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A B S T R A C T   

Machine learning has been used in the past to construct predictors, also known as classifiers, for dynamic security 
assessment. Although accurate classifiers can be trained for a single topology, often they do not work for another. 
However, the power system topology can change frequently during operation due to maintenance and control 
actions. At one topological configuration, the system may have a different response to a fault than at another as 
the underlying distribution of power flows can be completely different. Quantifying the impact of changes in the 
topology on the predictive models’ performance is an important step forward to minimize inaccurate predictions 
and improve their reliability. 

In this paper, for the first time, a metric for quantifying the impact of a topology change on the accuracy of the 
classification model is proposed. The key novelty is to first select a subset of power flow features with a phys-
ically informed feature selection technique and subsequently compute the metric with a novel convex hull-based 
analysis. In addition, the approach can advise to effectively constructing new training databases that improve the 
accuracy of new machines trained after high-impact topology changes. Through a case study using transient 
stability on the IEEE 68-bus system, the use of the proposed metric in real-time operation was demonstrated. 17 
high-impact topology changes were successfully detected among 42 studied topological changes. The subsequent 
effective construction of the training database improved the predictive accuracy by around 10%. An interesting 
finding is the amount of newly generated data can be reduced by up to 85% as often the generated data is the 
barrier for data-driven DSA. The proposed workflow significantly reduces data and trains robust classifiers 
against topological changes marking a fundamental step forward.   

1. Introduction 

The reliable operation of the electric power system is becoming a 
task of paramount importance worldwide since the massive integration 
of renewable energy sources exposes the grid to more frequent dynam-
ical phenomena [1,2]. The intermittent nature of renewable energy and 
the demand-side flexibility makes the operation more uncertain and 
dynamic than in the past. Novel operating approaches that consider 
these new dynamics are needed to comply N-1 security standards 
(operation reduced by one equipment) during all of the hours. Other-
wise, investments in redundant grid infrastructure to maintain the sys-
tem’s security become necessary. Hence, an efficient operation of the 
system is close to its limits with smaller safety margins to increase the 
utilization of the existing assets, and post-fault corrective control actions 
are important for the management of the reliability [3]. A power system 
is reliable when it can supply electricity with high enough probability to 
the end-users at all times (i.e. adequacy) and withstand sudden 

disturbances without major service interruptions in the real-time (i.e. 
security) [4]. When analysing the security of the system two important 
components can be distinguished. The static security refers to whether 
the system subjected to a disturbance settles at a new post-disturbance 
operating condition that fulfils all physical constraints. This involves 
the steady-state analysis of the post-disturbance operating condition to 
verify if the constraints on voltage and equipment ratings are met. The 
dynamic security refers to whether the system survives the transition 
from pre-fault to post-fault. Due to the wide range of dynamical phe-
nomena involved in the operations, system’s operators can no longer 
operate in a static paradigm. If the same static paradigm is followed, 
operators are forced to set very large margins to cope with all the 
possible dynamical phenomena. Following this static operating para-
digm requires significant investments in the infrastructure and is 
therefore costly and inefficient. In contrast a dynamic paradigm prom-
ises to avoid these investments by lowering the operating margins. The 
initial step toward a dynamic paradigm is to have information available 
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in real-time about the dynamic performance of the system in response to 
possible faults [1]. To assess if the system operates dynamically secure, a 
set of typical dynamical phenomena is studied, mainly relating to the 
stability in rotor angles, i.e. transient stability, frequency and voltages 
[2]. For instance, rotor angle stability refers to the ability of synchronous 
machines to remain in synchronism after being subjected to a distur-
bance. Each of these phenomena needs to be analysed separately and 
different analytical techniques are used, e.g. transient stability is eval-
uated by performing an event-type simulation on a large model 
involving ordinary differential equations. Therefore, the Dynamic Se-
curity Assessment (DSA) generally requires the time-domain simulation 
of a system’s model consisting of complex algebraic and differential 
equations. Processing these simulations in real-time (or shortly before) is 
difficult as for each possible fault a separate event-type numerical 
simulation is required. One could carry out these studies well before 
real-time operation where more computational power is available. 
However, this would require carrying out significantly more simulations 
as the operation is uncertain and more possible operating scenarios need 
to be studied. This marks a significant challenge for system operations as 
currently the only viable solution is to increase the static operating 
margins which is increasingly inefficient. 

1.1. The machine learning approach to DSA 

The idea of data-driven approaches to DSA is to approximate the 
dynamical system response to faults rather than simulating in the time- 
domain [5,6]. The key advantage of these approaches is they provide 
real-time security predictions with almost no computational resources, 
allowing operators to relax the static margins since dynamics are 
assessed directly in the real-time operation. Hence, operators can fully 
use their existing assets in a smarter way and do not need to invest in 
new system infrastructure, e.g. switches or redundant lines, to satisfy the 
reliability requirements under contingencies [7]. 

The first step of these data-driven approaches is to prepare them 
offline well before real-time operation. This preparation starts with 
creating a training database that includes operating conditions (OCs) 
from historical observations and synthetically generated data. For each 
OC and for each credible contingency, the post-fault security status, i.e. 
transient stability in this work, is evaluated by running time-domain 
simulations. Subsequently, a machine learning classifier is constructed 
using the variables that describe the pre-fault OCs as features and the 
post-fault status as classification label. The key idea of these approaches 
is to carry out this preparation periodically and offline and then use the 
trained data-driven predictors in real-time operations. In this second 
step, the data-driven approaches can instantly predict/approximate the 
post-fault security of the real-time OCs and possible OCs that go beyond 
the training database [6]. Many possible data-driven approaches were 
studied in the past. Several deep learning models have been proposed for 
the transient stability assessment showing a very promising performance 
in terms of accuracy [8–10]. Conversely, Decision Trees (DTs) or en-
sembles of DTs have been mostly used as they are more understandable 
[6,11,12]. 

