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Predicting Abiotic TCE Transformation Rate 
Constants—A Bayesian Hierarchical Approach

by Anna Störiko , Albert J. Valocchi , Charles Werth  and Charles E. Schaefer

Abstract
Fe(II) minerals can mediate the abiotic reduction of trichloroethylene (TCE), a widespread groundwater contaminant. If reaction rates are 

sufficiently fast for natural attenuation, the process holds potential for mitigating TCE pollution in groundwater. To assess the variability of 
abiotic TCE reduction rate constants, we collected pseudo-first-order rate constants for natural sediments and rocks from the literature, as well 
as intrinsic (surface-area-normalized) rate constants of individual minerals. Using a Bayesian hierarchical modeling approach, we were able to 
differentiate the contributions of natural variability and experimental error to the total variance. Applying the model, we also predicted rate 
constants at new sites, revealing a considerable uncertainty of several orders of magnitude. We investigated whether incorporating additional 
information about sediment composition could reduce this uncertainty. We tested two sets of predictors: reactive mineral content (measured 
by X-ray diffraction) combined with surface areas and intrinsic rate constants, or the extractable Fe(II) content. Knowledge of the mineral com-
position only marginally reduced the uncertainty of predicted rate constants. We attribute the low information gain to the inability to measure 
the (reactive) surface areas of individual minerals in sediments or rocks, which are subject to environmental factors like aqueous geochemistry 
and redox potential. In contrast, knowing the Fe(II) content reduced the uncertainty about the first-order rate constant by nearly two orders 
of magnitude, because the relationship between Fe(II) content and rate constants is approximately log–log-linear. We demonstrate how our 
approach provides estimates for the range of cleanup times for a simple example of diffusion-controlled transport in a contaminated aquitard.

Introduction
Trichloroethylene (TCE) is a widespread contaminant 

in groundwater aquifers worldwide (Bourg et  al.  1992). It 
is present at many U.S. military bases and industrial sites 
because of its use—among others—as a degreasing agent 
and for dry-cleaning (Morrison and Murphy  2013; Hem-
pel 2021). Over decades in groundwater aquifers, TCE has 
diffused into low-permeability zones. After source zone 
depletion, back-diffusion into aquifers often leads to concen-
trations that exceed the regulatory standard (You et al. 2020). 
The slow release of TCE from low-permeability zones 
makes remediation measures intricate and cost-intensive 
(O’Connor et al. 2018). Natural attenuation by biological and 
abiotic transformation processes is thus an attractive pros-
pect, provided that degradation rates are sufficiently fast. In 

groundwater systems where the contaminant mass is mostly 
contained in diffusion-controlled rock matrices, even slow 
degradation (half-lives of 5 to 20 years) can strongly contrib-
ute to natural attenuation (Pierce et al. 2018).

Several degradation pathways of TCE are known. Most 
widely known is the microbial reductive dechlorination path-
way, where microorganisms reduce TCE to dichloroethylene 
(DCE), vinyl chloride (VC), and eventually ethene under 
anaerobic conditions. This pathway is challenged, however, 
by the fact that toxic intermediate products, DCE and VC, 
often accumulate in groundwater due to slower kinetics or 
inhibition of the respective reaction steps. Additionally, the 
reaction depends on the presence of a functioning commu-
nity of TCE degraders that possess the enzymes necessary 
to mediate the reaction, and suitable electron donors (Brad-
ley 2003). Acidic conditions (pH below ~6) can also restrict 
degradation by microbial reductive dechlorination (Zhuang 
and Pavlostathis 1995; Steffan and Schaefer 2016).

Alternatively, TCE can be degraded abiotically through 
reactions mediated by ferrous minerals (He et  al.  2015). 
The ferrous minerals serve as an electron donor that can 
reduce TCE to acetylene and possibly other reduced gases 
under anoxic conditions, or react with oxygen to pro-
duce hydroxyl radicals that oxidize TCE to organic acids 
under (micro-)oxic conditions. In controlled laboratory 
studies, acetylene is usually the primary reaction product 
observed under anaerobic conditions. Ethene and ethane, 
propane, and butane are also frequently observed and are 
believed to result from the hydrogenation of acetylene and 
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coupling reactions at iron mineral surfaces (Arnold and 
Roberts 2000; Elsner et al. 2008; He et al. 2015; Schaefer 
et al. 2017). Under microoxic conditions, oxalic, glycolic, 
and glyoxylic acids have been observed (Pham et al. 2008; 
Schaefer et al. 2018). These products can be easily degraded 
by microorganisms, making abiotic degradation processes 
difficult to identify in the field. Several ferrous minerals 
have been shown to mediate the abiotic transformation 
of TCE, among them iron sulfides (pyrite, mackinawite), 
iron carbonates (siderite, ankerite), and iron-bearing clay 
minerals (Butler and Hayes 1999, 2001; Weerasooriya and 
Dharmasena 2001; Lee and Batchelor 2002a, 2002b; Jeong 
and Hayes  2007; Liang et  al.  2007; He et  al.  2010; Kim 
et al. 2013; Velimirovic et al. 2013; Schaefer et al. 2021).

In order to know if natural attenuation by abiotic trans-
formation will mitigate TCE back diffusion, it is necessary 
to quantify rates of transformation at field sites. Pseudo-
first-order rate constants are a common measure used to 
estimate how fast reactions occur. They are typically deter-
mined in batch experiments where TCE is incubated with 
sediments, and the concentrations of TCE and reaction prod-
ucts are monitored over time (e.g., Schaefer et al. 2018; Yin 
et al. 2023). They can also be determined in more complex 
settings, such as diffusion cell experiments in combination 
with a reactive transport model (Schaefer et al. 2013, 2015; 
Berns et al. 2019). However, experiments to determine rate 
constants are time-consuming and can only be done if a 
sample of the material is available. When an experimental 
determination of the rate constant is not a viable option for 
a particular site, rate constants can only be estimated by 
extrapolating from other sites, or possibly from site-specific 
information regarding ferrous minerals and their reactivity 
with TCE. In these cases, it is particularly important to con-
sider the uncertainty of such a prediction.

