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ABSTRACT 

New computational technique based on linear-scale differential analysis (LSDA) of digital image is proposed to find the 

best focus position in digital microscopy by means of defocus estimation in two near-focal positions only. The method is 

based on the calculation of local gradients of the image on different scales using its convolution with a number of 

differential filters of linearly varying sizes, consequent removal of noisy pixels out of consideration, and selection of 

pixels at the edges of objects. It is shown that the mean values of the selected gradients decrease while the scale increases 

thus the rate of change of these mean values of gradients unambiguously determines the magnitude of digital image 

defocus as a function of scale. Using this method the value and sign of defocus can be found if the result of LSDA of 

captured images is compared with pre-defined look-up table. The robustness of the proposed method to spatial noise is 

achieved by ignoring pixels that are corrupted by spatial noise within the areas of the image outside the edges of objects. 

Most computational operations of the method are based on integer arithmetic that simplifies its practical implementation 

and significantly improves the performance. The latter aspect is particularly important for practical use in real-time 

imaging systems. 

 

Keywords: Digital image, defocus blur, autofocus, local differential response, histogram of gradients. 

1. INTRODUCTION 

The most known algorithms for search of the best focus position of imaging system are based on consequent measuring 

of the estimation function in different positions of lens and determination of the extremal value of this function [1-3]. 

However such technique in practice is insufficiently effective because it requires several iterations and takes a long time 

to provide mechanical movements of lens before the best focal position is found. Recently the method of phase search 

[4-5] has been proposed and realized. It provides faster technique however it has a significant drawback of layout 

complexity and high cost of the imaging system. Therefore the perspectives of application of this technique are limited. 

The development of fast and cost-effective method of search for the best focus position with minimum measurements of 

the estimation function is of current interest. 

Basic principles of blur estimation to be taken in consideration as guidelines for fast algorithm of best focus position 

search have been published in [6-10]. In present paper we propose a method of best focus position search which is based 

on linear-scale differential analysis (LSDA) of digital image. This technique combines the advantages of high-speed 

performance and reduced sensitivity to spatial noise. 

Thus formation of resulting image intensity distribution )y,x(g  on digital sensor of imaging system may be described 

as a convolution of non-distorted image intensity function ),( yxf  with kernel ),( yxh  and additive spatial noise ),( yxn : 

 ),(),(),(),( yxnyxhyxfyxg  , (1) 

where x, y – spatial coordinates in the image plane,   means the convolution operation, ),( yxh  - kernel of distortion  

including irremovable aberrations of optical system and defocusing. In present work we do not separate the kernel 

),( yxh  according to physical factors because it is not important for given task. The position of best focus should be 

found as the position of the lens providing the highest sharpness of the image wherein the knowledge of the kernel is out 

of interest. 
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2. LINEAR-SCALE DIFFERENTIAL ANALYSIS 

In [11] the method of digital image deblurring based on linear-scale differential analysis (LSDA) has been proposed. In 

present paper the same analysis is used to evaluate the image blur which is the measure of imaging system defocus. Let’s 

recall the basic principles of linear multi-scale analysis. Let’s consider digital gray-scale image jif ,  having width M (x-

coordinate, index i) and height N (y-coordinate, index j) pixels as a source. Assume that defocused image jig ,  may be 

represented as a result of convolution of jif ,  with a blur kernel jih , . Then the image on sensor will be described as: 

   
p q

qpqjpiji hfg ,,, . (2) 

Assume that jifg jiji ,,,   and no blur occurs if the optical system provides the best focus position. 

Let’s consider a number of square digital filters separately for x and y coordinates, with odd number of rows and 

columns SS   ( 3S ) in the form: 

 

















ccc

cc

ccc
S
qp

SqSSp

SqSp

SqSpS

Kx

,0,1

,0,0

,0,1
)(

, ,   

















ccc

cc

ccc
S
qp

SqSpS

qSpS

qSSpS

Ky

0,,1

0,,0

0,,1
)(

, , (3) 

where 2)1(  SSc , p and q – indices on x and y coordinates, respectively. These indices change within the range from 

cS  to cS . Further we will call S as “scale” similar to the definition used in wavelet-analysis. The examples of two 

digital filters of S=3 and S=5 scales are given below: 
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It should be noted that )3(Kx  and )3(Ky  in (4) represent the well-known Prewitt filters which are widely used for edge 

detection in digital image processing. As it has been shown in [11] filters )5(Kx  and )5(Ky  and following (S>5) ones 

allow to reduce the influence of noise because of their averaging properties. This noise-dumping property becomes better 

as scale S grows, however it results in a loss of fine details of the image. The set of filters (3) satisfy the conditions: 
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Using sequent discrete convolution of source image jig ,  with the filters (3) under different scales we get the arrays 

 S
jiRx ,  and 

 S
jiRy , : 
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which we’ll call normalized differential responses in the point with coordinates (i, j) along the correspondent coordinate 

in definite scale S. In expressions (5) and (6) the normalizing coefficient A(S) is equal to 4/)1( 2 SS . )(SA  is defined 

in this way to provide the equality of absolute values of integral differential responses xC  and yC  for any scale S for the 

whole image: 

 SconstCRySconstCRx y
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It should be noticed that local values of xC  and yC  calculated in the vicinity of the edge of the object are equal to the 

difference of intensity of source image in this neighborhood location for any scale S. 

