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Abstract

This report has the main aim of comparing the Mixed Finite Element Method to the standard
Finite Element Method. The other aim is to let the reader understand what these methods entail.
The latter is done by first journeying through the theory behind the FEM. It is first explored in
one dimension to keep the setting simple. Next, the Mixed FEM is explored. A new way of approx-
imating the gradient from the found solution is constructed, using the basis of Finite Differences
and the ideas from the Finite Volume Method.

Following the theory is the implementation of the mentioned methods and the analysis of the
results. It yields that, when looking at the L2-norm, the classic FEM has a convergence order of
2, comparable to that of similar numerical methods. The Mixed FEM seemed to converge with an
order of 4 in the same norm. Our constructed method only had a measly first order convergence,
implying much greater accuracy of the Mixed FEM.
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1
Introduction

As computing power and efficiency have increased massively over the past few decades, the branch
of numerical analysis is larger than ever in the field of mathematics. Also other studies are relying
more and more on the numerical sector, such as mechanical engineering and even life sciences,
like biology. One of the numerical methods that has proved to be very successful in a great
many applications is the Finite Element Method (FEM). It subdivides the region of interest into
smaller regions that are easier to deal with, called elements, and then uses these to construct a
system of equations. This way of computing means that the FEM is very suitable for unstructured
grids, which is good for applied mathematics, as in most practical situations unstructured grids
are required. Another reason the FEM is so widely used, is that it can easily be adapted to the
problem at hand, and many variations on the method have been developed. One of these variations
is the Mixed Finite Element Method (Mixed FEM). This method can calculate multiple physical
quantities at once, usually implying greater accuracy of the results.

In the following chapter, the FEM and its theory are explored in one dimension. Then, in Chap-
ter 3, the Mixed FEM is looked at. Chapter 4 then examines both methods in two dimensions.
Next, the theory of so-called reference elements is examined. Finally, we analyse the numerical
results of these methods and study the computational differences between them. In this part, we
also create a new method for finding the gradient from the calculated solution.

This report has been written as part of the Bachelor Final Project of the study Applied Mathe-
matics at the Delft University of Technology.
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2
One-Dimensional Finite Element Method

In this chapter, we will introduce the ideas of the Finite Element Method (FEM) by describing
them in one dimension. In this way, we feel one can get used to the new ideas in a comfortable
scenario. Later on, when examining two dimensions, some of these ideas will be more skimmed
over, as they will regularly be very similar to the ones presented here. The FEM is usually
presented as a successor of the Galerkin Method, which is based on expressing the solution as a
linear combination of basis functions. The idea of expressing the unknown function as such has
proved to be very successful in different numerical methods. This chapter will however not rely
on knowledge of this method; it will discuss the theory of the FEM from the beginning, while still
maintaining an intuitive and logical progression through the ideas of the method. The ideas from
this chapter follow mainly from the book Numerical Methods in Scientific Computing [1].

2.1 Definitions and the Weak Formulation

The best way to start something difficult is by looking at an easy example. Hence, to keep things
simple at first, we look at the region Ω = (0, 1). The presented ideas can however easily be
translated to different intervals or regions of R. Consider the following differential equation:{

−u′′(x) = f(x), on Ω,

u(0) = u(1) = 0.
(2.1)

This is the one-dimensional Poisson equation (with homogeneous boundary conditions), which
arises frequently in differential equation analysis. We will first ignore the boundary conditions, but
they will be discussed later in the chapter. In (2.1), f is a given function and u is the unknown
function. We now consider the function space Σ0(Ω) := {u : u is sufficiently smooth, u|∂Ω = 0},
where ∂Ω represents the boundary of our region Ω. The statement that u be “sufficiently smooth”
is rather vague, but it turns out that stating that it means that u ∈ H1(Ω) = {u ∈ L2(Ω) : u′ ∈
L2(Ω)} is sufficient for our purposes. Without changing the truth value of (2.1), we can multiply
both sides by a function φ ∈ Σ0(Ω), usually called a test function:

−φu′′ = φf.

Next, we integrate over our region Ω:

−
∫ 1

0

φu′′ dx =

∫ 1

0

φf dx.

We can use integration by parts to minimise the order of the derivative on the left hand side:

−
∫ 1

0

φu′′ dx = − [φu′]
1
0 +

∫ 1

0

φ′u′ dx

=

∫ 1

0

φ′u′ dx,

by the boundary conditions, posed in Σ0(Ω). We have done all this so that we can formulate the
Weak Formulation of (2.1):

Find u ∈ Σ0(Ω), such that

∫ 1

0

φ′u′ dx =

∫ 1

0

φf dx, for all φ ∈ Σ0(Ω). (2.2)
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This Weak Formulation is the foundation on which the FEM is built; therefore it is important
that it is correct. The Weak Formulation relies on the fact that the mentioned integrals exist. To
see that this is true, we can use the inequality of Cauchy-Schwarz, if we interpret the integral of a
product of functions as an inner product. This inequality says that∣∣∣∣∫ 1

0

φ′u′dx

∣∣∣∣ ≤ [∫ 1

0

(φ′)2

] 1
2
[∫ 1

0

(u′)2

] 1
2

.

These right hand side integrals of course exist since u, φ ∈ Σ0(Ω), thus the left hand side integral
must also exist.

2.2 Basis Functions

As in most numerical methods, the region in question needs to be discretised. We subdivide the
region Ω into the intervals [xk−1, xk], where the xk are the grid nodes. Here, x0 = 0 and xn = 1.
Furthermore, x0 < x1 < . . . < xn. In a structured grid scenario, we have that xk = k∆x, where
∆x = 1

n . We denote these intervals by ek, and we call them the elements. Note that the elements
are finite in size and in number. This is why the Finite Element Method is named as such. These
elements are shown in Figure 2.1. Note however that these elements need not all have the same
length; unstructured grids are actually rather common.

0 = x0
x1 xk−1 xk xk+1 xn−1 xn = 1

. . . . . .

. . . . . .e1 ek ek+1 en

Figure 2.1: The discretisation of Ω.

From now on, uk denotes u(xk). We can imagine u being approximated by simply connecting
the uk by straight lines. This approximation is then piecewise linear per element. Of course,
this approximation is imaginary, since u is not (yet) known. However, we can replicate this
approximation using the basis functions:

ũ(x) =

n∑
j=0

ujφj(x). (2.3)

To satisfy our previous conditions, these φi are subject to two rules:

1. φi is linear per element;

2. φi(xj) = δij ,
(2.4)

where δij is the Kronecker delta, which is 1 if i = j, and 0 otherwise. Typically, the basis functions
look like the one drawn in Figure 2.2.

x
0 1xk−1 xk xk+1

φk(x)
1

y

Figure 2.2: A typical basis function over ek.