Uncertainty about rate constants at new sites arises 
from several sources. The first source is physical variability 
between sites: sediments contain different amounts of reac-
tive minerals, minerals vary in specific surface area, and the 
reactivity of a mineral normalized to its surface area may 
also vary between sediments, possibly due to differences in 
redox potential, amount of adsorbed ferrous iron, compet-
ing species undergoing reduction, organic matter coatings, 
etc. The second source is uncertainty about parameter val-
ues because measurements are imprecise. Finally, there is 
also uncertainty about the conceptual model and the “cor-
rect” mathematical description of reaction processes. For 
example, we may question if a first-order decay model is 
appropriate.

The goal of our study is to develop a statistical modeling 
approach to predict abiotic TCE reduction rate constants in 
natural sediments based on site-specific information regard-
ing ferrous minerals and their reactivity with TCE that takes 
into account these uncertainties. Abiotic TCE oxidation 
rates may also be important (Damgaard et al. 2013; Berns 
et al. 2019), but are outside the scope of this effort. We will 
address the following specific questions:

•	 How large is the uncertainty of first-order rate constants 
of abiotic TCE reduction in natural sediments?

•	 How can we predict first-order rate constants for new 
sites based on the available ferrous mineral data?

•	 What types of additional information about a material are 
most helpful to reduce uncertainty of the rate constants?

We will not address the third source of uncertainty (con-
ceptual uncertainty) quantitatively in this paper but will 
address how it affects estimates and predictions qualitatively.

To assess the variability of TCE reduction rate constants 
we have gathered values for a variety of materials that 
were available from the literature (He et al. 2010; Schaefer 
et al. 2015, 2017, 2018; Berns et al. 2019; Yu et al. 2020; 
Yin et al. 2023). We then unravel parameter uncertainty and 
physical variability of different materials using a Bayes-
ian hierarchical modeling approach. Bayesian modeling 
is a statistical approach that provides a powerful and con-
sistent way to handle uncertainty in observations, model 
parameters, and model structure. In the Bayesian frame-
work, parameters are described by probability distributions 
instead of fixed values. These distributions express our 
degree of knowledge about the parameters. We can update 
our knowledge, and thus the distributions, by using informa-
tion about parameters contained in observations, for exam-
ple, measured rate constants determined in experiments. 
The hierarchical modeling approach, also called multilevel 
modeling, lets us account for physical variability between 
sediments by determining individual parameters for each 
sediment sample. However, we assume that each sediment 
sample is drawn from a common distribution of sediments 
with similar properties. By employing this approach, we 
can effectively predict the parameters and their associated 
uncertainty for sediments that have not yet been probed.

The range of measured pseudo-first-order rate constants 
for natural sediments is very broad when no additional 
information is taken into account. Measured half-lives range 
between less than 1 d to more than 1000 years. To reduce the 
predicted range of rate constants, we test two approaches 
of incorporating additional data about the material prop-
erties. First, we use information about the abundance of 
reactive minerals, and about the intrinsic rate constants of 
these minerals. Abiotic TCE reduction rate constants have 
also been determined for individual minerals (Butler and 
Hayes  1999, 2001; Weerasooriya and Dharmasena  2001; 
Lee and Batchelor  2002a, 2002b; Jeong and Hayes  2007; 
Liang et  al.  2007; He et  al.  2010; Kim et  al.  2013; Veli-
mirovic et al. 2013; Schaefer et al. 2021). We can integrate 
these data into the estimation of first-order rate constants 
if we assume that the overall first-order rate constant is 
composed of the contributions of individual minerals. Sec-
ond, we consider the extractable Fe(II) content from dilute 
acid extraction as a predictive variable since it has shown 
a correlation with pseudo-first-order rate constants in ear-
lier studies (Schaefer et  al.  2013, 2018). Overall, we use 
three categories of data (tabulated in Tables S1 and S2 of 
the Supporting Information): (1) Pseudo-first-order rate 
constants of natural sediments, (2) intrinsic rate constants 
of pure minerals, and (3) data providing additional informa-
tion about sediment composition (measured mineral mass 
fractions and extractable Fe(II) content).
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We structure the remainder of the article as follows: First, 
we explain how to model first-order rate constants with a 
Bayesian hierarchical approach, accounting for experimental 
and parameter uncertainty and natural variability. We dis-
cuss how first-order rate constants of natural sediments can 
be linked to the reactive mineral and Fe(II) content of natural 
sediments. We illustrate how the results can be used to pre-
dict first-order rate constants at sites where TCE degradation 
has not previously been studied, either with known or with 
unknown sediment properties. Finally, we discuss what indica-
tors or measurements are most suitable to reduce uncertainty 
of predicted TCE rate constants, based on our findings.

Methods
Accounting for Uncertainty and Variability with Bayesian 
Hierarchical Modeling
Bayesian Modeling and Parameter Inference

Bayesian modeling involves three main steps: model 
building, inference, and model checking or improvement 
(Gelman et  al.  2020). First, we choose uncertain model 
parameters and a mathematical model that relates them to 
observed variables. Based on expert knowledge (e.g., physi-
cal constraints, literature values), we define prior probabil-
ity distributions that represent reasonable ranges and our 
uncertainty about the parameters, without considering the 
data. Model building also encompasses defining a statis-
tical model that describes our knowledge of how data are 
generated. In particular, we need to define the likelihood 
function, which represents the conditional probability of 
observing a given set of data, provided the parameters are 
known. The likelihood can also be interpreted as a measure 
of goodness-of-fit between the model and data.

In the inference step, prior distributions and likeli-
hood are combined to obtain the updated posterior dis-
tribution. The posterior distribution usually needs to be 
approximated numerically, for example, using Markov 
chain Monte Carlo (MCMC) methods. This step is related 
to deterministic model calibration (e.g., maximum like-
lihood estimation), but it recovers samples from the full 
parameter distribution instead of a point estimate and thus 
provides an uncertainty estimate. Finally, we diagnose 

computational issues, assess convergence of the inference, 
evaluate model fit, compare alternative models, and make 
changes to prior distributions and the model structure in 
order to resolve problems.

Hierarchical Modeling of Sediment Variability
There are two sources of variability in measured first-

order rate constants:

1.	 Physical variability between the sediments—for ex-
ample, sediments can vary in their content of reactive 
minerals (we mean “physical” in the sense of “relating 
to material things”—that is, it can also relate to chemical 
properties).

