
Enterprise-level search-based software
remodularisation using domain

knowledge

Master’s Thesis

Rolf de Vries

Enterprise-level search-based software
remodularisation using domain

knowledge

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Rolf de Vries
born in Alkemade, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Adyen
Simon Carmiggelstraat 2-50
Amsterdam, the Netherlands

www.adyen.com

www.ewi.tudelft.nl
www.adyen.com

© 2022 Rolf de Vries. All rights reserved.

Enterprise-level search-based software
remodularisation using domain

knowledge

Author: Rolf de Vries
Student id: 4452518
Email: r.b.devries@student.tudelft.nl

Abstract

As software systems evolve over time, the quality of its structure and code de-
grade unless developers regularly maintain it, requiring significant effort. Automated
tools to help developers maintain software have been well-studied in the past. In par-
ticular, software remodularisation tools focus on improving the code structure quality
with minimal effort by suggesting changes to the developers to obtain an improved
modularisation. While there has been considerable research on automated software re-
modularisation, it often faces one or more of the following three shortcomings. First,
the approach is applied to small or medium-size codebases, raising the question of
whether it scales to large codebases. Second, the results are not validated by the de-
velopers of these codebases. Last, the algorithm optimises only from a code quality
metrics point of view, not considering the perspective and knowledge of developers.
In this thesis, we propose an approach to capture developers’ domain knowledge of
a large-scale object-oriented codebase, which uses an NSGA-III algorithm to suggest
remodularisations that improve code structure quality and adhere to developer knowl-
edge. Additionally, the results of the algorithm are validated by the developers. The
results in this thesis show that with little effort, the domain knowledge of developers
can be captured and used to improve the suggestions made by the algorithm.

r.b.devries@student.tudelft.nl

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. M. Aniche, Faculty EEMCS, TU Delft
Company supervisor: MSc. D. Schipper, Adyen
Committee Member: Dr. N. Yorke-Smith, Faculty EEMCS, TU Delft

ii

Preface

To start, I would like to thank everyone who made my study and thesis possible. I look back
on the past seven years at the TU Delft with fond memories. The first people I want to thank
are Dieuwer, Jaap and Jip, going back to the start of our bachelor Computer Science, for the
fun and friendship we had, both in and outside the college classrooms. I am extra grateful
for Maurı́cio, both for suggesting the possibility of doing my Thesis at Adyen and for the
amazing guidance and feedback he has given me during it. Additionally, I want to thank
Arie van Deursen and Neil Yorke-Smith for their time and effort in my thesis committee.

I want to thank everyone at Adyen for making it possible to do my thesis and research
there, especially the teams that participated in the case studies. To everyone in the Con-
tainerization team, thank you for your support during the last nine months and for all the
fun activities we did. To my company supervisor Daan in particular, thank you for your
help, feedback and insights and for not getting bored of our weekly discussions. I want to
thank Casper for the regular discussions about his thesis and for taking the time to explain
his code and thought process when needed.

To finish off, I want to thank my family, friends and girlfriend for their love and support
over the years.

Rolf de Vries
Hilversum, the Netherlands

May 12, 2022

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Adyen . 4
1.2 Contributions . 4

2 Background 7
2.1 Software modularisation . 7
2.2 Code quality . 8
2.3 Genetic algorithms . 9
2.4 Expanding Search-Based Software Modularisation to Enterprise-Level Projects:

A Case Study at Adyen, by Schröder et al. 13
2.5 NSGA-III . 16

3 Related Work 19
3.1 Software structure quality metrics . 19
3.2 Software modularisation approaches . 21
3.3 What is missing? . 28

4 A domain-aware search-based algorithm for software remodularisation 31
4.1 Modelling solutions . 32
4.2 Pre-processing the codebase . 33
4.3 Defining domain knowledge rules . 33
4.4 Objective functions . 39
4.5 Reference points . 45
4.6 Initial population . 46
4.7 Parent selection . 46

v

CONTENTS

4.8 Crossover operator . 47
4.9 Mutation operator . 48

5 An empirical study on the convergence of the algorithm 53
5.1 Research questions . 53
5.2 Methodology . 53
5.3 Parameter tuning . 54
5.4 Results . 54
5.5 Conclusion . 61

6 Case studies at Adyen 63
6.1 Case studies . 63
6.2 Methodology . 64
6.3 Case studies results . 66
6.4 Summary of the observations . 76

7 Discussion 79
7.1 Implications . 79
7.2 Practical use of the approach . 80
7.3 Threats to validity . 80

8 Conclusions and Future Work 83

Bibliography 87

A Glossary 95

B Parameter tuning results 97

C Case study initial interviews 105
C.1 Initial developer interview questions . 105

D Case study iterations tables 107
D.1 Case study 1 . 108
D.2 Case study 2 . 109
D.3 Case study 3 . 110

vi

List of Figures

2.1 Genetic algorithm population . 10
2.2 Single-point crossover example . 11
2.3 Genetic algorithm mutation example . 12

4.1 Algorithm pipeline. Starts at the codebase and ends after presenting the report. 32
4.2 Dependency graph of example codebase . 34
4.3 Dependency graph of example solution . 34
4.4 Dependency graph with highlighted illegal dependency 37
4.5 Dependency graph with frozen classes and modules 38
4.6 Dependency graph with circular module dependency 41
4.7 Directed cyclic graph . 42
4.8 Dependency graph of example solution with worse cohesion 44
4.9 Example of parent pair for crossover . 48
4.10 Example of crossover conflict . 49
4.11 Extended dependency graph . 51

5.1 First run Pareto front . 55
5.2 First run Pareto front solutions that improve all metrics 56
5.3 Second run Pareto front . 56
5.4 Second run Pareto front solutions that improve all metrics 57
5.5 IntraMD Cohesion convergence, best and average values of 72 hour runs. . . . 59
5.6 InterMD Coupling convergence, best and average values of 72 hour runs. . . . 59
5.7 Largest module size convergence, best and average values of 72 hour runs. . . . 60
5.8 Circular module dependency convergence, best and average values of 72 hour

runs. 60

6.1 Case study action research cycle diagram . 64

vii

Chapter 1

Introduction

Software systems evolve as time progresses. As new features are added and bugs are re-
moved, the system’s architecture deviates, eroding the initially planned design [34]. When
a software system faces many changes but little maintenance for the quality of the code,
the quality of the code decreases and the technical debt of the system increases [21]. This
decrease in quality makes the system susceptible to faults, harder to maintain and reduces
the quality of software modules [30]. Additionally, it becomes more difficult for developers
to understand and add new functionality to the code, especially for enterprise-level code-
bases, which are too large for any developer to understand completely. As a result of this
non-complete understanding of the codebase, developers can make sub-optimal decisions
when developing, requiring an effort to maintain software quality from degrading [68, 55].

Technical debt is introduced into the code when software systems are not adequately
maintained to uphold their quality [21]. The technical debt can, over time, lead to increased
costs for maintaining, running, testing and deploying code. For example, duplicate code is
not removed, and modules become tightly coupled or loosely cohesive, making the job for
developers harder to perform. One approach developers can use to restore the quality of
their software systems is to remodularise the codebase.

Software modularisation is the practice of grouping related classes into modules to
achieve a good code structure. Coupling and cohesion [58] are two abstract concepts by
which the quality of a software system can be expressed. Cohesion is the degree to which
classes in a module belong together. When two or more classes in a module use one another
to serve a shared responsibility, these classes are considered cohesive. When classes in the
same module do not rely on each other to perform, they are considered incohesive. Gener-
ally, the cohesiveness of a module is defined in terms of its number of intra-dependencies.
When a group of classes in the same module has strongly related functionality, they likely
belong in the same software module, as the cohesiveness among them is high. Coupling
is the degree to which classes from different modules rely on each other to function. The
more a class relies on classes outside its own module, the more tightly coupled the module
of that class is with other modules. High coupling is undesirable, as a change to one class
can propagate to many different modules, thereby affecting a large part of the system and
causing unwanted functionality changes outside the original change’s intended scope. In
general, the coupling of a module is defined in terms of its number of inter-dependencies.

1

1. INTRODUCTION

When modules are highly cohesive and loosely coupled, they serve a distinct purpose and
reduce unwanted propagation of changes during software development.

Metrics for coupling and cohesion are popular choices for automated software remod-
ularisation approaches. At the heart of these approaches is an algorithm that uses met-
rics to improve the modularisation of software systems. A considerable amount of re-
search has been done to study and propose software modularisation approaches. While
some used a manual approach [67, 44], it is more common for an automated approach
to be used, involving clustering [46, 47, 78, 7, 61, 49, 6, 56, 74] or genetic algorithms
[46, 47, 62, 55, 65, 12, 63, 68, 53, 27, 9, 33, 34]. Regardless of the underlying technique,
the goal of these approaches is to provide developers with a better modularisation of their
software systems. Automated techniques can be beneficial, as software maintenance is an
expensive part of software development [11]. However, a shortcoming of most of these
techniques is that they only measure how good a software system is from the perspective
of code quality metrics such as coupling and cohesion, without considering whether the
suggested modularisation makes sense from the perspective of developers. As the results
of these approaches are not validated by the developers of the software system, it raises
the question of how well the approaches perform in practice. To quote Alizadeh et al. [3]:
“Manual refactoring is time-consuming, error-prone and unsuitable for large-scale, radical
refactoring. On the other hand, fully automated refactoring yields a static list of refactorings
which, when applied, leads to a new and often hard to comprehend design.” For automated
tools to provide useful modularisations, their results must be validated by developers, and
their domain knowledge should be taken into account.

In this thesis, we continue on the work of Schröder et al. [68], who proposed a soft-
ware remodularisation approach that scaled to enterprise-level codebases. In their work,
they used an NSGA-II algorithm to optimise the Adyen codebase for the following met-
rics: Intra-Module Dependency Coupling (Cohesion), Inter-Module Dependency Coupling
(Coupling), Estimated Build Cost of Cache Breaks (EBCCB) and the number of move-
class refactorings. Their work showed that the software remodularisation approach scales
to large software systems, and they validated the suggested remodularisations with devel-
opers of the codebase. From a metrics perspective, the approach improved the quality of the
codebase significantly. When validating the results with developers, it was found that the
algorithm successfully identified classes that should be moved but was inaccurate in deter-
mining to which modules the classes should be moved. As a suggestion for further research,
the authors suggest including the perspective of developers in the algorithm. Including this
developer perspective for automated software modularisation has been done in previous re-
search [53, 27, 9, 33, 34]. However, these approaches either require a considerable amount
of effort from developers, or the reusability of the developer input is limited.

We formulate the software remodularisation problem as a multi-objective problem, to
which we apply an NSGA-III algorithm that remodularises object-oriented software sys-
tems through move-class refactorings. A move-class refactoring moves a class in a software
system from one module to another. As we continue on the work of Schröder et al., we
will also apply our algorithm to the Adyen codebase. Among the objective functions are
traditional code quality metrics, such as coupling and cohesion, and a novel metric that
expresses developer knowledge. When automated software remodularisation approaches

2

only consider code quality metrics, solutions often do not make sense from the perspec-
tive of developers [34]. The NSGA-III algorithm can be configured to consider a complete
codebase while only focusing on improving a specific part of it. This configuration allows
development teams to receive suggestions related to the code they are familiar with with-
out introducing unwanted cyclic dependencies throughout the entire codebase and adhere
to the domain knowledge the developers have of their part of the codebase. Developer
knowledge is expressed in rules and freezes, which can vary in granularity from being spe-
cific to classes to covering multiple modules, allowing the algorithm to understand whether
move-class refactoring suggestions violate domain rules developers have, e.g. classes in a
front-end module may not depend on a database module. The goal of this approach is
to suggest a remodularisation that both improves code quality and adheres to devel-
oper domain knowledge, with a limited number of move-class refactorings to remain
understandable.

To validate this approach, we consulted various developer teams at Adyen for a series of
interviews. During each interview, the teams gave feedback on the remodularisation sugges-
tions of the algorithm. From this feedback, new domain rules were established and used as
input for the algorithm. Throughout these interviews, a knowledge base representing the do-
main knowledge of the developers was established, and the results show that including this
domain knowledge positively influences the algorithm’s decision-making when suggesting
remodularisations.

The results of this thesis show the importance of validating remodularisation results
with developers and including their perspectives during the remodularisation process. Be-
fore consulting our algorithm’s remodularisation suggestions with Adyen developers, we
performed an empirical study to analyse the impact the algorithm can make from a code
structure quality perspective. The empirical study showed that the algorithm could improv-
ing Intra-Module Dependency Coupling (Cohesion) by 8.6%, Inter-Module Dependency
(InterMD) Coupling (Coupling) by 6.67% and the Largest module size by 1.97%. While
these results show that the algorithm could significantly improve the code structure qual-
ity of the Adyen codebase, the results were not validated by developers. The case studies
following the empirical study showed that improvements to the metrics are not sufficient
for developers to always accept the remodularisation suggestions, as the suggestions vio-
lated several domain rules that developers follow during development. By including this
developer domain knowledge, the algorithm could suggest remodularisations that improved
the code quality and adhered to these domain rules, which positively affected developer
acceptance of the suggestions.

For the remainder of this thesis, we will explain the company Adyen and the contribu-
tions this thesis makes. Next, we further discuss software modularisation, code structure
quality metrics and genetic algorithms and dive deeper into the work of Schröder et al. [68].
The chapter after describes related work. This chapter is followed up by a detailed descrip-
tion of the functionality of our proposed NSGA-III algorithm and the domain knowledge
input. In the chapter after that, we perform an empirical study to understand the algo-
rithm’s performance from a metrics point of view. The chapter following the empirical
study focuses on case studies that include Adyen development teams to analyse the impact
of developer knowledge on the algorithm’s performance. Finally, the approach and results

3

1. INTRODUCTION

are discussed, conclusions are drawn, and future work beyond this thesis is proposed.

1.1 Adyen

Adyen was founded in 2006, aiming to revolutionise the payments technology industry.
Adyen provides a payments platform for merchants and provides payment and points of
sale terminal services. In addition, Adyen is a gateway, acquirer and more recently obtained
banking licenses in various countries 1.

Since its founding, both the company and its codebase have grown rapidly, now count-
ing over 2000 employees and millions of lines of code, respectively. As the company grew,
the services it provided increased as well, resulting in new software being added to the
existing codebase, thus increasing the complexity of the code. Furthermore, as codebases
are subject to feature enhancements, they deviate from their original architecture and be-
come increasingly harder to manage [67]. The codebase of Adyen is no exception to this,
as shown by the efforts made during a full week by a group of 20 developers spent on
refactoring the largest module in the mono repository.

Originally, much of the code related to the core business was located in this module,
which grew in size and complexity as the company grew. Over time increasing complexity
resulted in the code being heavily intertwined within the module, making it difficult to
introduce changes that would not cascade throughout the module and to other modules.
Since then, efforts have been made to extract clusters of code into specialised modules,
reducing the complexity of the large module and making the code easier to understand.
Isolating these modules ensures that changes introduced to their code are less likely to
propagate to other modules. Despite the efforts, the large module accounts for a significant
portion of the repository, as it offers functionality that relies on code also located in the
same module. The work performed in the refactoring week mentioned above resulted in
the largest module being reduced in size by 5%, indicating the amount of work required for
such an effort and showing potential for the application of automated software maintenance
tools.

1.2 Contributions

This thesis makes the following contributions:

• A multi-objective genetic algorithm to tackle the software remodularisation problem
for enterprise-level large-scale codebases, able to significantly improve such code-
bases from a metrics perspective while adhering to its developers’ domain knowl-
edge.

• The results of the algorithm are validated with multiple development teams. This
approach shows both the importance of validating results with the actual developers
and generates feedback that can be used to obtain better remodularisation suggestions.

1https://www.adyen.com

4

https://www.adyen.com

1.2. Contributions

• A framework to represent developer domain knowledge is introduced, allowing for
developer feedback of varying granularity. The feedback is reusable, allowing it to be
used for future runs of the algorithm.

5

Chapter 2

Background

In this section, we discuss software modularisation, code structure quality and genetic algo-
rithms, and the work by Schröder et al. [68]. The work of Schröder et al. is the predecessor
of this thesis, which showed that genetic algorithms could be used for the modularisation
problem on large-scale enterprise-level software systems. This was shown on the codebase
of Adyen. This section lays the groundwork for the topics above and explains the genetic
algorithm, NSGA-III, used in this thesis.

2.1 Software modularisation

Software modularisation is the process of dividing classes into modules such that each mod-
ule works independently. Experts agree that software systems that are well modularised are
easier to develop, maintain and understand for developers [71, 69, 64], while poorly mod-
ularised systems are associated with decreased testability and increased efforts to maintain
and comprehend them [62]. Modularisation efforts can be manual, automatic or a hybrid
approach.

With manual modularisation, developers identify clusters of classes that belong together
and divide the software system into modules. Ideally, each module relies as little as possible
on other modules, while the classes within a module use other classes in the same module to
work. The measure of connectivity between modules is called coupling, while the measure
of connectivity of classes within a module is called cohesion. Both of these concepts are
further explained in Section 2.2. Automatic modularisation is the process of automatically
partitioning a software system based on metrics that quantify how well partitioned the soft-
ware system is. Metrics for coupling and cohesion are popular choices for such automated
approaches. However, it is significantly more difficult for automatic modularisation to con-
sider code connectivity that is hard to express in such metrics. Lastly, developers can choose
a combined approach where they can interact with the automatic tool to obtain to steer the
modularisation process to a desired outcome. Several examples of this last approach are
discussed in Section 3.2.4.

7

2. BACKGROUND

2.1.1 Software remodularisation

Software remodularisation is a software modularisation approach that minimises the num-
ber of changes. The remodularisation approach is the one we use in this thesis, though we
use the terms modularisation and remodularisation interchangeably. While large modular-
isations can significantly impact structural quality, they are also harder to understand and
implement. When modularisation suggestions are harder to understand, it is likely that they
are either rejected more often or have an increased probability of developers introducing
mistakes when implementing them. A small list of changes will not drastically improve
structure quality but requires far less work by improving the structure gradually. As Sam
Newman said [57]: “Think of our monolith as a block of marble. We could just blow the
whole thing up, but that rarely ends well. It makes much more sense to just chip away
at it incrementally.” While this was said in the context of breaking down monoliths into
micro-services, this approach is also applicable to gradually improving the modularisation
of a large-scale codebase.

2.2 Code quality

Various measures can express the quality of code. For example, one can measure how
fast the code runs, whether the output is correct, how quickly it compiles or whether it is
properly tested. One can use two distinct notions to assess code quality: functional and
structural quality. Functional quality expresses how well the software fits the functional
requirements such as quality of results, while structural quality expresses how well non-
functional requirements such as maintainability are met. Code structure quality metrics
such as coupling and cohesion fall under the latter category. As we propose an algorithm
that suggests move-class refactorings to improve the structure of software systems in this
thesis, we use code structure metrics to produce modularisations with improved structural
quality.

2.2.1 Code structure quality

The concepts of coupling and cohesion are not new, being introduced as far back as 1968
by Constantine [18]. Using these metrics, software developers can improve the structural
quality of their software systems. In the decades since 1968, researchers have spent a sig-
nificant amount of time defining metrics to express the quality of software systems, some
of which will be discussed in detail in Section 3.1. For now, we will discuss the concepts of
coupling and cohesion.

Coupling and cohesion both represent how one software unit interacts with other units
in a software system. These units can vary in granularity, ranging from methods and func-
tions to classes or modules in object-oriented software systems. At module level, in the
context of a software system that has been divided into modules with each module serving
a specific purpose, cohesion expresses how well the classes within a module work together.
In contrast, coupling expresses how much a module relies on other modules to function.

8

2.3. Genetic algorithms

Both high coupling and high cohesion have the effect that changing one class will result in
changes in other classes. However, the difference between coupling and cohesion is that
with high coupling, these changes can unintentionally propagate to other parts of the sys-
tem. In contrast, for high cohesion, those changes are related to the same module. These
two aspects are often used in determining the code structure quality of software systems, as
we will see in Chapter 3.

2.3 Genetic algorithms

Genetic algorithms (GA) are search heuristics inspired by the process of natural selection.
They operate by simulating a population that evolves over time, where each member of
the population represents a solution to the problem to which the GA is applied. As time
progresses, good solutions have a better chance of survival than bad solutions. To determine
whether solutions are good or bad, genetic algorithms use objective functions to assess the
fitness of a solution. Using the fitness of solutions, a GA can compare solutions. Therefore,
objective functions must be chosen such that their values represent (un)desirable traits. GAs
improve the fitness of solutions in their population by drawing on operators inspired by the
biological concepts of reproduction, mutation and selection. These operators are applied
in a loop, where each iteration is called a generation. At the end of each generation, the
algorithm can either stop, based on some stopping criterion, or perform another generation.
The general idea behind such an approach is that the solutions in the population improve
over time in terms of the objective functions, which represent desired traits of solutions. We
will further discuss the applicability of GAs for software modularisation in Section 2.4 and
Chapter 3. To illustrate how a GA operates, we propose a simple problem to solve: “Find a
binary string of length five such that the sum of its bits is 5”. While the problem can easily
be brute-forced to obtain the answer 11111, this example is used to help understand how a
GA would attempt to solve a problem.

2.3.1 Population

Genetic algorithms start by initialising their population, usually by randomly generating
it. The size of the population influences the performance of the algorithm. A population
that is too small is less likely to have a diverse outcome, while a large population requires
more calculations per generation, thus slowing down the algorithm. Each member of the
population is referred to as a solution or chromosome. Every solution consists of a number
of genes, which represent features of the solution. Figure 2.1 illustrates these different
concepts for a population of size four.

2.3.2 Crossover

Crossover is the conventional term used to describe reproduction for GAs. The algorithm
selects two solutions from its population and recombines them to create two new solutions.
This selection and recombination continues until the population has doubled in size, which
is eight in the current example. One of the simplest crossover operators is single-point

9

2. BACKGROUND

Figure 2.1: Genetic algorithm population

crossover. Single-point crossover splits a parent into two sections and assigns one section
to the one child and the other to the other child at random, and vice versa for the other parent.
Figure 2.2 illustrates single-point crossover for solutions S1 and S2. Child C1 receives the
first part from parent S1 and the second part from parent S2, indicated by their respective
colours. Child C2 receives the first part from parent S2 and the second part from parent S1,
also indicated by their colours. The location of the crossover point can vary every time the
operator is applied, allowing the same pair of parents to result in many different pairs of
children.

2.3.3 Selection

The use of a selection operator is inspired by the mechanism behind natural selection: “sur-
vival of the fittest.” Solutions in the population that are “better” should have a higher chance
of surviving and reproducing than those that are “worse”. The “goodness” of a solution is
called its fitness. For the example problem statement, the fitness of a solution is simply the
sum of its bits. The fitness of each solution in the population shown in Figure 2.1 is listed
in Table 2.1. The GA uses these fitness values to pick solutions for crossover randomly.
A popular selection operator is roulette wheel selection, which assigns a probability for a
solution to be picked equal to its contribution to the total fitness. The total fitness of the
population in this case is 3+1+3+2 = 9, meaning that solutions S1 and S3 both account
for 1

3 ≈ 33.3% of the population fitness, solution S4 for 2
9 ≈ 22.2% and solution S2 for

1
9 ≈ 11.1%. Each solution has a probability equal to its fraction of the total fitness of being
picked as a parent to create offspring.

