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Predicting Abiotic TCE Transformation Rate
Constants—A Bayesian Hierarchical Approach

by Anna Stériko "=, Albert J. Valocchi© , Charles Werth © and Charles E. Schaefer

Abstract

Fe(ll) minerals can mediate the abiotic reduction of trichloroethylene (TCE), a widespread groundwater contaminant. If reaction rates are
sufficiently fast for natural attenuation, the process holds potential for mitigating TCE pollution in groundwater. To assess the variability of
abiotic TCE reduction rate constants, we collected pseudo-first-order rate constants for natural sediments and rocks from the literature, as well
as intrinsic (surface-area-normalized) rate constants of individual minerals. Using a Bayesian hierarchical modeling approach, we were able to
differentiate the contributions of natural variability and experimental error to the total variance. Applying the model, we also predicted rate
constants at new sites, revealing a considerable uncertainty of several orders of magnitude. We investigated whether incorporating additional
information about sediment composition could reduce this uncertainty. We tested two sets of predictors: reactive mineral content (measured
by X-ray diffraction) combined with surface areas and intrinsic rate constants, or the extractable Fe(ll) content. Knowledge of the mineral com-
position only marginally reduced the uncertainty of predicted rate constants. We attribute the low information gain to the inability to measure
the (reactive) surface areas of individual minerals in sediments or rocks, which are subject to environmental factors like aqueous geochemistry
and redox potential. In contrast, knowing the Fe(ll) content reduced the uncertainty about the first-order rate constant by nearly two orders
of magnitude, because the relationship between Fe(ll) content and rate constants is approximately log-log-linear. We demonstrate how our
approach provides estimates for the range of cleanup times for a simple example of diffusion-controlled transport in a contaminated aquitard.

groundwater systems where the contaminant mass is mostly
contained in diffusion-controlled rock matrices, even slow
degradation (half-lives of 5 to 20 years) can strongly contrib-
ute to natural attenuation (Pierce et al. 2018).

Several degradation pathways of TCE are known. Most
widely known is the microbial reductive dechlorination path-
way, where microorganisms reduce TCE to dichloroethylene
(DCE), vinyl chloride (VC), and eventually ethene under
anaerobic conditions. This pathway is challenged, however,
by the fact that toxic intermediate products, DCE and VC,

Introduction

Trichloroethylene (TCE) is a widespread contaminant
in groundwater aquifers worldwide (Bourg et al. 1992). It
is present at many U.S. military bases and industrial sites
because of its use—among others—as a degreasing agent
and for dry-cleaning (Morrison and Murphy 2013; Hem-
pel 2021). Over decades in groundwater aquifers, TCE has
diffused into low-permeability zones. After source zone
depletion, back-diffusion into aquifers often leads to concen-
trations that exceed the regulatory standard (You et al. 2020).

The slow release of TCE from low-permeability zones
makes remediation measures intricate and cost-intensive
(O’Connor et al. 2018). Natural attenuation by biological and
abiotic transformation processes is thus an attractive pros-
pect, provided that degradation rates are sufficiently fast. In
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often accumulate in groundwater due to slower kinetics or
inhibition of the respective reaction steps. Additionally, the
reaction depends on the presence of a functioning commu-
nity of TCE degraders that possess the enzymes necessary
to mediate the reaction, and suitable electron donors (Brad-
ley 2003). Acidic conditions (pH below ~6) can also restrict
degradation by microbial reductive dechlorination (Zhuang
and Pavlostathis 1995; Steffan and Schaefer 2016).
Alternatively, TCE can be degraded abiotically through
reactions mediated by ferrous minerals (He et al. 2015).
The ferrous minerals serve as an electron donor that can
reduce TCE to acetylene and possibly other reduced gases
under anoxic conditions, or react with oxygen to pro-
duce hydroxyl radicals that oxidize TCE to organic acids
under (micro-)oxic conditions. In controlled laboratory
studies, acetylene is usually the primary reaction product
observed under anaerobic conditions. Ethene and ethane,
propane, and butane are also frequently observed and are
believed to result from the hydrogenation of acetylene and
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coupling reactions at iron mineral surfaces (Arnold and
Roberts 2000; Elsner et al. 2008; He et al. 2015; Schaefer
et al. 2017). Under microoxic conditions, oxalic, glycolic,
and glyoxylic acids have been observed (Pham et al. 2008;
Schaefer et al. 2018). These products can be easily degraded
by microorganisms, making abiotic degradation processes
difficult to identify in the field. Several ferrous minerals
have been shown to mediate the abiotic transformation
of TCE, among them iron sulfides (pyrite, mackinawite),
iron carbonates (siderite, ankerite), and iron-bearing clay
minerals (Butler and Hayes 1999, 2001; Weerasooriya and
Dharmasena 2001; Lee and Batchelor 2002a, 2002b; Jeong
and Hayes 2007; Liang et al. 2007; He et al. 2010; Kim
et al. 2013; Velimirovic et al. 2013; Schaefer et al. 2021).

In order to know if natural attenuation by abiotic trans-
formation will mitigate TCE back diffusion, it is necessary
to quantify rates of transformation at field sites. Pseudo-
first-order rate constants are a common measure used to
estimate how fast reactions occur. They are typically deter-
mined in batch experiments where TCE is incubated with
sediments, and the concentrations of TCE and reaction prod-
ucts are monitored over time (e.g., Schaefer et al. 2018; Yin
et al. 2023). They can also be determined in more complex
settings, such as diffusion cell experiments in combination
with a reactive transport model (Schaefer et al. 2013, 2015;
Berns et al. 2019). However, experiments to determine rate
constants are time-consuming and can only be done if a
sample of the material is available. When an experimental
determination of the rate constant is not a viable option for
a particular site, rate constants can only be estimated by
extrapolating from other sites, or possibly from site-specific
information regarding ferrous minerals and their reactivity
with TCE. In these cases, it is particularly important to con-
sider the uncertainty of such a prediction.

