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S_U M M A R Y 

Observed deviations from the kinetic theory of rubberlike elasticity 
have been revieved, and particular attention focussed upon the Mooney -oarameter 
C2. 

Stress measurements have been made upon thin rubber sheets in a state of 
pure homogeneous biaxial strain, and the stress relaxation behaviours of a 
natural rubber and a butyl rubber are reported. 

Analysis of the results allowed an examination of the stored energy 
function W over a strain invariant range 3 "̂  Ii '̂  12 and 3 *~- I2 "̂  50. Finite 

values of v=r- were found under conditions for which there was no observed 

stress relaxation. This is at variance with the kinetic theory, for which 

v=— IS zero. 
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L i s t of symbols 

W s t o r e d e l a s t i c energy pe r i jni t volume 

Ci ; C2, A e l a s t i c m a t e r i a l parameters 

Ix^ Izf I 3 s t r a i n i n v a r i a n t s , def ined by equat ions 2 . 2 and 2 .3 

^ 1 ^ ^2f ^3 p r i n c i p a l ex tens ion r a t i o s 

X, a , X' ex tens ion r a t i o s 

fl a f i jnct ion of J i , J3 and T 

B v i s c o e l a s t i c m a t e r i a l s parameters pq 

J i , J2 s t r a i n i n v a r i a n t s , de f ined by equations 7*5 

e . . e l a s t i c s t r a i n , t e n s o r f o r i n f i n i t e s i m a l d isplacements 

u . i n f i n i t e s i m a l displacement v e c t o r 

S . . s t r a i n t ensor f o r a v i s c o e l a s t i c body 

ETP s t r a i n t ensor def ined by equat ion A.l^f 

X. coo rd ina t e s of a p a r t i c l e a t the c u r r e n t t ime t 

X coord ina te s of a p a r t i c l e in t h e undeformed m a t e r i a l 

coord ina tes of a p a r t i c l e a t seme p a s t time t ' 

t c u r r e n t time 

t^ p a s t time 

T t - t ' 

N(t-t') lifetime distribution function for crosslinks 

P.. stress tensor 

t. principal stresses 

f uniaxial tensile force per unit unstrained cross-sectional 
area 

x' 

p, p' isotropic pressures 

8.. unit matrix 
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Y. defined by equation 7.11 

V X1X2X3 

V volume fract ion of rubber in the swollen sample 

r . ^ mean square network chain length in the unstrained rubber 

r ^ mean square end to end length of an isola ted single molecule 

N number of molecular network chains per unit volume 

k Boltzmanns constant 

T absolute temperature 

J mechanical equivalent of heat 

p density of rubber 

c specif ic heat of rubber 
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1 Introduction 

With the development and increased use of elastomeric mater ia ls , 
with thei r ab i l i t y to support reversible f i n i t e s t r a in s , considerable 
effort has been made in recent years to evolve an adequate theory for 
la rge e l a s t i c deformations of isotropic mater ia l s . 

General re la t ionships have been proposed between the s t a te of s t r a in 
of a deformed e las t i c material and the applied s t ress system (Rivlin 1 9 ^ , 
1949)- However, to describe the s t r e s s - s t r a i n behaviour of a par t i cu la r 
material i t i s necessary to subs t i tu te into the generalized equations some 
functions which represent the e l a s t i c propert ies of tha t mater ia l . This 
Note i s largely an examination of the form of such functions. 

The e l a s t i c propert ies of a mater ia l are completely determined i f the 
energy which i s stored in an isothermal deformation can be expressed as a 
function of the s t r a in only. Two fundamentally di f ferent approaches 
have been made to th i s problem. 

S t a t i s t i c a l mechanical studies of the thermal motion of the molecular 
network of an idealized elastomer (the k ine t ic theory of rubberl ike e l a s t i c i t y ) 
have led to a stored energy function which is expressed in terms of the 
geometry of the deformation, and one material parameter, (reviews, Treloar 
1958, Volkenstein 1963). A second approach considers only the continuous 
macroscopic nature of the material and i t s observed behaviour and suggests 
that the stored energy can be described in tenns of the geometry of defoim-
a t ion , and any nimber of material parameters, (review, Rivlin 1956). 

Experimental measurements of the s t r e s s - s t r a i n behaviour of elastomers 
for various simple deformations have shown apparent inadequacies in the 
form of the stored energy function suggested by the s t a t i s t i c a l theory. 
I t has been suggested that th i s form i s therefore oniy a f i r s t approximation 
of the more general function derived from the continuum approach. No function 
has yet been suggested which w i l l give s t r e s s - s t r a i n relat ionships for an 
elastomer f i t t i n g a l l the experimentally determined r e s u l t s . I t should also 
be possible to find the moleciilar mechanisms which are responsible for each 
material parameter. Suggestions have been made and accepted only for the 
one parameter which is conmon to both approaches. 

The view has been expressed (Ciferriand Flory 1959) that the stored 
energy function obtained from the k ine t i c theoiy is essent ia l ly correct , 
and that i t i s the inadequacy and misinterpreta t ion of experimental r esu l t s 
which has led to the posi t ion outlined above. Rubbers are not perfect ly 
e l a s t i c but are v i scoe las t i c in nature . If measurements are made before 
the materials obtain their f i na l equilibrium shape under the applied s t ress 
systems then the resu l t s should not be t reated in terms of an e l a s t i c theory. 
According to Ciferr i and Flory, observed deviations from the s t a t i s t i c a l theory 
are time dependent in origin and go to zero at true equilibrium. 

This Note describes the current posi t ion over the dichotorry presented 
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by the two different approaches to the derivation of a stored energy function. 
The observed deviations from the k ine t ic theory are reviewed. A descript ion 
i s then given of the measurements made upon the s t ress system needed to 
maintain sheet rubber in a s t a te of pure homogeneous s t r a in . Non-equilibrium 
effects are considered. I f the i±ieory developed from the s t a t i s t i c a l 
approach i s correct then i t should be possible to describe the s t r e s s system 
in terms of one material parameter only. 

2 . The stored energy function 

The k ine t ic theory of rubberlllke e l a s t i c i t y leads to a description of 
W, the stored e las t i c energy per unit volume, in terms of a single time 
dependent material parameter Cx and the geometry of deformation. 

i . e . W = Ci ( l i -3 ) (2.1) 

where Ix is the f i r s t s t r a i n invariant and is related to the pr incipal 
extension r a t i o s Xx, Xg, and X3, of a pure homogeneous defoimation by 

I x = X f + X i + X § (2.2) 

An alternative approach to rubber elasticity is to consider only the 
continuum properties and behaviour of the material. A major advance in 
continuum mechanics is due to Rivlin (19^8, 19^9, 1956) who solved a number 
of problems involving finite deforaiations of isotropic materials using a 
completely general form for the stored energy function. Rivlin argued 
that when a material, which is isotropic in its undefoimed state, is in a 
state of p-ure homogeneous strain defined by the principal extension ratios 
Xx, X2, and X3, then the energy per unit undeformed volume stored elastically 
in the material must be a function of Xj_, Xg, and X3. Furthermore this 
stored energy must be unaltered by rigid body rotation of the material, and 
therefore the analytical description of the stored energy does not depend 
upon the direction of the chosen reference system of cartesian coordinates, 
and must be a function of the strain invariants Ix, Ig^ and I3. 

The second and third strain invariants, I2 and I3, are given by 

I2 = xfxf + xfxi + xfxf (2.3) 

and I3 = XfX|X| 

Since W = W(lx,12^13) then i t can be expressed without loss of general i ty 
as a power series in Ix , la^ and I 3 . 

00 

W = Y Ap^^(lx-3)^(l2-5)'^(l3-l)'' (2A) 
p,q,r=o 



- 5 -

where A = 0 , and ( l i -3 )^ ( l a - J )^ and ( I3- I ) are used in preference 

to Ix , I2 , ^^^ I3 so tha t W wil l be zero for zero deformation. The 
constants A may be considered material parameters which describe 

the e las t i c behaviour of the iiHterial. Par t icular forms for the stored 
energy function can obviously be generated by retaining only specific terms 
in the series expansion of W. For example, Mooney (19^0, 196^+) derived 
a form for W based upon an observed l i nea r re la t ionship between s t r e s s and 
simple shear in unf i l led rubber 

i . e . ¥ = Cx(li-3) + C2(l2-3) (2.5) 

This may be considered to be the f i r s t two terms of the ser ies expansion 
(2.4) with Â QQ = Cx and A^^^ = C2. 

I t may be noted that I3 = 1 for an incompressible material and then 
¥ can be wr i t t en ¥ ( l x , l 2 ) • I^ corresponding values of ¥ , Ix and I2 are 
p lo t ted on an orthogonal three dimensional coordinates systan with axes 
¥ , Ii_, and I 2 , then the ccmplete descript ion of ¥ involves the character isat ion 
of the surface ¥ ( l x , l 2 ) over the conplete range of values of Ix , and I2 
nonnally encountered. 

3 . Deviations from the k ine t i c theory 

The stored energy functions derived from the continuum and k ine t ic 
theories are d i f ferent ia ted by the existence of mater ia l parameters other 
than the f i r s t in (2.U) the ser ies expansion of ¥ . Studies of various 
simple deformations (Rivlin and Saunders 195l) have suggested that for an 
natura l rubber gumstock 

¥ = Cx(lx-3) = *(l2-3) (3.1) 

where 't'(l2-3) is some decreasing function of (I2-5) and hence represents 
the deviation of the experimental results from the Icinetic theory. Most 
of the experimental studies of the form of *(l2-5) have been limited to 
simple elongations, when the behaviour for moderate extensions can be 
characterized by the Mooney stored energy function. This suggests the 

identification of 2Cx with NkT ( — I, where N is the number of molecular 

o 
chains per unit volume and k is Boltzmanns constant. The mean square end 
to end length of an isola ted single chain at absolute temperature T, i s 

f ,̂ and f? i s the mean square network chain length in the unstrained rubber. 

This def ini t ion has been examined extensively and reviewed by, for example, 
Mullins and Thomas (1963), and w i l l not be considered fur ther . 



The stored energy function for incompressible materials, ¥(lx,l2), 
is represented graphically by a surface when ¥,Ix and I2 are chosen 
as the three coordinate axes. The Mooney function then can be assumed 
to describe the surface contour line which follow^ the definition of 
simple elongation that is Xx = X and Xg = X3 = X"^. It has been 
suggested by Ciferri and Flory (1959) that C2 is an artefact whidi has 
arisen from misinterpretation of simple extension data. This is a 
necessary but not a sufficient condition for the conclusion that the 
Gaussian function ¥ = Cx(li-3) is adequate to represent the mechanical 
properties up to moderate extensions . 

3 .1 The Mooney parameter C2 

A molecular mechanism is not yet available which explains completely 
the observed behaviour corresponding to C2; which will no\̂  be outlined. 

