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Observed deviations from the kinetic theory of rubberlike elasticity

have been reviewed, and particular attention focussed upon the Mooney pesrameter
Co.

Stress measurements have been made upon thin rubber sheets in a state of
pure homogeneous biaxial strain, and the stress relaxation behaviours of a
natural rubber and a butyl rubber are reported.

Anglysis of the results allowed an examination of the stored energy
function W over a strain invariant range 3 < I; < 12 and 3 < Io € 30. Finite
o)
values of 5—‘%— were found under conditions for which there was no observed
2

stress relaxation. This is at variance with the kinetic theory, for which

ig zero.
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I, Iz, Is
A1, Az, A3
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jelel
Jl: J.2

par

stored elastic energy per unit volume

elastic material parameters

strain invariants, defined by equations 2.2 and 2.3
principal extension ratios

extension ratios

a function of J;, Jo and T

viscoelastic materials parameters

gtrain invariants, defined by equations 7.5

elastic strain, tensor for infinitesimal displacements
infinitesimal displacement vector

strain tensor for a viscoelastic body

strain tensor defined by equation A.1lh

coordinates of a particle at the current time t
coordinates of a particle in the undeformed material
coordinates of a particle at same past time t’
current time

past time

t-t?

lifetime distribution function for crosslinks
stress tensor

principal stresses

uniaxial tensile force per unit unstrained cross-sectional
area

isotropic pressures

unit matrix
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defined by equation 7.11

J
\'s AAohs
A% volume fraction of rubber in the swollen sample
f;a mean square network chain length in the unstrained rubber
f;e mean square end to end length of an isolated single molecule
N number of molecular network chains per unit volume
k Boltzmanns constant
J absolute temperature
J mechanical equivalent of heat
P density of rubber

e specific heat of rubber




1 Introduction

With the development and increased use of elastomeric materials,
with their ability to support reversible finite strains, considerable
effort has been made in recent years to evolve an adequate theory for
large elastic deformations of isotropic materials.

General relationships have been proposed between the state of strain
of a deformed elastic material and the applied stress system (Rivlin 1943,
1949). However, to describe the stress-strain behaviour of a particular
material it is necessary to substitite into the generalized equations some
functions which represent the elastic properties of that material. This
Note is largely an examination of the form of such functions.

The elastic properties of a material are campletely determined if the
energy which is stored in an isothermal deformation can be expressed as a
function of the strain only. Two fundamentally different approaches
have been made to this problem.

Statistical mechanical studies of the thermal motion of the molecular
network of an idealized elastomer (the kinetic theory of rubberlike elasticity)
have led to a stored energy function which is expressed in terms of the
geometry of the deformation, and one material parameter. (reviews, Treloar
1958, Volkenstein 1963). A second approach considers only the continuous
macroscopic nature of the material and its observed behaviour and suggests
that the stored erergy can be described in terms of the geometry of defomm-
ation, and any number of materisl parameters, (review, Rivlin 1956).

Experimental measurements of the stress-strain behaviour of elastomers
for various simple deformmations have shown apparent inadequacies in the
form of the stored energy function suggested by the statistical theory.
It has been suggested that this form is therefore oniy a first approximation
of the more general function derived from the continuum approach. No function
has yet been suggested which will give stress-strain relationships for an
elastamer fitting all the experimentally determined results. It should also
be possible to find the molecular mechanisms which are responsible for each
material parameter. Snggestions have been made and accepted only for the
one parameter which is cummon to both approaches.

The view has been expressed (Ciferriand Flory 1959) that the stored
energy function obtained from the kinetic theory is essentially correct,
and that it is the inadequacy and misinterpretation of experimental results
which has led to the position outlined above. Rubbers are not perfectly
elastic but are viscoelastic in nature. If measurements are made before
the materials obtain their final equilibrium shape under the applied stress
systems then the results should not be treated in terms of an elastic theory.
According to Ciferri and Flory, observed deviations from the statistical theory
are time dependent in origin and go to zero at true equilibrium.

This Note describes the current position over the dichotomy presented




by the two different approaches to the derivation of a stored energy function.

The observed deviations from the kinetic theory are reviewed. A description
is then given of the measurements made upon the stress system needed to
maintain sheet rubber in a state of pure homogeneous strain. Non-equilibrium

effects are considered. If the theory developed from the statistical
approach is correct then it should be possible to describe the stress system
in terms of one material parameter only.

R S

The kinetic theory of rubber;ike elasticity leads to a description of
W, the stored elastic energy per unit volume, in terms of a single time
dependent material parameter C, and the geometry of deformation.

i.e. W= Cy(I.-3) (2.1)

where I, is the first strain invariant and is related to the principal
extension ratios A;, A5, and A3, of a pure homogeneous deformmation by

I, =2f + 25+ 15 (2.2)

An alternative approach to rubber elasticity is to consider only the
continuum properties and behaviour of the material. A major advance in
continuum mechanics is due to Rivlin (1948, 1949, 1956) who solved a number
of problems involving finite deformations of isotropic materials using a
completely general form for the stored energy function. Rivlin argued
that when a material, which is isotropic in its undeformed state, is in a
state of pure homogeneous strain defined by the principal extension ratios
A1, M, and A3, then the energy per unit undeformed volume stored elastically
in the material must be a function of A;, Ay, and Asz. Furthermore this
stored energy must be unaltered by rigid body rotation of the material, and
therefore the analytical description of the stored energy does not depend
upon the direction of the chosen reference system of cartesian coordinates,
and must be a function of the strain invariants I, I», and Is.

The second end third strain invariants, I and Ix, are given by

Io = A3 + A3\8 + A3MF (2.3)

1l

and Is = MBS

1l

Since W = W(I;,I5,I5) then it can be expressed without loss of gererality
as a power series in I, Ip, and Is.

e ) A (Te3)(res) a0 (2.4)




vhere A =0, and (I1-3), (I2-3), and (Is-1) are used in preference

to I;, I, and Is so that W will be zero for zero deformation. The
constants qur may be considered material parameters which describe

the elastic behaviour of the material. Particular forms for the stored
energy function can obviously be generated by retaining only specific terms
in the series expansion of W. TFor example, Mooney (1940, 1964) derived

a form for W based upon an observed linear relationship between stress amd
simple shear in unfilled rubber

i.e. W o= C1(I1-3) + Co(Iom3) (2.5}

This may be considered to be the first two terms of the series expansion
(2.4) with Algo = C1and Ay, = Ca.

It may be noted that Iz = 1 for an incompressible material and then
W can be written W(I;,I5). If corresponding values of W, I, and I, are
plotted on an orthogonal three dimensional coordinates system with axes
W, I, and Io, then the complete description of W involves the characterisation
of the surface W(I;,Io) over the camplete range of values of I;, and Ip
nomally encountered.

. - - - T T o -

The stored energy functions derived from the continuum and kinetic
theories are differentiated by the existence of material parameters other
than the first in (2.4) the series expansion of W. Studies of various
simple deformations (Rivlin and Saunders 1951) have suggested that for an
natural ruvbber gumstock

W = Cy(I1-3) = ¢(I=-3) (3.1)

where ¢(Io-3) is some decreasing function of (Io~3) and hence represents
the deviation of the experimental results from the kinetic theory. Most
of the experimental studies of the form of ¢(Ig-5) have been limited to
simple elongations, when the behaviour for moderate extensions can be
characterized by the Mooney stored energy function. This suggests the

identification of 2C; with Nkﬂ?<}4£ , where N is the number of molecular
It

o)
chains per unit volume and k is Boltzmanns constant. The mean square end
to end length of an isolated single chain at absolute temperature T, is

fi, and f? is the mean square network chain length in the unstrained rubber.

This definition has been examined extensively and reviewed by, for example,
Mullins and Thomas (1963), and will not be considered further.




The stored energy function for incompressible materials, W(Ii,Is),
is represented graphically by a surface when W,I; and I> are chosen
as the three coordinate axes. The Mooney function then can be assumed
to describe the surface contour line which followsg the definition of
simple elongation that is Ay = M and A5 = As = A™2, It has been
suggested by Ciferri and Flory (1959) that Cs is an artefact which has
arisen from misinterpretation of simple extension data. This is a
necessary but not a sufficient condition for the conclusion that the
Gaussian function W = C;(I;~3) is adequate to represent the mechanical
properties up to moderate extensions.

A molecular mechanism is not yet available which explains completely
the observed behaviour corresponding to Cp, which will now be outlined.

According to the kinetic theory the stress-strain relationship for a
swollen incompressible rubber in simple extension is given by (James and
Guth, Flory and Rehner, 1943).

f = NkTvrl/3 <é - é%> (3.2)

where f is the tensile force per unit cross sectional area of the

swollen unstrained rubber, v, is the volume fraction of rubber in the
swollen sample, and the extension ratio & refers to the unstrained swollen
state.

Gee (1946) examined the function f V. g 92 for natural rubber
swollen in toluene and found it to decrease with increfsing strain at
variance with (3.2). This deviation from ths_kinetic theory was much
reduced as the degree of swelling increased.