Uncertainty about rate constants at new sites arises
from several sources. The first source is physical variability
between sites: sediments contain different amounts of reac-
tive minerals, minerals vary in specific surface area, and the
reactivity of a mineral normalized to its surface area may
also vary between sediments, possibly due to differences in
redox potential, amount of adsorbed ferrous iron, compet-
ing species undergoing reduction, organic matter coatings,
etc. The second source is uncertainty about parameter val-
ues because measurements are imprecise. Finally, there is
also uncertainty about the conceptual model and the “cor-
rect” mathematical description of reaction processes. For
example, we may question if a first-order decay model is
appropriate.

The goal of our study is to develop a statistical modeling
approach to predict abiotic TCE reduction rate constants in
natural sediments based on site-specific information regard-
ing ferrous minerals and their reactivity with TCE that takes
into account these uncertainties. Abiotic TCE oxidation
rates may also be important (Damgaard et al. 2013; Berns
et al. 2019), but are outside the scope of this effort. We will
address the following specific questions:

* How large is the uncertainty of first-order rate constants
of abiotic TCE reduction in natural sediments?
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* How can we predict first-order rate constants for new
sites based on the available ferrous mineral data?

e What types of additional information about a material are
most helpful to reduce uncertainty of the rate constants?

We will not address the third source of uncertainty (con-
ceptual uncertainty) quantitatively in this paper but will
address how it affects estimates and predictions qualitatively.

To assess the variability of TCE reduction rate constants
we have gathered values for a variety of materials that
were available from the literature (He et al. 2010; Schaefer
et al. 2015, 2017, 2018; Berns et al. 2019; Yu et al. 2020;
Yin et al. 2023). We then unravel parameter uncertainty and
physical variability of different materials using a Bayes-
ian hierarchical modeling approach. Bayesian modeling
is a statistical approach that provides a powerful and con-
sistent way to handle uncertainty in observations, model
parameters, and model structure. In the Bayesian frame-
work, parameters are described by probability distributions
instead of fixed values. These distributions express our
degree of knowledge about the parameters. We can update
our knowledge, and thus the distributions, by using informa-
tion about parameters contained in observations, for exam-
ple, measured rate constants determined in experiments.
The hierarchical modeling approach, also called multilevel
modeling, lets us account for physical variability between
sediments by determining individual parameters for each
sediment sample. However, we assume that each sediment
sample is drawn from a common distribution of sediments
with similar properties. By employing this approach, we
can effectively predict the parameters and their associated
uncertainty for sediments that have not yet been probed.

The range of measured pseudo-first-order rate constants
for natural sediments is very broad when no additional
information is taken into account. Measured half-lives range
between less than 1d to more than 1000 years. To reduce the
predicted range of rate constants, we test two approaches
of incorporating additional data about the material prop-
erties. First, we use information about the abundance of
reactive minerals, and about the intrinsic rate constants of
these minerals. Abiotic TCE reduction rate constants have
also been determined for individual minerals (Butler and
Hayes 1999, 2001; Weerasooriya and Dharmasena 2001;
Lee and Batchelor 2002a, 2002b; Jeong and Hayes 2007;
Liang et al. 2007; He et al. 2010; Kim et al. 2013; Veli-
mirovic et al. 2013; Schaefer et al. 2021). We can integrate
these data into the estimation of first-order rate constants
if we assume that the overall first-order rate constant is
composed of the contributions of individual minerals. Sec-
ond, we consider the extractable Fe(Il) content from dilute
acid extraction as a predictive variable since it has shown
a correlation with pseudo-first-order rate constants in ear-
lier studies (Schaefer et al. 2013, 2018). Overall, we use
three categories of data (tabulated in Tables S1 and S2 of
the Supporting Information): (1) Pseudo-first-order rate
constants of natural sediments, (2) intrinsic rate constants
of pure minerals, and (3) data providing additional informa-
tion about sediment composition (measured mineral mass
fractions and extractable Fe(II) content).

NGWA.org
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We structure the remainder of the article as follows: First,
we explain how to model first-order rate constants with a
Bayesian hierarchical approach, accounting for experimental
and parameter uncertainty and natural variability. We dis-
cuss how first-order rate constants of natural sediments can
be linked to the reactive mineral and Fe(II) content of natural
sediments. We illustrate how the results can be used to pre-
dict first-order rate constants at sites where TCE degradation
has not previously been studied, either with known or with
unknown sediment properties. Finally, we discuss what indica-
tors or measurements are most suitable to reduce uncertainty
of predicted TCE rate constants, based on our findings.

Methods

Accounting for Uncertainty and Variability with Bayesian
Hierarchical Modeling
Bayesian Modeling and Parameter Inference

Bayesian modeling involves three main steps: model
building, inference, and model checking or improvement
(Gelman et al. 2020). First, we choose uncertain model
parameters and a mathematical model that relates them to
observed variables. Based on expert knowledge (e.g., physi-
cal constraints, literature values), we define prior probabil-
ity distributions that represent reasonable ranges and our
uncertainty about the parameters, without considering the
data. Model building also encompasses defining a statis-
tical model that describes our knowledge of how data are
generated. In particular, we need to define the likelihood
function, which represents the conditional probability of
observing a given set of data, provided the parameters are
known. The likelihood can also be interpreted as a measure
of goodness-of-fit between the model and data.

In the inference step, prior distributions and likeli-
hood are combined to obtain the updated posterior dis-
tribution. The posterior distribution usually needs to be
approximated numerically, for example, using Markov
chain Monte Carlo (MCMC) methods. This step is related
to deterministic model calibration (e.g., maximum like-
lihood estimation), but it recovers samples from the full
parameter distribution instead of a point estimate and thus
provides an uncertainty estimate. Finally, we diagnose
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computational issues, assess convergence of the inference,
evaluate model fit, compare alternative models, and make
changes to prior distributions and the model structure in
order to resolve problems.

Hierarchical Modeling of Sediment Variability

There are two sources of variability in measured first-
order rate constants:

1. Physical variability between the sediments—for ex-
ample, sediments can vary in their content of reactive
minerals (we mean “physical” in the sense of “relating
to material things”—that is, it can also relate to chemical
properties).