10

2.3. Genetic algorithms

Figure 2.2: Single-point crossover example

Solution Fitness

S1 3
S2 1
S3 3
S4 2

Table 2.1: Figure 2.1 solution fitness values

Selection can also be used to determine survivors in the population. As mentioned in
Section 2.3.2, crossover doubles the population in size due to each pair of parents creating
a pair of offspring. A number of solutions equal to the original population size must be
picked from this population. This can also be done using a selection operator, of which
various types are discussed in Sections 2.4 and 4.7. The main idea behind selection is that
by giving solutions that are deemed good a higher chance of surviving and reproducing,
they, in turn, create new offspring that is even better, thus gradually improving the fitness of
solutions in the surviving population.

2.3.4 Mutation

Mutation is the ability of a GA to introduce changes to a solution that could take a long
time or even might never happen through crossover. While crossover allows the algorithm
to create new solutions from existing ones, it can never assign a value to a gene that does

11

2. BACKGROUND

Figure 2.3: Genetic algorithm mutation example

not already exist in the population. For example, in the population displayed in Figure 2.1,
only solution S3 has a 1 as value for its fourth gene. If S3 were not to survive a generation,
it could happen that none of the solutions in the population had a 1 for their fourth gene.
In that case, all subsequent solutions would always have a zero as value for that gene,
making it impossible for the algorithm to produce a solution where the sum of its genes is
five. Through mutation, the GA can change the value of genes in solutions, mimicking the
mutation of genes in nature. For example, Figure 4.11 shows how solution S1 is mutated
such that its fourth gene becomes a 1.

2.3.5 Stopping criteria

Even though the algorithm can create new solutions from existing ones with crossover and
to introduce never-before-seen changes to solutions with mutation, it can still take the al-
gorithm a significant amount of time to produce a solution that satisfies the problem. To
prevent the algorithm from potentially running indefinitely, one can specify stopping cri-
teria so that the algorithm terminates even if it does not find an optimal solution. Usually,
these stopping criteria define some maximal number of generations the algorithm can iterate
over or a certain amount of time before the algorithm must stop. Once such criteria are met,
the algorithm can return the best solutions it has found so far. Continuing on the scenario
from Section 2.3.4, where all solutions in the population of the algorithm have a 0 as value
for the fourth gene, due to the random nature of the mutation operator, it can take a substan-
tial amount of time until the population once again contains solutions with value 1 for the
fourth gene. If the problem must be solved in a limited amount of time, the algorithm might
terminate before producing a solution 11111. In this case, the best solution the algorithm
could have produced is 11101, which has a fitness of 4.

2.3.6 Multi-objective genetic algorithms

For the example problem mentioned above, a single objective function is sufficient for the
algorithm to create a solution that satisfies the problem. However, more complex problems
require multiple objective functions to enable the algorithm to produce satisfactory solu-

12

2.4. Expanding Search-Based Software Modularisation to Enterprise-Level Projects: A
Case Study at Adyen, by Schröder et al.

tions, as one fitness value cannot represent all the desired traits. When multiple objective
functions are used, the genetic algorithm is known as a Multi-Objective Genetic Algorithm
(MOGA), a type of Multi-Objective Evolutionary Algorithm (MOEA). MOGAs have been
shown to be widely applicable for large search-based problems. Since the problem at hand
in this thesis is a multi-objective one, the changes required for a genetic algorithm to deal
with multiple objectives are discussed.

Instead of having one fitness value for each solution, the fitness of a solution becomes
represented by a vector of size equal to the number of objective functions. This transforms
the problem from one-dimensional to n-dimensional, with n being the number of objective
functions. As a result, the selection operator must now order solutions based on all their
fitness values. For example, for a two-dimensional maximisation problem, if there are two
solutions with respective fitness vectors (1,1) and (2,0), one cannot say whether the first is
better than the second. For the first fitness value, the second solution performs better than
the first, but the opposite holds true for the second fitness value. In such cases, the two
solutions are said to be non-dominating. For maximisation problems, a solution SolA is said
to dominate another solution SolB if for each objective function F : F(SolA)≥ F(SolB) and
there exists at least one objective function such that F(SolA) > F(SolB). In other words,
all fitness values of solution SolA are at least as high as those of solution SolB, and at least
one fitness value is strictly higher. Every solution in the population that is non-dominated
is called a Pareto-optimal solution. With this concept of domination, the GA can divide the
population into fronts.

All Pareto-optimal solutions in the population form the Pareto-optimal front. The next
front contains all solutions that are only dominated by solutions in the Pareto-optimal front.
The front after that contains all solutions that are only dominated by solutions in the previous
fronts, and so on until all solutions are allocated to a front. Using these fronts, the selection
operator can select solutions based on the front they are in, favouring solutions that are not
dominated over those that are.

2.4 Expanding Search-Based Software Modularisation to
Enterprise-Level Projects: A Case Study at Adyen, by
Schröder et al.

The work in this thesis continues on the research of Schröder et al. [68], which showed that
search-based software modularisation could be scaled to enterprise-level software systems.
In their work, Schröder et al. describe a graph-based approach to modularising the codebase
of Adyen. To explore the solution space of modularisations, an NSGA-II [25] algorithm is
employed as a search-based approach. The algorithm modularises by performing move-
class refactorings to move classes from one module to another.

Instead of having each solution represent a complete modularisation by assigning each
class to a module, the NSGA-II algorithm represents a list of move-class refactorings that,
when applied, result in a new modularisation of the Adyen codebase. Modelling solutions
in such a way improves performance by reducing the cost of evaluating solutions.

13

2. BACKGROUND

2.4.1 Building block preserving crossover

Traditional crossover operators such as single-point, two-point or uniform crossover cannot
respect the module structure of solutions when creating offspring. This is because these
operators consider solutions as a list of classes, where each class location is copied from a
parent to a child. The resulting modules in the offspring can therefore differ significantly
from those of their parents, causing vastly different modularisations. To attempt to maintain
the module structure of a parent, the authors’ NSGA-II algorithm employs a building block
preserving crossover operator inspired by Harman et al. [35]. This operator aims to maintain
module structure by performing uniform crossover at module level rather than class level.
However, since modules can consist of different sets as classes per parent, this can cause
conflict during crossover.

An example is visualised and covered in more detail in Section 4.8, but the general idea
is that a child C1 can receive a module from parent P1, where that module contains a class
that C1 earlier received in a different module from parent P2. This would cause child C1 to
contain that class in two different modules, while the class would not be located in child C2.
To resolve this, the second time C1 receives a class, that class instead goes to C2.

2.4.2 Selection

For selection, the authors’ NSGA-II algorithm uses tournament selection of size 5, using
partial order and crowding distance to decide on draws. A traditional tournament selection
of size n picks n solutions from the population at random. It returns a solution with a
probability corresponding to the ratio of its fitness to the total fitness in the tournament
[52]. Variations to this method can occur by allowing a solution to appear multiple times
in a tournament or always returning the best solutions in a tournament. When the fitness
of solutions is multi-objective, solutions can be assigned to fronts using the domination
principle as explained in Section 2.3.6.

The selection operator of Schröder et al. uses partial order and crowding distance to
deal with these solutions. Partial order favours solutions of lower rank, meaning they are in
a better front. When solutions are of the same rank, thus in the same front, the crowding
distance is used to order these solutions, choosing solutions with high crowding distance
over those with lower values. This is the same selection approach as used in the original
NSGA-II paper by Deb et al. [25].

2.4.3 Mutation

Move class refactorings are introduced when a solution is mutated. The authors’ NSGA-II
algorithm uses two mutation operators, each having an equal probability of being applied
to a solution. The first operator is a min-cut based operator. Starting at a random class, the
dependency graph of that class within the module is created up to a certain size. Next, the
min-cut of the graph is determined using the Stoer-Wagner algorithm [72], cutting the graph
into two sub-graphs. The sub-graph that contains the originally picked class is then moved
to a related module. The size of this sub-graph varies on the location of the min-cut.

14

2.4. Expanding Search-Based Software Modularisation to Enterprise-Level Projects: A
Case Study at Adyen, by Schröder et al.

The second operator works by moving a neighbourhood of classes, inspired by the ap-
proach of Fraser and Arcuri [31]. First, a class C is picked at random. Then, all classes that
directly depend on C or that C directly depends on are determined. Then, with decreasing
probability, another class from the directly related classes is grouped with C, and the related
classes of the group are determined. Once no more classes are added to the group, a related
module of the group is picked at random as the destination for the group of classes.

For both operators, to allow the algorithm to create new modules, a probability of cre-
ating and substituting a new module for the related module can be provided.

2.4.4 Fitness evaluation

To evaluate and compare the performance of solutions, Schröder et al. used four optimisa-
tion variables:

• Coupling (Inter-Module Dependency Coupling) between modules.

• Cohesion (Intra-Module Dependency Coupling) within modules.

• The number of move-class refactorings (#moves).

• The Estimated Build Cost of module Cache Breaks (EBCCB).

For coupling, the average amount of Inter-Module Dependency Coupling (InterMD)
was used. For cohesion, the number of class dependencies within a module divided by the
maximum possible amount of class dependencies within that module, Intra-Module Depen-
dency Coupling (IntraMD), was used. The number of move-class refactorings indicates
how much work is required by developers to implement all the suggested changes. The
Estimated Build Cost of module Cache Breaks indicated how often the cache of a module
and its transitive dependencies breaks due to changes in that module. With a codebase of
a size like Adyen’s, compiling all code for every change slows down development speed
considerably. Adyen caches the compiled modules to combat this, only recompiling if the
module changes or any module that the module (transitively) depends on changes. High
EBCCB values indicate high transitive coupling. As a result, changing a module will break
many caches, which increases compilation time.

Coupling, #moves and EBCCB are minimisation variables, while cohesion is a max-
imisation variable. By minimising coupling, modules become less dependent on others.
Maximising cohesion means that classes in the same module rely on each other to func-
tion. Minimising the number of move class refactorings ensures that the algorithm does not
produce a long list of refactorings since those are unlikely to be accepted by developers.
Instead, by keeping the number of refactorings low, the list of refactorings is more concise
and better understandable. Finally, minimising EBCCB reduces transitive coupling in the
codebase and ensures that compilation time does not grow out of hand for future changes.

15

2. BACKGROUND

2.5 NSGA-III

NSGA-III [23, 40] is an evolutionary algorithm that follows the NSGA-II framework [25]
and applies a reference-point-based approach. Like NSGA (Non-dominated Sorting Ge-
netic Algorithm) and NSGA-II, NSGA-III emphasises non-dominated population mem-
bers. Additionally, NSGA-III emphasises those non-dominated population members close
to supplied reference points. NSGA-II algorithms have proven efficient in solving two-
and three-objective optimisation problems but have difficulty dealing with many-objective
optimisation problems, which have more than three objectives.

2.5.1 Many-objective optimisation problems

As the number of objectives grows, the proportion of non-dominated solutions scales ex-
ponentially [23]. This slows down the search process of the GA, as the crowding distance
operator becomes computationally more expensive, and most of the population is located
in the Pareto front [24, 26]. Most multi-objective optimisation algorithms, like NSGA-II,
emphasise non-dominated solutions. As the number of dimensions increases, so does the
distance from a solution to others in the population [2]. When two parents that are dis-
tant from each other create offspring through crossover, those children will also be distant
from their parents, which is counter-intuitive to the idea behind crossover and harms the
algorithm’s efficiency.

Visualising the search space becomes difficult, or even impossible, for problems with
many objectives. While NSGA-III does not solve the visualisation problem, it can address
the other problems stated by updating its selection procedure. Rather than selecting solu-
tions based on crowding distance [25] or clustering [79], NSGA-III uses reference points to
maintain diversity among the population.

2.5.2 Selection

While NSGA-III uses the NSGA-II framework, it functions significantly different when
comparing their selection operator. NSGA-III uses reference points to maintain diversity
among solutions in the population, even for a large number of objectives. Similarly to
NSGA-II, solutions are sorted into fronts based on which solutions dominate them. The
first front, also known as the Pareto-optimal front, contains all non-dominated solutions.
However, where NSGA-III differs is how it decides on draws for solutions in the same
front.

When the algorithm has a population of size N, the total number of solutions after
crossover is 2N. The selection operator is used to select N solutions that survive to the next
generation, favouring good solutions in terms of fitness and maintaining diversity among
the population. The 2N solutions are assigned to fronts based on the domination principle.
The first front, F1, contains all non-dominated solutions, F2 contains the solutions only
dominated by F1. This goes on until front FM, which contains the solutions dominated by
solutions in FM−1 and previous fronts. Then, the operator assigns solutions to the surviving
population P based on their front, starting with F1 and continuing until the size of P is larger
or equal to N. When |P|= N, the operator returns P, and the algorithm can continue.

16

2.5. NSGA-III

However, if |P|> N, the operator must decide which solutions are not added to P such
that |P| = N. Say that front FL is the front that, when completely added to P, results in
|P| > N. The selection operator uses the reference points to decide which solutions in FL

are added to P. Each solution so far in P, s.t. P=F0∪F1∪ ...∪FL−1, is assigned to its closest
reference point, resulting in an association count for each reference point. The solutions in
FL are also assigned to their closest reference point without increasing the association count
of their reference point. The selection operator then picks a solution in FL associated with
the reference point with the lowest association count, breaking ties at random. This solution
is then added to P, and the association count of its reference point is incremented. This is
repeated until |P| = N, where the solutions picked from FL are chosen because they have
the biggest impact on the diversity of P.

2.5.3 Reference points

NSGA-III allows users to adopt two strategies for supplying reference points: reference
points can be supplied structurally or defined manually by the user. In the original NSGA-
III paper [23], a structural manner is used, called the “Das and Dennis systematic approach”
[22], which uniformly distributes the reference points on a normalised (M−1)-dimensional
hyperplane, with M equal to the number of objectives. By distributing the reference points
uniformly, the algorithm is not biased to any objective function, allowing the algorithm to
pursue maximal diversity across the objective space.

17

Chapter 3

Related Work

Over the past decades, software modularisation and maintenance have been well-studied
topics for software engineering research. Software modularisation is the process of restruc-
turing a codebase to improve its structure. This chapter discusses various ways to measure
the structural quality of software systems. These metrics have been used in various algo-
rithms and approaches to tackle the software modularisation problem in the past, which the
following section outlines. Lastly, techniques to model user preferences and knowledge are
described.

3.1 Software structure quality metrics

There are many metrics available to measure the structural quality of software systems.
This section will outline metrics that have been used by related work to improve software
structure quality.

Chidamber and Kemerer proposed a set of six metrics [17], which have been used and
extended extensively in software quality research. These metrics are listed below:

1. Weighted Methods per Class (WMC): The sum of the weighted complexity of all
methods in a class.

2. Depth of Inheritance Tree (DIT): The length from the class to the root of its inheri-
tance tree.

3. Number of Children (NOC): The number of immediate sub-classes a class has in its
inheritance tree.

4. Coupling Between Object classes (CBO): The number of classes a class is coupled
with.

5. Response for a Class (RFC): The number of methods a class can call.

6. Lack of Cohesion in Methods (LCOM): Measures the lack of cohesion between pairs
of methods in a class depending on whether they share class variables.

19

3. RELATED WORK

Basili et al. [8] studied the performance of these metrics as predictors of fault-prone
classes by testing them on eight information systems. They showed that all metrics except
LCOM outperformed traditional code metrics as predictors. In addition, the metrics from
Chidamber and Kemerer were usable earlier on in the software development process.

While much work has been done on developing software quality measures, Briand et
al. [14] argue that there is little understanding of which application many measures are
helpful for. Therefore, they propose a unified framework to measure cohesion for software
systems. Additionally, they criticise the lack of empirical validation in many of the works
that proposed new measures and the quality of some works that do have empirical evidence.
This work emphasises the importance of thorough empirical validation to show the use-
cases and usability of software quality metrics.

Metrics for coupling and cohesion are some of the most well-known measures for soft-
ware quality. Numerous researchers have used them to measure the class or module level
structural quality of software systems, representing intra- and inter-connectivity. For exam-
ple, Mancoridis et al. [46] proposed a metric, Modularisation Quality (MQ), that combines
intra- and inter-connectivity into a single value by using a weighted sum of the two values.
The resulting value for MQ is bounded between -1 and 1, where -1 means no cohesion while
1 means no coupling.

Allen et al. proposed information-theory approaches to measure coupling and cohesion,
for an entire system [4] and at module level [5]. In their work, they refer to the framework of
Briand et al. and adopt their definitions in their work. They propose module level measures
based on information theory, one for cohesion and two for coupling; inter-module coupling
and intra-module coupling. They show that these measures can be applied to measure the
quality of modular software systems.

In addition to coupling and cohesion, Mahouachi [45] considered the semantic cohe-
siveness of packages and the refactoring effort as optimisation goals for software modu-
larisation. They argue that “the name of a variable, method, or class, reveals the developer
intent and it corresponds on internal indicators for the meaning of a program.” This intention
is not easily captured by traditional metrics; therefore, semantic evaluation is used. Using
WordNet1 information content, they calculated the semantic similarity between a class and
packages to determine whether a class belongs to a package on a semantic level. In addition
to improving the modularisation quality while minimising the needed effort, the algorithm
was also able to accommodate for the domain knowledge captured in the semantics of the
software elements. If software elements are not appropriately named, the semantic analysis
may negatively affect the algorithm’s performance.

Bavota et al. [10] combined structural and semantic measures to decompose packages
into smaller, more cohesive packages, as no single metric captures all aspects of cohesion
[50]. They used Information-Flow-based Coupling (ICP) [43] and Conceptual Coupling
Between Classes (CCBC) [60] to measure the cohesion of packages. ICP measures the
structural relation between classes, while CCBC measures the semantic relation. These
metrics were chosen as they were shown to work well together while not correlating, mean-
ing they measure different aspects. Their results show promise for using a combination

1https://wordnet.princeton.edu/

20

https://wordnet.princeton.edu/

3.2. Software modularisation approaches

of semantic and structural measures to identify modularisations of packages that improve
cohesion.

In addition to MQ, inter-cluster and intra-cluster connectivity, Bavota et al. [9] used the
number of clusters and the number of isolated clusters as metrics to improve the quality of
software systems. This approach was inspired by the Maximising Cluster Approach (MCA)
proposed by Praditwong et al. [62]. In addition to MCA, Praditwong et al. also proposed
the Equal-Size Cluster Approach (ECA), which is similar to MCA. However, instead of the
number of isolated clusters, it uses the difference in size of the largest and smallest cluster
as a metric. Both approaches showed promise for improving code structure quality, with
ECA having the better performance of the two.

While software modularisation recommender tools often use cohesion and coupling to
propose modularisations that are a balance between the measures, Candela et al. [15] argue
that there is no empirical evidence that such balances are what developers need or even
want. The authors performed two studies to assess the role of cohesion and coupling in
modularising software systems. The first study objectively investigates by analysing 100
open-source systems whether their design balances coupling and cohesion or whether it
favours one of the two metrics. The second study is more subjective, where the authors
interviewed 29 developers that contributed to some of the 100 projects to understand what
drives developers when they perform modularisations. The first study shows that almost
all open-source projects have a design far from optimal in terms of coupling and cohesion.
This is confirmed by the results of the second study, in which developers claimed that they
are usually guided by more properties than just coupling and cohesion when modularising.
The authors conclude by stating that these results indicate that cohesion and coupling are
likely not enough to produce good modularisations from a developer perspective.

Chhabra et al. [16] proposed an approach that considers lexical dependencies in addition
to structural dependencies for modularisation. Considering lexical dependencies allows the
approach to optimise cohesion and coupling on a lexical level, such as class and parameter
names, as well as on a structural level, which results in modularisation solutions that capture
more of the developer’s perspective. The authors use four metrics: Intra-Module Connect-
edness Index (IMCI), Between-Module Connectedness Index (BMCI), Module Count Index
(MCI), and Module Size Index (MSI) (MCI), where the first two make use of both struc-
tural and lexical analysis to determine the connectedness of modules. The results of the
work show that combining lexical and structural dependencies yield modularisations that
are most useful from a developer perspective compared to using only one of the two.

3.2 Software modularisation approaches

In the past, much research has been done to propose and study approaches for software
maintenance, an activity that many developers are familiar with, as studies by Pigoski [59]
and Erlikh [28] show that software maintenance takes up over half of all programming
effort in large corporations. In this section, various research on software modularisation ap-
proaches is discussed. Additionally, an overview of this research can be found in Table 3.1.

21

3. RELATED WORK

Authors [reference] Problem Approach
Validated by
developers

Mancoridis et al. [46, 47] Modularisation
Clustering
GA

No

Wiggerts [78] Remodularisation Clustering No
Anquetil and Lethbridge [7] Remodularisation Clustering No
Pourasghar et al. [61] Modularisation Clustering No
Maqbool and Babri [49] Modularisation Clustering No
Andritsos and Tzerpos [6] Modularisation Clustering Yes
Naseem et al. [56] Modularisation Clustering Yes
Praditwong et al. [62] Modularisation GA No
Mkaouer et al. [55] Remodularisation GA Yes
Saidani et al. [65] Microservice extraction GA No
Boukharata et al. [12] Web interface splitting GA Yes
Sarkar et al. [67] Modularisation Manual Yes
Teymourian et al. [74] Modularisation Clustering Yes
Levcovitz et al. [44] Microservice extraction Manual No
Prajapati and Chhabra [63] Module clustering PSO No
Schröder et al. [68] Remodularisation GA Yes

Mkaouer et al. [53]
Automated model
transformation

GA No

Di Penta et al. [27]
Library splitting and
removing redundant code

GA Yes

Bavota et al. [9] Modularisation GA No
Hall et al. [33, 34] Remodularisation GA No

Table 3.1: Overview of problems optimised for, approaches used and whether results were
discussed with domain experts.

3.2.1 Clustering

Mancoridis et al. [46, 47] created an automated technique called Bunch to create modulari-
sations of C++ software systems. The modules in the source code are clustered to maximise
Modularisation Quality (MQ). The authors leveraged the clustering algorithms provided by
Bunch, which provides an optimal algorithm for small systems, while for larger systems,
users must resort to sub-optimal algorithms that rely on the Neighbouring Partitioning Strat-
egy. The sub-optimal algorithms provided by Bunch are a clustering algorithm based on
hill-climbing and a genetic algorithm. Both eventually converge to a local optimum but are
not guaranteed to reach the global optimum.

Wiggerts [78] outlined several clustering approaches to remodularise legacy software
systems. From the perspective of the system, modularisation means splitting the system
into smaller chunks, while from the perspective of a class, it means grouping it with other
classes to form related chunks. In the case of legacy systems, which already have a defined

22

3.2. Software modularisation approaches

structure, completely overhauling the structure can be too costly or complicated. Instead,
Wiggerts advocates remodularising legacy systems to reduce their complexity. The work
presents an overview of clustering approaches for both perspectives that are suitable for
software modularisation and is used by researchers in later clustering-based (legacy) soft-
ware modularisation research [7, 46, 47, 48, 61].

Pourasghar et al. [61] propose a Graph-based Modularisation Algorithm (GMA) that
considers transitive dependencies to modularise software systems. The algorithm clusters
classes in the Artifact Dependency Graph (ADG) in modules and updates the assignment of
classes to modules repeatedly to optimise the sum of similarity between artifacts (SSA). The
output of GMA is the modularisation of the original ADG with the highest SSA. By consid-
ering the transitive dependencies in addition to direct dependencies, GMA could produce
better modularisations than state-of-the-art search-based algorithms from the perspective of
developers.