Note that φj(0) = φj(1), for all j ∈ {1, . . . , n − 1}. One can also define quadratic, cubic and
even higher degree basis functions. This is done by defining more nodes per element and then
interpolating the Lagrange polynomial of the same degree such that rule 2 from (2.4) holds [2]
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(See Appendix A). The following ideas will then still hold. However, we will present them only for
linear basis functions.

We can now use (2.3) and Figure 2.2 to start the construction of the system of equations, which
will ultimately be used to find an approximation of u.

2.3 Constructing the System of Equations

The basis functions are named as such because they form a basis of Σ0(Ω). Therefore, we can
demand that the arbitrary function φ from (2.2) be written as a linear combination of the basis
functions:

φ =

n∑
j=0

bjφj , (2.5)

where the bj are constants. Using the approximation of u from (2.3) and the expression of φ from
(2.5) we can rewrite the equation in (2.2) as:

∫ 1

0

d

dx

 n∑
j=0

bjφj

 d

dx

(
n∑
i=0

uiφi(x)

)
dx =

∫ 1

0

f

n∑
j=0

bjφj dx. (2.6)

We can choose bj to be 1 exactly once and 0 all other times, which implies the following system of
equations:

n∑
i=0

ui

∫ 1

0

dφi
dx

dφj
dx

dx =

∫ 1

0

fφj dx, for j = 0, 1, ..., n. (2.7)

Note that this is the same as saying that φ = φj , for each j. Therefore, we will hold this idea in
our minds from now on.

Element matrices and element vectors

Of course, we want to write (2.7) in matrix-vector notation, i.e.

Su = f,

since this is the notation that computers can handle. We can construct the matrix S and the
vector f in an element-wise way, using the fact that

Sij =

∫ 1

0

dφi
dx

dφj
dx

dx =

n∑
k=1

∫
ek

dφi
dx

dφj
dx

dx.

Since φi and its derivative are mostly zero, this is easier to compute than one might think; only
four of these integrals are non-zero per element. These four integrals are stored in the element’s
element matrix :

Sek =

[∫
ek

dφk−1

dx
dφk−1

dx dx
∫
ek

dφk−1

dx
dφk

dx dx∫
ek

dφk

dx
dφk−1

dx dx
∫
ek

dφk

dx
dφk

dx dx

]
.

When using the basis functions as drawn in Figure 2.2, these integrals are easy to compute. In
that case, the derivative of the basis function is always either 1/∆x or −1/∆x, depending on
the element and assuming an equidistant gridsize where xk − xk−1 = ∆x for all k. The element
matrices that arise in our example are

Sek =
1

∆x

[
1 −1
−1 1

]
, for all k.

Furthermore, each element has its own element vector :

f ek =

[∫
ek
fφk−1 dx∫
ek
fφk dx

]
.
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Depending on the given function f , these integrals might not be analytically computable. One has
to use a numerical integration method instead, such as the Trapezium Rule or Simpson’s Rule. For
example, using the Trapezium Rule and the basis functions from Figure 2.2, we get the following
element vectors:

f ek =
1

2
∆x

[
f(xk−1)
f(xk)

]
, for all k.

After calculating these for each element, we can calculate the whole matrix and vector by the
following recurrences:

S0 = 0n×n, Sk = Sk−1 + Sek ,

f 0 = 0, f k = f k−1 + f ek .

Note, however, that the k-th element matrix is added on the k-th row and column of S. The same
applies to f.

2.4 Dealing with the Boundary Conditions

Recall that we imposed boundary conditions on our problem, namely:

u(0) = u(1) = 0.

Since x0 = 0 and xn = 1, we can write this as

u0 = un = 0.

This implies that the first and the last term of the sum in (2.3) are both zero, in turn implying
that it run from 1 to n − 1, rather than from 0 to n. This of course eliminates the first and last
row and column of the matrix S, and the first and last element of f.

These homogeneous boundary conditions are easy enough to deal with, but what about non-
homogeneous boundary conditions? Consider the same problem, but with one inhomogeneous
boundary condition:

u(0) = α, u(1) = 0.

Naturally, the right hand side boundary condition is dealt with in the same way as before. However,
the inhomogeneous one is somewhat differently approached. We may now write (2.3) as

ũ(x) =

n∑
j=1

ujφj(x) + αφ0(x),

since clearly u0 = α. Now, this implies that (2.7) be written as:

n∑
i=1

ui

∫ 1

0

dφi
dx

dφj
dx

dx =

∫ 1

0

fφj dx− α
∫ 1

0

dφ0

dx

dφj
dx

dx, for j = 1, 2, ..., n.

Note that j = 0 is now not part of the system. The new right hand side term implies that we can
just incorporate the boundary condition in the right hand side vector. Note that this new term is
only non-zero when j = 1, as discussed previously, therefore the first row and column of the matrix
may still be removed. However, the first entry of the right hand side vector f is now

∆xf1 +
α

∆x
,

where f1 denotes f(x1). Neumann boundary conditions, such as u′(0) = β, do not pose as big a
problem. In fact, homogeneous Neumann boundary conditions imply that (2.7) stay exactly the
same! Inhomogeneous Neumann boundary conditions simply add a term to one entry of f again.

After S and f have been found, one can solve the equation with a method of their liking, such
as CG or GMRES. These methods will not be discussed here since it is beyond the scope of this
report and there are many good sources available that discuss these methods, such as [1] and [3].
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3
One-Dimensional Mixed Finite Element Method

Some problems, such as flow problems, require that u as well as u′ are known. One could approx-
imate u′ directly from u, after calculating it with the FEM. Another way, however, is to use the
Mixed FEM, which — in a way — calculates both at the same time. This method uses many of
the ideas from Chapter 2, but worked in a slightly different way.

3.1 The Setting

To keep things simple again, we consider the same problem as in Chapter 2, namely (2.1). We
consider a second function, p, defined by

p = u′.

Substituting this into our problem (2.1) implies the following:{
−p′ = f(x),

u′ = p,
(3.1)

again on Ω = (0, 1). Again, of course, one could easily extend the ideas presented to other regions
of R. We now have a problem to solve for u and p. We can then multiply each equation by its own
test function — denoted by φ and ψ, respectively — and integrate over Ω:

−
∫ 1

0

p′φ dx =

∫ 1

0

φf dx; (3.2a)

∫ 1

0

u′ψ dx =

∫ 1

0

ψp dx. (3.2b)

We can use integration by parts on (3.2a) to get:

−
∫ 1

0

p′φ dx = − [pφ]
1
0 +

∫ 1

0

pφ′ dx

=

∫ 1

0

pφ′ dx.

We could also choose to integrate (3.2b) by parts instead (see Appendix B). We can now conclude
that p, ψ ∈ L2(Ω) and u, φ ∈ H1(Ω), since p and ψ have no derivatives in the integrals, while u
and φ do.