This work was extended by Gumbrell, Mullins and Rivlin (1955) to a
number of rubber-liquid systems, and the results analysed in terms of the
Mooney parameters for the swollen rubber, ClS and CQS’ defined such that

b
0 = v < _l> = Cig + Casp) (3.3)
Vr = b

C2 was determined from the gradient of the observed linear relationship
between 6 and 1/1 and found to be independent of the nature of the diluent,
but decreased progressively with decreasing v_ . This decrease may be
associated with steric hindrances due to bulky side groups. A number of
sulphur accelerated synthetic and natural rubber vulcanisates were considered.
C» was independent of the styrene content in butadiene - styrene copolymers,
and had the same value (about 1 kg.cm 2) for butadiene - acrylonitrile, and
natural rubber. It was therefore concluded that Cp was not dependent upon



the presence of bulky side groups or polar groups. Smaller values (about
0.8 kg.cm™2) were found for peroxide cured natural rubber.

Gumbrell et. al. suggest that Cy is associated with the volume filling
properties of the chain. Then some dependance upon extension might be
expected but is not apparent in their results over the gtrain invariant
range 3<I; <6, 3<Is<5. However, a decrease in 3%" with increasing

2

I, is chown in the more general results of Rivlin and Saunders (1951) over
ghe rangeaj <I;<12, 3<1I5< 30, and is confirmed by the variation of
W W

Iy’ and SIo with I, and Io shown in Figure 4. Swelling would naturally

reduce finite volume effects.

The dependence of Cz on v, was confimed by Mullins (1959) who found
that simple extension data on swollen peroxide and sulphur cured natural
rubber could be described by

CgV 4/3
fENe (3.4)

where C; and Cs are the Mooncy parameters for the dry rubber.

An experimental examination of the forces necessary to maintain a
rubber tube in a state of simultaneous extension, inflation, and torsion,
led Gent and Rivlin (1952) to observe that the amount of hysteresis in a
complete load-deformation cycle appeared to be associated with L

Therefore, the mechanism which accounts for hysteresis may give %ise to
terms in W which are additional to the kinetic theory. An important
contribution to hysteresis could be the failure to attain the equil ibrium
stress-strain state necessary for the thermodynamic analysis of the kinetic
theory.

Priss (1957) considered a network of chains of random orientations.
Deformation of the bulk rubber was considered to produce an instantaneous
affine displacement of all chain segments followed by a co-operative
movement of the chain links over a long period of time. The end to end
distances of the chains are assumed to be constant during this movement.

The stored energy function derived by Priss for this network involves
time dependent termg which are additive to the Gaussian term and contain
incomplete elliptic integrals. No details of the derivation are given,
and no details are given to substantiate the claim that this function
describes experimental data in gimple extension compression, biaxial
deformation and shear.

The first detailed investigations into the time dependence of Cz were
performed by Ciferri and Flory (1959). A correlation between C, and
hysteresis was observed from simple extension measurements on a number of
elastomers. Changes in the experimental conditions to aid the approach




to equilibrium were found to decrease Cs. The effect of increasing

the time interval between the imposed elongation and the measured

stress was examined. Cross linked poly methyl methacrylate, which

has a glass transition temperature ca.l10°C, exhibits considerable
stress relaxation at 145°C. At this temperaturc C, decreased from

2.4 Kg. em 2 to 1.8 em © as the time interval increased from 3 minutes
to 30 minutes, but a smal, decrease only (0.80 kg.cm 2 to 0.76 kg.cm 2
was observed for sulphur accelerated natural rubber at 34°C over the
same period. C> was found to decrease with increasing temperature
(below degradation temperatures). For example, as the temperature

of P.M.M.A. increased from 145°C to 175°C, Co decreased from 2.40 kg.cm 2
to 1.30 kg.cm 2, Co was also found to decrease when increasing amounts
of diluent was absorbed by the polymer networks. The minimum observed
value of Cy was 0.04 Kg.cm 2 for a silicone rubber crosslinked in a
highly swollen state but the minimum values for natural rubber were

an order of magnitude larger. Ciferri and Flory suggested that under
ideal equilibrium conditions Cs will be zero.

Mason (1959) used wave propagation techniques to superimpose

small dynamic strains upon strips of stretched natural rubber. A
the dynamic modulus is defined by

, do
Be=2 {5.5)

where o is the true stress given by ¢ = fA and f is givenr by

£ =2(M - 1/A2) (Cy + Co/) (3.6)

then FiE = Cy + FoCs (3.7)
vhere Fy = 75— and Fa = —zﬁfgé-y Mason idered the in-phas
Ll 2(2}\ -}-l) an S8 OND4+1 ason considere e in-phase

and out of phase components of the modulus and Mooney parameters, and found
that (3.7) was obeyed up to about 150% extension over the temperature

range - 20°C to 50°C, at a constant frequency. Both components of Cp
decreased with increasing temperature, presumably because of increasing
chain mobility and thevefore a closer approach to equilibrium.

Halpin (1964, 1965) examined simple extension data obtained from
creep, stress relaxation, and stress-strain measuranents at constant strain
rate. He factorised the appropriate modulus into a time dependent temm,
and a term which is a function of the strain only, and may be considered
to represent the equilibrium behaviour. He concluded that for certain
highly crosslinked polymers the equilibrium behaviour was adequately
represented by the kinetic theory involving the inverse Langevin function.




However, he mentions unpubl ished data obtained on polymers of low
crosslink density which exhibit deviations from the kinetic theory.

Mulline (1958), in contradiction to Ciferri and Flory, found that
Co for natural rubber under necar equilibrium conditions increased with
an increase in temperature.

Roe and Krigbaum examined Cp for a natural rubber (1962) and a
fluoroelastomer (1963) and allowed at least 24 hours to approach
equilibrium after successive elongations. No stress relaxation was
observed after a few hours but the values of Cp were still finite.

For a natural rubber at 45°C, Cp = 0.438 kg.cm 2. The entropy
component only of the retractive force was used in the Mooney equation
for simple extension, (3.3 with Vp = 1), and the corresponding values
of the Mooney parameters were determined. C> was reduced by about

50% for natural rubber, and became negligible for the fluoroelastomer,
which suggests that considerable contributions are made by the internal
energy.

The constant volume condition assumed by Mooney in hie derivation
of the stored energy function 2.5 has been disregarded by van der Hoff
(1965). He assumed that the Mooney stored energy function would describe
the elastic energy stored during swelling as well as in extending rubber,
and was able to derive (5.&), the empirical equation of Mullins. Doubt
is therefore cast upon the assumption of Ciferri and Flory (1959) that a
reduction in the observed value of Co with swelling is a consequence of
reduced hysteresis.

There are a number of modifications to the energy and entropy of a
deformed rubber network which were not considered during the derivation &f
(2.1), the kinetic theory form of the stored erergy function. The
mechanisms responsible for these changes may contribute to a Cp temm.

Very little is known, for example, upon the effect of intermolecular forces
upon the elasticity of rubber. Gee (19h6) suggested that local cordering
within the network would affect the entropy. Volkenstein, Gotlib and
Ptitsyn (1959) and Bartenev and Khazanovich (1960) considered the mutual
orientation of segments of neighbouring molecules. Dobson and Gordon (l96h)
examined the contribution to the network entropy of shart chains of one or
two bonds which are capable of orientation but not extensio.., and Di Marzio
(1962) considered the reduction in availsble configurations because of
molecular packing. The possible magnitude of the contributions to Cs has
been discussed by the individual authors. It is of particular interest

to note that Gee (1966) concluded that Cp is not a consequence of the
excluded volume effect.

It has been suggested that a time dependent Co term may arise because
of the presence in the network of slipping entanglements (Kraus and
Moczvgenba 1964) or unspecified labile crosslinks (Ciferri and Hermans 1964).
The former authors found that for a polybutadiene rubber C, increased as
the number of entanglements and total crosslink density increased. Bristow
(1965) observed, for peroxide cured natural rubber and cis-l,h - polyisoprene




that C, varied with C; and went through a maximum at C, ca.2.0 kg.cm 2.
The dependence upon crosslink density is at variance with the results
of Gumbrell, Mullins and Rivlin (1953).

A large proportion of the free energy of deformation of rubber is
due to entropy changes, and therefore deformation is accompanied by a heat
build up. It is shown in Appendix 3 that an adiabatic deformation can
give rise to a Cy type term. However the magnitude of this term is
considerably less than the values detemined from simple extension
measurements. Furthermore this contribution will be time dependent
and decay to zero at a rate dependent upon the rate of heat exchange
between the sample and its surrouncings.

In summary it may be said that no single mechanism has been accepted
as the source of Cs. It is therefore unlikely that a single constant
material parameter is adequate to describe the effect upon the mechanical
properties of all the mechanisms described. A positive Co will explain
the experimental curves in pure shear and simple elongation at moderate
strains which fall below the Gaussian curves before showing the expected
upturn at high strains.

A number of empirical or semi-empirical stored erergy functions and
stress=-strain relationships have been proposed to fit the experimental
data obtained for various deformations.