2. Uncertainty arising because experimentally determined
values are subject to measurement error. Replicate mea-
surements or different experimental set-ups (e.g., batch
vs. diffusion experiment, or differing aqueous geochem-
istry) yield different rate constants for the same sediment.

We can represent both of these sources of variability
with probability distributions. The first distribution reflects
how probable a certain rate constant is if we consider any
kind of sediment, and we will call this the global parameter
distribution. We specify this distribution for the logarithm of
rate constants in order to take into account that natural vari-
ability ranges over several orders of magnitude. In addition,
the log transformation ensures that estimated rate constants
are positive. We assume that the log rate constants follow a
normal distribution with mean py, , and standard deviation
O1nA» Where oy, 5 represents the variability of rate constants
caused by physical and chemical differences between natu-
ral sediments. The rate constant of any specific sediment j,
ln(ﬂj) is obtained from the global parameter distribution:

In(2) ~ N(Hiaps 61007); )

where ~ means “follows the distribution of” (Figure 1). We
can obtain information about the shape of the global distri-
bution (that is, about y, » and oy, ,) by using data from sev-
eral sediments. Rate constants from clayey sediments and
rock matrices are assumed to originate from the same distri-
bution. While a model that distinguishes the distributions of

PHYSICAL VARIABILITY

clay 1 clay 2 sandstone mudstone sediment j
InA.
J EXPERIMENTAL ERROR
Cy
Ve ! T 1
replicate 1 replicate 2 measurement R

Figure 1. Sketch of the hierarchical model: The log rate constants of different sediments j follow a normal distribution (shown
in blue) that represents physical variability. (The sketch examplarily shows only four sediments, not the full model and dataset.)
Measurements follow a normal distribution representing experimental error around the log rate constants In4; (shown in yellow).
The parameters p, ,, 01,4, and o, are uncertain, and therefore also described by probability distributions (not shown in the sketch).
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these types of materials might be conceptually more appro-
priate, it would also require more data to infer the larger
number of parameters.

We further assume that measured rate constants follow a
normal distribution with standard deviation o, (representing
experimental error) around 4; on a log scale:

e ~N(1n(/1jk>,ay2), ?)

where k is an index of the measurement, jj is the sediment
used in experiment k, and y;, is the log of the measured rate
constant. The log transformation here means that we assume
arelative error (expressed as a fraction or percentage) for the
rate constants.

The parameters of those two distributions (¢, x, O1n A
and O'y) are not known, and we need to estimate them from
the data. In a Bayesian context, we express our knowledge
(or uncertainty) about parameters in terms of probability
distributions. Thus, the parameters yij, 5, 61,4, and o, them-
selves are also assigned a distribution (the prior), that gets
updated to a posterior distribution based on the data. Details
about how we choose prior distributions can be found in Sec-
tions S2.1 and S2.2, Supporting Information, and Table S4.

Integrating Information about Mineral Composition
and Fe(ll) Content

Variability of rate constants in natural sediments is
very large (Table S2), implying that rate constants for yet
unobserved sediments are very uncertain. However, min-
eral reactivity is not completely random but can be linked to
physical properties such as the presence of reactive minerals,
or the total Fe(Il) content. Accounting for this information
in the prediction of rate constants could reduce uncertainty.
A simple way to make more specific predictions would be
to add another level to the statistical model that differenti-
ates various sediment categories (“mudstone,” “clay,” “sand-
stone,” etc.). That is, instead of using the same y, » and o, o
for all sediments, we could introduce one parameter per
category. However, we do not follow this approach because
the number of data points available for each category is too
small. In addition, the variability of rate constants within
each category could still be large because sediments from
the same category may have very different amounts of reac-
tive minerals. Instead, we consider two measures that have
been considered previously to assess the potential of TCE
degradation in natural sediments: the mass fraction of spe-
cific reactive minerals as determined by X-ray diffraction
(XRD), and the Fe(II) content determined by extraction. We
set up several models that link reactive mineral content or
Fe(II) content to bulk first-order rate constants via empirical
relationships, enabling us to leverage the information con-
tained in the additional measurements.

99 ¢

Relating First-Order Rate Constants to Reactive Mineral
Content

Several minerals that react with TCE can be present in
a sediment at the same time. Similar to the approach taken
by Yin et al. (2023), we assume that they do not directly
interact with each other during TCE degradation, so that the

4 A Stérikoetal/ Groundwater Monitoring & Remediation

reaction rates are simply additive. The reaction rate of TCE
with one specific mineral is assumed to depend, apart from
the TCE concentration, on

1. The amount of reactive mineral present,

2. The specific surface area of the mineral, and

3. Its intrinsic reactivity, which is encoded in the intrinsic,
surface-area-normalized rate constant k; (L/m*year).

Thus, we can relate theoretical first-order rate constant
of sediment j, Aj’." (I/year), to the intrinsic rate constants,
specific reactive surface areas A; (m*/g) and mineral content
&;; (g/g of solids) of the reactive minerals 7, and the solid-to-
liquid ratio w; (g/L) of the sediment as follows:

i = Y kb, 3)
1

where the index i represents the reactive minerals in the sed-
iment, and j indexes the sediment. The asterisk superscript
(%) is used to indicate that this is the theoretically expected
rate constant based on the intrinsic rate constants of indi-
vidual minerals, which we distinguish from the actual first-
order rate constants /lj, as further explained in Section 2.2.2.
Note that we allow the mineral content and specific surface
area of each mineral to vary between different sediment
samples. The specific surface area of a mineral depends, for
example, on grain size and the degree of crystallinity, which
can vary with location.