2.	 Uncertainty arising because experimentally determined 
values are subject to measurement error. Replicate mea-
surements or different experimental set-ups (e.g., batch 
vs. diffusion experiment, or differing aqueous geochem-
istry) yield different rate constants for the same sediment.

We can represent both of these sources of variability 
with probability distributions. The first distribution reflects 
how probable a certain rate constant is if we consider any 
kind of sediment, and we will call this the global parameter 
distribution. We specify this distribution for the logarithm of 
rate constants in order to take into account that natural vari-
ability ranges over several orders of magnitude. In addition, 
the log transformation ensures that estimated rate constants 
are positive. We assume that the log rate constants follow a 
normal distribution with mean �lnΛ and standard deviation 
�lnΛ, where �lnΛ represents the variability of rate constants 
caused by physical and chemical differences between natu-
ral sediments. The rate constant of any specific sediment j , 
ln
(

�j

)

 is obtained from the global parameter distribution:

ln(�j) ∼ N(�lnΛ, �lnΛ
2),

where ∼ means “follows the distribution of” (Figure 1). We 
can obtain information about the shape of the global distri-
bution (that is, about �lnΛ and �lnΛ) by using data from sev-
eral sediments. Rate constants from clayey sediments and 
rock matrices are assumed to originate from the same distri-
bution. While a model that distinguishes the distributions of 

(1)

Figure 1.  Sketch of the hierarchical model: The log rate constants of different sediments j follow a normal distribution (shown 
in blue) that represents physical variability. (The sketch examplarily shows only four sediments, not the full model and dataset.) 
Measurements follow a normal distribution representing experimental error around the log rate constants ln�j (shown in yellow). 
The parameters �

ln�
, �

ln�
, and �y are uncertain, and therefore also described by probability distributions (not shown in the sketch).
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these types of materials might be conceptually more appro-
priate, it would also require more data to infer the larger 
number of parameters.

We further assume that measured rate constants follow a 
normal distribution with standard deviation �y (representing 
experimental error) around �j on a log scale:

yk ∼ N
(

ln

(

�jk

)

, �y
2

)

,

where k is an index of the measurement, jk is the sediment 
used in experiment k, and yk is the log of the measured rate 
constant. The log transformation here means that we assume 
a relative error (expressed as a fraction or percentage) for the 
rate constants.

The parameters of those two distributions (�lnΛ, �lnΛ, 
and �y) are not known, and we need to estimate them from 
the data. In a Bayesian context, we express our knowledge 
(or uncertainty) about parameters in terms of probability 
distributions. Thus, the parameters �lnΛ, �lnΛ, and �y them-
selves are also assigned a distribution (the prior), that gets 
updated to a posterior distribution based on the data. Details 
about how we choose prior distributions can be found in Sec-
tions S2.1 and S2.2, Supporting Information, and Table S4.

Integrating Information about Mineral Composition  
and Fe(II) Content

Variability of rate constants in natural sediments is 
very large (Table S2), implying that rate constants for yet 
unobserved sediments are very uncertain. However, min-
eral reactivity is not completely random but can be linked to 
physical properties such as the presence of reactive minerals, 
or the total Fe(II) content. Accounting for this information 
in the prediction of rate constants could reduce uncertainty. 
A simple way to make more specific predictions would be 
to add another level to the statistical model that differenti-
ates various sediment categories (“mudstone,” “clay,” “sand-
stone,” etc.). That is, instead of using the same �lnΛ and �lnΛ 
for all sediments, we could introduce one parameter per 
category. However, we do not follow this approach because 
the number of data points available for each category is too 
small. In addition, the variability of rate constants within 
each category could still be large because sediments from 
the same category may have very different amounts of reac-
tive minerals. Instead, we consider two measures that have 
been considered previously to assess the potential of TCE 
degradation in natural sediments: the mass fraction of spe-
cific reactive minerals as determined by X-ray diffraction 
(XRD), and the Fe(II) content determined by extraction. We 
set up several models that link reactive mineral content or 
Fe(II) content to bulk first-order rate constants via empirical 
relationships, enabling us to leverage the information con-
tained in the additional measurements.

Relating First-Order Rate Constants to Reactive Mineral 
Content

Several minerals that react with TCE can be present in 
a sediment at the same time. Similar to the approach taken 
by Yin et  al.  (2023), we assume that they do not directly 
interact with each other during TCE degradation, so that the 

reaction rates are simply additive. The reaction rate of TCE 
with one specific mineral is assumed to depend, apart from 
the TCE concentration, on

1.	 The amount of reactive mineral present,
2.	 The specific surface area of the mineral, and
3.	 Its intrinsic reactivity, which is encoded in the intrinsic, 

surface-area-normalized rate constant ki (L/m2/year).

Thus, we can relate theoretical first-order rate constant 
of sediment j, �∗

j
 (1/year), to the intrinsic rate constants, 

specific reactive surface areas Ai (m
2/g) and mineral content 

�ij (g/g of solids) of the reactive minerals i, and the solid-to-
liquid ratio wj (g/L) of the sediment as follows:

�
∗

j
=

∑

i

kiAij�ijwj,

where the index i represents the reactive minerals in the sed-
iment, and j indexes the sediment. The asterisk superscript 
(∗) is used to indicate that this is the theoretically expected 
rate constant based on the intrinsic rate constants of indi-
vidual minerals, which we distinguish from the actual first-
order rate constants �j, as further explained in Section 2.2.2. 
Note that we allow the mineral content and specific surface 
area of each mineral to vary between different sediment 
samples. The specific surface area of a mineral depends, for 
example, on grain size and the degree of crystallinity, which 
can vary with location.