According to the kinetic theory the stress-strain relationship for a 
swollen incompressible rubber in simple extension is given by (James and 
Guth, Flory and Rehner, 19^3). 

f = NkTv^^/^Uü -I2) (5.2) 

where f is the tensile force per unit cross sectional area of the 
swollen unstrained rubber, Y^ IS the volume fraction of rubber in the 
swollen sample, and the extension ratio cc refers to the unstrained swollen 
state. 

Gee (1946) examined the function f v " '-̂  (a - ̂ j for natural rubber 
swollen in toluene and found it to decrease with increasing strain at 
variance with (3.2). This deviation from ths kinetic theory was much 
reduced as the degree of swelling increased. 

This work was extended by Gumbrell, Mullins and Rivlin (1953) "to a 
number of rubber-liquid systems, and the results analysed in terms of the 
Mooney parameters for the swollen rubber, C^g and C^g, defined such that 

C ^ was determined from the gradient of the observed linear relationship 
between© and l/X and found to be independent of the nature of the diluent, 
but decreased progressively with decreasing v . This decrease may be 
associated with steric hindrances due to bulky side groups. A number of 
sulphur accelerated synthetic and natural rubber vulcanisates were considered. 
C2 was independent of the styrene content in butadiene - styrene copolymers, 
and had the same value (about 1 kg.cm'^) for butadiene - acrylonitrile, and 
nat\iral rubber. It was therefore concluded that C2 was not dependent upon 
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the presence of biiLky side groups or polar groups. Smaller values (about 
0.8 kg.cm"^) were found for peroxide cured natural rubber. 

Gumbrell e t . a l . suggest that C2 i s associated with the volume f i l l i n g 
proper t ies of the chain. Then some dependance upon extension might be 
expected but i s not apparent in their r e su l t s over the s t r a i n invar iant 
range 3 < I i < 6, 3 < I2 < 5• However, a decrease in $ i - with increasing 

0 I 2 
I 2 i s shown in the more genera l r e s u l t s of R i v l i n and Saunders ( l 9 5 l ) over 
the range 3 < Ix < 12, 3 < I 2 < 30, and i s confirmed by the v a r i a t i o n of 
Ö¥ Ö¥ 
gY~, ^^^ §T~ with Ix and I 2 shown in Figure k. Swell ing would n a t u r a l l y 
reduce f i n i t e volimie e f f e c t s . 

The dependence of C2 on v^, was confirmed by Mvillins (1959) who found 
t h a t simple ex tens ion da ta on swollen peroxide and sulphur cured n a t u r a l 
rubber could be desc r ibed by 

C2V ^ / ^ 

0 = Cx + ~ — (3.4) 

where Cx and C2 are the Mooney parameters for the dry rubber. 

An experimental examination of the forces necessary to maintain a 
rubber tube in a s ta te of simultaneous extension, in f la t ion , and torsion, 
led Gent and Rivlin (1952) to observe that the amount of hyster^s^is in a 
complete load-deformation cycle appeared to be associated with 3¥ 

Therefore, the mechanism which accounts for hys teres i s may give r i s e to 
terms in ¥ which are addi t ional to the k ine t ic theoiy. An important 
contribution to hys te res i s could be the fa i lure to a t t a i n the equilibrium 
s t r e s s - s t r a i n s ta te necessary for the themodynamic analysis of the k ine t ic 
theory. 

Pr i s s (1957) considered a network of chains of random or ien ta t ions . 
Deformation of the bulk rubber was considered to produce an instantaneous 
affine displacenisnt of a l l chain segments followed by a co-operative 
movement of the chain llnlcs over a long period of time . The end to end 
distances of the chains are assumed t o be constant during th is movement. 

The stored energy function derived by Pr i s s for t h i s network involves 
time dependent terms which are addit ive to the Gaussian term and contain 
incomplete e l l i p t i c i n t eg ra l s . No de t a i l s of the derivation are given, 
and no de ta i l s are given to subs tant ia te the claim that th i s function 
describes experimental data in simple extension c anpressi on, b iax ia l 
deformation and shear. 

The f i r s t deta i led invest igat ions into the time dependence of C2 were 
performed by Cifer r i and Flory (1959)• A correlat ion between C2 and 
hys teres i s was observed from simple extension measurements on a number of 
elastomers. Changes in the experimental conditions to aid the approach 
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to equilibrium were found to decrease C^- The effect of increasing 
the time in terval between the imposed elongation and the measured 
s t r e s s was examined. Cross linked poly methyl methacrylate, which 
has a glass t r ans i t ion temperature ca.llO°C, exhibits considerable 
s t r e s s re laxat ion a t l45°C. At th is temperature C2 decreased from 
2.4 Kg. cm ^ to 1.8 cm ^ as the time interval increased from 3 minutes 
to 30 minutes, but a smal, decrease only (O.8O kg.cm"^ to O.76 kg.cm"^ 
was observed for sulphur accelerated natiiral rubber at 34°C over the 
same period. C2 was found to decrease with incjreasing temperature 
(below degradation temperatures). For example, as the temperatxjre 
of P.M.M.A. increased from l45°C to 175''C, C2 decreased from 2.40 kg.cm"^ 
to 1.30 kg.cm ^. C2 was also fourid to decrease when increasing amounts 
of di luent was absorbed by^the polymer networks. The minimum observed 
value of C2 was 0.04 Kg.cm"^ for a s i l icone rubber crosslinked in a 
highly swollen s t a te but the minimum values for natirral rubber were 
an order of magnitude l a rge r . Ciferr i and Flory s\:iggested that under 
ideal equilibrium conditions C2 wi l l be zero. 

Mason (1959) used wave propagation techniques to superimpose 
small dynamic s t ra ins upon s t r i p s of stretched natural rubber. If 
the djiTiamic modulus i s defined by 

^ da 
E = " dX (5.5) 

where a i s the t rue s t ress given by cr = fX and f is given by 

f = 2(X - 1/X2) (Cx + C2/X) (3.6) 

then FxE = Cx + F2C2 (5.7) 

where Fx = ofoV ,̂-1 \ ^^^ ^2 = ^(pxè.-i \ Mason considered the in-phase 
and out of phase components of the modulus and Mooney parameters, and fo;ind 
that (3-7) was obeyed up to about 150^ extension over the temperature 
range - 20°C to 50°C, a t a constant frequency. Both components of C2 
decreased with increasing temperature, pres-uraably because of increasing 
chain mobility and therefore a closer approach to equil ibrrmi. 

Halpin (l964, I965) examined simple extension data obtained from 
creep, s t ress relaxat ion, and s t r e s s - s t r a in measuranents at constant s t r a i n 
r a t e . He factor ised the appropriate modulus in to a time dependent term, 
and a term which i s a function of the s t r a i n only, and may be considered 
to represent the equilibrium behaviour. He concluded that for certain 
highly crosslinked polymers the equilibrium behaviour was adequately 
represented by the k ine t i c theory involving the inverse Langevin function. 
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However, he mentions -unpublished data obtained on polymers of low 
crossl ink density which exhibit deviations from the k ine t ic theoiy. 

Mullins (1953), in contradiction to Ciferr i and Flory, found that 
C2 for natural rubber under neai* equilibrium conditions increased with 
an increase in temperature. 

Roe and Krigbaum examined C2 for a na tura l rvibber (1962) and a 
fluoroelastomer (1963) and allowed at l e a s t 24 hours to approach 
equilibrium after successive elongations . No s t ress relaxat ion was 
observed af te r a few hours but the values of Cg were s t i l l f i n i t e . 
For a natural rvibber at 45°C, C2 = O.438 kg.cm ^. The entropy 
component only of the r e t r ac t ive force was used in the Mooney equation 
for simple extension, (5.3 with Vp = l ) , and the corresponding values 
of the Mooney parameters vrere determined. C2 was reduced by about 
5C^ for natural riibber, and became negligible for the fluoroelastomer, 
which suggests that considerable contributions a re made by the in ternal 
energy. 

The constant volume condition assumed by Mooney in h i s derivat ion 
of the stored energy function 2.5 has been disregarded by van der Hoff 
(1965). He assumed that the Mooney stored energy function would describe 
the e l a s t i c energy stored during swelling as well as in extending rubber, 
and was able to derive (3 .4 ) , the empirical equation of Mullins . Doubt 
i s therefore cast upon the assimption of Ciferr i and Flory (1959) tha t a 
reduction in the observed value of C2 with swelling is a consequence of 
reduced hys te res i s . 

There are a number of modifications to the energy and entropy of a 
deformed rubber network which were not considered during the derivation óf 
(2 .1 ) , the k inet ic theory form, of t he stored energy function. The 
mechanisms responsible for these changes may contribute to a C2 term. 
Very l i t t l e is kno^m, for example, upon the effect of Intermolecular forces 
upon the e l a s t i c i t y of rubber. Gee (1946) suggested that local ordering 
within the network would affect the entropy. Volkenstein, Gotlib and 
P t i t syn (1959) aiKi Bsrtenev and Khazanovich (1960) considered the mutual 
or ienta t ion of segments of neighbouring molecules. Dobson and Gordon (1964) 
examined the contribution to the network entropy of short chains of one or 
two bonds which are capable of or ienta t ion but not extensio.. , and Di Marzio 
(1962) considered the reduction in available configurations because of 
molecular packing. The possible magnitude of the contributions to C2 has 
been discussed by the individual autiiors. I t i s of pa r t i cu la r in te res t 
to note that Gee (19^6) concluded that C2 i s not a consequence of the 
excluded volume effect . 

I t has been suggested that a time dependent C2 term may a r i se because 
of the presence in the network of sl ipping entanglements (Kraus and 
Moczvgenba 1964) or unspecified l ab i l e crosslinks (Ciferr i and Hermans 1964). 
The former authors found that for a polybutadiene rubber C2 increased as 
the niMber of entanglements and to t a l crossl ink density increased. Bristow 
(1965) observed, for peroxide cured natura l rubber and c i s -1 ,4 - polyisoprene 
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that C2 varied with Cx and went through a maximum at Cx ca.2.0 kg.cm"^, 
The dependence upon crosslink density is a t variance with the resu l t s 
of Gumbrell, Mullins and Rivlin (1953). 

A large proportion of the free energy of deformation of rubber is 
due to entropy changes, and therefore deformation i s accompanied by a heat 
build up. I t i s shown in Appendix 3 that an adiabatic deformation can 
give r i s e to a C2 type term. However the magnitude of th i s term is 
considerably l e s s than the values detenained from simple extension 
measurements. Furthermore th i s contribution wi l l be time depenifent 
and decay to zero at a ra te dependent upon the r a t e of heat exchange 
between the sample and i t s surroundings. 

