by running the Mälardalen matmult

benchmark on the first core with one to three co-runners running both in sync
and with varying start time offsets.

The matmult task is run on the Raspberry Pi 4. As a baseline performance,
where the task is run in isolation, the median number of cycles spent on its
execution is 4,724,764. When run in sync with three co-runners each running
the linear array write benchmark, the median of the measured execution
time is 7,792,444, which means that matmult has become 1.65× slower, when
run in sync with three co-runners.

In order to show that the slowdown becomes less when the co-runners have
a delayed start time, we conceptually divide the baseline execution WCET in
multiple time intervals we call delay steps. The number of delay steps determines
the offset, which is the delay of the start time of the co-runners.

When we divide the baseline WCET by 10, we create delay steps that are
equal to 1/10th cycles of the baseline WCET. When co-runners have a start time
that is equal to the release time plus any number of delay steps, the slowdown
effect is expected to become less when compared to all tasks running in sync
with each other. Specifically, when the co-runners start their execution after 10
delay steps, matmult will have had enough time to finish its execution, without
any slowdown.
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Figure 5.7: Matmult and linear array write run by 1 to 3 co-runners, experiment
run on Raspberry Pi 4 model B, with the ARM Cortex-A72.

The result of this experiment is shown in Figure 5.7. The figure clearly shows
a diminishing slowdown with increasing delay of the co-runners’ start times. As
expected, after 10 delay steps (which is equal to the number of cycles of the
baseline), the slowdown is no longer noticeable.

For each offset, 50 iterations are executed. The slowdown depicted is the
mean number of cycles for each offset, with a 95% confidence interval around
the mean. The confidence levels shown in the figure are very close to the mean,
which leads to the conclusion that for the case of the matmult task running with
linear array write tasks as co-runners, the second hypothesis holds true.
The distributions of the execution times of matmult are significantly affected
by the start times of the linear array write co-runners.

An interesting feature of the result depicted in Figure 5.7, is the fact that the
slowdown seems to show a linear behavior in relation to the number of offsets.
This property is described in the following experiment.

Figure 5.8: Matmult and linear array write run with 3 co-runners with increased
start times, experiment run on Raspberry Pi 4 model B, with the ARM Cortex-
A72.
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Figure 5.9: Stitch and linear array write run with 3 co-runners with increased
start times, experiment run on Raspberry Pi 4 model B, with the ARM Cortex-
A72.

Evaluation of a task’s data intensity

As described above, one idea that could lead to a potential optimization for
a scheduling algorithm, is to make use of knowledge about a task’s behavior
in terms of the number of memory operations. It seems that data intensive
tasks, with disparity being a clear example, seem to exhibit a substantial
slowdown with co-runners. However, when a task is both data intensive and
computationally intensive, the task should show periods of less frequent memory
operations during its execution time. These periods could be potentially filled
with co-running tasks, where the slowdown effects are mitigated due to the lesser
memory operations executing in parallel.

With this experiment, we show that our parametric WCET estimation tool
is capable of analyzing the data intensity of tasks. With the goal of obtaining
a data intensity profile of a task, we have designed an experiment in which
three linear array write co-runners are started with varying delayed start
times. Instead of executing the co-runners long enough to maximize the worst
case slowdown, in this experiment the co-runners are run for a short period of
time, specifically for 1/20th of the baseline number of cycles. The slowdown
experienced by the task under study will depend on the actual data intensity
level at the time the co-runners are being run.

Figure 5.7 already gave a hint about the way the data intensity level is dis-
tributed in the matmult benchmark. In Figure 5.8, the result of the experiment
with briefly running co-runners is shown for matmult. Indeed, a uniform distri-
bution of the levels of data intensity is shown. As such, the matmult benchmark
would likely not be an ideal candidate for optimization with delayed execution
of co-runners.

However, the stitch benchmark from the SD-VBS benchmark suite is de-
scribed by the authors as being both data and computationally intensive [32].
Therefore, we repeat the same experiment as described above for the stitch

benchmark, the results of which are shown in Figure 5.9. The stitch task seems
to show a data intensive behavior at the beginning of its execution, which leads
us to believe that in this specific case a delayed execution of co-runners could
in fact effectively mitigate the co-runners’ problem.
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5.3 Summary of the experimental results

In this chapter, we have shown three sets of experiments, in which tasks are
run in isolation and with one to three co-runners. The first set of experiments
was done with the Mälardalen bsort100 benchmark. These experiments have
shown that bsort100 is particularly insensitive to the co-runners’ problem. This
is good news, because it demonstrates that not all programs are susceptible to
the co-runners’ contention.

The following set of experiments has shown quite the opposite. The SD-VBS
disparity benchmark appears to be highly sensitive to the co-runners’ problem.
However, the level of disturbance is dependent on multiple factors. First of all,
the hardware architecture seems to play a significant role. Also, the size of the
input data is of importance to the severance of the problem.

The final set of experiments is meant as a first step towards a possible mitig-
ation strategy of the shared hardware resource problem. Especially when a task
has a mixed profile of both data intensive periods and computationally intensive
periods during its execution, a scheduling algorithm could use this knowledge
by delaying the execution of one or more co-runners. In this way, a situation in
which multiple data intensive tasks are running could be avoided and contention
for shared hardware resources could be minimized.
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Chapter 6

Conclusions and future
work

The WCET estimation problem is a challenging one. Hardware resources that
are shared amongst tasks that run in parallel, make the problem even more diffi-
cult. While static WCET estimation is an active area of research, it seems that
the problem of shared hardware resources in commercial-off-the-shelf (COTS)
processors cannot be handled statically yet. Industry makes use of these COTS
processors, and therefore it has to rely on measurement-based estimation tools
for now.