In our model, we only consider a subset of minerals for the 
sum in Equation 3. We assume that all the reactivity toward 
TCE can be attributed to mackinawite (FeS), pyrite, siderite, 
and illite. This is certainly a simplification of reality. How-
ever, given the limited data available, we deem it necessary to 
reduce the complexity of the model and the number of param-
eters. Iron sulfide minerals tend to be much more reactive (on 
the order of several magnitudes) than other ferrous minerals 
with TCE. Therefore, they likely cause most of the reactiv-
ity when they are present. We chose siderite as an additional 
mineral even though its reactivity is comparable to other 
minerals because it was detected by XRD in several samples 
shown to be reactive toward TCE (Schaefer et al. 2018), and 
other carbonate minerals (ankerite, dolomite) are common in 
other samples with ferrous iron that show reactivity toward 
TCE (Schaefer et al. 2015; Berns et al. 2019). We note, how-
ever, that neither mackinawite, pyrite nor siderite is detected 
in many samples with reactivity toward TCE. This is likely 
due to the inability of XRD measurements to detect minerals 
that have a low abundance or are poorly crystalline.

In order to quantify the uncertainty of bulk rate con-
stants, we treat the parameters ki, Aij, and �ij as random vari-
ables. That is, we do not use fixed values, but account for 
their uncertainty by using distributions of these parameters. 
For each mineral, we use the same ki in all sediments. We 
specify a broad prior and then use measured intrinsic rate 
constants reported in the literature to update the distribution 
via the likelihood (Figure 2).

For the mineral contents �ij, we apply a hierarchical 
approach and estimate the mineral contents in each of the 
sediments as well as the parameters of a global distribution 
of mineral contents (details are provided in Section S2.2). 

(2)

(3)
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If XRD data are available for a sediment, we integrate the 
contained information about the mineral content into the 
model via the likelihood. We assume that data follow a 
censored normal distribution with constant standard devia-
tion around the logit-transformed mineral content. This is a 
normal distribution that is truncated at the detection limit, 
with the probability mass below the detection limit added 
at the cutoff (see Section S2.3). We apply the logit trans-
form—defined as logit(x) = ln

(

x

1− x

)

—in order to map min-
eral fractions (ranging between 0 and 1) to the real numbers 
(Gelman  2014). For small values, it is similar to the log 
transform, so a constant error on the logit scale approxi-
mately corresponds to a relative error of the measured 
mineral content. Minerals with low abundance cannot be 
detected with XRD. However, a non-detection still provides 
information—namely that the mineral content is below the 
detection limit. In order to use this information, we set the 
mineral content of non-detected minerals to the detection 
limit (1%) and account for the censoring in the likelihood 
function (see Section S2.3). Because we adjust the likeli-
hood function, the data points will provide information that 
the mineral content is less than 1% (and potentially much 
smaller), rather than exactly 1%.

We also use a hierarchical approach for the specific surface 
area Aij. That is, we estimate the global distribution of surface 
areas of a mineral i, and the specific surface area of mineral 
i in each sediment j (details in Section S2.2). Because it is 
not possible to measure the surface area of individual minerals 
in natural sediments, the distributions of Aij can be estimated 
only indirectly through measurements of the bulk TCE rate 
constants, intrinsic rate constants, and mineral contents.

The only parameter that we treat as fixed is the solid-
to-liquid ratio wj, because we consider its uncertainty to be 
small relative to that of other variables in the model. In order 
to simplify the model, we eliminated the parameter from the 
model by normalizing all rate constants by wj. That is, we 
modified the likelihood given in Equation 2 as follows:

yk ∼ N
(

ln

(

�

�

jk

)

, �y
2

)

,

where �
�

j
=

�j

wj
 is the normalized rate constant.

Accounting for Reduced Reactivity of Natural Sediments
Based on our prior distributions of the intrinsic rate con-

stants, specific surface areas and measured mineral contents, 
we computed the theoretical first-order rate constants of natu-
ral sediments in low permeability zones (using Equation 3). 
First-order rate constants of natural sediments reported in the 
literature vary over several orders of magnitude. However, 
all of them are smaller than the theoretically computed val-
ues obtained from rate constants of individual minerals (fur-
ther details are provided in the results, Section 3.1.2.2). This 
lower effective reactivity of natural sediments can have vari-
ous reasons. For example, not all the mineral surface area may 
be accessible for TCE because it may be blocked by sorbed 
compounds. Or, small-scale diffusion processes that are not 
resolved by the model limit the effective rate. We can account 
for the observed discrepancy between the theoretical and 
observed first-order rate constants of natural sediments by 
applying an empirical scaling factor q that reduces the intrinsic 
rate constants of individual minerals, making them less reac-
tive. The so-called “corrected” parameter is denoted by �j:

�j =

∑

i

qkiAij�ijwj

We estimate the distribution of the parameter q alongside 
with other parameters through Bayesian inference. Even 
though q could depend on the sediment or mineral, we 
decide to use the same factor for all minerals and sediments 
given our limited amount of data.

Relating First-Order Rate Constants to Total Fe(II) Content
Several studies have shown a relationship between Fe(II) 

content of natural sediments or rocks and pseudo-first-order 
TCE reduction constants (Schaefer et al. 2013, 2018). Even 
though the materials differed widely in terms of the amounts 
and types of minerals present, the relationship between the 
Fe(II) and bulk reaction rates was approximately linear, 
when plotted on a log–log scale. Based on the results of these 
studies, we propose the following Bayesian regression model 
to predict rate constants from the Fe(II) content:

ln
(

�j

)

= aln[Fe(II)]j + b + �j

(4)

(5)

(6)

Figure 2.  Conceptual model of the mineral content/surface area model, and data used to infer its parameters.
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NGWA.org6    A. Störiko et al./   Groundwater Monitoring & Remediation   

Here, a and b are the coefficients of the linear regres-
sion. A linear relation on the log–log scale corresponds 
to a power law on the non-log scale. This also means that 
at zero iron content, the TCE reduction rate constant is 
always zero. To account for the fact that the relationship is 
not perfectly linear but somewhat noisy, we add a stochas-
tic error term �j ∼ N

(

0, �
�

)

. This means that the first-order 
rate constant for each sediment may deviate a bit from the 
linear relationship. The parameters a, b, and �

�
 are esti-

mated from the data, and their prior distributions are given 
in Table S4. Measured log rate constants are assumed to 
follow a normal distribution around the regressed rate 
constants ln

(

�j

)

, with a measurement error �y (same as 
in Equation  2). In principle, the model error and mea-
surement error could also be combined into a single error 
term. The advantage of separating both terms is that it 
allows us to get a more accurate uncertainty estimate for 
the rate constants predicted for new sediments.