1.2. Topological changes in DSA 

System operators change the system topology for maintenance and 
control purposes in order to better handle faults, their dynamics and the 
uncertainty surrounding the generation of renewables [13,14]. The 
system’s topology is determined by the status of the switching compo-
nents responsible for maintaining the connectivity between the com-
ponents in the network [15]. Therefore, topological changes can be for 
instance disconnecting lines, as in this work. Topological changes can 
also be switching on/off generators, shunt components or major 
(aggregated) batteries, and merging the substations. These frequent 
changes of equipment in modern power systems pose new challenges to 
data-driven DSA approaches. The system stability is very sensitive to 

system changes [16], and hence different topologies correspond to 
different power flow distributions [9,17]. The OCs following a topology 
change may be then very different from those included in the training 
database as they originated from different power flow distributions. 
Depending on the type and the size of the change in these distributions, a 
data-driven classifier trained for a specific system topology of equipment 
may not work anymore when the equipment is (slightly) different. Thus, 
changes in the network topology make the data-driven approaches less 
reliable, ultimately reducing the trust of operators. In the past, re-
searchers approached making data-driven DSA robust against changes in 
the network topology. These approaches can be classified into three sets: 

(i) the first set of approaches generalises the classifier to many to-
pological configurations. The topological variations are considered in 
the generation of the training database by sampling many different 
system topologies [18–20]. For large systems, however, the dimension 
of topological (and equipment) configurations is so large that it is not 
feasible to consider each configuration in the training. Then, deter-
mining if this large training database is representative for a system once 
the system is changed is challenging [21]. Considering similar topo-
logical configurations may also increase the redundancy of the training 
database, and hence decreases the predictive performance of the clas-
sifier [22]. 

(ii) the second set of approaches considers updating the training 
database and the classifier at fixed time intervals (e.g. daily or hourly). 
These approaches periodically generate small portions of new data and 
consider these new data by automatically modifying the classifiers. For 
instance, DTs or the weights in an ensemble of DTs are periodically 
updated in [23,24]. The key concept of these updates is to include in the 
training database more recent information of renewable energy gener-
ation and demand, and the latest system topology. However, such pe-
riodic updates can be inefficient. For instance, updates may be done at 
times when actually no update would be needed or the small portions of 
new generated data may be insufficient to provide a good representation 
of the new system topology [22]. 

(iii) the third set of approaches updates the training database and re- 
trains a new prediction model in the real-time operation using a trigger 
(instead of using a fixed time-interval), as shown in Fig. 1. This training 
is triggered either every time the network topology changes [13] or as 
soon as the model performs poorly by tracking the accuracy in real-time 
[25]. These approaches are computationally impractical as the fre-
quency of topology changes is increasing and it would require data 
generations and training very often. At each training only a few new 
data would be generated due to limited computational resources and, as 
for approaches (ii), these may be insufficient to provide a good repre-
sentation of the new system topology. New approaches are building 
upon the approaches (iii) and make them computationally more prac-
tical by identifying new methods to trigger the online updates. In [26], 
an early-warning system composed by an ensemble of extreme learning 
machines is proposed to detect risky OCs, and in [27] such ensemble 
learning model adapts its structure according to the availability of the 
input features which results in higher tolerance against missing data or 
topology changes. A new variation of particle swarm optimization is 
used in [28] to quickly identify the security border close to the current 
operating condition and update the border to reflect changes in the 
system. Similarly, the confidence of the prediction is used in [29] for a 

Fig. 1. Data-driven workflow for DSA based on triggered re-training.  
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conditional Bayesian deep auto-encoder to trigger new training when 
the prediction is of low confidence and cannot be trusted. Another data- 
driven based index is proposed in [30] to evaluate the confidence level 
of the security states one minute ahead of real-time operation and 
trigger updates of the DTs when the confidence level is low. This index 
uses a testing set of OCs in real-time to validate whether retraining is 
required. However, this index is based only on comparing data and is not 
informed by the type of the topological change itself. This can have a 
severe impact on system operator as a DSA classifier may be still being 
used although the accuracy dropped by orders of magnitudes without 
detecting such a drop. 

Overall, it is challenging to know when a classifier requires retrain-
ing following a topology change, and it is challenging to effectively 
perform the subsequent data generation and retraining. For each 
retraining, a sufficient amount of training data needs to be considered to 
represent the new topological configuration, otherwise the classifier 
may not detect the change. The first challenge is to quantify the impact 
of a topology change on the performance of the classifier in the real-time 
operation. This quantification in real-time cannot involve time-domain 
simulations as only limited computational resources are available. The 
second challenge is the retraining after a high-impact topological 
change. The newly generated data are often redundant to the informa-
tion content of the training database and the training database often 
contains information not relevant anymore to the new system topology. 

1.3. Proposed approach 

In this paper, a novel approach is proposed to address frequent 
changes in the network topology (Fig. 2). Firstly, for the first time, a 
metric for quantifying the impact of a topology change is proposed that 
considers the physical changes of the system instead of purely 
comparing the changes in the data. This is an informed approach that 
takes information into account that would have been missed-out by 
purely data-driven approaches. These additional information on sys-
tem’s physics make the proposed approach more robust against varia-
tions of the training database size, resulting in a lower sensitivity to the 
amount of training data needed to represent each topological change. In 
the proposed approach, the physical changes in the system are combined 
with the changes in the data by proposing a causality based feature se-
lection (FS) approach able to capture the dependency between the sys-
tem’s transient stability and the network topology. Selecting such 
features that best represent the security states and do not miss any 
relevant information to prediction is necessary in large-scale systems, 
such as power systems, to guarantee high accuracy performance. In 
[21], energy function terms are used as a set of preprocessed meaningful 
input features, whereas the input features are selected using Fisher’s 