In this work, we presented a configurable en flexible tool for dynamic meas-
urement of WCETs of tasks. With our parametric WCET estimation tool,
system designers are able to create experiments with arbitrary task sets, includ-
ing multiple co-running tasks. Our tool allows for the configuration of various
parameters, which can influence the WCET of tasks.

With our tool, the following research questions were analysed:

• What are the factors that influence the WCET of tasks on a multiprocessor
platform?

• How can we quantify these factors of influence?

In an attempt to search for answers to the research questions, we have formu-
lated two hypotheses that we have evaluated by using our proposed tool. These
hypotheses were evaluated:

1. The distribution of the execution time of a task running in isolation is
significantly affected by the existence of co-running tasks.

2. The distributions of the execution times of tasks that are concurrently
running on multiple cores are significantly affected by the starting time
offset of these tasks.

Our parametric WCET estimation tool consists of three sets of selected bench-
marks, that can be evaluated on two alternative hardware platforms. These
hardware platforms were chosen for their specific processor architectures. They
contain an ARM Cortex A53 featuring an in-order quad core processor and an
ARM Cortex A72 featuring an out-of-order quad core processor. The operating
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systems on the hardware platforms are ‘bare metal’ systems, as such they can
be manipulated relatively easy, but at the same time can be harder to debug.

The goal of the tool is to be able to easily run a multitude of experiments,
which can be tuned by the use of parameters. Examples of parameters that
are an important factor in the resulting execution times of tasks, are the set of
co-running tasks that run in parallel and the sizes of the input data that the
tasks process. Our tool also incorporates more specialized parameters, such as
whether or not to enable the memory management unit (MMU) and the specific
performance metrics to capture.

The three chosen benchmark suites that are included in our tool are (1)
synthetic benchmarks which are designed to stress the memory system, (2) a
subset of the Mälardalen WCET benchmarks and (3) a subset of the San Diego
vision benchmark suite (SD-VBS). With these benchmarks, a number of exper-
iments have been designed with which the research questions and hypotheses
were evaluated.

Evaluation of the first hypothesis

To evaluate the first hypothesis, the Mälardalen bsort100 (bubblesort) al-
gorithm was chosen to run in parallel with three co-running tasks. With the
first hypothesis we wanted to show that the distribution of execution times of
tasks is significantly affected by the presence of co-running tasks. The bsort100
benchmark is an interesting choice for the evaluation of the first hypothesis, be-
cause of its insensitivity to co-runners. For bsort100, in some cases the use of
statistical testing methods is needed prove or disprove the contention for shared
hardware resources.

The experiment has been performed with two different data input sizes. For
the case where bsort100 was executed with an input size of 2,000 elements, the
resulting execution times did not show a significant difference when compared
with execution times of the task when run in isolation. In other words, we
do not have enough evidence to support the first hypothesis for the bsort100

benchmark with input size of 2,000 elements.
However, when we increased the input data size to 8,000 elements, the stat-

istical hypothesis test showed a significant result. Although hardly noticeable
when looking at the measured slowdown of the experiment with co-runners
(1.00734×), the Mann-Whitney U test produced a p-value of 4.472e-15. With
α set to 0.05, we conclude that for the case of running bsort100 together with
three co-runners and an input data size of 8,000 elements, the first hypothesis
holds true.

The first set of experiments with the bsort100 benchmark showed us that the
input data size is an important factor in the problem of shared hardware resource
contention. This result has been further analysed in detail, by evaluating a
different benchmark. The disparity benchmark from the SD-VBS benchmark
suite is central in our second set of experiments.

More extensive evaluation of data input sizes

The disparity benchmark is characterized as being data intensive by its cre-
ators, and prior studies show that disparity experiences serious slowdowns
because of the shared hardware resource contention. It was therefore chosen as
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the subject for our second set of experiments, in which we evaluated the effects
of co-runners with varying input data sizes.

The disparity benchmark was run together with one to three co-running
tasks, each running either the linear array access benchmark or the linear

array write benchmark. The experiments have been done on both hardware
platforms. The resulting measured execution times were greatly affected by the
presence of co-runners, especially in the case of disparity running together
with three linear array write tasks. The worst slowdown of 149.5× was
measured with an input size of 128×128. Both smaller and larger input data
sizes exhibited less slowdowns.

Interestingly, the Raspberry Pi 4 with the out-of-order processor cores showed
far less pessimistic results. Here, the worst case execution time measured for
disparity was slower by a factor of 3.06, when compared to the same task when
run in isolation. We suspect that the improved memory type (LP-DDR4) is
much better equipped to handle simultaneous memory requests, when compared
to the older memory type present in the Raspberry Pi 3 (LP-DDR2).

The results of the measured slowdowns which are non-linear in the size of the
input data, seem to suggest that the shared L2 cache is used quite effectively for
some sizes of input data in the case of a single task running in isolation. When
the L2 cache is stressed by multiple co-runners, the effective use of the L2 cache
is gone and the measured WCET is increased with the presence of co-runners.