In contrast to standard linear regression, we do not 
assume the explanatory variable (the logarithm of the Fe(II) 
content) to be known exactly. Instead, we suppose that 
ln[Fe(II)]j is unknown, and needs to be estimated from mea-
surements zk. To estimate the Fe(II) content in the sediments 
we once more take a hierarchical approach. The ln Fe(II) 
content of sediment j is assumed to follow

ln[Fe(II)]j ∼ N
(

�ln[Fe(II)], �ln[Fe(II)]
2
)

,

where �ln[Fe(II)] and �ln[Fe(II)] are the mean and standard 
deviation of the global ln[Fe(II)] distribution. We estimate 
�ln[Fe(II)] and �ln[Fe(II)] through Bayesian inference from the 
data. For the data in experiment k we assume that

zk ∼ N
(

ln[Fe(II)]jk ,�z

)

,

where �z is the measurement error. Since replicate Fe(II) 
measurements are not available, it is not possible to estimate 
�z. Thus, we set it to a fixed value of 0.2, corresponding to a 
relative error of the Fe(II) content of about 22%.

Predictions of Rate Constants in New Sediments
After obtaining posterior distributions of all model 

parameters, we can predict the probability distribution of 
rate constants in sediments at sites where no measurements 
are available. Without additional information about a sedi-
ment (mineral content or Fe(II) content), this distribution is 
given by the “global” distribution of � with parameters �lnΛ 

and �lnΛ. However, we can also compute predictive distribu-
tions that are conditional on a measured Fe(II) content or 
measured mineral contents.

Since the mineral contents cannot be determined 
exactly, we account for a measurement error as follows: 
instead of using fixed values of the mineral composition, 
we generate samples from a normal distribution around 
the logit-transformed value of the assumed measurement, 
using a fixed standard deviation. Since the logit transform 
is similar to the log-transform for small mineral contents, 
this approach is closely related to using a relative error of 
the mineral contents. We choose the standard deviation 
such that the corresponding relative error is about 10%. 
Similarly, we assume that the ln Fe(II) content follows 
a normal distribution with standard deviation 0.2 around 
the measured value to account for a relative measurement 
error of about 20%.

The predictive distributions represent the variability due to 
physical differences between sediments, parameter uncertainty, 
and uncertainty due to measurement errors in mineral content 
or Fe(II) content measurements. They do not include variance 
produced by experimental error in experiments to determine 
rate constants (parameterized by �y). We do not account for 
these errors in predictions because we are interested in what 
the actual rate constants of natural sediments are, not what rate 
constants could be observed in experiments.

Implementation
In total, we set up three models to estimate first-order 

rate constants of natural sediments and relate them to other 
sediment properties. An overview of the models is given in 
Table 1. We implement the models using the Python library 
PyMC (Salvatier et al. 2016; Wiecki et al. 2023) that enables 
a flexible and easy model specification. To sample the poste-
rior distribution we use PyMC’s default No-U-Turn (NUTS) 
sampler (Hoffman and Gelman 2014). It is designed to effi-
ciently sample the parameter space by exploiting gradient 
information that is obtained through automatic differentia-
tion. To assess convergence of the sampler, we run multiple 
independent MCMC chains and compute the rank-based 
diagnostic criterion R̂ (Vehtari et al. 2021) as implemented 
in the software package ArviZ (Kumar et al. 2019) (com-
puted values are provided in Tables S4 to S6). Additionally, 
we compute the effective sample size and visually inspect 
trace plots, that is, graphs of the sampled parameter values 
plotted against the posterior draw. The Python code and 
data associated this study are openly available as a research 
compendium (Störiko et al. 2023).

(7)

(8)

Table 1 

Overview of the Different Models Used
Model Name Additional Data Used Equation

1 Only rate constants None None

2 Mineral content/surface 
area

Mineral content data (XRD), surface-area-normalized 
specific rate constants

�

�

j
= q

∑

kiAij�ij

3 Fe content Fe(II) content data (acid extraction)
ln

(

�

�

j

)

= aln[Fe(II)]j + b + �j
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Results and Discussion
Rate Constants of Natural Sediments and Rocks
Distribution Based on First-Order Rate Constant Data Only

Figure 3 shows pseudo-first-order rate constant data for 
different natural sediments that we collected from the litera-
ture (given in Table S2) as gray bars. Alongside, it shows the 
posterior distributions for the rate constants of each of the 
natural sediments (blue distributions) obtained with the only 
rate constants model. (The same plot is provided for the 
other models in Figures S3 and S4. Summary statistics of 
the posterior distributions of all model parameters are pro-
vided in Tables S5 to S7.) Even though the prior distribution 
(top of Figure 3) is the same for all sediments, the posterior 
distributions are different, because different data were used 
to update the distribution in each sediment.

The posteriors are considerably shifted compared to the 
prior, so that the distributions overlap with measured rate 
constants. In addition, the posterior distributions are nar-

rower than the prior distribution. This shows that the pos-
terior is strongly informed by the data. However, the effect 
of the data is not equally strong in all sediments. Distribu-
tions of sediments where several measurements are avail-
able (e.g., the dark gray mudstone) tend to be narrower than 
those where we could use only a single data point. One 
example of the latter is the clayey sediment 2: The posterior 
distribution of its rate constant is not centered around the 
measurement, but the mode sits somewhere in between the 
measurement and the mode of the global distribution. This 
shows the regularizing effect that the global distribution has 
when only little data are available.

The global distribution of rate constants (shown in gray) 
is broader than the distribution of any individual sediment 
because it takes into account the physical variability of 
natural sediments. It represents the range of reasonable rate 
constants for natural sediments in general and, thus, the 
range of values we need to consider when no measurements 
are available. Even though it is more narrow than the prior 
distribution, it still ranges over several orders of magnitude.

