THE ENERGY ROOF

INTEGRATED WITH PHOTOVOLTAIC-THERMAL, HEAT PUMP, VENTILATION, STORAGE AND HEAT RECOVERY FOR THE 'NUL OP DE METER' RENOVATION

STEFAN HOEKSTRA

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. LITERATURE
- 3. SYSTEM DEVELOPMENT
- 4. RESULTS
- 5. CONCLUSION

SHIFTING TO RENEWABLES

INTRODUCTION

"The first pillar of the Third Industrial Revolution is shifting to renewable energy"

- Jermey Rifkin

NEW STEPPED STRATEGY (NSS)

INTRODUCTION

- 0 standard building
- 1 reduce the demand

2 reuse the waste streams

- 3a produce the remaining demand with renewables
- 3b waste = food

ENERGY

THE NETHERLANDS

Renewables 5.5% (2014)

Dwellings 27% total energy

Low energy labels

Annual 1% new build

Stroomversnelling

TECHNOLOGY NOM

HEAT PUMP

GROUND SOURCE - HP

AIR SOURCE - HP

SOLAR ASSISTED - HP

TECHNOLOGY NOM

HEAT PUMP

GROUND SOURCE - HP

AIR SOURCE - HP

SOLAR ASSISTED - HP

disadvantage

expensive ground drilling not suitable for 1-day renovation

disadvantage

outside unit

noise pollution

high investment cost

advantage

lower investment cost

high efficient with solar irradiation

TECHNOLOGY NOM

PHOTOVOLTAIC PANELS

THE ENERGY ROOF

INTRODUCTION

The Energy Roof is:

- an aesthetic full-roof PV design

- with PVT-SAHP and PVT solar boiler

- storage, ventilation and heat recovery

- provide the total energy demand

- with renewables as source

- suitable for industrial production

- and a **one-day** renovation
- to Nul-op-de-Meter

RESEARCH QUESTION

INTRODUCTION

Is the Energy Roof technically and financially feasible for 'Nulop-de-Meter' renovation of Dutch dwellings?

LITERATURE STUDY

BUILDING TYPE

LITERATURE

Selection criteria: amount // energy label // single family dwelling // pitched roof

BUILDING TYPE

LITERATURE

ENERGY DEMAND

LITERATURE

Average house 1960-198 energy demand

1.750 m3 gas 3.200 kWh electric

4.2 ton CO2 emission

Energy demand

ventilation

19.4 GJ

NoM renovated row-house electrical production

5.400 kWh - 5,6 kWP

14/33

ENERGY DEMAND

LITERATURE

4.2 ton CO2 emission 15/33

SYSTEM DEVELOPMENT

HYDRAULIC CIRCUIT

SYSTEM DEVELOPMENT

MODEL

SYSTEM DEVELOPMENT

PANEL

MODEL

HEAT PUMP

MODEL

Solar Assisted Heat Pump (on/off) R134a

STORAGE TANK

MODEL

Diagram legend

- pump

- modulating pump - temperature sensor

- 3 way valve (open/close or 0-10V)

- storage tank (heating or hot water)

minimal buffer content

hot water tank: 150L (25 min shower)

heating tank: 100L (max. start/stops)

DEMAND

MODEL

Hot water demand: 11.6 GJ Heating demand: 10 GJ

- NoM renovated dwelling
- Heat demand < 30 kwh_th/m2
- Low temperature emission system

heat demand curve

RESULTS

MINIMAL PV-DX PANEL SURFACE

SYSTEM DEVELOPMENT

Cold winter night -15 °C

RESULTS

Week simulation 3kW heat pump with 6 m2 panel

WINTER WEEK

ANNUAL SIMULATION

ELECTRICAL CONSUMPTION

NOM ROOF SURFACE

RESULTS

system	Total_el [kWh]	SCOP	Produced el. [kwh]	PV-DX East [m2]	PV East [m2]	Net PV-DX	Net East	m2 PV West
6-3kW	2307	2.601	896.6	6	28	-1410	-828	6.8
8-3kW	2183	2.747	1191	8	26	-992	-704	5.8
10-3kW	2096	2.861	1487	10	24	-609	-616	5.1
12-3kW	2035	2.947	1782	12	22	-253	-555	4.6
8-4kW	2179	2.753	1191	8	26	-988	-700	5.8
10-4kW	2085	2.876	1486	10	24	-599	-606	5.0
12-4kW	2018	2.972	1781	12	22	-237	-539	4.4
12-5kW	2023	2.966	1781	12	22	-242	-544	4.5
6-3kW (S)	2284	2.627	988.2	6	28	-1296	-279	2.8 (N)

Available roof area: 34 m²

Annual energy demand apliances, light and ventilation: 3545 kWh

PERFORMANCE HEAT PUMP

RESULTS

CONCLUSION

CONCLUSION

CONCLUSION

NoM with the Energy Roof is technical possible! ..with both roof surfaces

- The surface of the PV-DX has more influence on the SCOP than the capcity of the heat pump;
- PV-DX improves the efficiency of the PV panel with 0.8%;
- NoM is very sensitive to the user related energy (>50%);
- Potential reduction of 2.4% of the total Dutch carbon emission (4.2 million ton CO2);

RECOMMENDATIONS

CONCLUSION

- Further research is required for the wind convective heat transfer
- Including a model to predict the influence of ice formation
- Test prototype as validation of the model
- The model can be used with different inputs

Planned for P5:

Include the PVT and smart control in the model, financial feasibility, report and presentation

THANK YOU FOR YOUR ATTENTION

THE FULL ENERGY ROOF

GET READY FOR THE FUTURE

COMPONENT INTEGRATION

RESULTS

Unidek

Solrif BIPV

Roll-bond evaporator