Delayed execution of co-runners

In the experiments described above, the execution of co-runners was synchron-
ized with the task under study. In other words, the start times of the task and
its co-runners were equal. With equal start times, we expected to maximize
potential co-runners’ effects, because the co-runners were run for as long as the
task under study ran.

In order to evaluate the second hypothesis, a final set of experiments was
created to delay the execution of co-runners. Our second hypothesis states that
the distribution of execution times of a task is significantly affected by the start
times of the co-running tasks.

The knowledge about potential slowdowns as a function of the co-runners’
start times could be of importance to a scheduling algorithm, that could delay
the execution the co-runners as an optimization strategy. We have shown that
our parametric WCET estimation tool can be used to investigate tasks in terms
of their sensitivity to delayed co-runners. Specifically, we have shown that for a
task that exhibits both data intensive and computationally intensive behavior,
our tool is able to show this behavior in a ‘memory usage’ profile. This profile
is created by targeting the task under study at specific time intervals, where at
each time interval the co-runners attempt to stress the task for a short period
of time.

In these experiments we selected the matmult and the stitch benchmarks.
From the results we conclude that matmult shows a uniform slowdown behavior
during its execution. This suggests that the level of data intensity does not
vary much. Hence, for matmult, an optimization as proposed would likely not
be beneficial.

However, the stitch benchmark exhibits a mixed data and computationally
intensive behavior. Indeed, for stitch our measurements showed that the data
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intensity level fluctuates during its execution. At the beginning of its execution,
stitch shows data intensive behavior. This leads to the belief that for stitch,
a scheduling algorithm may be able to mitigate any contention for shared hard-
ware resources, by delaying the execution of co-runners.

Parametric WCET estimation tool

For this work, we have created a parametric WCET estimation tool and have
performed a number of experiments with it. Our tool is open source and publicly
available. This includes the data and data processing scripts that were created
for the reported experiments. Our aim for the tool is to be able to create both
configurable and reproducible experiments.

Any experienced computer user or computer programmer should be able to
use our tool. Users should be aware of the fact that two operating system
platforms have been chosen to port the benchmarks to. This was a pragmatic
choice. It was necessary to combine the two platforms in one tool to be able to
cover the two Raspberry Pi versions. As described below, a future version of the
tool should feature an integrated solution for the underlying operating system.
Appendix A describes the inner workings of the tool in detail, including some
known limitations.

6.1 Future work

The following improvements to our parametric WCET estimation tool are left
for future work. These improvements fall in three categories. First of all, the
features of the two operating systems on which our tool is based should be
integrated. Ideally, only one operating system is used that supports different
computer architectures. This would lead to a simpler tool and more opportun-
ities to compare results of different processors to each other.

The second category of improvements concerns the extension of parameters
that can influence the effects of contention for shared hardware resources. Ex-
amples of such parameters are the use of virtual memory, compiler optimization
settings and configuration of hardware prefetchers.

Finally, we note that our tool currently only works with random data as input
data. For a more reliable estimation of WCETs, the user of the tool should have
a finer control over input data sets. Instead of randomly generating input data,
the platform should be able to receive input data values prior to starting the
execution of the tasks.
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[27] Petar Radojković, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones,
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Appendix A

Implementation details

This chapter describes the details of the implemented tool. Our tool is open source

and publicly available on GitHub1. With the description below, users should be able

to use the tool and extend it for their own research purposes.

A.1 Technical overview

Globally speaking, our parametric WCET estimation tool consists of four com-
ponents. These are:

• Raspberry Pi — This is the hardware on which the experiments are
performed.

• Computer — The computer acts like the control center, from which the
experiments are run.

• Arduino — The Arduino serves as an extension to the computer, with
which the Raspberry Pi can be reset.

• TFTP server — The TFTP server contains the runtime binary that is
downloaded by the Raspberry Pi through the network.

These components are graphically illustrated in Figure A.1 and are further
described below.

A.1.1 Raspberry Pi

In the project, two versions of the Raspberry Pi computer form the heart of the
experiments. They were chosen for the quad processors that they contain, the
ARM Cortex A53 (Raspberry Pi 3) and the ARM Cortex A72 (Raspberry Pi
4).

The connections from and to the Raspberry Pi are:

• Raspberry Pi ←→ TFTP server — This is a network connection made
with a UTP cable.

1https://github.com/cassebas/run-co-runners.git
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Figure A.1: Main components that together form the tool

• Raspberry Pi ←→ Arduino — This is a 2-wire connection made from the
Raspberry Pi’s RUN header to the Arduino’s pin 13 (high/low voltage) and
the Arduino’s GND (low voltage).

• Raspberry Pi ←→ Computer — This is a serial connection, made with a
USB to TTL serial cable. On the Raspberry Pi, the cable is connected to
the UART0 TXD and UART0 RXD with GPIO14 and GPIO15, respectively. The
black GND wire in the cable is connected to GND, but the red power wire
is not connected, since the Raspberry Pi is powered by the official power
adapter.

A.1.2 Arduino

The Arduino was added to the experimental platform, to be used as a proxy on
behalf of the computer’s control center. The Arduino runs a simple program.
It will continuously set pin 13 to high and listen to the serial port to receive
a character. When the character ‘r’ is received, it will set pin 13 to low. This
will be cause the connected Raspberry Pi’s RUN pins to become low, effectively
making the Raspberry Pi perform a system reset.

A.1.3 TFTP server

The Raspberry Pi features several options for loading the runtime binary upon
power up. The most obvious and easiest alternative is to boot from a microSD
card. This method is very simple, it only involves copying the boot files onto a
microSD card, put it into the microSD card slot and power on the Raspberry
Pi.