discriminant distance in [28]. The proposed FS approach uses the sys-
tem’s physics and data to discover the causal structure between features 
and then identifies highly relevant features by learning the approximate 
Markov Blanket (MB) on this causal structure. The novelty of the pro-
posed FS approach is to physically inform the MB search for identifying 
dependencies and this goes beyond the original concept of the MB for 
feature selection that purely identified dependencies from data as in 
[31]. Therefore, changes in the probability distributions of selected 
features are good estimates of the impact of the topology change on the 
performance of the classifier, and hence good predictors of potential 
cascading failures. In practice, the proposed metric indirectly estimates 
how much a change in the system topology impacts the transient sta-
bility of the system itself. To subsequently create an efficient training 
database in response to a high-impact topology change, a convex hulls- 
based approach is proposed. This approach is used to assess the rele-
vance of OCs based on their similiarity. OCs from a previous database 
that are still relevant to the new topology are selected and new OCs are 
added that are not similar to those previously selected. These new OCs 
require then to carry out time-domain simulations to compute the se-
curity labels. The proposed workflow reduces the amount of newly 
generated data by making use of already existing data and filters out 
irrelevant information. It is more efficient in identifying high-impact 
topology changes and respond to them in order to make the data- 
driven DSA workflows more robust. 

A case study on the IEEE 68 bus system considering transient stability 
is used to demonstrate the performance of the proposed workflow. First, 
the proposed metric is compared to existing methods for DSA to deal 
with topology changes. Then, the accuracy of classifiers trained on the 
databases constructed through the proposed approach is tested. The rest 
of the paper is structured as follows. In Section 2, the Markov Blanket- 
based FS approach is summarized. Thereafter, in Section 3, the pro-
posed metric for quantifying the impact of a topology change and the 
method for the efficient construction of training databases are described. 
Subsequently, the case study is presented in Section 4 and conclusions 
are finally drawn in Section 5. 

2. A Markov Blanket based feature selection approach 

In this section, a Markov Blanket based FS approach that allows to 
capture the interactions between the system’s dynamic stability and the 
network topology is described. This section sequentially introduces the 
final feature selection approach by starting with the graph model for 
voltages, and gradually introducing assumptions and modifications of 
the methods investigated. 

2.1. Graphical model for power system voltages 

The power network is defined as a physical graph G(V, ∊), where V 
and ∊ represent the buses and lines, respectively. Each bus i is associated 
to a random variable vi [32], the voltage measurements. These voltage 
measurements are characterized by some conditional properties that 
make them suitable for an efficient representation of the grid topology 
through graphical models [33]. The variables considered are the voltage 
magnitudes of the buses. Hence, it is assumed that a state-estimation was 
performed beforehand [34]. The probabilistic relationships among 
voltage measurements are then described through a joint probability 
distribution: 

p(v) = p(v1, v2,…, vn) = p(v1)p(v2|v1)…p(vn|v1,…, vn− 1) (1)  

where vi represents the voltage measurements at bus i and n is the 
number of buses. Evaluating this joint probability distribution is 
computationally expensive as the computational cost would be O (mn− 1)

if m different voltage measurements are available. To reduce this cost, 
p(v) can be approximated by a simplified distribution pa(v) while 
guaranteeing that the information loss is minimized. Fig. 2. Data-driven workflow for DSA to deal with topology changes.  
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2.2. Bayesian network 

This section describes the construction of a Bayesian Network (BN) 
model where the correlation structure indirectly describes the grid to-
pology. The tree-dependent probabilistic graphical model pa(v) can be 
used as approximation of p(v) in Eq. (1): 

pa(v) =
∏n

i=1
p(vi|vpa(i)) (2)  

where vpa(i) is the direct predecessor, known as parent node, of vi. In this 
model, voltages are conditionally independent given their parent nodes’ 
voltage information if the current injections are independent [32]. In a 
transmission network, current injections can be approximated as inde-
pendent as the voltages generally remain within the nominal range and 
the loads can be assumed as being independent. The Kullback–Leibler 
(KL) divergence is used to represent the difference of information con-
tained in p(v) and those contained in pa(v) about p(v): 

D(p||pa) = Ep(v)log
p(v)
pa(v)

(3)  

The KL divergence should be minimal to minimize the information loss 
in approximating p(v) with pa(v). According to the well-known Chow- 
Liu algorithm [35], this minimization is optimized by constructing the 
maximum spanning tree in which branches of successively higher values 
of mutual information are selected and branches which involve loops are 
rejected. The resulting model is a Directed Acyclic Graph (DAG), known 
as Bayesian Network (BN) [36], where the correlation structure indi-
rectly describes the grid topology. 

2.3. Modified tree-augmented Naïve (TAN) bayes model 

The learning approach for the BN is extended to learn the maximum 
likelihood Tree-Augmented Naïve (TAN) Bayes model as its causal 
dependence structure supports the search of an approximate Markov 
Blanket (AMB) of the classification target [37]. This extension of the BN 
is done by comparing the conditional mutual information between each 
vi and the classification target C corresponding to the post-fault security 
status [38]. In this model each feature has as parents C and at most one 
other feature. However, the conditional dependencies of loops are 
neglected in such a model resulting in low accuracy performances when 
applied to highly meshed topologies such as in transmission networks. 
Therefore, considering the conditional dependencies of loops is partic-
ularly important to obtain a faithful model for transmission networks. At 
the same time, considering potential loops implies losing the causal 
dependence between features and causality is very relevant to the pro-
posed MB-based approach as the MB can be identified only in a causal 
model. This issue is solved by the proposed modification of introducing 
an auxiliary variable el with fixed value for each loop l. The introduction 
of el does not change the probabilistic relationship between the parent 
nodes as it is clamped to a fixed value. Hence it results in 

p(el) = 1⇒p(vpa(el),1, vpa(el),2, el) = p(vpa(el),1, vpa(el),2) (4)  

where {pa(el), 1}, {pa(el), 2} represent the two parent nodes which are 
linked by the loop l. Then, for a general loop l, the probability distri-
bution pa is 

pa(v) = p(el|vpa(el),1, vpa(el),2)
∏n

i=1
p(vi|vpa(i)) (5)  

