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Abstract

Named Entity Recognition (NER) for rare long-tail entities as e.g. often found in domain-
specific scientific publications is a challenging task, as typically the extensive training data
and test data for fine-tuning NER algorithms is lacking. Recent approaches presented
promising solutions relying on training NER algorithms in a iterative distantly-supervised
fashion, thus limiting human interaction to only providing a small set of seed terms. Such
approaches heavily rely on heuristics in order to cope with the limited training data size.
As these heuristics are prone to failure, the overall achievable performance is limited.

In this thesis we introduce Coner: A collaborative approach to incrementally incorpo-
rate human feedback on the relevance of extracted entities into the training cycle of such
iterative NER algorithms. Coner allows to still train new domain specific rare long-tail
NER extractors with low costs, but with ever increasing performance while the algo-
rithm is actively used. We do so by employing our intelligent entity selection mechanism
that solely selects and visualises extracted entities with the highest potential knowledge
gain from users interacting with them and providing feedback on facet relevance. Addi-
tionally, users can add new typed entities they deem relevant. Our Coner collaborative
human feedback pipeline consists of three novel modules; a document analyser that ex-
tracts deep metadata from documents and selects a representative set of publications
from a corpus to receive human feedback on, an interactive document viewer that allows
users to give feedback on and add new typed entities simply by selecting the relevant text
with their mouse and an explicit entity feedback analyser that calculates a facet relevance
score through users’ majority vote for each recognised entity. The resulting Coner entity
facet relevance scores are then incorporated in the TSE-NER training cycle to boost the
expansion and filtering heuristic steps. Remarkably, we revealed that even with limited
availability of human resources we were able to boost TSE-NER’s performance by up to
23.1% in terms of recall, up to 5.7% in terms of precision and the F-score with 13.1%
depending on the setup of our smart entity selection mechanism and instructions given
to evaluators.

Keywords: Information Extraction, Named Entity Recognition, Document Metadata,
Long-Tail Entity Types, Human Feedback, Crowdsourcing
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1 Introduction

With the ever increasing amount of scientific publications, there is a growing need for
methods that facilitate the exploration and analysis of a given research field in a digital
library collection [24], but also for techniques which can provide effective retrieval and
search experiences. To this end, “deep metadata” extracted from scientific publication,
i.e., metadata able to represent domain-specific aspects (facets) in which a document can
be understood within its (research) domain, allows for novel exploration capabilities [28],
like faceted keyword publication search and trend exploration and visualisation of facets
in digital libraries [44].

Domain-specific typed named entities [30] are a representative example of deep meta-
data. Consider the domain of data processing and data science, which is currently popular
due to its real-life implications on machine learning algorithms and data-centric business
models. In this domain, the main entity types of interests to the user base of a scientific
collection would for example be; datasets used in a given publication, the methods applied
to the data or used in implementation, or software packages realising these methods [26].

The availability of deep metadata about the facets (datasets and methods) would
enable rich queries like; Which research methods are trending in the current domain?,
Discover state of the art methods for point of interest recommendation that have been
applied to geo-located social media data with high accuracy results, or Which methods
are commonly applied to the MovieLens dataset? Figure 1.1 illustrates an example of an
intelligent query that requires the availability of facets deep metadata in publications.
In order to successfully retrieve the list of applied methods to the MovieLens dataset
and publications in which these methods occur, it is crucial that named entities of types
method and dataset are automatically extracted and stored for each uploaded publication.

However, extracting and typing of named entities for this scenario is hard, as most
entities relevant to a specific scientific domain are very rare, i.e., they are part of the en-
tity long-tail. Most current state-of the art Named Entity Recognition (NER) algorithms
focus on high-recall named entities (e.g. locations and age) [17], as they rely on exten-
sive manually curated training and test data. Due to the rare nature of long-tail entity
types, training data is scarce or non-available. Few approaches addressed this problem by
relying on bootstrappin (a technique to expand training data by generating synthetic du-
plicates of existing items) [38], or entity expansion [4, 17] techniques, achieving promising
performance. Entity expansion relies on heuristics to enhance a set of extracted entities.
However, how to train high-performance long-tail entity extraction and typing with min-
imal human supervision remains an open research question.

In previous work, TSE-NER is introduced, an approach for sentence classification
and named entity extraction using distant supervision [30]. This approach was further
extended to recognise facets relevant to academic literature and data processing [28]. At
its core, this approach is iterative, with each iteration starting with a set of known in-
stances of defined types. Creating these starting seed sets of known instances is designed
to be quick and with minimum human effort; for each type it is sufficient to have one or
two domain experts think of between 5 to 50 known entities. These sets are then heuris-
tically expanded and annotated to generate training data to train a new traditional NER
classifier, and heuristically filtered to remove likely false positives to create the entity
set for the next iteration. As results of experiments in [27] have shown, this approach is
hampered by the simplicity and unreliability of the heuristics used for expanding, but
especially by those used for filtering the current iteration’s entity set.
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The core goal of this thesis is to extend TSE-NER with incremental, collaborative
feedback from human contributors. We introduce Coner, an approach that allows the
users of our system to continuously provide easy-to-elicit low-effort feedback on the se-
mantic fit and relevance of extracted entities and add entities that they deem relevant for
a specific facet. This feedback is then exploited to support the heuristic expansion and
filter phases of the TSE-NER algorithm. The human-in-the-loop approach allows us to
still maintain the advantages of the previous work’s initial design (i.e., training a NER
algorithm cheaply, only relying on a small seed set, and providing an immediate result to
users with acceptable extraction quality as discussed in [27]), while exploiting the human
feedback into the next NER training iteration. Coner allows the TSE-NER system to
improve its performance over time by benefitting from additional human intelligence in
the training process.

In this thesis we focus on answering the following research questions:

– Research Question 1 (RQ1): What is the nature of elicited human feedback? We
want to unveil insights about user’s behaviour when interacting with Coner, to get
tangible results of how efficient and scalable human feedback is. The biggest bottle-
neck in our approach is the scarcity of human resources; time and motivation, thus
it is crucial that each instance of human feedback leads to the maximum potential
knowledge gain with regards to entity relevance (we evaluate the knowledge gain by
measuring the resulting TSE-NER’s performance in RQ3). We measured the nature
of human feedback for example with average time spend to give feedback on a single
entity, inter-annotator agreement between pairs of users and how often users change
their opinion about an entity’s relevance.

– Research Question 2 (RQ2): In how far does human feedback confirm or conflict
with TSE-NER heuristics? It is crucial that this preliminary research question is
answered before we can do any type of performance comparison. We hypothesise
that if only a miniscule conflict between human feedback and TSE-NER heuristics is
observed, then Coner will most likely not have a noticeable positive boost of TSE-
NER performance. In our evaluation we will measure the similarities between entity
retention rate, false positive and false negative rates between different filtering setups
with and without incorporated human feedback.

– Research Question 3 (RQ3): How does incorporating human feedback on entities
into the TSE-NER expansion and filtering steps improve the overall performance
with respect to precision, recall, and F-measures? The main goal of Coner is to boost
TSE-NER’s performance by utilising humans’ superior ability to judge relevance of
entities in their full context compared to machines, thus we hypothesise that Coner
will indeed improve the performance measures and help improve faceted keyword
search in digital libraries.

To answer these research questions, the following original contributions are made in this
thesis:

1. We describe Coner, an extension for TSE-NER which incorporates collaborative user
feedback for continuously supporting its term expansion and entity filtering steps.
The Coner pipeline consists of three novel modules; a corpus document analyser
that analyses each document and generates the necessary information to visualise
entity occurrences (and filters documents on domain representativeness metrics for
lab experiments), a document annotation viewer that visualises named entities and
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allows users to interact with them, and a feedback analyser that calculates relevance
scores for evaluated entities to be leveraged to boost TSE-NER heuristics.

2. We evaluate our approach on a collection of 11,598 data science publications from
11 conference series. We show that even limited feedback can significantly improve
the quality of the entity expansion and filtering steps. Two experiments gave signif-
icant insight in how human feedback can be utilised to boost TSE-NER. The first
exploratory experiment performed on 10 papers and with 10 users shows that by util-
ising human feedback, up to 94.3% of false positives can be detected for the dataset
entity type and 57.9% for the method entity type, inter-annotator agreement of up
to 0.61, an increase of recall of up to 23.1% and a boost of F-score of up to 13.1%.
For the second experiment only entities with high expected information gain were
selected by Coner to receive human feedback. Our smart entity selection mechanism
only visualised entities that were classified by both facet NER classifiers. This resulted
in an average per-entity annotation time of just above 15 seconds and an increase of
precision of up to 5.7% by boosting the expansion and filtering steps of TSE-NER.

Preliminary versions of this thesis’ contributions have been previously introduced in
[40]; a workshop submission paper with me as lead author and several other authors.
Parts of this thesis (related work in Section 2 and an overview of TSE-NER in Section
3) is based on the contents of this workshop paper.

The remainder of this thesis is structured as follows; related work is aggregated and
discussed in Section 2 and Section 3 provides an overview of TSE-NER, the baseline
distantly-supervised long-tail named entity extraction approach. Section 4 introduces
our novel extension for continuous collaborative human-feedback called Coner, while in
Section 5 we describe how Coner boosts the baseline algorithm’s performance. In Section 6
we evaluate the effectiveness of our Coner novel extension in two experiments and discuss
the meaning of our results. Finally we conclude in Section 7 and present an outlook of
future work in Section 8.
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Figure 1.1: An example of how deep metadata can be used to construct an intelligent query
utilising the method and dataset facets
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2 Related Work

A considerable amount of literature published in recent years addressed the deep analy-
sis of text such as topic modelling, domain-specific entity extraction, etc. Common ap-
proaches for deep analysis of publications rely on techniques such as dictionary-based [37],
rule-based [9], machine-learning [36] or hybrid (combination of rule based and machine
learning) [39] techniques. Despite its high accuracy, a major drawback of dictionary-based
approaches is that they require an exhaustive dictionary of domain terms. These dictio-
naries are often too expensive to create for less relevant domain-specific entity types. The
same holds for rule-based techniques, which rely on formal languages to express rules and
require comprehensive domain knowledge and time to create. The lack of large collec-
tions of labelled training data and the high cost of data annotation for a given domain is
one of the main issues of machine learning approaches. In recent years, many attempts
have been made to reduce annotation costs such as bootstrapping [38] and entity set
expansion [4, 17] which rely only on a set of seed terms provided by the domain expert.
Unfortunately, this reliance on very weak supervision (i.e. just providing the seed terms)
limited also the maximal achievable performance with respect to precision, recall, and
F-scores.

Active learning is another technique that has been proposed in the past few years,
asking users to annotate a small part of a text for various natural language processing
approaches [35, 41, 13] or generating patterns used to recognize entities [23]. With active
learning, the unlabelled instances are chosen intelligently by the algorithm (e.g. least con-
fidence, smallest margin, informativeness, etc) for annotation. Furthermore, combining
an active learning approach with uncertainty sampling as retraining annotation selection
method has been widely researched [43, 21, 46, 45, 34].

The proposed approach in this paper is inspired by active learning techniques [35, 41,
13] but relies on training NER algorithms for long-tail entities in a distantly-supervised
fashion which incrementally incorporates human feedback on the relevance of extracted
entities with high expected information gain into the training cycle. In addition, in con-
trast to [13] where the authors just present bibliographic sentences to Amazon Mechani-
cal Turk annotators for labelling, our work focuses on the annotation of long-tail entities
which relies on the occurrence context for easier annotation.