The architecture of software systems can become lost over time, for example, due to
poor documentation or loss of expert knowledge. To regain architectural-level understand-
ing, the source code can be used to reverse engineer the architecture by grouping classes.
Maqbool and Babri [48] reviewed hierarchical clustering approaches for software architec-
ture recovery. They applied various approaches to four legacy software systems and found
that algorithms that do not retain information related to entities perform more arbitrary de-
cisions, reducing the clustering quality. Additionally, they compared two state-of-the-art
approaches, WCA [49] and LIMBO [6], to understand how the number of arbitrary deci-
sions can be reduced. The results show that besides the choice of algorithm, the software
system itself largely influences which clustering approach is most optimal.

Naseem et al. [56] propose a novel Consensus-Based Technique (CBT) for software
modularisation, called Cooperative Clustering Technique (CCT). The proposed CCT uses
an agglomerative hierarchical algorithm in addition to a new feature vector (NFV) algorithm
to modularise five software systems, after which the results are compared to clustering ap-
proaches that use individual similarity measures to investigate whether CCT is valuable
for software modularising. The CCT approach achieved much higher MoJoFM [77] val-
ues than single similarity measures, indicating that a cooperative approach can give better
modularisation solutions.

3.2.2 Search-based

In addition to clustering, search-based approaches have been prevalent for software modu-
larisation. A study by Praditwong et al. [62] showed that search-based approaches outper-
form traditional clustering approaches for software modularisation. Praditwong et al. used
two novel search-based approaches to find software module clusters: Maximising Cluster
Approach (MCA) and Equal-Size Cluster Approach (ECA). Both approaches are compared
to a traditional Hill-Climbing (HC) algorithm that optimises Modularisation Quality (MQ).
Using a multi-objective search-based approach has the advantage that developers need not
concern themselves with the optimal weights for the best calculation of MQ. This is im-
portant because it is often impossible to determine exactly how much gain in coupling is
needed to justify the loss in cohesion or vice versa. Instead, a multi-objective approach

23

3. RELATED WORK

returns a set of non-dominated results that account for every objective function. Develop-
ers can choose from this set the solution that best fits their needs in terms of cohesion and
coupling. Both multi-objective approaches were compared to HC, and it was found that
they outperformed HC both in terms of the traditional MQ value and the multi-objective
values. Most importantly, Praditwong et al. have shown that multi-objective formulations
show significant promise in solving the modularisation problem.

Search-based software modularisation approaches can optimise multiple objective func-
tions to create modularisations, but research has shown that these approaches do not scale
well for high-dimensional objective spaces [42, 76]. Deb and Jain proposed an evolutionary
algorithm inspired by the NSGA-II framework [25] to handle high-dimensional problems
efficiently, called NSGA-III [23]. NSGA-III makes use of non-dominated sorting, simi-
lar to NSGA-II. The problem with a higher number of objectives is that the proportion of
non-dominated solutions increases exponentially. This causes the performance of NSGA-
II algorithms to degrade, as the diversity of the population can no longer be maintained.
NSGA-III can maintain a diverse population, even when dealing with many-objective prob-
lems, by using a set of reference points throughout the objective space. Each generation,
every solution in the population is associated with its closest reference point, giving each
reference point a niche count equal to the number of associated solutions. When perform-
ing selection to select surviving solutions, those associated with lower niche count reference
points are favoured over those associated with higher niche count reference points. In doing
so, the NSGA-III algorithm prioritises solutions that improve the diversity of the population
while also favouring non-dominating solutions. While this comes at the cost of additional
computational complexity, NSGA-III has been shown to outperform NSGA-II and other
search-based approaches for many-objective problems [23, 40, 54].

Using an NSGA-III algorithm, Mkaouer et al. [55] created a modularisation approach
that optimised for seven objectives, among which are structural quality metrics, semantic
coherence and change history consistency while minimising the number of changes. Using
the number of changes as an objective ensures that the NSGA-III algorithm does not propose
“big-bang” modularisations whose vastly different design would be difficult to understand
for developers, but it can offer modularisations with various balances between size and qual-
ity. The algorithm was able to fix 92% of code smells in several open-source projects and
one industrial project, showing that NSGA-III can be applied to many-objective software
remodularisation problems.

Saidani et al. [65] formulated the microservices extraction problem as a two-objective
optimisation problem, applying an NSGA-II algorithm to extract microservices automati-
cally. The NSGA-II algorithm, called MSExtractor, minimised inter-service dependencies
(coupling) and maximised intra-services dependencies (cohesion) to identify and extract
microservices from legacy applications. The performance of MSExtractor was compared
to three state-of-the-art approaches for four commonly used quality measures for web ser-
vice interfaces. MSExtractor was found to outperform them all at identifying microservice
candidates.

Third-party web service interfaces are usually the only part of the system visible to
outside users. As such interfaces are the main interaction point for users of the underlying
system, they should be kept comprehensible, but as maintenance and changes are applied to

24

3.2. Software modularisation approaches

the interface, their complexity increases, which negatively affects its usability and structure.
Boukharata et al. [12] proposed a multi-objective approach, called WSIRem, to split web
service interfaces into smaller interfaces that are more cohesive and loosely coupled. In
addition to maximising cohesion and minimising coupling, WSIRem also minimises the
modification degree, meaning the required modularisation effort. The results of WSIRem
applied on a benchmark of 22 services highlight its ability to extract smaller and more
cohesive web interfaces from large ones.

3.2.3 Remodularising at scale

In most of the related work discussed up to now, the authors have provided empirical evi-
dence for the performance of their proposed tools and approaches. To allow reproducibility
of their work, researchers often gather empirical evidence on open-source software sys-
tems. However, these open-source software systems are rarely of the same order of size
as enterprise software systems, thus raising the question of whether the proposed tools and
approaches scale to such sizes. In the remainder of this section, we will discuss research
focused on modularising enterprise-level large-scale software systems.

Sarkar et al. [66] criticise software modularisation research for barely distinguishing be-
tween a class and a module, considering the two as synonymous concepts. They claim that
as software systems grow in size, the level of granularity of classes is too low to be an effec-
tive unit for the purpose of software modularisation, as modules in large software systems
can consist of hundreds of classes. Their work proposes 12 metrics to assess the quality of
Application Programming Interfaces (APIs) of large-scale software systems. These metrics
operate at module level granularity and allow for a higher-level understanding of the qual-
ity of the modularisation in comparison to class level granularity metric suites like MOOD
[1]. This work is followed up by the modularisation of a banking system [67] consisting of
25 million LOC, using their 12 metrics to monitor the quality of the modularisation. The
banking system, which was over a decade old, did not have any clear domain boundaries
or architectural structure, which significantly increased development time and maintenance
effort. The authors spent over two years modularising half of the system, requiring ex-
pert knowledge to determine the domain boundaries of modules and refactoring the code to
support the new modularisation, with much of the effort being done manually.

Teymourian et al. [74] proposed a fast clustering algorithm (FCA) for large-scale soft-
ware systems, showing its performance on ITK2 and Chromium3, which contain thousands
of files and consist of 1 million and 10 million lines of code, respectively. The number of
operations needed to calculate similarity scales quadratically with the number of files for
typical clustering algorithms like LIMBO [6], which would be slowed down significantly
by large software systems. To cluster these large systems, FCA derives additional matrices
from the dependency matrix based on a set of features. These additional matrices allow
FCA to produce modularisations of large-scale software systems in a timely manner. The
results of FCA on ITK and Chromium were deemed acceptable by experts of the respective
system, proving that FCA can scale to cluster large software systems efficiently.

2https://itk.org/
3https://www.chromium.org/chromium-projects/

25

https://itk.org/
https://www.chromium.org/chromium-projects/

3. RELATED WORK

Levcovitz et al. [44] proposed a technique to identify microservice candidates in mono-
lithic enterprise systems. First, a dependency graph of the system is created, with facades,
functions and database tables as nodes and calls as edges. The dependency graph is split into
subsystems which are candidates to become microservices. Through manual inspection of
the code and business logic, candidates are judged whether they will become microservices.
The authors applied this technique to a banking software system containing 750 thousand
LOC. They found several candidates that could be extracted to become a microservice,
thereby concluding their study a success. However, the authors did not declare themselves
experts on the software system, nor did they consult actual developers of the system to
evaluate their results.

Prajapati and Chhabra [63] propose a particle swarm optimisation (PSO) algorithm for
large scale software clustering, called PSOMC. PSOMC optimises four objectives to im-
prove the clustering of software systems: intracluster dependency, intercluster dependency,
the number of clusters and the number of modules per cluster. PSOs are a different type of
evolutionary algorithm compared to genetic algorithms. The solutions in a PSO are called
particles, and the population of particles is called a swarm. Where the solutions in the pop-
ulation of a GA are independent of each other, except for crossover, the state of the swarm
in a PSO affects each particle. Like GAs, PSOs are search-based algorithms that reiterate
over many generations to optimise for a given (multi-objective) problem. PSOMC uses a
weighted combination of the four objectives to result in a single fitness function. The per-
formance of PSOMC is evaluated against six real-world software systems and compared
to three search algorithms: group genetic algorithm, hill climbing and simulated annealing.
The resulting clusterings of all algorithms are assessed on MQ, coupling, cohesion and non-
extreme distribution (NED). NED is a metric to measure the distribution of modules that are
too small or too large in software systems. The results of PSOMC compared to the other
algorithms show that PSOMC is able to generate reasonable clustering solutions.

Schröder et al. [68] used an NSGA-II algorithm to remodularise a software system
consisting of several millions of lines of code by moving classes between modules. This al-
gorithm and its objective functions have already been extensively discussed in Section 2.4.
Their work showed that enterprise-level software systems could be remodularised using a
multi-objective search-based approach. An empirical study shows that their proposed algo-
rithm can significantly improve the code structure quality of the codebase, showing promise
that remodularisations of enterprise-level systems can be generated automatically. To eval-
uate whether the changes suggested by their algorithm were helpful from the perspective
of developers, the authors interviewed developers on their perception of the quality of the
suggested changes. The results from these interviews showed that the algorithm can suc-
cessfully identify problematic classes in modules but is inaccurate in suggesting the suitable
module for classes. These findings highlight the necessity for software modularisation re-
search to validate their results with developers that have expert knowledge of the research
software systems and show that code quality metrics alone are not always sufficient to gen-
erate modularisations that developers accept.

26

3.2. Software modularisation approaches

3.2.4 Incorporating developer knowledge

The Pareto front of a multi-objective problem can consist of many solutions, well-distributed
in the objective space. In terms of the objectives, none of the solutions dominates the oth-
ers, but in many cases, the decision-maker only needs one solution. Solutions in the Pareto
front that are far from the decision-maker’s preferred region are less likely to be chosen than
those located near or even in the preferred region. The decision-maker could look at all so-
lutions resulting from a multi-objective algorithm and choose one. However, considering
that this set may be enormous, it drastically increases the workload on the decision-maker.
This section describes various pieces of literature on how developer knowledge can be used
to improve modularisation suggestions.

Mkaouer et al. [53] proposed a reference solution-based NSGA-II (r-NSGA-II) algo-
rithm for automated model transformation. The decision-maker can define multiple refer-
ence points before starting the algorithm, which indicate preferred areas in the objective
space. Through these defined reference points, the algorithm can prioritise specific solu-
tions in a population of non-dominating solutions. Compared to the performance of a stan-
dard NSGA-II algorithm, r-NSGA-II produces many more solutions at or near the reference
points, showing promise for the application of reference-based evolutionary algorithms to
incorporate user preferences for automated model transformation.

Gong et al. [32] implemented an interactive evolutionary algorithm for interval multi-
objective optimisation problems that considers decision-maker a priori preferences to de-
termine the preferred region. These preferences steer the algorithm coarsely initially, but as
more generations have passed, the preferences steer the algorithm more finely. A decision-
maker can state that they prefer one objective over another, that they are equal in preference
or that they are incomparable without needing the decision-maker to determine weights for
these relations. This results in a preference region that allows the algorithm to distinguish
between solutions with identical ranks. The algorithm favours solutions in the preferred
region rather than aiming at a uniformly distributed Pareto front. Similarly, Di Penta et
al. [27] proposed a Software Renovation Framework (SRF) that considers decision-maker
preferences for automated software renovation. SRF uses an interactive genetic algorithm
(IGA) to identify duplicate or unused code and find candidate libraries to split into smaller
ones, which a decision-maker can then give feedback on. This feedback is used in the
algorithm’s fitness function, allowing the decision-maker to provide feedback to steer the
algorithm interactively. This feedback is used in the fitness function of the algorithm, allow-
ing the decision-maker to interactively provide feedback to steer the algorithm. The authors
applied SRF on an actual business application and used the feedback of developers of that
application as input for the algorithm. As a result, the developers identified and confirmed
various structural problems, after which these problems were solved. These results show
the value of including the perspective of developers for automated software refactoring.

Bavota et al. [9] proposed an IGA that allows a decision-maker to steer the algorithms
modularisation approach. This is done by partially evaluating the fitness automatically, such
as code quality metrics, and partially by a human decision-maker. The decision-maker can
penalise a solution that contains software components in the wrong place, thus conflict-
ing with their domain knowledge (e.g. a database class outside of the database module).

27

3. RELATED WORK

Bavota et al. proposed both single-objective as well as multi-objective GAs inspired by
the MCA algorithm from Praditwong et al. [62], comparing the performance against a
non-interactive version of the MCA algorithm on two software systems. For the interactive
algorithms, decision-maker feedback was requested on the best solution found so far, where
the decision-maker was presented with pairs of classes from that solution and could provide
two constraints; either the pair belongs to the same module, or they should be kept apart.
After each feedback round, that solution was used to create a new population for the algo-
rithm to continue. There are two main drawbacks to this approach. Firstly, a decision-maker
must specify constraints for pairs, while they might not have an opinion on the relationship
of each pair, at least at that moment. Secondly, by creating a new population based on
mutations of the best solution, much of the variety of the population coming from other
solutions is lost. For every algorithm, the solution with the highest MQ value was selected
as the best solution. The authors report that with a limited amount of feedback, the IGAs
are better able to propose modularisations that are useful from the perspective of developers
than traditional GAs. However, it is worth noting that no actual developers were included
in the study to provide feedback, and instead, authoritative modularisations were used to
simulate developer feedback.

Hall et al. [33, 34] proposed their supervised software modularisation (SUMO) algo-
rithm, which remodularises a software system consistent with constraints specified by a
decision-maker. SUMO starts out unsolved and proposes a modularisation of a target soft-
ware system. If a decision-maker is not satisfied with the current modularisation, they can
indicate for one or more pairs of classes whether the pair belongs together. SUMO then
produces a new modularisation consistent with these constraints or returns an error mes-
sage if some constraints conflict. The modularisation is solved once the decision-maker no
longer declares new constraints. The authors validated SUMO on several small software
systems and have shown that the feedback increases the quality of the suggested modulari-
sations. However, they simulated the feedback using an authoritative modularisation rather
than involving actual developers.

3.3 What is missing?

As can be seen from the literature discussed in this chapter, much work has been done in
the past to tackle the modularisation problem, proposing various approaches that have been
applied to software systems to study their potential benefits. However, as can be seen from
Table 3.1, the potential of many of these approaches is only evaluated empirically and these
approaches do not consider if the results are useful in real-life applications. Over half of
the work in Table 3.1 did not validate their results with developers, which is in line with the
work of Praditwong et al. [62], which found literature on software modularisation lacking
when it comes to evaluating suggestions from the perspective of developers.

In a similar sense, many of the search-based approaches discussed do not consider the
perspective of developers during decision-making and instead only consider code quality
metrics to determine whether solutions are good. Including this perspective is a complex
challenge. However, the resulting solutions would be more in line with the expectations of

28

3.3. What is missing?

developers, as can be seen in the literature on supervised and interactive software modu-
larisation in Section 3.2.4. It is worth noting that in that literature, developers were rarely
included and instead, their feedback was simulated using authoritative modularisations.

Lastly, many of the software systems used for research are not large-scale, raising the
question of how well the results carry over to enterprise-level systems and if the approach
performs sufficiently. The research that evaluated on large-scale systems, such as Schröder
et al. [68], did not consider the perspective of developers during decision-making. The ex-
ception to this statement is the work of Di Penta et al. [27], which reduced code duplication
and split large libraries into smaller, more cohesive ones. Understanding whether modular-
isation approaches scale to larger software systems is essential to determine whether they
can be applied for real-life business applications, which can be orders of magnitude larger
than the open-source systems that are often used for research purposes.

In this thesis, we propose a search-based remodularisation approach that considers the
domain knowledge of developers to produce remodularisations of a large-scale codebase.
These modularisations will be validated by the developers to determine whether the sug-
gestions are good or if more domain knowledge is needed for improvement. To reduce the
workload of developers, feedback should be of various granularity and be reusable. Stating
whether pairs of classes should be together or not, such as the approach by Bavota et al. [9],
is reusable but not scalable. Indicating the number of differences between a suggested mod-
ularisation and the refactoring proposed by developers, such as the approach by Di Penta
et al. [27], is scalable but not reusable. For the proposed approach in this thesis, develop-
ers can provide fine-grained feedback at class level as well as coarse-grained feedback at
module level or module-type level. The work in this thesis focuses on the following aspects:

• Create remodularisation solutions in line with developer knowledge.

• Make developer knowledge reusable.

• Make stating developer knowledge scalable to reduce the workload of developers.

• Evaluate remodularisation solutions with developers.

• Make this domain-aware remodularisation approach scalable to large-scale software
systems.

29

Chapter 4

A domain-aware search-based
algorithm for software

remodularisation

Every codebase has its own specific rules that developers know the code must adhere to.
Some were thought of in the initial design phase, and others later as the codebase grew in
size and complexity. For example, for a web application, developers may have decided that
code in front-end modules may not directly interact with database modules, only with back-
end modules. With this knowledge in mind, developers can identify illegal dependencies
and resolve them by either refactoring or rewriting parts of the code, especially when these
rules are known beforehand and regularly enforced.

However, when such domain rules are not enforced or defined later in the life of a
codebase, once it has grown to considerable size and complexity, the effort required to
resolve the codebase to a state where all rules are adhered to is considerable. Furthermore,
large refactoring projects are often challenging to perform in one go, especially if normal
development happens in parallel. Manually determining all cases that violate a domain
rule, finding the right solution to resolve it, and performing the fix is time-consuming and
error-prone. On the other hand, using fully automated refactoring tools results in long lists
of refactorings that often lead to a significantly different and hard to understand design
of the codebase [3]. To provide the best of both strategies, we propose an algorithm
that remodularises a codebase, improving its quality while adhering to the domain
knowledge of developers.

The idea behind the algorithm is to present a set of move-class refactoring suggestions
that provide improvements compared to the current state of a codebase, while adhering to
the domain knowledge of the developers. Instead of presenting an utterly different modular-
isation consisting of hundreds or thousands of changes, the algorithm presents the develop-
ers with a small set of changes. This is because the effect of a small set of changes is more
easily understood, accepted and implemented by developers. In contrast, completely over-
hauling the codebase structure is likely not feasible to be done in a reasonable amount of
time, may take the effort of many different developers and is more likely to introduce errors
as part of the large operation. By gradually improving the codebase, developers understand

31

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

Figure 4.1: Algorithm pipeline. Starts at the codebase and ends after presenting the report.

the steps they take from start to end, giving them confidence that their work improves the
codebase and ensures that they do not spend too much time refactoring. It is essential that
the algorithm complies with the domain knowledge that the developers have so that the
suggested changes are acceptable and usable.

This thesis proposes an NSGA-III algorithm to modularise software systems by sug-
gesting move-class refactoring operations. Moving classes between modules can improve
the code quality at module level, for example, by increasing the cohesion of modules or
reducing their coupling. Additionally, moving classes can reduce the number of violated
domain rules on class and module level. The algorithm does not perform refactorings on
code level granularity, as this would exponentially increase the size of the search space,
which makes it infeasible to converge for enterprise-level codebases.

Figure 4.1 illustrates the step-by-step workflow of the algorithm, starting at the code-
base. In the rest of this section, we will take a closer look at these steps and how the
algorithm operates.

4.1 Modelling solutions

To allow the algorithm to perform move-class refactorings on the targeted codebase, it must
represent modularisations of the codebase as solutions that are members of its population to
perform crossover and mutation on them. Traditionally, solutions are represented as fixed-
length vectors. In the case of modularisation, the length of a solution could be the number
of classes, with the value of each cell signifying in which module it is located. This causes
issues when working with traditional crossover methods such as single point, two-point
and uniform crossover [36] for modularisation, because these operators consider classes
rather than modules, thus making it likely to split modules into separate parts when creat-

32

4.2. Pre-processing the codebase

ing offspring solutions. For this reason, the building block preserving crossover operator
mentioned in Section 2.4.1 is used to allow the algorithm to perform crossover on solutions
while respecting their module structure. Additionally, solutions are modelled as change-list
compared to the original modularisation for performance reasons, similar to the approach
by Schröder et al. [68].

As an example, Figure 4.2 shows a dependency graph of some codebase and Figure 4.3
shows a remodularisation solution of that codebase. The solution comprises a single change,
moving class Authenticator to module bank. Therefore the corresponding solution would
consist of a single mapping of the class Authenticator to its new module location bank.

4.2 Pre-processing the codebase

In order for the algorithm to generate remodularisation solutions, it must understand the
structure of the codebase in the form of a directed dependency graph. In this graph, the
classes are represented as nodes, while dependencies as represented as directed edges. Be-
fore the algorithm can run, this dependency graph is created using the following information
for each class:

• The fully qualified domain name of the class.

• The name of the module where the class is currently located in.

• The list of classes the class depends on.

This directed dependency graph is then stored and can be used as input for the algorithm.

4.3 Defining domain knowledge rules

In order for the algorithm to generate solutions that do not violate the domain knowledge of
developers, the developers need to provide the algorithm with the domain rules they want to
have enforced. To achieve this, a domain-specific language (DSL) is proposed that serves
two purposes. First, the DSL allows developers to state domain rules. These domain rules
can vary in granularity, targeting specific classes or modules, or covering entire module
types. Second, developers can configure which parts of the codebase the algorithm should
focus on by freezing classes or modules that should not be affected.

4.3.1 Domain rule approach

As developers can have domain rules that apply to specific parts of the codebase, the DSL
should allow them to specify which classes and modules should adhere to specific rules.
To do so, developers can define domain rules specific to certain parts of the codebase. For
example, taking the codebase represented by Figure 4.2, a domain rule could be that classes
in module authentication cannot depend on classes in module transaction. The illegal de-
pendency from Authenticator on Transaction is highlighted in red in Figure 4.4. In terms of
the DSL, a developer would define a domain rule for all classes in module authentication

33

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

Figure 4.2: Dependency graph of example codebase

Figure 4.3: Dependency graph of example solution

34

4.3. Defining domain knowledge rules

that forbids dependencies on module transaction for this example. Developers can vary the
granularity of domain rules, ranging from targeting a specific class to several modules at
once.

While the goal of the algorithm is to generate modularisations that are in line with the
domain knowledge of developers, some solutions may introduce new violations instead of
resolving them. There are several potential strategies to deal with this behaviour:

1. Do not allow the algorithm to create solutions that violate domain rules.

2. Allow the algorithm to generate violating solutions up to some number of genera-
tions, after which these solutions must be repaired or discarded, so the resulting final
population does not contain violating solutions.

3. Allow the algorithm to generate violating solutions and penalise solutions based on
the severity of their violations, reducing the likelihood of violating solutions surviving
through generations.