In summary i t may be said that no single mechanism has been accepted 
as the source of C2. I t i s therefore unlikely that a single constant 
mater ial parameter i s adequate to describe the effect upon the mechanical 
proper t ies of a l l the mechanisms described. A posi t ive C2 wi l l explain 
the experimental curves in pure shear and simple elongation at moderate 
s t r a ins which f a l l below the Gaussian curves before showing the expected 
upturn at high s t ra ins . 

A number of empirical or semi-empirical stored energy functions and 
s t r e s s - s t r a i n re la t ionships have been proposed to f i t the experimental 
data obtained for various deformations. 

5.2 Empirical s t r e s s - s t r a i n and stored energy functions 

The l imi ta t ions of the k ine t i c theory and Moon^r stored energy 
f-unctions in predicting the mechanical behaviour of rubber has been discussed 
fiolly by Treloar (1958). A number of anpir ical or semi-empirical functions 
have been proposed. 

Martin, Roth and St iehler (1956) found that isochronous s t r e s s - s t r a i n 
curves obtained from creep measuranents in simple extension were represented 
up to X = 2 by the empirical equation 

where E is Youngs modulus at X = 1, and A i s a constant. ¥ood (l958) 
applied (3.8) to the data of Rivlin and Sa\;inders ( l95 l ) and found a 
reasonable f i t for 0.5 < X < 3 . F r i t z and Johnson (1963) applied (3 '8) 
to i r rad ia ted polyurethane elastomers and found A to be a slowly varying 
fimction of dose while E varied exponentially. 

Bartenev and lüiazonovich (1960) considered the or ienta t ion of segments 
of the molecules during deformation, and obtained a two parameter re la t ionship 
for the -principal s t resses tx and t2 in a pure homgeneous deformation. 
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t i = A(X.-X3)[l+BIx-f2B(X.+X3)(Xi+X2+X+3-3)] (3.9) 

( i= l ,2 ) 

where A and B are constants . This equation was found to f i t the simple 
extension, p\jre shear, and pure shear plus extension resu l t s of Rivlin 
and Saunders. Bartenev and Vishnitskaya (1961) compared the simple 
extension form of (3.9) with the three parameter equation of Zagorski 
(1959), i . e . 

fX = A(X4-1) + B(X2-i) + c(X-l) (3.10) 

where A, B and C are constants. They found that both equations described 
their resvilts on natural and synthetic rubbers reasonably well up to 
X = 3, but (3.9) gave a better fit for X > 3. 

Another three parameter function has been developed (Carmichael and 
Holdaway I961) to express the principal stresses in terms of the induced 
principal extension ratios 

t. - p = I exp[B(X.^)] - C(X2 + ̂ 2 - 2) (3.11) 

(i = 1,2,3) ' ' ' 

where A, B and C are interdependent material constants and p is an arbitary 
hydrostatic pressure. Carmichael and Holdaway have shown that (3.II) fits 
e>rperimental results obtained by Treloar (l944b) in simple extension, 
simple shear and equi-biaxial strain. 

A number of stored energy functions have been proposed. Thomas (1955) 
modified the free energy of a single gaussian chain by an empirical additive 
term A/r^. The network stored energy fionction for a general homogeneous 
strain then involves an incomplete elliptic integral. Gent and Thomas 
examined a substantially equivalent function (1958). 

¥ = ¥x(lx-3) + ^2^ri{^) (3-12) 

where ¥x and ¥2 are constants. This function is in qualitative agreement 
with the uniaxial stress-strain data, and the strain dependence of 
Ö¥ 
T:r- determined by Rivlin and Sa-unders. However, the Thomas function, at 
•̂ 1 , V Ö ¥ 

variance with (3.12) also predicted a small decrease in •^~ with increasing 
strain. •'-

Priss (1957) has stated that 

w = Cx(ix-3) + H^ + fc + i ; - 5) (3.13) 

where Cx is the Mooney parameter, and k is a constant. This function 
qualitatively reproduces a number of stress-strain relationships. 
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The complex three parameter stored energy f-unction of Carmichael 
and Holdaway (1961) has been discussed by Klingbeil and Shield (1964). 
They examined theoretically the inflation of a flat circular sheet an! 
found that with the inclusion of this three parameter function their 
equations then described the experimental work of Treloar (l944c). 

Ö¥ ÖW 
Furthermore T T - appeared to be independent of I2 and g^" decreased with 
I2 up to I2 ca.lOOO. 

Empirical formulae have recently been proposed (Hart-Smith I966) 
to f i t a l l the data of Treloar (l944a) and Rivlin and Saunders. 

§ ^ = G exp. |kx( lx-3) ' 'êi'-t c-̂ '̂ 
Ö¥ 
gr— then exhibits the upturn at high extensions that might be expected 
because of the finite extensibility of the network chains. 

4. Stress-strain relationships for the pure homogeneous deformation 

of sheet rubber 

The theory outlined below is based on that of Rivlin (l9i;8a, 1948b) 
who derived relationships between the general pure homogeneous strain 
imposed on compressible and incompressible elastic isotropic materials, 
and the applied stress system. 

Consider a unit cube of elastic isotropic incompressible material, 
with its edges parallel to the coordinate axes x. (where i is equal to 1,2 
or 3)' Let this cube be transformed into a rectangular parallelopiped 
by extension ratios X^ along the directions Xj_. Tne direction x^ are 
the principal strain axes which for this material are coincident with the 
principal stress axes, and hence the applied stress system can be represented 
by t^. 

The virtual work done in producing a further incremental deformation 
&X^ is 

6¥x = txX2X3SXx + t2XxX3SX2 + t3XiX^X3 (4.1) 

and since ¥, the elastically stored energy, is a function of Xj_, Xg, and X3 

and for equilibri-um under isothermal conditions 

5¥i - 5¥ = 0 (4.3) 
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and hence 

(txX2X3 - |f^)5Xx + (t2XxX3 - 5^- -̂  (t3XxX2 - ̂ ^-)5X3 (4.4) 

= 0 

For an incompressible material, the volume V of the deformed element is 
given by 

V = XXX2X3 = 1 (4.5) 

and any arb i t ra ry function of the volimie f(v) is equal to f ( l ) . 

Therefore 

Sf(V)o, . S f (v )o . . ^f(V)^^ - ,. rs 

or 
^ J : » / T T \ ^ T r A T T A T T 

= 0 (4.7) 
5f(v) ' ö V o , ^ ^Vc-, ^ ÖV " 

Hence by substituting (4.5) into (4.7) the most general condition for 
incompressibility is 

PLXSXSSXX + XXX35X2 + X1X25X3 = 0 (4.8) 

öf(v) 
where p is the arbitrary constant ̂ ^ -̂  

Now (4.4) is valid for values of 5X. which satisfy (4.8). Comparing 
coefficients of SX. 

. 1 

1 

vzhere 

Ö¥ ÖW Ö Ö¥ ÖI2 n, ̂ n^ 

i . -̂  i ' - I 

now, from (2.2) and (2.3), 
^ 

Ix = ) ^? ^̂ <̂  I2 = 7 ^"^ since 
/ 1 i / 1 i 

1=1 1=1 

X1X2X3 = 1 (4.11) 

and hence (4.9) becomes 
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For a pure homogeneous strain in which forces are applied only to the faces 
of the cube which are normal to the Xx and X2 axes, ts = 0. 

Therefore 

Now consider the unit cube to be an element of a thin plane square 
of side 1 and uniform thickness h. Let the major surfaces of this thin 
square be normal to the X3 axis, and its edges parallel to the Xx and X2 
axes. If forces f1 and f2 are applied to the faces normal to the Xi and X2 
axes then the corresponding stresses tx and tg can be calculated fi-om 

tx = -^^ t 2 = ^ ^ ^ (4.14) 

/, \ Ö¥ 5¥ 
Equations (4.13) can be solved for vr— and jrr- and give 

XT ti Xptp 

è¥ xf - x 7 ^ ; ^ " xg - x7^ ; ^ 

5Ï7 - 2(Xf - Xg) 

and (4.15) 

è¥ x f ^ x " ^ ; ^ " xfTx*^:^ 
^ = "2lxi - X^) 

Therefore measurement of the forces fx and f2, for a pure >omogeneous 
deformation characterised by X^ and X2 allows the value of 
Ö¥ Ö¥ 
T ^ and ^i=- to be calculated. 

The deformation can alternatively be characterised by the values of 
Ö¥ 

the strain invariants Ix and I2, and therefore the variation of g^" ^^°-
è¥ -, ^ 
5-!p— with Ix and I2 can be investigated. 
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Furthermore, if Xj_ = Xg = X then from (4.13) 

t, = t, = t = 2 (x- . L ) (If^ . X= If-) (4.16) 

since t3 = 0 as before. 

5. Experimental Apparatus and Procedixre 

An attempt has been made to examine the stored energy function 
¥(lx,l2) hy an experiment in which there is no causal relationship between 
Ix and I2. The method used was to measure the force system needed to 
produce a pure homogeneous deformation in two perpendicular directions in 
the plane of a rectangular sheet of rubber. 

The experimental arrangement is essentially that of Treloar (l948) 
and Rivlin and Saunders (l95l), hut the method of applying and measuring 
the force system has been modified to facilitate stress relaxation studies. 

The complete test piece was cut from a single moulded sheet of rubber 
as shown in Figure 1;, and the surface marked in ink with a 3 cm. square 
grid of 1 cm. squares. The thick lags considerably reduced sample failiore 
by tearing. Strings were attached to the lugs by clamps, and a pure 
homogeneous biaxial deformation produced in the plane of the sample by 
applying tensions to those strings. 

Details of the sample preparation and the recipes of the rubbers are 
given in Appendix 1. 

Ideal conditions for stress relaxation studies involve a step function 
strain history. In order to deform the samples rapidly each set of five 
strings v/as attached to a rigid bar, and hence the problem of applying 
tensions separately to twenty strings resolved itself into moving four bars 
outwards from the sample to predetermined positions. 

Details of the system used are given in Figure 2. Coarse adjustments 
to the deformation was provided at each side of the test piece by the 
threaded rods A, which traversed nuts mounted on the supporting table and 
controlled the position of the attachment points to the large drawbars B. 
Fine adjustment was provided by threaded rods on the ends of the central 
three strings attached to B. 

Stress relaxation studies in-volve the detennination of the time 
dependence of the stress system which maintains the deformation constant. 
Preliminary experiments using dummy samples determined the position of B 
which would produce a particular pure homogeneous deform.ation characterised 
by the values of Xx and Xg. The threaded rods were adjusted so that the 
marked grid on the sample fitted exactly a rectangular grid marked on perspex 
which represented the desired deformation. The actual test piece was then 
mounted and deformed by fixing the drawbars at these predetermined positions. 
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Fine adjustments were sometimes necessary to complete the deformation which 
took less than one minute to perform. 