.- - o - - G o - " - o - - - S ot -

The limitations of the kinetic theory and Mooney stored energy
functions in predicting the mechanical behaviour of rubber has been discussed
fully by Treloar (1958). A number of empirical or semi-empirical functions
have been proposed. ;

Martin, Roth and Stichler (1956) found that isochronous stress-strain
curves obtained from creep measurements in simple extension were represented
up to M = 2 by the empirical egquation

f=E<J}:'---%~§> epr<l-%§> (3.8)

where E is Youngs modulus at A = 1, and A is a constant. Wood (1958)
applied (3.8) to the data of Rivlin and Saunders (1951) and found a
reasonaeble fit for 0.5 < A < 3. TFritz and Johnson (1963) applied (3.8)
to irradiated polyurethane elastomers and found A to be a slowly varying
function of dose while E varied exponentially.

Bartenev and Khazonovich (1960) considered the orientation of segments
of the molecules during deformation, and obtained a two parameter relationship
for the principal stresses t; and tp in a pure homgeneous deformation.
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b1 = AR -A3)[1+BI +2B(A #h5) (M i+hotd+3-3)] (3.9)
(i=l:2)
where A and B are constants. This equation was found to fit the simple

extension, pure shear, and pure shear plus extension results of Rivlin
and Saunders. Bartenev and Vishnitskaya (1961) campared the simple
extension form of (5.9) with the three parameter equation of Zagorski

(1959), i.e.

A = A(A*-1) + B(2AZ-1) + C(2-1) (3.10)

where A, B and C are constants. They found that both equations described
their results on natural and synthetic rubbers reasonably well up to
A = 3, but (3.9) gave a better fit for A > 3,

Another three parameter function has been developed (Carmichael and
Holdaway 1961) to express the principal stresses in terms of the induced
principal extension ratios

A 1
2

t, - D= exp[B(li—%;)] - c(kf + 3z - 2) (3.11)

. i

(1~ 1,2,3)

where A, B and C are interdependent material constants and p is an arbitary
hydrostatic pressure. Carmichael and Holdaway have shown that (3.11) fits
experimental results obtained by Treloar (1944b) in simple extension,
simple shear and equi-biaxial strain.

A number of stored energy functions have been proposed. Thomas (1955)
modified the free energy of a single gaussian chain by an empirical additive
term A/r2. The network stored energy function for a general homogeneous
strain then involves an incomplete elliptic integral. Gent and Thomas
examined a substantially equivalent function (1958).

W= Wy(T1-3) + Wgbn(z2) (3.12)

where W, and Wy are constants. Thieg function is in qualitative agreement
with the uniaxial stress-strain data, and the strain depencdence of

d
g¥- determined by Rivlin and Saunders. However, the Thomas function, at
1

variance with (3.12) also predicted a small decrease in 5%— with increasing
strain. &

Priss (1957) has stated that

£l it it
W =0CHi (=5 | S-ERlc(SS=iciiaant b et e d
1( 1 3) (}‘l }\2 }\_3 3) (3 3)
where C; ig the Mooney parameter, and k is a constant. This function

gualitatively reproduces a number of stress-strain relationships.
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The complex three parameter stored energy function of Carmichael
and Holdaway (1961) has been discussed by Klingbeil and Shield (1964).
They examined theoretically the inflation of a flat circular sheet and
found that with the inclusion of this three parameter function their
equations then described the experimental work of Treloar (19Lkec).

oW W
Furthermore ST @ eared to be independent of I- and St decreased with
I> up to Io ca.l000.

Empirical formulae have recently been proposed (Hart-Smith 1966)
to fit all the data of Treloar (194lta) and Rivlin and Saunders.

> >
ST = C exp-[kl(lla)"-], She = ok (3.1%)

o
5%— then exhibits the upturn at high extensions that might be expected
il

because of the finite extensibility of the network chains.

&, Stress-strain relationships for the pure homogeneous deformation

- - - . O - 0 S S o 0 S - B T - -

The theory outlined below is based on that of Rivlin (1948a, 19.48b)
who derived relationships between the general pure homogeneous strain
imposed on compressible and incompressible elastic isotropic materials,
and the applied stress system.

Conszider a unit cube of elastic isotropic incompressible material,
with its edges parallel to the coordinate axes x, (where i is equal to 1,2
or 3). Let this cube be transformed into a rec%angular parallelopiped
by extension ratios M; along the directions x;. Tne direction x,; are
the principal strain axes which for this material are coincident with the
principal stress axes, and hence the applied stress system can be represented
by ti.

The virtual work done in producing a further incremental deformation
O\, is
i

Wy = taAAz0hy + oA As0hp + txA A DA (4.1)

and since W, the elastically stored energy, is a function of Xy, Az, and A5

oW oy oW
W = 5?15}‘1 + g}\—‘?}\2+67.'35}\.3 (4.2)

and for equilibrium under isothermal conditions

oW, - ®W =0 (4.3)




- 1% -

and hence

3 3 o
(12225 - gy-l)s)\l + (t2dids - g‘)\]— + (tshado - 5‘}:;)5>\3 (4.4)

=0

For an incompressible material, the volume V of the deformed element is
given by

Vo= Mdohs =1 (4.5)

and any arbitrary function of the volume f(V) is equal to f(1).

Therefore
A
(W, + sy, +—§iiy)bl3 = 0 (L.6)
oAy A, g

o
o o} d IS}
g\f%(y_l [F‘){'S)‘l + 5{;5}\.2 e a—%:l =0 (l:..'?)

Herce by substituting (4.5) into (4.7) the most general condition for
incompressibility is

PIAA®BA; + M A0hp + A ABrs = 0 (4.8)
where p is the arbitrary constant 8\1&; e

Now (4.4) is velid for values of ®\, which satisfy (4.8). Comparing
coefficients of B, -

, W

“P = lﬂ§i; (4.9)
where

oW oW o dw OT

n, "8I, &, ‘oL 5, (%.10)

now, from (2.2) and (2.3),
z
I, = i}\i and Ip = >4 }\'i'2 since
e
i=1 i=1
AAds =1 (4.11)

and hence (4.9) becomes




oW - OW
ti -p = 2<K§ gf; - }s.iz ST. (k.12)

For a pure homogeneous strain in which forces are applied only to the faces
of the cube which are normal to the x; and x, axes, tz = O.

Therefore
B > 1 > oW 2 OW
e <)\l B }‘15: 5:[1 C oT
(4.13)

N 2 _1 oW oW

Now consider the unit cube to be an element of a thin plane square

of side 1 and uniform thickness h. Let the major surfaces of this thin
square be normal to the x3 axis, and its edges parallel to the x; and x»
axes. If forces f1 and fy are applied to the faces normal to the x; and xp

axes then the corresponding stresses t, and ty can be calculated from

b = S to = I3 (.24)

)
Equations (4.13) can be solved for g%— and 5%; and give
1

A2t A2ta
oW AT = A19Ao% " A5 o Aphot

oI; - 2(Af - 13)
and ()4-15)
+ 3
oW AZ ~ AiPAa2 " A2 L ATAALS
el ¥ Y- R

Therefore measurement of the forces f; and fy, for a pure homogeneous
deformation characterised by A, and Ay allows the value of

oW oW
and to be calculated.
511 512

The deformation can alternatively be characterised by the values of

the strain invariants I; and Io, and therefore the variation of 5%: and

g%—- with I; and I, can be investigated.
2




———— ——

Furthermore, if A; = A5 = X then from (4.13)

N d oW
tp =ta=t=2 <KL - %%) §¥i RER (h'16)

since tz = O as before.

SRR s e

An attempt has been made to examine the stored energy function
W(I1,I>) by an experiment in which there is no causal relationship between
I; and Is. The method used was to measure the force system needed to
produce a pure homogeneous deformation in two perpendicular directions in
the plane of a rectangular sheet of rubber.

The experimental arrangement is essentially that of Treloar (l9h8)
and Rivlin and Saunders (1951), but the method of applying and measuring
the force system has been modified to facilitate stress relaxation studies.

The complete test piece was cut from a single moulded sheet of rubber
as shown in Figure 1, and the surface marked in ink with a 3 cm. square
grid of 1 cm. squares. The thick lags considerably reduced sample failure
by tearing. Strings were attached to the lugs by clamps, and a pure
homogeneous biaxial deformation produced in the plane of the sample by
applying tensions to those strings.

Details of the sample preparation and the recipes of the rubbers are
given in Appendix 1.

Ideal conditions for stress relaxation studies involve a step function
strain history. In order to deform the samples rapidly each set of five
strings was attached to a rigid bar, and hence the problem of applying
tensions separately to twenty strings resolved itself into moving four bars
outwards from the sample to predetermined positions.

Details of the system used are given in Figure 2. Coarse adjustments
to the deformation was provided at each side of the test piece by the
threaded rods A, which traversed nuts mounted on the supporting table and
controlled the position of the attachment points to the large drawbars B.
Fine adjustment was provided by threaded rods on the ends of the central
three strings attached to B.

Stress relaxation studies involve the determination of the time
dependence of the stress gystem which maintains the deformation constant.
Preliminary experiments using dummy samples determined the position of B
which would produce a particular pure homogeneous deformation characterised
by the values of A; and A,. The threaded rods were adjusted so that the
marked grid on the sample fitted exactly a rectangular grid marked on perspex
which represented the desired deformation. The actual test plece was then
mounted and deformed by fixing the drawbars at these predetermined positions.