Obviously, when doing many experiments, this method quickly becomes in-
feasible because for each experiment a newly compiled runtime binary is to be
copied onto the microSD card. Another solution is to program the Raspberry
Pi with a JTAG capable programmer. While the JTAG programmer could be
used halt the processor and start a debug session, the method is complex and
too involved for just booting the Raspberry Pi.

Finally, there is the possibility for the Raspberry Pi to boot from the network.
This method is straightforward and has been used in this project. For this
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method to work, a TFTP server is necessary which serves the necessary boot
files. The TFTP server could be hosted in the local LAN on a physical device
(possibly another Raspberry Pi), but in this project a virtualization platform is
used. A virtual machine was created by the use of vagrant with virtualbox

as the provider of the virtual machine.
Details of the implemented TFTP server solution can be found on GitHub2.

A.1.4 Computer

The computer acts as the control center, on which all experiments are created
and run. The experimental platform that runs on the computer is discussed in
more detail below.

The computer’s connections are:

• Computer ←→ TFTP server — Depending on the location of the TFTP
server, this could either be a network connection, or it could be just local
file copy in the case of a virtualized TFTP server that runs on the same
computer.

• Computer ←→ Arduino — This connection is a serial connection, which
is made with the standard blue Arduino USB cable.

A.2 Implementation of system and benchmarks

As described in Chapter 4, two target platforms are used for running the ex-
periments. Both platforms feature a Raspberry Pi computer, a ‘bare metal’-like
operating system and the benchmarks that were ported to the platforms. The
platforms are described below.

A.2.1 Raspberry Pi 3 + xRTOS

The xRTOS3 operating system was especially written for the multicore Raspberry
Pi to serve as a basic real-time operating system. The Raspberry Pi versions
2 and 3 are supported. Its implementation is a combination of assembly and
C. It features a preemptive scheduler, which in its basic implementation only
draws progress bars onto the screen. For the purposes of this project, the
preemptive scheduler was modified to allow for non-preemptive execution of
the benchmarks. The xRTOS repository was forked to apply our experimental
additions.4

A.2.2 Raspberry Pi 4 + circle

The circle5 platform is a bare metal programming environment for the Rasp-
berry Pi. It was written to serve as a educational tool, which can be tried and
tested and extended. It supports the Raspberry Pi versions 2, 3, 4 and Zero. It
is written in a combination of assembly and C++. Circle features a lot of demo

2https://github.com/cassebas/Raspberry-Pi-Networkboot.git
3https://github.com/LdB-ECM/Raspberry-Pi-Multicore.git
4https://github.com/cassebas/Raspberry-Pi-Multicore.git — experiment branch
5https://github.com/rsta2/circle.git
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programs. Also, it contains a structure in which the user’s own program can be
added with ease. Multi-threaded execution on multiple cores is supported. The
circle repository was forked to apply our own experimental additions.6

A.2.3 The benchmark config.m4 script

Both xRTOS and circle have been extended/modified to continuously run se-
lected benchmarks, while measuring the execution cycles from start to end. The
porting and addition of the benchmarks’ source code has been done with the
requirements of extensibility and maintainability in mind. For this, the use of
m4 macros was chosen.

With the use of m4 macros, the experiments are configurable can be extended
with new benchmarks or programs relatively easy. The main source code does
not need be changed for configuration or addition of benchmarks. The way this
works is by generation of source code with the use of the benchmark config.m4

script. Examples of important macros that are generated are:

• BENCH INIT1 CORE0 — This macro will generate code that typically de-
clares or defines variables, which in this case run on core 0. The INIT1

part in the name stands for the fact that the generated content by this
macro is executed once, before the main control loop of the core running
the benchmark.

• BENCH INIT2 CORE0 — This macro will typically initialize variables, on
core 0 in this case. The INIT2 part in the name stands for the fact that
the generated content is executed as part of the main control loop of the
core running the benchmark.

• DO BENCH CORE0 — This macro will start the actual execution of the
benchmark, that is configured to run in core 0. It is executed on each
iteration of the main control loop, thereby generating repeated executions
of the same benchmark.

An example usage of the benchmark config.m4 script is:

$ m4 -Dconfig_series=3111 -Dconfig_benchmarks=1444 -Dinputsize_core0=32 \

-Dinputsize_core1=1024 -Dinputsize_core2=1024 -Dinputsize_core3=1024 \

-Dexp_label=DISPARITY_4CORE_TEST benchmark_config.m4 > benchmark_config.h

The result of the m4 command above is written to the benchmark config.h

file. This C header file contains the configution of the benchmarks, like the spe-
cific benchmarks to run on which core, memory sizes and so forth. To include the
benchmark config.h header file, the environment variable BENCHMARK CONFIG

must be set to -DBENCHMARK CONFIG M4 in the make process. This way the C
preprocessor knows that it must include the header file.

Below the benchmark config.m4 script parameters are described.

Parameters of benchmark config.m4

The benchmark config.m4 can take the following parameters:

6https://github.com/cassebas/circle.git — experiment branch
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• exp label — Set the label for the experiment, which will be used in the
reported log lines. The label is of importance in the data processing step,
which is described in Appendix A.4.