In our model, we only consider a subset of minerals for the
sum in Equation 3. We assume that all the reactivity toward
TCE can be attributed to mackinawite (FeS), pyrite, siderite,
and illite. This is certainly a simplification of reality. How-
ever, given the limited data available, we deem it necessary to
reduce the complexity of the model and the number of param-
eters. Iron sulfide minerals tend to be much more reactive (on
the order of several magnitudes) than other ferrous minerals
with TCE. Therefore, they likely cause most of the reactiv-
ity when they are present. We chose siderite as an additional
mineral even though its reactivity is comparable to other
minerals because it was detected by XRD in several samples
shown to be reactive toward TCE (Schaefer et al. 2018), and
other carbonate minerals (ankerite, dolomite) are common in
other samples with ferrous iron that show reactivity toward
TCE (Schaefer et al. 2015; Berns et al. 2019). We note, how-
ever, that neither mackinawite, pyrite nor siderite is detected
in many samples with reactivity toward TCE. This is likely
due to the inability of XRD measurements to detect minerals
that have a low abundance or are poorly crystalline.

In order to quantify the uncertainty of bulk rate con-
stants, we treat the parameters k;, Aij, and (;bij as random vari-
ables. That is, we do not use fixed values, but account for
their uncertainty by using distributions of these parameters.
For each mineral, we use the same k; in all sediments. We
specify a broad prior and then use measured intrinsic rate
constants reported in the literature to update the distribution
via the likelihood (Figure 2).

For the mineral contents ¢, we apply a hierarchical
approach and estimate the mineral contents in each of the
sediments as well as the parameters of a global distribution
of mineral contents (details are provided in Section S2.2).
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batch experiment
data (pure minerals) XRD data

intrinsic rate constant k; surface area A;; mineral content ¢

pseudo-first-order rate constants of natural sediments

ij

Figure 2. Conceptual model of the mineral content/surface area model, and data used to infer its parameters.

If XRD data are available for a sediment, we integrate the
contained information about the mineral content into the
model via the likelihood. We assume that data follow a
censored normal distribution with constant standard devia-
tion around the logit-transformed mineral content. This is a
normal distribution that is truncated at the detection limit,
with the probability mass below the detection limit added
at the cutoff (see Section S2.3). We apply the logit trans-
form—defined as logit(x) = In lex in order to map min-
eral fractions (ranging between 0 and 1) to the real numbers
(Gelman 2014). For small values, it is similar to the log
transform, so a constant error on the logit scale approxi-
mately corresponds to a relative error of the measured
mineral content. Minerals with low abundance cannot be
detected with XRD. However, a non-detection still provides
information—namely that the mineral content is below the
detection limit. In order to use this information, we set the
mineral content of non-detected minerals to the detection
limit (1%) and account for the censoring in the likelihood
function (see Section S2.3). Because we adjust the likeli-
hood function, the data points will provide information that
the mineral content is less than 1% (and potentially much
smaller), rather than exactly 1%.

We also use a hierarchical approach for the specific surface
area A i That is, we estimate the global distribution of surface
areas of a mineral i, and the specific surface area of mineral
i in each sediment j (details in Section S2.2). Because it is
not possible to measure the surface area of individual minerals
in natural sediments, the distributions of Aij can be estimated
only indirectly through measurements of the bulk TCE rate
constants, intrinsic rate constants, and mineral contents.

The only parameter that we treat as fixed is the solid-
to-liquid ratio wj, because we consider its uncertainty to be
small relative to that of other variables in the model. In order
to simplify the model, we eliminated the parameter from the
model by normalizing all rate constants by w;. That is, we
modified the likelihood given in Equation 2 as follows:

e ~N(1n(/1]’.k>,ay2), @)

’ A . .
where ﬂj = ;’ is the normalized rate constant.
i

NGWA.org

Accounting for Reduced Reactivity of Natural Sediments
Based on our prior distributions of the intrinsic rate con-
stants, specific surface areas and measured mineral contents,
we computed the theoretical first-order rate constants of natu-
ral sediments in low permeability zones (using Equation 3).
First-order rate constants of natural sediments reported in the
literature vary over several orders of magnitude. However,
all of them are smaller than the theoretically computed val-
ues obtained from rate constants of individual minerals (fur-
ther details are provided in the results, Section 3.1.2.2). This
lower effective reactivity of natural sediments can have vari-
ous reasons. For example, not all the mineral surface area may
be accessible for TCE because it may be blocked by sorbed
compounds. Or, small-scale diffusion processes that are not
resolved by the model limit the effective rate. We can account
for the observed discrepancy between the theoretical and
observed first-order rate constants of natural sediments by
applying an empirical scaling factor g that reduces the intrinsic
rate constants of individual minerals, making them less reac-
tive. The so-called “corrected” parameter is denoted by 4;:

A= quiAii¢iin G)
1

We estimate the distribution of the parameter g alongside
with other parameters through Bayesian inference. Even
though g could depend on the sediment or mineral, we
decide to use the same factor for all minerals and sediments
given our limited amount of data.

Relating First-Order Rate Constants to Total Fe(ll) Content

Several studies have shown a relationship between Fe(II)
content of natural sediments or rocks and pseudo-first-order
TCE reduction constants (Schaefer et al. 2013, 2018). Even
though the materials differed widely in terms of the amounts
and types of minerals present, the relationship between the
Fe(Il) and bulk reaction rates was approximately linear,
when plotted on a log—log scale. Based on the results of these
studies, we propose the following Bayesian regression model
to predict rate constants from the Fe(II) content:

In(4;) = aln[Fe(ID]; + b +¢; 6)
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Here, a and b are the coefficients of the linear regres-
sion. A linear relation on the log—log scale corresponds
to a power law on the non-log scale. This also means that
at zero iron content, the TCE reduction rate constant is
always zero. To account for the fact that the relationship is
not perfectly linear but somewhat noisy, we add a stochas-
tic error term &; ~ N (0,0, ). This means that the first-order
rate constant for each sediment may deviate a bit from the
linear relationship. The parameters a, b, and o, are esti-
mated from the data, and their prior distributions are given
in Table S4. Measured log rate constants are assumed to
follow a normal distribution around the regressed rate
constants ln(/lj), with a measurement error o, (same as
in Equation 2). In principle, the model error and mea-
surement error could also be combined into a single error
term. The advantage of separating both terms is that it
allows us to get a more accurate uncertainty estimate for
the rate constants predicted for new sediments.