We incorporate collaborative user feedback on type relevance of classified entities and
annotation of new entities to continuously support the sentence expansion and entity
filtering steps of the iterative TSE-NER algorithm [27]. Newly annotated relevant domain
specific entities are added to the seed set in the expansion step, to fetch additional relevant
training sentences and terms to increase the number of true positive occurrences in the
training data. Furthermore, we allow to filter out irrelevant entities in the filtering step,
to reduce the number of false positives detected by the noisy NER.

The unique challenges of crowdsourcing user feedback have been widely investigated.
First, proper incentivisation mechanisms for truthful evaluation and annotation are es-
sential to ensure feedback quality [16, 8]. Also, task formulation should be made with
fraudulent workers in mind [10, 12].
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3 TSE-NER: Distantly Supervised Long-tail NER

In this section we will summarise TSE-NER, the iterative five-step low-cost approach for
training NER/NET classifiers for long-tail entity types. TSE-NER was built by Sepideh
Mesbah et al. and introduced, evaluated and discussed in in [27]. For more detailed in-
formation on this approach, refer to [27].

The approach is summarised in the following five steps, as can be seen in Figure 3.1:

1. For Training Data Extraction, a set of seed terms is determined, which are known
named entities of the desired type. The seed terms are then used to identify a set of
sentences containing the term.

2. Expansion strategies are used to automatically expand the set of seed terms of a given
type, and the training data sentences.

3. The Training Data Annotation step is used to annotate the expanded training data
using the expanded seed terms.

4. A new Named Entity Recogniser (NER) will be trained using the annotated training
data for a the desired type of entity.

5. The Filtering step refines the list of extracted named entities by heuristically removing
those entities which are most likely false positives. The set of remaining entities is
treated as a seed set for the next iteration.

Figure 3.1: Overview of TSE-NER five-step iterative approach for training domain specific
NER classifiers
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The focal point of this paper is to boost the performance of the expansion and filtering
steps by continuously incorporating human feedback on visualised entities expected to
have high information gain.

3.1 Training Data Extraction

In the first step, a set of training data sentences is created by extracting all the sentences
containing any of the seed terms. In the first iteration, the seed term set can contain from
5 to 50 terms, that are provided manually by expert users at a very low cost (arguably,
any expert in a domain can name more than 5 examples of a named entity). The upper
limit of the seed term set size exists to strike a balance between NER performance and
human effort; should be small enough so one or two experts can compose the list of seed
terms in less than a few hours.

As an example of this step, consider the word “LETOR” (i.e., an entity of dataset
type) in the seed term list. All sentences containing the word “LETOR” in the corpus,
such as “We performed a systematic set of experiments using the LETOR benchmark
collections OHSUMED, TD2004, and TD2003” are extracted, and provide as examples
of the positive classification class. Surrounding sentences in the text are also extracted
to better capture the usage context of the seed entity.

3.2 Expansion

As seen in the sentence example provided in the previous section, also OHSUMED, TD2004
and TD2003 are identified as belonging to the dataset entity type, but since they are not
in our seed terms they will be labelled negatively, thus leading to more false negatives.
At the same time, the extraction of sentences in the training data that are related to seed
terms will cause a shortage of negative examples for training purposes. In order to avoid
these problems the term expansion and sentence expansion strategies were introduced
and described in more detail in the sections below.

3.2.1 Term Expansion
Term Expansion (TE) is designed to reduce the number of false negatives in the training
sentences and provide more positive examples. This approach uses semantic relatedness;
terms which are semantically similar (it is common for domain-specific named entities to
be in close proximity, e.g. to enumerate alternative solutions, or list technical artifacts) or
related to terms in the seed list should be included in the expansion. For example, given
the dataset seed term LETOR , the expansion should add semantically related terms like
OHSUMED or TD2004 which are also benchmarks used in the field of information retrieval.
First the word2vec model [31] was trained on the whole corpus by learning all uni- and
bi-gram word vectors of all terms in the corpus. Then, the NLTK1 entity detection was
used to obtain a list of all entities contained in the sentences of the training data and
cluster them with respect to their embedding vectors using K-means clustering. Silhouette
analysis is used to find the optimal number k of clusters. Finally, clusters that contain
at least one of the seed terms are considered to contain entities of the same type (e.g
dataset).

1 https://www.nltk.org

https://www.nltk.org
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3.2.2 Sentence Expansion
The Sentence Expansion (SE) strategy is designed to address the problem of the over-
representation of positive examples and to increase the size and variety of the training set.
The goal of this step is to include sentences that are similar in semantics and vocabulary
to the original training sentences, and are unlikely to contain instances of the desired
type, to serve as informative negative examples for boosting the NER training accuracy.
Doc2vec document embeddings [19] were utilised to learn vector representations of the
sentences in the corpus. For each sentence in the training data, doc2vec discovers the
most similar sentence which does not contain any known expanded seed terms instance
of the targeted type (e.g. dataset)

3.3 Training Data Annotation

After obtaining an expanded set of seed terms and training sentences, if any of the words
in the seed terms matches a word in the training sentences, the word will be labelled
positively. The annotated dataset can be used as an input to train any state-of-the-art
supervised NER algorithm.

3.4 NER Training

For training a new NER, the Stanford NER tagger2 was used to train a Conditional
Random Field (CRF) model. CRF learns the hidden structure of an input sequence by
defining a set of feature functions (e.g. word features, current position of the word labels
of the nearby word), assigning them weights and transforming them to a probability to
detect the output label of a given entity.

3.5 Filtering

In this final step the trained NER model was used to annotate the whole corpus and
consider all the positively annotated terms as candidate terms for the next round of it-
eration. As noisy training data was used to train the NER, the list of entities extracted
by the NER contained many items which are not specifically related to the entity type
of interest. Therefore, the goal of this last step is to filter out all terms which are most
likely not relevant using four basic heuristics, each relying on a different underlying as-
sumptions: 1) filtering stopwords (e.g. something); 2) concepts coming from “common”
English language (e.g. dataset, software) that could be found in Wordnet3; 3) exclude
the entities that have a reference in the DBpedia knowledge base (under the assumption
that, if they are mentioned in DBpedia, then they are not from the sought for type); and
4) exclude the entities that do not appear in the same cluster that contains a seed term,
i.e. explained in Section 3.2.1. Interested readers can refer to [27] for a more detailed
explanation.

As those heuristic expansion and filtering methods are rather basic in their nature
and based around semantic relatedness assumptions, we discuss in Section 5 how the
expansion and filtering phases can be be supported by human feedback.

2 https://github.com/dat/stanford-ner
3 http://wordnet.princeton.edu/

https://github.com/dat/stanford-ner
http://wordnet.princeton.edu/
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The TSE-NER source code is openly available4. As described earlier, TSE-NER is
not an original contribution of this thesis, but introduced as the baseline named entity
recognition algorithm [27]. This thesis extends TSE-NER with human feedback through
the Coner pipeline to boost it’s performance and get visual insights of extracted entities’
quality. The Coner pipeline is described in more detail in the next section.

4 https://github.com/mvallet91/SmartPub-TSENER

https://github.com/mvallet91/SmartPub-TSENER
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4 Coner: A Collaborative Human Feedback pipeline

As outlined in the previous section, a core design feature of TSE-NER is the heuristic
filter step in each iteration, which is designed to filter out named entities which are most
likely misrecognised (this can happen easily as the used training data is noisy due to
the strong reliance on heuristics). While the evaluation in [27] illustrated that this filter
step indeed increases the precision of the overall approach, it does also impact the recall
negatively (by filtering out true positives, i.e. entities which have been correctly identified
by the newly trained NER extractor but are filtered out by the heuristic (for example,
this could happen if a domain-specific named entity is part of common English language).
More importantly, the heuristic filter often does not reach its full potential by not filtering
false positives, i.e. entities which are incorrectly classified as being of the type of interest,
and should have been filtered out by the heuristics but were missed. A second heuristic
step of the TSE-NER training cycle is term and sentence expansion, to increase the size
of the training data and thus provide more context of positively and negatively labelled
named entities for the classifier. The size of the set of training sentences is limited by
the amount of named entities to fetch sentences with and the quality of training data is
bounded by the quality of provided seed terms.

Figure 4.1: Overview of Coner Collaborative NER Pipeline: Human feedback incorporated in
the TSE-NER expansion and filter phases, supporting or superseding heuristic decision making

Both shortcomings are addressed in this paper by introducing an additional layer on
top of the basic TSE-NER training cycle described in Section 3. Instead of treating the
algorithm only in isolation, we also consider the surrounding production system and its
users (in most cases, this would be a digital library repository with search, browsing, and
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reading/downloading capabilities). When the production system is setup, the following
pipeline workflow (see Figure 4.1) is designed to boost the TSE-NER performance and
visualise entities in the full context of their documents:

1. A NER classifier is trained for each entity type of interest (e.g. datasets, methods and
algorithms for data science) using the TSE-NER workflow, as described in Section
3 and seen in the left part of Figure 4.1, for a manually set number of iterations or
until training converges towards stable extraction performance.

2. The resulting trained NER classifier is applied to all documents in the repository to
extract all entities, annotating their full texts.

3. Instead of using these extracted entities directly as input for the filtering and ex-
pansion phases of the normal TSE-NER workflow, the annotated documents are the
input of the Coner pipeline, to start the collaborative human feedback process. See
the right side of Figure 4.1 for an overview of the three novel Coner modules:
(a) Coner Document Analyser (CDA): This module serves two purposes; analyse

documents to extract ”deep metadata” and extract entities with our smart entity
selection mechanism, which only selects named entities that were recognised by
multiple facet NERs and thus indicate the presence of a semantic overlap between
NERs (more details in sections 4.1 and 6). When deployed in a smaller scale
environment, like private lab setting, it also selects representative papers from the
document corpus based on selection criteria like availability of PDF, number of
times publication has been cited, distinct number of selected entities and journal
it was published in. However, this is not necessary when deployed in a full scale
production environment; every reader of the digital library acts as an evaluator
to some degree, because Coner would be the default document viewer for the
massive amount of papers in the library’s collection.

(b) Coner Interactive Document Viewer (CIDV): Online interactive viewer
that visualises automatically annotated entities in full context of their publication
and allows users to interact with them by giving feedback on existing annotations
or adding new named entities that they deem of a type of interest (e.g. dataset
or method).

(c) Coner Feedback Analyser (CFA): Calculates entity type labels for each entity
that received human feedback. An entity is labelled as a certain facet when the
majority of evaluators (minimum number of evaluators of three or more) rated it
as ’relevant’ for that type.

4. The resulting entities labelled as a type by CFA are incorporated in the expansion
and filter steps of the next training iteration of TSE-NER to boost performance, as
described in more detail in Section 5.

More details on each of the three Coner modules can be found in the upcoming sections
4.1, 4.2 and 4.3. All source code for the Coner pipeline modules is openly available567.

5 https://github.com/vliegenthart/coner_document_analyser
6 https://github.com/vliegenthart/coner_interactive_viewer
7 https://github.com/vliegenthart/coner_feedback_analyser

https://github.com/vliegenthart/coner_document_analyser
https://github.com/vliegenthart/coner_interactive_viewer
https://github.com/vliegenthart/coner_feedback_analyser
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4.1 Coner Document Analyser

The core functionality of the Coner Document Analyser is to analyse documents to ex-
tract ”deep metadata”, select entities according to our smart entity selection mechanism
and generate a named entity occurrences overview in the required format for the Coner
Interactive Document Viewer to visualise the selected name entities (more details in Sec-
tion 4.2).