Rivlin and Saunders (l95l) had shown that the stresses necessary to 
produce a homogeneous strain over the area of the test piece marked by the 
grid can be cal collated, within a 4'̂^ error, from the forces acting over the 
central three strings of each side. Preliminary experiments further 
established that the tension in any one of the three central strings 
deviated from the arithmetic mean of the three tensions by less than 5^. 

The total tensile forces, acting over the central three strings on 
each of two adjacent sides, were determined by noting the deflection of a 
stiff phospher bronze ring R. Four resistance strain gauges were fixed to 
each ring at the positions of greatest flexure, and incorporated in a bridge 
network which gave an out of balance current proportional to the load 
applied to the ring. 

The bridge (Phillips PT1200) was temperature compensated, and the 
proof ring calibrations were unaltered over the range of ambient temperatures 
encountered, (l8 ± 2°C). Over the time period of the measurements the 
bridge output current meter was subject to zero drift. A clamp was 
installed which alloi-jed the sample to be maintained in its strained state 
as the load was removed from each proof ring and the zero corrected. 

Stress measurements were made on a lightly crosslinked natioral rubber, 
and a butyl rubber which were maintained at 25 ± 0.5*0 in a suitable enclosure. 
The temperature gradients in the enclosure produced differences of less 
than 0.2°C between any two points on the test pieces. 

Measurements were also made on the butyl rubber maintained at o°C in 
a mixture of ice and water. The ice-water mixture completely covered the 
sample and was contained in a deep sided tray. Th" supporting strings 
passed thro-ogh gelatine windows in the tray which kept water losses to a 
minim\jm without causing errors in the force measurement due to friction. 

No stress relaxation was observed for the butyl rubber at 25°C and 
Ö¥ Ö¥ 

the variation of r:r— and T T " with Ix and I2 was examined. Following the 
oil "I2 

procedure of Rivlin and Saunders (1951) groups of deformation were chosen 
which represented particular constant values of Ix and I2. The relationships 
between Xx and X2 for constant values of Ix and I2 were derived by re­
arranging (4.11) and are shown graphically in Figure 3. The broken lines 
represent the relationships between Xj_ and Xg for simple extension in the 
Xx and X2 directions. Deformations represented by points to the left and 
below these lines would require at least one compressive force and are not 
relevant to this experiment. 

A further series of measurements on butyl rubber at 25°C Involved 
equibiaxial extensions when X-̂  = Xg. These results were compared with 
simple extension measurements at the same temperature upon test pieces 
cut from the same rubber sheet. 
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6. Experimental Results 

6.1 Butyl rubber at 25°C 

No stress relaxation was observed. The forces necessary to maintain 
a series of deformations were measured, and the corresponding values of tx 

and t2 and vrr- and v̂ r- were calculated from (4.l4) and (4.15). The 
'̂ •̂ 1Ö¥ •'•2 è¥ 

dependence of gri— and gy- on Ix and I2 is shown graphically in Figure 4. 

The results are tabulated in Table 1. 

The results obtained under conditions of equL-biaxial strain 
(Xx = X2 = X) are given in Table 2. The function 

g:=— + X ^ — was calculated from (4.l6). 

The same state of strain could have been obtained by a pure compressive 
stress t3. Then tx = t2 = 0 and from (4.12), t^ is given by 

' - < ^ - ̂ )̂ Csfl ^ ^ ^ («•̂ ) 
where X' = X"^. It is interesting to compare these results with simple 
extension measurements on the same rubber. For an extension X in the X3 

direction X3 = X' and Xj_ = X2 = (X̂  )"'2 and therefore from (4.12) since 
tx = t2 = 0. 

The simple extension results are given in Table 3- The values of the function 
Ö¥ 1 è¥ 1 
sy~ + ^r 'T-r~ have been plotted against TJ- for the equibiaxial and simple 
extension experiments. (Figure 5). 

6.2 Natural rubber at 25°C, and butyl rubber at O'C 

'The principal stresses needed to maintain a number of constant 
deformations (X^ = X2) decreased over a period of time to equilibrivmi values 
. /- 0 \ öw Ö¥ 
(F igures 6 to 8 ) . The parameters T ~ and T ^ were c a l c u l a t e d from corresponding 

oix OI2 
values of tx and t2 using (4.15) and their variation with time is shown in 
Figures 9 to 12 and tables 4 and 5• 

7. Analysis and discussion of the results 

7.1 Butyl_rubber_at 25^2 

There was no relaxation of the forces acting on the butyl rubber at 
25°C. The strain dependence of ^L. and ̂  has been represented in Figure 4 

Ö1, ÖI2 
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by straight line relationships. The positions of the continuous straight 
Ö¥ Ö¥ 

lines describing T~- as a function of Ix and I2, and ̂ tï— as a function of 
I2 were determined by the least squares method. 

The small positive gradient (0.00097) of the continuous line between 
Ö¥ 
Tj— and Ix cannot have any significance because of the larger scatter of 

o¥ the experimental points, but ̂ -r- appears to be an increasing function of I2, 
Oix 

for 3 < I2 < 30, such that 

g | - = 1.45 + 0.00917 I2 (7.1) 

This is at variance with the observations upon sulphur cured natural i-ubber 

of Rivlin and Saunders (1951) who found g^" to be independent of Ix and I2. 

If v^" is independent of Ix then the top diagram in Figure 4 should be 

represented by the series of horizontal lines shown. The height of each 
Ö¥ 

short line above the Ix axis is the value of ;v=— talcen from the linear 
Ö¥ ^ 

relationship between ̂ -=— and I2. The experimental points are reasonably 
compatible with this hypothesis with the exception of the points obtained when 
I2 = 20. 

Ö¥ 
gtr- is a decreasing function of I2 such that 

3Y- = 0.138 - 0.00348 I2 (7-2) 

Ö¥ 
At any constant value of I2 there is no trend in the -variation of gy" 

with Ix- The magnitude of v^- represented by the short horizontal lines 

has been abstracted from the observed dependence of ^Y' °" ^2/ ^^^ 

represents the experimental results reasonably well. 

The equivalence, to within a hydrostatic stress, of the equi-biaxial 
deformation and a uniaxial (compression) deformation, has been discussed 

in section (6.I). The values of ^j- "*" 5T 57" ^̂ '̂ ^ ^^^^ calciiLated from 
(6.1) and quoted in Table 2 for the range 1 < l/X' < 4. The same function 
has been obtained from simple extension measurements on the same rubber, 

(6.2 and Table 3), over the range 0.2 < l/X̂  < 0.9. The variation of 

^~ + rj sf- over the range 0.2 < l/X' < 4 is shewn in Figure 5* 
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Simple extension measurements, before finite chain extensibility and 
crystallisation effects are significant, (at about l/X' = 0.4 in Figure 5) 

Ö¥ öw are usually interpreted assuming that v=— and TTT- are material constants. 
Ö¥ 1 è¥ -^^ -̂ 2 ;ĵ  

However, vz— + rj- ^~ is clearly not a single linear function of Y^ over 
the range 0.4 < l/X^ < 4. 

The experimental points in Figure 5 suggest a continuity of the 
fiinction over the complete range of l/X' which can only be explained 

Ö¥ Ö¥ ^ 
in terms of a strain dependence of g:r- and g-=— 

Corresponding values of l/X^ and I2, from Tables w and 3 have been 
ÖW 1 Ö¥ 

substituted into 7-1 and 7.2 to find ^ Y ~ + JT XT~' ^^^ predicted 

values of this f\;inction are given in Table 6 and compared with the 
experimental values in Figure 5• The butyl rubber used in the general 
biaxial deformation experiments was nominally the same as that i;sed for 
the equibiaxial and simple extension measurements. It is however 
probable that the vertical shift between the experimental and predicted 

Ö¥ 1 Ö¥ 
values of s^" + 5^ ̂ Y~ ̂ s due to batch variation in the rubber If 

the two sets of values are normalised at l/X^ = 1, then the rate of 
è¥ Ö¥ 

change of vr— and vii— with I2 fits the observed dependence oi 

è¥ 1 Ö¥ / / 
TÏp— -f rr gY~ °n l/X' for equibiaxial strains, but is completely inadequate 
to describe simple extension. 

Equibiaxial experiments have been performed by Rivlin and Saunders 
(1951) who meastired the deformation at the pole of a sulphur cured natural 

ÖW 1 ÖW 
rubber sheet inflated by a known air pressure. They found that ^ir— + yj- gpr-

decreases from about I.9 kg.cm"^ at l/X' = I.5 to a minimum of about 
1.7 kg.cra"^ at 1/ = 7, and then increased to I.85 kg.cm ^ at l/X = 12, 
the maximimi deformation observed. For continuity in their results in 
the transition from 'compression' to simple extension there must be a second 

Ö¥ 1 ^¥ 
turning point, a maximum, in the function of jz— + ^ 5 ^ in the region of 

1/X^ :. 1. 

'''it is however probably a coincidence that the experiinental point at 
l/X =. 0.849 lies below the linear portion of the simple extension curve, 
and therefore shows perfect continuity with the equibiaxial strain results. 

^ Ö¥ 1 Ö¥ 
It can be seen from 6.2 that significant errors in ̂ -r- + yj g^" are 
possible as l/X^ approaches unity. 
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7-2 The_Etress_relaxation of natural rubber at 25°C, and butyl rubber 

at 0°C 

The principal stresses tx and t2 which are necessary to maintain 
the deformation in the butyl rubber at 0°C, decrease to equilibri-um values 
about 100 minutes after the application of the strain (Table 4 and Figure 
8). However a nijmber of the principal stresses applied to the natural 
rubber are still decreasing after 250 minutes. (Table 5, Figures 6 and 7). 
Corresponding values of tx and t2 have been substituted into 4 15 to 

Ö¥ Ö¥ / , 
give the parameters gri— and ̂ y- as a function of time. (Tables 4 and 5, 
Figures 9 to 12). For the butyl rubber these parameters must, of course, 
reach equilibrium values in 100 minutes. Indeed, within the scatter of 

&¥ 
the points in Figure 11, v=—. may be invariant with time It is interesting 

Ö¥ °-'-2 
to observe that ̂ r̂- also appear to become constant for the natural rubber 

•••2 Ö¥ 
after about 100 minutes although g-ir- for most deformations is continuously 
decreasing. ^ 

A number of workers have attempted to explain the large strain 
viscoelastic behaviour of elastomers in terms of an elastic liquid theory. 
X̂ e shall consider A.5, the constitutive equation of state for a viscoelastic 
incompressible liquid postulated by Kaye (1962)'/ and in another form by 
Bernstein, Kearsley, and Zapas (1963). Kaye defines the deformation in 
terms of the relative positions of a particle at the current time t and 
some past time t""-, and replaces the constants Apnj, in 2.4, the series expansion 

of the stored energy function, by functions of the elapsed time t - t-̂ . 