Thus, by replacing Eq. (5) into Eq. (3), the divergence measure between 
p(v) and pa(v) is 

D(p||pa) =
∑

p(v)log
p(v)
pa(v)

=
∑

p(v)logp(v) − p(v)logpa(v) =

=
∑

p(v)logp(v) −
∑

p(v)log
∏n

i
p(vi|vpa(i))

−
∑

p(v)logp(el|vpa(el),1, vpa(el),2) =

=
∑

p(v)logp(v) −
∑

p(v)
∑n

i=1
log

p(vi, vpa(i))

p(vpa(i))

−
∑

p(v)log
p(el, vpa(el),1, vpa(el),2)

p(vpa(el),1)p(vpa(el),2)

(6)  

By adding p(vi) and p(el) inside the denominator 

D(p||pa) =
∑

p(v)logp(v) −
∑

p(v)
∑n

i=1
logp(vi)−

∑
p(v)

∑n

i=1
log

p(vi, vpa(i))

p(vi)p(vpa(i))
−
∑

p(v)log
p(el, vpa(el),1, vpa(el),2)

p(el)p(vpa(el),1, vpa(el),2)

−
∑

p(v)logp(el)

(7)  

The last term of Eq. (7) is zero as p(el) = 1. Thus, the following equality 
holds: 

D(p||pa) =
∑n

i=1
H(Vi) − H(V1, ..,Vn) −

∑n

i=1
I(Vi; Vpa(i)) − I(el; vpa(el),1, vpa(el),2)

(8)  

where I and H indicate the mutual information and entropy, respec-
tively. The first two terms are both independent of the dependence tree, 
whereas the last two terms represent the branch weights. Minimizing the 
divergence measure is equivalent to maximize the total branch weight 
for both directed edges and loops. 

2.4. Feature selection based on modified TAN model 

The derived, modified TAN model includes directed edges and loops, 
and can be used for FS by taking advantage of its causal dependence 
structure to search for the approximate MB of the classification target 
AMB(C). By performing pairwise comparison between each parent and 
children nodes, the AMB-based FS algorithm discards features which are 
irrelevant to classification. Algorithm 1 shows in detail how the iden-
tification of the AMB of C is performed. More specifically, ε is the set of 
directed edges, for which vi is the parent of vj and ε̃ is the set of loops. 
AMB(C) and SP(C) are the approximate MB and spouse set of C, 
respectively. Firstly, all features with a higher relevance to C over the 
directed edges are included in the AMB(C). Then, some of these features 
are removed by comparing the correlation to C over the loops. The final 
power flow features included in the AMB(C) have the highest relevance 
to classification for the given topology and hence, they provide the best 
representation of the interactions between the system’s dynamic sta-
bility and the network topology. Thus, a change in the network topology 
necessarily impacts on the probability distributions of the selected 
features. 

Algorithm 1. AMB TAN based feature selection   
Initialization: AMB(C) = {∅},SP(C) = {∅}

Output: AMB(C)
1. for (i, j) ∈ ε do ▹Pairwise comparisons over directed edges  
2. if I(vj; C)⩾I(vi; C) & I(vj; vi|C)⩾I(vi; C) then  
3. AMB(C) = AMB(C) ∪ {vj}

4. SP(C) = SP(C) ∪ {vi}

5. else 
6. AMB(C) = AMB(C) ∪ {vi}

7. end if 
8. end for 

(continued on next page) 
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(continued ) 

9. for (i, j) ∈ ε̃ do ▹Pairwise comparisons over loops  
10. if I(vj; C)⩾I(vi; C) then  
11. AMB(C) = AMB(C) − {vi}

12. els if I(vi; C)⩾I(vj ; C) then  
13. AMB(C) = AMB(C) − {vj}

14. end if 
15. end for 
16. for vpa(i) ∈ SP(C) do ▹Deletion from spouses  
17. if vi ∕∈ AMB(C) then  
18. SP(C) = SP(C) − {vpa(i)}

19. end if 
20. end for 
21. AMB(C) = AMB(C) ∪ SP(C) ▹Final AMB evaluation    

3. Dealing with high-impact topology changes 

In this section the proposed workflow for dealing with topology 
changes, i.e. the metric for quantifying the impact of a topology change 
and the method for creating a training database in response to a high- 
impact topological change, is described. 

3.1. Metric for detection of high-impact topology changes 

This section describes how the metric to detect the high-impact to-
pology changes using only input data is defined. A classifier is trained on 
the features selected through the MB-based FS. Since the selected fea-
tures are the best representation of the interactions between the dy-
namic stability and the network topology, the change in their 
probability distributions, and hence in the probability distribution of the 
OCs, may provide an estimate of the classifier’s performance after 
changes in the system topology. However, choosing the most suitable 
metric to quantify these changes in the probability distributions is not 
trivial. Distance metrics, e.g Euclidean distance (ED), have been widely 
used to measure the similarities between probability distributions 
[30,39]. The ED between two OCs xi and xj originated from two distri-
butions is calculated as follows: 

ED(xi, xj) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi1 − xj1)
2
+ … + (xin − xjn)

2
√

(9)  

where n is the number of features. However, in classification problems, 
the closeness in terms of ED does not necessarily correspond to simi-
larities in terms of information contents. Two OCs may be close in terms 
of ED but belong to different classification regions. As shown in Fig. 3, xi 
and xj are closer than xj and xk in terms of ED but are more different in 
terms of information content as they belong to two different classifica-
tion regions, C0 and C1. To overcome the drawback of distance metrics 
in classification problems, the probability distributions of the OCs are 

compared between subsets Si and Sj containing the OCs with Si⫅C0 and 
Sj⫅C1. For example, the terminal nodes (or leaves) of the DT are used as 
subsets in this work. Then, the mean value over all the subsets is 
considered as metric. To make the comparison more accurate against 
small changes in the probability distribution of the OCs, convex hulls 
containing the OCs that end up in each leaf node are defined [40]. This 
means that two convex hulls containing the OCs are defined for each leaf 
node, one before the topology change occurs and the second one 
immediately after. Subsequently, these two convex hulls, X and Y, are 
compared through a well-known distance metric between the vertices, i. 
e. the Hausdorff distance dH(X,Y): 

dH(X, Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)} (10)  