=l

Fine adjustments were sometimes necessary to complete the deformation which
took less than one minute to perform.

Rivlin and Saunders (1951) had shown that the stresses necessary to
produce a homogeneous strain over the area of the test piece marked by the
grid can be calculated, within a 4% error, from the forces acting over the
central three strings of each side. Preliminary experiments further
established that the tension in any one of the three central strings
deviated from the arithmetic mean of the three tensions by less than 5%.

The total tensile forces, acting over the central three strings on
each of two adjacent sides, were dctermined by noting the deflection of a
stiff phospher bronze ring R. Four resistance strain gauges were fixed to
each ring at the positions of greatest flexure, and incorporated in a bridge
network which gave an out of balance current proportional to the load
applied to the ring.

The bridge (Phillips PT1200) was temperature compensated, and the
proof ring calibrations were unaltered over the range of ambient temperatures
encountered, (18 * 2°C). Over the time period of the measurements the
bridge output current meter was subject to zerc drift. A clamp was
installed which allowed the sample to be maintained in its strained state
as the load was removed from each proof ring and the zero corrected.

Stress measurements were made on a lightly crosslinked natural rubber,
and a butyl rubber which were maintained at 25 * 0.5°C in a suitable enclosure.
The temperature gradients in the enclosure produced differences of less
than 0.2°C between any two points on the test pieces.

Measurements were also made on the butyl rubber maintained at o°C in
a mixture of ice and water. The ice-water mixture completely covered the
sample and was contained in a deep sided tray. TL~ supporting strings
passed through gelatine windows in the tray which kept water losses to a
minimum without causing errors in the force measurement due to friction.

No stress relaxation was observed for the butyl rubber at 25°C and

the variation of éﬂ—-and gﬂ— with I, and I was examined. Following the
31y Iz

procedure of Rivlin and Saunders (1951) groups of deformation were chosen
which represented particular constant values of I; and I,. The relationships
between A; and A, for constant values of I; and I, were derived by re-
arranging (4.11) and are shown graphically in Figure 3. The broken lines
represent the relationships between A; and Ay for simple extension in the
X3 and x, directions. Deformations represented by points to the left and
below these lines would require at least one compressive force and are not
relevant to this experiment.

A further series of measurements on butyl rubber at 25°C involved
equibiaxial extensions when A; = As. These results were compared with
simple extension measurements at the same temperature upon test pieces
cut from the same rubber sheet.
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6.  Experimental Results
6.1 Pubyl rubber at 2570
No stress relaxation was obgerved. The forces necessary to maintain

a series ofadeformagions were measured, and the corresponding values of t;
W W
and t, and and ‘were calculated from (L4.1k4) and (4.15).
2 S oe (4.1L) (4.15). The
dependen s s i i i .
ependence of Sf; and gi; on I and I, 1s shown graphically in Figure 4
The results are tabulated in Table 1.

The results obtained under conditions of equi-biaxial strain
(AL = A5 = 1) are given in Table 2. The function

%’— + }\2%?— was calculated from (4.16).
1 2

The same state of strain could have been obtained by a pure compressive
stress tz. Then t; = tp = 0 and from (4.12), ts is given by

-2 (3r-29) (S + i 5 (6.2

where A =272, It is interesting to compare these results w}th simple
extension measurements on the same rubber. For an extension A" in the x3

1
direction Az = AY and Ay = A5 = (AY)72 and therefore from (4.12) since
tl=t2=0.

_ ; 1\/ow . 1 dw

t3—-2<}\ - '}Tr> SI_1+}7_¥ (6.2)

The simplg extension results are given in Table 3. The values of the function
oW 1 oW

. 1k i :
511 + X 512 have been plotted against 14 for the equibiaxial and simple

extension experiments. (Figure 5).

6.2 Natural rubber at 25°C, and butyl rubber at 0°C

- - - O - - o - - .

'The principal stresses needed to maintain a number of constant
deformations (A; = A5) decreased over a period of time to equilibrium values

) . oW oW A
(Figures 6 to 8). The parameters 3T, and 3T vere calculated from corresponding
values of t; and t, using (L4.15) and their variation with time is shown in
Figures 9 to 12 and tables 4 and 5.

T. Analysis and discussion of the results

There was no relaxation of e forceg acting on the butyl rubber at

25°C.  The strain dependence of JW_ gng §¥— has been represented in Figure 4
Iy 2
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by straight line relationships. The positions of the continuous straight
. e W : W
lines describin S funct T Y j
g gfz as a function of I; and Iy, and Ef; as a function of

I, were determined by the least squares method.

. The small positive gradient (0.00097) of the continuous line between

W

g—- and I; cannot have any 51gn1f1cance because of the larger scatter of
the experimental points, but 5—-appears to be an increasing function of Ip,

for 3 < I < 30, such that

g%_- = 1.45 + 0.00917 Is (7.1)

This is at variance with the observations upon sulphur cured natural rubber
of glvlln and Saunders (1951) who found 5%: to be independent of I; and Io.
If 31— is independent of I, then the top diagram in Figure 4 should be
represented by the series of horizontal lines shown The height of each
short line above the I; axis is the value of 5——-taken from the linear

relationship between.%- and Io. The exPerlmental points are reasonably

compatible with this hypothesis with the exception of the points obtained when

Ig =800

3%; is a decreasing function of I, such that

g—% = 0.138 - 0.00348 I, (7.2}

At any constant value of Io ghere is no trend in the variation of g%;
with I;. The magnitude of d¥ represented by the short horizontal lines
has been abstracted from the observed dependence of 5—— on Ip, and
represents the experimental results reasonably well.

The equivalence, to within a hydrostatic stress, of the equi-biaxial
deformation and a uniaxial (compress1on) deformation, has been discussed
in section (6.1). The values of 6—— + lﬁ-§~—- have been calculated from

(6.1) and quoted in Table 2 for the range 1 < 1/A' € 4., The same function
has been obtained from simple extension measurements on the same rubber,

(6 2 and Table 3), over the range 0.2 < 1/Af < 0.9. The variation of
oW 1 oW p N

= over the range 0.2 < 1/AY < k4 is shown in Figure 5.
51, ¥ 27 31 ng / | g

- el
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Simple extension measurements, before finite chain extensibility and
crystallisation effects are significant, (at about 1/11 = 0.4 in Figure 5)

0

are usually interpreted assuming that SH— and SH— are material constants.
W1 oW T2 Ia 1

However, STI + 37 Ef; is clearly not a single linear function of j7 over

the range 0.4 < 1/Af < L.

The experimental points in Figure 5 suggest a continuity of the
function over the complete range of l/l' which can only be explained
in terms of a strain dependence of L and ow_ ¥

B N Sk : oI, oI
Corresponding values of 1/K‘ and I,, from Tables w and 3 have been
substituted into 7.1 and 7.2 to find 5%; + %7'%%;. The predicted
values of this function are given in Table 6 and compared with the
experimental values in Figure 5. The butyl rubber used in the general
biaxial deformation experiments was nominally the same as that used for
the equibiaxial and simple extension measurements. It is however
probable that the vertical shift between the experimental and predicted

o)t %)
values of §¥-'+ %7-5¥— is due to batch variation in the rubber o
1 2

the two segs of vagues are normalised at l/l’ = 1, then the rate of
W W
change of §7— and y—— with I, fits the observed dependence of
& Il 12 2 P

g%: - %j-%%; on 1/A! for equibiaxial strains, but is completely inadequate

to describe simple extension.

Equibiaxial experiments have been performed by Rivlin and Saunders

(1951) who measured the deformation at the pole of a sulphur cured natural;a
. - W 1l 9w

rubber sheet inflated by a known air pressure. They found that 53;-+ X 5f;
decreases_from about 1.9 kg.cm 2 at l/l’ = 1.5 to a minimum of abo?t
1.7 kg.cm 2 at 1/ = 7, and then increased to 1.85 kg.cm 2 at 1/A' = 12,
the maximum deformation observed. For continuity in their results in
the transition from 'compression' to simple extension ghere must be a second

. . : . . W 1l ow . .
turning point, a maximum, in the function of BEI'+ ij-gi; in the region of

/A = 1.