6
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3.2 System of Systems of Equations

Assuming the same elements as in Chapter 2, we can write approximations of p and u and set φ
and ψ to one of their respective basis functions, just as was done in Chapter 2:

p̃ =

n∑
j=0

pjψj , ψ = ψj , (3.3a)

ũ =

n∑
j=0

ujφj , φ = φj . (3.3b)

Note that with our chosen boundary conditions, u0 = un = 0. However, we still let the sum run
from 0 to n, so that the matrices have the same dimensions in a later step, and also to keep things
as general as possible. Neumann boundary conditions imposed on u would have a similar effect on
the first sum, since they are really just Dirichlet boundary conditions on p. We can plug the new
expressions (3.3a, 3.3b) into (3.2a) and (3.2b) (after partial integration) to get a system of systems
of equations: 

n∑
j=0

pj

∫ 1

0

ψj
dφi
dx

dx =

∫ 1

0

φif dx, for all i,

n∑
j=0

pj

∫ 1

0

ψjψi dx−
n∑
j=0

uj

∫ 1

0

dφj
dx

ψi dx = 0, for all i.

(3.4)

In this case, if we write this in the conventional matrix-vector notation, we get an equation with
a block matrix: [

A 0
B −A>

] [
p
u

]
=

[
f
0

]
, (3.5)

where

Aij =

∫ 1

0

dφi
dx

ψj dx, Bij =

∫ 1

0

ψiψj dx and fi =

∫ 1

0

φif dx.

Some of these integrals might need to be approximated with previously discussed methods. Now
the solution vector consists of an approximation of u and p = u′ at the same time, which is exactly
what we wanted. Any inhomogeneous boundary conditions will appear in the right hand side
vector of (3.5).

7
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4
Two-Dimensional FEM and Mixed FEM

We have seen the ideas of the FEM and Mixed FEM in the previous chapters. These ideas extend
easily to two dimensions and more. The procedures are very similar to the one-dimensional case,
but do have to be adjusted a bit.

4.1 FEM in Two Dimensions

Again, we want to keep things simple, but easily generalisable. We say that our region is Ω =
[0, 1]× [0, 1], the unit square. We consider the two-dimensional Poisson Equation:{

−∆u = f, on Ω,

u = 0, on ∂Ω,
(4.1)

where ∆ := ∇2 is the Laplacian. After multiplying by a test function and integrating over Ω, we
get

−
∫

Ω

φ∆u dΩ =

∫
Ω

φf dΩ,

which can be integrated by parts: ∫
Ω

∇φ · ∇u dΩ =

∫
Ω

φf dΩ. (4.2)

These steps are of course very similar to the one-dimensional case and they naturally lead to the
Weak Formulation, as discussed in Chapter 2. Now, we can again approximate u using basis
functions:

ũ =

n∑
j=0

ujφj(x). (4.3)

We cannot define the two-dimensional basis functions until we define the two-dimensional elements,
though. Hence, we will define these first. A common choice for two-dimensional elements is a
triangle shape. For an example, see Figure 4.1:

x1

x2

x3

ek

Figure 4.1: An example of an element in two-dimensional space

Note that these elements are defined solely by their vertices. The basis functions are implicitly
defined by the rules from before in (2.4). Since they have to be linear, they have the following
form:

8
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φi(x) = αi + βix+ γiy.

The coefficients αi, βi and γi depend on the element and can be calculated with a system of three
equations. A typical basis function looks like in Figure 4.2.

xk

φk

Figure 4.2: A typical two-dimensional basis function

In Figure 4.2, we note that the basis function satisfies φk(xk) = 1, while it vanishes in all other
grid nodes, just as we conditioned. Now that we know what the basis functions look like, we can
substitute (4.3) into (4.2) and set φ = φi, to get the system of equations:

n∑
j=0

uj

∫
Ω

∇φi · ∇φj dΩ =

∫
Ω

φif dΩ, for all i. (4.4)

Then the element matrices are:

Sek =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 ,
with Sij =

∫
ek
∇φi · ∇φj dΩ. This can be expressed in the following way:

Sij =
|∆|
2

(βiβj + γiγj),

where

∆ = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1).

Furthermore, the element vectors are:

fek =

f1

f2

f3

 , fi =

∫
ek

φif dΩ.

Now, two-dimensional versions of the previously mentioned integration rules might need to be
applied, depending again on the given function f .

4.2 Mixed FEM in Two Dimensions

Just like in one-dimensional space, we consider a second function p, now defined such that

p = ∇u.

Substituting this into (4.1) gives: {
−∇ · p = f,

∇u = p.
(4.5)

9
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Our standard procedure of multiplying by test functions, integrating over the domain, and inte-
grating by parts gives us:

−
∫

Ω

ψ∇ · p dΩ =

∫
Ω

φf dΩ;

−
∫

Ω

u∇ · ψ dΩ =

∫
Ω

ψp dΩ.

(4.6)

The further procedures are very nearly identical to those in Chapter 3, and hence will not be
discussed further. The procedures presented here can become quite hard to implement once com-
plicated grid structures come into play. This is solved in the following chapter.

10
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5
Mapping to a Reference Element

It has been said before in this report that the FEM is well suited for unstructured grids. One way
it achieves this is by using a reference element when encountering complicated grid structures.
We will first explain the details in one dimension, and then extend the ideas to two dimensions.
These ideas follow mostly from personal interviews with the supervisor [4], but similar ideas are
presented in [1] and [2].

5.1 Reference Element in One Dimension

We now consider the region Ω ⊆ R and its discretisation to be arbitrary. Consider a simple
arbitrary element ek = [xk−1, xk] of this discretisation. We can define a transformation function T
that transforms this element to the easy to deal with interval e′ := [0, 1]. e′ is called the reference
element. See Figure 5.1 for a visualisation of this idea.

0 1

xk−1 xk

T
T

T

T−1

e′

ek

Figure 5.1: The transformation from ek to e′

One can see in Figure 5.1 that we want T to satisfy xk−1 7→ 0 and xk 7→ 1. One can realise this
by defining the parametrisation

x(s) := xk−1(1− s) + xks, (5.1)

where 0 ≤ s ≤ 1. This clearly satisfies x(0) = xk−1 and x(1) = xk. From (5.1) we can see that

x′(s) = xk − xk−1.

Note that this is just the length of the element ek, and thus one could interpret this as a scale
factor. Using this information we can for example integrate f as follows:∫

ek

f(x) dx =

∫ 1

0

f(x(s))x′(s) ds = (xk − xk−1)

∫ 1

0

f(x(s)) ds.