Additionally, when deployed in a setting where the number of users of Coner is limited,
like private lab experiments with relatively little human resources, CDA also tackles the
imbalance between number of documents in the corpus versus the limited users’ time and
efforts available. In this scenario human resources are the bottleneck of our approach,
so it is crucial that we attempt to maximise the knowledge gain of each user’s feedback
input on the relevance of entities. We have designed multiple systems with the goal to
optimise efficiency of user feedback input. One of them is the design of the user experience
of the viewer itself, as described in Section 4.2. Furthermore CDA aims to optimise the
preprocessing of documents and deep metadata extraction:

– We designed the CDA module to analyse and filter publications from our corpus
into a representative set of papers to visualise in the document viewer. We define
representativeness of a paper in a domain as; the degree to which a paper conforms to
the average structure, content and subject of a reviewed and published paper in that
specific research domain. This paper selection process is based on a set of manually
picked paper features that attempt and predict high knowledge gain in terms of entity
relevance; published at a conference of interest, number of times publication has been
cited, number of distinct extracted and selected entities and availability of PDF. The
final candidate set of selected publications also undergoes a manual inspection of
domain experts to filter out any outlying papers in terms of the defined metrics for
a representative paper. More details about each step of this process can be found in
the enumeration below.

– Employ a smart named entity selection mechanism that solely selects entities with
high potential knowledge gain about the entity’s relevance. A traditional approach to
implement this is to merely select entities with a high degree of uncertainty resulting
from automatic TSE-NER heuristic filtering. We considered this option, but decided
to implement our alternative approach after evaluating our results from a preliminary
experiment as described in sections 6 and 6.2. The Coner smart entity selection
mechanism is designed to exclusively select heuristic filtered entities that were doubly
classified; recognised as a relevant entity and kept by the TSE-NER filter for multiple
facet NERs. Doubly classified entities clearly indicate an overlap of semantic spaces
between NERs for different facets, because in reality, it is extremely unlikely that a
single named entity describes a dataset and a method name.

The data flow of CDA’s steps with limited availability of user resources, from now on
called cdalimited, is visualised in Figure 4.2 and discussed in more detail below:

1. First, we manually create a set of conferences of interest confset of size confnr.
Conferences are picked for their widespread topical coverage in the domain of data
science, big data processing and natural language processing. Our document corpus is
a MongoDB database with a collection of publications owned by the Web Information
Systems Research Group8 of the faculty of EEMCS at the Delft University of Tech-

8 http://www.wis.ewi.tudelft.nl/

http://www.wis.ewi.tudelft.nl/
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nology and collected and maintained by [26, 29, 30], from now on called corpusA.
An ElasticSearch9 index is created for all publications in corpusA to enable quick
publication search and iteration.

2. Crawl publications from corpusA for each of confnr conferences of interest. For each
publication the necessary metadata and information are fetched:
(a) Title, conference name and full text: Fetched from existing publications

collection in corpusA.
(b) PDF: Check if link to PDF is present for the publication object in corpusA, and

if not, search the Arxiv API10 for the PDF document.
(c) Number of times publication has been cited (nrcited): We use this meta-

data entry to determine an approximation of how representative a paper is for
the research domain it belongs to in terms of the type of research introduced,
quality of work done and paper’s impact on the domain. We used the Google
Scholar API11 to check how many times each publication has been cited.

3. Discard publications we were unable to fetch PDF and nrcited for.
4. Extract publication’s entities for each facet (dataset and method) using our NER

classifiers trained analogous to the TSE-NER methodology (Section 3), with the
expansion and ensemble filtering heuristics enabled. Different entity selection mecha-
nism options are available to determine which extracted entities should be visualised
in the Coner viewer and receive human feedback. We choose to solely select entities
that have been doubly classified (assigned to both facets) by the NERs. More details
about entity selection mechanisms can be found in the evaluation Section 6.

5. Filter out publications with less than the manually picked threshold
min entitiesnr total distinct selected entities, to ensure viewer paper candidates con-
tain at least minimal usable amount of entities.

6. Now we have the required metadata about each publication (title, conference name,
full text, PDF, number of times cited and named entity lists), we can sort papers
(sorting scoped for each conference in confset) by number of times paper has been
cited (primary, descending) and on number of distinct entities (secondary, descend-
ing). Papers are ordered for each conference separately, because we want to ensure
there is no bias towards any conference that might be more popular in terms of av-
erage number of citations per publication, as we want to keep a wide range of topics
in our selected papers.

7. Pick each conference’s top papers according to manually set top papersnr (10 times
the maximum number of papers to receive feedback in the viewer, which is set man-
ually dependent on the amount of evaluators).

8. Apply analysis on each of top papersnr publications for each conference using the
PDFNLT12 tools for natural language text aware PDF structure analysis. PDFNLT
was built by the Aizawa Natural Language Processing Lab at the National Institute
of Informatics13 and enables the extraction of PDF structure and content information
with the workflow described in [1, 15]. PDFNLT allows us to analyse publications’
PDFs and generate the full text, a XHTML file, a list of full text sentences (with
sentence metadata like sentence identifier, and word identifiers for each word in a
sentence, that matches with word element attributes in the XHTML), a list of math
formulas and references.

9 https://www.elastic.co/
10 https://github.com/lukasschwab/arxiv.py
11 https://github.com/ckreibich/scholar.py
12 https://github.com/KMCS-NII/PDFNLT-1.0
13 http://www-al.nii.ac.jp

https://www.elastic.co/
https://github.com/lukasschwab/arxiv.py
https://github.com/ckreibich/scholar.py
https://github.com/KMCS-NII/PDFNLT-1.0
http://www-al.nii.ac.jp
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9. Match NER extracted and smart selected entities for each facet with text occurrences
in the list of sentences generated by PDFNLT for each publication to generate an
array of entity occurrences with all metadata required for each entity’s visualisation
in the Coner Interactive Document Viewer (CIDV); entity word bounding boxes,
entity text, page number, timestamp of generation and paper identifier.

10. Sort papers again on number of entity occurrences found by PDFNLT, to account for
PDFNLT entity matching error rate of about 10% (so 10% of extracted entities cannot
be matched in the sentences extracted by PDFNLT) and take top candidate papersnr
papers from each of confnr conferences. Results in a candidate viewer paper set of
size:

viewer papersnr = candidate papersnr × confnr (1)

11. Inspect viewer papersnr papers manually and pick representative papers for the do-
main (according to previously described selection criteria) with a balanced set of
entities for both facets.

12. Generate highlights file, i.e., list of highlights with format shown in Figure 4.4, for
the CIDV to load and visualise entity occurrences for final selection of viewer papers.

Figure 4.2: Corpus documents pass through Coner Document Analyser (CDA) components
(limited users setup) to fetch metadata & PDFs, extract entities, smart select entities, sort &
filter, analyse PDFs & manually inspect the final documents selection to be visualised in the
viewer
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When Coner would be deployed in a full production system, like a full scale digital
library, only five slightly modified versions of the described cdalimited steps are required,
from now on called cdaproduction. The starting document corpus is the entire paper collec-
tion or a subset of the paper collection describing a specific domain of the selected digital
library, from now on called corpuslib. The steps of cdaproduction are described below and
visualised in Figure 4.3:

1. Fetch metadata not present in digital library documents corpus. A digital library’s
document collection will most likely include most required metadata for Coner, as
authors at least submit their paper’s title, conference name and PDF. Worst case
CDA will have to handle fetching the number of a times a paper has been cited
analogous to step 2c of cdalimited.

2. Extract and select publication’s entities for each facet (dataset and method) analogous
to step 4 of cdalimited.

3. Analyse each paper with PDFNLT analogous to step 8 of cdalimited, with top papersnr
set to the size of set corpuslib.

4. Match NER extracted and selected entities with paper’s extracted full text analogous
to step 9 of cdalimited.

5. Generate highlights file for CIDV analogous to step 12 of cdalimited.

Figure 4.3: Corpus documents pass through Coner Document Analyser (CDA) components
(full production setup) to fetch number of times cited, extract entities, smart select entities,
analyse PDFs and generate highlights for viewer
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Figure 4.4: Entity highlight format for CIDV

4.2 Coner Interactive Document Viewer

As a second core module of Coner, we introduce an online interactive document viewer.
Our document viewer highlights all detected named entities of the types relevant to the
current domain, but also allows users to provide explicit feedback on recognised entities
with respect to their relevance of their identified type. Additionally, users can select words
or a sequence of words directly in the viewer to annotate them as named entities they
deem relevant as one of the entity types (dataset or method). A screenshot of the current
version of the document viewer V1.0 is displayed in Figure 4.8. This section describes
the agile design process, features and technology stack of the document viewer.

4.2.1 Design Process & Features
The Coner Interactive Document Viewer (CIDV) was inspired by the document viewer
included in the PDFNLT14 toolkit. This PDFNLT document viewer (Figure 4.5) has a
layout of two vertical columns; the left column displays the raw XHTML file and the
right column shows the original publication in image format. Words and paragraphs are
highlighted in the right column when the mouse is hovered over the corresponding word
in the left XHTML file column.

14 https://github.com/KMCS-NII/PDFNLT-1.0

https://github.com/KMCS-NII/PDFNLT-1.0
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Coner Interactive Document Viewer POC
We built our first Proof Of Concept (POC) of the Coner viewer by extending the features
of the original PDFNLT viewer in two steps:

– Add feature that shows highlights of entities, loaded from a JSON file consisting of
an array of entities’ document bounding boxes, on top of the document image (Figure
4.6).

– Enhance entity highlighting with dynamic highlight colors for each entity facet and
add user feedback popups when clicking on a highlighted entity (Figure 4.7).

One of our design goals for the interactive viewer POC module was to impose as little
cognitive load on the system’s users as possible, thus only very simple feedback mech-
anisms have been considered. In particular, we settled on providing a simple YES/NO
feedback option for each recognised named entity of a desired type. Users may use it to
let the system know if the entity has been detected correctly or not. This design choice
for the POC limited us to only elicit feedback on entities which have been detected by
the NER (i.e. feedback for filtering), but did not allows us to find entities which have
been missed completely (i.e., feedback for expansion). We address this issue, along with
additional features and user interaction & interface improvements in our next version of
the CIDV described in the next section.

Figure 4.5: PDFNLT Document Viewer
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Figure 4.6: PDFNLT Document Viewer with named entity highlights

Coner Interactive Document Viewer V1.0
During our POC user testing phase, where we recruited 10 lab student of graduate or post-
graduate level to stress test and give feedback on the POC viewer, we received valuable
feedback on the usability of the viewer. We integrated this feedback alongside our own
design goals and feature ideas into the following list of functional and nonfunctional
requirements, each successfully implemented, for our first full version of the CIDV:

– The POC viewer only allows users to provide feedback on the entity’s facet it was
recognised as. We extended this by adding YES/NO relevance feedback buttons for
both facets per entity.

– Ability for user to add new typed entity simply by selecting text, with their mouse,
they encounter in the document (Figure 4.9a).

– All users can give feedback on other users’ added entities as extra quality control in
a similar fashion like they would give feedback on automatically highlighted entities
(Figure 4.9b). User added entities have their distinct highlight colour, yellow, however
other users can not see as which type the entity was added by the original contributor,
to remove bias towards the original type resulting from users’ trust in the contributor’s
expertise instead of their own.