• config series — In the reference implementation of the tool, three types
of benchmark series have been implemented. These are (1) synthetic
benchmarks, (2) benchmarks from the Mälardalen benchmark suite and
(3) the SD-VBS benchmark suite. The selection of the benchmarks series
to run is encoded in the config series string, where the length of the
string specifies the number of cores that is used in the experiment and the
ith digit in the string specifies the series number that is to be run on core
i (where 0 <= i <= 3).

• config benchmarks — The config benchmarks string encodes the bench-
mark to run. Like in the config series string, its length specifies the
number of cores to run. The ith digit in the string specifies the benchmark
to be run on core i (where 0 <= i <= 3). See Table A.1 for the list of
implemented benchmarks and their corresponding numbers.

• inputsize coren — This parameter specifies the input size of the bench-
mark that is to run on core number n (0 <= n <= 3).

• pmu coren — The pmu coren specifies the event types that are to be
monitored by the ARM performance monitor on core number n. The
pmu coren parameter is a string, where the length of the string is equal to
the number of events that must be monitored. The string is encoded by the
use of a mapping from an event code (0 to 9) to the event number specified
by ARM. The ith position of the string specifies the ith event number to
be monitored. See table Table A.2 for the supported event types that can
by monitored by the PMU. Currently, the maximum number of events
that can be encoded in the string is 4.

• mmu enable — [xRTOS only] This parameter configures the MMU (memory
management unit) to be enabled. Without specifying this parameter, the
MMU will not be enabled (on the xRTOS platform).

• screen enable — [xRTOS only] This parameter configures the screen to be
enabled. Without specifying this parameter, the screen will not be used
(on the xRTOS platform).

• delay step countdown — The countdown function is a simple function
written in assembly that is designed to make the processor spinlock for a
specific number of processor cycles. In order to create (reasonably) precise

1 2 3

1 linear array access mälardalen bsort100 sd-vbs disparity

2 linear array write mälardalen ns sd-vbs mser

3 random array access mälardalen matmult sd-vbs svm

4 random array write mälardalen fir sd-vbs stitch

Table A.1: Overview of ported benchmarks
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delays in the start time of the co-runners’ execution, the countdown func-
tion is used in combination with the delay step countdown parameter.
This is further explained in Appendix A.3.

• report cycles countdown —Since the number of cycles that is spent on
each countdown step depends on the specific processor and operating sys-
tem, the report cycles countdown parameter can be used to test the
countdown function and print the number of cycles that is used for the
countdown function.

• synbench repeat — This parameter allows the co-runners to have an
extended duration of execution time, to be able to keep stressing the task
under study when the task is running for a very long time. When not
specified, synbench repeat is defined as 1.

• debug enable — This parameter enabled debug information to be printed
to the serial port.

A.3 Experimental setup

In this section, the main components of the experimental setup are described.
First, there is the definition of the experiments by the use of a spreadsheet.
Second, the run experiments.py Python script reads the experiments defini-
tion and automatically runs multiple experiments and logs all incoming data to
an output file. These components are discussed next.

A.3.1 Experiments definition

In this section, the way the experiments are defined is explained. First of all,
an important concept for the delayed execution of co-runners is explained.

Event code ARM event number Event name

0 0x03 L1 Data cache refill

1 0x04 L1 Data cache access

2 0x05 L1 Data TLB refill

3 0x13 Data memory access

4 0x15 L1 Data cache Write-back

5 0x16 L2 Data cache access

6 0x17 L2 Data cache refill

7 0x18 L2 Data cache Write-back

8 0x19 Bus access

9 0x1D Bus cycles

Table A.2: Supported PMU events that can be monitored
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Delayed execution of co-runners

The parametric WCET estimation tool runs the task and its co-runners both
in synchronized fashion and with delayed execution of the co-runners. The idea
behind the delayed execution is as follows. Because we want to be able to
control the length of the delay, the baseline WCET is conceptually divided in
time intervals. The baseline WCET is the maximum measured number of cycles
that the task needs to complete its task when run in isolation.

The time intervals are called delay steps. When the baseline WCET is con-
ceptually divided into 10 delay steps, a delayed execution of 10 delay steps
effectively means that the task and co-runners are executed consecutively, in-
stead of in parallel.

The controlling of the delayed execution is done by the parameters delay

step countdown, measured wcet baseline and cycles per count paramet-
ers in the experiment definition. These parameters and all other parameters are
described below.

Explanation of the spreadsheet

For defining the experiments, an Excel spreadsheet is used. On each row, one
experiment can be defined, where the columns contain the parameters that
define the specifics of the experiment.

The columns with the parameter definitions are:

• experiment number — The number of this experiment, this number serves
as an identifier for the experiment and is used for selection by the
run experiments.py script.

• platform — The platform on which the experiment is to be run. This
can by either xRTOS or circle. Please note that currently, all experiments
defined in one spreadsheet must run on the same platform.

• raspberry pi — The Raspberry Pi version to run the experiment on.
This can either be 3 or 4, for running on the Raspberry Pi 3 or Raspberry
Pi 4, respectively. Please note that currently, all experiments defined in
one spreadsheet must run on the same Raspberry Pi.

• benchmark series — Currently, three types of benchmark series have
been implemented. These are (1) synthetic benchmarks, (2) benchmarks
from the Mälardalen benchmark suite and (3) the SD-VBS benchmark
suite. The selection of the benchmarks series to run is encoded here,
where the length of the string specifies the number of cores that is used in
the experiment and the ith digit in the string specifies the series number
that is to be run on core i (where 0 <= i <= 3).