*It’is however probably a coincidence that the experimental point at

l/l = 0.849 lies below the linear portion of the simple extension curve,

and therefore shows perfect continuity with the equibiaxial strain results.
- LT .. oW 1l OW

It can be seen from 6.2 that significant errors 1n.§EI + 3T Ef; are

posgible as l/l' approaches unity.
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The principal stresses t; and ts which are necessary to maintain
the deformation in the butyl rubber at 0°C, decrease to equilibrium values
about 100 minutes after the application of the strain (Table L4 and Figure
8). However a number of the principal stresses applied to the natural
rubber are still decreasing after 250 minutes. (Table 5, Figures 6 and 7).
Corresponding values of t; and tp have been substituted into 4 15 to

give the parameters 5%— and 3¥— as a function of time. (Tables 4 and 5,
1 2

Figures 9 to 12). For the butyl rubber these parameters must, of course,
reach equilibrium values in 100 minutes. Indeed, within the scatter of

3
the points in Figure 11, 5%— may be invariant with time It is interesting
2
to observe that T2 also appear to become constant for the natural rubber
2

after about 100 minutes although 5%— for most deformations is continuously |
decreasing. “

A number of workers have attempted to explain the large strain
viscoelastic behaviour of elastomers in termg of an elastic ligquid theory.
We chall consider A.3, the constitutive equation of state for a vigcoelastic
incompressible liquid postulated by Kaye (1962), and in another form by
Bernstein, Kearsley, and Zapas (1963). Kaye defines the deformation in
terms of the relative positions of a particle at the current time t and
some past time t*, and replaces the constants qur in 2.4, the series expansion

of the stored energy function, by functions of the elapsed time t -~ tr,

If an instantaneous deformation characterised by extension ratios Mg
in the directions xj is applied to the sample at timc t = 0, and maintained
congtant, then according to Kaye (196%), the principal stresses t; and
to at time t > 0, are given by: -

o] O
) —_— u/‘ N .
_ 242 t 232
by =tz = 2(KJ4K3)JF 37t 2(}\'j 25%) 37, a4t T2
- 0 -

i Kayes' equation of state is an extension of the equation of state for
a viscoelastic liquid developed by Lodge (1956). It is a logical
generalisation of the stress~strain relationships derived by Rivlin
(l9h8, 1949) to describe large elastic deformations in incompressible
materials, and is discussed further in Appendix 2. It is also shown in
Appendix 2 that Lodges' equation fulfilles the necessary condition that
for small strains it describes a linear viscoelastic material. ‘
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where j is 1 or 2, and € is the equivalent to 2.4, the elastic stored

energy function, but describes an incompressible viscoelastic liquid.
o0

Then Q = 21‘ qu(Jl-3)p(J2-3)q with B_ = 0 (7.4)
P,G4=0

where J; and gg %§e the first and second invariants of the deformation
X3 OX3 . .
tensor Sij = 31%16§%§, (see Appendix 2(i))

using the usual dummy suffix summation, so that

and Jdo

I

i(g2 _
The parameters qu are functions of t - t’ which tend to zero as t - t'

tends to infinity. By comparing (7.3) with (%.13), the equivalent equations
for an elastic solid it can be seen that

e [ B s %
t
and g%; =JF g%; dit=t")

€

I (7.4) ig. to répresent a viscoelastic solid then at least one of the
parameters qu must be finite as t approaches infinity. It is reasonable

to consider & such that

Q = Blo(Jl~3) + Bo1(J2-3) (7-7)

where B3, and Bp; are decreasing functions of t-t', but are finite as t-t’

approaches infinity. For example, assume: -
{ {
Bio = AT + e (7.8)
e {
and Boy = cPt 4 peka(t-t)

If the major surfaces of the sheet rubber sample are force free, then
(7.3) becomes

- T -k '
by = 2038)(F + P-e) - 20 PAR)(E + ) (1.9)
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. oW 3
The time dependence of 55; and 5%; for this particular form of @ is
found by substituting (7.9) into (4.15), or by comparing (7.9) with (L.12)

OW A B -kt

then ST "ot P~ (7.10) |
and W, _¢ + DLkat
oo P @ Es

Congider the applicability of (7.9) and (7.10) to the results obtained
on the butyl rubber at 0°C. Assuming that

o)
5%; ig invariant with time then, from (7.10), D/K, must be zero, and (7.9)

becomes

A oA e 3 =B K3t
Y. = t -2(A228)= + 2(AT2A32); = 2(AT2A32)=—e™ 1 1
3 3 ( 3 3)a ( j o3 >5 ( 3 3 )Kl (7 )

c )
/B has been determined from Table 4 as the mean value of 5%; for each

deformation. For each C/B two values of /Q have been found from (7.11)

by considering the equilibrium values of t; and t, (Table 7). The two
valuegs for each deformation are essentially the same, as indeed they must

be if the experimental results are correct. This further suggests that

the small amount of inhomogeneity in each sample does not affect the stress
measurement. Each deformation was carried out using a different test piece.
Although each test piece was cut from sheets made under identical conditions
from the same uncured rubber mixture it is probable that variations in Aﬁx
and C/B are due to sample variations. There is no correlation of Aﬁl or
C/B with I; or Io.

Y. has been plotted on a logarithmic scale as a function of the relaxation
time iﬂ Figure 13. For some of the deformations there are deviations from
the linear relationchips suggested by (7.11), at times greater than about
50 minutes. The logarithmic scale magnifies the effect of any errors in
small values of Y,, but the consistency in the direction of curvature suggest
that, if (7.6) is‘valid, some of the chosen equilibrium stress levels were
too high.

The relaxation constant K; has been taken as the gradient of the best
straight line though the experimental points at time less than 50 minutes.
B/K, has been determined from the intercept of these straight lines with
the t = 0 exis (Table 7). -
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c/B Ao X, x 30 B/Ky
1 i g.cm 2 g.cm 2 (ming)™?t g.cm 2

5.179 5 95 1490 5.79 108
1490 6.37 97

h.27 5 180 1440 1.19 95
1465 -2.83 87

6.643 10 140 1160 k.15 96
1155 4,03 11k

6.443 10 132 1310 5.36 62
1305 3,14 78

5 5.28% 127 1385 2.52 85
1370 2.09 ok

e 6.011 137 1455 2.2% 104
1440 3.58 117

7 310.725 67 1515 3.35 148
1575 2.02 165

Table 7 The material parameters of (8.24). The first and second values

of A/ , Ky, and B/K;, for each deformation correspond to ¥ and Yp
respectively.

The material parameters all vary in an apparently random manuer with
deformation. The variation of C/ﬁ and A/a corresponds to the scatter of
experimental points in Figure 4 in which

oW oW

==— and

oI, ol

are shown as a function of the strain invariants for butyl rubber under
equilibrium conditione. If these variations can be ascribed completely

to sample variations, then (7.11) represents the stress relaxation behaviour
of butyl rubber at O°C, at least up to relaxation times of 50 minutes.

There can be no advantage in repeating this analysis for the natural
rubber at 25°C. Similar sample variations can be expected, and the
analysis is complicated by the existence of two exponential functione,
because d/K- is not zero for this rubber.

Berstein, Kearsley and Zapas (1963), and Zapas and Craft (1965) have
found that A.3 describes the stress relaxation behaviour of a mumber of
elastomers in simple extension when & contains three strain dependent terms

such that

Q = P(3,-3) + Q(J2-3) + R(J1-3)? (7.12)
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where P, Q, and R are interdependent functions of the elapsed time (t-t )
(Appendi: 2 31},

Zapas (1966) has reproduced (7.3), the equation of state derived by
Kaye (1963) to describe stress relaxation for a homogeneous biaxial
deformation. '

Using a rather complicated potential function containing three
material parameters he is then able to describe the pure shear data of
Rivlin and Saunders (1951) on natural rubber, and a long term stress-strain
isochrone for butyl rubber in biaxial extension at an unstated temperature.
He also examined the biaxial creep behaviour of butyl rubber at small
initial deformations (I; = I» = 3.1) over a time period up to 164 hours, |

oW
and found 5—_ to increase continuously from a negative value of about

- 100 g.cm™2 at 3 hours to about + 200 g.cm 2,  Negative value of‘g——

at emall strains have also been reported by Miguel and Landel (1966) from
the biaxial extension data of a castor oil extended polyurethane elastomer,
for the strain invariant range 3 < Iy, I» < 3.1.

It is obviously possible to define P, Q, and R, or the material
parameters of Zapas, as particular functions of the elapsed time, in a
further attempt to deccrLDe the observed stress relaxation behaviour of the
natural and butyl rubbers However there was no observed correlation
between the material constants in (7.9) and the strain, which suggests
that the 'Mooney type' potential function is adequate to describe the
limited number of deformations studied. A modification of (7.9) would
probably be necessary to describe the range of deformations covered by the l
biaxial extensions on the butyl rubber at 25°C. 1

8. Sumary

The principal observations which have been made about the behaviour of
rubber in a state of pure homogeneous finite strain can be summariced.

il Homogeneous biaxial strains have been imposed upon a butyl rubber in
order to examine the variation of.Ji_ and oW ".with gtrain under equilibrium

oW . o
conditions. exhibite the straln dependence reported bv Rivlin and

= oW . 1 oW
Saunders for natural rubber, but s— + N ig a continuously increasing
’ oI, oI

function of %T over the range 0.4 < {r < 4. A’ is the uniaxial extension |
(or !compression') ratio.
2% The strese gsystem needed to maintain butyl rubber (at 0°C) in a state
of biaxial strain, reduces to an cquilibrium value in about 100 minutes, but
g%— appears to be constant over the complete time range. Within the
2

limitations imposed by sample to sample variations the res:lte can be
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degeribed by a viscoelgstic 'Mooney type' stored energy function.