– When rating an entity as YES for a facet or adding a new typed entity, the other
facet is automatically rated as NO, as it is extremely rare for an entity to be of
multiple types. If the rare occasion does occur where an entity is of multiple types,
the evaluator is free change the automatic NO rating to YES.

– Sidebar with clear overview of entities in current paper and tags for feedback of user
on each of entity’s facets (Figure 4.8).

– Built viewer from scratch using a lightweight state of the art web technology stack
(more details in Section 4.2.2) to emphasise the scalability, extensibility and main-
tainability of our open source15 web viewer.

15 https://github.com/vliegenthart/coner_interactive_viewer

 https://github.com/vliegenthart/coner_interactive_viewer
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Figure 4.7: POC Coner Interactive Document Viewer with relevance feedback buttons for en-
tities classified as dataset (blue highlights), method (pink highlights) or both (purple highlight)

– Full user authentication and authorisation system.
– Persistent high speed storage and access for all user activity and entity feedback

instances.

As an additional feature, the full history of user feedback inputs for each entity is
stored. This gives us the ability to analyse how often users change their mind about an
entity’s type relevance.

4.2.2 Technology Stack
The CIDV V1.0 is built with a modern open source component-based JavaScript full-
stack. We used Node.js16 as our server-side JavaScript framework, NPM17 to manage
Node.js dependencies and packages and React.js18 to built our client-side JavaScript
web components. Furthermore we used the Webpack19 static module bundler for modern
JavaScript applications. We choice this setup for it’s extensive community of open source
developers, massive ecosystem of NPM packages for Node.js and React.js and overall
customisation, scalability and lightweight properties. The Coner viewer’s React.js web
components are reusable, customisable, asynchronously loaded and have internal data
management to enforce the modular isolated design. Any contributors proficient in this
extremely common JavaScript full-stack setup will be able to easily customise the viewer’s
functionality.

We settled on a Firebase20 storage back-end. Firebase offers many benefits over other
no-SQL solutions for our relatively small scale data production and management; full user

16 https://nodejs.org/en/
17 https://www.npmjs.com/
18 https://reactjs.org/docs/getting-started.html
19 https://webpack.js.org/concepts/
20 https://firebase.google.com/docs/

https://nodejs.org/en/
https://www.npmjs.com/
https://reactjs.org/docs/getting-started.html
https://webpack.js.org/concepts/
https://firebase.google.com/docs/
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Figure 4.8: V1.0 Coner Interactive Document Viewer with feedback buttons for entities high-
lighted with different colors for facets; light blue for dataset, pink for method, purple for entities
classified for both dataset and method facets and yellow for newly user added entities

authentication integration with Node.js and React.js, real-time database management on-
line console, offline data persistence and automatic database backups. We wrote our own
Firebase API endpoint wrapper methods in JavaScript, which are called and triggered
from various user interactions with React.js client-side components. This allows for a
flexible back-end setup where Firebase is effortlessly exchangeable for any other no-SQL
document or key-value based storage (e.g. MongoDB, Couchbase, Redis, etc.) to allow
for more fine grained control and scalability for the future.
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(a) User adds method entity (b) User added entity feedback popup

Figure 4.9: Coner Viewer features: User can add new entity and give feedback

4.2.3 Coner Viewer Competitors
We performed an analysis on the main strengths and weakness of other online document
annotation tools. The main competitors for the Coner Viewer are:

– Prodigy21: Online annotation tool that uses it’s self proclaimed “continuous active
learning” technique to only ask users to annotate examples that the machine learning
classifier cannot identify itself. The major weakness with this solution, is that it only
visualises annotated entities in a single sentence on the screen, not the full context
of the paper, thus not using human’s ability to detect context to it’s full ability.

– Tagtog22: Semi-supervised text annotation tool to train machine learning models with
an extensive suite of features, but incredibly pricey if you want to receive feedback
from more than one evaluator. Also, it is not open sourced, so contributors are unable
to extend and customise features.

– Anafora23: Doesn’t actually show full PDF with annotated entities, just the raw text,
and the user interface is not intuitive.

– Annotate24: Expensive for more than three contributors, not open sourced and doesn’t
focus on annotation scientific documents.

Our comparison of competitors highlighted that none of them possessed the combination
of three properties we see as essential for an adequate web annotation tool for scientific
documents:

– Visualise annotated entities in full context of the scientific publication’s PDF.
– Allow users to interact with annotated entities in full context of the scientific publi-

cation’s PDF.
– Code is open sourced, free and customisable, to take full benefit of our research

community’s creativity and software development abilities.

21 https://prodi.gy/
22 https://www.tagtog.net/
23 https://github.com/weitechen/anafora
24 https://www.annotate.co

https://prodi.gy/
https://www.tagtog.net/
https://github.com/weitechen/anafora
https://www.annotate.co
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The Coner Interactive Document Viewer is specifically designed and built to adhere to
these three requirements and that is why we believe that it is the ultimate web annotation
tool for scientific documents.

4.3 Coner Feedback Analyser

During the usage of the Coner system, we collect all explicit user feedback on the type
correctness of the detected and user added entities, from now on called entitiesfb. The
complete set entitiesfb are preprocessed to remove erroneous symbols and trailing whites-
paces and converted to lowercase. The Entity Facet Relevance Score (EFRS) is defined to
be the ratio of evaluators that rated an entity as relevant for a facet (votesrelevant) divided
by the total number of evaluators that rated the entity for the same facet (votestotal).
An entity is labelled as relevant for facet by majority vote, thus when more than half of
the entity’s evaluators rated the entity as relevant for a facet:

EFRSentity = votesrelevant ÷ votestotal > 0.5 (2)

The following restrictions are enforced for the entity facet relevance scoring process
through majority vote:

– Only calculate relevance score if three or more evaluators gave facet relevance feed-
back for that entity.

– Only consider an evaluator for a paper if he/she gave feedback on more than 10
entities in that paper.

These EFRSs are then used to manually or periodically (e.g., every few hours, nightly
or weekly) continue the training of the NER algorithm by executing more training iter-
ations until convergence is reached (see Figure 4.1). Section 5 describes in more detail
how the EFRSs boost the heuristic expansion and filtering steps of TSE-NER.
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5 TSE-NER heuristics boosting with Coner

This section describes the synergy between the TSE-NER and the Coner pipeline; boost-
ing the performance of TSE-NER heuristics by integrating aggregated human feedback
on a set of typed named entities.

5.1 Term & Sentence Extraction Coner Boost (TSECB)

As described in Section 3.2, TSE-NER expands the set of seed terms and set of training
sentences every iteration, to balance and increase the size of the training data. Coner
boosts this process by adding relevant Coner user added typed named entities with rel-
evance scores (EFRS) higher than 0.5 for that facet to the seed term set for the next
iteration. Any typed named entities with a relevance score (EFRS) equal to or lower than
0.5 are ignored for the expansion boosting step.

5.2 Filtering Coner Boost (FCB)

The TSE-NER heuristic filtering step, as described in Section 3.5, relies on a setup of
filtering techniques that can be employed individually or in ensemble to filter out noisy
data and improve precision. The TSE-NER ensemble filtering resulted in the highest
combined facet F-score in TSE-NER’s performance evaluation [27]. We introduce an
ensemble filter boosting mechanism that relies on the assumption that named entities
rated as relevant for a facet by the majority of evaluators is regarded as a true positive
for that facet and should not be filtered out. With this assumption, Coner overrules the
ensemble filtering decision by always keeping a typed named entity with a relevance score
(EFRS) higher than 0.5 and always removing a typed named entity with relevance score
(EFRS) lower than 0.5. So manual human feedback supersedes all heuristic decisions if an
EFRS score is present. However, if an entity’s relevance score is not present, or exactly 0.5
or could not be calculated according to the restrictions of the CFA, then the stand-alone
ensemble filtering result is adhered to. We will provide more detailed information on how
human feedback conflicts with heuristic decisions in our evaluation in Section 6.
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6 Evaluation

In the previous sections we proposed the Coner pipeline, an extension onto the existing
TSE-NER algorithm, with the goal to incorporate human feedback in the iterative NER
classifier training process. To evaluate the effectiveness of our approach, we focus mainly
on answering the following three research questions in this evaluation:

Research Question 1 (RQ1):
What is the nature of the elicited human feedback?

– Hypothesis: Human feedback elicited in the Coner Interactive Document Viewer is
time efficient and results in a sufficiently high inter-annotator agreement to calculate
EFRSs for a majority named entities.

– Motivation: The Coner viewer is built to minimise the cognitive load of inputting
feedback by evaluators, thus aimed to reduce time spend giving feedback on each
named entity. We measured time efficiency in average time spend per entity feedback
instance. Furthermore each each named entity occurrence is highlighted in it’s full
context of a paper, to help align evaluators’ understanding of the contextual semantic
meaning of that particular named entity. We measured inter-annotator agreement in
Cohen’s Kappa between pairs of evaluators that rated a joint subset of entities.

Research Question 2 (RQ2):
In how far does human feedback confirm or conflict with TSE-NER heuristics?

– Hypothesis: Humans are more selective compared to TSE-NER heuristic filtering in
recognising true positives to keep in the filtering process and are superior in identi-
fying false positives to discard.

– Motivation: The nature of the expanded training data and extracted entities from
the corpus is noisy and the semantic meanings of a multitude of named entities are
ambiguous due to the difference in contextual occurrence in papers. As opposed to
algorithmic heuristic decision making, a human’s conscious reasoning is better ca-
pable of recognising semantics of specific named entity occurrence situations. It is
crucial that this preliminary research question is answered before we can do any type
of performance comparison. We hypothesise that if no conflict between human feed-
back and TSE-NER heuristics is discovered whatsoever, it is unlikely that the overall
TSE-NER will be positively boosted by Coner.

Research Question 3 (RQ3):
How does incorporating human feedback on entities into the TSE-NER expansion and
filtering steps improve the overall performance with respect to precision, recall, and F-
measures?

– Hypothesis: Coner boosts the performance measures both in terms of precision and
recall compared to TSE-NER.

– Motivation: The main goal of Coner is to boost TSE-NER’s performance by utilising
humans’ superior ability to judge relevance of entities in their full context compared
to machines, thus we hypothesise that Coner will indeed improve the performance
measures and help improve faceted keyword search in digital libraries.
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To answer these research questions, and to perceive if our hypothesises are correct,
we conducted two user experiments, both revolving around receiving human feedback
on papers’ extracted named entities and allowing users to add new named entities that
they deem relevant for the dataset or method facets during the manual annotation phase.
However each experiment was conducted with different entity extraction filtering tech-
niques and instructions giving to evaluators.

The first experiment, as described in Section 6.2, focuses on answering RQ1 and RQ2
by analysing human feedback on unfiltered extracted entities with evaluator instructions
to focus on adding new relevant entities in addition to giving feedback on automatically
extracted entities. This setup allows us to clearly compare different filtering methods,
because we have access to the unfiltered extracted entities, human filtered entities and
TSE-NER heristics filtered entities.