Then we need to find the arrays of gradients in corresponding scales: 

    2)(
,

2)(
,

)(
,
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S
ji RyRxR  . (8) 

As it is mentioned above for scale S=3 filters )3(Kx  and )3(Ky  are the Prewitt filters so the value 
)3(

, jiR  is obviously the 

local gradient. For scales 5S  the values 
)(

,
S
jiR  are the gradients averaged across the local area thus said area is defined 

by the sizes of filters )(SKx  and )(SKy . 

3. DEFOCUS BLUR ESTIMATION 

The algorithm of evaluation of the defocus of an optical system is tested on three examples of simplified test images. We 

assume that defocus blur kernel jih ,  is Gaussian with parameter . First test image represents a sharp step edge of 100 

to 200 units of grey-level intensity, the second one is the same edge blurred by Gaussian kernel with 2  and the third 

one is a solitary single noisy pixel of 100 units of grey-level intensity on a uniform background (grey level 100). The 

profiles of these images along x  direction are represented in Figure 1 (top row). Applying linear multi-scale analysis to 

the test images, one can calculate, using (5) and (6), the normalized differential responses 
 S

jiRx ,  and 
 S

jiRy , . The results 

of calculation of normalized differential responses 
)(

,
S
jiRx  along x  coordinate for three types of images direction are 

represented in Figure 1. In Figure 1-A top view shows the profile of intensity of source image as a sharp step edge. From 

top to bottom the profiles of normalized differential responses 
)(

,
S
jiRx  for four lowest scales (S=3, 5, 7 and 9) are shown. 

In Figures 1-B and 1-C the same illustrations are represented for blurred ( 2 ) step edge and single noise intensity 

fluctuation on uniform background, respectively. 

As it has been noted in [11] that the pixels corresponding to maxima of absolute values 
 S

jiRx ,  and 
 S

jiRy ,  are found at the 

edges of the objects. In order to find these pixels it is necessary to calculate auxiliary arrays of derivatives of differential 

responses on corresponding coordinates and scales: 
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Any pixel with coordinates ),( ji  we mark as a pixel lying at the edge if: 
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This expression means that at the first stage of consideration the direction having the higher absolute value of differential 

response should be found and then the analysis of derivative signs in neighboring pixels is carried out along the 
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corresponding direction. If derivative changes its sign the corresponding product in (10) becomes negative. Hence the 

pixel with coordinates ),( ji  can be defined as a point of local gradient maximum. Below, the values of these maxima we 

denote as 
)(

,
S
jiRm . It should be mentioned that the rule (10) produces points of local gradient maxima in pairs, because 

the sets of filters (3) produce conjugated symmetrical values of differential responses at opposite sides of the edge. 

 

Figure 1. Normalized differential responses )(
,
S
jiRx  in four lowest scales S . 

A – sharp step edge, B – blurred step edge, C – single noisy pixel. 

 

Figure 2 shows that maxima values of intensity gradients 
)(

,
S
jiRm  decrease if scale S  grows both for sharp and blurred 

step edges. The same dependence is demonstrated for a single noisy pixel. The scale-fading is stronger for sharp edge 

(
)3(

,
)9(

, 4.0 jiji RmRm  , see Figure 2-A) and weaker for blurred edge (
)3(

,
)9(

, 75.0 jiji RmRm  , see Figure 2-B) the scale-fading 

of 
)(

,
S
jiRm  depends on blur parameter. It is stronger for sharper step edges. This property of filters (3) allows to define a 

method of search for the best focus. 

 

Figure 2. Scale-fading of )(SRm . 

A – sharp step edge, B – blurred step edge, C – single noisy pixel. 
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The scale-fading of 
)(

,
S
jiRm  in the vicinity of noise pixels on a uniform background should be considered separately. 

Figure 2-C shows that 
)(

,
S
jiRm  value for single noisy pixel decreases rapidly (

)3(
,

)9(
, 1.0 jiji RmRm  ) due to averaging 

properties of filters (3). This advantage allows to suppress the contribution of additive noise. 

Figures 1, 2 illustrate 1-D profiles of gradients only. In the 2-D case it is convenient to use histograms of gradients in 

different scales, calculated according to (8). If blurred step edge (Figure 1-B) is used as a test image, then histograms of 

gradients in four lowest scales can be represented as shown in Figure 3 row A. Here the calculation of histograms have 

been made using a moderate-size window. Besides, the null values of gradients are excluded. The number of peaks in 

histograms grows with scale S . After selection of pixels lying on the object’s edges using (10), the histograms of 

gradients )(SRm  in four lowest scales may be represented as follows (see Figure 3 row B). 

 

Figure 3. Histograms of intensity gradients of blurred )2(   step edge (A) and maxima values of intensity gradients (B). 