B — W
Equilibrium values of ST, are also observed for a lughly crosslinked
natural rubber which exhibits continuous stress relaxation over the time
period of the measurements.

HE It has been shown theoretically that the heat build up during an
adiabatic deformation gives rise to a term in the stress-strain relationship
which corresponds to Cs. However the calculated magnitude of C, is too
small.

It is extremely difficult to decide upon a practical criterion for

the equilibrium state of aadeformed rubber. However the results described
in this Note suggest that ¥ is a finite positive constant when all

2
observable stress relaxation has ceased. Furthermore a constant value of

oW

ST has been observed under stress-strain conditions which are obviously
2
et Pt : : W_ .
not at equilibrium. There is therefore strong evidence that 3T, 1
2

finite under equilibrium conditions and the kinetic theory is not adequate
to describe the gum rubber in biaxial extension. The kinetic theory is
therefore inadequate to describe completely the elastic mechanical behaviour
of unfilled rubber.
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Appendix 1. Sample preparation

The samples were prepared under controlled conditions. The detailed
recipes are given in Table 8, in which the numbers denote parts by weight.

Conionert Natural rubber samples  Butyl rubber samples
Natural rubber 100 -
Butyl rubber (Esso
grade 218) = 100
Sulphur : - 2
Zinc oxide -
Stearic acid -
Accelerator - 1505
Dicumyl peroxide 0.5 -

The biaxial and tensile samples were cut from sheets 25 cms. square
and about 0.25 cms. thick, which had been moulded and cured for fifteen
minutes at 150°C. Each moulded sheet contained four 5 cm. square indentations
which were used for biaxial measurements. This allowed the lugs on the
biaxial samples to be cut from the thicker sheet.

The flow of excess rubber through the escape holes in a mould will
always result in an article which is mechanically anisotropic and inhomogenous.
The anisotropy in the samples was reduced to a minimum by using moulds with
a large number of symmetrically disposed flow holes, and by using the minimum
amount of rubber necessary to fill a mould.

A (secant) modulus variationoof about 5% was found for microtensile samples
cut in different orientations and positions from the plane of a 25 cm. square
sheet.

Further work showed that swelling measurements are a comparatively
insensitive method of estimating the degree of anisotropy and inhomogeneity.
Tensile samples which had shown a 14% modulus variation, (ent from a
rejected sheet), were immersed in benzene, and the equilibrium lengthe of
the swollen samples measured. The increase in length for all the tensile
samples varied by only 0.6%. The expected inverse relationship between the
order of stiffness, and the order of degree of swelling, was observed. The
degree of anisotropy, measured as a modulues variation, was not reduced after
swelling and deswelling the samples. There was no corrclation between
modulus variations and accurate density measurements.
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Lodge (1956) has extended the kinetic theory of rubberlike elasticity
by assuming that the crosslinks in the network have a finite lifetime, and
derives an equation of state: -

4

OXs  OXj
- e BT ek Ty SR
Pij ®ij _flﬂ.DI(t t 3T Sai dt (A.1)
a a

- 00
which describes an incompressible viscoelastic liquid. Pij is the stress
tensor and Xs and x; are the rectangular cartesian coordinates of a particle
at the current time t, and a past time ! respectively. The repeated
suffix denotes summation. N(t-t’) is the distribution function for the

lifetimes of the effective network crosslinks. p is an arbitrary isotropic
pressure, and Bij is the unit matrix.

The stress-strain relationships derived by Rivlin (1943, 1949) to
describe large elastic deformations in incompressible materials, can be
written.

OW  Oxj 0x3 OW OXy OX
Piy "Puy=28ry &, %, " 915 Ox, Ox, (8-2)

where x, and X; are the rectangular cartesian coordinates of a particle
in the &eformed and undeformed states respectively.

Kaye (1962) points out that (A.l) can be considered a mathematical
generalisation of (A.2) if the elastic material obeys the kinetic theory,

that is if 5H— =80 He then examined a clases of viscoelastic liquids
Iz
for which
’ 5! 5] ) . Ok Ox
Q) Xi Oxj Q %
IR NEENN a*;s;ggra‘“a—ﬂ )
- 00 3

vhere @ = Q[J1(t,t'), Ja(s,t" )y t-t‘] and J, and J, are invariants of the

; aXl 832'
deformation tensor Sjj = 325 5:%, using the usual summation convention, and
“o
are given by (7.5).
Zapas (1966) reports that an equation of state developed by Bernstein,
Kearsley and Zapas (1963, 1964) for an incompressible viscoelastic liquid
can be manipulated into a form which is equivalent to (A.B).
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If (A.1) and therefore (A.2) are to be useful for describing non
linear viscoelastic behaviour, then in the limiting case of infinitesimal
strain (A.1) must reduce to a description of linear viscoelasticity.

The equation of state for a linear viscoelastic incompressible material
can be written, (Lockett 1965),

t
LJ

P .~ 10, =f o (t-t’ Jo_att Ak
g Py Gl E (A1)

- 00 au. au

where ¢(t~t/) is a function of the elapsed time t-t’, e., = -1—(5—1 + a—-i) the

b .ij 2 x x. /2
strain tensor for infinitesimal displacements Uy and pij represents the

differentiation of pij with respect to the elapsed time.

{ !
Now x, = X, + u,, and x = X, + u/, and therefore x, = x, = u,-u, or
1. 1. i 3 5L i 2 1. 1t

du,
- = 1 H0) = 3
ax; = du, = T ) a(t=t’) = 0, dr (A.5)
where T = t=t’.
Hence x, = x\ + u.ar (A.6)
1 i 1

dx, Ox
We wish to examine the strain function of (A.l), S,, = 5—% 5—# :
iy X' 5 0%y

If (A.6) is differentiated with respect to x&, then

dx, du,
5% =3, +g'x'(§&f (A.7)
and therefore for infinitesimal strains Sij is given by
v, ou,
Sij =<Sia + 5-%1- ar> <83a + g%l d'r> (A.8)
If the second order term involving éEi are discarded then
axj
du, o8,
Sij=51j+a?§-dr+a—x-i-dr (A.9)
or S., =08, + 28, .4r (A.10)

ik ij i




I

Ld L]
du, Ou,
1 oL

gince 5—}'{3 = &J—

If T has a range of values from O to ®, then substitution of (A.10) into
(A.l) gives

t
- p’a.j = u/\ekT.N(t-t )éijdt’ (A.11)

- 00

vhen p/ = p + KT.N(t-t’). This is of the form of (A.4), the equation of
state of a linear viscoelastic material.

(ii) The potential function of Bernstein, Kearsley and Zapas

In attempting to describe the stress relaxation of certain elastomers
in simple extension, Bernstein et. al. (1963) have used an equation of state
equ.valent to (A.3) in which & is given by

a

Q=mKl+2

KZ + bKo (A.12)

where m, a, and b are functions of t-t', and K; and Ko are invariants of
the strain tensor Ek&’ such that

Ky = tr.Ek£ (A.13)
Ko = tr.(Eg)k%
Bxi Ox .
i - .
and Ek& = 3 [Sij sg{' g}i ﬁk&} (A lu)
Now consider the deformation

Xy = Mpxi

Xo = }\zxé (A.lS)

X3 = }\3}(%

Then from (A.13), (A.14) and (A.15)

Ky = 4% + 23 + 23 - 3] = 7,-3] (4.16)

]

and Ko = 1/ L(02-1)2 + (A3-1)2 + (23-1)3] = 2/,[5;-275-27,+3]

since Jy =23 + 23 + 25 and J, = A72 + 222 + A32




wEa

Hence (A.12) may be rewritten
Q= %(J1-3) + §(J1-3)2 + E(Ji ~ 2J5 - 271+3) (A.17)
= P(J1-3) + Q(J2-3) + R(J1-3)2 (A.18)

vhere P = m/2 + b, Q = -b/2, and R = a/8 + b/4k. Therefore the viscoelastic
potential function of Bernstein et. al. is an extension of the 'Mooney type!
viscoelastic function (7.7).

Appendix 3

e e o o o o s

The evolution of heat in s1mple extenQion

The virtual work done in producing incremental deformations BA;, BM,, and
BAx in an isotropic material which is in a state of pure homogeneous strain
defined by the principal extension ratios MAj Ap and Ax is given by

= bAoA PA+ tAADNo + tzh MDA (A.19)
where t;, tso and ts are the principal stresses.

If the deformation is isoenergetic and adiabatic
W = J.5Q = JpAi A A5C.OT (A.20)
where 8Q is the heat evolved
p density of material of specific heat c.
OT increase in temperature
J mechanical equivalent of heat

5\
Jpe BT = tlé%i . t2§§2 + b3y (a.21)

For simple extension tz = ts = 0, and from (L.12)

d
2 = 208 - E)E- + & 55 (a.22)

and therefore the increase in temperature 8T for a finite increase ANy in
is given by (dropping the suffix for convenience).




AAN
- 1,00 .1 Bw
Joc.BT _f 2(}‘?)(51‘{ ) (A.23)
A
In order to estimate the magnitude of ®T it is sufficient to assume the

kinetic theory of elasticity. Then.g%- = C; and 5%—-: o,
51 2

and Jpc.BT = C (2N AN + AA2 4 2(MAN)T1oA"1] (A.2))

Adiabatic stress~strain relationships must take the temperature increase
into account.