In contrast to standard linear regression, we do not
assume the explanatory variable (the logarithm of the Fe(II)
content) to be known exactly. Instead, we suppose that
In[Fe(ID]; is unknown, and needs to be estimated from mea-
surements z;. To estimate the Fe(I) content in the sediments
we once more take a hierarchical approach. The In Fe(I)
content of sediment j is assumed to follow

In[Fe(ID]; ~ N (ﬂln[Fe(II)]’ On[Fe(ID)] 2 ), N

where pyppeany) and opypeary) are the mean and standard
deviation of the global In[Fe(Il)] distribution. We estimate
Hin[Fe(iny) a0d 01y (geqry through Bayesian inference from the
data. For the data in experiment k we assume that

2~ N(WnlFe)], o ). ®)

where o, is the measurement error. Since replicate Fe(II)
measurements are not available, it is not possible to estimate
o,. Thus, we set it to a fixed value of 0.2, corresponding to a
relative error of the Fe(II) content of about 22%.

Predictions of Rate Constants in New Sediments

After obtaining posterior distributions of all model
parameters, we can predict the probability distribution of
rate constants in sediments at sites where no measurements
are available. Without additional information about a sedi-
ment (mineral content or Fe(II) content), this distribution is
given by the “global” distribution of A with parameters p, 5

and o, ». However, we can also compute predictive distribu-
tions that are conditional on a measured Fe(II) content or
measured mineral contents.

Since the mineral contents cannot be determined
exactly, we account for a measurement error as follows:
instead of using fixed values of the mineral composition,
we generate samples from a normal distribution around
the logit-transformed value of the assumed measurement,
using a fixed standard deviation. Since the logit transform
is similar to the log-transform for small mineral contents,
this approach is closely related to using a relative error of
the mineral contents. We choose the standard deviation
such that the corresponding relative error is about 10%.
Similarly, we assume that the In Fe(II) content follows
a normal distribution with standard deviation 0.2 around
the measured value to account for a relative measurement
error of about 20%.

The predictive distributions represent the variability due to
physical differences between sediments, parameter uncertainty,
and uncertainty due to measurement errors in mineral content
or Fe(Il) content measurements. They do not include variance
produced by experimental error in experiments to determine
rate constants (parameterized by o). We do not account for
these errors in predictions because we are interested in what
the actual rate constants of natural sediments are, not what rate
constants could be observed in experiments.

Implementation

In total, we set up three models to estimate first-order
rate constants of natural sediments and relate them to other
sediment properties. An overview of the models is given in
Table 1. We implement the models using the Python library
PyMC (Salvatier et al. 2016; Wiecki et al. 2023) that enables
a flexible and easy model specification. To sample the poste-
rior distribution we use PyMC'’s default No-U-Turn (NUTS)
sampler (Hoffman and Gelman 2014). It is designed to effi-
ciently sample the parameter space by exploiting gradient
information that is obtained through automatic differentia-
tion. To assess convergence of the sampler, we run multiple
independent MCMC chains and compute the rank-based
diagnostic criterion R (Vehtari et al. 2021) as implemented
in the software package ArviZ (Kumar et al. 2019) (com-
puted values are provided in Tables S4 to S6). Additionally,
we compute the effective sample size and visually inspect
trace plots, that is, graphs of the sampled parameter values
plotted against the posterior draw. The Python code and
data associated this study are openly available as a research
compendium (Storiko et al. 2023).

Table 1
Overview of the Different Models Used
Model Name Additional Data Used Equation

1 Only rate constants None None

2 Mineral content/surface Mineral content data (XRD), surface-area-normalized /1’ _ Z kA, b

i stants =4 Kty
area specific rate constants
3 Fe content Fe(II) content data (acid extraction)

1n(/11’.) = aln[Fe(ID]; + b +¢;

6 A Stérikoetal/ Groundwater Monitoring & Remediation
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Figure 3. Distributions of pseudo-first-order rate constants
in model 1 (only rate constants). The blue distributions show
the posterior for rate constants of individual sediments 4. The
gray distributions show the prior (same for all sediments) and
the posterior of the global distribution. Data points are plotted
as gray bars at the bottom of the axes. Note that some data
points lie close to each other, making the bars appear wider.

Results and Discussion

Rate Constants of Natural Sediments and Rocks
Distribution Based on First-Order Rate Constant Data Only

Figure 3 shows pseudo-first-order rate constant data for
different natural sediments that we collected from the litera-
ture (given in Table S2) as gray bars. Alongside, it shows the
posterior distributions for the rate constants of each of the
natural sediments (blue distributions) obtained with the only
rate constants model. (The same plot is provided for the
other models in Figures S3 and S4. Summary statistics of
the posterior distributions of all model parameters are pro-
vided in Tables S5 to S7.) Even though the prior distribution
(top of Figure 3) is the same for all sediments, the posterior
distributions are different, because different data were used
to update the distribution in each sediment.

The posteriors are considerably shifted compared to the
prior, so that the distributions overlap with measured rate
constants. In addition, the posterior distributions are nar-
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rower than the prior distribution. This shows that the pos-
terior is strongly informed by the data. However, the effect
of the data is not equally strong in all sediments. Distribu-
tions of sediments where several measurements are avail-
able (e.g., the dark gray mudstone) tend to be narrower than
those where we could use only a single data point. One
example of the latter is the clayey sediment 2: The posterior
distribution of its rate constant is not centered around the
measurement, but the mode sits somewhere in between the
measurement and the mode of the global distribution. This
shows the regularizing effect that the global distribution has
when only little data are available.

The global distribution of rate constants (shown in gray)
is broader than the distribution of any individual sediment
because it takes into account the physical variability of
natural sediments. It represents the range of reasonable rate
constants for natural sediments in general and, thus, the
range of values we need to consider when no measurements
are available. Even though it is more narrow than the prior
distribution, it still ranges over several orders of magnitude.