The second experiment in Section 6.3 tackles RQ3 and employs a smart entity selection
technique to only select entities for visualisation that were recognised by both facet
NERs, from now on called doubly classified. We choose this selection mechanism above
traditional uncertainty sampling, where we would select entities that could not be clearly
filtered out or kept by ensemble heuristic filtering; a conflict between different filters can
result in a 50/50 majority vote between filters, thus rendering the verdict for that entity
useless. We motivate this decision by looking at our biggest bottleneck and limitation;
human feedback is expensive in terms of time and incentivisation. In order to make
human feedback scalable, we aspire to maximise the potential knowledge gain of each user
feedback instance on a named entity. A doubly classified named entity almost certainly
indicates a fault in the trained models, because in reality an entity is rarely part of
two facets, i.e., an entity doesn’t describe a method and a dataset, but in the best case
scenario belongs to one of the facets. Section 6.2.5 further discusses our smart entity
selection mechanism based on tangible results of our first experiment.

6.1 Training Data

For evaluating our approach, we relied on a corpus similar to the one collected and
maintained in [26, 29, 30] and already used in [27], because it covers a wide range of
interesting subjects within the data science and natural language processing domains. To
create our corpus we selected 11,598 papers from 11 conferences: 1613 papers from the
Joint Conference on Digital Libraries (JCDL), 280 papers from the International Con-
ference on Theory and Practice of Digital Libraries (TPDL), 230 papers from the Text
Retrieval Conference (TREC), 828 papers from the European Conference on Research
and Advanced Technology in Digital Libraries (ECDL), 634 papers from the Extended
Semantic Web Conference (ESWC), 827 papers from the International Conference on
Web and Social Media (ICWSM), 444 papers from the International Conference on Very
Large Databases (VLDB), 442 papers from the Annual Meetings of the Association for
Computational Linguistics (ACL), 2100 papers from the International World Wide Web
Conference (The Web Conference), 2100 papers from the the International Conference
on Software Engineering (ICSE) and 2100 papers from the International Conference on
Research and Development in Information Retrieval (SIGIR).

The maximum number of papers included in the corpus from a single conference
was limited to 2100, to enforce a degree of balance in the spread of papers across all
11 conferences and to build a corpus of the same size as used to evaluate the baseline
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TSE-NER algorithm [27]. As described in Section 4.1, we selected a subset of papers
from the MongoDB database collection of publications owned by the Web Information
Systems Research Group25 of the faculty of EEMCS at the Delft University of Technology
and collected and maintained by [26, 29, 30]. An ElasticSearch26 index is created for all
publications in the collection to enable quick publication search and iteration. Metadata
extraction & analysis, PDF fetching and PDF analysis has been performed by our Coner
Document Analyser module with the cdalimited setup enabled (more details in Section
4.1).

6.2 Experiment 1: Human Feedback on Unfiltered Entities

The goal of this experiment is to give a deeper insight in the nature of human feedback
through our crowdsourcing solution and how human judgement of entity relevance con-
firms or conflicts with automatic heuristic filtering. Our experiment’s analysis consists
of three parts; assessment of human feedback, a qualitative inspection of most and least
relevant entities according to human feedback and a comparison between stand-alone
TSE-NER heuristics and TSE-NER heuristics with incorporated Coner human feedback.
We discuss our interpretation of the acquired results in Section 6.2.5.

First, we trained the TSE-NER algorithm on the training data analogously to [27],
with the algorithm setup as following:

– Train models for two facets: Dataset and Method.
– Seed term set size of 50 chosen manually to strike balance between increased classifier

performance in terms of F-scores with more seeds, as apparent from evaluation in [27]
and less human effort with less seeds. Seed term set of this size could be created by
a single or a few domain experts in a few hours or less and thus does not immobilise
the lightweight design behind TSE-NER.

– Run one iteration of the TSE-NER training process. We did not train the TSE-NER
for multiple iterations until convergence, because we want to measure the potential
divergence in performance between TSE-NER heuristics and Coner in the iterations
to follow.

We used the trained NERs for each facet as input for our collaborative Coner pipeline,
as seen in Figure 4.1. The CDA module (Figure 4.2) of the Coner pipeline annotated all
corpus documents with unfiltered recognised method and dataset named entities and
generated a final selection of 10 papers to receive human feedback on. We conducted this
experiment on unfiltered extracted entities to enable us to generate a clean comparison
between different filtering mechanisms on unfiltered extracted entities; Coner human
filtering vs different TSE-NER filtering setups vs TSE-NER filtering enhanced by Coner
human filtering. Setup of CDA threshold parameter values, as described in Section 4.1:
confnr = 11, min entitiesnr = 15, top papersnr = 50 and candidate papersnr = 5.

6.2.1 Coner Human Feedback Assessment
In this section we summarise the document selection process, look into the nature of user
feedback itself and evaluate how it conflicts with or supports the TSE-NER heuristics.

25 http://www.wis.ewi.tudelft.nl/
26 https://www.elastic.co/

http://www.wis.ewi.tudelft.nl/
https://www.elastic.co/
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Document Selection
We wanted to maximise the efficiency of the time spend by each evaluator giving feedback
on named entities, to ensure each instance of feedback leads to the highest knowledge
gain achievable in the current setup. Therefore we used our novel Coner Document Anal-
yser, as described in Section 4.1, to select papers of interest. We selected 10 papers as a
final selection, after manual inspection, namely [33, 18, 20, 3, 14, 42, 22, 5, 32, 6]. The
papers were selected from multiple conferences of interest, being The Web Conference
(3 papers), ACL (3 papers), ICWSM (2 papers) and VLDB (2 papers) and with diverse
research subjects, to minimise bias towards any type of paper structure, methodology
introduced or results presented.

The 10 documents selected for this evaluation contain overall 255 distinct NER recog-
nised dataset unfiltered entities, and 85 distinct NER recognised method unfiltered enti-
ties. The average number of times each paper has been cited is 581.

Evaluators & Human Feedback Evaluation
We simulated interaction with the Coner system in a lab setting, recruiting 10 graduate-
level/post-graduate-level volunteers knowledgeable in the data science domain. The 10
human evaluators are randomly and uniformly assigned to the documents such that
each document is processed by at least 3 evaluators. We asked the evaluators to check
all recognised named entities of the method type or dataset type for correctness, or
ignore them if they were unsure. Also, evaluators were instructed to focus their efforts on
highlighting any word or sequence of words they encounter in the documents that they
deemed to be of type dataset or method as newly recognised named entities. We informed
the evaluators that the highlighted entities are unfiltered and have a noisy nature as
result, thus many of them should be filtered out. As seen in Table 6.1, in total 60 dataset
and 113 method entities were added by users. On average, each document contained 45.2
distinct entities of either type (after users added named entities). Remarkably, 13.5% of
annotated named entities were classified as relevant to both facets, which in practice is
highly implausible. For NER extracted entities, it is possible that both models trained
for different facets recognise the same technical named entities, thus there is a degree
of uncertainty about the semantic meaning of a named entity in that specific context.
Surprisingly, even some user added entities were selected for both facets. This scenario
is possible when users add the same named entity multiple times across different papers,
and either a difference in user expertise or entity paper occurrence context results in
recognition of different facets. Some examples of doubly classified entities are given in
Section 6.2.2 and further analysis is conducted in Section 6.2.5.

Dataset Method Dataset & Method

User added 60 (19.0%) 113 (57.1% ) 3 (4.9%)

NER extracted 255 (81.0%) 85 (42.9%) 58 (95.1%)

Total 315 (69.7%) 198 (43.8%) 61 (13.5%)

Table 6.1: Number of unfiltered entities in evaluated viewer papers. Total number distinct
named entities for both facets combined is 452. Some entities are classified as both facets by
NER, so the sum of total percentages of dataset and method entities is more than 100%
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We need at least feedback of three users on each named entity in the viewer to enable
the correct calculation of entity type labels through majority vote in the CFA module of
Coner, as described in Section 4.3. We obtained this minimum threshold of three users’
feedback on the recognition correctness on 271 dataset entities (94.8%) and 158 method
entities (94.0%). The average number of feedback instances on user added named entities
of either type was just above 3 and on NER recognised entities just above 5. The lower
amount of feedback instances on user added named entities can be attributed to the
fact that evaluators can only give feedback on user entities after they have been added,
therefor not every evaluator will see every user added entity if they go through every
document once.

The evaluators showed quite varying task completion times for giving feedback on
entities contained in a document, with an average of 19.8 seconds to provide feedback for
both facets of a single entity, while the fastest evaluator only needed 6.3 seconds and the
slowest 34.3 seconds. We discussed with some evaluators about their experience giving
feedback in the Coner viewer, and it became clear that not only is there a difference
in domain expertise and background knowledge, but also users’ feedback approach itself
differs. The slowest users choose to read all the text around named entities, to get some
deeper insight of the context in which a named entity occurs, while the faster evaluators
only skimmed through the text and gave feedback on entities along the way.

The evaluators were not forced to rate all occurrences of recognised entities, thus
relevance feedback was only given when an evaluator was certain of his/her input to a
certain degree. The average percentage of extracted entities (highlighted in the Coner
Viewer) each evaluator gave feedback on in one paper is 65.9%, with practically similar
percentages for dataset and method entities. The fact that some highlighted entities were
not rated by every evaluator is due to multiple factors. First, ambiguous meanings of the
same entities annotated in different sections and contexts caused doubt about facet rele-
vance (e.g. the named entity Microsoft can reference a dataset created by Microsft or the
actual company itself), therefore feedback input was not always given on these entities.
Second, some bigram or trigram method entities were recognised with additional use-
less trailing words (e.g. question taggings have), therefore also not receiving feedback
from some evaluators. Furthermore, some evaluators simply switched papers or closed
the browser before finishing a paper.

Table 6.2 compares the percentage of dataset and method entities that where consid-
ered correct by the TSE-NER classifier (i.e. without the filtering step) or manually added
by an evaluator, but judged as incorrect by the majority of evaluators. The false positive
rates in Table 6.2 indeed show the effectiveness of collaborative feedback on TSE-NER.
Note that not all entities have a majority vote of feedback instances from evaluators, as
it is possible to either have an equal amount of votes for relevant and irrelevant or less
than three votes for any entity of either type. Interestingly enough, not all of the named
entities added by users were rated as relevant for their intended type; false positives for
25.9% dataset and for 11.7% method user added entities. This means that it is crucial to
also receive user feedback from evaluators on named entities other users added to ensure
the quality of human feedback. It is inescapable that evaluators have differences in their
knowledge and expertise of each scientific domain, which influences their decision mak-
ing. Judging whether a word or sequence of words in a piece of scientific text is a named
entity of a specific type is very much a subjective process. Some evaluators noted that
they only deemed newly introduced names of datasets or methods in that publication
as a named entity of such type (e.g. Slashdot Zoo Corpus, Exp4 Algorithm), while
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others were more broad and judged general dataset and method names as relevant (e.g.
Twitter, Wikipedia dataset, data mining, linear regression). Also, the Coner
viewer version used during this experiment does not allow yet for users to remove an en-
tity after they added it, thus a evaluator’s lack of fluency with the viewer’s user interface
resulted in some entities added that were later clearly marked as irrelevant by the other
users (e.g. hits, hotel). However, it is possible to change your feedback on an entity in
the viewer. Only 115 times an evaluator changed his/her feedback input on an entity’s
facet, which translates to 2.8% of total feedback events. Changing feedback input can be
explained by correcting previous miss clicks or a change in opinion about entity relevance
when getting more semantic context.