The tensile stress t is a function of T and A and therefore an increment
in stregs ®t is given by

Bt = g-% 8T + %{m {A.25)

If t is given by the kinetic theory (isothermal) relationship

NKT (A2 1) (A.26)
and since from (A.21) Ic%&. = Jpc.BT (A.27)
then by substituting (A.26) and (A.27) into (A.25) the adiabatic stress ty
is given by
N k2T 21
f dt = f de AEZE)AN + b : (A.28)
. (22 N%k2T  (AS/L - A2+ b - 1/2M)
= (a m)[mcr = %5.0) (4.29)

If the temperature increase give rise to a Mooney parameter Cs then (A.29)
must be compared with

6, = 2(32- 2)(cy + &2) (A.30)

where C; = %NkT

Then
Co_ Nk (A8/4 - A3 + A2/l - 1/2)
C,  Jpc (A1)

(A.31)
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Typically Nk = 3.10% dynes.cm™@ deg. 1C
p = 0.95 cm. >

[

H}

0.47 cal. g™t deg.”C

Then if A = 4

~ L

50 (A.32)

=

This is considerably less than the value of Cs which would be expected if
experimental simple extension data for this hypothetical sample was analysed
in terms of the Mooney form of the stored energy function. TFor example
Rivlin and Saunders (1951) found from simple extension data that C, = 0.81 C;.




L2 Iz

= T2 M Aa g.om 2 g.om 2 g.cm g.cm
5.179 5 2.0 0.95 11,950 2,560 1465 157
5.848 5 2.2 0.85 13,810 1,620 1620 83
| 4.993 5 1.93 1.00 10,850 2,630 17ko 83
. 4.493 5 1.7 1.16 8,040 3,870 1320 130
| 4,270 5 s 1.35 7,340 5,880 1450 114
8.215 10 2.6 1.16 23,900 5550 1705 66
7.823 10 2.5 1.21 21,000 5,750 1580 85
| 7.480 10 2.4 1.27 18,950 5,560 1615 iy
7.1 10 2.3 1.32 17,200 6,030 1570 52
6.853 10 2.2 1.38 16,050 6,560 1605 L6
6.6 10 2.1 1.4 14,400 7,610 1475 114
| 6.448 10 2.0 1.53 13,450 8,150 1595 60
‘ 9.701 20 2.6 1.70 22,900 11,750 1550 68
9.434 20 225 1.77 20,450 11,960 1360 92
P 9.233 20 2.4 1.85 19,600 12,140 1610 36
9.028 20 2.3 1.92 17,450 12,350 1585 25
€.892 20 2.2 2.00 16,000 13,800 1310 ok
11.h%04 30 2.7 2.02 28,500 16,500 1700 23
11.205 %0 2.6 2.10 26,200 18,100 1680 55

Table 1.

Biaxial strain results for butyl rubber at 25°C




N oW oW

13 I Ay Ao e ta oI, oI
g.cm 2 B.0m = g.cm 2 g.cm 2
5 5.28%3 1.9 1.07 12,210 3,780 1550 183
5 6.011 1.8 10 9,980 4,900 1495 89
5 e B T 1.%0 9,250 6,330 1575 75
5 6.56T 1.65 145 8,540 6,700 1460 100
7 7.431 2.4 1.05 17,900 4,350 1430 153
7 9.095 2.3 1.25 17,550 5,850 1560 87
7 10.725 2.2 1.4 16,050 7,760 1490 100
g 12.156 2.0 1.70 12,620 9,270 1500 L1
9 15.218 2.6 1.h7 24,100 8,800 1660 66
9 17.382 2.5 1.64 22,300 11,650 1485 115
9 18.941 2.k 1.79 21,k00 12,900 1665 68
9  19.961 2.3 1.92 19,250 13,950 1645 50
9 20.394 2.2 2.03 17,950 15,550 1665 65
11 27.282 2.7 1.92 27,200 15,250 1660 60
11 28.795 2,6 2.05 25,900 16,750 1790 o7
11 29.328 2.55 2.11 24,000 17,450 1585 58
1k 30,073 2.5 2.18 24,700 19,350 1785 L7
11 30.048 2.k 2.27 21,000 18,900 1730 17
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A= 2p ;\:1(=7‘2) ty = t2 g%{‘l‘*}%’ ?I’; I, ._ I>
e =" o.ont2 (2/A'f2)  (aA'+1/A2)
g.cm 2

1.083 1.17 33736 1840 3.07 3.08
1.167 196 6088 1920 %.26 .52
1.25 1.56 788+17 1900 %55 571
155 10 921} 1870 3.86 4.26
1.417 2.01 10867 1945 k.52 5.05
1.50 2.25 122320 1990 L7k 5.97
158 2.49 134257 2020 5«14 7.00
o i 2.79 1411¥60 1972 4l B.52
s 3.06 14962 1972 6.23 10.01
1.833 %.356 162545 2028 6.90 11.90
1.916 Natd 1737 2050 7.42 14.04
2.00 4.00 1836£88 2065 8.06 16.50

Table 2. Equibiaxial strain results for butyl rubber at 25°C. The

values of t are the mean values of t; and tso.




t3 A %T §¥1-+ %7-§¥; Iy -
g.cm ® (g.cm™2) (2/af12) (A +1/012)
1915 1.18 0.849 1740 308 3.08
2870 1.275 0.785 1710 3.20 3.17
3760 1.365 0.733 1670 3.33 3.27
4600 1.455 0.688 1625 %50 3.38
5540 1.545 0.648 1595 5.68 £
6400 1.635 0.611 1565 3.89 3.7k
7350 1.73 0.578 1530 k.15 319
8350 1.82 0.550 1510 L. 3.94
9390 1.91 0.52k 1505 k.70 4.09
10320 2.00 0.500 1475 5.00 k.25
11520 2.095 0.478 1475 9435 L.43
12450 2.18 0.459 - 1450 567 h.57
13450 2.275 0.440 1415 6.c6 L.k
14690 2.365 0.423 1415 6.4k 4.91
16950 2.545 0.393 1390 127 5.24
18250 2.6k  0.379 1385 T.Th 5.42
19550 2.75 0.366 1385 8.17 5.59
20900 2.82 0.%355 1380 8.66 5.77
22400 2.91  0.34k 1380 9.15 5.9%
25200 3.09 0.324 1370 10.23 6.28
26800 3.18 0.7915 1365 g 6.45
50300 5.37 0.297 1375 11.95 6.83
34100 3.55 0.282 1385 13.16 7.18
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X
Ay = 2p %,(=k2) t1 = t2 g¥;+%v'§¥; Iy I>
- =t w2 (/A 12) T (AA41/A2)
g.cm 2
1.083 1.07 337£36 1840 3.07 3.08
nl6T 1,36 608+8 1920 3.26 552
1.25 1.56 TeBE 1T 1900 3.53 3.71
155 1.7 921} 1870 3.86 4.26
1.417 2.01 10867 1945 k.52 5.05
1.50 2.25 122320 1990 b7 5.97
1.58 2.49 1342E57 2020 5.1% 7.00
167 2.79 141160 1972 S 8.52
s %.06 149762 1972 8.25 10.01
1.8%% B00 162545 2028 6.90 11.90
1.916 267 17374 2050 7.42 14.04
2.00 4.00 1836£88 2065 8.06 16.50

Table 2. Equibiaxial strain results for butyl rubber at 25°C.

values of t are the mean values of t; and to.

The




ts Mo g §§l + %7-322 I, T
g.om 2 o (2/A912) (22+1/212)
1915 1.18 0.849 1740 3.08 3.08
2870 1.275 0.795 1710 3.20 Bl
3760 1.365 0.733 1670 3.33 3.27
4600 1.455 0.688 1625 5450 3.5
5540 1.545 0.648 1595 3.68 %51
6400 1.635 0.611 1565 3.89 3.7k
7350 1.73 0.578 1530 k.15 3.79
8350 1.82 0.550 1510 holhy 3.94
9390 1.91 0.52% 1505 4. 70 4.09
10320 2.00 0.500 1475 5 .00 4.25
11520 2.095 0.4718 1475 5.35 4.b3
12450 2.18 0.459 1450 567 h.S57
13450 2.275 0.4h40 1415 6.C6 L. 74
14690 2.365 0.423 1415 6.4k L.o1
16950 2.545 0.393 1390 127 5.24
18250 2.6L  0.379 1385 T 5.42
19550 2.75 0.366 1385 8.17 5.59
20900 2.82 0.355 1380 8.66 P
22400 2.91 0.344 1380 9.15 5.94%
25200 3.09 0.%24 1570 ONSS 6.28
26800 Zoa8 0,715 365 10.75 6.45
50300 D37 D297 L35 11.95 6.83
34100 3.55 0.282 1385 13.16 7.18
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time T Iy=>5 I} =4.270 I,=5 I, =6.648 I, =10 I, = 6.443 Iy =10
a5 t2 g’:‘g i‘{ b Y ?,—"IV, ?x‘i i 5 gl:’t B %\% ty t, ?%v %I,_
1 12330 2390 1577 88 9150 4470 1460 167 13280 7600 1233 148 13000 8500 1350 140
10 12030 2360 1534 94 9030 4450 1433 180 13050 7470 1207 147 12780 8350 1320 137
20 11800 2330 1501 96 8950 4430 1408 183 12870 7370 1193 145 12670 8230 1313 137
30 11680 2310 1490 95 8880 4420 1397 133 12730 7280 1183 143 12620 8220 1313 132
40 11620 2300 1480 95 8830 4400 1377 187 12670 7220 1180 140 12530 8200 1318 129
50 11580 2290 1473 94 8770 4380 1360 190 12630 7210 1177 140 12570 8170 1313 130 i
60 11560 2290 1473 95 8730 4350 1367 187 12620 7200 1167 138 12570 8150 1320 127 &
*70 8700 4320 1370 180 12600 7180 1170 139 I
80 11550 2290 1468 96 8670 4300 1363 177 12580 7170 1173 138 12570 8150 1320 127
90 8670 4280 1370 173 12530 7150 1168 137
100 11550 2290 1468 96 12520 | 7150 1165 133 12570 8150 1320 127
110 12500 7150 1162 138
120 8670 4280 1370 173 12500 7150 1162 138
140 12500 7150 1162 138

