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Abstract

Recent advances in machine learning have led to the
widespread adoption of ML models for decision support sys-
tems. However, little is known about how the introduction
of such systems affects the behavior of human stakehold-
ers. This pertains both to the people using the system, as
well as those who are affected by its decisions. To address
this knowledge gap, we present a series of ultimatum bar-
gaining game experiments comprising 1178 participants. We
find that users are willing to use a black-box decision sup-
port system and thereby make better decisions. This trans-
lates into higher levels of cooperation and better market out-
comes. However, because users under-weigh algorithmic ad-
vice, market outcomes remain far from optimal. Explanations
increase the number of unique system inquiries, but users
appear less willing to follow the system’s recommendation.
People who negotiate with a user who has a decision sup-
port system, but cannot use one themselves, react to its intro-
duction by demanding a better deal for themselves, thereby
decreasing overall cooperation levels. This effect is largely
driven by the percentage of participants who perceive the sys-
tem’s availability as unfair. Interpretability mitigates percep-
tions of unfairness. Our findings highlight the potential for
decision support systems to further human cooperation, but
also the need for regulators to consider heterogeneous stake-
holder reactions. In particular, higher levels of transparency
might inadvertently hurt cooperation through changes in fair-
ness perceptions.

1 Introduction

The ever increasing ability of economies and societies
to effectively make use of machine learning techniques
has lead to a surge in algorithmic decision-making (ADM)
systems. Nowadays, algorithmic systems are being imple-
mented in many high-stakes domains such as medical di-
agnoses (Obermeyer and Emanuel 2016), judicial sentenc-
ing (Angwin et al. 2016), urban planning (Glaeser et al.
2016) or hiring decisions (Liem et al. 2018). Compared to
human actors, ADM systems provide enhanced analytic ca-
pabilities, increased efficiency and allow for comprehensive
data monitoring. As decision-making environments become

Copyright c© 2020, Association for the Advancement of Artificial
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more complex and dependent on extensive data analytics,
human decision-makers will be required to effectively utilize
these computational tools and reinterpret their role within
crucial decision-making processes. Thus, the integration of
ADM systems is accompanied by a number of challenges
within the human-agent sphere, calling for new and clearly
identified design choices that facilitate human-agent interac-
tions. These challenges are manifold in nature, since one not
only needs to identify the limits and ambiguities of current
ADM systems, but further combine those with a sophisti-
cated understanding of human behavior, social desirabilities
and societal expectations.

This paper exploits the widely studied ultimatum game
to examine how the introduction of an algorithmic decision-
support-system (DSS) affects the behavior of those who are
using the system and those who are affected by the system.
The game is commonly used to represent a range of bargain-
ing situations such as purchasing decisions, price setting or
firm negotiations. Subjects are assigned one of two roles: the
proposer and the responder. The proposer receives a sum of
money and subsequently makes an offer on how to divide
that money between both players. Responders can either ac-
cept or reject that offer. If the responder rejects, both receive
nothing, if the responder accepts, the money is split accord-
ing to the proposer’s offer. Within this framework, we ask
three main questions:
• RQ1: Do human decision-makers integrate advice from a

black-box DSS?
• RQ2: Do human decision-makers exhibit different social

concerns while interacting with another human using an
ADM system?

• RQ3: Does interpretability mediate system trust and fair-
ness perceptions?
We introduce eight treatments relating to and building on

the standard one-shot ultimatum game. Throughout, we ex-
plore the impact of (i) a black-box DSS and (ii) a DSS that is
accompanied by an explanation, on user behavior and over-
all economic gains. Further, we investigate how decision-
makers without a system react to the introduction of a DSS
by quantifying changes in behavior and measuring fairness
perceptions.

We find that the introduction of a DSS generally improves

43



overall market outcomes, which is primarily driven by im-
proved proposer offers. Proposers are willing to use a black-
box DSS, but still under-weigh the provided information.
The introduction of interpretability appears to increase sys-
tem usage, while there is evidence for a decrease in sys-
tem trust as proposers revise their initial offers less. Roughly
one-third of responders judges the introduction of a DSS as
unfair and ask for more money. This harms responder in-
come, proposer income and overall market efficiency. En-
dowing responders with additional explanations about the
system partially mitigates perceptions of unfairness.