See Table A.1 for an overview of the benchmark series that can be used.
Please note that the string is surrounded by quotes (not smart quotes),
to force a string data type in Excel.

• benchmark configuration — The benchmark configuration string en-
codes the benchmarks to run. Like in the benchmark series parameter,
its length specifies the number of cores to run. The ith digit in the string
specifies the benchmark to be run on core i (where 0 <= i <= 3).
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See Table A.1 for the list of implemented benchmarks and their corres-
ponding numbers. Please note that the string is surrounded by quotes
(not smart quotes), to force a string data type in Excel.

• enable mmu — Wheter or not to enable the MMU (memory management
unit). This parameter must be TRUE or FALSE. Please note that this para-
meter is only supported for the xRTOS platform running on the Raspberry
Pi 3.

• enable screen — Whether or not the enable the screen. This parameter
can either be TRUE or FALSE. Please note that this parameter is only sup-
ported for the xRTOS platform running on the Raspberry Pi 3.

• no cache management — Each experiment is repeated for a multiple iter-
ations (the minimum of which can be specified on the command line when
using the run experiments.py script). The default behavior is to clean
the instruction and data caches before running each benchmark, in an at-
tempt to create equal conditions between each iteration. The no cache

management parameter can be used to disable the cache cleaning.

• experiment label — Define the experiment label for the experiment,
which is used in the data processing step (further described in
Appendix A.4).

• pmu coren — The pmu coren parameter specifies the event types that
are to be monitored by the ARM performance monitor on core number
n. The pmu coren parameter is a string, where the length of the string
is equal to the number of events that must be monitored. The string is
encoded by the use of a mapping from an event code (0 to 9) to the event
number specified by ARM. The ith position of the string specifies the ith

event number to be monitored. See table Table A.2 for the supported
event types that can by monitored by the PMU. Currently, the maximum
number of events that can be encoded in the string is 4.

• inputsize coren — This parameter specifies the input size of the bench-
mark that is to run on core number n (0 <= n <= 3).

• delay step countdown — The countdown function is a simple function
written in assembly that is designed to make the processor spinlock for a
specific number of processor cycles. In order to create (reasonably) precise
delays in the start time of the co-runners’ execution, the countdown func-
tion is used in combination with the delay step countdown parameter.

This parameter specifies the number of times the countdown function must
be called, to create one delay step. Please note that this parameter is auto
filled in by a formula.

• measured wcet baseline — To determine the number of times the
countdown function must be called for one delay step, the length of the
baseline WCET in cycles must be specified. This implies that to correctly
create delay offsets for the co-runners, the specification of the experiments
is like a 2-stage rocket. First the benchmarks must be run in isolation,
to determine the estimation of the baseline WCET (cycles). This number
must then be put into the experiment definitions, to be able to compute
the number of calls to the countdown function to create one delay step.
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• cycles per count — The number of cycles that is spent for one execution
of the countdown function. Since the number of cycles that is spent on each
countdown call depends on the specific processor and operating system,
the report cycles countdown parameter of the benchmark config.m4

script can be used to test the countdown function and print the number
of cycles that is used for the countdown function.

• synbench repeat — This parameter allows the co-runners to have an
extended duration of execution time, to be able to keep stressing the task
under study when the task is running for a very long time. When not
specified, synbench repeat is defined as 1.

An important concept of the Excel spreadsheet is that one spreadsheet should
contain both the experiment with the task run in isolation, as well as the experi-
ment(s) with the same task running with one to three co-runners. This way, the
slowdown factors.py script (Appendix A.4.2) is able to match each co-runners
experiment to its task-in-isolation counterpart.

A.3.2 The run experiments.py script

The run experiments.py Python script is used to automatically run multiple
experiments in one go. The script reads the experiments definition from a
spreadsheet, and writes the received log output to a specified output file.

An example usage of the run experiments.py script is:

$ python run_experiments.py --working-directory-circle=../../circle/app/corunners \

--input-file xlsx/experiments_SD-VBS_stitch_circle_pi4.xlsx \

--output-file output/experiments_SD-VBS_stitch_circle_pi4_exp11.log \

--min-observations 200 --experiment-begin 11 --experiment-count 1

The parameters of the of the run experiments.py script are:

• --input-file — The path and name of the Excel input file containing
the experiment definitions.

• --output-file — The path and name of the output file, to which all logs
must be written.

• --working-directory-xrtos — The path of the directory where the
xRTOS system is located. The xRTOS system is a submodule of the
run-co-runners Git repository, by default this parameter is set to
../platforms/raspberrypi/Raspberry-Pi-Multicore/xRTOS MMU SEMAPHORE

• --working-directory-circle — The path of the directory where the
circle system is located. The circle system is a submodule of the
run-co-runners Git repository, by default this parameter is set to
../platforms/raspberrypi/circle/app/corunners

• --tty-reset — Serial port to which the Arduino is connected. It is
the path and name of the serial port that is used for the resetting the
Raspberry Pi. By default, it is set to /dev/ttyUSB0.
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• --tty-logging — Serial port to which the Raspberry Pi is connected. It
is the path and name of the serial port that is used to receive all logging in-
formation sent by the Raspberry Pi. By default, it is set to /dev/ttyUSB1.

• --min-observations — Minimum number of observations that must be
seen in the logs received from the Raspberry Pi, before the next experiment
can be selected and the Raspberry Pi can receive a reset signal.