The two terms to calculate the Hausdorff distance are shown in Fig. 4. 
The aforementioned distance can be easily described as the greatest of 
all the distances from a point in set X to the closest point in set Y. Thus, 
dH is calculated between the two convex hulls containing the OCs ending 
up in each leaf node of the classifier before and after the topological 
change occurs. Finally, the metric to quantify the impact of a topology 
change on the performance of the trained classifier is defined as the 
mean value of dH over all leaves. The metric threshold is evaluated and 
calibrated for the trained contingency in the offline stage, and then used 
in the real-time operation. 

3.2. A generic metric for multiple contingencies 

To calibrate the metric threshold in the offline stage, intensive time- 
domain simulations for different topologies should be performed. The 
whole process should be then repeated for several contingencies. In this 
section, a spectral clustering-based approach is used to identify similar 
electrical regions. An electrical region defines a set of buses, physically 
connected or not, that are electrically correlated. Then, the metric 
threshold of a trained contingency c0 can be generalized to other con-
tingencies ci not part of the training based on the regions to which the 
features of the AMB(C) of ci belong. 

Definition 1: If the AMB(C) of contingency ci not part of the training 
includes features that are in the same electrical region of c0, then the 
metric threshold trained for c0 can be still used for ci. 

A spectral clustering approach based on the admittance matrix is 
used to identify the electrical regions [41,42]. According to this 
approach, given the system admittance matrix Ybus, the absolute values 
of the elements of the inverse matrix Y− 1

bus are used as a measure of the 
electrical distance D: 

D = |Y − 1
bus| (11)  

with 

Dij =

{
dij if j adjacent to i
0 otherwise (12) 
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Fig. 3. The drawback of the Euclidean Distance [30]. The ED between xi and xj 

is lower than the ED between xj and xk although xi and xj are on different sides 
of the security boundary. Fig. 4. The Hausdorff distance between the two convex hulls in green and blue.  
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To each bus i in the power network, the closest adjacent bus j in terms of 
dij is associated. Then, all the pairs that share common buses are grouped 
into regions. For each region Sk, the maximum contained dij is set as 
threshold rk. Finally, for each pair of regions Sk and St , if dij⩽rk with i ∈
Sk and j ∈ St, then Sk and St are merged. Hence, the final electrical re-
gions of the network are identified through the spectral clustering based- 
approach and Definition 1 defines whether the generalization of the 
metric threshold is accurate or not. 

3.3. Effective training database following topology changes 

In this section, a convex-hulls based approach to efficiently construct 
new training databases after high-impact topology changes making use 
of the available database is described. Two convex hulls, H0 and Hi, 
containing OCs from a previous database and new OCs respectively, are 
defined. Algorithm 2 shows in detail how the new training database Tr is 
constructed, where i represents a general OC. Firstly, the OCs contained 
in H0 which are also contained in Hi, and hence are still relevant, are 
included in Tr. Secondly, the OCs contained in Hi which are not con-
tained in H0, and hence no similar to those already available, are 
included in Tr. Only for these last OCs, time-domain simulations are 
performed to compute the security labels. 

Algorithm 2. Training database construction   
Initialization: Tr = {∅}

Output: Tr 
1. for i ∈ H0 do  
2. if i ∈ Hi then  
3. Tr = Tr ∪ i  
4. end if 
5. end for 
6. for i ∈ Hi do  
7. if i ∕∈ H0 then  
8. Tr = Tr ∪ i  
9. end if 
10. end for   

4. Case study 

Several studies were undertaken to demonstrate the benefits of the 
proposed workflow to address frequent topology changes in data-driven 
DSA approaches. A case study on the IEEE 68-bus system where the 
security assessment involved transient stability was first used to study 
the effectiveness of the proposed metric for quantifying the impact of 
topology changes on DSA performance. Then, the performance of the 
proposed construction method for new training databases was investi-
gated by comparing the prediction accuracy of the newly trained clas-
sifiers against conventional approaches for DSA. Finally, the 
computational savings of using the proposed workflow on larger systems 
were investigated. 

4.1. Test system and assumptions 

The IEEE 68-bus system (Fig. 5) was used as one of the three test 
systems [43]. A set of 20,000 OCs and sets of 10,000 OCs were gener-
ated for the reference topology and other 42 different topologies, 
respectively. The reference topology is the system topological configu-
ration as shown in Fig. 5 and the other 42 topological configurations 
have each one disconnected line. All the potential topology changes that 
may occur in real-time, need to be considered offline to validate the 
approach. The OCs were generated by sampling the active loads from a 
multivariate Gaussian distribution with a Pearsons’ correlation coeffi-
cient c = 0.75. Then, by using the method of inverse transformation, the 
active loads were converted to a marginal Kumaraswamy distribution 
with the probability density function 

f (x) = abxa− 1(1 − xa)
b− 1 (13)  

where a = 1.6, b = 2.8 are shape parameters and x ∈ [0,1]. Finally, the 
active loads were scaled to be within ±50% of the nominal values. The 
reactive powers follow the active powers proportionally as constant 
impedances were assumed. Subsequently, power factors were sampled i. 
i.d in the range of [0.95,1] for each generator. Then, the full AC model 
was considered in a mathematical optimization problem to minimize the 
absolute differences to these power factors. Feasible OCs with set-points 
of active and reactive powers of the generators were obtained from this 
optimization. The optimization problem was implemented in Python 
3.5.2 and Pyomo package and solved with IPOPT 3.12.4. The transients 
of three-phase faults over 9 different lines were simulated (k = 1,…9) 
for all 42 topologies. A fault clearance time of 0.1s was used. If within 10 
s simulation time all the differences between each two phase angles of 
the generators were less than 180◦, than the OC i was considered tran-
sient stable Yi,k = 1, otherwise unstable Yi,k = 0 and with that the se-
curity label was computed. Simulations were performed in Matlab 
R2016b Simulink. The resulting datasets for the various contingencies 
and topological configurations have class imbalances between 30% and 
70%. 