If an instantaneous deformation characterised by extension ratios X^ 
in the directions x^ is applied to the sample at timr t = 0, and maintained 
constant, then according to Kaye (1965), the principal stresses tx and 
t2 at time t > 0, are given by:-

- CO _ 00 

* Kayes' equation of state is an extension of the equation of state for 
a viscoelastic liquid developed by Lodge (1956). It is a logical 
generalisation of the stress-strain relationships derived by Rivlin 
(1943, 1949) to describe large elastic deformations in incompressible 
materials, and is discussed further in Appendix 2. It is also shovm in 
Appendix 2 that Lodges' equation fxilfills the necessary condition that 
for small strains it describes a linear viscoelastic material. 
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where j is 1 or 2, and fl is the equivalent to 2.4, the elastic stored 
energy function, but describes an incompressible viscoelastic liquid. 

00 

Thenfi = ^ B̂ (̂ji-3)Ï̂ (J2_3)<1 vith B^^ = 0 (7-4) 

p,q=0 

where Jx and J2 are the first and second invariants of the deformation 
ox,- ox^ 

tensor S . = v-f ̂  , (see Appendix 2(i)) ij ox ̂ ox ^ 

using the usual dummy suffix summation, so that 

Ji = s ^ (7.5) 

and J2 = è(S^ - S^Sp^) 

The parameters B are functions of t - t' which tend to zero as t - t' 
pq 

tends to infinity. By comparing (7.3) with (4.13), the equivalent equations 
for an elastic solid it can be seen that 

- Ö¥ r èfi ^, /̂, 

If (7-4) is to represent a viscoelastic solid then at least one of the 
parameters B must be finite as t approaches infinity. It is reasonable 

to consider Ü such that 

n = Bxo(Ji-3) + Boi(J2-3) (7.7) 

where BXQ and BQX are decreasing functions of t-t', but are finite as t-t 
approaches infinity. For example, assume:-

B 10 =Ae^^' +Be-^^(*-^') (7-8) 

and Box = CeP'''-^De-l^-(^-^') 

I f the major surfaces of the sheet rubber sample are force f ree , then 
(7.3) becomes 

t . = 2(X2_X§)(| H- | - e -^^^ ) - 2(X-^-XS2)(C ^ 5_e-k2t) (^,5) 
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Ö¥ Ö¥ 
The time dependence of g^" ^^^ Sj for this particular form of Q is 

found by substituting (7.9) into (4.15), or by comparing (7.9) with (4.12) 

4.V Ö ¥ A B -kit , ,^v 

and 1 ^ = i H- S-e-̂ -̂̂  
0I2 P k2 

Consider the applicability of (7.9) and (7.IO) to the results obtained 
on the butyl rubber at 0°C. Assuming that 

^=- is invariant with time then, from (7.IO), D/Kg must be zero, and (7.9) 

becomes 

Yj = t^-2(X^-X§)^ + 2(X-2^i2)^ = 2(x-2-^;2)|-e-K^^ (7.II) 

/P has been determined from Table 4 as the mean value of -^j— for each 

deformation. For each /P two values of ^/oc have been found from (7-ll) 
by considering the equilibrivmi values of tx and t2 (Table 7)• The two 
values for each deformation are essentially the same, as indeed they must 
be if the experimental results are correct. This further suggests that 
the small amount of irihomogeneity in each sample does not affect the stress 
measurement. Each deformation was carried out using a different test piece. 
Althougli each test piece was cut from sheets made under identical conditions 
from the same uncured inbber mixture it is probable that variations in A/<^ 
and C/p are due to sample variations. There is no correlation of A/O! or 
C/p with Ix or I2. 

Y:» has been plotted on a logarithmic scale as a function of the relaxation 
time in Figure 13. For some of the deformations there are deviations from 
the linear relationships suggested by (7.II), at times greater than about 
50 minutes. The logarithmic scale magnifies the effect of any errors in 
small values of Y., but the consistency in the direction of curvature suggest 
that, if (7.6) is'̂ valid, some of the chosen equilibrium stress levels were 
too high. 

The relaxation constant Kx has been taken as the gradient of the best 
straight line though the experimental points at time less than 50 minutes. 
B/KX has been determined from the intercept of these straight lines with 
the t = 0 axis (Table 7). 
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c/p A/a Kx X 10^ B/KX 

g.cm"^ g.cm"^ (mins)"-'- g.cm"^ 

5.179 5 95 1^90 5.79 108 
1490 6.37 97 

4.27 5 180 1440 1.19 95 
1465 2.83 87 

6.643 10 l4o 1160 4.15 9é 
1155 4.03 114 

6.41*3 10 132 1310 5.36 62 
1305 3.14 78 

5 5.285 127 1385 2.52 85 
1370 2.09 94 

5 6.011 157 1455 2.23 104 
1440 3.58 117 

7 10.723 67 1515 3.35 148 
1535 2.02 165 

Table 7 The material parameters of (8.24). The first and second values 

of A/ , KX, and B/KX, for each deformation correspond to Yx and Y2 
respectively. 

The material parameters all vary in an apparently random manner with 
deformation. The variation of C/p and A/Q corresponds to the scatter of 
experimental points in Figvure 4 in which 

| i i - a n d ^ 
oil 0I2 

are shown as a function of the strain invariants for butyl rubber under 
equilibrium conditions. If these variations can be ascribed completely 
to sample variations, then (7-ll) represents the stress relaxation 'oehaviour 
of butyl rubber at 0°C, at least up to relaxation times of 50 minutes. 

There can be no advantage in repeating this analysis for the natural 
rubber at 25°C. Similar sample variations can be expected, and the 
analysis is complicated by the existence of two exponential functions, 
because d/K2 is not zero for this rubber. 

Berstein, Kearsley and Zapas (19^3), and Zapas and Craft (19^5) have 
•found that A.3 describes the stress relaxation behaviour of a number of 
elastomers in simple extension when il contains three strain dependent terms 
such that 

fi = P(Ji-3) + Q(J2-3) + R(Ji-5)^ (̂ -12) 
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/̂nere P, Q, and R are interdependent functions of the elapsed time (t-t' ) 
(Appendix 2 ii). 

Zapas (1966) has reproduced (7.3), the equation of state derived by 
Kaye (1963) to describe stress relaxation for a homogeneovis biaxial 
deformation. 

Using a rather complicated potential function containing three 
material parameters he is then able to describe the pure shear data of 
Rivlin and Saunders (195I) on natural rubber, and a long terra stress-strain 
Isochrone for butyl rubber in biâ cial extension at an unstated temperature. 
He also examined the biaxial creep behaviour of butyl rubber at small 
initial deformations (ix ~ I2 - 5-1) over a time period up to l64 hours, 

c)¥ 
and found ^7- to increase continuously from a negative value of about 

100 g.cm '̂  at 3 hours to about + 200 g.cm ^. Negative value of g-=— 2 ra-I- "Z 1^„T^.vnr, •^/^ Ci'i-^^ii4- J_ Or\r\ i-i- /-iwi 2 

2 
at small strains have also been reported by Miguel and Landel (1966) from 
the biaxial extension data of a castor oil extended polĵ airothane elastomer, 
for the strain invariant range 3 '̂  Ii, ^s ^ 3-1. 

It is obvioiisly possible to define P, Q, and R, or the material 
parameters of Zapas, as particvilar functions of the elapsed time, in a 
further attempt to describe the observed stress relaxation behaviour of the 
natural and butyl rubbers. However there was no observed correlation 
between the material constants in (7-9) and the strain, which suggests 
that the 'Mooney type' potential function is adequate to describe the 
limited number of deformations studied. A modification of (7-9) would 
probably be necessary to describe the range of deformations covered by the 
biaxial extensions on the butyl rubber at 25°C. 

8. S-ummary 

The principal observations which have been made about the behaviour of 
rubber in a state of pure homogeneous finite strain can be sumr.iarised. 

1. Homogeneous biaxial strains have been imposed upon a butyl rubber in 
order to exaraine the variation of Q¥^ ^^^ "̂^̂  vith strain xinder equilibrium 

è¥ ^^1 ^^2 
conditions. -̂=— exhibits the strain dependence reported bv Rivlin and 

^^2 Ö¥ 1 Ö¥ 
Saunders for natural rubber, but ̂ Y " •*" }7" ̂ j ^̂  ̂  continuously increasing 

function of TT over the range 0.4 < -̂r < 4. X' is the uniaicial extension 

(or 'compression') ratio. 
2. The stress system needed to maintain butyl rubber (at 0°C) in a state 
of biaxial strain, reduces to an equilibriijm value in about 100 minutes, but 
vrr- ajppears to be constant over the complete time range. ¥ithin the 

limitations imposed by sample to sample variations the res^Its can be 
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described by a viscoelastic 'Mooney type' stored energy function. 

Equilibrium values of ^~- are cilso observed for a lughly crosslinked 

natural rubber which exhibits continuous stress relaxation over the time 
period of the measurements. 

3. It has been shown theoretically that the heat build up during an 
adiabatic deformation gives rice to a term in the stress-strain relationship 
which corresponds to C2. However the calculated magnitude of C2 is too 
small. 

It is extremely difficult to decide upon a practical criterion for 
the equilibrium state of a defon:ied rubber. However the results described 

Ö¥ 
in this Note suggest that ̂ -r— is a finite positive constant when all 

observable stress relaxation has ceased. Furthermore a constant value of 
Ö¥ 
vT" has been observed under stress-strain conditions which are obviously 
not at equilibrivan. There is therefore strong evidence that g-=— is 

finite under equilibrium conditions and the kinetic theory is not adequate 
to describe the gum rubber in biaxial extension. The kinetic theory is 
therefore inadequate to describe completely the elastic mechanical behaviour 
of unfilled rubber. 
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Appendix 1. Sample preparation 

The samples were prepared under controlled conditions. The detailed 
recipes are given in Table 8, in which the numbers denote parts by weight. 

Component Natural rubber samples Butyl rubber samples 

Natural rubber 100 

Butyl rubber (ESSO 

grade 2l8) - 100 

Sulphur • - . 2 

Zinc oxide - 5 

Stearic acid - 3 

Accelerator - 1.5 

Dicumyl peroxide 0.5 

The biaxial and tensile samples were cut from sheets 25 cms. square 
and about 0.25 cms. thick, which had been moulded and cured for fifteen 
minutes at 150''C. Each moulded sheet contained four 5 cm. square indentations 
which were used for biaxial measurements. This allowed the lugs on the 
biaxial samples to be cut from the thicker sheet. 