Notice the Jacobian x′(s). The Jacobian is necessary because we are performing a transformation.
Now, of course, we must also integrate the basis functions, as they are an integral part of the FEM.
On the element ek we have to deal with the two basis functions φk−1 and φk. They are already
simple, but when transforming them, they get even simpler:{

φk−1(x(s)) = 1− s,
φk(x(s)) = s.

(5.2)

11
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Intuitively, this is because, on the reference element, φk−1 connects (0, 1) to (1, 0), and φk connects
(0, 0) to (1, 1). Their respective derivatives — with respect to s — are then simply −1 and 1. One
advantage of the reference element is that we fundamentally only have to define the basis functions
for one element, namely the reference element.

As a check that we still get the same result as before in Chapter 2, we calculate the following
integral: ∫

ek

φ′k−1φ
′
k dx,

as this integral, and similar ones, pop up a lot in the FEM. We first notice that the chain rule
gives us that

dφk
dx

=
dφk
ds

ds

dx
,

dφk−1

dx
=
dφk−1

ds

ds

dx
.

We already discussed the derivatives of the basis functions. The only term left to calculate is ds
dx ,

but it is also easily calculated:

ds

dx
=

1
dx
ds

=
1

xk − xk−1
.

Now, without forgetting the Jacobian, we can calculate the integral from above:∫
ek

φ′k−1φ
′
k dx =

∫ 1

0

dφk
ds

ds

dx
· dφk−1

ds

ds

dx
· dx
ds

dx

=

∫ 1

0

1 · 1

xk − xk−1
· −1 · 1

xk − xk−1
· (xk − xk−1) dx

=
−1

xk − xk−1
,

just as before. Notice, thus, how the integral domain is now the same for every element. We need
only know the vertices of the elements to calculate the scale factor.

5.2 Reference Element in Two Dimensions

We can of course extend this idea of a reference element to two dimensions, and ultimately to any
number of dimensions. The general idea is again given, this time in Figure 5.2.

(0, 0)

(0, 1)

(1, 0)

xk1
xk2

xk3

e′

ek

T

Figure 5.2: Transformation from ek to e′ in 2D

This time, we can say for example that T must satisfy xk1 7→ (0, 0),xk2 7→ (1, 0) and xk3 7→ (1, 0).
The rest of the procedures are very similar to before. We define

12
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x(s, t) = xk1(1− s− t) + xk2s+ xk3t,

where 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1− s. It is easily verified that this definition satisfies the previously
set conditions. This time the Jacobian is a tad more complicated. It is

J :=

∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ =

∣∣∣∣∣
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

∣∣∣∣∣
= (xk2 − xk1)(yk3 − yk1)− (xk3 − xk1)(yk2 − yk1).

Then we can integrate f again, as follows:∫
ek

f(x, y) dΩ = J
∫ 1

0

∫ 1−s

0

f(x(s, t), y(s, t)) dt ds.

Note that setting f ≡ 1 in the equation above, gives that∫
ek

dΩ =
1

2
J .

This means that J is simply twice the area of the original triangle element. The basis functions
are of course integrated in a similar manner. We could use similar ideas for differently shaped
elements, but this is beyond the scope of this report.

13
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6
FEM and Mixed FEM Implementation and

Analysis

We have discussed a lot of theory; it’s about time we implement some of it. All of the code used
in this chapter was written in Python or Python 3. The Dolfin package from the FEniCS Project
[5] was used for the implementation of the FEM and Mixed FEM. This package was specifically
created for FEM implementation, and thus is very useful for our purposes. It is assumed that the
reader has at least a basic understanding of programming with Python and Python 3. The entirety
of the code is given in Appendix C, but snippets of the code are given throughout the chapter to
give the reader an easier understanding of what is going on in the programs.

6.1 Poisson Equation with f = 1

We again consider the Poisson equation. We now set Ω = [−1, 1]× [−1, 1]. To keep things simple,
we consider homogeneous Dirichlet boundary conditions and set f = 1:{

−∆u = 1, on Ω,

u = 0, on ∂Ω.

We will not look at the Mixed FEM just yet; we will first check that everything works fine with
the standard FEM. Creating a structured grid is very easy with Dolfin. For example, a crossed
grid of 16× 16 gridpoints on Ω is created as follows:

mesh = RectangleMesh(Point(-1.,-1.,), Point(1.,1.,), 16, 16, "crossed")

This will create a mesh that looks like in Figure 6.1.

Figure 6.1: A crossed grid structure of 16× 16 gridpoints

14
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Notice how this creates triangular elements, just as discussed in Chapter 4. Next, we define the
function space for the basis functions, as well as the unknown function. We do this with

V = FunctionSpace(mesh, "CG", 1)

The second argument means that we will be dealing with Lagrange elements, and the third argu-
ment means that the basis functions are of degree 1. Now, we define the unknown function, the
basis functions, and the right hand side function:

u = TrialFunction(V)

phi = TestFunction(V)

f = Expression("1", degree=1)

Dolfin wants to receive the differential equation in the Weak Formulation (or variational form, by
Dolfin’s documentation). In our case it is:

Find u ∈ V, such that

∫
Ω

∇φ · ∇u dΩ =

∫
Ω

φf dΩ, for all φ ∈ V.

In Dolfin we define the left and right hand side separately:

a = (inner(grad(phi),grad(u))) * dx

L = (f*phi) * dx

Then we can set the boundary conditions. Dolfin defaults to homogeneous Neumann boundary
conditions, but it has a command for Dirichlet boundary conditions. First we need to define
the actual boundary, after which we can use DirichletBC() to define the Dirichlet boundary
conditions:

def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, Constant(0.), boundary)

The first function uses the variable on boundary, which just checks if x is on the natural boundary
of Ω. The only thing that remains for us to do is to solve for u. Luckily, Dolfin also has a function
for this:

u = Function(V)

solve(a == L, u, bc)

After solving for u, one has many options. One can plot the found solution, calculate the norm or
the errornorm. The contour plot of the found u with a grid of 512× 512 looks like in Figure 6.2.

15
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Figure 6.2: Approximation of the Solution to Poisson’s Equation

We can use the norm() function of the Dolfin package to approximate the order of convergence by
Richardson Extrapolation. The order k can be approximated by the following idea [6]:

2k ≈
uh − uh/2
uh/2 − uh/4

(6.1)

We calculated the L2-norm of u, using norm(u), for different gridsizes and applied (6.1). The
results are given in Table 6.1, rounded to 6 digits. Obviously, the last two values in the column of
2k are not known since they require information that has not been calculated, namely the norms
at a size of 1024 and 2048.

Size Norm 2k

16 0.329148 4.000086
32 0.329856 4.000036
64 0.330033 4.000010

128 0.330077 4.000002
256 0.330088 -
512 0.330091 -

Table 6.1: Results of Richardson Extrapolation on Poisson’s Equation

From Table 6.1 it is clear that 2k converges to 4, ergo k converges to 2. In this case, the method
thus converges with order 2. This is comparable to the Finite Difference Method and the Finite
Volume Method [1].