To facilitate further research and for the benefit of the
HCOMP community, we publicly release our anonymised
data, code, and additional information.1

2 Related Literature

Algorithmic Recommendations & Advice-Taking This
paper relates to current research evolving around human ca-
pabilities and willingness to integrate algorithmically de-
rived information or recommendations into their decision-
making processes. From an economic point of view, this en-
tails questions such as whether the utilization of decision-
support systems induces efficiency gains, or what kind of
institutional elements promote effective human-machine in-
teractions. Prior research from (Oenkal et al. 2009) suggests
that human decision-makers might generally discount fore-
casting advice more if they perceive it to come from a sta-
tistical model. Indeed, a long literature documents the sup-
posed human tendency to prefer human experts (both them-
selves or external sources) over statistical or algorithmic
predictions, even if the latter have been shown to be reli-
ably more accurate (Meehl 1945; Grove and Meehl 1996;
Grove and Lloyd 2006; Dawes, Faust, and Meehl 1989;
Highhouse 2008). Recently, the concept of algorithm aver-
sion has raised a lot of interest (see (Burton, Stein, and
Jensen 2020) for a review). In their seminal paper, (Di-
etvorst, Simmons, and Massey 2015) illustrate that human
actors learn differently from observing mistakes by an al-
gorithm in comparison to mistakes by humans. In partic-
ular, even participants who directly observed an algorithm
outperform a human were less likely to use the model af-
ter observing its imperfections. (Prahl and van Swol 2017)
find a similar pattern in that participants rejected algorith-
mic forecasting advice more than ostensibly human advice
after receiving bad recommendations. (Dietvorst, Simmons,
and Massey 2016) propose that algorithm aversion is in part
mediated by control, or a lack thereof. Thus, giving human
decision-makers the opportunity to process and shape algo-
rithmic output could enhance compliance with decision aids
and thereby boost performance. There is also evidence that
human decision-makers are particularly averse towards al-
gorithmic systems for tasks that are perceived as subjective
(Castelo, Bos, and Lehmann 2019). For our case, this re-
search sheds doubt on user willingness to integrate DSS in-
formation while bargaining with another human. In so far
as the system provides more accurate predictions than the

1https://osf.io/rkzj2/?view only=
d891813a74ee48d39213e36aebdcf7f4

decision-maker themselves, this would lead to reduced co-
operation and efficiency losses. Some recent evidence how-
ever also suggests that there are situations in which human
actors prefer algorithmic advice or output (Dietvorst, Sim-
mons, and Massey 2015; Logg, Minson, and Moore 2018;
Dijkstra, Liebrand, and Timminga 1998).

Interpretability We contribute to the growing, interdis-
ciplinary literature on interpretability and how it relates to
user trust, system utilization and fairness perceptions (see
e.g. (Doshi-Velez and Kim 2017) for an overview). Re-
cent studies suggest that interpretability does not necessar-
ily translate into better model utilization or error-detection
(Poursabzi-Sangdeh et al. 2018) and might even negatively
affect people’s accuracy perceptions (Nourani et al. 2019).
In other research, accuracy was more important in furthering
user trust than explanations (Papenmeier, Englebienne, and
Seifert 2019). Yet evidence is mixed, with e.g. (Yeomans et
al. 2017) showing that explanations for a recommender sys-
tem can mitigate distrust and subsequently increase human
preferences for the system. Stated model accuracy has also
been shown to significantly affect model trust (Yin, Wort-
man Vaughan, and Wallach 2019). (Lage et al. 2019) demon-
strate that the types of complexity users are confronted with
interact with the effectiveness of explanations. Thus, there is
evidence that interpretability elements do affect human be-
havior, but the conditions under which they are beneficial
remain under-explored.

Algorithmic Decision-Making and Social Norms We
draw from the literature on how algorithmic systems affect
the effectiveness of human-human cooperation and social
norms. In particular, this paper relates to the bargaining lit-
erature (Anand et al. 2018). Ultimatum bargaining is one
of the most prominent games researched in experimental
economics (Gueth, Schmittberger, and Schwarze 1982). Al-
though the game setting seems simple, understanding behav-
ior in this framework remains complex even after decades of
research (Güth and Kocher 2014). It has been applied to a
variety of issues such as culture (Henrich 2000; Henrich et
al. 2005), gender (Gong and Yang 2012), child development
(Harbaugh, Krause, and Liday 2003) or human-computer in-
teraction (Sanfey et al. 2003). Importantly, it might be the
most transparent tool to demonstrate the importance of so-
cial norms, psychology and emotions in real-life negotia-
tions (Roth et al. 1991; van Damme et al. 2014). Prior find-
ings relating to our research question broadly find that hu-
mans appear to exhibit less social concerns when interact-
ing with autonomous computer agents (Sanfey et al. 2003;
van ’t Wout et al. 2006; de Melo and Gratch 2015), but are
more cooperative when acting through an agent (de Melo,
Marsella, and Gratch 2018).

3 Method and Experimental Setup

Ultimatum Game Our basic framework replicates the
simplest design of the ultimatum game, modified by the
strategy method. This common procedure has the advantage
of providing more data, which is especially useful given our
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need for a large data set to train the ADM systems. A pro-
poser X decides on the distribution of a pie with size p. X
receives x and the responder Y receives y, where x, y ≥ 0
and x + y = p. In a simultaneous process, the responder Y
decides on a minimum offer z, where z ≥ 0, and accepts the
proposal (x, y) = 1 if y ≥ z. If z > y, the responder re-
jects the offer (x, y) = 0. Payoffs are given by δ(x, y)x and
δ(x, y)y, i.e. if the responder Y rejects both earn nothing.