Strategy 1 is the simplest to implement. Whenever the algorithm attempts to move a
class to a module, it must check whether that would introduce new violations. If it would,
the move cannot happen. The downside of this strategy is that it can severely hinder the
exploration potential of the algorithm, depending on the number of specified rules. Fur-
thermore, due to the way the mutation operator works, to achieve a modularisation that
does not violate domain rules and improves the original codebase, an illegal intermediate
modularisation may be needed to reach it.

Strategy 2 is more nuanced than strategy 1 as it does not hinder the exploration of the
algorithm during the generations where violations are accepted but can result in poor results
afterwards. In order to repair solutions that violate domain rules, an effort must be made
to move classes such that they no longer cause violations. In the worst case, this can mean
that all changes in a solution must be discarded, resulting in a solution that proposes the
original codebase or such a large number of changes are needed that developers are hesitant
to accept the resulting solution. Additionally, the amount of time needed to repair solutions
can significantly influence the time needed for the algorithm to reach convergence.

Strategy 3 gives the algorithm the most flexibility to try various modularisations. The
algorithm can freely explore the objective space by allowing solutions to introduce new
violations. Furthermore, by penalising solutions based on their violations, the algorithm
prioritises solutions with few or no violations over solutions with a large amount, which im-
proves the probability of the former surviving through generations. This means that while
the algorithm is not hindered in exploring the objective space, it will attempt to generate
solutions that violate as few domain rules as possible. As a result, strategy 3 is used to deal
with the domain rule violations of solutions.

By default, every rule violation is considered equally bad, with a penalty score of 1.
However, developers may prioritise some rules over others, so to accommodate for this,
the penalty for each domain rule can be configured to a different amount. Setting different

35

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

penalties allows the algorithm to understand the priority developers have assigned to the
domain rules. In line with strategy 3, the total domain rule violation penalty score of a
solution is used to determine which solutions outperform others and, therefore, should have
a higher probability to survive to the next generation.

For genetic algorithms, their population members are ranked on their fitness. A single
value or multiple values can express this fitness. For example, the software modularisation
algorithm proposed by Schröder et al. [68] used four objective functions to determine the
fitness of solutions: Inter-Module Dependency Coupling (Coupling), Intra-Module Depen-
dency Coupling (Cohesion), Number of class moves (#moves) and Estimated Build Cost of
Cache Breaks (EBCCB). When posing the problem as a minimisation problem, one solu-
tion SolA dominates another SolB if for every objective function F : F(SolA)≤ F(SolB) and
there exists at least one objective function such that F(SolA) < F(SolB). In other words,
SolA dominates SolB if SolA outperforms SolB in at least one objective function and per-
forms at least as well in all others. Like the algorithm of Schröder et al., our NSGA-III in
this thesis is a Multi-Objective Genetic Algorithm (MOGA), with the objective functions
defined in Section 4.4.

To account for its domain rule penalty in the survivability of a solution, there are two
potential strategies to let the penalty affect the fitness of a solution:

1. Add the domain rule penalty as an objective function and rank solutions in a multi-
objective manner.

2. Normalise and sum the fitness values and add the domain rule penalty to that amount,
using the single new value to rank solutions.

Strategy one increases the number of dimensions of the objective space, which gives
the algorithm the ability to optimise for other objective values at the cost of increasing the
domain rule penalty or vice versa. This means that the Pareto front will include solutions
both with high and low domain rule penalty values. Additionally, it will increase the number
of reference points used by the algorithm, as will be discussed in Section 4.5, which affects
the population size and thereby increases the time needed to reach convergence.

Strategy two requires optimising the ratio between the normalised and summed fitness
values and a solution’s domain rule penalty score. For example, suppose the domain rule
penalty score considerably outweighs the fitness values. In that case, solutions with good
fitness values but a high domain rule penalty are dominated by solutions with terrible fitness
values but a low domain rule penalty score. A similar argument can be made for the case
where the normalised and summed fitness values outweigh the domain rule penalty score.
To solve these scenarios requires tuning the assigned weights for the penalty score and the
summed fitness values, which are likely specific to a single codebase and therefore do not
generalise.

While both strategies have their downsides, we prefer strategy one because it does not
require additional weight tuning but rather leaves it to the algorithm to trade off by using it
as an objective function. The rules are composed of three components in the DSL: a filter,
a rule and a penalty. The filter expresses against which classes or modules the rule must be
evaluated. The rule itself expresses some condition that the classes or modules must adhere

36

4.3. Defining domain knowledge rules

Figure 4.4: Dependency graph with highlighted illegal dependency

to, such as forbidding a dependency. Lastly, the penalty indicates the relative priority from
the developers’ perspective. Using the example domain rule stated above, the filter would
be classes in module authentication, the rule would be cannot depend on classes in module
transaction, and the penalty would be 1 by default.

4.3.2 Freezing the codebase

As codebases grow in size and complexity, it becomes increasingly more difficult for any
developer to understand every aspect of the codebase. Developers will often focus on spe-
cific areas, becoming more knowledgeable in some parts than others. Presenting a developer
with refactoring suggestions on code that they are unfamiliar with requires more effort from
the developer to understand and have confidence in these suggestions than suggestions made
for parts of the codebase they are familiar with. The algorithm of Schröder et al. operated
on an entire codebase, which resulted in refactoring suggestions on all parts of the code-
base. This required a post-processing filtering of the solutions to present developers only
with move-class refactoring suggestions for the code they often work with.

Providing developers with the ability to generate suggestions on the areas of the code-
base they are most familiar with requires that the algorithm can be configured to focus on
those areas. This configuration is done by freezing modules or classes in the original state
of the codebase. The algorithm can be configured for different ways of freezing:

• Freezing a class - Frozen classes cannot be moved.

37

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

• Inwardly freezing a module - Inwardly frozen modules can not have classes added to
them that are not originally in the module, but the classes in the module can be moved
out.

• Outwardly freezing a module - Outwardly frozen modules can have new classes added
to and moved out of them, but the classes that are originally in it cannot be moved
out. Essentially, only the classes originally in the module are frozen.

• Totally freezing a module - Totally frozen modules cannot have any classes moved in
or out of them.

For example, consider the dependency graph from Figure 4.2 again. Say that a particular
developer for this codebase primarily works on code in all modules except authentication.
Additionally, the developer believes that the class User should not be moved out of the
user module. Therefore, he configures the algorithm by freezing the class User and totally
freezing the module authentication. This is illustrated in Figure 4.5 with frozen classes and
inward frozen modules outlined in blue. In this example, the classes Transaction, Database-
Handler and Bank can still be moved, and the modules transaction, database, user and bank
accept new classes.

With the types of freezes available, a developer can configure the algorithm such that
the search space can range from modularising the entire codebase to just a few classes or
modules. While the algorithm can move classes even if those moves introduce new domain

Figure 4.5: Dependency graph with frozen classes and modules

38

4.4. Objective functions

rule violations, it is not possible to move classes that are frozen nor move classes to modules
that are inwardly frozen. Consequently, by freezing a codebase such that only a handful of
classes or modules are not frozen, the size of the search space is orders of magnitude smaller
compared to when nothing is frozen, thereby significantly reducing the number of possible
solutions in the objective space.

4.4 Objective functions

Objective functions are used to determine the fitness values of solutions. These fitness
values are used to rank the solutions in fronts, based on the solutions they dominate and
are dominated by. Every objective function corresponds to a dimension in the search space,
which the algorithm will try to optimise for. A developer using the algorithm can choose
objective functions to their liking. For example, some objective functions involve measuring
the code quality of a codebase, while others ensure the number of refactorings suggested by
a solution does not grow out of hand. The following objective functions are inspired by the
thesis of Schröder et al.: Change impact, Inter-Module Dependency Coupling (Coupling)
and Intra-Module Dependency Coupling (Cohesion), where Change impact is identical to
the notion of work in the work of Schröder et al. In addition to those, three objective
functions have been formulated to minimise the number of circular module dependencies,
the domain rule violation penalty and the size of the largest module. All objective functions
are formulated such that the algorithm will attempt to minimise the corresponding fitness
values.

A brief overview of the objective functions is listed below, and a more detailed descrip-
tion can be found in the rest of this section:

• Change impact - Represents the number of classes moved in a solution.

• Circular module dependencies - Estimates the number of cycles in the module
dependency graph.

• Inter-Module Dependency Coupling (InterMD Coupling) - Represents the total
coupling in the codebase, expressed as the sum of module dependencies for all mod-
ules.

• Intra-Module Dependency Coupling (IntraMD Cohesion) - Represents the total
cohesion in the codebase, expressed by the sum of module cohesion for all modules.

• Domain rule violations - Represents the total number of domain rule violations for
a solution.

• Largest module - Represents the size of the largest module in the codebase, ex-
pressed as the number of classes in that module.

39

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

4.4.1 Change impact

A solution’s change impact is defined as the number of changes a solution suggests. If
the algorithm does not minimise for the change impact, this number of changes could be
equal to the number of classes in the codebase in the worst case. To deal with this, the
algorithm must optimise solutions such that the number of changes does not grow out of
hand. Doing so helps ensure that developers receive a list of suggestions that is manageable
without taking days or weeks to actualise.

4.4.2 Circular module dependencies

A circular module dependency occurs when a module depends on other modules such that
transitively, the original module depends on itself. This holds true for all modules in the
circular dependency. Having circular module dependencies can cause code to become un-
buildable; therefore, the solutions created by the algorithm should not contain any circular
module dependencies. Figure 4.6 shows a dependency graph with a circular module depen-
dency. Class Authenticator has been moved from authentication to bank. However, class
Bank depends on class AuthenticatorFactory, meaning module bank depends on module
authentication. Additionally, class AuthenticatorFactory depends on class Authenticator,
meaning module authentication depends on module bank. As a result, modules bank and
authentication form a circular dependency. The edges causing the cycle are coloured red in
the figure.

Since all solutions with a circular dependency are unwanted, the easiest way to optimise
for solutions without circular dependencies is to check if the module dependency graph of a
solution contains any cycle, returning 1 as fitness and 0 otherwise. The downside of such an
approach is that a mutation must resolve all cycles in the dependency graph to be considered
an improvement in terms of circular dependency. If the number of cycles is decreased but
still above 0, the fitness of that solution would remain 1.

Instead, we have chosen the more expensive approach of estimating the number of cy-
cles in the dependency graph. This encourages the algorithm to mutate solutions with circu-
lar dependencies such that the number of circular dependencies decreases and discourages
mutations that increase the number of circular dependencies. Solutions with circular depen-
dencies can never dominate solutions without circular dependencies, so over many gener-
ations, it can happen that the solutions with circular dependencies did not survive or were
mutated such that they no longer contain circular dependencies. In both cases, solutions
without circular dependencies are favoured by the algorithm.

To calculate the number of cycles in a dependency graph, a depth-first-search (DFS)
algorithm is used, inspired by Cormen et al. [19]. A brief explanation is listed here:

Each node is originally coloured white. While the edges of a node are explored, that
node is coloured grey. After all its edges are explored, the node is coloured black. The
DFS algorithm starts at a random node r in the graph, colouring it grey and exploring its
edges if the node at the end of the edge is coloured white. Any time the DFS algorithm
encounters a grey node, a cycle has been detected, as this grey node has been visited earlier
while exploring the edges of node r. Once the DFS algorithm finishes exploring the edges

40

4.4. Objective functions

of node r, another white node in the graph is explored until all nodes in the graph have been
explored. After the DFS algorithm finishes, the number of found cycles is returned by the
objective function.

Because modules that have already been visited are not explored by the DFS algorithm
anymore, the number of cycles found may be lower than the total number of cycles in the
dependency graph. Figure 4.7 shows an example of such a graph. The graph shows various
cycles, such as [2,3] and [3,4]. The number of found cycles varies depending on which
node the DFS algorithm starts. For example, let the algorithm start at node 3, go to node
2 and then back to 3, discovering a cycle. At this point, node 2 is coloured black since all
its edges are explored. The algorithm then traverses the edge from 3 to 4 and back to 3,
discovering a cycle. The algorithm then traverses the edge from 4 to 1, after which it cannot
go to 2 because it is already coloured black. The DFS algorithm has found two cycles.

There are however a total of 4 cycles: [1,2,3,4], [2,3], [3,4], [2,3,4]. The total number
of cycles in a graph can be calculated by algorithms such as Tiernan [75], Tarjan [73] and
Johnson [41], but these algorithms are slower than the DFS algorithm mentioned above.
During preliminary experiments, the algorithm by Johnson, which is the fastest of the three
that calculate all cycles, was often at least an order of magnitude slower than the DFS al-
gorithm for the Adyen codebase, significantly slowing down the NSGA-III algorithm. As a
result, the DFS algorithm is used as it indicates the number of cycles in a solution, prioritis-
ing speed over accuracy. Ultimately, this objective function aims to allow the algorithm to
create solutions without circular dependencies, which all the algorithms mentioned above
facilitate.

Figure 4.6: Dependency graph with circular module dependency

41

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

Figure 4.7: Directed cyclic graph

4.4.3 Inter-Module Dependency Coupling (Coupling)

At module level, coupling represents the degree to which a module depends on other mod-
ules. Reducing coupling in a codebase means that modules become less dependent since
they rely less on other modules to function. There are various levels of granularity to deter-
mine coupling, such as class level and module level [13]. This objective function calculates
module-level coupling since our approach moves classes between modules.

Inter-Module Dependency (InterMD) Coupling is used to measure the coupling of a
solution, the same metric used by Schröder et al. [68] for the Adyen codebase. From the
results of their work, InterMD Coupling showed promising results as a metric for improving
coupling in resulting solutions. The coupling is defined as the total number of module
dependencies of a codebase.

For example, the module dependencies of the codebase represented by the dependency
graph in Figure 4.2 are shown in Table 4.1. For this codebase, the total number of module
dependencies, and thus the InterMD Coupling of the codebase, is 9. The codebase resulting
from moving Authenticator from authentication to bank shown in Figure 4.3 removes the
dependencies from bank on authentication and from authentication on transaction and user,
and adds a dependency from authentication on bank. The module dependencies of this
solution are shown in Table 4.2, showing that the total InterMD Coupling is 7. This means
that in terms of InterMD Coupling, moving class Authenticator to module bank improved
the quality of the codebase.

42

4.4. Objective functions

Module name Module dependencies

transaction user
database transaction, user
user -
bank transaction, user, database, authentication
authentication transaction, user

Table 4.1: Example codebase module dependencies

Module name Module dependencies

transaction user
database transaction, user
user -
bank transaction, user, database
authentication bank

Table 4.2: Example codebase module dependencies of solution

4.4.4 Intra-Module Dependency Coupling (Cohesion)

Where coupling measures how dependent modules are on other modules, cohesion measures
how well classes in a module belong together [15, 20, 29]. From the perspective of modules,
classes should use other classes in the same module to serve a common purpose. The more
classes in a module work together, the higher the cohesion of that module. Modules with
low cohesion may indicate that the module serves multiple purposes and should be split up
into smaller modules with high cohesion that serve a single purpose.

There are various ways to calculate cohesion. In their work for remodularising the
Adyen codebase, Schröder et al. experimented with the following three cohesion metrics:
Common Closure Principle [51], Common Reuse Principle [51] and Intra-Module Depen-
dency (IntraMD) Coupling [35]. Their experiments show that of those three metrics Intra-
Module Coupling (IntraMD) outperformed Common Close Principle and Common Reuse
Principle. Based on their findings, our proposed algorithm will also use IntraMD Coupling
as the cohesion metric for the algorithm. In order to prevent confusion between the terms
InterMD Coupling and IntraMD Coupling, we refer to IntraMD Coupling as IntraMD Co-
hesion in the remainder of this thesis.

We calculate IntraMD Cohesion as follows, from the paper of Harman et al. [35]: Let
A(m) be a function that returns the number of class associations within a module m. Let
N(m) be a function that returns the number of classes in a module m and let K be the number
of modules. The IntraMD Cohesion C of a module m is calculated as follows:

C(m) =

{
1 If N(m) = 1

A(m)
N(m)∗(N(m)−1) Otherwise

(4.1)

43

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

Figure 4.8: Dependency graph of example solution with worse cohesion

Then, the total IntraMD Cohesion of a codebase is calculated as follows:

Cohesion =
∑mC(m)

K
(4.2)

Equation (4.2) shows that the IntraMD Cohesion of a codebase lies between 0 and 1,
with 1 meaning that all classes in all modules are associated with all other classes in the
same module. An example of such a codebase is shown in Figure 4.2. All modules either
contain a single class, or all classes in a module are associated with with all other classes in
the same module, thus the total IntraMD Cohesion is 1. This is also true for the codebase
represented in Figure 4.3. An example of a codebase with worse IntraMD Cohesion is
shown in Figure 4.8. In this solution, Authenticator is moved to module database. One can
see that neither DatabaseHandler nor Authenticator depend on the other, so the IntraMD
Cohesion of module database is 0, following Equation (4.1). From Equation (4.2) it shows
that the total IntraMD Cohesion is 0.8.

The previous examples show that for IntraMD Cohesion, higher values are desired.
This conflicts with the attempt of the algorithm to minimise the fitness values of solutions
for each objective function. In order to ensure that the algorithm optimises for solutions
with better IntraMD Cohesion rather than worse, the resulting value should reflect that
lower fitness values correspond with desired solutions. This is achieved by multiplying the
IntraMD Cohesion value by −1. The objective function for IntraMD Cohesion is shown in
Equation (4.3).

44

4.5. Reference points

Cohesion =−1∗ ∑mC(m)

K
(4.3)

4.4.5 Domain rule violations

Developers can use the DSL mentioned in Section 4.3 to define their domain knowledge
such that the algorithm can detect whether suggested refactorings introduce or remove do-
main rule violations. The algorithm should use solutions’ domain rule violation penalty
as a minimisation objective function to optimise for solutions with minimal domain rule
violations. Given all domain rules, the objective function calculates the total penalty for a
solution.

4.4.6 Largest module

Not all codebases have modules of roughly equal size and purposes. As mentioned in Sec-
tion 1.1, in the Adyen codebase, the largest module is an artefact of the time when much of
the core business code was located in a single module. Since then, efforts have been made
to extract other, more specific modules from this module, but this task is not complete due
to its size and complexity. To emphasise the need of Adyen developers to reduce the size
of the module, we define an objective function that returns the size of the largest module
in terms of the number of classes. When optimising for this objective function, the algo-
rithm can prioritise moving classes out of the largest module. In addition to this objective
function, developers can define an inward freeze for such modules, ensuring that no classes
are moved into them, which would counteract the purpose of the objective function. Such a
metric may not be useful to all codebases and in such cases, developers can choose to not
use this metric.

With these available objective functions, the algorithm can be configured to generate
modularisations that improve the quality of the codebase while minimising the number of
domain rule violations in the least amount of changes possible.

4.5 Reference points

The purpose of the reference points is to help the NSGA-III algorithm maintain a diverse
population spread out over the objective space. By prioritising the survival of solutions
associated with reference points with low association counts, the algorithm attempts to pre-
vent all solutions from being in the same region in the objective space. Reference points
can be supplied beforehand or by any predefined structured placement strategy. For our
algorithm, we use the same placement strategy as the original NSGA-III paper by Deb and
Jain [23], mentioned in Section 2.5.3. This approach places the reference points uniformly
distributed over an (M−1)-dimensional hyperplane, with M equal to the number of objec-
tive functions, without bias to any of the objective functions, thus allowing the algorithm
to pursue maximal diversity across the objective space. Let M be the number of objective

45

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

functions and p the number of divisions along each dimension. The number of reference
points H is then given by Equation (4.4).

H =

(
M+ p−1

p

)
=

(M+ p−1)!
p!((M+ p−1)− p)!

=
(M+ p−1)!
p!(M−1)!

(4.4)

The number of reference points is essential for the functionality of the algorithm. The
population size N is directly related to the number of reference points, as N ≈ H. A low
number of reference points means few solutions and little diversity, while a higher number
means that there is much diversity. However, a high number of reference points also means
the population size is large, which increases the time required for the algorithm to reach
convergence.

4.6 Initial population

The initial population of the algorithm heavily influences the first generations and, there-
fore, the results after the algorithm finishes. To ensure that difference between the solu-
tions and the initial state of the codebase is not too large, the population should not be
initialised with random modularisations. Initialising the population with random modular-
isations could either require many generations to reduce the amount of work required to
implement a solution or result in a list of changes that is too large for developers to accept
and implement within a reasonable amount of time. Instead, a similar approach to the one
used by Schröder et al. [68] is used, where the population is initialised by mutating the
initial codebase several times. This approach results in an initial population of unique mod-
ularisations while ensuring that the number of changes in each initial solution does not grow
out of hand. Like the approach by Schröder et al., each solution in the initial population is
mutated 20 times.

4.7 Parent selection

Parent selection is determines which pairs of solutions will generate offspring through the
crossover operator. The functionality of the crossover operator is discussed in Section 4.8.
The idea behind selection is to mimic natural selection, which means that solutions with
desirable traits (i.e. high fitness) have a higher chance of surviving and generating off-
spring than solutions with lower fitness. Tournament selection of tournament size 5 is used
to determine pairs of parents that will generate offspring, the same tournament size as the
tournament selection approach used by Schröder et al. [68]. Solutions in the tournament
are sorted in fronts based on domination. Solutions in the first front are non-dominated, so-
lutions in the second front are dominated by the first front and so on. If the non-dominated
front contains at least two solutions, two solutions are randomly picked from that front and
used as parent pair for crossover. If the non-dominated front contains only one solution,
that solution and a randomly picked solution from the second front are used as parent pair

46

4.8. Crossover operator

for crossover. The introduction of an elite archive is later discussed in Section 4.9.1. Es-
sentially, solutions in a tournament are ranked on domination, thus favouring solutions that
are not dominated over those that are. Solutions in the non-dominated set of the population
will always appear in the non-dominated front of a tournament. However, by chance, a
dominated solution may win a tournament if none of the solutions it is dominated by are in
the same tournament.

4.8 Crossover operator

Crossover is the operation used by genetic algorithms to create offspring from existing so-
lutions in the population. As parent solutions with desirable traits have a high probability of
surviving and creating offspring, the general idea is that their resulting offspring has slightly
different but also desirable traits. This offspring, in turn, has a high probability of surviving
and therefore creating new offspring, repeating the cycle inspired by natural selection. The
crossover operator used by the algorithm to create modularisations is inspired by Harman
et al. [35] and is the same operator as the building block preserving crossover used by
Schröder et al. [68], as described earlier in Section 2.4.1. As mentioned in Section 4.1,
traditional crossover methods such as single point, two-point and uniform crossover would
result in offspring that do not preserve their parents’ module structure. The building block
preserving crossover operator attempts to preserve module structure by doing module-level
uniform crossover instead of at class level. The order of modules is random for each pair of
parents. By attempting to move an entire module from a parent to a child, the changes that
happened in the parent have a high probability of being preserved in the offspring.

Figures 4.9 and 4.10 illustrate how the operator may fail to preserve module structure,
thereby splitting the changes of a parent for a module. Figure 4.9 shows the module structure
of two parents. Both parents have a refactoring suggestion involving class Authenticator-
Factory. Parent 1 suggests moving the class to module transaction, and parent 2 suggests
moving the class to module user. Assume the order the operator moves the module in is
transaction, user, database, bank, authentication. Figure 4.10 shows the children resulting
from performing the crossover operator on the parents. Modules and class coloured green
originate from parent 1, while those from parent 2 are coloured red. The first module is
transaction, which child 1 receives from parent 1 and child 2 from parent 2. As this is the
first module, no conflicts can happen. However, by chance, child 1 is to receive the mod-
ule user from parent 2, but this module contains class AuthenticatorFactory, which child 1
already received in module transaction from parent 1. Since the class cannot exist twice in
one child and zero times in the other, this conflicting class is instead moved to child 2. This
can be seen by the red outline of class AuthenticatorFactory in the user module of child
2. In this example, it is as if child 1 instead received module user from parent 1 and child
2 from parent 2, but for a larger codebase with more classes and therefore more potential
changes in parent solutions, one can imagine that such a conflict instead results in spreading
the changes of one parent over two children. However, if the number of changes in solutions
is kept at a reasonable amount, the number of conflicts should not be significant, and most
modules can be moved entirely from a parent to the target child solution.