6.2 Method of Manufactured Solutions

In an ideal situation, we would want to compare the found approximation to the exact solution.
The only problem is that most differential equations do not have a (known) analytical solution.
However, one can use the Method of Manufactured Solutions (MMS) [7] to surpass this. Instead
of trying to find a solution from a known problem, we assume a solution and work out the right
hand side function and boundary conditions from it. For example, for the Poisson equation, we
consider u(x, y) = sin(x) cos(y). We then calculate the Laplacian of u:

16
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∆u(x, y) = −2 sin(x) cos(y).

We then have the following differential equation:{
−∆u = 2 sin(x) cos(y), in Ω,

u(x, y) = sin(x) cos(y), on ∂Ω,
(6.2)

with the known solution u(x, y) = sin(x) cos(y). Since we know the exact solution, we can compare
the approximation directly to it and work out the convergence rate from that. (6.2) was imple-
mented in Python, again with Dolfin, and the ideas of Richardson Extrapolation were once again
applied. The results are given in Table 6.2. The errornorm denotes the L2-norm of the difference
of the approximated and the known solution.

Size Errornorm 2k

16 0.009782 1.995301
32 0.004897 1.998825
64 0.002450 1.999706

128 0.001224 1.999926
256 0.000612 -
512 0.000306 -

Table 6.2: Results of Richardson Extrapolation on (6.2)

The errornorm seems to halve every time the gridsize is doubled. This is verified by the 2k column,
which clearly converges to 2, implying that k = 1. This is rather surprising, considering the results
from before.

6.3 Mixed FEM implementation

The Dolfin package also includes methods for mixed problems. We first consider again the Poisson
equation on Ω = [−1, 1]× [−1, 1] with f = 1, and formulate the mixed version:{

−∇ · p = 1,

∇u = p.

Since we now want to calculate two different quantities at once — namely, p and u — we need to
use two different kind of elements.

BDM = FiniteElement("BDM", mesh.ufl_cell(), 1)

DG = FiniteElement("DG", mesh.ufl_cell(), 0)

W = FunctionSpace(mesh, BDM * DG)

Here, BDM and DG are types of elements. BDM (Brezzi-Douglas-Marini) [8] means we will be dealing
with gradients, while DG (Discontinuous Galerkin) is a simple kind of element. W then merges them
together into a single function space on the given mesh. We then give the unknown functions (p
and u), the basis functions (φ and ψ), and the right hand side function f :

(p, u) = TrialFunctions(W)

(phi, psi) = TestFunctions(W)

f = Expression("1", degree=1)

Next we want to define the two Weak Formulations. However, Dolfin only accepts a single Weak
Formulation; we need to add the two together into one equation:

a = (-dot(p, phi) + div(phi)*u - div(p)*psi) * dx

L = (-f*psi) * dx

We define the boundary just as before, but we need to impose its conditions on a subspace of W,
since the boundary conditions only apply to u:
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bc = DirichletBC(W.sub(1), Constant(0.), boundary)

Now we simply solve the equation for a function w from W, and split it into p and u using w.split(),
so that we can do some calculations. But first, we appreciate the beauty of the plot of p in Figure
6.3.

Figure 6.3: p plotted on a 16× 16 crossed grid

Now, we look at some results. The simple L2-norm results for u are exactly the same as before.
However, applying the L2-norm to p alone and applying (6.1) yields some very surprising results.
Look in Table 6.3 for these results. We were not able to calculate the result for a size of 512, hence
why the table starts at a size of 8.

Size norm 2k k
8 0.749912 13.281402 3.731336

16 0.749875 13.674814 3.773449
32 0.749872 13.969504 3.804209
64 0.749872 14.201231 3.827944

128 0.749872 - -
256 0.749872 - -

Table 6.3: Results of Richardson Extrapolation on p after calculating its L2-norm

Now, catastrophic cancellation might have had an impact on these results since the found values
are so close together (the differences cannot even be seen in Table 6.3), but it seems that the value
of p converges with an unexpected fourth order!
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7
Comparison of Mixed FEM and classic FEM

We have seen that the Mixed FEM gave some counter-intuitive results. It is time to see whether
the standard FEM can meet this mark. First, we calculated u and p from before in the same way.
According to Dolfin’s documentation, there exists a built-in grad() function to suit our purposes,
but it did not seem to work. Therefore, another way was sought. We inserted the data from the
found values of u into .vtu files. We then used the vtk package for Python to read these files.
This package was not available for Python 3, thus a new program needed to be written. Because
our previous program decided that our grid was unstructured, the vtk unstructured grid reader
was used. The .vtu files contain all the information we need to approximate the gradient, i.e.
the number of triangles of the discretisation, the triangles themselves, the number of points, and,
of course, the values of u. However, we encountered some problems when extracting the values
of u from the .vtu file; the number of values was not equal to the number of grid nodes — as
was expected — but rather the number of elements. It is presumed that Dolfin utilises some sort
of averaging approach to calculate the value of u on every separate element. This did give us a
problem on how to calculate the gradient, since it is usually done from the grid node values. A
new method was created to circumvent this problem.

7.1 Directly Approximating the Gradient

This method makes use of ideas from the Finite Difference Method, as well as from the Finite
Volume Method to accomplish this goal. In this part of the chapter, the words “triangle” and
“element” will be used interchangeably. We will assume a left structured grid on a square region,
such as the one seen in Figure 7.1.

Figure 7.1: A left structured grid of 8× 8 grid nodes

19



Bachelor Final Project Thesis Mixed Finite Element Method

To approximate the gradient, we need to know what an element’s neighbours are. On a regular
square grid, the idea of neighbours is very intuitive: a general square has four neighbours, a North,
East, South, and a West neighbour. On a grid with triangular elements this idea is a little bit
different. Using Figure 7.1, we decided that we would still treat the element as if it had four
neighbours. This idea is visualised in Figure 7.2.

tC

tN

tEtW/tS

Figure 7.2: The “Four” Neighbours of a Triangular Element tC

Of course, intuitively, tW and tS are the same element, but it turns out that it is easier to treat
them as different elements in our following calculations. If the triangle tC were oriented the other
way, tN and tE would be the same element.

Now we need to consider the ordering of the elements, as to determine which elements neighbour
which. We chose to use a simple and intuitive horizontal numbering system, given in Figure 7.3.

0

1

2

3

4

5

6

7

Figure 7.3: Numbering of Triangles on a Left Structured Grid

It is now simple to see that, using this numbering system, a general triangle’s East and West
neighbours are their actual East and West neighbours, when looking at the indices. For example,
Triangle 2 has Triangle 3 as its East and Triangle 1 as its West neighbour. North and South
neighbours are a bit more complicated. They depend on what orientation the triangle has. We
will need to give a few definitions.

