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ABSTRACT

In this paper we discuss the rational of the Multi-model Informa-
tion based Speech Processing (MISP) Challenge, and provide a de-
tailed description of the data recorded, the two evaluation tasks and
the corresponding baselines, followed by a summary of submitted
systems and evaluation results. The MISP Challenge aims at tack-
ling speech processing tasks in different scenarios by introducing in-
formation about an additional modality (e.g., video, or text), which
will hopefully lead to better environmental and speaker robustness
in realistic applications. In the first MISP challenge, two bench-
mark datasets recorded in a real-home TV room with two repro-
ducible open-source baseline systems have been released to pro-
mote research in audio-visual wake word spotting (AVWWS) and
audio-visual speech recognition (AVSR). To our knowledge, MISP
is the first open evaluation challenge to tackle real-world issues of
AVWWS and AVSR in the home TV scenario.

Index Terms— MISP challenge, microphone array, audio-
visual, automatic speech recognition, wake word spotting

1. INTRODUCTION

With the emergence of many speech-enabled systems, the applica-
tion scenarios (e.g., home and meetings) are becoming increasingly
challenging due to the factors of adverse acoustic environments (far-
field audio, background noises, and reverberations) and conversa-
tional multi-speaker interactions which typically includes large por-
tions of speech overlap. In the last decade, technology advances
in speech enhancement [1, 2, 3, 4] and robust speech processing
[5, 6, 7], and the availability of speech corpora recorded in var-
ious real environments [8, 9, 10, 11, 12] have caused the perfor-
mances of many speech-enabled systems to improve tremendously
in the above-mentioned scenarios. However, state-of-the-art speech
processing techniques based on the single audio modality run into
performance plateaus, e.g., the CHiME-6 [13] dinner party scenario
reaches a word error rate of about 40%, which is a level of perfor-
mance that falls short of the deploy ability of the application.

The cocktail party effect [14] indicates that the human auditory
system can track a single target voice source in extremely noisy
acoustic environment such as a cocktail party. This finding moti-
vates us to design speech-enabled systems by drawing on the way
humans perceive speech. The McGurk Effect [15] suggests a strong
influence of vision on human speech perception. Other studies [16,

*corresponding author

17, 18, 19, 20] have shown that visual cues, such as facial/lip move-
ments, can help speech perception through supplementing speech
with visual cues related to the corresponding speaker, especially in
noisy environments. Inspired by those findings, speech-enabled sys-
tems utilizing both audio and visual signals have been developed.

Various audio-visual speech corpora were released to support re-
search, e.g. TCD-TIMIT [21], LRW [22], LRS2 [23], LRS3[24]and
AVSpeech [25]. Nevertheless, there is still a lack of a large-scale
public audio-visual speech corpus recorded in real world scenes, es-
pecially for the Chinese language.

For the first MISP challenge, we target the home TV scenario,
where several people are chatting in Chinese while watching TV and
interacting with a smart speaker/TV in a living room. Carefully se-
lected far-field/mid-field/near-field microphone arrays and cameras
are used to collect both audio and video data, respectively. Time
synchronization for the different microphone arrays and video cam-
eras has been designed for conducting research on multi-modality
fusion. Preliminary speech recognition results using only the audio
modality show that there is much room for improvement. The chal-
lenge considers the problem of distant multi-microphone conversa-
tional audio-visual wake-up and audio-visual speech recognition in
everyday home environments. The challenge features are:
• Simultaneous recordings from multiple microphone arrays and

video cameras;
• Real conversation, i.e., talkers speaking in a relaxed and un-

scripted fashion;
• High overlaps ratios in multi-talker conversions;
• Real domestic noise backgrounds, e.g., TV, air conditioning,

movement, etc.;
• 30+ real room acoustics and 250+ native Chinese, speaking Man-

darin without strong accents.
The paper is structured as follows. Section 2 introduces the data

collection procedure and tasks. We describe the metric, the data
set, the software baseline and the corresponding submitted results
for Tasks 1 and 2 in Sections 3 and 4, respectively. We conclude in
Section 5. More details can be found on the challenge website1.

2. DATASET AND TASKS

2.1. Scenario

We consider the following scenario: several people are chatting
while watching TV in the living room and they can interact with a

1mispchallenge.github.io
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smart speaker/TV. An example recording scene is shown in Fig.1.
In the schematic diagram, six speakers are chatting while multiple
devices are used to record the audio and video in parallel.
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Fig. 1. Schematic overview of the recording scene.