A second system, the IEEE 39-bus system, was used to investigate 
whether the low accuracies resulted from extreme operating scenarios 
considered in the training database. Therefore, as in the IEEE 68-bus 
system, a hard training problem with high load uncertainties was 
considered to generate the training data for 22 contingencies [44]. 
Finally, the French transmission system, corresponding to 1, 955 trans-
mission lines, 1, 886 buses and 411 generators, was used to estimate 
potential benefits of computational savings when applying the proposed 
approach to larger systems. A set of 7,000 OCs and smaller sets of 1500 
OCs were assumed to be available for each of the 1, 000 potential to-
pological changes in the offline and online (real-time operation) stages, 
respectively. 

The machine learning workflow considered voltage magnitudes as 
features as mentioned in Section 2. Hence, for the IEEE-68 bus system, 
the pre-fault data for each OC were the values of the voltage magnitudes 
of the 68 buses. No modeling or simulation errors were considered, 
therefore the training OCs were assumed to be accurate. Subsequently, 
the AMB TAN approach was applied as pre-processing and CART was 
used to train the DT-based classifiers (as implemented in scikit-learn). In 
Table 1, the mean accuracy performance across all contingencies using 
DTs was compared against more advanced classification models to show 
that selecting DTs as models did not impact the final accuracies which 
are not very high as extreme operating scenarios are considered for the 

Fig. 5. The IEEE 68-bus system [43]. In colour the seven areas with similar 
characteristics identified through spectral clustering analysis. 
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training. DT with depth equal to 3, SVM with linear kernel [45], Ada-
Boost and XGBoost with 50 estimators [46,47], and single layer feed- 
forward ANN with 10 neurons [8] were used. It resulted that all 
testing accuracies of these approaches were very similar, therefore DTs 
with maximum depth equal to the number of selected features through 
AMB TAN FS were preferred as they are more interpretable. All the 
following studies were repeated 10 times with different combinations of 
training/testing data at a split of 70%/30%. One DT was learned for 
each of the 9 contingencies based on the data of the reference topology. 
The DT was then tested against the 42 topology changes and new DTs 
were trained after high-impact topology changes. Finally, the case study 
on the IEEE 39-bus system was used to show that the low accuracies 
related to the extreme operating scenarios considered for the training. 
One DT was learned for each of the 22 contingencies. These DTs resulted 
in a low mean accuracy of 91% with a minimum value of 66%. 

4.2. Detection of high-impact topology changes 

In this study, the performance of three DSA approaches was tested 
under high-impact topology changes. (i) The first approach was a two- 
stages workflow where the machine was trained on the reference to-
pology and then used in the real-time operation irrespective on any 
topological changes. (ii) The second approach was the three-stages 
workflow where a new machine was trained periodically by including 1,
500 new OCs in the training database. Once a topology change occurred, 
the operator selected randomly (uniformly) whether the classifier and 
database were being updated. (iii) The third approach is the proposed 
approach, the three-stages workflow where the proposed metric was 
used to decide whether retraining was needed. A new machine was 
trained only when the proposed metric was higher than the threshold. 
The other approaches mentioned in this paper were not tested as they 
were computationally not feasible. All classification models were 
trained offline on the generated 20,000 OCs for the reference topology 
and then the three approaches were tested against 42 topology changes 
on 1,500 new OCs generated from the power flow distribution following 
the system’s change. The line contingency between bus 31 and 38 was 
randomly chosen to illustrate the benefits of the proposed workflow (iii) 
compared to the two existing approaches (i-ii). In the proposed approach 
the metric was calibrated offline using the generated 20,000 OCs for the 
reference topology and 7, 000 OCs for each topology change. 

The AMB TAN FS was used as pre-processing step in the offline stage 
for all approaches as it resulted in high prediction performance. To test 
whether the MB based FS approach selected the best predictors, two 
classifiers were trained and tested against the 42 topological changes: 
one classifier was trained using only the selected features, the other 
using all the features. The two classifiers resulted in the same accuracy 
performance for varying training database sizes. Thus, the MB based FS 
approach did not miss any relevant information to the prediction of 
potential cascading failures. 

The results of the study were as follows: In the first approach (i), the 
reference DT classifier is used for all topological changes and no high- 
impact topological change can be detected. This approach resulted in 
accuracies lower than 92% for 14 of 42 topologies as presented in Fig. 6 
(a) for the line contingency between bus 31 and 38. In the second 
approach (ii) based on periodic updates, in the best case, all high-impact 
topology changes were detected, however, in the worst case none of 
them were detected. No guarantees can be obtained as the results were 
random as new classifiers were trained for randomly selected topology 
changes. In the proposed third approach (iii), the relationship of metric 

and accuracy for the line contingency between bus 31 and 38 is shown in 
the two Figs. 6 (a)-(b). These results show that higher values of the 
metric corresponded to lower accuracies. A threshold equal to 0.85 
corresponding to an unnormalized accuracy of 92% was defined and 
then used in the real-time operation to detect high-impact topology 
changes. The defined threshold depends on the training data but it is also 
related to the dependency between the system’s stability and the 
reference topology. In the real-time operation, 17 high-impact topology 
changes were detected. However, for 3 topology changes the proposed 
metric was higher than the threshold even if the accuracy was higher 
than 92%, resulting in unnecessary training of new machines. For these 
3 topologies, the classifier trained on the reference topology performed 
slightly better in accuracy than the reference topology itself, resulting in 
small differences in the power flow distributions that are detected by the 
metric. This issue is solved if the classifier trained on the reference to-
pology has very high accuracy. However, the unnecessary training of 
only 3 machines is still acceptable as the cost of training a new machine 
in vain is significantly lower than providing unreliable security rules. 
The metric was then evaluated with varying sizes of the training data-
base, i.e. |Ω| = 1000,4000 (Fig. 7). The trained metric was nearly 
invariant in the studied range of database sizes, even when the training 
database size was reduced by 85%. Therefore, in the studied case, the 
metric and approach were robust against variations in the amount of 
training data needed to represent each topological configuration. 