A straightforward solution of the game merely based on
monetary outcomes implies that responder Y should accept
all positive offers, which gives δ(x, y) = 1 for y > 0. This is
based on the rational that receiving something is better than
receiving nothing, which is particularly true in a one-shot
game without reputation being a factor.2 This is anticipated
by the proposers X , which has them offer the minimal pos-
itive amount. In consequence, X receives almost the whole
pie p and Y receives little more than nothing.

However, prior experiments have shown that the optimal
offer by the proposer amounts to 40% to 50% of the pie,
since responders often reject lower offers (Camerer 2003;
Oosterbeek, Sloof, and van de Kuilen 2004). These findings
have led to influential theoretical work integrating other-
regarding preferences such as fairness concerns into the tra-
ditional homo oeconomicus (Bolton and Ockenfels 2000;
Fehr and Schmidt 1999).

Participants Participants were recruited via Amazon Me-
chanical Turk. We restricted the sample to workers from the
United States who had completed at least 100 HITs with an
approval rate of at least 80%. Participants enrolled on their
own accord after reading a brief description of the experi-
ment and having the option to take a look at the survey form.
Participants immediately received a $0.50 participation fee
on survey completion. Less than 6 minutes were required
to complete the survey, and 76% of bargaining interactions
were successful. Thus, participants received no less than an
hourly wage of USD 8.5/h on average.

All participants first read the same basic instructions and
had to answer four comprehensions questions correctly in
order to proceed with the ultimatum game. Those who made
more than four mistakes were dropped from the experiment
(N = 242). We also added an attention check. Our final sam-
ple consisted of 1178 observations (45% female).

Procedure Participants then followed a link that randomly
assigned them to the role of either a responder or a proposer.
Proposers received $1 and were asked to make an offer to
their responder on how to split the money between them.
Responders chose the minimum offer they were willing to
accept from the proposer. All treatments (see Table 1) fol-
lowed this basic setup. We implemented T0 as a standard
one-shot ultimatum game without a decision-support system
to gather the necessary training data.

2While this represents the weakly dominant strategy for Y , all
distributions (x, y) can be established as equilibrium outcomes.
For multiple equilibria consider a certain threshold ȳ for accep-
tance by the responder Y , such that [(x, y), δ(x̃, ỹ) = 1] if ỹ ≥ y
and δ(x̃, ỹ) = 0 otherwise.

Treatment Role DSS DSS info Interpretability Resp info

T0 both - - - -

T1.0 proposer yes - - -
T1.1 proposer yes - - not informed

T1.2 proposer yes - yes -
T1.3 proposer yes - yes informed
T1.4 proposer yes - yes + accuracy -

T2.0 responder - yes - -
T2.1 responder - yes yes -

Table 1: Treatment overview. “Role” refers to the primary
unit of observation. We additionally collected responder data
in T1.0 and T1.4.

Treatments T1.0 - T1.4 were primarily concerned with
proposer behavior. After making their first offer to the re-
sponder, proposers subsequently learned about the decision-
support system and were then allowed to query it and make
a revised offer.3 This intervention allows us to directly in-
fer changes causally elicited by the DSS while deploying
a conservative measurement of system usage that reflects
that in reality, most people use well-functioning heuristics
and decision rules in bargaining and negotiation environ-
ments (Gigerenzer and Gaissmaier 2011; Allison and Mes-
sick 1990). In general, it is likely that DSS will predomi-
nantly augment already existing human decision processes,
which are anchored in historical behavioral patterns.

Following (Yeomans et al. 2017), after making their re-
vised offer, proposers were asked to indicate their agreement
to statements about the explainability and their understand-
ing of the system as well as whether they would have made a
different offer if the responder was (not) aware of the DSS.4
T1.0 and T1.1 only differed in the information proposer re-

ceived about the responders. In T1.0, proposers did not know
whether or not responders were aware of the DSS. In T1.1,
they were informed that the responder does not know about
the system.5 Thus, T1.1 functions as a robustness check con-
trolling for any e.g. fairness-related confoundings in the uti-
lization of a DSS arising from potential transparency for
responders. It could, for instance, be that proposers who
assumed their responder to have knowledge of the system
would be more reluctant to use it, since (i) the utilization it-

3We selected a featureless model that solely focuses on respon-
der minimum offer distributions and searches for the fixed offer
that maximizes proposer gains over the training sample. The model
provides feedback on two dimensions. First, it calculates the proba-
bility that a proposer offer is the best offer, i.e. that it coincides with
the responder minimum offer. Secondly, it shows the probability of
an offer being accepted. This is based on the normalized cumula-
tive histogram of each accepted offer in the training dataset, the
training error and the predicted minimum offer for the responder.
We added a bias for each possible offer to cope with the absence
of some values in the dataset and to guarantee a strictly increasing
probability with an increasing offer. The fixed offer maximizing
proposer gains was $0.5, i.e. an even split.