From now on — considering Figure 7.3 — we will call a triangle with 0’s orientation left-pointing
and 1’s orientation right-pointing. Note that the orientation is directly dependent on whether the
triangle’s index is even or odd. Additionally, the total number of triangles will be denoted by N .
The number of triangles per row (or column) will be denoted by Nr and is easily calculated using
N :

Nr :=
+
√

2N.
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For example, in the case of Figure 7.3, we have N = 8 and Nr = +
√

2 · 8 = 4. We will denote a
triangle’s index by I with the triangle in question as a subscript. For example, if tC ’s index is 5,
we write ItC = 5. Using these definitions we find the rules for North and South neighbours:

1. If tC is right-pointing, ItS = ItC − 1 and ItN = ItC +Nr − 1;

2. If tC is left-pointing, ItS = ItC −Nr + 1 and ItN = ItC + 1.
(7.1)

We also need to consider the elements on the boundary, since they do not quite abide the rules
posed in (7.1). An element is considered to be on the boundary if it has at least one of its edges
intersect the natural boundary of the region. In Figure 7.3, the boundary elements are the ones
with indices 0, 2, 3, 4, 5, and 7. In general, being on a boundary is controlled by the following
rules:

1. If It mod Nr = 0, t is on the West boundary;

2. If It < Nr and It mod 2 = 0, t is on the South boundary;

3. If It > N −Nr and It mod 2 6= 0, t is on the North boundary;

4. If (It + 1) mod Nr = 0, t is on the East boundary.

(7.2)

These rules may not be that easy to read or intuitively understand, but they are easy to implement
in a computer program.

The gradient of u is defined by:

∇u =

(
∂u

∂x
,
∂u

∂y

)
.

We can approximate each derivative by using a Finite Difference approach. In one dimension, we
can approximate the first derivative of u at the point a using

du

dx

∣∣∣∣
x=a

≈ u(a+ h)− u(a− h)

2h
,

the central difference approach. This central difference approach can work on our triangular grid,
if we find a suitable value for h. It turns out that taking h to be half of the length of a straight
side of the triangle, it will work perfectly for our purposes. This h can be directly calculated from
the edge length of the region in question, and Nr. See Figure 7.4 to see that this approach works.
The black dot is the middle of the dark grey triangle.

d

h = 1
2
d

Figure 7.4: Central Difference Approach on a Triangular Grid

Now all the arrow heads land exactly in the neighbour we want them to. Since the value of u is
now assumed to be the same everywhere on the same triangle, it does not matter where in the
triangle it lands. Now we can define the approximation of ∇u in the triangle tC on our triangular
grid to be

∇u|x∈tC ≈
(
uE − uW

2h
,
uN − uS

2h

)
,
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where uE denotes the value of u on tE , and similar for uW , uN and uS . If a boundary element is
encountered, its non-existent neighbour is set to have the value of the boundary conditions of the
respective boundary.

7.2 Implementing the Method

We first took the values u and converted it to a NumPy array, using the a separate NumPy support
package for vtk:

u = vtk_to_numpy(data.GetCellData().GetArray(0))

We then calculated the number of triangles per row, using the definition of Nr from before, and
used this to implement the neighbour rules from before. These were then used to approximate the
gradient as discussed before. We can see the comparison of the found gradients using the Mixed
FEM, and using our approximation method on a 16× 16 left structured grid in Figure 7.5.

(a) Gradient found with Dolfin (b) Gradient found with Gradient Extrapolation

Figure 7.5: Comparison of the Gradients found using the Mixed FEM and gradient extrapolation

We can see that the two figures at least look like each other, but of course, this does not tell us
everything we need to know. The real test lies in comparing the norms and using Richardson
Extrapolation to approximate the order of convergence. The order of converge of the Mixed FEM
was already found to be 4. Now let’s see how our constructed method holds up. We calculated the
L2-norm manually using its definition. The results are in Table 7.1.

Size k
8 1.000110

16 1.000007
32 1.000000
64 -

128 -

Table 7.1: Richardson Extrapolation on Gradient Extrapolation

It is almost indisputable that the gradient extrapolation method converges with an order of 1. This
is certainly a much worse result than the order of 4 from before. It must be noted however that
the gradient extrapolation was built on a Finite Difference approach, which itself, theoretically,
converges with order 2. It was therefore not expected that the method would perform better than
this.
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8
Discussion

After analysing our findings, we found some surprising results that could do with some further
investigation. The first surprising result was that the Method of Manufactured Solutions yielded
a different result for the order of convergence than was found earlier. Further investigation might
be required to understand why this happened.

The next unexpected result was that the Mixed FEM seemed to converge with an order of 4, when
only looking at p and its L2-norm. This is very remarkable, even more so considering that u “only”
converged with an order of 2. As argued before, catastrophic cancellation might be an explanation,
or something else entirely might have influenced the results. Again, further investigation will be
required to conclude if this is the correct result.

Some final remarks will be made on our own method. First of all, it should not have been necessary
to create it in the first place, since the FEM should calculate the values on the grid nodes, rather
than per element. One could search for another package or program for implementing the FEM,
such that these values are calculated where they should, in theory, be.
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9
Conclusion

The main aim of this report was to give a comparison between the Mixed FEM and the stan-
dard FEM. It did this by giving the results of the Mixed FEM, while also suggesting a method
for calculating the gradient without this method. The theory of these methods was first exten-
sively explained, to give the reader a fair knowledge of what is going on behind the scenes, so to say.

Looking at the results of the classic FEM on Poisson with f = 1, we found a convergence estimation
of order 2, when looking at the L2-norm. This is an expected result, since most simple numerical
methods converge with this order. As discussed, the fourth order convergence of the Mixed FEM
was not expected, and might not even be correct, but it does imply that it yields more accurate
results than those found with our constructed method. These results clearly suggest that the Mixed
FEM is the way to go, when wanting to calculate ∇u as well as u. It not only gives better results,
it is also easier to implement in a Python program, by utilising the built-in functions of the Dolfin
package.
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Appendix

A
Higher Order Basis Functions

The ideas presented here follow from [2]. We have seen how to construct simple linear basis func-
tions. It is however possible to construct higher order basis functions. This section of the appendix
will explain how.