The lower tail of the global distribution extends to val-
ues as low as 10−8 L/g/year, which corresponds to a half-
life of more than 1000 years, assuming a solid-to-liquid 
ratio of 6000 g/L. It is difficult to evaluate these small rate 
constants experimentally because time constraints and the 
accuracy of concentration measurements provide a lower 
limit to rate constant measurements. However, it is unclear 
exactly where such a limit would be, and it will be highly 
dependent on the experimental setup. Thus, the extent to 
which the distribution extends to small values will depend 
a lot on the prior distribution. In practice, however, it may 
not be so important how far the distribution extends at the 
low end. From a practitioner’s point of view, these rate con-
stants could all be considered to be zero, since they exclude 
the potential for site management by natural attenuation.

Rate Constants Predicted from the Contributions  
of Individual Minerals
Intrinsic rate constants of pure minerals. Figure 4A shows the 
surface-area normalized intrinsic rate constants (ki) of several 
minerals that we collected from the literature (Table S3). For 
the minerals represented in our model, we also estimated 
posterior distributions of these rate constants based on the 
data (Figure 4B and Table S6). Posterior distributions of illite 
and siderite are only slightly shifted toward smaller values 
but are still broad, since little data are available to constrain 
them. In contrast, posterior distributions of pyrite and FeS 
are considerably narrower than the priors. Nevertheless, the 
uncertainty of surface-area-normalized rate constants of the 
individual minerals is large in the posterior distribution. This 
large uncertainty is caused by the wide spread of measured 
surface-area-normalized rate constants. The measured 
rate constants of pyrite and FeS range over six orders of 
magnitude (Figure  4). This is much larger than we could 
reasonably expect for variance produced by measurement 
errors. The large spread of the rate constants instead suggests 
that the experiments cannot measure intrinsic properties of 
the minerals, but that the obtained values depend on external 
factors that vary between the experiments.

Figure 3.  Distributions of pseudo-first-order rate constants 
in model 1 (only rate constants). The blue distributions show 
the posterior for rate constants of individual sediments �j. The 
gray distributions show the prior (same for all sediments) and 
the posterior of the global distribution. Data points are plotted 
as gray bars at the bottom of the axes. Note that some data 
points lie close to each other, making the bars appear wider.
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One reason why the surface-area-normalized rate con-
stants vary so widely is probably that the measured specific 
surface areas used for normalization (usually determined 
with N

2
-BET) may not be representative of reactive surface 

areas. The normalization by reactive surface areas then adds 
noise to the rate constant data, causing part of the variance. 
Indeed, measured (log) rate constants for FeS and pyrite 
normalized to mass rather than surface area (i.e., L/g/d ver-
sus L/m2/d) exhibit a lower variance (see Figure S1).

Geochemical conditions also affect TCE reaction rates, 
potentially by modifying the reactive surface area. Several 
studies have reported that TCE transformation rate con-
stants for iron sulfide minerals increase with pH (Butler and 
Hayes  2001; Weerasooriya and Dharmasena  2001). This 
effect has been attributed to the increasing deprotonation 
of surface groups with increasing pH, making the mineral 
more reactive. In addition, other water chemistry parameters 
(ionic composition, organic matter) are known to influence 
abiotic TCE transformation rate constants (Kim et al. 2013).

Another confounding factor could be that the assumed 
linear dependence on surface area does not reflect the 
actual reaction kinetics. A linear dependence on surface 
area is often assumed for reactions at the mineral–water 
interface if the rate is limited by the interfacial reaction 
(Brantley 2008). However, the exact reaction mechanism of 
abiotic TCE reduction at the surface of ferrous iron miner-
als is not known. Electron transfer at the surface of minerals 
with semiconducting properties—such as iron sulfides—
can be fed by electron flow within the crystal (Yanina and 
Rosso 2008). This could potentially result in an overall rate 
law that does not depend linearly on mineral surface area.

Reduced reactivity of natural sediments compared to 
pure minerals: Based on the mineral-specific, intrinsic 
rate constants shown in Figure 4, we computed first-order 

Figure 4.  Intrinsic rate constants of anaerobic TCE reduction for different minerals. (A) Data gathered from the literature. (B) 
Kernel density estimates of the prior and posterior distributions.

(A) (B)

Figure 5.  (A) Posterior distributions of theoretical rate con-
stants based on intrinsic rate constants (Equation 3) of indi-
vidual minerals and rate constants “corrected” based on 
observations. (B) Prior and posterior distribution of the scal-
ing factor q.

(A)

(B)
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rate constants without accounting for a correction factor 
(using Equation  3). The mineral contents and surface 
areas were based on the respective global posterior 
distributions, reflecting the range that should be expected if 
no measurements are available. The resulting rate constants 
are much larger than observed rate constants of natural 
sediments (compare the blue distribution in Figure  5 to 
measurements indicated in red).

Only through the inclusion of the “correction” fac-
tor q (Equation  5) the posterior distribution of first-order 
rate constants is shifted to align with the measured values 
(yellow distribution in Figure 5). The posterior median of 
the correction factor q is 0.0003, showing that the natural 
sediments are several orders of magnitude less reactive than 
what we expected based on intrinsic rate constants, specific 
surface areas and typical mineral contents.

The importance of the scaling factor becomes evident if 
we calculate a rate constant solely based on literature val-
ues and expert knowledge, instead of using the Bayesian 
model that includes the scaling factor. We assume the fol-
lowing mineral composition: FeS: 0.01%, pyrite: 0.1%, sid-
erite: 3%, illite: 10%, and surface areas: FeS: 140.00 m2/g, 
pyrite: 0.01 m2/g, siderite: 0.30 m2/g, illite: 0.03 m2/g. 
Using the mean of observed intrinsic rate constants (data 
in Figure  4A averaged on a log scale—FeS: 1.2 × 10−1 L/
m2/year, pyrite: 9.0  L/m2/year, siderite: 2.6 × 10−4 L/m2/
year, illite: 8.6 × 10−4 L/m2/year), we obtain a first-order rate 
constant for the sediment of 11 1/year. This is one order of 
magnitude larger than the highest measured rate constant 
(1.3 1/year).

Overall, the small scaling factor means that studies based 
on pure minerals cannot be easily extrapolated to natural 
sediments. Knowing the content of potentially reactive min-
erals in a sediment and the mineral-specific rate constants is 
not enough to predict the actual degradation potential.