There are some variables that can have an influence on the con-
versation and/or the collected audio and video that is taking place
in the real living room, for example, the TV can be turned on/off,
the conversation can happen during the day or night, etc. Moreover,
by observing the real conversations taking place in the real living
room, we found that speakers could be divided into several groups
to discuss different topics. This is a common natural conversation
phenomenon. Compared with the situation when all speakers are
discussing the same topic, the grouping results in higher overlap ra-
tios in the audio. We control the above variables to cover as many
real scenes as possible during recording.

2.2. Audio

Three types of recording devices were used. The type of recording
device was dependent on its distance to the speaker. The far record-
ing device is a linear microphone array of 6 sample-synchronised
omnidirectional microphones, which is placed 3-5m away from the
speaker. The distance between adjacent microphones is 35 mm. The
far linear microphone array is recorded onto a laptop computer. At
a position 1-1.5 m away from the speaker, we placed a linear micro-
phone array of 2 sample-synchronised omnidirectional microphones.
The distance between adjacent microphones is 92mm. To facilitate
transcription, each speaker wore a high-fidelity microphone, on the
middle of chin. The audio from the middle linear microphone array
and each near high-fidelity microphone was recorded via a sound
board.

2.3. Video

Two types of recording devices were used to record the video. The
type of recording device was dependent on its distance to the speaker.
There is a wide-angle camera placed 3-5m away from the speakers.
The far wide-angle camera is fixed on the bottom of the far linear
microphone array. The x-axis of the camera coordinate system is
parallel to the array, and the origin coincides with the midpoint of
the array. All participants appear in the camera, which brings speak-
ers position information while reducing the resolution of the lip re-
gion of interest (ROI). There is also a high-definition camera placed
1-1.5m away from each speaker. There is only the corresponding
speaker in each camera, the lip ROI can be seen clearly and recorded.

2.4. Synchronization

Each device has its own clock, which may each run at their own
time/speed. This may result in inconsistency in the clocks [13]. We
try to minimize the potential asynchrony in time through the use of
synchronization devices and manual post-processing. The clocks of
all cameras are synchronized using software, named Vicando, while
the clocks of the middle linear microphone array and near high-
fidelity microphones are synchronized using the sound card. There
are still 3 different clocks, i.e., the clock of the sound card, the clock
of the far linear microphone array and the clock of videos. They are
synchronized by finding the mark point manually. The mark point
is a specific behavior, i.e. a speaker hits a cup with a lid. The video
frame where the cup and the lid are in contact and the waveform
point which is corresponding to the impact sound is aligned manu-
ally.

2.5. Transcription

The conversations have been manually transcribed and segmented at
the sentence level. For each speaker, a transcription is constructed
in which, for each utterance produced by that speaker, the start and
end times and the word sequence are manually obtained by listening
to the recording from the near high-fidelity microphone, which is
worn in the middle of corresponding speaker’s chin. For each other
recording device, the utterance’s start and end times are consistent
with the near recording due to the synchronization between devices
(see Section 2.4).

2.6. Tasks

The challenge features two tasks:
1 Audio-Visual Wake Word Spotting: identify a predefined word in

a given evaluation utterance and video;
2 Audio-Visual Speech Recognition with Oracle Speaker Diariza-

tion: recognize a given evaluation utterance and video while
ground truth diarization information is avail.

Task 1 is similar to the Alpha-mini Speech Challenge (ASC)
[26] while Task 2 is similar to the “ASR only” track of the CHiME-
6 challenge [13], with the key difference being that in our case the
audio-only task evolved into the audio-visual task. Task 1 and Task
2 will be introduced in detail in Section 3 and in Section 4, respec-
tively.

3. TASK 1: AUDIO-VISUAL WAKE WORD SPOTTING

3.1. Evaluation

Following the the single-modality challenge in [26], the combination
of false reject rate (FRR) and false alarm rate (FAR) is adopted as
the criterion, which is defined as follows.

ScoreWWS = FRR+ FAR =
NFR

Nwake
+

NFA

Nnon-wake
(1)

where Nwake and Nnon-wake denote the number of samples with the
wake word and without the wake word in the evaluation set, respec-
tively. NFR denotes the number of samples that include the wake
word but where the WWS system erroneously did not detect it and
NFA is the number of samples that do not contain the wake word
but where the WWS system erroneously detected it. The lower
ScoreWWS, the higher ranking.