• --experiment-begin — The experiment identifier of the experiment with
which to begin running the experiments.

• --experiment-count — The number of experiments that must be run
consecutively, starting from the first experiment specified by identifier
--experiment-begin.

• -v, --verbosity — Define the verbosity for the program, which can be
either CRITICAL, ERROR, WARNING, INFO or DEBUG. By default,
the verbosity level is set to INFO.

• --help — Print usage information and exit program.

A.4 Data processing

In this section the data processing step is discussed. The experiments output
log data to the serial port, which is captured by the run experiments.py script.
This output is converted to several other output formats, such as CSV files and
graphical output of measured cycles and PMU events.

A.4.1 Overview of the data processing step

A major part of the data processing is done automatically, by the use of a
Makefile script that executes the scripts one by one. These scripts are explained
in detail below. Here, an overview of the data conversion is described.

The output of the experiments are plain text log files. Each line contains one
measurement of the experiment, this can either be a cycles measurement or one
of the PMU performance event counter measurements. The plain text log files
are first converted to CSV format. They are split into cycles data CSV files and
events data CSV files. By default, the log files and CSV files are located in the
run-co-runners/experiment/output directory.

The above log files and CSV files contain multiple experiments’ data in a
single file. These files are further separated into files containing the data of only
one experiment. Two types of CSV file are created, one containing all data
measurements (cycles or events) for one experiment, and the other contain-
ing aggregated summary information of the measurements for one experiment
(cycles only). The aggregated values are the median, mean and maximum val-
ues, including their standard deviations. By default, the location of the CSV
files with single experiments is the run-co-runners/experiment/report/data
directory.

Next, for each experiment a data visualization is generated, using as input
the data CSV files containing the cycles measurements. When PMU events
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data for the same experiment is present in the same directory, these data will
be included in the data visualization.

A separate step is the generation of a PDF report containing graphical out-
put of the aggregated cycles data information. The generation is done using
LATEX templates, which are in itself generated by m4 macros. The figures in the
PDF are generated using the PGFPlots package.7

A.4.2 Description of data processing scripts

In the following, the scripts that convert the log data are explained. Most
scripts are included in a Makefile for automatic processing, except for the
slowdown factors.py script.

log2csv-cyclecount.awk

The output log file contains the raw data, where both cycles data and per-
formance events are present. The log2csv-cyclecount.awk script captures
the cycles data and converts the data to CSV format.
An example execution of the log2csv-cyclecount.awk is:

awk -f log2csv-cyclecount.awk \

output/experiments_SD-VBS_stitch_circle_pi4-exp11.log

log2csv-eventcount.awk

The log2csv-eventcount.awk script captures the performance events data and
converts the data to CSV format.

An example execution of the log2csv-eventcount.awk is:

awk -f log2csv-eventcount.awk \

output/experiments_SD-VBS_stitch_circle_pi4-exp11.log

data2linearchart.py

The data2linearchart.py script outputs a CSV input file containing a single
experiment to a graphical data visualization. In the graphic, the iteration num-
bers are placed on the x-axis and their corresponding cycles data is placed on
the y-axis. If PMU events data is present for the experiments, it will be plotted
together with the cycles data (using a twin axis). See Figure A.2 for an example
output image.

An example execution of the data2linearchart.py is:

python data2linearchart.py \

--input-file=report/data/cyclesdata-core3-configseries211-configbench322-offset10.csv \

--output-directory=report/img \

--maximum-observations=250 --movingaverage-window=0 \

--process-events=True

7http://pgfplots.net
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Figure A.2: Example chart of repeated iterations and measured CPU cycles
and bus cycles. The blue line represents the cycles data of the Mälardalen
bsort benchmark, the green line represents the number of bus cycles meas-
ured on the same core on which the task was run.

The options of the data2linearchart.py script are:

• --input-file — Path and filename of the input CSV file containing the
experiment cycles data.

• --output-file — Path of the directory where to place the output PNG
files.

• --maximum-observations — Maximum number of observations to in-
clude in the output plot.

• --movingaverage-window — Size of the moving average window to plot,
instead of the actual cycles data. The default is a moving average window
of 0, which means do not plot the moving average.

• --process-events — Whether or not to process the events data, by
default the events data are processed.

• -v, --verbosity — Define the verbosity for the program, which can be
either CRITICAL, ERROR, WARNING, INFO or DEBUG. By default,
the verbosity level is set to INFO.

log2data and summaries.py

The log2data and summaries.py script takes the CSV files which are generated
by the awk scripts, and splits these files into files containing single experiments.
Several output options are possible, which are described below.
An example execution of the log2data and summaries.py script is:

python log2data_and_summaries.py \

--input-file=output/experiments_Mälardalen_matmult_circle_pi4-2-cycles.csv \

--output-directory=report/data --output-mode=data --metric=cycle

The options of the log2data and summaries.py script are:
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• --input-file — Path and filename of the CSV input file containing the
cycles data or events data, where several experiments (may be) combined
in one file.

• --output-directory — Path of the output directory, to where the output
CSV files containing single experiments must be written.

• --output-mode — The output mode determines whether an aggregated
summary of the experiment must be generated, or whether the data must
be written to the output file.

• --metric — Whether the cycles are to be converted to a single exper-
iment file, or data are to be converted to a single file. This option can
only work for output-mode equal to data.