47

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

Figure 4.9: Example of parent pair for crossover

4.9 Mutation operator

The mutation operator allows the NSGA-III algorithm to introduce changes to solutions that
affect their fitness. Every mutation corresponds to moving a class to a different module. As
mentioned in Sections 4.1 and 4.8, solutions represent changes compared to the modulari-
sation of the codebase, rather than a complete mapping of every class to a module. Because
of this representation, mutations are necessary to introduce any changes that propagate to
the offspring created by the crossover operator.

The algorithm uses a single-class mutation operator to mutate solutions, which moves
one class per mutation. However, the algorithm proposed by Schröder et al. provided two
different mutation operators that were able to move small and large sets of classes from one
module to another.

The first operator is based on picking a random class in a module and creating its depen-
dency graph within that module, up to a certain size. The operator then performed a min-cut
on the dependency graph, moving the sub-graph that contained the originally picked class

48

4.9. Mutation operator

Figure 4.10: Example of crossover conflict

to a different module.
The second operator added a random class in a module to a set. Then with decreasing

probability, classes related to the classes in the set and in the same module as the initially
picked class were added to that set. The operator picks a random number r between 0 and
1, and adds a related class to the set as long as r < (c)n, where c a constant between 0 and
1 and n an integer starting at 0 that is incremented every time a class gets added to the set.
Finally, all modules related to the set are determined and one is randomly picked as the
destination for the set.

These operators allow the algorithm to move groups of clusters of varying sizes from
a module, but these groups are not necessarily very cohesive. The groups resulting from
both operators have some cohesion. However, both operators do little to determine if a
group is highly cohesive, which would require extra effort, such as semantic analysis of the
class names to determine how related the classes are, thereby slowing down the algorithm’s
speed. Additionally, both operators pick a random class, without checking where that class
lies in the dependency graph in the module. Checking this is important, as moving a class

49

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

that has both dependencies and is depended on by classes in its module will cause a circular
dependency to and from its new destination. To illustrate this, the codebase corresponding
to Figure 4.2 has been enhanced such that the module user contains such classes. Fig-
ure 4.11 shows this dependency graph, where class Role in module user depends on classes
User and Admin, and those two both depend on class PasswordChecker. If class User were
to be moved to a related module like transaction, modules user and transaction would form
a circular dependency, since Role depends on User and User depends on PasswordChecker.
For both operators, it could happen that the set of classes to be moved only contains class
User, which would introduce circular dependencies.

Instead, for our NSGA-III algorithm, a single-class mutation operator is chosen that
only moves roots and leaves of a module. A root class in a module is defined as a class that
is not depended on by other classes in the same module, while a leaf class is defined as a
class that does not depend on other classes in the same module. Classes Role and Password-
Checker in Figure 4.11 are examples of roots and leaves, respectively. Only moving roots
and leaves does not guarantee that circular dependencies are prevented. An example can be
seen in Figure 4.11. Class PasswordChecker is a leaf of module user, and its only related
module is authentication. If PasswordChecker were to be moved to authentication, how-
ever, it would introduce a circular dependency. Module authentication would still depend
on module user because of the dependency from Authenticator on User. At the same time,
module user now also depends on authentication because of Admin and the dependency
from User on PasswordChecker. In this example, the circular dependency is between two
modules, but the example could be extended such that the cycle involves more than two
modules. As a result, the entire dependency graph may need to be checked for cycles to
detect whether a mutation introduces circular dependencies.

A version of the single-class mutation operator was tried during preliminary testing that
moves a random root or leaf only if the move does not result in a circular dependency, which
used the DFS algorithm as mentioned in Section 4.4.2, to check for cycles in the module
dependency graph. While this prevented circular module dependencies from being intro-
duced during mutation, it also slowed down the performance of the mutation operator by an
order of magnitude. Circular dependencies could still be introduced when using this muta-
tion operator due to how the crossover operator works. The crossover operator moves all
classes from a module to a child that the child did not receive earlier from the other parent.
Otherwise, the child would receive a class twice while the other child would not receive it at
all. In that case, the second time a child receives a class, that class instead goes to the other
child. This can also result in circular dependencies, which means that slowing down the
mutation operator with a DFS algorithm to check for circular dependencies affects the algo-
rithm’s speed but does not entirely prevent circular dependencies. Instead, we have chosen
to optimise for circular dependencies with the objective function described in Section 4.4.2.

It is worth nothing that we have chosen to prevent the algorithm from creating new
modules in the codebase, since our algorithm uses a mutation operator that moves a single
class for a solution per generation. This approach contrasts with that of Schröder et al.
[68], where the algorithm could create new modules. The mutation operators used by their
algorithm could move more than a single class per mutation, and the authors still noted that

50

4.9. Mutation operator

Figure 4.11: Extended dependency graph

this often resulted in modules that were too granular for large-scale codebases like the one
of Adyen. From their findings, combined with the fact that our mutation operator moves one
class at a time, we conclude that allowing the algorithm to create new modules would also
result in modules that are too granular for large-scale codebases. Thus, we do not include
this functionality for our NSGA-III algorithm.

4.9.1 Elite archive

NSGA-III uses a set of reference points to ensure that solutions are well-spread through the
objective space. During the niche-preservation operation, solutions in the last considered
front Fl that are associated with a reference point with the minimum niche count are added
to the surviving population until the surviving population reaches its maximum size. This
operation helps spread the solutions over the objective space because it attempts to keep
solutions in the direction of as many reference points as possible. Still, this does not ensure
that every reference point has a solution associated to it because reference points with no
associated solutions in Fl cannot result in a related solution being added to the surviving
population. Therefore, over time, solutions may be associated with a small numbers of
reference points, thus resulting in a limited spread over the entire objective space.

In order to prevent the number of reference points with at least one associated solu-
tion from decreasing, an elite archive is implemented. Ibrahim et al. [39] propose an elite
archive for NSGA-III that maintains an elite solution for every reference point. First, each
solution in the initial population is associated with its closest reference point. Then, for

51

4. A DOMAIN-AWARE SEARCH-BASED ALGORITHM FOR SOFTWARE

REMODULARISATION

each reference point with at least one associated solution, the solution with the smallest
Euclidean distance to the ideal point is chosen as the elite solution for that reference point.

The solutions in the elite archive are used during parent selection. Without the elite
archive, two solutions, r1 and r2 from the current population are selected, by any means
of selection operation, such as tournament selection or random picking with or without
replacement. These solutions become a parent pair (p1, p2) used during crossover.

From the elite archive, two solutions r3 and r4 are selected at random, such that r3 ̸= r4.
Then with 50% probability, r3 replaces r1 as parent p1. Similarly, with 50% probability, r4
replaces r2 as parent p2. This ensures that the diversity of the offspring is improved. The
elite archive also improves the diversity of parents. In early generations of the algorithm,
the population is associated with a few reference points, meaning it is likely that parents
associated with the same reference point are selected, resulting in solutions in the offspring
population that are close to their parents, thus limiting the diversity. Because there is at
most one solution associated with a reference point, the probability that both parents belong
to the same reference point is limited, which improves the diversity of the population.

After the niche-preservation operation at the end of each generation, the elite archive
is once again updated. Every solution in the surviving population is associated with a ref-
erence point. Suppose the Euclidean distance of a solution is smaller than that of the elite
solution associated with the same reference point. In that case, that solution becomes the
new elite solution for that reference point.

It can still happen that a reference point never has a solution associated with it. How-
ever, unlike normal NSGA-III, the number of reference points with at least one associated
solution does not decrease. Ibrahim et al. [39] show that over time for WFG6 test problems
[37, 38] the amount of reference points with at least one associated population member de-
creases for NSGA-III, while it increases for EliteNSGA-III, thereby showing that an elite
archive helps NSGA-III maintain and improve the diversity of the population.

52

Chapter 5

An empirical study on the
convergence of the algorithm

Having discussed how the algorithm operates in the previous chapter, it is now time to anal-
yse the performance depending on the parameters of the algorithm, through an empirical
study. This empirical study will analyse the performance and convergence of the al-
gorithm. The chapter starts by listing the research questions that the empirical study will
answer. Next, the methodology used for the empirical study is described, followed by ex-
plaining how the algorithm’s parameters were tuned to obtain the best performance of the
algorithm. Lastly, the results of the empirical study are analysed and used to answer the
research questions of this chapter.

5.1 Research questions

To understand the performance and convergence of the algorithm, we want to answer the
following research questions:

RQ1: What are the improvements to the codebase in terms of the objective values?
How well does the algorithm generate modularisations that improve the code structure qual-
ity metrics?

RQ2: How fast does the algorithm converge? We want to know how many genera-
tions it takes for the algorithm to reach a local optimum. By analysing the improvement of
the fitness values and the Pareto optimal front over generations, we can detect whether the
algorithm has converged and how many generations it needed.

5.2 Methodology

The algorithm is run on 16 cores at 3.3GHz and 128GB of RAM, two times for each research
question. The algorithm runs on the entire codebase, and the Pareto front is saved every
50 generations. The algorithm is run for 24 hours for RQ2, and 72 hours for RQ2. In
order for the algorithm to perform appropriately for the research questions, the algorithm’s
parameters must first be tuned, as will be described in Section 5.3. The objective function

53

5. AN EMPIRICAL STUDY ON THE CONVERGENCE OF THE ALGORITHM

for Domain rule violations is not used for the study in this chapter, as it will be evaluated
during the case studies with Adyen developers performed in the next chapter, because the
Adyen developers provide the domain rules for the algorithm. However, the study in this
chapter is performed without any Adyen developer input and therefore, without any domain
rules.

5.3 Parameter tuning

The algorithm’s parameters must be appropriately configured to ensure that the algorithm
produces good modularisations in a timely manner. Because a significant amount of runs
are required for tuning, a reduced version of the codebase is used to ensure the parameter
tuning finishes promptly. This smaller version is obtained by running the algorithm on the
codebase with a large portion frozen. Freezing a large part of the codebase reduces the
algorithm’s search space but still allows it to consider all dependencies so it can still detect
any cycles. The version consisted of 105 modules, totalling 5476 classes that were not
frozen. These chosen modules represent various functionality present in the codebase. For
each parameter, various values were tried to determine which works best. The details of
this tuning are described in Appendix B, where six parameters were tuned for a total of
17 configurations. Each configuration was run five times, for three hours per configuration
by the algorithm, on the partially frozen codebase. The results and details are outlined in
Appendix B, and the final parameter values are listed below:

• Number of reference points: 10x the number of objective functions

• Population size: 1x the number of reference points

• Mutation chance: 50%

• Elite archive: is used

• Number of cycles: is optimised for

• Largest module: is optimised for

5.4 Results

This section shows the results of the empirical study to answer RQ1 and RQ2 regarding
the algorithm’s performance and convergence. Similarly to the parameter tuning results
in Appendix B, the relative improvements are shown rather than the absolute values, per
the request of Adyen for confidentiality. We only consider the metric improvements of the
solutions generated by the algorithm without validating the usefulness of the solutions with
Adyen developers during this empirical study.

54

5.4. Results

Figure 5.1: First run Pareto front

Best solution
IntraMD
Cohesion

InterMD
Coupling

Largest module
size

Change impact

IntraMD Cohesion 8.60% -4.12% -1.06% 198
InterMD Coupling -7.12% -8.10% -1.48% 301

Largest module size -1.95% -6.57% -1.97% 291

Table 5.1: Relative improvement of best solutions for each objective function

5.4.1 RQ1: What are the improvements to the codebase in terms of the
objective values?

Figures 5.1 and 5.3 show the Pareto fronts for both runs, for the objective functions In-
traMD Cohesion, InterMD Coupling and Largest Module Size. Figures 5.2 and 5.4 show
the solutions in the Pareto front that improve on all metrics for both runs. The graphs do
not show the fourth objective function (Circular Module Dependencies). However, since
only solutions without cycles are usable, any solutions that contained a cycle in the module
dependency graph were discarded for the purpose of answering RQ1. Table 5.1 shows for
each objective function which metric values the best solution for that objective achieved.
Table 5.2 shows the same for solutions that improved on all metrics. While InterMD Cou-
pling and Largest Module Size are a minimisation effort, IntraMD Cohesion should be
maximised, as mentioned in Section 4.4.4.

Observation 1: The algorithm can produce modularisations that significantly improve
the code structure quality in terms of the objective functions. Considering solutions
that improve all metrics, as displayed in Table 5.2, one can see that IntraMD Cohesion
can be increased by 8.6%, InterMD Coupling decreased by 6.67%, and the largest module
size could be reduced by 1.94%. When the best solutions for each objective function that

55

5. AN EMPIRICAL STUDY ON THE CONVERGENCE OF THE ALGORITHM

Figure 5.2: First run Pareto front solutions that improve all metrics

Figure 5.3: Second run Pareto front

Best solution
IntraMD
Cohesion

InterMD
Coupling

Largest module
size

Change impact

IntraMD Cohesion 8.60% -4.12% -1.06% 198
InterMD Coupling 0.57% -6.67% -1.06% 238

Largest module size 3.38% -6.57% -1.94% 271

Table 5.2: Relative improvement of best solutions for each objective function that improve
all metrics

56

5.4. Results

Figure 5.4: Second run Pareto front solutions that improve all metrics

improve some metrics at the cost of others are considered, as shown in Table 5.1, even
better improvements can be seen for InterMD Coupling and the size of the largest module.
InterMD Coupling can be reduced by 8.1%, while the largest module could be reduced
in size by 1.97%. These tables show that the algorithm is able to produce significantly
improved modularisations from the perspective of code structure quality metrics.

Observation 2: The best solution in terms of IntraMD Cohesion also improves the
other two metrics. The best IntraMD Cohesion solution in Table 5.1 is the same as in
Table 5.2, showing that the best IntraMD Cohesion improvement of 8.6% is obtained while
also decreasing InterMD Coupling by 6.67% and the size of the largest module by 1.06%.
Additionally, when comparing Figures 5.1 and 5.3 to Figures 5.2 and 5.4, one can see that
IntraMD Cohesion is also the only metric that is not always improved upon in the Pareto
front of solutions without cycles, as all solutions in the figures improved both InterMD
Coupling and the size of the largest module. The reason for this is unclear and would
require more runs to determine why this occurred.

Observation 3: The optimal solution for IntraMD Cohesion needs fewer changes than
the optimal solutions for InterMD Coupling and the size of the largest module. The
best solution for IntraMD Cohesion requires the least changes to the codebase, while the
best solutions for InterMD Coupling and largest module size require approximately the
same amount of changes. An explanation for this could be that every move can improve In-
traMD Cohesion, but only when every class in a module Mi that depends on another module
M j are moved out of Mi does the InterMD Coupling of Mi decrease, which could require a
large amount of moves depending on the number of classes in Mi that depend on M j. Addi-
tionally for the largest module size, there are many more classes not in the largest module
than there are in it. As the mutation operator randomly picks classes to move, it can take
many moves of other classes before the algorithm moves a class out of the largest module,

57

5. AN EMPIRICAL STUDY ON THE CONVERGENCE OF THE ALGORITHM

which could explain why the best solutions for InterMD Coupling and largest module size
require more moves than the best solution for IntraMD Cohesion.

5.4.2 RQ2: How fast does the algorithm converge?

The algorithm performed two runs of 72 hours each to analyse the algorithm’s convergence
for the objective functions. For each objective function, the best and average results are
shown in Figures 5.5 to 5.8.

Observation 4: The average solution improves InterMD Coupling and the largest mod-
ule size at the cost of IntraMD Cohesion. Looking at Figures 5.5 to 5.7, one can see that
the average value for IntraMD Cohesion gets worse while the average values for InterMD
Coupling and the largest module size improve.

Observation 5: The algorithm quickly reached a local optimum for IntraMD Cohe-
sion. Figure 5.5 shows that the best improvement for IntraMD Cohesion, roughly 9.6%,
is achieved after approximately 50,000 generations. For the remainder of the runs, no solu-
tion achieves a better value, indicating that the algorithm likely is stuck in a local optimum
in terms of IntraMD Cohesion.

Observation 6: The algorithm does not seem to converge for InterMD Coupling and
the largest module size. As shown in Figures 5.6 and 5.7, the best values for both ob-
jective functions steadily decrease throughout the 72-hour runs. The algorithm appeared to
converge after around 350,000 generations for InterMD Coupling. However, near the end
of the runs, the value once again decreases. The algorithm converged quickly for the best
value for IntraMD Cohesion, but the average value does not seem to converge within the 72
hours.

Observation 7: Some generations do not contain solutions without cycles. As the
number of cycles is one of the objective functions, it is expected that every generation
contains some solutions with cycles as the result of the algorithm trading off between fit-
ness values. While the exact number estimated by the algorithm does not matter, one can
see from the best values in Figure 5.8 that even the best solution contains cycles for some
generations.

Observation 8: The algorithm computed approximately 460,000 generations after
72 hours. During both runs, the number of generations computed was approximately
460,000. The speed of the algorithm is affected by various parameters, such as the number
of objective functions and the population size. Additionally, the machine that performed the
runs is an important aspect for the actual speed of the algorithm. Considering that the best
improvement for IntraMD Cohesion was achieved after 50,000 generations, the algorithm
ran for approximately 8 hours to reach this improvement.

58

5.4. Results

Figure 5.5: IntraMD Cohesion convergence, best and average values of 72 hour runs.

Figure 5.6: InterMD Coupling convergence, best and average values of 72 hour runs.

59

5. AN EMPIRICAL STUDY ON THE CONVERGENCE OF THE ALGORITHM

Figure 5.7: Largest module size convergence, best and average values of 72 hour runs.

Figure 5.8: Circular module dependency convergence, best and average values of 72 hour
runs.

60

5.5. Conclusion

5.5 Conclusion

Considering the results in Figures 5.1 to 5.4 and Tables 5.1 and 5.2, we can answer the
following for RQ1: The algorithm shows improvements of 8.6% for IntraMD Cohesion,
6.67% for InterMD Coupling and 1.94% for the size of the largest module, considering
modularisations that improve all three metrics and contain no cycles.

To analyse the algorithm’s convergence for each objective function, we let the algorithm
run twice, for 72 hours, with the best and average results for those runs shown in Figures 5.5
to 5.8. Considering these results, we can answer for RQ2 that the algorithm does not seem
to converge for any objective function except IntraMD Cohesion. However, the average
IntraMD Cohesion value did not seem to converge. Thus we recommend performing more
runs in the future to further analyse the convergence of the algorithm for IntraMD Cohesion.

61

Chapter 6

Case studies at Adyen

This chapter performs three case studies by running the algorithm on different parts of
the Adyen codebase. The goal of performing these case studies is to understand the
developers’ domain knowledge and how this knowledge can be used to generate better
modularisation suggestions. Each case study focuses on a different team and the modules
they are responsible for. This chapter starts by describing which case study focuses on
which parts of the Adyen codebase. Next, the methodology for the case studies is explained,
along with the developer selection and interview process. Finally, the chapter concludes by
listing the results of each case study and evaluating the effect of domain knowledge on the
algorithm’s performance.

6.1 Case studies

Case study 1 (CS1): The first case study focuses on a core feature of Adyen from the start
of the company, making it one of the oldest parts of the codebase. It has been developed,
maintained and extended over the years, resulting in an architecture that differs from when
it was initially created. For this reason, modules related to this core feature are chosen for
the first case study.

Case study 2 (CS2): To complement the first case study on an older part of the codebase,
the second case study considers the modules related to a relatively new addition to the
codebase. Because it is a younger part of the codebase, the domain knowledge developers
have for this part of the codebase may differ from that of the developers for the first case
study.

Case study 3 (CS3): The last case study considers an internal framework. While the
modules of each of the other two case studies serve their own specific purpose, the modules
belonging to this case study are used in various parts of the codebase. Furthermore, while
the modules are maintained by one team, multiple domains make use of it, thus making
these modules an intriguing choice for the last case study.

63

6. CASE STUDIES AT ADYEN

Figure 6.1: Case study action research cycle diagram

It is worth noting that the case studies do not have overlapping classes or modules.

6.2 Methodology

In the previous chapter, we performed an empirical study on the performance and con-
vergence of the algorithm. The results obtained in that chapter show that the algorithm
can significantly improve a large-scale codebase from a metrics perspective. However, an
important question is whether the remodularisations created by the algorithm are actually
useful from a real-world point of view. To answer this question, we performed three case
studies inspired by the canonical action research cycle described in Action research in
software engineering [70]. We combine the Action planning and Action taking steps into
a single Action step, follow the Evaluation step and combine the Learning and Diagnosing
steps into a single Reflection step:

• Action - Run the algorithm with the established domain knowledge as input.

• Evaluation - Discuss the solutions with the developers.

• Reflection - Determine new domain knowledge from the feedback of the evaluation
phase.

After the reflection phase, the algorithm is rerun with the new domain knowledge as
input to create solutions that are better in line with the knowledge of the developers. Per-
forming the three steps multiple times allows us to reflect on the experience and feedback of
the developers, which in turn improves the solutions that the algorithm generates. Figure 6.1
visualises the action research cycle used by each case study.

While developers are familiar with their domain knowledge when developing, it is un-
likely that they can exhaustively formulate it all from the top of their heads. However, they

64

6.2. Methodology

can identify when a move-class suggestion goes against their knowledge. Therefore to es-
tablish a knowledge base relevant to the developers, they will be interviewed on suggestions
made by the algorithm, which can contain violations to yet unspecified domain knowledge.
During these interviews, developers can state why they disagree with specific move-class
suggestions. From this feedback, new freezes or domain rules can be determined, which
can then be used as input for future runs of the algorithm. Therefore, performing several
iterations of the cycle in figure 6.1 fits very well with our iterative interview approach.

For each case study, the following objective functions are optimised for by the algo-
rithm: Change impact (number of classes moved), IntraMD Cohesion, InterMD Coupling,
Cycles (number of circular module dependencies) and Rule penalty (number of domain rule
violations). The algorithm was run for 12 hours before each iteration.

6.2.1 Developers

At Adyen, developer teams own sets of modules. To select the developers for each case
study, the developers in the teams that own the modules were asked to take part in the case
study via the internal chat platform. As a result, three developers accepted for the second
case study, while two accepted each for the first and third case studies.

6.2.2 Initial interviews

Each of the initial interviews was done in person or through an online conference applica-
tion. Before discussing any results of the algorithm, the developers of each case study are
explained which metrics the algorithm optimises for, how these metrics are calculated and
how the algorithm can choose to which modules classes can be moved. In addition, they
were asked which modules should be considered for the case study to specify the initial
freezes that narrow the algorithm’s search space.

Additionally, they were explained how the goal of the case study is to capture their
domain knowledge to improve the remodularisation solutions of the algorithm through
the use of freezing parts of the codebase and defining domain rules. They were also
explained how this process happens throughout several runs and iterations to iteratively
improve the set of domain knowledge used as input for the algorithm.

Next, the developers were asked several questions to understand their experience with
and knowledge of the Adyen codebase. These questions were inspired by the interview
approach of Schröder et al. [68]. The questions and answers can be found in Appendix C.1.