Dataset (FP%) Method (FP%)

User added 25.9% 11.7%

NER extracted 94.3% 57.9%

Total 80.4% 27.4%

Table 6.2: Comparison of false positive rates, resulting from users’ majority vote on relevance
of unfiltered extracted entities (Coner Filtering), for both newly user added and NER extracted
entities for two types of entities: Dataset and Method

Inter-annotator Agreement
Both percent agreement between evaluators and inter-annotator agreement are interesting
measures to explore how much evaluators’ feedback overlap. But both approaches have
their strengths and limitations. Percent agreement is favourable because it is easy to
interpret, a simple percentage of overlap between two evaluators, but it does not take
guessing of entities’ type into consideration. This experiment was conducted in a private
lab setting, all evaluators were graduate or post-graduate level and have a background in
Computer Science. This means there is a slimmer chance of users guessing, compared to
public crowdsourcing, an entity’s type when they are not certain, but it could still result
in an overestimate of true agreement among raters [25]. The Cohen’s Kappa statistical
value between 0 and 1 is less intuitive to read, but does take the possibility of evaluators
guessing into account, which is essential when measuring crowdsourced feedback.

We measured the inter-annotator agreement between evaluators using Cohen’s Kappa.
We calculated the average Cohen’s Kappa between the 10 evaluators for each entity facet
by calculating the average of Cohen’s Kappas for each user pair that shared a joint
subset of evaluated named entities of size 20 or larger. On average, Cohen’s Kappa for
dataset entities is 0.51, while for method entities it is 0.63. We retrace that inter-annotator
agreement score for method entities is higher, because a bigger percentage of evaluated
named entities were added by users for the method facet compared to the dataset facet,
as seen in Table 6.1. Named entities added by users have on average a much lower false
positive rate compared to named entities automatically extracted by the NER (Table
6.2).
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6.2.2 Qualitative Entity Inspection
This section gives an insight in the nature of named entities rated as most or least relevant
for a facet by evaluators. Table 6.3 gives an overview of entities with lowest relevance
scores for dataset and method facets. The nature of most dataset sampled entities rated
as irrelevant is; should be method name instead or part of the named entity is actually
a dataset name, but it contains useless trailing words (e.g. digg interface instead of
digg). For method recognised entities they are rated as being dataset names instead or
words are related to general method or programming approach, but not quite names of
long-tail named entities.

User added NER extracted

Dataset
traditional source,

high-dimensional vector space,

x-tree, news

digg interfaces,

logistic regression,

interconnection index,

evaluation results,

buneman, acyclic subgraph

Method
t-density, hdvs,

long-tail distribution,

leaving out one feature

digg, flickr,

wikipedia, dynamic programming,

system description,

signed clustering

Table 6.3: Sample of Dataset and Method annotated entities examples with lowest Coner
relevance scores from users

See Table 6.4 for an overview of entities with highest relevance scores. Most dataset
entities are names of datasets, but curiously also the entity datasets itself receive a high
relevance score. For some method entities it is unclear wether method names should be
selected with the trailing words algorithm, classifier, model, etc. or just the name
of the method itself.

Surprisingly, for some user added entities it was not clear from the human relevance
scores what type it belongs to. For example the named entity slash was added by an
evaluator as dataset entity, but then receive a majority vote relevance score of 0.5 for
both the dataset and method facets. The entity slash appears in the [18] paper, and
is part of the dataset name slashdot. Table 6.5 presents an overview of other example
entities that received feedback from an adequate number of evaluators, but with divided
opinions on entity type relevance. These entities with uncertainty relevance scores fall
into three main categories:

– Entities that are related to the facet, but are too generic, e.g. signed networks,

news article, news feed, data base, etc. for dataset and algorithm, decision

rule and used search algorithm for method. This could be explained by a differ-
ence in domain expertise or interpretation of what belongs to a certain type between
evaluators.

– User added entities with some type of syntax error, like letter(s) missing from the
entity (igned symmetric spectral ranking) or the inclusion of a line-break hyphen
(wall street jour-nal). The resulting uncertainty in relevance scores can again be
interpreted as a diversion in subjective judgement of entity types.
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User added NER extracted

Dataset

twitter dataset,

wikipedia dataset,

slashdot zoo corpus,

google news,

mashable, very large database

digg, flickr,

wikipedia, datasets,

network data, bugzilla

Method

k-nearest neighbour, exp3

nearest neighbour search,

digg promotion algorithm,

subjectivity classifier,

signed symmetric spectral ranking

similarity search,

spectral ranking,

reinforcement learning,

markov process,

linucb, linucb algorithm,

logistic regression,

acyclic subgraph

Table 6.4: Sample of Dataset and Method annotated entities examples with highest Coner
relevance scores from users

– Entities that do now belong to either of the types no matter how the interpretation,
e.g. vldb and web services.

The entities in this sample indicate that type assignment of entities through human
feedback is undoubtedly a subjective process, which emphasises that feedback from mul-
tiple evaluators is paramount to the quality of the relevance scores.

User added NER extracted

Dataset
signed networks, slash,

news article, news feed,

online news feed, wall street jour-nal

data base, data collection,

elements storing,

hdvss, news source

Method
10-foldcross validation, algorithm,

igned symmetric spectral ranking,

fmf, used search algorithm

decision rule, laplacian,

vldb, web services

Table 6.5: Sample of Dataset and Method annotated entities examples with uncertainty Coner
relevance scores from users

We also see a lot of doubly recognised entities, which are entities that were classified
as both facets by TSE-NER, e.g. entities that appeared both in Table 6.3 and Table 6.4;
digg, flickr, wikipedia, logistic regression, acyclic subgraph. For most of
these doubly facet extracted entities, it becomes undeniably clear with human feedback
which facet each entity actually belongs to. We will further investigate this doubly clas-
sification phenomenon in the discussion in Section 6.2.5. Finally, occasionally evaluators
select new entities when they were also already extracted by the NER, like NER extracted
wikipedia and user still added wikipedia dataset.
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6.2.3 Comparison Filtering Techniques: Coner vs TSE-NER
Table 6.6 compares the performance of Coner human feedback filtering and different filter-
ing heuristic setups for TSE-NER in terms of retention rate; the percentage of unfiltered
extracted entities kept by each filter. The different filtering techniques were performed on
the complete set of entities that received feedback from at least three evaluators in the 10
viewer papers; 315 dataset and 198 method entities. As illustrated in Table 6.6, the FCB
filtering technique is more strict than EMV alone for the dataset facet, but less strict for
the method facet. This can be explained by the larger percentage of user added named
entities for the method facet compared to the dataset facet, with user added named enti-
ties having a much lower average false positive rate compared to NER extracted entities
(Table 6.2).

PMI WS ST KBL EMV FCB

Dataset 9.0% 86.9% 34.4% 90.7% 35.0% 19.5%

Method 9.4% 73.7% 69.0% 81.2% 41.6% 52.2%

Table 6.6: Comparison of entity retention rate (percentage of unfiltered entities kept by filter)
between Coner and TSE-NER filter techniques of all viewer entities for both facets (315 entities
for dataset and 198 entities for method. Filtering acronyms: Pointwise Mutual Information (PMI),
Wordnet + Stopwords (WS), Similar Terms (ST), Knowledge Base Look-up (KBL), Ensemble
Majority Vote (EMV), Filtering Coner Boost (FCB): EMV + Coner Human Filtering

To get a deeper insight into the filtering performances, we compared the false posi-
tives rate for each filtering technique with regards to the set of entities determined to be
relevant by human evaluators (Table 6.7); if an entity is kept by a filter for a facet, but
was voted as irrelevant for a facet by the majority of evaluators, then it is considered a
false positive instance. For most of the TSE-NER filtering setups the average false posi-
tives rate for both facets is above 50% (only PMI has a lower false positive rate, because
it is much more selective in it’s retention of entities), which means there are a significant
number of entities that were recognised as irrelevant for a facet by human judgement,
but TSE-NER heuristic filtering was unable to do so.

PMI WS ST KBL EMV FCB

Dataset 38.7% 73.9% 79.7% 79.4% 76.7% 8.8%

Method 25.0% 28.2% 40.3% 37.7% 37.7% 3.9%

Table 6.7: Percentage of false positives in the remaining filtered entity sets of TSE-NER filtered
heuristics compared to Coner human filtered entities for two types of entities: Dataset and
Method. Filtering acronyms: Pointwise Mutual Information (PMI), Wordnet + Stopwords (WS),
Similar Terms (ST), Knowledge Base Look-up (KBL), Ensemble Majority Vote (EMV), Filtering
Coner Boost (FCB): EMV + Coner Human Filtering
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We also considered the false negatives which were excluded by the filtering techniques
but were labelled as relevant by majority of evaluators (Table 6.8). The PMI filtering as
explained in [27] achieved the highest precision among the TSE-NER filtering techniques
in their evaluation. Table 6.8 clearly indicates a major shortcoming of the PMI filtering
heuristic; it filters out on average 82.2% of Coner viewer entities that were rated as true
positives by Coner human feedback. Even for the ensemble filtering heuristic, which is
regarded as most effective in terms of F-Score by [27], the average false negatives rate
is 57.8%. Also, in Table 6.6 we see that KBL has the highest average retention rate of
named entities, which also translates in a high false positive rate and lower false negatives
rate.

PMI WS ST KBL EMV FCB

Dataset 76.2% 3.8% 70.0% 20.0% 65.0% 0.0%

Method 88.2% 4.6% 30.9% 15.1% 56.6% 1.3%

Table 6.8: Percentage of false negatives in the remaining filtered entity sets of TSE-NER filtered
heuristics with regards to Coner filtered entities for two types of entities: Dataset and Method.
Filtering acronyms: Pointwise Mutual Information (PMI), Wordnet + Stopwords (WS), Similar
Terms (ST), Knowledge Base Look-up (KBL), Ensemble Majority Vote (EMV), Filtering Coner
Boost (FCB): EMV + Coner Human Filtering

Finally, Table 6.7 and Table 6.8 demonstrate that the FCB filtering approach results
in the lowest false positives and false negatives rates compared to Coner human filtering;
this is good for the quality of filtered entities, because more relevant named entities
overlap with the Coner human filtering (regarded as true positives), but it also means it
difficult to scale this approach with a significantly larger number of named entities.
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6.2.4 Comparison NER Performance: Coner vs TSE-NER
In this section we measure and compare the precision, recall and F-score of TSE-NER
with and without the Coner feedback on TSE-NER extracted entities. We use the same
test dataset of manually annotated text snippets, for both dataset and method facet
models, already employed in the baseline work [27].

Table 6.9 compares the performance of TSE-NER with and without Coner feedback
in terms of precision, recall and F-Score. We filtered all TSE-NER extracted and Coner
human added technical named entities from the 10 viewer documents (315 dataset and
198 method entities) with two different setups. For TSE-NER we used the ensemble
filter setup, because evaluation from [27] clearly illustrates that the F-score for ensemble
filtering is higher than other filtering techniques. The PMI filtering technique did achieve
the highest precision among the filtering techniques [27], but we aim to optimise both
precision and recall, thus a higher F-Score is more relevant for our performance goals.

For Coner we employed the TSECB module, to improve recall by enhancing the
training set, and the FCB module, to boost precision of the trained model, as described
in Section 5. After that we ran the TSE-NER training cycle for the second iteration with
the two different setups and measured the performance of the resulting NER models with
our gold standard test dataset. From Table 6.9 we can clearly conclude that the recall
and F-Score increased, with a tiny decrease in precision, for both facets when employing
the Coner pipeline.