4For T1.0, the feedback was gathered in a follow-up survey
where proposers had to play one more time using the DSS.

5Because we gathered both proposer and responder data for
T1.0 and matched proposers from T1.1 with responders from T1.0

for payment purposes, there was no deception involved.
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self might be made transparent to the responder and (ii) the
accuracy of the model might be impeded by such informa-
tion. Since both situations constitute relevant abstractions of
real-life decision contexts, any differences in proposer be-
havior might shed light on important consequences for DSS
utilization across a range of functions.

In T1.2, T1.3 and T1.4, we endowed proposers with
an explanation of the model’s functioning to increase in-
terpretability. While T1.2 only added information on the
model’s process, T1.4 further gave explicit information on
the model’s accuracy. The example below depicts a system-
level explanation (Gilpin et al. 2018) of the model’s func-
tioning presented to proposers in T1.2.

“The system was trained using 100 prior interactions of
comparable bargaining situations. It learned a fixed optimal
offer, by testing each possible offer on prior bargaining sit-
uations and was selected as the one that provided the high-
est average gain to proposers. Using the same process, the
system also constructed an interval that judges offers that
deviate from its recommendation.”

In addition to the explanation in T1.2, proposers in T1.4

also received information regarding the accuracy of the
model, as shown in the example below.

“Following the AI System’s recommendations, proposers
can gain 80% of the pie left by responders. Following the AI
System’s recommendations, proposers can have 95% of their
offers accepted. The probability of an offer being accepted
is higher than 50% when the offer is greater than or equal
to the recommended offer.”

Finally, in T1.3, proposers again received only the
process-related information and further learned that their re-
sponder does know about the system.6 Our intention was to
capture any feedback effects induced by proposer expecta-
tions regarding responder behavior. For instance, proposers
could expect responders to perceive the system as an unfair
advantage and demand more money. Similar to T1.1, T1.3

thus provides a robustness check for our results from T1.2.
T2.0 and T2.1 focus on responders as our main unit of

observation. Similar to proposers, responders in both treat-
ments first indicated their minimum offer without being
aware of the proposer DSS, were then made aware and had
the option to revise their initial minimum offer. While re-
sponders in T2.0 did not receive any additional information
on the DSS, we endowed responders in T2.1 with the same
explanation as proposers in T1.2. Following the final mini-
mum offer, responders where asked to indicate their agree-
ment to four statements on a seven point Likert-scale.

Measures

To quantify changes in proposer and responder behavior as
a response to the introduction of a decision-support system,
we define three main measures.
System Usage – The system usage is reported by both the
ratio of proposers who made at least one request to the DSS
and the average number of unique requests made.
System Trust – The system trust is determined using

6Since we matched proposers in T1.3 with responder data from
T2.0 for payment, there was no deception involved.

the judge advisor system (JAS) metric’s weight of advice
(WOA) as reported by (Bonaccio and Dalal 2006) where the
proposer is the judge and the decision support system is the
advisor. WOA is defined as a function of proposer final offer
(offerfinal), the proposer initial offer (offer) and the DSS
recommended offer (DSSoffer)

WOA =
offerfinal −DSSoffer

DSSoffer − offer

We calculate the WOA for each condition over all partic-
ipants whose initial offers without the system do not match
the system’s recommendation, i.e. an even split of 0.5$.7
Absolute change – To complement the WOA, we quantify
the average absolute deviation of a proposer’s (responder’s)
final offer (final minimum offer) from their initial offer (min-
imum offer). Since subjects did not receive one recommen-
dation, but were able to inquire the system multiple times
and gather information about the expected gains and associ-
ated risk for different offers, the WOA potentially does not
capture the full range of system-induced behavioral changes.

4 Results

Descriptive statistics of the different games are presented in
Table 2 for proposers and Table 3 for responders. In each
treatment, proposer offers increased on average after being
able to use the DSS. Figure 1 shows cumulative distribution
functions plotting the difference between initial proposer of-
fers (offer) and revised offers (offerfinal). Across treat-
ments, more proposers increased their offer than vice versa,
and there is considerable variation across treatments.

Statistics T0 T1.0 T1.1 T1.2 T1.3 T1.4

N 103 105 105 103 105 102
Mean (initial) 43.59 41.48 44.71 46.99 46.67 44.56
Mean - 45.67 49.38 48.16 49.29 46.47
Standard Dev. 14.97 14.50 14.59 13.32 14.08 17.37

Table 2: Proposers game statistics. Statistics are reported
based on final offers in each treatment unless explicitly
stated otherwise.

Statistics T0 T2.0 T2.1

N 103 105 105
Mean (initial) 40.10 41.38 38.91
Mean - 43.81 41.10
Standard Dev. 18.88 21.13 16.50

Table 3: Responders minimum offer statistics. Statistics are
reported based on final minimum offers in each treatment
unless explicitly stated otherwise.