The flow of excess rubber through the escape holes in a mould will 
always result in an article which is mechanically anisotropic and inhomogenous. 
The anisotropy in the samples was reduced to a minim-urn by using moulds with 
a large number of symmetrically disposed flow holes, and by using the minimum 
amount of rubber necessary to fill a mould. 

A (secant) modulus variationoof about 5^ was found for microtensile samples 
cut in different orientations and positions from the plane of a 25 cm. square 
sheet. 

Further work showed that swelling measurements are a comparatively 
insensitive method of estimating the degree of anisotropy and inliomogeneity. 
Tensile samples which had shown a l4^ modulus variation, (cut from a 
rejected sheet), were immersed in benzene, and the equilibrium lengths of 
the swollen samples measured. The increase in length for all the tensile 
samples varied by only Q.&jo. The expected inverse relationship between the 
order of stiffness, and the order of degree of swelling, was observed. The 
degree of anisotropy, measured as a modulus variation, was not reduced after 
swelling and deswelling the samples. There was no correlation between 
modulus variations and accurate density measurements. 
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Appendix 2 

Equations of state for viscoelastic materials 

(i) The equations of Lodge and Kaye 

Lodge (1956) has extended the kinetic theory of rubberlike elasticity 
by assuming that the crosslinks in the network have a finite lifetime, and 
derives an equation of state:-

t 

Pij - ̂ i j = ƒ Kr.N(t-t')|p^ ^ dt' (A.i) 

_ 00 

which describes an incom-oressible viscoelastic liquid. P.. is the stress 

tensor and x. and x' are the rectangvilar cartesian coordinates of a particle 
at the current time t, and a past time t' respectively. The repeated 
suffix denotes summation. N(t-t') is the distribution function for the 
lifetimes of the effective network crosslinks. p is an arbitrary isotropic 
pressure, and 6.. is the unit matrix. 

The stress-strain relationships derived by Rivlin (1948, 1949) to 
describe large elastic deformations in incompressible materials, can be 
written. 

5¥ öxj^ öxj^ 5¥ ^y<x ^'^ 

where x. and X̂ ^ are the rectangular cartesian coordinates of a particle 
in the deformed and undeformed states respectively. 

Kaye (1962) points out that (A.l) can be considered a mathematical 
generalisation of (A.2) if the elastic material obeys the kinetic theory, 

Ö¥ 
that is if ^Y~ = 0 . He then examined a class of viscoelastic liquids 

for which 

P. . - p5. . = 2 
5fl ^xj ö:ĉ  hü h^é ^ 

(A.5) 

where Ü = n[jx(t,t'), Jsi-^jt')^ t-t'] and Jx and J2 are invariants of the 
ÖXi Ox. 

deformation tensor Ŝ  ̂  = ;s—r •'̂ ~r, using the usual summation convention, and 
-J ox^ o:^ 

are given by (7.5). 

Zapas (1966) reports that an equation of state developed by Bernstein, 
Kearsley and Zapas (1965, 1964) for an incompressible viscoelastic liquid 
can be manipulated into a form which is equivalent to (A.5). 
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If (A.I) and therefore (A.2) are to be useful for describing non 
linear viscoelastic behaviour, then in the limiting case of infinitesimal 
strain (A.l) must reduce to a description of linear viscoelasticity. 

The equation of state for a linear viscoelastic incompressible material 
can be -written, (Lockett I965), 

p t ^ 
P. . - p 5 . , = / $ ( t - t ' ) p d t ' (A.4) 
i j i j J ^ ' y 

öu. öu 
where • ( t - t ' ) i s a function of the elapsed time t - t ' , e = ' K x " + STT")̂  ̂ ^^ 

•^J ^ j ^1 
s t r a in tensor for inf ini tes imal displacements u . , and p . . represents tne 
di f fe ren t ia t ion of p . . with respect to the elapsed time. 

Now X. = X + u . , and x'. = X. + u'., and therefore x. - x'. = u . -u . or 
1 1 1 ' 1 1 1 ' i i i i 

du. 

^̂ 1 = ^^= dlt:F)'^^'"''^ = ̂ '^ ^""-^^ 

where T = t - t ' . 

Hence x. = x'. + u.dT ( A . 6 ) 
1 1 1 

ox. ox. 
¥e wish to examine the strain function of (A.l), S. . = g—r x-t̂  • 

ij ^ a a 
If (A.6) is differentiated with respect to xl, then 

ox, Öu, 
^ = 5.^ + T-r (3T (A.7) 

and there-fore for infinitesimal strains S^^ is given by 

^ij=(^a-^5|^)(V^sJ^) ^̂-'̂  
If the second order term Involving i. QJ,^ discarded then 

ox. 
0 

1 

?: 
S..=5..+^dr+T-j^dr (A.9) 
IJ IJ ox^ ox_. ^ ' 

or S. . = 5. . + 2é. .dr (A.IO) 
ij ij 10 
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öu. öu. 

If T has a range of values from O to <», then substitution of (A.IO) into 
(A.I) gives 

P. .- p'6.. = / 2kT.N(t-t )ê..dt' (A.ll) 
ij ij J ^ ' ij ^ ' 

when p' = p + kT.N(t-t'). This is of the form of (A.4), the equation of 
state of a linear viscoelastic material. 

(ii) The_^otential__function of Bernstein^ Kearsley and_Zapas 

In attempting to describe the stress relaxation of certain elastomers 
in simple extension, Bernstein et. al. (1965) have used an equation of state 
equ -valent to (A.5) in which fl is given by 

« = mKx -1- I Kf + bK2 (A.12) 

where m, a, and b are fiinctions of t-t', and Ki and K2 are invariants of 
the strain tensor E ^ , such that 

Ki = tr.Ej^ (A.15) 

K2 = tr.(E2)^ 

and E " - -hft = 2 

ox. ox 

L̂ ó 4 s i - ̂ rf (*-̂ '̂ 
Now consider the deformation 

Xx = ̂ixx 

Xg = Xgx^ ( A . 1 5 ) 

X3 = X3xi 

Then from (A.I5) , (A.l4) and (A.15) 

Kx = ilXf + X| + Xf - 5] = | [ j i - 5 3 (A.16) 

and K2 = V 4 [ ( ^ ! - l ) ^ + ( ^ i - l ) ^ + (5^3-1)^3 = V4tJi-2J2-2Ji-f-5] 

since J3_ = Xf + X | + Xf and J2 = X^^ + X"^^ + X-S 
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Hence (A.12) may be rewritten 

n = I(Ji-3) -<• f(Ji-5)^ + ̂ (Jf - 2J2 - 2Ji+5) (A.17) 

= P(Ji-5) + Q(J2-3) + R(Ji-5)^ (A.18) 

where P = m/2 + b, Q = -h/2, and R = a/8 + b/4. Therefore the viscoelastic 
potential fionction of Bernstein et. al. is an extension of the 'Mooney type' 
viscoelastic function (7-7). 

Appendix 3 

The evo lu t ion of h e a t in simple ex tens ion 

The v i r t u a l work done i n producing incrementa l deformations ^^j_, 5^2 , and 
5X3 in an i s o t r o p i c m a t e r i a l which i s i n a s t a t e of pure homogeneous s t r a i n 
def ined by the p r i n c i p a l ex tens ion r a t i o s Xx Xg and X3 i s given by 

&¥ = tiX2X35Xx+ t2XiX3&X2 + t sXiX^Xj (A. 19) 

where tx, t2 and t^ are the principal stresses. 

If the deformation is isoenergetic and adiabatic 

8¥ = J.5Q = JPX1X2X3C.5T (A.20) 

where 5Q is the h e a t evolved 

p density of material of specific heat c. 

5 T increase in temperature 

J mechanical equivalent of heat 

•r ^n, ^ 5X1 ^ BXp ^ 5X3 
Jpc .5T = ti-y^ + t2-3^ + t3-y^ 

3 
(A.21) 

For simple extension t2 = t3 = 0, and from (4.12) 

and therefore the increase in temperature 5 T for a finite increase ̂ 1 . in Xx 
is given by (dropping the suffix for convenience). 
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X - f ^ 

* = .5T./ 2(X^)(S«. , 1 I-) (A.25) 

X 

In order to estimate the magnitude of 5 T it is sufficient to assume the 
Ö¥ Ö¥ 

kinetic theory of elasticity. Then g~- = Cx and x=— = 0, 

and JPC.6T = Cx[2X,AX + AX^ + 2(k-{SK)~^-2^-^] (A.24) 

Adiabatic stress-strain relationships must take the temperature increase 
into account. 

The tensile stress t is a function of T and X and therefore an increment 
in stress 5t is given by 

If t is given by the kinetic theory (isothermal) relationship 

t = NkT(X2^) (A.26) 

J. gT, 

and since from (A.2l) \ • = Jpc.ST (A.27) 

then by substituting (A.26) and (A.27) into (A.25) the adiabatic stress t 
is given by ^ 

^a ^ 

â = ƒ ^̂  = ƒ !??(^4)^^ - t . (A.28) 

. (X-̂ )[NkT . ̂  '̂'̂' Ixtl)" ""̂^ - "̂'"̂  (A.29) 

If the temperature Increase give rise to a Mooney parameter C2 then (A.29) 
must be compared with 

t^ = 2(X2- i)(Cx -H ̂ ) (A.50) 

where Cx = ̂ NkT 

Then 
02 , ̂ k (X6/4 - 2X^ + 9̂ /̂4 - 1/2) ,, ̂ ^ V 
Cx - Jpc (X-̂ _i) ^^-51) 
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Typically Nk = 3.10* dynes.cm"^ deg."^C 

p = 0.95 cm."*-' 

c = 0.47 cal. g"^ deg.'-'-C 

Then if X = 4 

^ - — (A 32) 
Ci 50 KJ^-:)^) 

This is considerably less than the value of C2 which would be expected if 
experimental simple extension data for this hypothetical sample was analysed 
in terms of the Mooney form of the stored energy function. For example 
Rivlin and Saunders (l95l) found from simple extension data that C2 ~ 0.8I Ci. 