• -v, --verbosity — Define the verbosity for the program, which can be
either CRITICAL, ERROR, WARNING, INFO or DEBUG. By default,
the verbosity level is set to INFO.

slowdown factors.py

The slowdown factors.py script computes the slowdown factors for the exper-
iments. For this, the experiment definition Excel file is read, to be able to match
the experiment with co-runners to its counterpart without co-runners.

An example run of the slowdown factors.py script is:

python slowdown_factors.py \

--input-file xlsx/experiments_SD-VBS_stitch_circle_pi4.xlsx \

--output-file slowdown-factors-sdvbs-stitch_pi4-20201019.csv \

--csv-file-prefix=experiments_SD-VBS_stitch_circle_pi4

The options of the slowdown factors.py script are:

• --input-file — Path and filename of the input Excel file containing the
experiment definitions.

• --output-file — Path and filename of the CSV output file.

• --csv-dir — Path of the directory where the input CSV files are stored,
which contain the log data to be analyzed.

• --csv-file-prefix — Prefix of the input CSV filenames to be analyzed.
The prefix acts as a filter, to make the script not read non-relevant CSV
files.

• --data-dir — Path of the directory where the data files are stored. This
directory contains the CSV files which were already separated per exper-
iment.

• -v, --verbosity — Define the verbosity for the program, which can be
either CRITICAL, ERROR, WARNING, INFO or DEBUG. By default,
the verbosity level is set to INFO.
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maketex-cyclessummaries.m4

A separate step is the generation of a PDF report containing graphical output
of the aggregated cycles summary information. The generation is done using
LATEX templates, which are in itself generated by the maketex-cyclessummaries.m4
script.

An example execution of the maketex-cyclessummaries.m4 script is:

m4 -Dfilename=data/cyclessummary-DISPARITY_CORES4_INPUTSIZE32.csv \

-Dconfig_series=3111 -Dconfig_benchmarks= \

-Dlabel=DISPARITY_CORES4_INPUTSIZE32 maketex-cyclesummaries.m4

Normally, the maketex-cyclessummaries.m4 script is executed by the
Makefile which was mentioned above. Another Makefile, which is located in
the run-co-runners/experiment/report directory, generates the final PDF
containing the PGFPlots figures.

A.4.3 Jupyter notebook files

Jupyter8 is a web application in which users can create documents (‘notebooks’)
in which code (e.g. Python) is mixed with documentation. The code within the
notebook can be executed to generate output, such as data visualizations. In
this project, the jupytext9 extension has been used for an automatic conversion
of the Jupyter notebooks to Python scripts, which can be committed to Git.

Several Jupyter notebook files have been created, in which output data is read
and transformed to various data visualizations. These notebooks are part of the
run-co-runners Git repository, and serve as examples of how the log data can
be transformed to more meaningful information on the experiments. Please note
that the jupytext extension is needed to convert the example notebooks from
Python to the Jupyter notebook format (with .ipynb extension).

The example Jupyter notebooks are:

• notebook mälardalen-bsort-pi3.py — This notebook contains the res-
ults of the experiments with the Mälardalen bsort benchmark. It contains
boxplot visualizations of the experiments with varying input data sizes,
and the computation of the Mann-Whitney U hypothesis tests.

• notebook sdvbs-stitch-pi4.py — This notebook reports on the results
of the SD-VBS stitch benchmark. It reads the slowdown factors from the
CSV file slowdown-factors-sdvbs-stitcho pi4-20201019.csv, and
prints pandoc data frames from the data. A data visualization is generated
containing slowdown effects in relation to the size of the delayed execution.

• notebook sdvbs-disparity-pi3.py — This notebook features various
data visualizations from the experiments with the SD-VBS disparity

benchmark. Slowdown factors are read from the corresponding CSV file
and printed in the form of data frames. Several output graphics are created
by the use of matplotlib.

8https://jupyter.org
9https://jupytext.readthedocs.io
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• notebook sdvbs-disparity-pi4.py — This notebook contains the same
data visualizations like the above notebook, but for the experiments that
were run on the Raspberry Pi 4.

• notebook mälardalen-matmult-pi3.py — This notebook contains data
visualizations of experiments with the Mälardalen matmult benchmark.
Slowdown factors are printed and visualizations are created showing the
effects of delayed execution of the co-runners.

• notebook mälardalen-matmult-pi4.py — This notebook contains the
same data visualizations as the notebook described above, but for the
experiments that were run on the Raspberry Pi 4.

A.4.4 Known limitations and gotchas

In the following, some known limitations of our tool are reported.

• System freezes — In rare cases, a core running a task would hang. The
cause for this behavior has not been found. The environment in which the
tasks run is difficult to debug, because of multiple cores running simul-
taneously in a bare metal environment. The run experiments.py script
works around this problem, by resetting the Raspberry Pi upon a timeout.
This timeout is generated when no data has been received from the Rasp-
berry Pi for a long period of time.

• Booting the Raspberry Pi — Sometimes, the Raspberry Pi 3 would not
boot from the network. Again, the run experiments.py script uses the
timeout mechanism to detect a failure to boot, and will reset the Rasp-
berry Pi if no data is not received for a long period of time.

• Users should be aware of the fact that, to be able to automatically reset
the Raspberry Pi, some header pins may need to be soldered on the RUN
header of the Raspberry Pi.

• While testing on multiple computers, sometimes the virtualized TFTP
server could not be used to boot from the virtual network created by
VirtualBox. A solution is to place the TFTP server in the local LAN.
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