After each iteration, the algorithm was run with the codebase frozen such that classes in
unrelated modules were not moved, thus ensuring that the algorithm only suggests moves
for classes with which the developers are familiar. For the initial runs, no domain knowledge
was specified. Therefore, the algorithm did not optimise for Rule penalty until the second
iteration of each case study.

6.2.3 Splitting solutions

While Change impact is one of the objective functions the algorithm optimises for, solu-
tions at the end of a run can still consist of dozens of move-class suggestions. Solutions

65

6. CASE STUDIES AT ADYEN

were split into smaller groups of move class suggestions, each group consisting of 10 or
fewer suggestions, to ensure that each interview did not take more than 30 minutes. These
smaller groups are referred to as change groups in the remainder of this chapter. Move-
class suggestions were grouped in change groups according to their module destination.
The change groups were first filtered on duplicate classes. Finally, those change groups that
did not contain cycles and improved at least one of the following objective functions were
selected: IntraMD Cohesion, InterMD Coupling and Rule penalty.

6.2.4 Action research iterations

In the action research iterations following the initial meeting with the developers, various
change groups were discussed with the developers to determine domain knowledge to im-
prove the future runs of the algorithm. For each case study, three iterations discussing
change groups were performed, in addition to the initial interview. A metric overview for
the change groups discussed during the iterations of each case study can be found in Ap-
pendix D. For all three case studies, the Rule penalty objective function was considered after
the first iteration, as that was the iteration after which domain knowledge was specified.

6.3 Case studies results

In this section, we describe the action research iterations for each case study. The metric
changes of each change group discussed for all case studies can be found in Appendix D. For
each iteration, we list and discuss which change groups and move-class suggestions were
accepted, partially accepted and rejected by the developers and list their feedback explaining
the choices they made. At the end of each iteration, we summarise the results and use the
developer feedback to determine new domain rules and freezes, which are subsequently
used by future runs to improve remodularisation.

In general, the modules of the Adyen codebase can be categorised as follows:

• High-level - Applications and interfaces.

• Mid-level - Business logic functionality.

• Low-level - Basic functionality, e.g. string manipulation.

6.3.1 Case study 1

Iteration 1

Table D.1 shows the change groups discussed during the first iteration.

Accepted: No change groups were accepted by the developers.

Partially accepted: No change groups were partially accepted by the developers.

66

6.3. Case studies results

Rejected: Every change group contained move-class suggestions that would introduce
unwanted dependencies between several different module types.

Interpretation of the expert developers: As shown in Table D.1, the developers rejected
all ten move-class suggestions, even if they contributed positively to both IntraMD Cohesion
and InterMD Coupling. The developers indicated that moving these classes to the suggested
modules would introduce unwanted dependencies between various modules. From their
feedback, multiple domain rules were established for future runs:

• Multiple module-to-module dependencies are not allowed based on their module
types, e.g. dependencies between High-level modules.

Iteration 2

An overview of the change groups discussed during the second iteration can be found in
Table D.2.

Accepted: No change groups were accepted by the developers.

Partially accepted: Change group G1 contained one move-class suggestion that devel-
opers accepted. The other two suggestions were rejected because they were determined to
be in the correct module, regardless of the code structure quality improvement resulting
from the moves.

The first move-class suggestion in change group G4 was rejected because the class was
determined to be in the correct module. For the second suggestion, the developers confirmed
that the class could be moved, but the suggested module was incorrect, as this would move
a class from a Mid-level module to a Low-level module.

Change group G5 suggested moving three classes. The developers confirmed that the
classes could be moved out of their current module. However, the suggested modules were
rejected because this would move classes from High-level modules to Low-level modules,
which violated a domain rule specified in the last iteration, as can be seen by the increase in
Rule penalty.

For each suggestion in change group G6 the developers confirmed that the classes
should be moved out of their current module. However, they rejected the changes because
the suggested module was incorrect.

Rejected: All nine suggestions in change group G2 were rejected because the classes
were determined to be in the correct modules, regardless of the code structure quality im-
provement resulting from the moves. For four of these suggestions, the developers stated
that the suggestions would move code from Mid-level modules to a High-level module,
which they did not want.

The move-class suggestion in change group G3 was rejected because the class was
determined to be in the correct module, regardless of the code structure quality improvement
resulting from the move. The suggested module was also explicitly rejected because it is

67

6. CASE STUDIES AT ADYEN

special, requiring a different approach than the other modules owned by the team. It was
concluded that this specific module was best left out of consideration for future runs.

Interpretation of the expert developers: Out of the six change groups comprising 21
move-class suggestions, none were outright accepted by the developers. Out of those 21
move-class suggestions, one was accepted, seven classes could be moved to a different
module than suggested, and 13 classes were already in the correct module.

It is worth noting that the move-class suggestion in change group G3 was rejected be-
cause the class was determined to be in the correct module, which is of special nature and
requires a different approach than the other modules owned by the developers. It was con-
cluded that this specific module was best left out of consideration for future runs.

For each of the seven classes that could be moved to a different module, the developers
could name modules that they found more suitable as locations. However, the algorithm
could not have proposed those modules because it only picks related modules in terms of
class dependencies.

Several move-class suggestions in G2 were rejected because this would move classes
from Mid-level modules to High-level modules, which the developers did not want.

In addition to freezing the special module, the following domain rules were established
with the developer feedback:

• Classes from Mid-level modules should not be moved to High-level modules.

• Classes from High-level modules should not be moved to Low-level modules.

Iteration 3

The results of the last iteration can be seen in Table D.3. An overview of the domain
rules resulting from this case study are shown in Table 6.4. At the request of Adyen for
confidentiality, the specific module names and types are left out.

Accepted: Change group G3 consisted of a single move-class suggestion that the devel-
opers accepted.

Change group G5 consisted of seven move-class suggestions that the developers ac-
cepted. Four of the move-class suggestions did not change any rule violation penalty. Two
of the move-class suggestions reduced unwanted dependencies between certain module
types, while the last move-class suggestion replaced one unwanted dependency between
certain module types for another unwanted dependency between different module types,
thus resulting in a net-zero change for the penalty. The developers indicated that this last
move-class suggestion was still acceptable as a temporary solution before the last class got
moved to a different module, which was not yet present in the codebase.

Change group G7 consisted of two move-class suggestions that the developers accepted.

Partially accepted: No change groups were partially accepted by the developers.

68

6.3. Case studies results

Rejected: The move-class suggestions in change groups G1 and G6 were rejected be-
cause the developers determined the classes to be in the correct module. The module these
classes were located in was also of a special type, similar to the one mentioned in the last
iteration. Therefore, the freeze for the specific special module from the last iteration was
extended to all similar modules, leaving these modules out of consideration for future runs
of the algorithm.

The move-class suggestions in change groups G2, G4 and G8 were rejected because
the developers determined the classes to be in the correct module, regardless of the code
structure quality improvement resulting from the moves.

Interpretation of the expert developers: Eight change groups were discussed, totalling
21 move-class suggestions. The developers outright accepted three change groups contain-
ing ten suggestions. The developers rejected the remaining 11 suggestions for two reasons.
First, the six classes in change groups G1 and G6 were rejected because the modules these
classes were in are of similar special nature as the module mentioned in the previous iter-
ation. Therefore, the freeze was extended to all modules of such a nature to exclude them
from consideration for future runs. The last five classes were rejected because the develop-
ers determined these classes to be in the correct modules.

From the feedback of the last iteration, no new domain rules could be established. The
freeze for the special module from the last iteration was extended to all similar modules.

6.3.2 Case study 2

Iteration 1

An overview of the change groups discussed in this iteration can be found in Table D.4.

Accepted: No change groups were accepted by the developers.

Partially accepted: No change groups were partially accepted by the developers.

Rejected: The move-class suggestions in change groups G1, G2 and G4 were rejected
because they would introduce unwanted dependencies between modules of various types.

The suggestions in change group G3 were rejected because this would move classes
from High-level modules to a Mid-level module, which the developers did not want.

Interpretation of the expert developers: The four change groups totalled 20 move-class
suggestions, which were all rejected by the developers, regardless of the code structure
quality resulting from the moves. The move-class suggestions in change groups G1, G2
and G4 would introduce unwanted dependencies between High-level modules, while those
in G3 would move classes from High-level modules to a Mid-level module, which is also
unwanted from the perspective of the developers.

From the feedback on the rejected move-class suggestions, the following domain rules
were formulated with the developers:

69

6. CASE STUDIES AT ADYEN

• Multiple module-to-module dependencies are not allowed based on their module
types, e.g. dependencies between High-level modules.

• Classes that are originally in specific High-level modules may not be moved to spe-
cific Mid-level modules.

Iteration 2

Table D.5 shows the change groups discussed during the second iteration.

Accepted: All 11 move-class suggestions in change groups G3, G7, G10 and G11 were
accepted by the developers.

Interestingly, G10 is the only change group that is accepted even though increased the
Rule penalty. This is because moving these classes would decrease the number of depen-
dencies between High-level modules while increasing the number of dependencies between
Mid-level modules. The developers indicated that decreasing the number of dependen-
cies from High-level modules to one specific High-level module was more important than
the increase in dependencies between Mid-level modules, which is why they accepted the
move-class suggestions.

Partially accepted: The developers confirmed that the class in G1 should be moved but
disagreed with the suggested module. Instead, the class should be moved to a module that
did not yet exist in the codebase.

Rejected: The move-class suggestions in change groups G2, G5 and G9 were rejected
because classes from the modules they were in should not be moved to Mid-level modules,
according to the developers.

The move-class suggestion in G4 was rejected because it violated more domain rules.
The move-class suggestion in change group G6 were rejected because the classes are in

a unique module. The developers indicated that classes in this unique module should be left
out of consideration for future runs.

The move-class suggestions in change group G8 were rejected because classes from that
module should not be moved to Low-level modules.

Interpretation of the expert developers: Change group G1 was partially accepted be-
cause while the developers agreed that the class should be moved, the suggested module
was wrong. The developers explained that the class should be moved to a module they were
planning on creating in the near future. Thus they did not want to move the class until that
module existed.

The developers outright accepted the 11 move-class suggestions in change groups G3,
G7, G10 and G11. Interesting to note is that the move-class suggestions in G10 actually
increased the total Rule penalty. This is because moving these classes would result in a
decrease in the number of dependencies between High-level modules while increasing the
number of dependencies between Mid-level modules. The developers indicated that the

70

6.3. Case studies results

decreasing the number of dependencies from High-level modules to one specific High-level
module was more important than the increase in dependencies between Mid-level modules,
which is why they accepted the move-class suggestions despite the overall increase in Rule
penalty.

According to the developers, the five move-class suggestions in G2, G5 and G9 were
rejected because classes from the modules they were in should not be moved to Mid-level
modules.

Change group G4 was rejected because it would violate more domain rules.
The move-class suggestion in change group G6 were rejected because the classes are in

a unique module. The developers indicated that classes in this unique module should be left
out of consideration for future runs.

The move-class suggestions in change group G8 were rejected because classes from the
modules they were in should not be moved to Low-level modules.

The unique module was totally frozen for future runs. The developers indicated that
they wanted to reduce dependencies from their High-level modules to one specific module.
In order to prioritise removing these unwanted dependencies, this domain rule was assigned
with an arbitrary high penalty of 1000. Additionally, two more domain rules were defined
based on the developer feedback on the rejected move-class suggestions:

• Dependencies from High-level modules to a specific High-level module are not al-
lowed, with a penalty of 1000 per violation.

• Classes that are originally in a specific module should not be moved to Mid-level
modules.

• Classes that are originally in a specific module should not be moved to Low-level
modules.

Iteration 3

Table D.6 shows the change groups discussed during this last iteration. An overview of the
domain rules resulting from this case study are shown in Table 6.5. At the request of Adyen
for confidentiality, the specific module names and types are left out.

Accepted: All six move-class suggestions in change groups G4, G7 and G8 were ac-
cepted by the developers.

Partially accepted: For all the classes suggested to be moved in change groups G1, G3,
G5, G9 and G10, the developers confirmed that the classes should be moved but disagreed
with the suggested modules. For each class, the developers could name a better module in
the codebase the classes should be moved to, except the class in G10, for which the module
did not yet exist.

For the three classes in change groups G2 and G11, the developers confirmed they
should be moved, but they disagreed with the suggested modules, as those were Mid-level

71

6. CASE STUDIES AT ADYEN

modules. The developers noted that classes from specific High-level modules should never
be moved to the suggested Mid-level modules.

Rejected: The move-class suggestion in change group G6 was rejected because the class
was determined to be in the correct module. Additionally, the suggested module was a
Mid-level module, and the classes in this High-level module should never be moved to this
Mid-level module.

Interpretation of the expert developers: The developers outright accepted the six move-
class suggestions in change groups G4, G7 and G8.

The developers confirmed that the eight classes in G1, G3, G5, G9 and G10 should be
moved but disagreed with the suggested modules. For each class, except the one in G10,
the developer could name an existing module more suitable than the suggested module. For
the class in G10, the developers explained that the class should be moved to a module that
they were planning on creating in the near future. Thus they did not want to move the class
until that module existed.

Similarly, the developers agreed that the three classes in G2 and G11 should be moved.
However, they disagreed with the suggested modules, as the suggestions would move classes
from High-level modules to Mid-level modules, which the developers indicated should not
happen.

The move-class suggestion in G6 was rejected because the class was in the correct
module. Additionally, the developers explained that the suggestion would move a class
from a Mid-level module to a High-level module, which should not happen.

From the developer feedback on the partially accepted and rejected move-class sug-
gestions, the following domain rule was formulated for several different High-level and
Mid-level modules:

• Classes in specific High-level modules may not be moved to specific Mid-level mod-
ules.

6.3.3 Case study 3

Iteration 1

For the first iteration of this case study, the change groups can be found in Table D.7.

Accepted: No change groups were accepted by the developers.

Partially accepted: Change group G2 suggested moving a class to a High-level module.
The developers confirmed that the class could be moved out of the current module but
rejected the suggestion because the move would introduce dependencies between High-
level modules.

Change groups G3 and G4 both suggested moving a class from a Mid-level module to
a Mid-level module. The developers confirmed that the classes could be moved out of their

72

6.3. Case studies results

current module. However, they rejected the suggestion because moving it to the suggested
module would introduce unwanted dependencies between specific Mid-level modules.

Rejected: Change group G1 suggested moving a class from a Mid-level module to a
High-level module. The developers rejected this move because classes should not be moved
from a Mid-level module to High-level modules, regardless of the code structure quality
changes.

The developers rejected the move-class suggestion in change group G5 because it was
located in a sub-module where the developers were confident all classes in that sub-module
were at the correct location, stating that none of the classes in that sub-module had to be
considered for moving.

Interpretation of the expert developers: For several of the rejected classes, the devel-
opers could name a different module that would be more suitable. However, the algorithm
could not have picked those modules because it only picks related modules in terms of de-
pendencies of the class. For the four move-class suggestions in change groups G1, G2, G3
and G4, the developers agreed that the classes should be moved, but to different modules
than suggested. Moving the classes to their suggested modules would introduce various
unwanted dependencies between various module types.

The class in G5 is located in a sub-module, where for all classes, the developers were
confident were in the correct place. Therefore, all classes in that sub-module could be frozen
for future runs.

In addition to freezing the specific sub-module, various domain rules were formulated
with the developers:

• Multiple module-to-module dependencies are not allowed based on their module
types, e.g. dependencies between High-level modules.

• Classes that are originally in modules of a specific type may not be moved to modules
of a certain different type, e.g. classes originally in a specific Mid-level module may
not be moved to a High-level module.

Iteration 2

Table D.8 shows the change groups discussed during the second iteration.

Accepted: Change group G2 contained a single move-class suggestion that the develop-
ers accepted.

Partially accepted: Change groups G1 and G4 both contained a single move-class sug-
gestion that the developers rejected because of the suggested module. However, they con-
firmed that the class itself was suitable to be moved.

73

6. CASE STUDIES AT ADYEN

Rejected: Change group G3 consisted of two suggestions. The developers rejected the
first suggestion, as the class was determined to be in the correct module. The developers
were conflicted about the second suggestion. They agreed that the class could belong to
the new module. However, they still rejected the suggestion because the module the class
was originally in was of a unique nature, which requires a different approach than the other
modules owned by the team. It was concluded that this specific module was best left out of
consideration for future runs.

Interpretation of the expert developers: The developers accepted the move-class sug-
gestion in G2, while for change groups G1 and G4, the developers confirmed that the classes
should be moved, but to a different module than suggested. Unfortunately, the modules that
the developers suggested were not among the related modules for those classes. Hence, the
algorithm could not have picked these modules.

The first move-class suggestion in G3 was rejected because the developers determined it
to be in the correct module, regardless of the decrease in Rule penalty caused by the move.
The second class is located in a unique module that does not follow the general domain
rules of the other modules the team owns. The developers noted that this module was best
left out of consideration for future runs.

Besides freezing the unique module, no additional domain rules were established from
the developer feedback in this iteration.

Iteration 3

The change groups discussed in the last iteration can be found in Table D.9. An overview
of the domain rules resulting from this case study are shown in Table 6.6. At the request of
Adyen for confidentiality, the specific module names and types are left out.

Accepted: All move-class suggestions in change groups G1, G2, G3 and G9 were ac-
cepted by the developers. Interestingly, the move-class suggestion in G2 actually violated a
domain rule, but the developers still found the move beneficial overall.

Partially accepted: For both classes in change groups G4 and G5, the developers agreed
that they were suitable for moving but disagreed on the suggested modules.

Change group G7 totalled three move-class suggestions. The developers accepted one
of these move-class suggestions, which accounted for the improvement in IntraMD Cohe-
sion. However, the other two move-class suggestions were rejected because they caused an
increase in Rule penalty.

Rejected: Both move-class suggestions in change groups G6 and G8 were rejected be-
cause the developers determined the classes to be in the correct module, regardless of the
code structure quality improvement resulting from the moves.

Although the move-class suggestion in G8 increased Rule penalty, the developers noted
that an exception must be made to allow specific Mid-level modules to depend on several
Mid-level modules.

74

6.3. Case studies results

Iteration Accepted Partially accepted Rejected

1 0 / 4 0 / 4 4 / 4
2 0 / 6 4 / 6 2 / 6
3 3 / 8 0 / 8 5 / 8

Table 6.1: Case study 1 change group acceptance overview

Iteration Accepted Partially accepted Rejected

1 0 / 4 0 / 4 4 / 4
2 4 / 11 1 / 11 6 / 11
3 3 / 11 7 / 11 1 / 11

Table 6.2: Case study 2 change group acceptance overview

Iteration Accepted Partially accepted Rejected

1 0 / 5 3 / 5 2 / 5
2 1 / 4 2 / 4 1 / 4
3 4 / 9 3 / 9 2 / 9

Table 6.3: Case study 3 change group acceptance overview

Interpretation of the expert developers: All four move-class suggestions in change
groups G1, G2, G3 and G9 were accepted by the developers. Interestingly, the move-class
suggestion in G2 actually violated a domain rule, but the developers still found the move
beneficial overall.

The developers deemed the two classes in G4 and G5 suitable to be moved but suggested
different modules. However, the algorithm could not have picked those modules because
it only picks related modules in terms of dependencies of the class. Additionally, the de-
velopers accepted one of the three move-class suggestions in G7, which improved IntraMD
Cohesion. The other two suggestions were rejected because they increased Rule penalty.

Both move-class suggestions in change groups G6 and G8 were rejected because the
developers determined the classes to be in the correct module, regardless of the code struc-
ture quality improvement resulting from the moves. Although the move-class suggestion in
G8 increased Rule penalty, the developers noted that an exception must be made to allow
Mid-level modules to depend on several Mid-level modules.

From the developer feedback on the partially accepted and rejected move-class sugges-
tions, an exception to a domain rule was made:

• Mid-level modules are allowed to depend on a subset of Mid-level modules.

75

6. CASE STUDIES AT ADYEN

Domain rule Count

Modules of type ... cannot depend on modules of type ... 11
Classes in module ... cannot be moved to module ... 2

Table 6.4: Case study 1 domain rule overview

Domain rule Count

Modules of type ... cannot depend on modules of type ... 11
Classes in module ... cannot be moved to modules ... 3
Modules ... cannot depend on module ... 1

Table 6.5: Case study 2 domain rule overview

Domain rule Count

Modules of type ... cannot depend on modules of type ... 11
Exception: Modules of type ... can depend on specific modules of type ... 1
Classes in modules with type ... cannot be moved to modules with type ... 4

Table 6.6: Case study 3 domain rule overview

6.4 Summary of the observations

Observation 9: Developers wanted to know the fitness of individual move-class sugges-
tions. When change groups consisted of more than one move-class suggestion, developers
wanted to know how each suggestion affected the metrics. This was implemented after the
first iteration of each case study, allowing developers to understand the effect of individual
move-class suggestions in change groups for the second and third iterations.

Observation 10: None of the suggestions in the first iterations were accepted. For all
three case studies, the developers either rejected the suggestions entirely because the classes
were either in the correct module or moving them to the suggested module violated domain
rules or partially accepted the suggestions if they disagreed with the suggested module.

Observation 11: There exists an overlap in the domain rules for the three teams.
While each team had specific domain rules that applied only to the modules they owned,
several domain rules applied for the modules of all the teams and possibly even for other
teams at Adyen. The domain rules resulting from each case study are shown in Tables 6.4
to 6.6. The 11 domain rules Modules of type ... cannot depend on modules of type ... were
applicable to modules in all three case studies. However, the remaining domain rules in the
tables were specific to the modules of their respective case study.

76

6.4. Summary of the observations

Observation 12: Each team froze one or more modules during their case study. In
every case study, developers proposed to leave the special modules out of consideration
for future runs, as these modules served a distinct purpose outside the regular domain of
the team. The domain rules could have been adjusted to fit these special modules, but the
developers chose to freeze them instead. Additionally, a specific sub-module was frozen by
the developers of CS3, as they were highly confident that all classes in that sub-module were
in the correct place, so the classes in that sub-module should be left out of consideration by
the algorithm.

Observation 13: Future plans influence how developers assess move-class suggestions.
During the last iteration of CS2, the developers rejected a move-class suggestion because
they were planning to create a module in the near future in which the class would belong.
To avoid moving the class twice in a short time, they rejected the move until the module was
created. Similarly, during the last iteration of CS1, one move-class suggestion was accepted
as a temporary solution before that class got moved to a module that was already planned
but also not yet present in the codebase.

Observation 14: Developers prioritise different domain rules at different times. Dur-
ing the second iteration of CS2, the developers accepted a change group that increased Rule
penalty. Moving the classes to the suggested modules would reduce the number of unwanted
dependencies between High-level modules, while increasing the number of unwanted de-
pendencies between Mid-level modules. The developers expressed that their priority at the
moment was to reduce unwanted dependencies from certain High-level modules to a spe-
cific High-level module, even if this violated additional other domain rules. By introducing
a new domain rule for dependencies from these High-level modules to the specific High-
level module, this priority of the developers was implied by the high penalty associated with
violations, allowing the algorithm to prioritise removing these dependencies.

Observation 15: The algorithm cannot always suggest the correct module from the
dependencies of a class. In several cases, developers rejected the suggested module for
move-class suggestions and explained which modules were more suitable for the classes to
be moved to. While in a few instances, these modules did not exist in the codebase, often,
these modules were already present. From inspecting the related modules of these classes
in terms of the dependencies, it was found that the algorithm often could not have suggested
the modules the developers mentioned, as those were not among the related modules of the
class.