Dataset (P/R/F) Method (P/R/F)

TSE-NER 0.77/0.40/0.53 0.78/0.12/0.21

Coner 0.74/0.52/0.61 0.77/0.14/0.24

Table 6.9: Comparison of performance of TSE-NER and Coner in terms of Precison/Recall/F-
Score for two type of unfiltered entities: Dataset and Method

6.2.5 Discussion
One of our goals of this experiment was to identify the nature of human feedback through
our online crowdsourcing document viewer, introduced earlier as RQ1. On average it took
19.8 seconds to judge the relevance of a named entity for both facets, which is the equiv-
alent of rating about 180 named entities in 1 hour of website usage. Even in our limited
lab setting with 10 evaluators using Coner for less than 1 hour, we received sufficient
feedback (average of 4 feedback instances per entity) on 94.4% of named entities in order
to calculate the Coner relevance score (EFRS). All of the results were achieved with an
average inter-annotator agreement between pairs of evaluators with joint entity subsets
of 0.51 for dataset and 0.63 for method, which fits our expectation for this type of noisy
context dependent data. We retrace the difference to the divergence of amount of user
added entities for dataset versus method entities, with more user added entities for the
method facet (Table 6.1). Named entities added by users have on average a much lower
false positive rate compared to named entities automatically extracted by the NER (Ta-
ble 6.2).
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Like we hypothesised for RQ2, Table 6.2 and Table 6.6 indicate that on average
human feedback is indeed more selective than the most effective ensemble TSE-NER fil-
tering heuristic. Furthermore, Table 6.7 and Table 6.8 illustrate that by leveraging human
feedback in Coner, we can identify and exclude false positives while we can also keep the
entities which were wrongly excluded from the TSE-NER filtering steps, i.e., false nega-
tives. We saw that even the most precise (PMI) and effective (EMV) filtering heuristics
result in high false positives and false negatives rates compared to human feedback.

We already demonstrated the effectiveness of the Coner performance boosting mech-
anism in Table 6.9. Critically, even with our limited availability of resources (evaluators
and time) we revealed that human feedback on unfiltered named entities can boost recall
up to 23.1% in our TSE-NER training setup. However, a small decrease in precision of up
to 3.9% (0.77 to 0.74) was also apparent, indicating that the filtering boosting mechanism
needs further fine tuning. However, these results are promising, especially for the boost
of the expansion step, as recall has improved significantly.

Table 6.1 and the manual qualitative inspection overview in Section 6.2.2 gave us a
clue about the phenomenon of doubly classified entities; a single entity recognised by
TSE-NER trained classifiers for both facets. This scenario is in practice highly unlikely,
because a technical named entity in a given sentence is either of type dataset or method.
Out of the 452 unfiltered viewer entities 13.5% was doubly classified. We further inves-
tigated to see if this pattern also appears for entities recognised in the entire corpus, as
described in Section 6.1. For ensemble heuristic filtered entities the percentage of doubly
classified entities is 14.0% and for PMI filtered entities 18.5%. For unfiltered corpus recog-
nised entities it is even higher; 43.1%. The filtering techniques already greatly reduced
the percentage of doubly recognised entities compared to unfiltered entities, but even
with ensemble filtering, it appears that there is a semantic overlap between the word2vec
embedding spaces of both facets. Naturally, humans are much better at separating the
semantic spaces of doubly classified entities, because we see the full context in which
named entities occur in documents and are superior at extracting unambiguous semantic
meanings from natural text compared to machines.

These issues motivated us to setup a second user experiment, where the named enti-
ties shown in the viewer are selected in a more intelligent fashion; we only visualise high
impact named entities that are doubly classified by TSE-NER, to fully take advantage
the evaluators’ strength to judge and separate entity typing in specific contexts. This
mechanism aims to maximise the value of each human feedback effort to help scale our
crowdsourcing approach by reducing our biggest bottleneck of the amount of human time
necessary to achieve performance improvement. Another more common traditional ap-
proach to smart entity selection is to perform uncertainty sampling from our ensemble
filtered entities; solely select entities for evaluation that received a 50/50 majority vote
from TSE-NER ensemble filters, therefore indicating conflicts between different filters
and resulting in uncertainty. The vision behind that methodology is to utilise human
judgement to clear up these cases of entity relevance uncertainty and decide if it is a
true positive or true negative for that particular facet. We choose our custom doubly
classified methodology for two reasons. We assume and reason that uncertainty entities
have a lower chance than doubly classified entities of being relevant for any of the facets.
Doubly classified entities have been recognised confidently by a majority of filters for
both classifiers. Almost without fail human feedback will judge the entity as irrelevant
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for at least one of the facets, thus resulting in a high confidence true positive for one
facet and true negative for the other. Traditional uncertainty sampling only allows us
to include or exclude an entity based on human feedback for one facet (the one it was
extracted as), we cannot argue anything about the relevance for other facets, as that
entity was not recognised for that facet in the first place. So arguably, feedback on each
doubly classified entity results in increased potential knowledge gain and a bigger filtering
correction compared to traditional uncertainty sampling.

The following Section 6.3 evaluates our smart selection entity evaluation setup. The
explicit entity feedback relevance scores calculated from human input are incorporated
into the expansion and filtering phases of TSE-NER to evaluate whether performance
has increased, and thus tackles RQ3.
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6.3 Experiment 2: Human Feedback on Doubly Classified Entities

The purpose of this experiment is to obtain knowledge about how our smart doubly
classified entity selection mechanism affects the boosting ability of Coner on TSE-NER’s
extraction performance in terms of recall, precision and F-score. This experiment is based
on the hypothesis that receiving human feedback only on entities that were classified by
TSE-NER trained classifiers for both facets (typed as both dataset and method) will lead
to higher potential knowledge gain per human feedback interaction, and thus increase
the trained NER classifiers’ overall performance with our Coner boosting technique.

Our previous results in Section 6.9 revealed that human feedback collected on unfil-
tered entities in a limited lab setting where evaluators were instructed to focus on adding
new entities, resulted in a recall increase of up to 23.1%. In our previous experiment we
did not employ a smart entity selection mechanism, thus it was up to the users to decide
which entities to provide feedback on. Most users choose to give feedback on the major-
ity of highlighted entities, even when irrelevance for a facet was unambiguous and clear
(e.g. whereas, and, without, although, anyone). Part of these clearly irrelevant and
noisy named entities would have already been filtered by TSE-NER heuristics, resulting
in an partial overlap between human filtering and TSE-NER heuristic filtering. Unsur-
prisingly, precision did not increase when employing the Coner boosting mechanism, as
the knowledge gain of feedback on each entity was suboptimal. In order to outperform
the previous setup, we introduce the doubly classified entity preprocessing step in the
CDA module; we only consider entities for analysis that where recognised by NER clas-
sifiers for both facets and kept by both facet ensemble filtering heuristics. Furthermore
evaluators were instructed to focus more on filtering out existing entities, to tailor the
trained TSE-NER classifiers towards higher precision performance.

The training process is similar to the one describes in Section 6.2 (two facets of dataset
and method, 50 seed terms and one iteration), but with one major difference; we only
selected and visualised candidate named entities for human feedback that were detected
by both trained NERs. Our experiment’s analysis consists of three sections; assessment
of human feedback in Section 6.3.1, analysis of Coner boost performance in Section 6.3.2
and our interpretation of the achieved results in Section 6.3.3.
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6.3.1 Coner Human Feedback Assessment
Similarly to our document selection in Section 6.2, we utilised our novel CDA module
with smart entity selection enabled to annotate and pick 28 papers from 4 conferences
in our document corpus; 13 papers from VLDB, 9 papers from The Web Conference, 4
from SIGIR and 2 fro ICWSM.

We recruited 15 graduate-level/post-graduate-level volunteers and showed them the
Coner workflow as introduced in our first experiment, but instructed them to mainly focus
their efforts on filtering existing entities. Table 6.10 lists all the named entities resulting
from the manual annotation session; 298 entities in total with 109 recognised entities
for both facets, as we only selected doubly classified entities, and 189 added entities by
users. Remarkably, even when instructed to focus on filtering entities, evaluators tend
to still add new entities they encounter around other highlighted entities. Also, just like
experiment 1, more methods were discovered than datasets giving us a suspicion that
method occurrences are more frequent in most computer science papers.

Dataset Method Dataset & Method

User added 52 (32.2%) 139 (56.0%) 2 (1.8%)

NER extracted 109 (67.7%) 109 (44.0%) 109 (98.2%)

Total 161 (54.0%) 248 (83.2%) 111 (37.2%)

Table 6.10: Number of doubly classified filtered entities in evaluated viewer papers. Total
number distinct named entities for both facets combined is 298. Most entities are classified as
both facets by NER, so the sum of total percentages of dataset and method entities is more than
100%

We calculated the following experiment statistics; average entity rating time of 15.3
seconds, 3.4% of feedback events identified as opinion change, average number of feedback
inputs for user added entities was 3 and for extracted entities 6 (95.4% of entities received
three or more ratings) and it took users on average 163 seconds to rate a single paper.
The average entity rating time decreased from 19.8 seconds in the experiment 1 to 15.3
seconds, which we attribute to a new feature introduced in the Coner viewer; when rating
an entity as YES for a type, the other facet’s relevance is automatically rated as NO.

From the overview of false positives rates in Table 6.11 it is straightforward to see
that the overall average false positive rate (FPR) has gone down compared to our first
experiment’s results as seen in Table 6.2. Dataset FPR went from 80.4% in experiment 1
to 60.9%, with lower FPR for both user added and NER extracted entities. However, the
method FPR did increase from 27.4% in experiment 1 to 32.1%; we instructed evaluators
to focus less on adding entities compared to experiment 1, thus the ratio between NER
extracted and user added entities is slightly higher (respectively 85 vs 113 for experiment
1 and 109 vs 139 for experiment 2), and since the FPR of NER extracted entities is much
higher than that of user added entities, it naturally drives up the total FPR value of
the method facet. Surprisingly, the difference between FPR of unfiltered NER extracted
method entities in experiment 1 and doubly filtered NER extracted method entities in
experiment 2 is non existent; from 57.9% to 58.7%.
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Dataset (FP%) Method (FP%)

User added 17.3% 10.9%

NER extracted 81.7% 58.7%

Total 60.9% 32.1%

Table 6.11: Comparison of false positive rates, resulting from users’ majority vote on relevance
of doubly classified filtered extracted entities (Coner Filtering), for both newly user added and
NER extracted entities for two types of entities: Dataset and Method

6.3.2 Comparison NER Performance: Coner vs TSE-NER
In this section we measure and compare the precision, recall and F-score of TSE-NER
with and without the Coner feedback on TSE-NER doubly classified entities. We use the
same test dataset of manually annotated text snippets, for both dataset and method facet
models, already employed in the baseline work [27]. Furthermore we conducted the per-
formance analysis in similar fashion to the setup in Section 6.2.4, but with incorporation
of Coner relevance scores of the 298 doubly classified and added entities resulting from
the latest user experiment. Table 6.12 reveals an increase in precision for both dataset and
method facet classifiers when incorporating the Coner innovative modules, while main-
taining recall and F-score levels. The next section discussed the achieved performance
improvements.