Teble 4. Relaxation of the principal stresses t; and t» for various biaxial deformations of butyl rubber

at 0°C. F7- and BH- were calculated from 8.15. All quoted values are in g.cm 2.
I Iz




time =5 I, = 5.283 I, =5 I, = 6.011 I, =7 I, = 10.725
(mins.) . o g—‘g‘ 2—\1—'1 - 5 g;_:' i—\}l Y (2 %‘. ‘%‘;
1 10850 3480 1463 130 10730 5430 1557 133 17130 7970 1313 77
10 10700 3450 1440 128 10570 5380 1522 140 16800 7750 1297 67
20 10620 3420 1432 127 10430 5320 1503 140 16580 7620 1277 67
30 10570 3400 1420 127 10350 5280 1487 143 16420 7520 1267 63
40 10520 3370 1413 127 10280 525( 1477 137 16300 7470 1260 62
50 10470 3370 1408 127 10230 5230 1463 143 16180 7430 1243 63
60 10420 3370 1400 128 10180 5200 1457 138 16080 7400 1227 63
70 10380 3350 1393 128 10130 5180 1450 140 16020 7370 1723 63
80 10350 3330 1392 127 10120 5160 1453 137 15920 7350 1203 67
90 10320 3320 1390 125 15850 7330 1197 65
100 10280 3320 1380 127 10120 5120 1470 128 15780 7320 1183 63
110 15750 7300 1187 83
120 10270 3320 1373 128 10120 5120 1470 128 15720 7300 1173 70
130 15700 7300 1170 70
140 10270 3320 1373 128 15670 7300 1167 72
160 15670 7300 1167 72
180 15670 7300 1167 72

Table % (continued)

- 0% -




time

I

= 5.179 I,=5 I, =4.270 ma ] I, =6.648 5 = 10 I, = 6.448 , = 10

(mins.) | ¢ 5 2_‘;_" g%’ X % g_f“. g—\'ia_ ty e 'I" AL:L t, % 3—: 2_\;’1

1 5600 1270 674 87 3930 1800 680 51 5600 3200 520 66 5570 3500 618 42
10 5420 1240 650 88 3670 1730 613 62 5280 3050 482 62 5280 3330 585 41
20 5300 1220 635 87 3550 1660 598 58 5730 2970 470 60 5130 3210 575 37
30 5250 1200 629 85 3500 1630 595 54 5050 2920 463 59 5050 3200 557 4?2
40 5200 1180 627 83 3480 1600 600 48 4950 2870 450 59 4950 3170 533 45
50 5180 1170 624 80 3470 1580 600 45 4900 2830 443 58 4900 3140 523 44
60 5170 1160 625 73 3450 1570 598 43 4870 2820 445 58 4870 3120 523 44
70 5160 1140 628 73 3440 1570 598 44 4830 2800 442 58 4830 3090 520 43
80 5150 1130 628 72 3430 1570 597 43 4810 2770 442 56 4810 3070 523 43
90 4780 2750 440 55 4770 3060 513 a4
100 5130 1130 625 3 3400 1550 590 43 4770 2720 445 e 4770 3030 518 40
110 4730 2700 440 52 4730 3030 508 43
120 5130 1130 624 73 3350 1530 580 45 4730 2760 440 52 4730 3030 508 43
130 4730 3030 508 43
140 5120 1130 622 J3 3330 1500 587 37 4730 2700 440 52 4730 3030 508 43
160 5100 1130 621 74 3320 1500 580 38 4730 2700 440 52 4730 3030 508 43
180 5100 1130 618 74 3310 1500 577 40 4730 2700 440 52 4730 3030 508 43
200 5090 1130 618 75 3300 1500 573 40 4730 2700 440 E2 4730 3030 508 43
220 5030 1130 617 75 3280 1500 570 43
240 5070 1130 615 a5 3280 1500 567 43
260 3270 1500 563 44
280 3270 1500 563 44
300 3250 1500 563 46

Table 5. Relaxation of the gr
W

incipal stress t; and tz for

various biaxial deformation of natural

ruboer at 25°C. T and 511'— were calculated fram 8.15. All quoted values are in g.cm =.
1 2

..'[b-




time L I, = 5.283 I,=6.001 L,=5 7 Iy =7 I, = 10.725 I, =9.431 I, =20
(mins.) | s o A E = g_\r'i %i ! & gg ba_;/z Y 2 g_rv_: 3 -
1 5920 1720 844 29 4700 2320 701 47 6970 3380 642 44 8230 4800 521 37
10 5820 1680 830 28 4450 2250 647 57 6530 3100 616 35 7570 4530 487 41
20 5730 1670 814 30 4320 2200 621 59 6250 2960 590 33 7320 4410 456 a1
30 5650 1650 802 31 4250 2170 613 58 6090 2900 571 34 7180 4340 453 40
40 5610 1630 799 29 4200 2170 596 62 6050 2870 572 32 7130 4270 450 39
50 5600 1630 795 30 4180 2150 594 62 6033 2840 573 31 7030 4230 447 39
60 5570 1630 792 31 4170 2140 592 61 6020 2820 573 29 7000 4200 44t 33
70 5540 1630 785 32 4140 2130 587 61 £930 2800 572 28 6950 4170 443 37
80 5520 1620 782 32 4130 2130 588 61 5960 2800 570 29 6930 4140 443 37
90 5490 1620 77, 32 4130 2120 591 62 5940 2780 568 28 6900 4110 443 36
100 5470 1610 773 31 4130 2100 596 58 5930 2770 567 23 6380 4100 443 36
120 5440 1600 768 32 4120 2090 593 53 5900 2760 562 28 6850 4020 440 36
140 5430 1600 776 33 4100 2090 593 54 5860 2750 553 2 6830 4070 440 35
160 5430 1600 766 32 4100 2080 593 54 5830 2730 557 29 6820 4050 439 36
180 5410 1600 765 33 4090 2070 595 53 5790 2727 552 28 6810 4040 442 35
200 5400 1600 " 761 34 4080 2070 591 53 5760 2710 549 P 6300 4020 445 34
220 5390 1600 760 35 4070 2070 586 55 5730 2700 543 29 6300 4000 443 33
240 5380 1600 758 35 4060 2070 583 55 5690 2633 540 29 6300 3980 447 32
260 5370 1600 755 36 4050 2070 582 56 6730 3970 443 31
280 4040 2070 571 7 6770 3940 452 30
300 6770 3920 455 29

Table 5 (continued)

_Zf..
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1 oW 1 oW
X Iz N oI, Gl TR
? 1
(Af+1/012) (g.cm™2)
0.282 718 1.5%
0.32%4 6.28 1.55
0.344 5.94 1.54
0.355 Bl 1.5
0.366 By 15
0.379 5.42 1.55
0.3%93% 5.24 1.54
0.423 L.91 1.5k
0.440 L.7h 1nss
0.459 k.57 1.55
0.478 L b3 1.55
0.500 h.25 1.55
0.524 %.09 1.56
0.550 3.954 1.56
0.578 35.79 1:55
0.611 3. Th 1.56
0.643 3.51 1.56
0.6838 3.38 1.57
0.733 227 357
0.785 3.20 1.58
0.849 3.08 1.59
1.17 3.08 1.63
1.36 3.3%2 1.65
1.56 271 1.68
T T &.26 1.71
2.01 S5 1.7k
2.25 5.97 1.76
2.49 ) 1.79
2.79 8.52 1.83
3.06 10.01 1.86
3.36 11.90 1.89
3.67 1k.04 1.91
k.0 16.50 192
oW oW

4 g
Table 6. 5—-]: + o 5:'[2 calculated from 7.1 and 7.2.
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FIGURE 3 THE VARIATION OF X, WITH A, FOR VARIOUS
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NATURAL RUBBER AT 25°C.
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