Observation 16: Improving IntraMD Cohesion, InterMD Coupling and Rule penalty
is not sufficient for developer acceptance. Sometimes classes were just in the correct
module based on their functionality, regardless of the metric improvements moving that
class would bring. The improvements of the metrics are not sufficient for developers to ac-
cept the changes. Even for Rule penalty, developers rejected change groups that lowered the
number of violations and accepted change groups that increased the number of violations.

77

6. CASE STUDIES AT ADYEN

This shows that sometimes the classes that violate domain rules or negatively impact code
structure quality are still in the right place.

Observation 17: A limited number of domain rules and freezes is sufficient to posi-
tively improve the suggestions by the algorithm. For each team, about a dozen domain
rules and freezes of various granularity were established during the case studies, which
were sufficient to generate move class suggestions that are in line with developer knowl-
edge while improving code structure quality, ignoring irrelevant classes and modules, and
decreasing the number of violated domain rules. Tables 6.4 to 6.6 show that 13, 15 and 16
domain rules were established for case studies 1, 2 and 3, respectively.

Observation 18: In general, developers dislike move-class suggestions that increase the
number of violated domain rules. With the exception of two change groups, all move-
class suggestions that increased Rule penalty were rejected by the developers. For CS2, the
developers accepted the net increase because they prioritised the decreased violation of one
domain rule over the increase of another. For CS3, the developers thought the move was
beneficial, even though it violated more domain rules. The remaining accepted or partially
accepted suggestions decreased or did not affect Rule penalty.

Observation 19: The domain rules positively affect the developer acceptance for the
change groups. Tables 6.1 to 6.3 show an overview of the number of accepted, partially
accepted and rejected change groups for their respective case study. During each first itera-
tion, none of the change groups were outright accepted and instead only partially accepted
or rejected. Introducing domain rules after these first iterations improved the developer
acceptance for the change groups.

78

Chapter 7

Discussion

This chapter discusses the implications of the results for the empirical study and case stud-
ies. Additionally, we discuss how the approach can be put to practical use. Lastly, we list
the threats to validity of this thesis.

7.1 Implications

This section lists the implications drawn from the results shown in Chapters 5 and 6 of the
empirical study and the case studies.

The first implication is that the approach scales to enterprise-level software systems.
The algorithm was run for 24 and 72 hours during the empirical study to analyse its results,
which showed that the algorithm could significantly improve the codebase in terms of the
code quality metrics. However, even the 12 hour runs for the case studies show that the
algorithm can suggest remodularisations for large codebases. Interviewing the developers
on the algorithm results during the case studies led to capturing their domain knowledge,
which could be used for future algorithm runs. Each interview took less than 30 minutes,
showing that the developer effort needed to create a knowledge base is limited and can be
done iteratively over multiple sessions.

The second implication is that the captured developer knowledge is both scalable and
reusable. For each case study, over the course of three iterations, about a dozen domain
rules and freezes were established, which can be reused for future runs and proved suffi-
cient in guiding the algorithm to create remodularisations that not only improved the code
structure quality but also made sense from the perspective of developers. Furthermore, each
case study started without any domain knowledge and with developers’ low acceptance of
change groups, which improved throughout the case study as more domain knowledge was
established and used as input for the algorithm.

The last implication is that it is crucial to validate the algorithm results with develop-
ers. As stated by Praditwong et al. [62], software modularisation research often does not
validate suggestions from the developers’ perspective, only relying on the improvements
on paper to determine the validity of the research. While the potential improvements in
terms of the code structure quality discussed at the end of the empirical study in Chapter 5

79

7. DISCUSSION

sound promising, the importance of considering the domain knowledge of developers be-
comes clear from the first iterations for each case study, as shown in Chapter 6, where no
suggestions were accepted outright. The results also imply that improvements in any of
the metrics, even the domain rule penalty violation metric, are not sufficient for develop-
ers to always accept the suggestions. It might partially be attributed to the chosen metrics
for cohesion (IntraMD Coupling) and coupling (InterMD Coupling), but further research is
required to analyse this.

7.2 Practical use of the approach

Having validated the approach’s potential during the case studies in Chapter 6, we now
discuss its practical uses from a business perspective. The algorithm could be applied to
various parts of a codebase, running as a nightly or weekly job to suggest remodularisations
for a select group of modules, similar to the case studies, which would require teams to
determine their own freezes and domain rules to guide the algorithm. When a team detects
that a move-class suggestion violates existing domain knowledge or new domain knowl-
edge has been established, they can add or adjust a domain rule to their knowledge base.
Iteratively building their knowledge base improves future algorithm runs, resulting in bet-
ter suggestions. This approach may require additional effort to split solutions containing
dozens of class move suggestions into smaller, more easily understood groups.

Another application for the algorithm could be as a recommendation tool for shrink-
ing large modules. For example, the objective function Largest module, discussed in Sec-
tion 4.4.6, helps prioritise the algorithm to reduce the size of large modules. By configuring
the objective function to focus on specific modules that a team wants to reduce in size, the
algorithm can then suggest remodularisations that focus on shrinking those modules.

7.3 Threats to validity

This section acknowledges the threats to internal, construct and external validity. For inter-
nal validity, the following threats have been identified:

• For the parameter tuning in Section 5.3, we did not explore every combination of
parameter values and did not trying every possible parameter value. This is because
exploring all combinations and values would require an immense amount of runs and,
therefore, time, making such an optimisation infeasible. Therefore while the chosen
combination of parameter values is valid, it cannot be said with certainty that it is
optimal, as this would require more extensive parameter tuning, which may improve
the algorithm’s performance.

• The change groups used during the case studies in Chapter 6 are not entirely repre-
sentative of the solutions that resulted from the algorithm because of the filtering and
the grouping of suggestions by module destination. Filtering and grouping were done
to ensure interviews could be kept under 30 minutes. However, as a drawback, the
change groups’ acceptance rate might differ from that of the original solutions.

80

7.3. Threats to validity

• Interviews and the interviewees are prone to bias. For each change group and each
individual move-class suggestion, the developers were aware of the effect on the vari-
ous metrics, which may have caused developers to judge the suggestions positively, as
they were aware of the positive effects of the suggestions. However, from the results
of the case studies, we found that improvements in the metrics were not sufficient for
developers to always accept suggestions.

For construct validity, we have identified the following threats:

• We expressed Change impact as the number of class moves in solutions. However,
this measure does not consider that some classes are more challenging to move than
others. Therefore, a different measure would be more appropriate for estimating the
amount of work a solution requires.

• The domain knowledge of developers was captured using freezes and domain rules.
While this proved effective when the domain knowledge could be formulated as such,
not all domain knowledge could be defined by freezes and rules. For example, mod-
ules that did not yet exist in the codebase but were planned for by the developers
influence how the developers perceive suggestions. However, these modules could
not be accounted for in terms of domain rules.

Lastly, the threat to external validity is that the approach in this thesis was applied to
the codebase of one company. Therefore it cannot be said with certainty that the results
observed for this codebase generalise to other codebases. To analyse whether the results
generalise, more research is required that involves various factors, such as different devel-
opers, other programming languages or systems in general.

81

Chapter 8

Conclusions and Future Work

This chapter starts by stating the goal of the thesis, after which we draw conclusions from
the results. Lastly, we discuss potential future work.

In this thesis, we proposed an approach to the software remodularisation problem. This
approach to suggest move class refactorings that improve the modularisation of a codebase
from a metrics point of view, while also considering the domain knowledge that developers
have. While there exist many approaches to the software remodularisation problem, these
often do consider the domain knowledge of developers and only account for code quality
metrics such as coupling and cohesion. In addition to this, the results of these approaches
are often not validated by developers that are familiar with the software system in question.
This results in plenty of research that works well in theory but misses the practical validation
to inspire confidence that the approach works in a real-world application. The approach in
this thesis is not only validated by several development teams of an enterprise-level large-
scale codebase, the feedback and domain knowledge of these developers is also used to
improve future remodularisations suggested by the NSGA-III algorithm.

This domain knowledge is expressed in the form of freezes and domain rules, varying
in granularity from being specific to a single class up to covering multiple modules. This
limits the effort required to express the domain knowledge of developers to improve the
remodularisation suggestions. The freezes and domain rules are also reusable, allowing
developers to iteratively build a knowledge base consisting of a set of freezes and rules.
As a result, this knowledge base becomes more in line with their knowledge over time.
Additionally, it can be adjusted when needed, for example, after a large-scale refactoring
that calls for different domain rules to govern the codebase.

Before performing case studies with different Adyen developer teams, the algorithm
was run on the entire codebase for an empirical study to understand how well the algorithm
performs from a code quality metric perspective and whether it converges. The results
showed that the algorithm converged in 50,000 generations for IntraMD Cohesion, while it
did not converge for InterMD Coupling and Largest module size. As the estimated number
of circular module dependencies was used as an objective value, there were generations
where every solution would result in cycles in the module dependency graph. In terms
of IntraMD Cohesion, InterMD Coupling and Largest module size, the algorithm made

83

8. CONCLUSIONS AND FUTURE WORK

a significant relative impact of +8.60%, −6.67% and −1.94%, respectively, considering
the best solutions that improved all three metrics. Considering all solutions, the average
solution improved InterMD Coupling and Largest module size at the cost of worsening
IntraMD Cohesion.

After the empirical study, we performed three case studies involving different teams
and parts of the codebase. Each case study started by running the algorithm without any
defined domain knowledge, only freezing the codebase such that the algorithm considers
the modules related to the team. To improve the understandability of the move-class sug-
gestions, solutions were split into smaller groups called change groups, as the original so-
lutions consisted of dozens of suggestions. Each case study consisted of three iterations
and accompanying runs of the algorithm to validate the algorithm’s suggestions and de-
termine the developers’ domain knowledge. For each of the initial iterations, none of the
change groups were accepted by the developers, and they all resulted in several domain
rules. These domain rules were then used as input for future runs, allowing the algorithm to
suggest move-class refactorings that do not violate the domain rules of developers or even
reduce the number of violations currently in the codebase.

The results of these case studies show that including the domain of the developers pos-
itively improves the acceptance rate of the change groups, thus improving the algorithm’s
performance. The most prevalent reasons for developers to reject the change groups are
either because the class is already in the correct module, regardless of the code quality
improvement resulting from moving the class, or because moving the class would violate
not-yet-specified domain rules. In the latter case, new domain rules can be established to
improve future suggestions, while the former case requires some method to detect whether
classes are in their correct module already, as metric improvements alone are not always
sufficient reason for developers to accept changes.

The contribution of this thesis is an approach for the software remodularisation
problem that improves the code structure quality of large-scale codebases in addition
to adhering to developer domain knowledge, having validated the results of the ap-
proach by the developers of the Adyen codebase.

The results and threats to validity of this thesis show potential for future work. First,
while we showed the potential of the approach and the algorithm, one must consider that the
results were obtained on a single codebase owned by one company. Therefore, the approach
must be applied to various other codebases to understand how well it generalises beyond the
codebase of Adyen. For example, one might consider using large-scale open-source soft-
ware systems to include in their analysis, submitting merge requests according to the move
class suggestions of the algorithm. Another interesting subject for future work is investigat-
ing the convergence of the algorithm further, similar to the empirical study. For example,
the algorithm seemed to converge quickly for the IntraMD Cohesion metric, but given the
low number of runs performed during that study, this may be attributed to chance. Perform-
ing a more thorough analysis would improve understanding of the algorithm’s convergence
for all metrics.

In terms of the metrics, future research can look into other measures for coupling and
cohesion than the ones used in this thesis. While we concluded that improvements of the

84

metrics are not sufficient for developers to always accept the move-class suggestions of the
algorithm, there might exist other metrics where improvements would suffice. Therefore
we recommend researching a broader selection of code structure quality metrics and their
impact on developer acceptance.

With regards to the mutation operator of the algorithm, we make several suggestions
for future work. In its current form, the mutation operator moves a single class to a related
module. However, with the size of modules in a large-scale codebase, several classes in a
module often operate together. Moving such a cluster of classes elsewhere through indi-
vidual class moves can take a significant number of generations or may not even happen
as the intermediate moves are worse in terms of the optimisation variables until the entire
cluster is moved. Instead, the mutation operator should be able to move more than one class
by determining which classes in a module strongly belong together and should be moved
together.

If the algorithm can move larger groups of classes, it is also recommended to allow
the algorithm to create new modules. During this thesis, the algorithm could not create
new modules in the codebase, as this would often result in moving a single class to a new
module, which results in modules that are too granular for large-scale codebases. The last
recommendation regarding the mutation operator is to consider removing the Circular mod-
ule dependencies objective function and instead completely prevent the algorithm from in-
troducing cycles in the module dependency graph through mutation. This would require
additional effort during the crossover operation, as this step may also introduce cycles.
Adjusting these operators would result in every solution of the algorithm not containing cir-
cular dependencies between modules and, therefore, could always be implemented without
additional work required of the developers.

While the number of classes moved by a solution is used as a minimisation objective
function, it is common for solutions to consist of dozens of move-class suggestions. One of
the goals of a remodularisation approach is to limit the number of classes to be moved so
developers can better understand the suggestions. During the case studies in this thesis, we
grouped the classes in the solutions based on their suggested module location. For future
work, we recommend looking into other ways to present solutions to developers without
splitting them, so the remodularisation is in line with the efforts of the algorithm, rather
than an approximation such as the change groups used by the case studies.

During the mutation step of the algorithm, when a class is chosen to be moved, a related
module is chosen as its destination. This module either contains a class that depends on
the class to be moved, or it contains a class that the class to be moved depends on. During
the case studies, developers often disagreed with the suggested module for classes in the
partially accepted change groups. In most cases, the developers could name a module in
the codebase that would be a more appropriate destination for these classes. However, these
modules were rarely among the related modules of the class in terms of its dependencies.
Therefore, our recommendation is to improve the step of the algorithm that picks a related
module. For example, through semantic analysis of the source code, like the approach of
Mahouachi [45], classes and modules that are semantically similar but not related through
dependencies can be considered during this step, allowing the algorithm to better suggest to
which module a class should be moved.

85

8. CONCLUSIONS AND FUTURE WORK

The last recommendation for future work concerns the domain knowledge of devel-
opers. During the case studies, some change groups were partially accepted or rejected
because the developers were aware of planned refactorings concerning the classes to be
moved, therefore not wanting to move the classes at the current time. For example, in sev-
eral cases, a new module was planned as the destination for these classes, but this module
was not yet present in the codebase. As the domain knowledge of developers is expressed
in the form of rules, it is currently not possible to account for such planned refactorings.
Therefore, our recommendation is to extend the domain knowledge representation of the
algorithm to allow for domain knowledge that is not easily captured using rules.

86

Bibliography

[1] Fernando Brito Abreu and Rogério Carapuça. Object-oriented software engineering:
Measuring and controlling the development process. In Proceedings of the 4th inter-
national conference on software quality, volume 186, 1994.

[2] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising
behavior of distance metrics in high dimensional space. In International conference
on database theory, pages 420–434. Springer, 2001.

[3] Vahid Alizadeh, Marouane Kessentini, Mohamed Wiem Mkaouer, Mel Ocinneide,
Ali Ouni, and Yuanfang Cai. An interactive and dynamic search-based approach to
software refactoring recommendations. IEEE Transactions on Software Engineering,
46(9):932–961, 2018.

[4] Edward B Allen and Taghi M Khoshgoftaar. Measuring coupling and cohesion: An
information-theory approach. In Proceedings Sixth International Software Metrics
Symposium (Cat. No. PR00403), pages 119–127. IEEE, 1999.

[5] Edward B Allen, Taghi M Khoshgoftaar, and Yan Chen. Measuring coupling and co-
hesion of software modules: an information-theory approach. In Proceedings Seventh
International Software Metrics Symposium, pages 124–134. IEEE, 2001.

[6] Periklis Andritsos and Vassilios Tzerpos. Information-theoretic software clustering.
IEEE Transactions on Software Engineering, 31(2):150–165, 2005.

[7] Nicolas Anquetil and Timothy C Lethbridge. Experiments with clustering as a soft-
ware remodularization method. In Sixth Working Conference on Reverse Engineering
(Cat. No. PR00303), pages 235–255. IEEE, 1999.

[8] Victor R Basili, Lionel C. Briand, and Walcélio L Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Transactions on software engi-
neering, 22(10):751–761, 1996.

87

BIBLIOGRAPHY

[9] Gabriele Bavota, Filomena Carnevale, Andrea De Lucia, Massimiliano Di Penta, and
Rocco Oliveto. Putting the developer in-the-loop: an interactive ga for software re-
modularization. In International Symposium on Search Based Software Engineering,
pages 75–89. Springer, 2012.

[10] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. Using struc-
tural and semantic measures to improve software modularization. Empirical Software
Engineering, 18(5):901–932, 2013.

[11] Doug Bell, Ian Morrey, and John Pugh. Software engineering: A programming ap-
proach. Prentice Hall International (UK) Ltd., 1987.

[12] Sabrine Boukharata, Ali Ouni, Marouane Kessentini, Salah Bouktif, and Hanzhang
Wang. Improving web service interfaces modularity using multi-objective optimiza-
tion. Automated Software Engineering, 26(2):275–312, 2019.

[13] Lionel Briand, Prem Devanbu, and Walcelio Melo. An investigation into coupling
measures for c++. In Proceedings of the 19th international conference on Software
engineering, pages 412–421, 1997.

[14] Lionel C Briand, John W Daly, and Jürgen Wüst. A unified framework for cohesion
measurement in object-oriented systems. Empirical Software Engineering, 3(1):65–
117, 1998.

[15] Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto. Using cohesion
and coupling for software remodularization: Is it enough? ACM Transactions on
Software Engineering and Methodology (TOSEM), 25(3):1–28, 2016.

[16] Jitender Kumar Chhabra et al. Improving modular structure of software system using
structural and lexical dependency. Information and software Technology, 82:96–120,
2017.

[17] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6):476–493, 1994.

[18] Larry L Constantine and Tom O Barnett. Modular programming: Proceedings of a
national symposium. Information & systems Institute, 1968.

[19] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2009.

[20] Steve Counsell, Stephen Swift, Allan Tucker, and Emilia Mendes. Object-oriented
cohesion subjectivity amongst experienced and novice developers: an empirical study.
ACM SIGSOFT Software Engineering Notes, 31(5):1–10, 2006.

[21] Ward Cunningham. The wycash portfolio management system. ACM SIGPLAN OOPS
Messenger, 4(2):29–30, 1992.

88

Bibliography

[22] Indraneel Das and John E Dennis. Normal-boundary intersection: A new method for
generating the pareto surface in nonlinear multicriteria optimization problems. SIAM
journal on optimization, 8(3):631–657, 1998.

[23] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach, part i: solving
problems with box constraints. IEEE transactions on evolutionary computation, 18
(4):577–601, 2013.

[24] Kalyanmoy Deb and J Sundar. Reference point based multi-objective optimization
using evolutionary algorithms. In Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pages 635–642, 2006.

[25] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002.

[26] Kalyanmoy Deb, D Saxena, et al. Searching for pareto-optimal solutions through
dimensionality reduction for certain large-dimensional multi-objective optimization
problems. In Proceedings of the world congress on computational intelligence (WCCI-
2006), pages 3352–3360, 2006.

[27] Massimiliano Di Penta, Markus Neteler, Giuliano Antoniol, and Ettore Merlo. A
language-independent software renovation framework. Journal of Systems and Soft-
ware, 77(3):225–240, 2005.

[28] Len Erlikh. Leveraging legacy system dollars for e-business. IT professional, 2(3):
17–23, 2000.

[29] Letha H Etzkorn, Sampson E Gholston, Julie L Fortune, Cara E Stein, Dawn Utley,
Phillip A Farrington, and Glenn W Cox. A comparison of cohesion metrics for object-
oriented systems. Information and Software Technology, 46(10):677–687, 2004.

[30] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 2018.

[31] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions on
Software Engineering, 39(2):276–291, 2012.

[32] Dunwei Gong, Xinfang Ji, Jing Sun, and Xiaoyan Sun. Interactive evolutionary al-
gorithms with decision-maker’s preferences for solving interval multi-objective opti-
mization problems. Neurocomputing, 137:241–251, 2014.

[33] Mathew Hall, Neil Walkinshaw, and Phil McMinn. Supervised software modularisa-
tion. In 2012 28th IEEE International Conference on Software Maintenance (ICSM),
pages 472–481. IEEE, 2012.

89

BIBLIOGRAPHY

[34] Mathew Hall, Neil Walkinshaw, and Phil McMinn. Effectively incorporating expert
knowledge in automated software remodularisation. IEEE Transactions on Software
Engineering, 44(7):613–630, 2018.

[35] Mark Harman, Robert M Hierons, and Mark Proctor. A new representation and
crossover operator for search-based optimization of software modularization. In
GECCO, volume 2, pages 1351–1358, 2002.

[36] Oğuzhan Hasançebi and Fuat Erbatur. Evaluation of crossover techniques in genetic
algorithm based optimum structural design. Computers & Structures, 78(1-3):435–
448, 2000.

[37] Simon Huband, Luigi Barone, Lyndon While, and Phil Hingston. A scalable multi-
objective test problem toolkit. In International Conference on Evolutionary Multi-
Criterion Optimization, pages 280–295. Springer, 2005.

[38] Simon Huband, Philip Hingston, Luigi Barone, and Lyndon While. A review of mul-
tiobjective test problems and a scalable test problem toolkit. IEEE Transactions on
Evolutionary Computation, 10(5):477–506, 2006.

[39] Amin Ibrahim, Shahryar Rahnamayan, Miguel Vargas Martin, and Kalyanmoy Deb.
Elitensga-iii: An improved evolutionary many-objective optimization algorithm. In
2016 IEEE Congress on evolutionary computation (CEC), pages 973–982. IEEE,
2016.

[40] Himanshu Jain and Kalyanmoy Deb. An evolutionary many-objective optimization al-
gorithm using reference-point based nondominated sorting approach, part ii: Handling
constraints and extending to an adaptive approach. IEEE Transactions on evolutionary
computation, 18(4):602–622, 2013.

[41] Donald B Johnson. Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing, 4(1):77–84, 1975.

[42] Vineet Khare, Xin Yao, and Kalyanmoy Deb. Performance scaling of multi-objective
evolutionary algorithms. In International conference on evolutionary multi-criterion
optimization, pages 376–390. Springer, 2003.

[43] Y Lee. Measuring the coupling and cohesion of an object-oriented program based on
information flow. In Proc. Int’l Conf. Software Quality, 1995, 1995.

[44] Alessandra Levcovitz, Ricardo Terra, and Marco Tulio Valente. Towards a tech-
nique for extracting microservices from monolithic enterprise systems. arXiv preprint
arXiv:1605.03175, 2016.

[45] Rim Mahouachi. Search-based cost-effective software remodularization. Journal of
Computer Science and Technology, 33(6):1320–1336, 2018.

90

Bibliography

[46] Spiros Mancoridis, Brian S Mitchell, Chris Rorres, Y Chen, and Emden R Gansner.
Using automatic clustering to produce high-level system organizations of source code.
In Proceedings. 6th International Workshop on Program Comprehension. IWPC’98
(Cat. No. 98TB100242), pages 45–52. IEEE, 1998.

[47] Spiros Mancoridis, Brian S Mitchell, Yihfarn Chen, and Emden R Gansner. Bunch:
A clustering tool for the recovery and maintenance of software system struc-
tures. In Proceedings IEEE International Conference on Software Maintenance-1999
(ICSM’99).’Software Maintenance for Business Change’(Cat. No. 99CB36360), pages
50–59. IEEE, 1999.