3.2. Training, development, and evaluation sets

The database used for task 1 contains 124.79 hours of audio-visual
data. Table 1 shows the division of the audio-visual data into a
training, development, and evaluation set and indicates details re-
garding the number of sessions, the type of room, and the number
of male/female speakers. The wake word is “Xiao T Xiao T”. The
data set includes 118 sessions. The number of speakers within one
conversation session ranges from 1 to 6. The total number of speak-
ers in the data set is 347. All speakers are native Chinese speaking
Mandarin without strong accents. Various conversation topics were
recommended during recording. Due to the final ranking only lies on
the results of the far recordings, the evaluation set only contains the
recordings from the far devices, but the middle and near recordings
are avail in the training and development sets. Some real noise data
is also provided.

Table 1. Overview of the MISP2021-AVWWS corpus. [P: for pres-
ence of wake word, N: for absence of wake word]

Dataset
Training Dev

Eval Total
P N P N

Duration (h) 5.67 112.86 0.62 2.77 2.87 124.79

Session 89 89 10 10 19 118
Room 25 25 5 5 8 38

Participant 258 258 35 35 54 347
Male 81 81 11 11 31 123

Female 177 177 24 24 23 224

3.3. Baseline and Results

For Task 1, we provide three baselines: 1) audio-only and 2) video-
only wake word spotting baseline systems, and 3) data simulation
tool which is used to add reverberation and noise to the near mono
speech.2

3.3.1. Data simulation

Data simulation increases the quantity of training data, which is
beneficial to increase the generalization of the system. The Room
Impulse Response (RIR) is generated according to the actual room
size and microphone position by using an open-source toolkit, i.e.
pyroomacoustic[27]. In addition, we provide a simple tool to add
noise with 7 different signal-to-noise ratios (from -15dB to 15dB
with a step of 5dB).

3.3.2. Audio-only model for wake word spotting

Inspired by the work in [28], we design the proposed audio-only
WWS architecture in an end-to-end manner. Due to there is only
one wake word in the data set, our model outputs the probability of
wake-up. The optimisation objective is a binary cross-entropy loss.
We use 40-dimensional filter bank (FBank) features standardized by
global mean and variance as the audio features.

2github.com/mispchallenge/misp2021 baseline/tree/master/task1 wws

3.3.3. Video-only model and audio-visual fusion

The video-only WWS architecture is the same as the audio-only
model except that the visual input and embedding module replace
the audio input. A visual embedding is extracted from the input
image frame sequence using a lipreading model [29], which is pre-
trained on a word-level lip reading task and achieves 85.5% classi-
fication accuracy on the LRW dataset [22]. For every video frame,
the network outputs a compact 512-dimensional feature vector. The
original implementation of the lipreading model3 was adopted to ex-
tract the visual feature. For the audio-visual fusion, the scores of the
two systems are weighted and added together.

3.3.4. Results

A total of 16 teams from academia and industry participated in Task
1. Table 2 shows ScoreWWS results for Task 1. The results of the
challenge baseline are quite high which is due to the challenging en-
vironments of MISP2021. It also can be observed that the best result
of 0.058 is obtained and the performance of many teams outperforms
better than the baseline system. Most of the proposed techniques are
based on data augmentation and ensemble of networks.

Table 2. ScoreWWS of all submissions in the evaluation set on Task
1.

Team ID ScoreWWS Team ID ScoreWWS

T01 0.058 T10 0.123
T02 0.071 T11 0.195
T03 0.091 T12 0.241
T04 0.101 T13 0.254
T05 0.108 Baseline 0.322
T06 0.109 T14 0.402
T07 0.110 T15 0.498
T08 0.113 T16 0.898
T09 0.122

4. TASK 2: AUDIO-VISUAL SPEECH RECOGNITION
WITH ORACLE SPEAKER DIARIZATION

4.1. Evaluation

We adopt Character Error Rate (CER) as the metric. It is represented
with Eq. 2:

CER =
S +D + I

N
× 100 (2)

where S, D, I and N are the number of substitutions, deletions,
insertions and characters in the ground truth, respectively.

The lower the CER value (with 0 being a perfect score), the bet-
ter the recognition performance. Due to the multi-speaker interac-
tion in our scenario, there are speech segments with multiple speak-
ers talking simultaneously. For such speech overlap segments, we
calculate all the S/I/D errors based on the recognition results and the
ground truth for each speaker based on the oracle speaker diarization
results.