This is a potential limitation of approaches that aim to 
determine the performance of abiotic degradation based on 
the presence of reactive minerals, such as the Min-Trap® 
sampler (Divine et al. 2023). Nevertheless, the Min-Trap® 
sampler is an intriguing approach because it examines the 
formation of new minerals rather than the mineral content 
of a sediment. These newly formed minerals could possibly 
be more reactive than existing Fe(II) minerals, contributing 
stronger to degradation. It will be interesting to see if the 
mineral contents from the sampler can indeed be predictive 
for rate constants of aquifer materials.

Rate Constants Predicted from Fe(II) Content
The logarithm of Fe(II) content and the logarithm of 

the pseudo-first-order rate constants are clearly positively 
related, and the relation can be approximated well by a log–
log-linear relationship (Figure  6). Even though a relation-
ship had been demonstrated earlier for individual datasets 
(Schaefer et al. 2013, 2018), our analysis shows that it also 
holds for our combined data set gathered from studies that 
used a variety of materials (sandstone, mudstones, clayey 
soils) and methods (batch experiments vs. diffusion–reac-
tion experiments).

The posterior median of the slope parameter is 0.47, and 
the posterior median of the intercept is −16.4. Both param-
eters have considerable uncertainty in the posterior—the 
5th and 95th percentile are [0.25, 0.68] and [−18.2, −14.4], 
respectively. The uncertainty of the slope parameter con-
tributes to the predictive uncertainty of first-order rate con-
stants. Adding more experimental data to the regression 
could reduce the uncertainty of the slope, and thus, the pre-
dictive uncertainty. The model error � provides a measure 
of how much rate constants deviate from the linear relation-
ship. Its posterior distribution ranges between 0.15 and 1.52 
(5th and 95th percentile). These values provide an absolute 

Figure 6.  Modeled and observed relationship between Fe(II) content and pseudo-first-order rate constants. The gray line represents 
the posterior median of ln

(

�
′
)

. Gray shaded areas indicate the 90% and 50% highest density intervals of ln
(

�
′
)

. These intervals 
represent the total uncertainty of the regression, which is influenced by uncertainty of the regression parameters a and b, and by 
the error term �j. Blue crosses indicate posterior estimates of the Fe(II) content and rate constants for individual sediments. The 
intersection marks the median, and lines range between the 5th and 95th percentile of the posterior distribution. Colored markers 
indicate the measured values.
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error on the log scale and can be converted to a relative 
error of the rate constants: the rate constants differ from the 
regression line by a factor between 1.16 and 4.59, that is, 
less than one order of magnitude. The posterior median of 
� is 0.78, corresponding to a relative error of 2.18. Overall, 
this shows that the regression cannot be used to determine 
rate constants exactly, but it enables us to estimate the order 
of magnitude of the pseudo-first-order rate constants.

Predicting Rate Constants for New Sediments
We can predict rate constants at new sites where they have 

not been measured based on the posterior distributions of 
all three models. However, the predictions vary between the 
models. In the following, we assume that the solid-to-liquid 
ratio is known, and amounts to 6183 g/L, corresponding, for 
example, to a porosity of 30% and a bulk density of 1.85 kg/L.

If nothing is known about the site, the “global” distribu-
tion of � provides an uncertainty estimate of the rate con-
stant. Even though no measurement of the mineral content 
or Fe(II) content is available, this distribution can be com-
puted based on the global distributions of mineral contents 
or Fe(II) content. The global rate constant distribution can 
be obtained with all three models, and the estimated poste-
rior distributions are similar (even though the width of the 
distributions somewhat differs between models) because 
they are directly constrained by the same data. As discussed 
previously, the distribution is very broad because observed 
pseudo-first-order rate constants vary over several orders of 
magnitude (orange distributions in Figure 7, and gray dis-
tribution in Figure  3; the range from the 5th to the 95th 
percentile spans 2.7 orders of magnitude in the only rate 
constants model). That is, without further information about 
the composition of the material, the timescale of abiotic 
TCE degradation is essentially unknown.

We then computed the conditional distribution of the 
first-order rate constant �, given that the mineral com-
position is known, for example by XRD measurements. 
Figure 7A shows the distribution of � for a sediment con-
taining 10% illite, 3% siderite, and just trace amounts of 
pyrite (0.1%) and mackinawite (0.01%). The information 
that we used is already more complete than what can be 
reasonably expected because XRD in general cannot detect 
minerals that are present at low contents (< 1%). Predicting 
the first-order rate constants with the mineral content/sur-
face area model, the uncertainty of � for the sediment with 

known mineral composition is nearly as broad (2.6 orders 
of magnitude) as the distribution when no information is 
available about the mineral contents (3.1 orders of magni-
tude). However, it is slightly shifted toward smaller values, 
precluding the possibility of very large rate constants. Over-
all, the predictions suggest that knowing the mineral content 
provides only little information gain.

Alternatively, additional information about the sediment 
composition could be obtained from a measurement of the 
extractable Fe(II) content. We computed a posterior predic-
tive distribution of � conditional on a known Fe(II) content 
based on the regression model. As shown in Figure 7B, the 
posterior distribution for a sediment with known Fe(II) con-
tent is much narrower (1.4 orders of magnitude) than the 
distributions for sediment where either no additional infor-
mation is available, or for the sediment with known mineral 
content shown in Figure 7A.

To illustrate how these rate constants translate into 
clean-up times at a contaminated site, we used a simple 
one-dimensional diffusion–reaction problem (for details, 
see Section S5). While our example is overly simplistic, rate 
constant estimates can also be combined with more elabo-
rate site models to study the effect of degradation on attenu-
ation of contaminant concentrations (Pierce et  al.  2018). 
We assume that TCE is initially distributed uniformly in a 
relatively thin aquitard layer. Over time, it reacts inside the 
aquitard and diffuses out of the aquitard (see Figure S4). We 
neglect sorption of TCE onto the sediment. We computed 
the remaining mass as a fraction of the initial mass over 
time based on an analytical solution for diffusion in a sheet 
plane (Crank 1975, 48).