[48] Onaiza Maqbool and Haroon Babri. Hierarchical clustering for software architecture
recovery. IEEE Transactions on Software Engineering, 33(11):759–780, 2007.

[49] Onaiza Maqbool and Haroon Atique Babri. The weighted combined algorithm: A
linkage algorithm for software clustering. In Eighth European Conference on Soft-
ware Maintenance and Reengineering, 2004. CSMR 2004. Proceedings., pages 15–24.
IEEE, 2004.

[50] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the conceptual cohe-
sion of classes for fault prediction in object-oriented systems. IEEE Transactions on
Software Engineering, 34(2):287–300, 2008.

[51] Robert C Martin, James Newkirk, and Robert S Koss. Agile software development:
principles, patterns, and practices, volume 2. Prentice Hall Upper Saddle River, NJ,
2003.

[52] Brad L Miller, David E Goldberg, et al. Genetic algorithms, tournament selection, and
the effects of noise. Complex systems, 9(3):193–212, 1995.

[53] Mohamed W Mkaouer, Marouane Kessentini, Slim Bechikh, and Daniel R Tauritz.
Preference-based multi-objective software modelling. In 2013 1st International Work-
shop on Combining Modelling and Search-Based Software Engineering (CMSBSE),
pages 61–66. IEEE, 2013.

[54] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel Ó Cinnéide, and
Kalyanmoy Deb. On the use of many quality attributes for software refactoring: a
many-objective search-based software engineering approach. Empirical Software En-
gineering, 21(6):2503–2545, 2016.

[55] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu, Slim
Bechikh, Kalyanmoy Deb, and Ali Ouni. Many-objective software remodulariza-
tion using nsga-iii. ACM Transactions on Software Engineering and Methodology
(TOSEM), 24(3):1–45, 2015.

[56] Rashid Naseem, Onaiza Maqbool, and Siraj Muhammad. Cooperative clustering for
software modularization. Journal of Systems and Software, 86(8):2045–2062, 2013.

91

BIBLIOGRAPHY

[57] Sam Newman. Monolith to microservices: evolutionary patterns to transform your
monolith. O’Reilly Media, 2019.

[58] Jevgenija Pantiuchina, Michele Lanza, and Gabriele Bavota. Improving code: The
(mis) perception of quality metrics. In 2018 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), pages 80–91. IEEE, 2018.

[59] Thomas M Pigoski. Practical software maintenance: best practices for managing
your software investment. Wiley Publishing, 1996.

[60] Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor Gyimóthy. Using
information retrieval based coupling measures for impact analysis. Empirical software
engineering, 14(1):5–32, 2009.

[61] Babak Pourasghar, Habib Izadkhah, Ayaz Isazadeh, and Shahriar Lotfi. A graph-based
clustering algorithm for software systems modularization. Information and Software
Technology, 133:106469, 2021.

[62] Kata Praditwong, Mark Harman, and Xin Yao. Software module clustering as a multi-
objective search problem. IEEE Transactions on Software Engineering, 37(2):264–
282, 2010.

[63] Amarjeet Prajapati and Jitender Kumar Chhabra. A particle swarm optimization-based
heuristic for software module clustering problem. Arabian Journal for Science and
Engineering, 43(12):7083–7094, 2018.

[64] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave
macmillan, 2005.

[65] Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Aymen Saied. Towards auto-
mated microservices extraction using muti-objective evolutionary search. In Interna-
tional Conference on Service-Oriented Computing, pages 58–63. Springer, 2019.

[66] Santonu Sarkar, Avinash C Kak, and Girish Maskeri Rama. Metrics for measuring the
quality of modularization of large-scale object-oriented software. IEEE Transactions
on Software Engineering, 34(5):700–720, 2008.

[67] Santonu Sarkar, Shubha Ramachandran, G Sathish Kumar, Madhu K Iyengar, K Ran-
garajan, and Saravanan Sivagnanam. Modularization of a large-scale business appli-
cation: A case study. IEEE software, 26(2):28–35, 2009.

[68] Casper Schröder. Expanding search-based software modularization to enterprise-level
projects: A case study at adyen. 2020.

[69] Ian Sommerville. Software documentation. Software engineering, 2:143–154, 2001.

[70] Miroslaw Staron. Action research in software engineering. Springer, 2020.

92

Bibliography

[71] Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured design.
IBM Systems Journal, 13(2):115–139, 1974.

[72] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM
(JACM), 44(4):585–591, 1997.

[73] Robert Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM
Journal on Computing, 2(3):211–216, 1973.

[74] Navid Teymourian, Habib Izadkhah, and Ayaz Isazadeh. A fast clustering algorithm
for modularization of large-scale software systems. IEEE Transactions on Software
Engineering, 2020.

[75] James C Tiernan. An efficient search algorithm to find the elementary circuits of a
graph. Communications of the ACM, 13(12):722–726, 1970.

[76] Rui Wang, Robin C Purshouse, and Peter J Fleming. Preference-inspired coevolution-
ary algorithms for many-objective optimization. IEEE Transactions on Evolutionary
Computation, 17(4):474–494, 2012.

[77] Zhihua Wen and Vassilios Tzerpos. An effectiveness measure for software clustering
algorithms. In Proceedings. 12th IEEE International Workshop on Program Compre-
hension, 2004., pages 194–203. IEEE, 2004.

[78] Theo A Wiggerts. Using clustering algorithms in legacy systems remodularization. In
Proceedings of the Fourth Working Conference on Reverse Engineering, pages 33–43.
IEEE, 1997.

[79] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving the strength
pareto evolutionary algorithm. TIK-report, 103, 2001.

93

Appendix A

Glossary

In this chapter we list an overview and description of frequently used terms.

Root class: A class that has no other classes in its module that depend on it.

Leaf class: A class that does not depend on other classes in its module.

Coupling: Abstract measure of how dependent modules are on other modules to function.
See Section 4.4.3 for the explanation on the InterMD Coupling measure used in this
thesis.

Cohesion: Abstract measure of how dependent classes are on other classes in the same
module to function. See Section 4.4.4 for the explanation of the IntraMD Cohesion
measure used in this thesis.

Modularisation: The allocation of classes in modules, in a software system.

Dependency graph: A graph that depicts the dependencies of software units. A class de-
pendency graph models classes as nodes and class dependencies as edges. A module
dependency graph models modules as nodes and module dependencies as edges.

Codebase: The collection of source code of a software system.

Genetic algorithm: Search-based algorithm based on the theory of natural evolution. Mod-
els solutions to a problem as individuals in a population, applying mutation and
crossover to advance the population in terms of fitness, over time improving how
good solutions are in terms of the problem.

Multi-objective genetic algorithm: A genetic algorithm that optimises for more than one
objective function. The fitness of solutions is represented using multiple values.

Solution: An individual in the population of the algorithm, represents a solution to the
problem the algorithm is applied to. In this thesis, a solution is a remodularisation of
the original codebase.

95

A. GLOSSARY

Population: A group of solutions. Used by the algorithm to create new solutions through
crossover and mutation, changing over time to improve.

Pareto front: The set of non-dominated solutions in the population.

Non-dominated: Refers to the domination principle explained in Section 2.3.6. A solution
is non-dominated if there is no other solution that is at equal or better in terms of all
fitness values, and strictly better in at least one.

Change group: A representation of a solution, made smaller to be more comprehensible.
Used during the case studies.

Move class refactoring: The action of moving a class in a codebase from one module to
another.

Transitive dependency: An indirect dependency of a class on another class, caused by
intermediate class dependencies. If class A depends on class B, and B depends on C,
then class A transitively depends on C.

Search space: The set of all possible solutions of the algorithm.

96

Appendix B

Parameter tuning results

This section discusses which parameters can be tuned for the algorithm and how they were
tuned to obtain the best results. To tune each parameter, five runs were performed to obtain
the best and average results for that parameter, keeping the other parameters at a default
value. For the tuned parameters, these were their default values:

• Number of reference points: 10x the number of objective dimensions

• Population size: 1x the number of reference points

• Mutation chance: 50%

• An elite archive is used

• optimise for the number of cycles

• optimise for the largest module size

These are the values the parameters were tuned for, with the optimal values in bold:

• Number of reference points: {5x, 10x, 20x} the number of objective dimensions

• Population size: {1x, 2x, 3x} the number of reference points

• Mutation chance: {5%, 10%, 20%, 50%, 75%}

• An elite archive {is, is not} used

• The number of cycles {is, is not} optimised for

• The size of the largest module {is, is not} optimised for

During each run, the objective functions for InterMD Coupling and IntraMD Cohesion
were used. Objective functions Largest module and Circular module dependencies were
used except when they were tuned for. The objective function for Domain rule violations
was not used, as this objective function is evaluated by the case study outlined in Chap-
ter 6. Tables B.1 to B.6 display the results for the tuning process for each parameter. Per

97

B. PARAMETER TUNING RESULTS

request of Adyen, the tables show relative improvement instead of the absolute values. In
the remainder of this chapter, we discuss the results of the parameter tuning:

A low number of reference points means a smaller population, which allows the algo-
rithm to complete each generation faster, while a high number means the algorithm can
explore more in a generation. As there is no clear optimal choice for this parameter, a bal-
anced trade-off is used. For population size, the differences in the metrics is very small,
but the algorithm is significantly slowed down when increasing the population size. For
this reason, a population size equal to the number of reference points is used, in line to the
approach by Deb and Jain in the original NSGA-III paper [23]. Table B.5 shows that the
algorithm performs better in terms of code structure quality when not optimising for the
number of cycles. Unfortunately, many of the resulting solutions did contain cycles, mean-
ing they were not usable as-is. Therefore the choice is made to optimise for the number
of cycles. Table B.6 shows that the algorithm can perform better when not optimising for
the size of the largest module but this comes at the cost of increasing the size of the largest
module. For the purpose of the codebase of Adyen this is unwanted, so the size of the
largest module is optimised for.

98

R
ef

er
en

ce
po

in
ts

G
en

er
at

io
ns

In
tr

aM
D

C
oh

es
io

n
In

te
rM

D
C

ou
pl

in
g

C
yc

le
s

L
ar

ge
st

m
od

ul
e

5x
(5

89
85

;5
58

30
)

(4
.6

%
;3

.5
%

)
(-

6.
14

%
;-

5.
34

%
)

(0
;0

)
(-

2.
59

%
;-

2.
59

%
)

10
x

(3
17

37
;3

04
67

)
(5

.4
%

;4
.6

%
)

(-
6.

66
%

;-
6.

18
%

)
(0

;0
)

(-
1.

23
%

;-
1.

23
%

)
20

x
(1

97
51

;1
88

86
)

(5
.4

%
;4

.3
%

)
(-

7.
17

%
;-

6.
56

%
)

(0
;0

)
(-

1.
23

%
;-

1.
23

%
)

Ta
bl

e
B

.1
:R

ef
er

en
ce

po
in

ts
pa

ra
m

et
er

tu
ni

ng
re

su
lts

99

B. PARAMETER TUNING RESULTS

Po
pu

la
tio

n
si

ze
G

en
er

at
io

ns
In

tr
aM

D
C

oh
es

io
n

In
te

rM
D

C
ou

pl
in

g
C

yc
le

s
L

ar
ge

st
m

od
ul

e

1x
(3

60
07

;3
32

01
)

(5
.4

%
;3

.5
%

)
(-

7.
15

%
;-

7.
42

%
)

(0
;0

)
(-

2.
59

%
;-

1.
23

%
)

2x
(1

84
64

;1
80

93
)

(5
.4

%
;4

.3
%

)
(-

7.
29

%
;-

6.
87

%
)

(0
;0

)
(-

1.
23

%
;-

1.
23

%
)

3x
(1

29
59

;1
21

62
)

(4
.6

%
;4

.3
%

)
(-

7.
62

%
;-

7.
45

%
)

(0
;0

)
(-

1.
23

%
;-

1.
23

%
)

Ta
bl

e
B

.2
:P

op
ul

at
io

n
si

ze
pa

ra
m

et
er

tu
ni

ng
re

su
lts

100

M
ut

at
io

n
ch

an
ce

G
en

er
at

io
ns

In
tr

aM
D

C
oh

es
io

n
In

te
rM

D
C

ou
pl

in
g

C
yc

le
s

L
ar

ge
st

m
od

ul
e

0.
05

(3
20

72
;3

16
05

)
(5

.4
%

;3
.9

%
)

(-
6.

91
%

;-
6.

37
%

)
(0

;0
)

(-
1.

23
%

;-
1.

23
%

)
0.

1
(3

27
97

;3
18

32
)

(5
.4

%
;3

.9
%

)
(-

6.
78

%
;-

6.
38

%
)

(0
;0

)
(-

1.
23

%
;-

1.
23

%
)

0.
2

(3
31

50
;3

20
90

)
(4

.6
%

;3
.9

%
)

(-
6.

71
%

;-
6.

29
%

)
(0

;0
)

(-
2.

59
%

;-
2.

59
%

)
0.

5
(3

45
66

;3
22

17
)

(5
.7

%
;3

.9
%

)
(-

7.
01

%
;-

6.
45

%
)

(0
;0

)
(-

2.
59

%
;-

1.
23

%
)

0.
75

(3
44

54
;3

11
88

)
(3

.9
%

;3
.5

%
)

(-
7.

12
%

;-
6.

54
%

)
(0

;0
)

(-
1.

23
%

;-
1.

23
%

)

Ta
bl

e
B

.3
:M

ut
at

io
n

ch
an

ce
pa

ra
m

et
er

tu
ni

ng
re

su
lts

101

B. PARAMETER TUNING RESULTS

U
se

el
ite

ar
ch

iv
e

G
en

er
at

io
ns

In
tr

aM
D

C
oh

es
io

n
In

te
rM

D
C

ou
pl

in
g

C
yc

le
s

L
ar

ge
st

m
od

ul
e

Tr
ue

(3
38

39
;3

28
72

)
(5

.4
%

;4
.3

%
)

(-
7.

62
%

;-
7.

42
%

)
(0

;0
)

(-
1.

23
%

;-
1.

23
%

)
Fa

ls
e

(2
78

39
;2

65
79

)
(3

.2
%

;2
.8

%
)

(-
6.

28
%

;-
6.

06
%

)
(0

;0
)

(-
1.

23
%

;-
1.

23
%

)

Ta
bl

e
B

.4
:U

se
el

ite
ar

ch
iv

e
pa

ra
m

et
er

tu
ni

ng
re

su
lts

102

O
pt

im
is

e
fo

rc
yc

le
s

G
en

er
at

io
ns

In
tr

aM
D

C
oh

es
io

n
In

te
rM

D
C

ou
pl

in
g

C
yc

le
s

L
ar

ge
st

m
od

ul
e

Tr
ue

(3
52

00
;3

31
38

)
(4

.6
%

;3
.9

%
)

(-
6.

66
%

;-
5.

97
%

)
(0

;0
)

(-
2.

59
%

;-
2.

59
%

)
Fa

ls
e

(4
08

42
;3

88
53

)
(5

.7
%

;4
.6

%
)

(-
7.

54
%

;-
6.

96
%

)
(0

;7
1)

(-
1.

23
%

;0
%

)

Ta
bl

e
B

.5
:O

pt
im

is
e

fo
rc

yc
le

s
pa

ra
m

et
er

tu
ni

ng
re

su
lts

103

B. PARAMETER TUNING RESULTS

O
pt

im
is

e
fo

rl
ar

ge
st

m
od

ul
e

G
en

er
at

io
ns

In
tr

aM
D

C
oh

es
io

n
In

te
rM

D
C

ou
pl

in
g

C
yc

le
s

L
ar

ge
st

m
od

ul
e

Tr
ue

(3
41

65
;3

10
95

)
(5

.4
%

;4
.3

%
)

(-
6.

71
%

;-
5.

81
%

)
(0

;0
)

(-
2.

59
%

;-
2.

59
%

)
Fa

ls
e

(4
37

38
;4

11
19

)
(5

.4
%

;3
.5

%
)

(-
6.

99
%

;-
6.

39
%

)
(0

;0
)

(0
%

;+
1.

97
%

)

Ta
bl

e
B

.6
:O

pt
im

is
e

fo
rl

ar
ge

st
m

od
ul

e
si

ze
pa

ra
m

et
er

tu
ni

ng
re

su
lts

104

Appendix C

Case study initial interviews

C.1 Initial developer interview questions

Each developer was asked the following questions:

• Which case study are you part of?

• How many years have you worked as software developer?

• How many of those years have you worked at Adyen?

• How many of those years have you worked with the modules your team is responsible
for?

• On a scale of 1 to 10, how well do you understand the module dependency structure
of the entire Adyen codebase?

• On a scale of 1 to 10, how well do you understand the module dependency structure
of modules your team is responsible for?

Their answers can be found in Table C.1.

Developer D1 D2 D3 D4 D5 D6 D7
Case study 1 1 2 2 2 3 3

Years as developer 9 2.5 5 4 4 8 1
Years at Adyen 4 0.5 4 3 1 2 1
Years in team 4 0.5 4 3 1 1 1

Overall structure knowledge 7 5 4 6 5 8 6
Team structure knowledge 8 7 7 8 7 8 7

Table C.1: Initial interview developer answers

105

Appendix D

Case study iterations tables

Solutions have been split into groups according to the suggested module classes. Therefore
the sets of move-class suggestion are not referred to as solutions, but change groups in this
chapter.

For each table showing the various change groups, Change impact refers to the number
of classes suggested to be moved by the change group. IntraMD Cohesion refers to the rel-
ative change in IntraMD cohesion, for which positive values are better. InterMD Coupling
refers to the relative change in InterMD coupling, for which negative values are better. The
percentages shown for IntraMD Cohesion and InterMD Coupling were rounded to three
decimals. Rule penalty refers to the change in rule penalty resulting from violating domain
rules, for which negative values are better. Lastly, Accepted indicates whether developers
accepted all class moves suggested by the change group. For Accepted, Y means all class
moves were accepted, N means all class moves were rejected, and PA means that the class
moves were partially accepted by the developers.

107

D. CASE STUDY ITERATIONS TABLES

D.1 Case study 1

Group Change impact IntraMD Cohesion InterMD Coupling Rule penalty Accepted

G1 2 -0.082% -0.006% - N
G2 5 +0.073% -0.008% - N
G3 1 +0.003% 0% - N
G4 2 +0.006% -0.001% - N

Table D.1: Case study 1 iteration 1 change groups overview

Group Change impact IntraMD Cohesion InterMD Coupling Rule penalty Accepted

G1 3 +0.057% 0% -47 PA
G2 9 +0.003% -0.01% +9 N
G3 1 +0.001% +0.002% -25 N
G4 2 +0.006% -0.001% +11 PA
G5 3 +0.002% 0% +7 PA
G6 3 +0.001% -0.01% 0 PA

Table D.2: Case study 1 iteration 2 change groups overview

Group Change impact IntraMD Cohesion InterMD Coupling Rule penalty Accepted

G1 2 -0.353% -0.01% -3 N
G2 2 -0.003% +0.001% 0 N
G3 1 +0.02% -0.01% 0 Y
G4 1 +0.001% 0% +4 N
G5 7 -0.003% -0.01% -2 Y
G6 4 -0.368% -0.108% 0 N
G7 2 +0.051% -0.039% 0 Y
G8 2 -0.001% 0% -1 N

Table D.3: Case study 1 iteration 3 change groups overview

108

D.2. Case study 2

D.2 Case study 2

Group Change impact IntraMD Cohesion InterMD Coupling Rule penalty Accepted

G1 7 +0.01% +0.006% - N
G2 3 +0.073% 0% - N
G3 4 +0.053% 0% - N
G4 6 +0.016% -0.009% - N

Table D.4: Case study 2 iteration 1 change groups overview

Group Change impact IntraMD Cohesion InterMD Coupling Rule penalty Accepted

G1 1 0% 0% -1 PA
G2 1 0% -0.001% -2 N
G3 1 0% 0% -4 Y
G4 1 +0.024% +0.189% +31 N
G5 1 -0.023% 0% -2 N
G6 1 0% 0% -5 N
G7 4 -0.001% 0% -15 Y
G8 3 -0.005% 0% -6 N
G9 1 -0.023% 0% -2 N
G10 3 +0.001% +0.04% +9 Y
G11 3 -0.006% 0% -16 Y

Table D.5: Case study 2 iteration 2 change groups overview

Group Change impact IntraMD Cohesion InterMD Coupling Rule penalty Accepted

G1 1 0% 0% -1001 PA
G2 2 0% +0.029% -994 PA
G3 2 0% +0.01% -999 PA
G4 1 +0.001% +0.01% 0 Y
G5 3 0% +0.029% -5000 PA
G6 1 +0.051% 0% +1 N
G7 2 -0.002% 0% -3003 Y
G8 3 +0.001% +0.029% -14 Y
G9 1 +0.005% +0.147% +17 PA
G10 1 0% +0.02% -1001 PA
G11 1 0% 0% -1001 PA

Table D.6: Case study 2 iteration 3 change groups overview

109

D. CASE STUDY ITERATIONS TABLES

D.3 Case study 3

Group Change impact IntraMD Cohesion InterMD Coupling Rule penalty Accepted

G1 1 +0.003% +0.06% - N
G2 1 +0.001% +0.01% - PA
G3 1 +0.001% +0.079% - PA
G4 1 +0.001% +0.149% - PA
G5 1 +0.001% +0.189% - N

Table D.7: Case study 3 iteration 1 change groups overview

Group Change impact IntraMD Cohesion InterMD Coupling Rule penalty Accepted

G1 1 +0.001% +0.129% 0 PA
G2 1 0% +0.02% -2 Y
G3 2 0% +0.099% -5 N
G4 1 +0.001% +0.109% -1 PA

Table D.8: Case study 3 iteration 2 change groups overview

Group Change impact IntraMD Cohesion InterMD Coupling Rule penalty Accepted

G1 1 -0.03% 0% -1 Y
G2 1 +0.001% +0.01% +1 Y
G3 1 +0.001% 0% 0 Y
G4 1 0% +0.02% -1 PA
G5 1 0% +0.02% -1 PA
G6 1 0% +0.128% -5 N
G7 3 +0.001% +0.01% +6 PA
G8 1 +0.005% +0.088% +7 N
G9 1 0% -0.02% -3 Y

Table D.9: Case study 3 iteration 3 change groups overview

110

	Preface
	Contents
	List of Figures
	Introduction
	Adyen
	Contributions

	Background
	Software modularisation
	Code quality
	Genetic algorithms
	Expanding Search-Based Software Modularisation to Enterprise-Level Projects: A Case Study at Adyen, by Schröder et al.
	NSGA-III

	Related Work
	Software structure quality metrics
	Software modularisation approaches
	What is missing?

	A domain-aware search-based algorithm for software remodularisation
	Modelling solutions
	Pre-processing the codebase
	Defining domain knowledge rules
	Objective functions
	Reference points
	Initial population
	Parent selection
	Crossover operator
	Mutation operator

	An empirical study on the convergence of the algorithm
	Research questions
	Methodology
	Parameter tuning
	Results
	Conclusion

	Case studies at Adyen
	Case studies
	Methodology
	Case studies results
	Summary of the observations

	Discussion
	Implications
	Practical use of the approach
	Threats to validity

	Conclusions and Future Work
	Bibliography
	Glossary
	 Parameter tuning results
	Case study initial interviews
	Initial developer interview questions

	Case study iterations tables
	Case study 1
	Case study 2
	Case study 3