Dataset (P/R/F) Method (P/R/F)

TSE-NER 0.66/0.62/0.64 0.56/0.21/0.30

Coner 0.70/0.61/0.65 0.59/0.20/0.30

Table 6.12: Comparison of performance of TSE-NER and Coner in terms of Precison/Recall/F-
Score for two type of doubly filtered entities: Dataset and Method

6.3.3 Discussion
Surprisingly, the difference between FPR of NER extracted method entities in experiment
1 and 2 is non existent; from 57.9% to 58.7%, even when in theory entity preprocessing
with ensemble filtering heuristics should significantly decrease the FPR rate in exper-
iment 2 compared to experiment 1 on unfiltered entities. This finding further enforces
the conclusion in [27] that filtering based on assumptions and heuristics is flawed, and
confirms our hypothesis that humans are superior at judging relevance of entities for a
specific facet.

Also, we noticed that our entity addition feature in the Coner viewer produces in rare
cases entities with syntax errors. For example, when an evaluator selects an entity that
includes a word that is split across lines and separated by a hyphen, it is included with
text selection. Even with our built in ability to edit an entity’s text before you add it,
this scenario sometimes results in added entities like in-ternet movie database imdb

and huff-ington post which currently cannot be automatically detected and corrected
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by the Coner system.

Even in a limited lab setting with 15 users we have shown that the NER’s perfor-
mance can be boosted in terms of precision or recall depending on the instructions we
give evaluators and the smart entity selection setup. Recall increases when focused pri-
mary on adding entities besides filtering, which resulted in a longer per-entity rating
time on average of 19.8 seconds in experiment 1 and 15.3 seconds in experiment 2. Ar-
guably it takes more time to search for new relevant long-tail named entities to add
than it takes to give feedback on already highlighted entities. Also in experiment 2 we
introduced the automatic opposite facet rating feature, where it takes less clicks to rate
YES for one facet and automatically rate NO for the other. With our introduction of
the doubly entity selection method and user instructions to focus on filtering highlighted
entities we showed the potential of the system with an increase of up to 5.7% in precision.

Experiments to evaluate the original TSE-NER algorithm in [27] showed that training
a NER model for more iterations results in a decrease of precision performance, in return
of a stable increase of recall. The Coner pipeline is already able to improve precision in our
small lab setting, which is a promising preliminary result for the expected performance
increase when Coner is deployed in a full production system, which would result in the
continuous build up of a massive dictionary of irrelevant and relevant named entities for
each facet. We describe this scenario in more details in the future work Section 8.
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7 Conclusion

In this thesis we introduced Coner, a collaborative approach for long-tail named entity
recognition in scientific publications. Coner extends TSE-NER, a previously established
technique for iterative training of NER algorithms using distant supervision [27]. In order
to keep the training costs low, TSE-NER relied on heuristics to steer the training process
(i.e., by expanding and filtering entity sets), only required a manually annotated small
seed set of known named entities of the desired type as training input. Unfortunately,
this reliance on automatic heuristic expansion and filtering also limited the maximal
achievable performance with respect to precision, recall, and F-Score. We approached this
problem with a unique solution: instead of requiring extensive manual input to initially
train a NER algorithm upfront as most common state-of-the-art algorithms demand, we
considered the synergy between NER training and the productive system it is employed in,
including the respective user base. In particular, Coner allows us to mostly automatically
train a NER algorithm at very low cost, and then exploit the daily user interaction for
continuously improving the algorithm’s performance, requiring only simple and intuitive
feedback actions from the users. This collaborative feedback on entities is realised with
an interactive viewer component (CIDV), which allows users to elicit feedback on the
correctness of recognised entities and add new entities they deem relevant unobtrusively
while reading the document.

One of the advantages of Coner is that its user feedback on recognised entities re-
quires only little cognitive effort (i.e., simple YES/NO feedback on recognised entities
and text selection to add new entities), and can be easily elicited while users use the
system without much interruption. Even when the cognitive effort is kept to an absolute
minimum, proper incentivisation techniques are required to motivate the system’s users
to contribute feedback. During our studies we choose to set the scope of the user system
to a private lab setting; only a limited group of evaluators from graduate/post-graduate
level took part in our user experiments. Scaling Coner to a full scale public crowdsourcing
solution requires further investigation, which is discussed in the future work Section 8.

In order to make human feedback scalable and maximise the potential knowledge gain
for each instance of feedback, we introduced a smart entity selection process in our novel
document analyser module (CDA). Instead of relying on our system’s users to decide
themselves on which entity to provide feedback on (users usually opted for providing
feedback on nearly all entities), we actively steer this process by merely selecting entities
that were doubly classified, so recognised as relevant for both facets, by the trained NER
models. This approach is designed to make the most out of each user interaction and
take advantage of the strength of humans to determine the semantic meaning of a named
technical entity in a specific context of a paper. We then calculate explicit feedback scores
for each entity (through majority vote) with our feedback analyser module (CFA) to fa-
cilitate the incorporation of human feedback in the TSE-NER algorithm.

In this first work incorporating the user base into the NER training process, we focus
on augmenting the TSE-NER training cycle in two areas. First, augment the filter step
of TSE-NER, allowing manual user feedback to overrule decisions which would have been
taken by the heuristics, with the goal to boost precision. Manual feedback supersedes all
heuristic decisions, thus entities are kept during filtering if they have been considered as
being correct by majority of users, and those considered incorrect are discarded. Heuris-
tics still apply for all entities without user feedback. The TSE-NER expansion strategies
aim to enhance the size and variety of the set of training terms and sentences, to improve
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overall recall of the trained NER model. We hypothesised that using user feedback to also
expand and boost the term and sentence set (instead of only filtering) in each TSE-NER
iteration should considerably increase the recall of the overall approach. We boost the
expansion step by adding relevant user added entities to the seed term set for the next
iteration of training. We evaluated both points of improvement in two user experiments.

The evaluation we presented in the paper is supposed to provide an intuition about
the effectiveness of collaborative feedback on NER extraction, and also shed some light
on the limitations of the heuristics used in TSE-NER. In our lab experiments with a
repository of 11,598 data science publications and 15 users, we could show that 76.1%
of all entities detected by TSE-NER in the publications selected for evaluation were
indeed false positives (94.3% for dataset and 57.9% for method). Even for named entities
recognised and added by users the average false positive rate was 18.8%, accentuating
the importance of human feedback from multiple evaluators on all types of entities. The
average Cohen’s Kappa between each pair of evaluators that shared a joint subset of
evaluated named entities of size 20 or larger is 0.51 for dataset entities and 0.63 for
method entities. We measured that on average 3.3% of total feedback events indicated
a change of relevance rating for an entity, which can be explained by people changing
their judgement on that entity or resolving a previous miss click. Crucially, it only took
evaluators on average 15.3 seconds (depending on smart entity selection and evaluators’
instructions) to rate a single entity’s relevance for both facets, confirming our hypothesis
that human feedback is indeed scalable with our lightweight and intuitive Coner viewer
user experience.

Out of all the available filtering setups, the FCB achieved both the lowest average false
positives rate (6.4%) and false negative rate (0.7%), which translates to a performance
increase of up to 13.1% (0.53 to 0.61) in F-Score and 23.1% (0.40 to 0.52) in recall when
incorporating human feedback on unfiltered entities in the TSE-NER training cycle.

Furthermore we illustrated that 14.0% of extracted entities were in fact doubly classi-
fied by both NERs even with the most optimal ensemble heuristic filtering setup, which
emphasises the importance of incorporating human feedback on these doubly classified
entities into the NER training cycle. These issues motivated us to build and evaluate a
smart selection mechanism to only visualise entities to users which were doubly classified.
With our smart entity selection implementation and a second round of manual annota-
tion by 15 users we clearly demonstrated that performance was boosted with an increase
of up to 5.7% in precision.

The single most striking conclusion is that even with our limited availability of human
resources we revealed that TSE-NER’s performance can be boosted by up to 23.1% in
terms of recall, up to 5.7% in terms of precision and up to 13.1% in terms of F-score
depending on the setup of our smart entity selection mechanism and instructions given
to evaluators.
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8 Future Work

We believe that this research has given rise to multiple directions in need of further in-
vestigation to explore the full potential of human collaborative named entity recognition.
In future work it would be of great value to interact with the NER’s surrounding user
system in a more sophisticated way. Coner’s full potential can be leveraged when it is
integrated into an existing production system, like a larger scale digital library; every
uploaded document is analysed by the CDA module and named entities selected by our
smart entity selection mechanism are visualised in our Coner viewer. The vision is that
the Coner viewer will be the default viewer for users to read any papers in the digital
library, and because eliciting feedback is designed to be cognitively lightweight, receive
continuous feedback from the system’s users on a number of papers magnitudes bigger
than our private lab experiment conducted so far. Digital libraries users, or so called
“public scientists”, are incentivised by the potential improvement of the digital library’s
search and exploration capabilities resulting from the improved trained NER models. Hu-
man time spend eliciting feedback on entities is still our biggest bottleneck in boosting
the named entity extractors’ performance, thus a larger number of evaluators should di-
rectly impact the overall performance of a future production system. Also, an automatic
configuration of the Coner pipeline that retrains models periodically overnight, weekly
or in other increments would be interesting, as it allows for a type of self learning where
incremental results can steer the process of finding the most valuable papers and entities
to get human feedback on. This setup will even allow for classifiers to keep up and con-
form to trends emerging in papers of a digital library grouped by research domains; when
specific named entities of a topic on average occur more or less frequently over time, and
we receive human feedback on these entities, the NER will fetch more training data for
this topic and improve the retrieval of these entities through our self-learning setup.

In our evaluation we used human feedback on doubly faceted extracted entities to
boost the expansion and filter steps, but this feedback could be further utilised to gen-
erate additional information on true negative examples in training data. When an entity
is extracted for more than one facet, it is almost without fail a false positive for at least
one of the facets and at most a true positive for one of the facets. If an entity is a false
positive for certain facet(s), then that information could be leveraged to provide the next
TSE-NER training cycle with high certainty entity facet information. Overall training
data context is improved by incorporating both the true positive and true negative labels
for different facets of a single entity. Furthermore, it is vital that more research is done
on alternative methods of smart entity selection (besides doubly classified entities selec-
tion), i.e., based on uncertainty sampling, to explore potential enhancement in impact
and scalability of human feedback.



52

Beyond those immediate challenges, several other interesting opportunities remain to
be explored:

– A module that implements a configurable version of the Coner system that is more
geared towards either recall or precision, so it can be used to give beneficial results
for different applications of typed named entity recognition.

– Allow users of the Coner viewer to upload their own PDF documents of interest. This
increases incentive and motivation to use the platform; not all users are not willing
to read and give lightweight feedback on “random papers in their field of interest”,
so it is beneficial if they could upload documents they were going to read regardless.
For this to work in practice, we believe it is absolutely vital that the user interface
and experience of the Coner viewer is superior to alternative document viewers.

– The current version of the Coner viewer is a private crowdsourcing task solution,
because feedback about facet relevance of entities is acquired by enlisting the services
of a manually selected group of trusted people, who are motivated through incen-
tives. The next step would be to scale the Coner viewer from a private crowdsourcing
platform to a full fledged public crowdsourcing task solution. This would greatly im-
prove the quantity of feedback received, but could negatively impact the quality of
feedback due to several factors, as analysed in [2]. To a certain extend, this could be
offset using appropriate incentivisation techniques, by motivating a user to be willing
to contribute feedback (for example by means of gamification), even more elaborate
feedback mechanisms could be employed without degrading user satisfaction. How-
ever, as with all systems relying on crowdsourcing or explicit user feedback, fraud
and vandalism become a central concern. If Coner is to be used with real-life users
outside of a lab or research digital library setting, such issues need to be addressed by
for example user reputation management [7] or different voting consensus techniques
[11].
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