The lower tail of the global distribution extends to val-
ues as low as 108L/g/year, which corresponds to a half-
life of more than 1000years, assuming a solid-to-liquid
ratio of 6000 g/L. It is difficult to evaluate these small rate
constants experimentally because time constraints and the
accuracy of concentration measurements provide a lower
limit to rate constant measurements. However, it is unclear
exactly where such a limit would be, and it will be highly
dependent on the experimental setup. Thus, the extent to
which the distribution extends to small values will depend
a lot on the prior distribution. In practice, however, it may
not be so important how far the distribution extends at the
low end. From a practitioner’s point of view, these rate con-
stants could all be considered to be zero, since they exclude
the potential for site management by natural attenuation.

Rate Constants Predicted from the Contributions

of Individual Minerals

Intrinsic rate constants of pure minerals. Figure 4A shows the
surface-area normalized intrinsic rate constants (k;) of several
minerals that we collected from the literature (Table S3). For
the minerals represented in our model, we also estimated
posterior distributions of these rate constants based on the
data (Figure 4B and Table S6). Posterior distributions of illite
and siderite are only slightly shifted toward smaller values
but are still broad, since little data are available to constrain
them. In contrast, posterior distributions of pyrite and FeS
are considerably narrower than the priors. Nevertheless, the
uncertainty of surface-area-normalized rate constants of the
individual minerals is large in the posterior distribution. This
large uncertainty is caused by the wide spread of measured
surface-area-normalized rate constants. The measured
rate constants of pyrite and FeS range over six orders of
magnitude (Figure 4). This is much larger than we could
reasonably expect for variance produced by measurement
errors. The large spread of the rate constants instead suggests
that the experiments cannot measure intrinsic properties of
the minerals, but that the obtained values depend on external
factors that vary between the experiments.
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Figure 4. Intrinsic rate constants of anaerobic TCE reduction for different minerals. (A) Data gathered from the literature. (B)

Kernel density estimates of the prior and posterior distributions.

One reason why the surface-area-normalized rate con-
stants vary so widely is probably that the measured specific
surface areas used for normalization (usually determined
with N_-BET) may not be representative of reactive surface
areas. The normalization by reactive surface areas then adds
noise to the rate constant data, causing part of the variance.
Indeed, measured (log) rate constants for FeS and pyrite
normalized to mass rather than surface area (i.e., L/g/d ver-
sus L/m?%d) exhibit a lower variance (see Figure S1).

Geochemical conditions also affect TCE reaction rates,
potentially by modifying the reactive surface area. Several
studies have reported that TCE transformation rate con-
stants for iron sulfide minerals increase with pH (Butler and
Hayes 2001; Weerasooriya and Dharmasena 2001). This
effect has been attributed to the increasing deprotonation
of surface groups with increasing pH, making the mineral
more reactive. In addition, other water chemistry parameters
(ionic composition, organic matter) are known to influence
abiotic TCE transformation rate constants (Kim et al. 2013).

Another confounding factor could be that the assumed
linear dependence on surface area does not reflect the
actual reaction kinetics. A linear dependence on surface
area is often assumed for reactions at the mineral-water
interface if the rate is limited by the interfacial reaction
(Brantley 2008). However, the exact reaction mechanism of
abiotic TCE reduction at the surface of ferrous iron miner-
als is not known. Electron transfer at the surface of minerals
with semiconducting properties—such as iron sulfides—
can be fed by electron flow within the crystal (Yanina and
Rosso 2008). This could potentially result in an overall rate
law that does not depend linearly on mineral surface area.

8 A Stérikoetal/ Groundwater Monitoring & Remediation
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Figure 5. (A) Posterior distributions of theoretical rate con-
stants based on intrinsic rate constants (Equation 3) of indi-
vidual minerals and rate constants ‘corrected” based on
observations. (B) Prior and posterior distribution of the scal-
ing factor q.

Reduced reactivity of natural sediments compared to
pure minerals: Based on the mineral-specific, intrinsic
rate constants shown in Figure 4, we computed first-order
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rate constants without accounting for a correction factor
(using Equation 3). The mineral contents and surface
areas were based on the respective global posterior
distributions, reflecting the range that should be expected if
no measurements are available. The resulting rate constants
are much larger than observed rate constants of natural
sediments (compare the blue distribution in Figure 5 to
measurements indicated in red).

Only through the inclusion of the “correction” fac-
tor g (Equation 5) the posterior distribution of first-order
rate constants is shifted to align with the measured values
(yellow distribution in Figure 5). The posterior median of
the correction factor g is 0.0003, showing that the natural
sediments are several orders of magnitude less reactive than
what we expected based on intrinsic rate constants, specific
surface areas and typical mineral contents.

The importance of the scaling factor becomes evident if
we calculate a rate constant solely based on literature val-
ues and expert knowledge, instead of using the Bayesian
model that includes the scaling factor. We assume the fol-
lowing mineral composition: FeS: 0.01%, pyrite: 0.1%, sid-
erite: 3%, illite: 10%, and surface areas: FeS: 140.00 m%/g,
pyrite: 0.01 m%g, siderite: 0.30m?g, illite: 0.03 m?/g.
Using the mean of observed intrinsic rate constants (data
in Figure 4A averaged on a log scale—FeS: 1.2x107'L/
m?*year, pyrite: 9.0 L/m*year, siderite: 2.6x107*L/m?%
year, illite: 8.6 x 10~ L/m?%year), we obtain a first-order rate
constant for the sediment of 11 1/year. This is one order of
magnitude larger than the highest measured rate constant
(1.3 1/year).

Overall, the small scaling factor means that studies based
on pure minerals cannot be easily extrapolated to natural
sediments. Knowing the content of potentially reactive min-
erals in a sediment and the mineral-specific rate constants is
not enough to predict the actual degradation potential.

This is a potential limitation of approaches that aim to
determine the performance of abiotic degradation based on
the presence of reactive minerals, such as the Min-Trap®
sampler (Divine et al. 2023). Nevertheless, the Min-Trap®
sampler is an intriguing approach because it examines the
formation of new minerals rather than the mineral content
of a sediment. These newly formed minerals could possibly
be more reactive than existing Fe(II) minerals, contributing
stronger to degradation. It will be interesting to see if the
mineral contents from the sampler can indeed be predictive
for rate constants of aquifer materials.