Say we want basis functions of order d. We then need d + 1 nodes per element. For example, we
will construct quadratic (so order 2) basis functions φk−1, φk and φk+1 on the element containing
the 3 nodes xk−1, xk and xk+1. For simplicity, but without loss of generality, we assume that this
element does not intersect the boundary of the region. We start with φk−1. It must satisfy

φk−1(xi) =

{
1, if i = k − 1,

0, otherwise.
(A.1)

We achieve this by using the Lagrange Polynomial ; in this case of degree 2. Given three data points
(x0, y0), (x1, y1), (x2, y2), we can construct it. In our case they are (xk−1, 1), (xk, 0), (xk+1, 0). Then

L(x) :=

2∑
j=0

yj lj(x),

with

lj(x) :=
∏

0≤i≤2
i 6=j

x− xi
xj − xi

will satisfy (A.1). φk and φk+1 are made with the same formulae, with their corresponding yjs.
The end result is given in Figure A.1, with a reference to the linear equivalences.

xk−1 xk xk+1

φk−1 φk φk+1

Figure A.1: Quadratic basis functions. The linear basis functions are dashed

We see that the functions sometimes dip below zero, while this was not the case in the linear
setting. Note, however, that we still have that the sum of the basis functions is 1. It must also be
noted that these quadratic basis functions are symmetric around their respective grid node. These
ideas can easily be extended to even higher order basis functions.
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B
A Note on the Partial Integration Step

One thing has to be addressed about the partial integration step in Chapter 3, namely that we
could have chosen to partially integrate (3.2b) instead of (3.2a):∫ 1

0

ψu′ dx = [ψu]
1
0 −
∫ 1

0

ψ′u dx = −
∫ 1

0

ψ′u dx.

This would make (3.4) look like:
−

n∑
j=0

pj

∫ 1

0

dψj
dx

φi dx =

∫ 1

0

φif dx, for all i,

n∑
j=0

pj

∫ 1

0

ψjψi dx+
n∑
j=0

uj

∫ 1

0

φj
dψi
dx

dx = 0, for all i.

The resulting matrix-vector equation has a structure very similar to that of (3.5):[
−A 0
B A>

] [
p
u

]
=

[
f
0

]
,

with

Aij =

∫ 1

0

φi
dψj
dx

dx, Bij =

∫ 1

0

ψiψj dx and fi =

∫ 1

0

φif dx.

This is very similar to what was found previously; it is mainly up to personal preference which is
chosen. However, the problem itself may cause one of these to be more desirable.
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C
Complete Code

C.1 Poisson FEM

1 from do l f i n import ∗
2 import matp lo t l i b . pyplot as p l t
3

4 i = 0
5 k = 2
6

7 u l s t = [ ]
8

9 whi le i <= 7 :
10

11 mesh = RectangleMesh ( Point (−1. ,−1. ,) , Point ( 1 . , 1 . , ) , k , k , ” c ro s s ed ” )
12 V = FunctionSpace (mesh , ”CG” , 2)
13 u = Tria lFunct ion (V)
14 phi = TestFunction (V)
15

16 f = Express ion ( ”1” , degree=1)
17

18 a = ( inner ( grad ( phi ) , grad (u) ) ) ∗ dx
19 L = ( f ∗phi ) ∗ dx
20

21 # Def ine e s s e n t i a l boundary
22 de f boundary (x , on boundary ) :
23 r e turn on boundary
24

25 bc = Dir ichletBC (V, Constant ( 0 . ) , boundary )
26

27 u = Function (V)
28 s o l v e ( a == L , u , bc )
29

30 pr in t (k , norm(u) )
31 u l s t . append (norm(u) )
32

33 i += 1
34 k ∗= 2
35

36 pr in t ( ”” )
37

38 f o r i in range ( l en ( u l s t )−2) :
39 pr in t ( ( u l s t [ i ] − u l s t [ i +1]) / ( u l s t [ i +1] − u l s t [ i +2]) )
40

41 p lo t (u)
42 p l t . show ( )
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C.2 Method of Manufactured Solutions

1 from do l f i n import ∗
2 import matp lo t l i b . pyplot as p l t
3

4 i = 0
5 k = 4
6

7 norm lst = [ ]
8

9 whi le i <= 6 :
10

11 mesh = RectangleMesh ( Point (−1. ,−1. ,) , Point ( 1 . , 1 . , ) , k , k , ” c ro s s ed ” )
12 V = FunctionSpace (mesh , ”CG” , 2)
13 u = Tria lFunct ion (V)
14 phi = TestFunction (V)
15

16 f = Express ion ( ”2∗ s i n ( x [ 0 ] ) ∗ cos ( x [ 1 ] ) ” , degree=1)
17

18 a = ( inner ( grad ( phi ) , grad (u) ) ) ∗ dx
19 L = ( f ∗phi ) ∗ dx
20

21 # Def ine e s s e n t i a l boundary
22 de f boundary (x , on boundary ) :
23 r e turn on boundary
24

25 bc = Dir ichletBC (V, Express ion ( ” s i n (x [ 0 ] ) ∗ cos ( x [ 1 ] ) ” , degree=1) , boundary )
26

27 u = Function (V)
28 s o l v e ( a == L , u , bc )
29

30 u e = Function (V)
31

32 u e . a s s i gn ( Express ion ( ” s i n (x [ 0 ] ) ∗ cos ( x [ 1 ] ) ” , degree=1) )
33

34 p l t . f i g u r e ( )
35 p lo t (u)
36 p l t . f i g u r e ( )
37 p lo t ( u e )
38 p l t . show ( )
39

40 p l t . f i g u r e ( )
41 p lo t ( u e )
42

43 p l t . f i g u r e ( )
44 p lo t (u)
45

46 u e = u e . vec to r ( )
47 u = u . vec to r ( )
48

49 pr in t (k , norm(u−u e ) )
50 norm lst . append (norm(u−u e ) )
51

52 i += 1
53 k ∗= 2
54

55 f o r i in range ( l en ( norm ls t )−2) :
56 pr in t ( ( norm ls t [ i ] − norm lst [ i +1]) / ( norm ls t [ i +1] − norm lst [ i +2]) )
57

58 p l t . show ( )
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C.3 Mixed FEM

1 from do l f i n import ∗
2 import matp lo t l i b . pyplot as p l t
3 import math
4

5 norm lst = [ ]
6 s i gma l s t = [ ]
7

8 f o r i in [ 8 , 1 6 , 3 2 , 6 4 , 1 2 8 ] :
9

10 # Create mesh
11 mesh = RectangleMesh ( Point (−1. ,−1. ,) , Point ( 1 . , 1 . , ) , i , i , ” l e f t ” )
12

13 # Def ine f i n i t e e lements spaces and bu i ld mixed space
14 BDM = FiniteElement ( ”BDM” , mesh . u f l c e l l ( ) , 1)
15 DG = FiniteElement ( ”DG” , mesh . u f l c e l l ( ) , 0)
16 W = FunctionSpace (mesh , BDM ∗ DG)
17

18 # Def ine t r i a l and t e s t f unc t i on s
19 ( sigma , u) = Tr ia lFunct ions (W)
20 ( tau , v ) = TestFunct ions (W)
21