3github.com/mpc001/Lipreading using Temporal Convolutional Networks



4.2. Training, development, and evaluation sets

Task2 uses the MISP2021-AVSR corpus, which contains 122.53
hours of audio-visual data. The data set includes 376 sessions. Each
session consists of a discussion of about 20 minutes. The total num-
ber of speakers in the data set is 248. The data set is collected in
30 real living rooms, whose size range from 3.2 × 2.56 × 2.54 to
5.2× 4.2× 2.8m3.

The recorded data were split into three subsets for training,
development, and evaluation, respectively. There is no overlap in
speakers and recording rooms among the data in each subset. For the
challenge, all teams are ranked based on the recognition results of
far-field data. So only recordings from the far devices are available
in the evaluation set.

Table 3. Overview of the MISP2021-AVSR corpus for the audio-
visual speech recognition task.

Dataset Training Dev Eval Total

Duration (h) 101.12 9.83 9.94 120.89
Session 304 37 32 373
Room 20 5 5 30

Participant 200 21 27 248
Male 79 9 7 95

Female 121 12 20 153

4.3. Baseline and Results

For Task 2, we provide baseline systems for speech enhancement,
audio-only and audio-visual speech recognition.4

4.3.1. Speech enhancement

The baseline multi-channel speech enhancement front-end con-
sists of a weighted prediction error (WPE) dereverberation [30]
followed by a weighted delay-and-sum beamformer (BeamformIt
[31]), which is similar to the CHiME-6 recipe [13]. Both of the
WPE and the BeamformIt can be installed in the Kaldi [32] tool
installation directory.

4.3.2. Audio-only speech recognition (ASR)

The conventional ASR baseline consists of the preparation of the
dictionary and the language model, the audio feature extraction,
the Gaussian mixture model-hidden Markov (GMM-HMM) model
training, and the audio-only model training.

We use a DaCiDian5 dictionary as the basic pronunciation dic-
tionary. A 3-gram language model is trained by the maximum en-
tropy modeling method implemented in the SRILM toolkit [33].

We extract 13-dimensional Mel-frequency cepstral coefficient
(MFCC) features for GMM-HMM systems and 40-dimensional high
resolution MFCC features for NN-HMM systems.

The GMM stages include standard triphone-based acoustic
model building with various feature transformations including lin-
ear discriminant analysis, maximum likelihood linear transforma-
tion, and feature space maximum likelihood linear regression with
speaker adaptive training. These models are used for generating
lattices for training the chain model.

4github.com/mispchallenge/misp2021 baseline/tree/master/task2 avsr nn hmm
5github.com/aishell-foundation/DaCiDian

We use a factorized time delay neural network (TDNN-F)
adapted from the Switchboard recipe 7q model [34]. Speed-
perturbation [35] is adopted to increase the quantity of training
data.

4.3.3. Audio-visual speech recognition (AVSR)

The AVSR baseline has the same preparation of the dictionary and
the language model, the audio feature extraction, the GMM-HMM
model training as the audio-only ASR baseline. Generated lattices
and fused audio-visual embedding are used to train the audio-visual
model. We use the same visual embedding extraction process as
explained in Section 3.3.3. Then, high resolution MFCC feature and
the visual embedding are concatenated along the channel dimension.
The mismatch in the number of frames between audio and video is
solved by repeating a video frame for several audio frames. Finally,
we use the same model as the ASR baseline, but replace the input
with the concatenated features mentioned above.

4.3.4. Results

There are 9 submissions from academia and industry participated in
Task 2. Table 4 provides the CERs of all submitted systems and the
baseline AVSR system for the evaluation set. The baseline AVSR
system achieves a CER of 62.74%, there is indeed still a lot of room
of improvement. There are 2 systems achieving a CER of less than
30%. The main performance improvement lies in novel audio-visual
fusion methods and various audio data augmentation strategies.

Table 4. CERs of all submissions in the evaluation set on Task 2.
Team ID CER (in %) Team ID CER (in %)

T01 25.07 T06 46.82
T02 27.17 T07 51.53
T03 34.02 T08 60.88
T04 38.87 T09 62.14
T05 42.33 Baseline 62.74

5. SUMMARY & CONCLUSIONS

The MISP2021 challenge focuses on the Audio-Visual Wake Word
Spotting and the Audio-Visual Speech Recognition tasks in the
Home TV scenario. A set of challenge instructions has been care-
fully designed to allow meaningful comparison between systems and
maximize scientific outcomes. The results of this challenge shows
that the visual modality could be a powerful supplement input to im-
prove environmental robustness. In the future, we also further study
audio-visual fusion methods and video data augmentation strategies.
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