Rate Constants Predicted from Fe(ll) Content

The logarithm of Fe(II) content and the logarithm of
the pseudo-first-order rate constants are clearly positively
related, and the relation can be approximated well by a log—
log-linear relationship (Figure 6). Even though a relation-
ship had been demonstrated earlier for individual datasets
(Schaefer et al. 2013, 2018), our analysis shows that it also
holds for our combined data set gathered from studies that
used a variety of materials (sandstone, mudstones, clayey
soils) and methods (batch experiments vs. diffusion—reac-
tion experiments).

The posterior median of the slope parameter is 0.47, and
the posterior median of the intercept is —16.4. Both param-
eters have considerable uncertainty in the posterior—the
5th and 95th percentile are [0.25, 0.68] and [-18.2, —14.4],
respectively. The uncertainty of the slope parameter con-
tributes to the predictive uncertainty of first-order rate con-
stants. Adding more experimental data to the regression
could reduce the uncertainty of the slope, and thus, the pre-
dictive uncertainty. The model error € provides a measure
of how much rate constants deviate from the linear relation-
ship. Its posterior distribution ranges between 0.15 and 1.52
(5th and 95th percentile). These values provide an absolute
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Figure 6. Modeled and observed relationship between Fe(II) content and pseudo-first-order rate constants. The gray line represents
the posterior median of ln()»’ ) Gray shaded areas indicate the 90% and 50% highest density intervals of ln(}»’ ) These intervals
represent the total uncertainty of the regression, which is influenced by uncertainty of the regression parameters a and b, and by
the error term & Blue crosses indicate posterior estimates of the Fe(Il) content and rate constants for individual sediments. The
intersection marks the median, and lines range between the 5th and 95th percentile of the posterior distribution. Colored markers

indicate the measured values.
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error on the log scale and can be converted to a relative
error of the rate constants: the rate constants differ from the
regression line by a factor between 1.16 and 4.59, that is,
less than one order of magnitude. The posterior median of
€ is 0.78, corresponding to a relative error of 2.18. Overall,
this shows that the regression cannot be used to determine
rate constants exactly, but it enables us to estimate the order
of magnitude of the pseudo-first-order rate constants.

Predicting Rate Constants for New Sediments

We can predict rate constants at new sites where they have
not been measured based on the posterior distributions of
all three models. However, the predictions vary between the
models. In the following, we assume that the solid-to-liquid
ratio is known, and amounts to 6183 g/L, corresponding, for
example, to a porosity of 30% and a bulk density of 1.85kg/L.

If nothing is known about the site, the “global” distribu-
tion of A provides an uncertainty estimate of the rate con-
stant. Even though no measurement of the mineral content
or Fe(Il) content is available, this distribution can be com-
puted based on the global distributions of mineral contents
or Fe(Il) content. The global rate constant distribution can
be obtained with all three models, and the estimated poste-
rior distributions are similar (even though the width of the
distributions somewhat differs between models) because
they are directly constrained by the same data. As discussed
previously, the distribution is very broad because observed
pseudo-first-order rate constants vary over several orders of
magnitude (orange distributions in Figure 7, and gray dis-
tribution in Figure 3; the range from the 5th to the 95th
percentile spans 2.7 orders of magnitude in the only rate
constants model). That is, without further information about
the composition of the material, the timescale of abiotic
TCE degradation is essentially unknown.

We then computed the conditional distribution of the
first-order rate constant A, given that the mineral com-
position is known, for example by XRD measurements.
Figure 7A shows the distribution of A for a sediment con-
taining 10% illite, 3% siderite, and just trace amounts of
pyrite (0.1%) and mackinawite (0.01%). The information
that we used is already more complete than what can be
reasonably expected because XRD in general cannot detect
minerals that are present at low contents (< 1%). Predicting
the first-order rate constants with the mineral content/sur-
face area model, the uncertainty of A for the sediment with

(A) Mineral-content/surface area model

mineral content

0.01% FeS, 0.1% pyrite,
3% siderite, 10% illite

unknown

known mineral composition is nearly as broad (2.6 orders
of magnitude) as the distribution when no information is
available about the mineral contents (3.1 orders of magni-
tude). However, it is slightly shifted toward smaller values,
precluding the possibility of very large rate constants. Over-
all, the predictions suggest that knowing the mineral content
provides only little information gain.

Alternatively, additional information about the sediment
composition could be obtained from a measurement of the
extractable Fe(II) content. We computed a posterior predic-
tive distribution of A conditional on a known Fe(II) content
based on the regression model. As shown in Figure 7B, the
posterior distribution for a sediment with known Fe(II) con-
tent is much narrower (1.4 orders of magnitude) than the
distributions for sediment where either no additional infor-
mation is available, or for the sediment with known mineral
content shown in Figure 7A.

To illustrate how these rate constants translate into
clean-up times at a contaminated site, we used a simple
one-dimensional diffusion—reaction problem (for details,
see Section S5). While our example is overly simplistic, rate
constant estimates can also be combined with more elabo-
rate site models to study the effect of degradation on attenu-
ation of contaminant concentrations (Pierce et al. 2018).
We assume that TCE is initially distributed uniformly in a
relatively thin aquitard layer. Over time, it reacts inside the
aquitard and diffuses out of the aquitard (see Figure S4). We
neglect sorption of TCE onto the sediment. We computed
the remaining mass as a fraction of the initial mass over
time based on an analytical solution for diffusion in a sheet
plane (Crank 1975, 48).