22 # Def ine source func t i on
23 f = Express ion ( ”1” , degree=1)
24

25 # Def ine v a r i a t i o n a l form
26 a = (−dot ( sigma , tau ) + div ( tau ) ∗u − div ( sigma ) ∗v ) ∗dx
27 L = −f ∗v∗dx
28

29 # Def ine e s s e n t i a l boundary
30 de f boundary (x , on boundary ) :
31 r e turn on boundary
32

33 bc = Dir ichletBC (W. sub (1 ) , Constant ( 0 . ) , boundary )
34

35 de l t a = PointSource (W. sub (0 ) , Point ( 0 . , 0 . , ) , 10)
36

37 # Compute s o l u t i o n
38 w = Function (W)
39 s o l v e ( a == L , w, bc )
40 ( sigma , u) = w. s p l i t ( )
41

42 p l t . f i g u r e ( )
43 p lo t (u)
44 p l t . f i g u r e ( )
45 p lo t ( sigma )
46

47 s t ru = ”mpoisson u” + s t r ( i ) + ” . pvd”
48 s t r s = ”mpoisson p” + s t r ( i ) + ” . pvd”
49

50 f i l e = F i l e ( s t ru )
51 f i l e << u
52 f i l e = F i l e ( s t r s )
53 f i l e << sigma
54

55 pr in t ( i , norm(u , ”L2” , mesh ) , norm( sigma , ”L2” ) )
56

57 norm lst . append (norm(u) )
58 s i gma l s t . append (norm( sigma ) )
59

60 pr in t ( norm ls t )
61 f o r i in range ( l en ( norm ls t )−2) :
62 norm u = ( norm lst [ i ] − norm lst [ i +1]) / ( norm ls t [ i +1] − norm lst [ i +2])
63 norm s = ( s i gma l s t [ i ] − s i gma l s t [ i +1]) / ( s i gma l s t [ i +1] − s i gma l s t [ i +2])
64 ul = math . l og ( norm u , 2)
65 s l = math . l og ( norm s , 2)
66 pr in t ( norm u , norm s , ul , s l )
67

68 # Plot sigma and u
69 p l t . show ( )

29



Bachelor Final Project Thesis Mixed Finite Element Method

C.4 Gradient Approximation

1 import numpy as np
2 import math
3 import vtk
4 from vtk . u t i l . numpy support import vtk to numpy
5 import matp lo t l i b . pyplot as p l t
6 from mp l t o o l k i t s . mplot3d import Axes3D
7

8 sum ls t = [ ]
9

10 f o r j in [ 8 , 1 6 , 3 2 , 6 4 , 1 2 8 ] :
11

12 # The source f i l e
13 f i l e name = ”/home/ xu l i an /Documents/Bachelor EindProject /Code/mpoisson u” \
14 + s t r ( j ) + ” 000000. vtu”
15

16 # Read the source f i l e .
17 r eader = vtk . vtkXMLUnstructuredGridReader ( )
18 r eader . SetFileName ( f i l e name )
19 r eader . Update ( ) # Needed because o f GetScalarRange
20 data = reader . GetOutput ( )
21

22 po in t s = data . GetPoints ( )
23 npts = po in t s . GetNumberOfPoints ( )
24 x = vtk to numpy ( po in t s . GetData ( ) )
25

26 t r i a n g l e s = vtk to numpy ( data . GetCel l s ( ) . GetData ( ) )
27 n t r i = t r i a n g l e s . s i z e //4
28

29 t r i = np . take ( t r i a n g l e s , [ n f o r n in range ( t r i a n g l e s . s i z e ) i f n%4 != 0 ] ) . reshape
( nt r i , 3 )

30

31 n ar rays = reader . GetNumberOfPointArrays ( )
32

33 u = vtk to numpy ( data . GetCellData ( ) . GetArray (0 ) )
34

35 #compute g rad i en t
36 gradsx = [ ]
37 gradsy = [ ]
38 nd = in t (np . s q r t ( n t r i ∗2) )
39 h2 = 4 ./ nd
40 f o r i in range ( l en (u) ) :
41

42 #grad x
43 i f i%nd == 0 :
44 grad x = u [ i +1]/h2
45 e l i f ( i +1)%nd == 0 :
46 grad x = −u [ i −1]/h2
47 e l s e :
48 grad x = (u [ i +1]−u [ i −1]) /h2
49

50 #grad y
51 i f i<nd and i%2 == 0 :
52 grad y = u [ i +1]/h2
53 e l i f i>nt r i−nd and i%2 != 0 :
54 grad y = −u [ i −1]/h2
55 e l i f i%2 == 0 :
56 grad y = (u [ i +1] − u [ i−nd+1]) /h2
57 e l s e :
58 grad y = (u [ i+nd−1] − u [ i −1]) /h2
59

60 gradsx . append(−grad x )
61 gradsy . append(−grad y )
62

63 new gradsx = [ ]
64 new gradsy = [ ]
65

66 f o r i in range ( l en ( gradsx ) ) :
67 i f i%2 == 0 :
68 new gradsx . append ( gradsx [ i ] )
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69 new gradsy . append ( gradsy [ i ] )
70

71 g = np . z e r o s ( l en ( new gradsx ) )
72

73 f o r i in range ( l en ( new gradsx ) ) :
74 g [ i ] = ( new gradsx [ i ]∗ new gradsx [ i ] + new gradsy [ i ]∗ new gradsy [ i ] )
75

76 g 2 = np . reshape (g , ( j , j ) )
77

78 sum g = 0 .
79 f o r k in range ( l en ( g ) ) :
80 sum g += g [ i ]
81

82 sum g = math . s q r t ( sum g )
83 sum ls t . append ( sum g )
84

85 X, Y = np . meshgrid (np . l i n s p a c e (−1 , 1 , nd/2) , np . l i n s p a c e (−1 , 1 , nd/2) )
86

87 f i g = p l t . f i g u r e ( )
88 ax = f i g . gca ( p r o j e c t i o n=’ 3d ’ )
89 p l t . xl im ( −1 .1 ,1 .1 )
90 p l t . yl im ( −1 .1 ,1 .1 )
91 ax . p l o t s u r f a c e (X, Y, g 2 )
92

93 f i g 1 , ax1 = p l t . subp lo t s ( )
94 p l t . xl im ( −1 .1 ,1 .1 )
95 p l t . yl im ( −1 .1 ,1 .1 )
96 Q = ax1 . qu iver (X, Y, new gradsx , new gradsy , un i t s=’ width ’ )
97

98 p l t . show ( )
99

100 f o r l in range ( l en ( sum ls t )−2) :
101 pr in t ( sum ls t [ l ]− sum ls t [ l +1] ) / ( sum ls t [ l +1]− sum ls t [ l +2] )
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