For responders, we also find directional increases in the
minimum sum that players were willing to accept after learn-
ing about the proposer’s option to use a DSS. Although there

7There was no significant difference in the fraction of pro-
posers whose initial offers matched the system’s recommendation
between treatments [χ̃2(4) = 2.19, p = 0.700].
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Figure 1: Cumulative histogram curves in percentages of dif-
ferences in proposers’ offers before and after the introduc-
tion of the DSS.

was considerable downward adjustment, Figure 2 shows that
the majority increased their required share of money, which
is diametrical to the changes in proposer behavior.

Figure 2: Cumulative histogram curves in percentages of
differences in responders’ minimum requested offers before
and after learning about the DSS.

Main Results

For clarity sake, we examine proposer and responder behav-
ior separately. Any essential inferences for market efficiency
or human cooperation will be drawn in the discussion.

Proposer + DSS

To examine whether and to what extent proposers used the
black box DSS, we first concentrate on treatments T1.0 and
T1.1. Recall that participants first made an offer without the
system, and were then allowed to inquire the system and
make a revised offer. Table 4 shows first and second stage
proposer offers, the absolute change induced by the DSS,
the estimated WOA as well as statistics on system usage.

In both treatments, roughly 90% of proposers inquired
the system at least once, with 2.0 and 1.9 inquiries on av-

T1.0 T1.1 T1.2 T1.3 T1.4

offer 41.48 44.71 46.99 46.67 44.56
(15.32) (16.78) (13.92) (17.93) (19.18)

offerfinal 45.67 49.38 48.16 49.29 46.47
(14.50) (14.59) (13.32) (14.08) (17.37)

absolutechange 5.619 6.952 2.524 8.333 5.637
(13.44) (13.00) (6.018) (14.47) (10.36)

WOA 0.54 0.65 0.61 0.81 0.66
(0.58) (0.67) (0.88) (0.93) (1.3)

uniquerequests 1.990 1.886 2.612 1.971 2.608
(1.842) (1.872) (2.365) (1.778) (2.474)

requested 0.905 0.895 0.913 0.886 0.912
(0.295) (0.308) (0.284) (0.320) (0.285

rejectednodss 0.314 0.295 0.262 0.333 0.314
(0.466) (0.458) (0.442) (0.474) (0.466)

rejecteddss 0.0571 0.0571 0.0874 0.181 0.0882
(0.233) (0.233) (0.284) (0.387) (0.285)

rejectedfinal 0.229 0.190 0.194 0.257 0.265
(0.422) (0.395) (0.397) (0.439) (0.443)

Table 4: Behavioral statistics for the proposer-centric treat-
ments. rejectednodss refers to rejection rates based on ini-
tial proposer offers, rejecteddss refers to rejection rates had
all proposers chosen the offer that maximized their expected
income according to the DSS and rejectedfinal are the ac-
tually realized rejection rates after proposers utilized the sys-
tem. requested is a dummy variable capturing whether a
proposer made at least one request, uniquerequests is the
average number of unique inquiries to the system.

erage respectively. This lead to substantial improvements on
a number of indicators. In T1.0, on average 31% of first of-
fers would have been rejected by the responders. For re-
vised offers, that share drops to 23%, improving both av-
erage proposer (+2.76 cents) and average responder income
(+5.81 cents). Thus, introducing a black box DSS signifi-
cantly reduced rejection rates [t(104) = 3.12, p = 0.002].
Despite this, realized rejection rates and income levels were
far behind the model’s performance (see table 4). Partic-
ipants could have performed better, had they trusted the
model more (WOA = 0.54).

Moreover, there are no significant differences between
T1.0 and T1.1, indicating that proposers either assumed that
responders would not receive information about the DSS
anyway, or that the proposer decision is independent of re-
sponder transparency. According to the self-reported data,
around 30% of proposers in T1.1 agreed that they would
have made a different offer, had the responder been informed
about the system (see table 5). This suggests that proposers’
intuition matched the endowed responder information, and
that we’d see differences in proposer behavior depending on
whether they receive information that responder do know
about the system. We will test this intuition in treatments
T1.2 and T1.3.

Result 1: Proposers are willing to use a black box DSS
and consequently make better offers. However, since pro-
posers under-weigh the system’s advice, rejection rates
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and aggregated income remain far from optimal.

Disagree Neutral Agree Mean Std. Dev.

T1.1 55 (52.4) 18 (17.1) 32 (30.5) 3.4 1.9
T1.3 63 (60.0) 24 (22.9) 18 (17.1) 3.0 1.7

Table 5: Proposer answers to the following question: “I
would have made another offer if the responder was (not)
informed about the AI System”

Disagree Neutral Agree Mean Std. Dev.