Assuming an aquifer thickness of 3m, and an effective
diffusion coefficient of 7.7x 10~ m?*year (approximating
tortuosity with a porosity of 0.3), the mass fraction remain-
ing after 100years assuming TCE is nonreactive is 67.0%
(also see Figure S5). If we account for reactions (using the
posterior of the global distribution), in contrast, the remain-
ing mass ranges between 2x1077% and 61.3% (5th and
95th percentile), with a median of 10.0%. This shows that
the abiotic TCE reduction has the potential to induce a con-
siderably faster decrease of the contaminant mass in certain
sediments, but has little effect in others. The uncertainty
about the decrease in mass due to TCE reduction is very
large. In the aquifer with a known Fe(II) content of 8000 mg/
kg; however, the range of remaining mass is 2x107%% to

(B) Fe(ll) content model

Fe(ll) content
[ 8000 mg/kg
unknown

T T 1
10-° 1074 1072 10° 10?

A [l/yr]

T T T T 1
10°° 1074 1072 10° 107
Al1l/yr]

Figure 7. Comparison of the predicted first-order rate constants for a sediment with unknown properties compared to sediments
with known mineral content (A) or known extractable Fe(II) content (B).
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33.1% with a median of 2.3%. The prediction is much nar-
rower, and in the considered scenario, it is very likely that
the abiotic reduction reaction significantly decreases the
TCE mass in the aquitard.

Implications for the Determination of TCE Reduction
Potential

The data that we gathered in combination with our Bayes-
ian hierarchical model show that abiotic TCE reduction rate
constants in natural sediments and rocks range over several
orders of magnitude. Physical variability between sediments
is much larger than variance created through experimental
error. This means that it is in general not possible to assess
if abiotic reduction can make a substantial contribution to
TCE degradation without additional information. Our find-
ings suggest that both extractable Fe(II) content and mineral
content information as obtained from XRD can provide such
additional information and reduce uncertainty. However,
extractable Fe(II) content leads to a stronger uncertainty
reduction than mineral content data. It is thus a more helpful
indicator to quantitatively predict the pseudo-first-order rate
constants of natural rocks and sediments.

A possible explanation why Fe(Il) content is a more
powerful predictor is that it integrates several factors that
importantly determine the reactivity of minerals, such as
reactive surface area, or the fact that minerals do not always
have exactly the same chemical composition. For example,
the Fe(II) content of illite can vary with redox conditions.
These differences would not be reflected in XRD data, but
may be detectable in the extractable Fe(Il) content. Min-
eral content information provides only relatively little quan-
titative information gain with respect to rate constants. To
increase its benefit, we need a better understanding of the
factors that cause variability of surface-area-normalized
rate constants, and better measurements of reactive surface
area. However, mineral content data can still be valuable to
complement Fe(Il) qualitatively because they can provide
insight about the processes that create and maintain reac-
tive minerals. For example, the presence of sulfide minerals
indicates that microbial sulfate reduction is likely to be a
contributing factor for sediment reactivity.

Another useful indicator of TCE reduction potential
that we did not consider in this study could be measure-
ments of the soil reduction—oxidation potential. Data from
Schaefer et al. (2021) suggest that surface area normalized
reaction rate constants of anaerobic, abiotic TCE reduction
can be linearly related to the redox potential. Similarly, an
empirical relationship between reduction potentials, pH and
surface-area-normalized or mass-normalized rate constants
could be shown for other contaminants (Stewart et al. 2018;
Kocur et al. 2020). An empirical model that uses both redox
potential measurements and extractable Fe(II) data can pos-
sibly further improve predictions of pseudo-first-order rate
constants.

Even though additional information about the sediment
composition can improve predictions of bulk reduction rate
constants, the remaining uncertainty remains high with cur-
rently available data and models. Even when an Fe(II) con-
tent measurement is available, the uncertainty is about two
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orders of magnitude. Therefore, Fe(I) measurements alone
do not provide sufficient evidence of abiotic degradation to
adopt controlled natural attenuation as a remediation strat-
egy. Rather, they can be used as a screening tool to assess
whether there is sufficient potential to warrant more time-
consuming and costly additional investigations, such as
measurements of TCE abiotic reaction in batch vials using
site sediment. Further, we need to consider that all measured
rate constants used in this model were determined in lab
experiments. In the field, factors and processes not present
in small-scale experiments—for example, spatial heteroge-
neity of reactive minerals, or slow diffusion of TCE into
reactive zones—could impact the effective TCE reduction
rate. As the reduction of TCE oxidizes the reactive ferrous
minerals, it can also lead to a decrease of the reactivity over
time. In this case, the simple first-order rate law that our
model is based on would not be appropriate. We thus expect
that the overall uncertainty of reaction rates in the field is
larger than the estimates obtained in this study.

Conclusions

We gathered a comprehensive set of experimentally
determined rate constants of abiotic TCE degradation from
available literature. The data reveal a large uncertainty both
of pseudo-first-order rate constants in natural sediments
and of intrinsic rate constants of pure minerals. Uncertainty
about predicted rate constants in natural sediments could be
reduced by complementary information about mineral com-
position or the extractable Fe(II) content, where the latter
seems to be the better predictor. Integrating mineral content
information required us to use a scaling factor that accounts
for the fact that natural sediments were several orders of
magnitude less reactive than expected from rate constants
of pure minerals.

The high remaining predictive uncertainty (i.e., even
when the mineral composition or Fe(II) content are known)
underscores the importance of using modeling approaches
that can provide uncertainty estimates, like Bayesian model-
ing. The uncertainty would have remained unnoticed with
the standard linear regression approach used in the earlier
analysis of subsets of the data (Schaefer et al. 2013, 2018).
It also emphasizes the need to determine site-specific degra-
dation constants in field or lab experiments when consider-
ing natural attenuation for contaminated site management.

The hierarchical Bayesian modeling approach provides
a statistically rigorous framework to combine informa-
tion and data from different types of experiments, or from
different experimental conditions (Yu et al. 2015). In this
study, it proved useful to differentiate several sources of
variability present in the rate constant data set—showing
that physical variability between sediments is larger than
experimental error. The approach could also be applied in
other cases where different levels of variability affect geo-
chemical reaction rate constants. For example, we could
use it to distinguish small-scale spatial heterogeneity from
variability between sites, or to model variability of biogeo-
chemical rate constants caused by differences in microbial
community composition.
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