 

The presented histograms correspond to single blurred edge of definite contrast. In the case of image comprising a large 

number of blurred objects having different contrasts, the histograms of gradient’s maxima have a lot of peaks of different 

height even when no noise is applied to the image. It is impossible to analyze the scale-fading of a separate gradient’s 

maximum. That’s why it is necessary to use the mean values averaged across the whole image. Here we introduce the 

gradient mean value )(SR  and gradient’s maxima mean value )(SmR  in different scales S : 
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and scale-fading indices of )(SmR : 

 
)3(

)(
)(

mR

mR
B

S
S  . (12) 

It is evident that the 1)3( B . In Figure 4-A the values of )(SB  are represented for sharp step image ( 0 ) and blurred 

step images. One can see that decrease of scale-fading values )(SB  depend on the blur value. It is high for sharp step 

image and becomes lower with defocus. 

Defocus of the image may be evaluated definitely under consideration of )5(B  or )7(B . In Figure 4-B the dependences 

of these indices on the parameter of Gaussian blur kernel is represented for step image. The blur parameter (defocus 
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measure) can be evaluated if )5(B  or )7(B  values are known. In order to determine the sign of defocus it is necessary to 

repeat the calculation of )5(B  or )7(B  in different focal position of imaging system. 

The proposed method can be applied for any imaging system if the lookup table with focal position data corresponding 

to the calculated focus measure is preliminary filled. 

 

Figure 4. Scale-fading indices (A) and dependences of )5(B  and )7(B on blur parameter (B). 

4. NOISE REJECTION 

In practice, digital images are often corrupted by the spatial noise. This noise influences the stability of image 

processing, including the algorithm of best focal position search. It is important to test the proposed method for noise 

images. Below we describe how it is possible to make the proposed method more stable and less sensitive to the spatial 

noise. 

In [12] it has been shown that intensity gradients of noisy image calculated with the help of low-scale differential filters 

have Rayleigh distribution. For LSDA this distribution can be defined as: 
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where )(Sa  is the standard deviation of Rayleigh distribution in the S  scale. 

In present work the intensity gradients are calculated in different scales. For each scale S  these gradients are distributed 

with definite standard deviation )(Sa  thus the ratio of distribution widths of noisy gradients and gradients calculated in 

pixels at object’s edges decreases while scale S  grows. 

In Figure 5-A the histograms of gradients of blurred image ( 2 ) corrupted by the Gaussian noise with standard 

deviation equal to 0,01 are represented. One can see from Figure 3-A and Figure 5-A that even low spatial noise 

influences considerably on the histograms of intensity gradients in all scales. In the low scales this influence if more 

apparent: low values of true image gradients become invisible under high noisy gradients. However Figure 5-A shows 

that in high scales the portion of true image gradients masked by noisy gradients decreases while scale S  grows. Those 

gradients which correspond to pixels at object’s edge become larger due to adding of values of noisy gradients. This 

results in “expanding” of gradient’s peaks in accordance with Rice distribution: 
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where   - mean value of intensity gradient for definite object’s edge. 
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Figure 5. Histograms of intensity gradients of blurred )2(   and noisy step edge before (A) 

and after (B) rejection of noisy gradients. Maxima values of intensity gradients (C). 

 

The rejection of noisy gradients is absolutely necessary otherwise the calculation of derivatives of intensity gradients 

using (9) will produce false zero-crossings and rule (10) will produce a lot of false points of local gradient maxima. 

Therefore we suggest to make the following steps of algorithm illustrated by flowchart in figure 6: 

 

Figure 6. Flowchart of proposed algorithm. 
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In Figure 5 row B the histograms of intensity gradients obtained with a threshold at K=2 in accordance to the flowchart 

(Figure 6) are shown. In Figure 5 row C the histograms of intensity gradients after calculation of )(SRm  and )(SmR  are 

represented. 

5. REMARKS 

In conclusion, some important recommendations for practical implementation of the proposed method should be done. 

First of all, it should be noticed that scale-fading indices in Figure 4-A do not depend on image content if the object’s 

edges in this image are isolated. If the edges of different objects intersect, the proposed method requires an additional 

procedure of rejection. This rejection should be applied to those gradients which are calculated in pixels lying at the low 

contrast edges. Said rejection may be done similarly to noise rejection technique described in Chapter 4. If no rejection 

applied, false zero-crossings can change the values of scale-fading indices in Figure 4-A. That inevitably results in errors 

of )5(B  and )7(B  values. 

The proposed method is expected to be effective in microscopes, when the blur parameter is uniform across the field. 

Nevertheless, the method can be used in any imaging system, even with different blur parameters across the image. In 

this case it is advisable to select a regions of interest with a constant blur. 

It is evident that the level of spatial noise influences the effectiveness and accuracy of the proposed method. High level 

of noise in the image results in the distortion of the distribution of intensity gradients on a uniform background, 

especially in the scale with S=3, and makes thresholding procedure much more difficult. In this case, the algorithm of the 

proposed method can be modified by excluding the S=3 scale, and replacing (12) by expression )5()()( mRmRB SS  . 

Further 1)5( B , and the lookup table should be modified. The advantages of LSDA can be exploited in a wide range of 

imaging systems and image processing tasks, because of its low sensitivity to the corruption factors such as a high-level 

noise. 
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