T1.0 7 (14) 7 (14) 36 (72) 4.96 1.4
T1.1 16 (15.2) 15 (14.3) 74 (70.5) 5.11 1.5
T1.2 14 (13.6) 12 (11.7) 77 (74.8) 5.22 1.6
T1.3 14 (13.3) 15 (14.3) 76 (72.4) 5.02 1.3
T1.4 14 (13.7) 17 (16.7) 71 (69.6) 4.9 1.4

Table 6: Proposer answers to the following question: “I
could understand why the AI System thought the responder
would accept a given offer.”

Disagree Neutral Agree Mean Std. Dev.

T1.0 26 (52) 8 (16) 16 (32) 3.7 1.8
T1.1 50 (47.6) 14 (13.3) 41 (39) 3.7 1.7
T1.2 61 (59.2) 12 (11.7) 30 (29.1) 3.4 1.9
T1.3 46 (43.8) 23 (21.9) 36 (34.3) 3.9 1.6
T1.4 46 (45.1) 19 (18.6) 37 (36.3) 3.7 1.7

Table 7: Proposer answers to the following question: “It is
hard for me to explain how the AI-System judged my offers.”

Proposer + DSS + Interpretability

To examine whether the intelligibility of our DSS prevents
proposers from using it optimally, treatments T1.2, T1.3 and
T1.4 endow proposers with additional information about the
system. In T1.2, proposers were informed about the model’s
process and did not receive any notice on whether respon-
ders learned about the system. It thus provides the direct
counterfactual to T1.0. While the share of proposers who in-
quired the system at least once does not differ between treat-
ments, proposers in T1.2 made significantly more unique
inquiries to the system [t(206) = 2.12, p = 0.036]. De-
spite higher usage, however, absolute change between the
first and the revised offer was significantly lower in T1.2

[t(206) = −2.14, p = 0.034] and the WOA does not dif-
fer significantly [t(79) = 0.45, p = 0.653]. These results
suggest that our interpretability intervention did not increase
user trust in the system and, if anything, discouraged pro-
posers from integrating the system’s advice. This is par-
ticularly interesting since system usage increased, meaning
that subjects were not deterred from acquiring information
by inquiring the DSS, but only from adjusting their initial
decision. Self-reported understandability and explainability
were not significantly affected by the additional explana-
tions (see tables 6 and 7).

Result 2: Interpretability increases system usage, but de-
creases system trust. Proposers who received additional
information on the model revised their initial offers less
intensely and thus missed out on substantial monetary
gains.

In T1.3, proposers learned that responders knew about
the DSS. Thus, comparing T1.2 and T1.3 allows us to ex-
amine how proposer expectations regarding responder re-
actions towards the DSS feed back into the main interac-
tion. While system usage decreased [t(206) = −2.21, p =
0.028], proposers appeared to integrate advice much more
into their revised offer. On average, proposers in T1.3 re-
vised their initial offer by 8.3 cents (+5.81) [t(206) =
3.77, p = 0.000] and had a substantially larger WOA (+0.2)
[t(81) = 0.99, p = 0.326]. In line with these results, en-
dowing proposers with even more explanations by adding
information about the system’s accuracy in T1.4 but remov-
ing information about responders reverts behavior back to
high usage and apparently lower system trust. While the
number of unique inquiries to the system increases back to
the level of T1.2 and is thus significantly higher than in T1.3

[t(205) = 2.13, p = 0.034], both the absolute change be-
tween offers (-2.69) [t(205) = −1.53, p = 0.126] and the
WOA (-0.15) [t(90) = 0.625, p = 0.534] decrease, albeit
not significantly. Still, combined results from the three treat-
ments suggests that interpretability increases system usage,
but has either no or a slightly negative effect on system trust.
Once proposers are informed that their counterpart is aware
of the system, they appear to utilize its advice more.

Result 3: Endowing proposers with additional informa-
tion on the system’s accuracy does not increase system
trust or usage. However, proposers appear to weigh al-
gorithmic information more strongly once responders are
informed about the system.

Responder + DSS

In T2.0 and T2.1, we focus on responder behavior as a re-
sponse to the introduction of a proposer DSS. We first find
that responders in T2.0 who do not receive any explanations
about the system substantially revise their minimum offer by
on average 10.24 cents. This is associated with a small, di-
rectional increase of the average minimum offer. Thus, sub-
jects corrected both upwards and downwards. In line with
these results, 39% of responders agreed that they would have
chosen a different minimum offer, if the proposer did not
have a DSS (see table 8).

Disagree Neutral Agree Mean Std. Dev.

T2.0 54 (51.43) 10 (9.52) 41 (39.05) 3.47 2.03
T2.1 62 (59.05) 12 (11.43) 31 (29.52) 3.08 1.86

Table 8: Responders’ agreement to the following statement:
“I would have chosen a different minimum offer if the pro-
poser did not have a recommendation system”

Comparing rejection rates between the first and the re-
vised minimum offer, we find that the changes induced
by the DSS tendentially decrease the overall number of
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successful interactions. Whereas responder decisions with-
out knowledge of the system would have resulted in rejec-
tion rates of 22.9% in T2.0, the implemented rejection rate
based on the revised minimum offer was 27.6% [t(104) =
1.29, p = 0.198]. Average responder income also decreased
marginally (-1.8 cents).