Table 1 
Accuracy performance using different classification models.   

Classification model  
DT SVM AdaBoost XGBoost ANN 

Mean Accuracy  0.89  0.90  0.89  0.92  0.90   
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Fig. 6. The accuracy and metric of classifier corresponding to contingency on 
line 31 − 38 for 42 topologies. The topologies (x-axis) were ordered according to 
increasing accuracies. 

Fig. 7. The metric for classifier corresponding to contingency on line 31 − 38 
for 42 topologies with varying training database sizes. 
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4.3. Detection for unseen contingencies 

This section investigates the main benefit of the proposed approach 
to indicate whether the classifier and the metric threshold trained on one 
contingency can be used for other contingencies not part of the training. 
In the proposed approach, the MB is computed for the trained contin-
gency (Section 3.1) and electrical regions are computed using the 
spectral clustering approach (Section 3.2). These 7 regions are high-
lighted in Fig. 5. Subsequently, if another contingency has common 
features to the MB of the trained contingency, then the classifier can still 
be used. If another contingency has most features of the MB in the same 
electrical region where the trained contingency occurs, then the metric 
threshold can still be used. The advantage of this approach is to not 
require any labels of the contingencies and uses only the features, hence 
no time-domain simulations are needed to validate the continued use of 
the machine learning workflow. 

In this study, the contingency c0 between bus 31 and 38 was used as 
the reference, i.e. trained contingency. Subsequently, the tested con-
tingencies showed a correlation between accuracy and common features 
in the MBs (Fig. 8). Then, the metric threshold of c0 was used for the 
tested contingencies. Across 8 tested contingencies, 5 of them had more 
than 3 features (i.e. half of the total number of features included in the 
largest considered MB) of their MBs located in the same electrical region 
of fault c0. Only 20% of high-impact topology changes were missed for 
these contingencies compared to almost 50% of missed high-impact 
topology changes for the other contingencies. 

4.4. Construction of new training databases 

This study investigates whether the proposed approach can be used 
for the efficient construction of a new training database following a 
topology change. The proposed approach uses two sources, the existing 
knowledge database and newly generated data. These two sources are 
studied separately for the same line contingency (between bus 31 and 
38). 

4.4.1. Utilization of the initial knowledge base 
To utilize the existing database for training new machines reduces 

the number of time-domain simulations required in the real-time oper-
ation. Two approaches for constructing the training databases were 
compared in terms of predictive accuracy: (a) The database included all 
20,000 OCs from the knowledge base and 1, 500 new OCs. This 
approach used all available information and the created training data-
base had 21,500 OCs. (b) The database included a selection of OCs 
(offline) from the knowledge base and 1,500 new OCs. This approach 
uses the proposed convex-hull approach to select OCs based on their 
power flow values. The results are shown in Table 2. The first approach 
resulted in an accuracy of 83%. The approach (b) increased the accuracy 
to 85%. Therefore, the proposed selection of high-quality data from the 
existing database corresponded to an improvement in accuracy of up-to 
13% and average of 2%. The approach was able to select only OCs from 
the training database that were relevant for the new topology. 

4.4.2. Generation of new data 
An effective approach to generating new OCs is to considering only 

OCs that add knowledge to the database. In other words, OCs that are 
redundant are not generated. The proposed approach (c) uses convex- 
hulls to make this selection effective. This is the final proposed 
approach in this paper. The results in Table 2 show that the number of 
time-domain simulations were significantly reduced by 55% from 1,500 
to 684. The other 816 OCs were considered redundant to the existing 
knowledge database. The result shows that the mean accuracy decreased 
only slightly by 0.15%. In the best case, only 224 OCs over 1,500 were 
selected. Hence, the time needed for time-domain simulations in real- 
time operation was strongly reduced and is promising in making the 
training computationally feasible. 

4.5. Training strategy 

The training strategy of the proposed approach for DSA was 
compared to existing approaches (i-iii) introduced in Section 4.2, and 
additionally to a three-stages workflow using the proposed metric where 
the training is exclusively based on the new OCs (iv). Although this 
approach is computationally inefficient, it provides a theoretical upper 
limit for the accuracy achievable from new OCs. All approaches were 
tested on 1, 500 new OCs generated from the power flow distribution 
following the topology changes. The results of the test accuracy are 
shown in Table 3 for the 17 high-impact topology changes. The 
following benefits of the proposed approach can be observed: an 
improvement in accuracy of up-to 52% and average of 9% in comparison 
to the two-stage workflow; a 2% average improvement in comparison to 
the three-stage workflow with periodic updates. However, if these pe-
riodic updates detected only the low-impact topology changes, the im-
provements was high at 9% in average and up-to 53%, and hence the 
proposed approach provided more robust results. The proposed 
approach also outperformed when only new training conditions are 
selected by 1.5%, hence using previous data improved the accuracy. In 
addition, the proposed approach reduced unnecessary time-domain 
simulations needed by 50% by selecting the new OCs that provide 
new knowledge to the database. The proposed workflow compared to 
existing approaches for DSA allowed operators to train new machines in 
real-time operation and enhanced the reliability of the security rules 
against frequent changes in the system topology. 