n 

I I 

5.179 

5 .3 tó 

4.993 

4.493 

4.270 

8.215 

7.825 

7.i|80 

7.141 

6.855 

6.6I18 

6.4iiS 

9.701 

9-454 

9-255 

9.023 

8.892 

11.404 

11.203 

I2 

5 

5 

5 

5 

5 

10 

10 

10 

10 

10 

10 

10 

20 

20 

20 

20 

20 

30 

50 

^x 

2 . 0 

2 .2 

1.95 

1.7 

1.5 

2 .6 

2 .5 

2 . 4 

2 .5 

2 .2 

2 . 1 

2 .0 

2 .6 

2.5 

2 .4 

2-5 

2 .2 

2 .7 

2 .6 

X2 

0.95 

0.85 

1.00 

1.16 

1.55 

1.16 

1.21 

1.27 

1.32 

1.33 

1.46 

1.53 

1.70 

1.77 

1.35 

1.92 

2 .00 

2.02 

2 .10 

t l 

g .cm'^ 

11,950 

13,810 

10,350 

8,o4o 

7,340 

23,900 

21,000 

13,950 

17,200 

16,050 

14,400 

15,450 

22,900 

20,450 

19,600 

17,450 

16,000 

23,500 

26,200 

t a 

g.cm"^ 

2,560 

1,620 

2,650 

5,870 

5,880 

5,350 

5,750 

5,560 

6,030 

6,560 

7,610 

8,150 

11,750 

11,960 

1 2 , l 4 0 

12 ,'350 

13,800 

16,500 

18,100 

öw 
^ I i 
g.cm"^ 

1465 

1620 

1740 

1320 

1450 

1705 

1580 

1615 

1570 

1605 

1475 

1595 

1550 

1360 

1610 

1585 

1310 

1700 

1680 

öw 
^ l 2 

g.cm 

157 

83 
83 

130 

114 

ee 
85 
41 

52 

46 
114 

60 

68 

92 

56 

25 

91^ 

23 

55 

Table 1. Biaxial s t r a in r e su l t s for butyl rubber at 25°C 
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I I 

5 

5 

5 

5 

7 

7 

7 

7 

9 

9 

9 

9 

9 

11 

11 

11 

11 

11 

l 2 

5.235 

6.011 

6 .521 

6.567 

7.431 

9.095 

10.725 

12.156 

15.218 

17.342 

18.941 

19.961 

20.394 

27.282 

23.795 

29.328 

30,073 

30.0l^3 

^ 1 

1.9 

1.8 

1.7 

1.65 

2 . 4 

2 .5 

2 .2 

2 .0 

2 .6 

2 .5 

2 .4 

2 .5 

2.2 

2 .7 

2 ,6 

2.55 

2 .5 

2 .4 

X2 

1.07 

1.25 

l . 4 o 

1.45 

1.05 

1.25 

1.44 

1.70 

1.47 

1.64 

1.79 

1.92 

2.05 

1.92 

2.05 

2 .11 

2.18 

2 .27 

t l 

g.cm"^ 

12,210 

9,980 

9,250 

8,540 

17,900 

17,550 

16,050 

12,620 

24,100 

22,500 

21,400 

19,250 

17,950 

27,200 

25,900 

24,000 

24,700 

21,000 

t 2 

g.cm"^ 

5,780 

4,900 

6,350 

6,700 

4,550 

5,850 

7,760 

9,270 

3,300 

11,650 

12,900 

13,950 

15,550 

15,250 

16,750 

17,450 

19,550 

18,900 

öw 

g.cm"^ 

1550 

1495 

1575 

1460 

1450 

1560 

1490 

1500 

1660 

1 ^ 5 

1665 • 

1645 

1665 

1660 

1790 

1585 

1-785 

1730 

Ö¥ 

g.cm 

183 

89 

75 

100 

153 

87 

100 

41 

SG 

115 

68 

50 

55 

60 

27 

58 

47 

17 

Table 1. (Continued) Biaxial s t r a in r e su l t s for butyl rubber_at 25°C 
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Xx = Xs x ' (=^ ) ^1 = ^2 SJT^X"'- S I ~ I l ^2 

= -̂  " ^ _ 3.a:i"2 (2/X'+X'2) (2X' + 
_ g. cm"2 

1.CÖ5 
1.167 

1.25 

1.55 

1.417 

1.50 

1.58 

1.67 

1.75 

1.855 

1.916 

2.00 

Table 2. 

1.17 

1.56 

1.56 

1.77 
2.01 

2.25 

2.49 

2.79 
5.06 

5.36 

5.67 

4.00 

557^56 
6o8±8 

733±17 

92l±4 

1086t7 

1225±20 

1542±57 

l4ll±6o 

1497^62 

l625±45 

1754^74 

1856^88 

1840 

1920 

1900 

1870 

1945 

1990 

2020 

1972 

1972 

2028 

2050 

2065 

5.07 
5.26 

3.55 

3.86 

4.52 

4.74 

5.14 

5.71 

6.23 

6.90 

7.42 

3.06 

5.03 
5-52 

5.71 

4.26 

5.05 

5-97 

7.00 

8.52 

10.01 

11.90 

l4 .o4 

16.50 

Equibiaxial s t r a in resiiLts for butyl rubber at 25°C. 

values of t are the mean values of tx and t 2 . 
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S.cm-2 , _3. (2/X'4A'2) (2X'-M/X'2) 
(g.cm"2) 

1915 

2870 

3760 

4600 

5540 

6400 

7550 

8550 

9590 

10520 

11520 

12450 

15450 

14690 

16950 

18250 

19550 

20900 

22400 

25200 

26800 

50500 

54100 

1.13 

1.275 

1-565 

1.455 

1.545 

1.655 

1-75 

1.32 

1.91 

2.00 

2.095 

2.18 

2.275 

2-565 

2.545 

2.64 

2.75 

2.82 

2.91 

5.09 

5.18 

5.57 

5.55 

0.349 

0.785 

0.755 

0.638 

o.SkS 

0.611 

0.578 

0.550 

0.524 

0.500 

0.478 

0.459 

0.440 

0.425 

0.595 

0.579 

0.566 

0.555 

0.544 

0.324 

0.315 

0.297 

0.282 

1740 

1710 

1670 

1625 

1595 

1565 

1550 

1510 

1505 

1475 

1475 

1450 

1415 

1415 

1590 

1585 

1585 

1580 

1580 

1570 

1565 

1575 

1585 

5.08 

3.20 

3.35 

3.50 

5.68 

5.89 

4.15 

4.41 

4.70 

5.00 

5.55 

5.67 

6.c6 

6.44 

7.27 

7.74 

3.17 

8.66 

9.15 

10.25 

10.75 

11.95 

15.16 

5.03 

5-17 

5-27 

5.53 

5.51 

• 5.74 

5-79 

5.94 

4.09 

4.25 

4.45 

4.57 

4.74 

4.91 

5.24 

5.42 

5.59 

5.77 

5.94 

6.28 

6.45 

6.85 

7.18 

Table 5. Simple extension results for butyl rubber at_25°C, 
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Xx = X2 

= X 

1.035 

1.167 

1.25 

1.55 

1.417 

1.50 

1.58 

1.67 

1.75 

1.855 

1.916 

2 .00 

hi=^') 

1.17 

1.56 

1.56 

1.77 

2 .01 

2.25 

2 .49 

2 .79 

5.06 

5.56 

5.67 

4.00 

tx - t2 

= t 

g . cm'"^ 

557^56 

6o8±8 

783±17 

92l±4 

1086fc7 

1225±20 

1542^57 

l4ll±6o 

11+97+62 

l625±45 

1754^74 

1836^88 

Ö¥ 1 c)¥ 
Ö'IT'X'- Sl~ 

c:-ci:i"-2 

l84o 
1920 

1900 

1870 

1945 

1990 

2020 

1972 

1972 

2028 

2050 

2065 

I I 

{2/^'+k'^) 

3.07 

3.26 

3.55 

3.86 

4.52 

4.74 

5.14 

5.71 

6.23 

6.90 

7.42 

8.06 

I 2 

(2X'+l/X'2) 

3.08 

5.52 

5 .71 

4.26 

5.05 

5.97 

7.00 

8.52 

10 .01 

11.90 

14.04 

16.50 

Table 2. Equibiaxial strain results for butyl rubber at 25°C. The 

values of t are the mean values of tx and t2. 
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t3 

g.cm"^ 

1915 

2870 

5760 

4600 

5540 

6400 

7550 

3550 

9590 

10520 

11520 

12450 

15450 

14690 

16950 

18250 

19550 

20900 

22400 

25200 

26800 

50500 

54100 

X' 

1.13 

1.275 

1.565 

1.455 

1.545 

1.655 

1.75 

1.32 

1.91 
2.00 

2.095 

2.13 

2.275 

2.565 

2.545 

2.64 

2.75 
2.82 

2.91 

5.09 

5.18 

5.57 

5.55 

1 
X^ 

0.849 

0.785 

0.733 

0.633 

0.61*3 

0.611 

0.578 

0.550 

0.524 

0.500 

0.478 

0.459 

0.440 

0.423 

0.595 

0.579 

0.566 

0.555 

0.544 

0.524 

0.515 

0.297 

0.282 

ÖW . 1 5¥ 

^ ^ x ^ 5 ï ^ 
(g.cm"2) 

1740 

1710 

1670 

1625 

1595 

1565 

1530 

1510 

1505 

1475 

1475 

1450 

1415 

1415 

1590 

1585 

1585 

1580 

1580 

1570 

1565 

1575 

1585 

II 
(2/X'4A'2) 

5.08 

5.20 

5.33 

3.50 

5.68 

5.89 

4.15 

4.4l 

4.70 

5.00 

5.55 

5.67 

6.c6 

6.44 

7.27 

7.74 

8.17 

8.66 

9.15 

10.25 

10.75 

11.95 

15.16 

I2 
(2X'+l/X'2) 

5.08 

5.17 

5.27 

5.58 

5.51 

• 5.74 

5.79 

5.94 

4.09 

4.25 

4.45 

4.57 

4.74 

4.91 

5.24 

5.42 

5.59 

5.77 

5.94 

6.23 

6.45 

6.35 

7.18 

Table 5. Simple extension resu l t s for_butyl_rubber_at_25°C. 



time 

(ttiins.) 

1 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

120 

140 

Ij " 5.179 I 

h 
12330 

12030 

11800 

11680 

11620 

11580 

11560 

11550 

11550 

*2 

2390 

2360 

2330 

2310 

2300 

2290 

2290 

2290 

2290 

2 = ^ 

hi, 

1577 

1534 

1501 

1490 

1480 

1473 

1473 

1468 

1468 

« 1 

83 

94 

96 

95 

95 

94 

95 

96 

96 

I, = 4. 

h 
9150 

9030 

8950 

8380 

8830 

8770 

8730 

8700 

8670 

3670 

8670 

270 Ij 

^2 

4470 

4450 

4430 

4420 

4400 

4380 

4350 

4320 

4300 

4280 

4280 

= 5 

èw 

1460 

1433 

1408 

1397 

1377 

1360 

1367 

1370 

1363 

1370 

1370 

5IL 

167 

180 

183 

183 

187 

190 

137 

180 

177 

173 

173 

I, = 6 

h 
13280 

13050 

12370 

12730 

12670 

12630 

12620 

12600 

12530 

12530 

12520 

12500 

12500 

12500 

648 Ij 

^2 

7600 

7470 

7370 

7230 

7220 

7210 

7200 

7130 

7170 

7150 

7150 

7150 

7150 

7150 

= 10 

1233 

1207 

1193 

1133 

1180 

1177 

1167 

1170 

1173 

1168 

1165 

1162 

1162 

1162 

ÏÏ1 

148 

147 

145 

143 

140 

140 

133 

139 

138 

137 

138 

133 

133 

138 

I, = 6.443 l2 = 

h 
13000 

12730 

12670 

12620 

12530 

12570 

12570 

12570 

12570 

h. 
8500 

8350 

8230 

8220 

8200 

3170 

3150 

8150 

8L50 

10 

1350 

1320 

1313 

1313 

1313 

1313 

1320 

1320 

1320 

èw 

140 

137 

137 

132 

129 

130 

127 

127 

127 

Table k. Relaxation of the tirinclpal stresses t^ and tr, for various biaxial defoliations of butyl rubber 

at O'C. s=— and j=— were calculated from 8.15. All quoted values are In g.cm ^. 



time 

(mins.) 