Assuming an aquifer thickness of 3 m, and an effective 
diffusion coefficient of 7.7 × 10−3 m2/year (approximating 
tortuosity with a porosity of 0.3), the mass fraction remain-
ing after 100 years assuming TCE is nonreactive is 67.0% 
(also see Figure S5). If we account for reactions (using the 
posterior of the global distribution), in contrast, the remain-
ing mass ranges between 2 × 10−17% and 61.3% (5th and 
95th percentile), with a median of 10.0%. This shows that 
the abiotic TCE reduction has the potential to induce a con-
siderably faster decrease of the contaminant mass in certain 
sediments, but has little effect in others. The uncertainty 
about the decrease in mass due to TCE reduction is very 
large. In the aquifer with a known Fe(II) content of 8000 mg/
kg; however, the range of remaining mass is 2 × 10−6% to 

Figure 7.  Comparison of the predicted first-order rate constants for a sediment with unknown properties compared to sediments 
with known mineral content (A) or known extractable Fe(II) content (B).

(A) (B)
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33.1% with a median of 2.3%. The prediction is much nar-
rower, and in the considered scenario, it is very likely that 
the abiotic reduction reaction significantly decreases the 
TCE mass in the aquitard.

Implications for the Determination of TCE Reduction 
Potential

The data that we gathered in combination with our Bayes-
ian hierarchical model show that abiotic TCE reduction rate 
constants in natural sediments and rocks range over several 
orders of magnitude. Physical variability between sediments 
is much larger than variance created through experimental 
error. This means that it is in general not possible to assess 
if abiotic reduction can make a substantial contribution to 
TCE degradation without additional information. Our find-
ings suggest that both extractable Fe(II) content and mineral 
content information as obtained from XRD can provide such 
additional information and reduce uncertainty. However, 
extractable Fe(II) content leads to a stronger uncertainty 
reduction than mineral content data. It is thus a more helpful 
indicator to quantitatively predict the pseudo-first-order rate 
constants of natural rocks and sediments.

A possible explanation why Fe(II) content is a more 
powerful predictor is that it integrates several factors that 
importantly determine the reactivity of minerals, such as 
reactive surface area, or the fact that minerals do not always 
have exactly the same chemical composition. For example, 
the Fe(II) content of illite can vary with redox conditions. 
These differences would not be reflected in XRD data, but 
may be detectable in the extractable Fe(II) content. Min-
eral content information provides only relatively little quan-
titative information gain with respect to rate constants. To 
increase its benefit, we need a better understanding of the 
factors that cause variability of surface-area-normalized 
rate constants, and better measurements of reactive surface 
area. However, mineral content data can still be valuable to 
complement Fe(II) qualitatively because they can provide 
insight about the processes that create and maintain reac-
tive minerals. For example, the presence of sulfide minerals 
indicates that microbial sulfate reduction is likely to be a 
contributing factor for sediment reactivity.

Another useful indicator of TCE reduction potential 
that we did not consider in this study could be measure-
ments of the soil reduction–oxidation potential. Data from 
Schaefer et al. (2021) suggest that surface area normalized 
reaction rate constants of anaerobic, abiotic TCE reduction 
can be linearly related to the redox potential. Similarly, an 
empirical relationship between reduction potentials, pH and 
surface-area-normalized or mass-normalized rate constants 
could be shown for other contaminants (Stewart et al. 2018; 
Kocur et al. 2020). An empirical model that uses both redox 
potential measurements and extractable Fe(II) data can pos-
sibly further improve predictions of pseudo-first-order rate 
constants.

Even though additional information about the sediment 
composition can improve predictions of bulk reduction rate 
constants, the remaining uncertainty remains high with cur-
rently available data and models. Even when an Fe(II) con-
tent measurement is available, the uncertainty is about two 

orders of magnitude. Therefore, Fe(II) measurements alone 
do not provide sufficient evidence of abiotic degradation to 
adopt controlled natural attenuation as a remediation strat-
egy. Rather, they can be used as a screening tool to assess 
whether there is sufficient potential to warrant more time-
consuming and costly additional investigations, such as 
measurements of TCE abiotic reaction in batch vials using 
site sediment. Further, we need to consider that all measured 
rate constants used in this model were determined in lab 
experiments. In the field, factors and processes not present 
in small-scale experiments—for example, spatial heteroge-
neity of reactive minerals, or slow diffusion of TCE into 
reactive zones—could impact the effective TCE reduction 
rate. As the reduction of TCE oxidizes the reactive ferrous 
minerals, it can also lead to a decrease of the reactivity over 
time. In this case, the simple first-order rate law that our 
model is based on would not be appropriate. We thus expect 
that the overall uncertainty of reaction rates in the field is 
larger than the estimates obtained in this study.

Conclusions
We gathered a comprehensive set of experimentally 

determined rate constants of abiotic TCE degradation from 
available literature. The data reveal a large uncertainty both 
of pseudo-first-order rate constants in natural sediments 
and of intrinsic rate constants of pure minerals. Uncertainty 
about predicted rate constants in natural sediments could be 
reduced by complementary information about mineral com-
position or the extractable Fe(II) content, where the latter 
seems to be the better predictor. Integrating mineral content 
information required us to use a scaling factor that accounts 
for the fact that natural sediments were several orders of 
magnitude less reactive than expected from rate constants 
of pure minerals.

The high remaining predictive uncertainty (i.e., even 
when the mineral composition or Fe(II) content are known) 
underscores the importance of using modeling approaches 
that can provide uncertainty estimates, like Bayesian model-
ing. The uncertainty would have remained unnoticed with 
the standard linear regression approach used in the earlier 
analysis of subsets of the data (Schaefer et al. 2013, 2018). 
It also emphasizes the need to determine site-specific degra-
dation constants in field or lab experiments when consider-
ing natural attenuation for contaminated site management.

The hierarchical Bayesian modeling approach provides 
a statistically rigorous framework to combine informa-
tion and data from different types of experiments, or from 
different experimental conditions (Yu et  al.  2015). In this 
study, it proved useful to differentiate several sources of 
variability present in the rate constant data set—showing 
that physical variability between sediments is larger than 
experimental error. The approach could also be applied in 
other cases where different levels of variability affect geo-
chemical reaction rate constants. For example, we could 
use it to distinguish small-scale spatial heterogeneity from 
variability between sites, or to model variability of biogeo-
chemical rate constants caused by differences in microbial 
community composition.
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