The French transmission system was then used to estimate potential 
benefits of computational savings to larger systems. In this estimation, 
the same reductions of 85% for the offline training database size (Section 
4.2), of 60% for new machines to be trained (Section 4.2) and and of 
55% for new data to be generated following high-impact topological 
changes (Section 4.4), as in the IEEE 68 bus system, were assumed. 
Subsequently, to estimate the computational benefits, the proposed 
approach (iii) was compared to the three-stages workflow (v) where the 
training is triggered at each topological change and is based on all the 
available new OCs. This approach is computationally inefficient as 
simulating the new OCs at each topological change would significantly 
increase the time span in which no accurate security assessment is in 
place. The results were summarised in Table 4. The estimation showed 
that the proposed approach has the potential to reduce the time for data 
generation by up-to 85% from 472 h to 71 h. 

Fig. 8. The correlation between accuracy of the reference classifier c0 for 
different contingencies ci and similarities in their MBs. 

Table 2 
The mean accuracy of the trained classifier under high-impact topology changes 
for three approaches (a)-(c) to construct new training databases.   

Approach  
(a) All 

knowledge 
(b) Relevant 
knowledge 

(c) Generation of new 
OCs 

No offline 
OCs 

20,000  4,307  4,307  

No new OCs 1,500  1,500  684  
Accuracy 83.26%  85.54%  85.39%   

F. Bellizio et al.                                                                                                                                                                                                                                  



International Journal of Electrical Power and Energy Systems 134 (2022) 107380

9

4.6. Discussion 

The proposed metric in combination with the construction method 
for new training databases showed promising results for online DSA 
applications, resulting in a maximal accuracy improvement of 52% 
compared against the conventional two-stages workflow for DSA. The 
metric detected all the 17 high-impact topology changes for the line 
contingency between bus 31 and 38. Thus, new machines needed to be 
trained only 17 times rather than training new machines for all 42 to-
pology changes. Then, the number of time-domain simulations to be 
performed was more than halved as relevant information were first 
selected from the existing database by the proposed approach. Addi-
tionally, the proposed approach improved the mean accuracy by 9% 
against the two-stages workflow and by 9% and 2% against the worst 
and best case of the three-stages workflow based on periodic updates. 

A few key limitations in designing data-driven DSA approaches for 
dealing with frequent system’s changes still exist. A lot of data are still 
required as different topology changes can be considered, e.g. discon-
nected lines or switched off generators, and they may happen simulta-
neously, i.e. N − k contingencies. The robustness of the proposed metric 
against variations of the training database size and the high relevance of 
the selected features to failure prediction (Section 4.2) cannot be 
concluded for all types of failures, topology changes or system’s settings. 
In the case of N − k contingencies, the approach can be extended by 
considering k faults in the offline time-domain simulations. Additional 
analysis should be conducted in this research direction to improve the 
applicability of the proposed approach. Moreover, to evaluate the metric 
in the real-time operation, it is necessary to guarantee that the mea-
surements are sufficiently accurate for an efficient graphical modelling 
of the grid. The machine learning approaches that are used along the 
proposed workflow were selected based on their relevance in the liter-
ature and their choice does not affect the performance of the proposed 
workflow, e.g. classification models different from DTs can be used 
(Table 1). Although the metric is based on designing convex hulls for the 
terminal nodes of the DT, a similar approach can be extended to any 
prediction models. The proposed workflow should be also tested against 
other stability metrics to validate their use. The benefits in terms of 
computational savings for large systems that were estimated for the 
French transmission system, should be verified on a real test system to 
assess the scalability of the approach. Relying on machine learning 
based DSA workflows rather than investing in new grid infrastructure 
has a risk that should be considered in the decision making process. 

5. Conclusion 

The challenges of dealing with high-impact topology changes for 
real-time DSA were investigated, showing that machine learning based 
DSA suffers from changes in the system topology. Neglecting these 
changes results in high inaccuracies of DSA classifiers, and low opera-
tional reliability. In response, a metric is proposed to identify topology 
changes that highly impact the classification accuracies. The key 
advancement of the approach is that the metric does not need any dy-
namic simulations, but only investigates the changes in the power flow 
features. This metric uses a causality-based feature selection approach 
for selecting features based on capturing the dependency between the 
system’s transient stability and the network topology. Subsequently, the 
metric uses a convex hull-based approach to identify changes of data 
within the selected features. 

The IEEE 68 bus system and transient stability were used to study the 
proposed approach. The metric correctly detected the 17 highest- 
impacting topology changes from a set of 42. Subsequently, only these 
17 triggered retraining of the classifier, whereas other uninformed ap-
proaches would need to retrain 42 classifiers. The proposed approach 
improves the predictive accuracy by around 10% in average and up to 
50% and, reduces the required training data by up to 85% which is the 
key finding. This approach allows to consider varying system topologies 
and marks a significant step forward to include dynamics in machine 
learning supported real-time DSA. The vision is promising as the sys-
tem’s operation closer to the physical (stability) limitations is more 
efficient. In the future, this workflow can be proposed for other stability 
phenomena, and in a control framework. 
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Table 4 
Estimation of computational times for data generation for a large system using different DSA workflows.   

Approach  
(iii) Proposed workflow (v) Frequent regular updates 

No offline OCs 1,000,000  7,000,000  
No new near real-time machines 400  1,000  
No simulations per new machine 680  1,500  

Simulation time per OC 0.2s  0.2s  
Total 71h  472h   

Table 3 
Comparison between DSA workflows in terms of mean accuracy over high-impact topology changes.   

Approach  
(i) Offline training (ii) Periodic updates (iii) Proposed workflow (iv) Upper Limit 

No offline OCs 20,000  20,000  4,307  0 
No new OCs 0 1,500  684  1,500  

Accuracy 76.62%  76.61% (w.c)  85.39%  83.85%   
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