Result 4: Around 40% of responders adjust their mini-
mum offer upon learning that their proposer has the op-
tion to use a DSS.

One reason why responder minimum offers tended to in-
crease might lie in their fairness perceptions. To test this,
responders indicated whether they agreed that it is unfair
that the proposer gets to use a recommendation system. In
T2.0, 34% agreed with the statement. These 34% made up
62% of all responders who revised their minimum offer upon
learning about the system. Further, they adjusted their initial
offers significantly upwards by about 7.8 cents on average
[t(35) = 1.69, p = 0.049]. Feelings of unfairness thus seem
to drive higher responder offers, making the bargain overall
more risky and less likely to be successful.

Result 5: Roughly one-third of responders judged the
introduction of a DSS as unfair and concomitantly de-
manded significantly more money from the proposer.

Disagree Neutral Agree Mean Std. Dev.

T2.0 49 (46.67) 20 (19.05) 36 (34.29) 3.47 1.92
T2.1 67 (63.81) 12 (11.43) 26 (24.76) 3.09 1.86

Table 9: Responders’ agreement to the following statement:
“I think it is unfair that the proposer gets to use a recom-
mendation system.”

Responder + DSS + Interpretability

T2.1 endows responders with the same process-related infor-
mation proposers received in T1.2. As a result, responders
revised their initial minimum offer by on average 4.2 cents,
which is significantly less than in T2.0 [t(208) = 2.84, p =
0.005]. The share of subjects indicating different minimum
offers if the proposer did not have a DSS also dropped by
10 percentage points to 29%. Similar to T2.0, these DSS-
induced changes increase rejection rates from 20% to 24.7%
[t(104) = 1.91, p = 0.058] and reduce responder income by
2.8 cents on average [t(104) = 1.96, p = 0.053]. The share
of responders who judged the availability of a DSS on the
proposer’s side as unfair decreased by almost 10 percent-
age points, leaving roughly 25% of responders. Contrary to
T2.0, these 25% only make up 37% of all responders who re-
vised their offer, and their average increase in minimum of-
fers (+3.3 cents) is not significant [t(25) = 1.15, p = 0.26].
Thus, it appears that the introduction of additional expla-
nation reduced perceptions of unfairness, which might ex-
plain why on average adjustments where significantly lower
in T2.1 than in T2.0. Despite this, responders still asked
for significantly more once they learned about the system
[t(104) = 2.33, p = 0.022] and thereby decreased both their
and their proposers average income.

Result 6: Endowing responders with an explanation about
the DSS decreases average absolute adjustments of their
initial minimum offers as well as self-reported change in
behavior due to the system.

Result 7: Endowing responders with an explanation about
the DSS decreases perceptions of unfairness.

5 Discussion

The question whether human decision-makers effectively
utilize algorithmic systems and integrate them into their
decision processes will be a key factor in harnessing the
economic potential of machine-learning models. Moreover,
these developments will depend crucially on a society’s
institutional framework, like novel transparency or inter-
pretability regulations. Still, only little is known about
how human decision-makers use decision-support systems,
whether or under what conditions interpretability does lead
to better decision-making, and how changes in behavior
translate into human cooperation and market outcomes. Our
experiments provide initial results to help tackle and ad-
vance our current understanding of these issues.

RQ1: Do human decision-makers integrate advice from
a black-box DSS? We show that users are willing to in-
tegrate advice from a black box DSS. As a result, both
the share of successful interactions and aggregated income
increase, with responders receiving disproportionally large
gains. However, proposers under-weigh the system’s advice,
and thereby lose out on substantial economic gains. Knowl-
edge about responder non-transparency does not appear to
further trust in the model, although a significant share of
roughly 30% agreed that they would make different offers
conditional on the responder having transparent knowledge
of the system. This was confirmed in a later analysis, where
notice about responder transparency decreased system uti-
lization but increased offer adjustments in line with the sys-
tem’s recommendations. We can therefore derive two ad-
ditional insights. First, despite some willingness to use the
system, thinking about ways to increase user trust still holds
many economic benefits, and second, transparency regula-
tions on behalf of stakeholders affected by a DSS should
take potential feedback effects into account.

RQ2: Do human decision-makers exhibit different
social concerns while interacting with another human
using an ADM system? In our experiment, responders
were only affected by the DSS through the proposers
decision. Nevertheless, we find that responders increase the
minimum offer they are willing to accept once they learn
about the system. Without an explanation, this effect is
primarily driven by a subset of responders who judge the
system’s availability as unfair. It therefore seems likely that
perceptions of unfairness are at least partially responsible
for the change in minimum offers. Another possibility is
that fairness expectations change when humans are assisted
by a decision-support system. Instead of demanding more
money because people feel unfairly treated, it might be
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that they either frame offer fairness differently conditional
on the availability of a DSS, or that people are harder to
convince that an offer is fair when it is derived with the help
of a support system. This might explain why explanations
were effective in reducing feelings of unfairness.