1 

10 

20 

30 

40 

50 

60 

70 

30 

90 

100 

110 

120 

130 

140 

160 

180 

U-5 

h 
10350 

10700 

10620 

10570 

10520 

1W70 

10420 

10330 

10350 

10320 

10280 

10270 

10270 

Ip = 5.283 

^2 

3480 

3450 

3420 

3400 

3370 

3370 

3370 

3350 

3330 

3320 

3320 

3320 

3320 

1463 

1440 

1432 

1420 

1413 

14C8 

1400 

1393 

1392 

1390 

1380 

1373 

1373 

130 

128 

127 

127 

127 

127 

128 

128 

127 

125 

127 

128 

128 

I , = 5 

*1 

10730 

10570 

1W30 

10350 

10280 

10230 

10180 

10130 

10120 

10120 

10120 

Table k (continued) 

I„ = 6.011 

*2 

5430 

5J80 

5320 

5280 

525' 

5230 

5200 

5130 

51uO 

5120 

5120 

1557 

1522 

1503 

1487 

1477 

1463 

1457 

1450 

1453 

1470 

1470 

i l l 

133 

140 

140 

143 

137 

143 

138 

140 

137 

128 

128 

h '-' 

h 
17130 

16800 

16580 

16420 

16300 

16180 

16080 

16020 

15920 

15850 

15780 

15750 

15720 

15700 

15670 

15670 

15670 

I , = 10.725 

' 2 ___ 

7970 

7750 

7620 

7520 

7470 

7430 

7400 

7370 

7350 

7330 

7320 

7300 

7300 

7300 

7300 

7300 

7300 

1313 

1297 

1277 

1267 

1260 

1243 

1227 

K,23 

1203 

1197 

1183 

1187 

1173 

1170 

1167 

1167 

1167 

77 

67 

67 

63 

62 

63 

63 

63 

67 

65 

63 

63 

70 

70 

72 

72 

72 

1 



t ime 

( m i n s . ) 

1 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

120 

130 

140 

160 

130 

200 

220 

240 

260 

230 

300 

^1 

h 
5600 

5420 

5300 

5250 

5200 

5130 

5170 

5160 

5150 

5130 

5130 

5120 

5100 

5100 

5W0 

5030 

5070 

• 5.179 

*2 

1270 

1240 

1220 

1200 

1180 

1170 

1160 

1140 

1130 

1130 

1130 

1130 

1130 

1130 

1130 

1130 

1130 

1^ = 5 

674 

650 

635 

629 

627 

624 

625 

628 

623 

625 

624 

622 

621 

618 

615 

617 

615 

87 

88 

87 

85 

83 

30 

73 

73 

72 

73 

73 

73 

74 

74 

75 

75 

75 

^ 1 -

*! 

3930 

3670 

3550 

3500 

3480 

3470 

3450 

3440 

3430 

3400 

3350 

3330 

3320 

3310 

3300 

3230 

3230 

3270 

3270 

3250 

4 .270 

^2 

1800 

1730 

1660 

1630 

1600 

1530 

1570 

1570 

1570 

1550 

1530 

1500 

1500 

1500 

1500 

1500 

1500 

1500 

1500 

1500 

2 - ^ 

5Ï, 

630 

613 

593 

595 

600 

600 

598 

593 

597 

590 

530 

587 

530 

577 

573 

570 

567 

563 

563 

563 

S 5 , 

51 

62 

53 

54 

48 

45 

43 

44 

43 

43 

45 

37 

38 

40 

40 

43 

43 

44 

44 

46 

^ 1 " 

h 
5600 

5230 

5730 

5050 

4950 

4900 

4870 

4830 

4810 

4780 

4770 

4730 

4730 

4730 

4730 

4730 

4730 

6.648 ] 

^2 

3200 

3050 

2970 

2920 

2870 

2830 

2820 

2800 

2770 

2750 

2720 

2700 

2760 

2700 

2700 

2700 

2700 

2 = 10 

¥., 
520 

432 

470 

463 

450 

443 

445 

442 

442 

440 

445 

440 

440 

440 

440 

440 

440 

66 

62 

60 

59 

59 

53 

53 

58 

56 

55 

52 

52 

52 

52 

52 

52 

52 

h-

h 
5570 

5280 

5130 

5050 

4950 

4900 

4370 

4830 

4810 

4770 

4770 

4730 

4730 

4730 

4730 

4730 

4730 

4730 

6.443 

^2 

3500 

3330 

3210 

3200 

3170 

3140 

3120 

3090 

3070 

3060 

3030 

3030 

3030 

3030 

3030 

3030 

3030 

3030 

l2 = 10 

613 

585 

575 

557 

533 

523 

523 

520 

523 

513 

513 

5C8 

508 

508 

508 

508 

503 

508 

42 

41 

37 

42 

45 

44 

44 

43 

43 

44 

40 

43 

43 

43 

43 

43 

43 

43 

Table 5. Relaxation of the principal s t ress t^ and tg for various biaxial deformation of natural 

rubber a t 25''C. ^~ and g ^ vere calcvOated frciii 3.15. All quoted values are in g.cm"'. 



t ime 

(mins . ) 

1 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

120 

140 

160 

130 

200 

220 

240 

260 

230 

300 

1^ = 5 

t l 

5920 

5820 

5730 

5630 

5610 

5600 

5570 

5540 

5520 

5490 

5470 

5440 

5430 

5430 

5410 

5400 

5390 

5330 

5370 

h-~ 
S 

1720 

1680 

1670 

1650 

1630 

1630 

1630 

1630 

1620 

1620 

1610 

1600 

1600 

1600 

1600 

1600 

1600 

1600 

1600 

.283 

844 

830 

814 

302 

799 

795 

792 

735 

732 

777 

773 

768 

776 

766 

765 

• 761 

760 

753 

755 

29 

28 

30 

31 

29 

30 

31 

32 

32 

32 

31 

32 

33 

32 

33 

34 

35 

35 

36 

l2 = 6 

S 
4700 

4450 

4320 

4250 

4200 

4180 

4170 

4140 

4130 

4130 

4130 

4120 

4100 

4100 

4090 

4C80 

4070 

4060 

4050 

4040 

.011 1, = 

^2 

2320 

2250 

2200 

2170 

2170 

2150 

2140 

2130 

2130 

2120 

2100 

2090 

2090 

2080 

2070 

2070 

2070 

2070 

2070 

2070 

5 

ir, 

701 

647 

621 

613 

596 

594 

592 

537 

583 

591 

596 

593 

593 

593 

595 

591 

536 

533 

532 

577 

47 

57 

59 

58 

62 

62 

61 

61 

61 

62 

53 

53 

54 

54 

53 

53 

55 

55 

56 

57 

I l = ^ 

h 
6970 

6530 

6250 

6090 

6050 

6033 

5020 

5930 

5960 

5940 

5930 

5900 

5860 

5330 

5790 

5760 

5730 

5690 

I J = 10.725 

*2 

3330 

3100 

2960 

2900 

2870 

2340 

2820 

2800 

2800 

2780 

2770 

2760 

2750 

2730 

2727 

2710 

2700 

2633 

4W 
d l , 

642 

616 

590 

571 

572 

573 

573 

572 

570 

568 

567 

562 

558 

557 

552 

549 

543 

540 

44 

35 

33 

34 

32 

31 

29 

28 

29 

23 

23 

23 

23 

29 

23 

S 

29 

29 

^1 = 

h 
8230 

7570 

7320 

7180 

7130 

7030 

7000 

6950 

6930 

6900 

6380 

6350 

6830 

6820 

6810 

6300 

6300 

6300 

6730 

6770 

6770 

3.434 

^2 

4300 

4530 

4410 

4340 

4270 

4230 

4200 

4170 

4140 

4110 

4100 

4080 

4070 

4050 

4CM0 

4020 

4000 

3930 

3970 

3940 

3920 

I J = 20 

5ï, 

521 

437 

456 

453 

450 

447 

44; 

443 

443 

443 

443 

440 

440 

439 

442 

445 

443 

447 

443 

452 

455 

37 

41 

41 

40 

39 

39 

33 

37 

37 

36 

36 

36 

35 

36 

35 

34 

33 

32 

31 

30 

29 

Table 5 (continued) 
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1 
x>' 

0.282 
0.524 
0 . 3 ^ ^ 
0.555 
0.366 
0.579 
0.593 
0.425 
0.440 
o.i^59 
0.478 
0.500 
0.524 
0.550 
0.578 
0.611 
0.643 
0.688 
0.755 
0.785 
0.849 
1.17 
1.56 
1.56 
1.77 
2 .01 
2.25 
2 .49 
2 .79 
5.06 
5.56 
5.67 
4 .0 

Table 6 . 

I 2 

(2X '+ lA^2) 

7.18 
6.28 
5 .9^ 
5.77 
5.59 
5.42 
5.24 
4 .91 
4 . 7 ^ 
il-.57 
4.45 
4.25 
4.09 
5 .9^ 
5-79 
5 .7^ 
5-51 
5.53 
5-27 
5.20 
5.08 
5.08 
3.32 
5 .71 
4.26 
5.05 
5.97 
7 .0 
8.52 

10 .01 
11.90 
14.04 
16.50 

c)W 1 Ö¥ 
^ ^ P - ^ ^̂ = 

ÖW 1 öw 

(g.cm"^) 

1.5^^ 
1.55 
1.5^^ 
1.55 
1.55 
1.55 
1.5i^ 
1.5i^ 
1.55 
1.55 
1.55 
1.55 
1.56 
1.56 
1.55 
I -56 
1.56 
1.57 
1.57 
1.58 
1.59 
1.65 
1.65 
1.68 

1.71 
l.'J^ 
1.76 
1.79 
1.85 
1.86 
1.89 
1.91 
1.92 

c a l c u l a t e d from. 7 . I and 7 . 2 . 
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FIGURE 13 AN EXAMINATION OF 7. 11 FOR BUTYL RUBBER AT 0 C 