RQ3: Does interpretability mediate system trust and
fairness perceptions? Endowing responders with an ex-
planation decreases the share who find it unfair that the pro-
poser can use a DSS, but responders on average still revise
their minimum offer upwards. This negatively impacts over-
all market outcomes, since the share of successful interac-
tions as well as aggregated income decrease. Explanations
might mitigate, but not negate negative feedback effects.

For proposers, interpretability induces higher system us-
age, which does not translate into higher system trust. If any-
thing, those who receive additional explanations weigh the
model’s advice less intensely and make on average less ef-
fective offers. We also do not find a difference between only
process-related, and full interpretability that offers informa-
tion on the system’s accuracy. In sum, the effects of inter-
pretability on overall market outcomes are ambivalent, and
tend to affect human stakeholders differently depending on
their role within the bargaining situation.

Practical Implications

A failure to successfully negotiate or cooperate often entails
losses for all actors involved. Our results highlight the po-
tential of decision support systems to increase the efficacy
of human-human interactions, which benefits everyone, ir-
respective of the allotment of the system. Nevertheless, in-
sufficient system trust still causes economic losses, which
in reality might be represented by products not being sold,
a breakdown of vital negotiations such as unions vs. firms
or trade negotiations. Regulators should therefore be inter-
ested in constructing an institutional framework that facili-
tates system trust – conditional on the system being safe and
useful. Here, we find that interpretability and transparency
rules might induce ambivalent effects on market outcomes.
In particular, those who are not endowed with a system ap-
pear to behave under different social concerns once they ob-
serve that another actor uses a DSS. As a result, forcing
businesses, firms or organizations to disclose whenever al-
gorithms are used to augment or substitute decision-making
could have unintended consequences for all sides. Simply
increasing the interpretability of a system does not automat-
ically improve decision-making or human cooperation, but
could assist in alleviating perceptions of unfairness.

Caveats and Limitations

The simplicity of the selected model made it easy to ex-
plain the training and prediction process. However, simplis-
tic models may be perceived as inaccurate by the partici-
pants. On the other hand, while the model alone is simplis-
tic, it doesn’t directly provide the best offer proposers should
make. Efforts were invested to make the ADM interface sim-
ple and understandable.

We used a specific interpretability intervention that for
various reasons might not generalize towards all inter-
pretability instruments. Further research is needed to de-
termine the optimal design of explanations conditional on
the social context. Moreover, the provided explanation did
not increase self-reported measures of understandability. Ex-
planations that make people feel like they understand more
about a system’s processes could have different effects. Still,
despite no measurable effect on understandability, subjects
in our study received additional information that clearly ex-
plained how the DSS was trained and achieved different pre-
dictions. As such, it did increase interpretability and opened
the black box for participants. Future research should con-
sider how interpretability and understandability interact in
the context of human behavior.

Using a DSS increased proposers’ income on average, but
still caused some participants to switch from a good offer to
a bad one. This effect remained with the introduction of ex-
planations on how the system was trained and works. Deci-
sion support systems being able to give the user personalized
explanations for the same predictions could improve overall
market outcomes.

Since WOA is only partially suited as a measure of trust
for a DSS that offers a range of information rather than a sin-
gle recommendation and allows decision-makers to integrate
their personal preferences e.g. with regard to risk-taking, we
base a lot of our analysis on the average absolute deviation.
We thereby acknowledge that the question of system trust
does not necessarily depend on improvements in decision-
making. Rather, an increase in system trust should be re-
flected by a higher impact, and thus measured by changes
in behavior induced by the system. It is reasonable to as-
sume that some decision-makers will be willing to decrease
their expected gains for a chance to earn more than an even
split. Increased system trust could decrease the uncertainty
attached to such a decision and thereby motivate offers that
are more unequal than a proposer’s initial offer. This would
be interpreted as a decrease in system trust by the WOA-
metric, but captured by the average absolute deviation.

6 Conclusion
In this paper, we studied how the introduction of a DSS af-
fects human-human interactions in a bargaining context. We
show that effects are heterogeneous depending on the hu-
man stakeholders involved. Introducing a black-box system
increases the efficacy of human cooperation and overall mar-
ket outcomes, but users under-weigh the system’s advice and
thereby do not exploit its full potential. Furthermore, eco-
nomic gains are exclusively driven by improved user deci-
sions, whereas people who do not have a DSS themselves
become more demanding upon learning that their counter-
part has the option to use one. This effect appears to be sig-
nificantly influenced by perceptions of unfairness and de-
creases cooperation levels as well as market efficiency.

On the user side, we find that interpretability increases
system usage, but does not lead to higher system trust or
better market outcomes. However, perceptions of unfairness
from those not having a system available are mitigated by
increased interpretability.
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