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Abstract

Recently, the effects of quantization on the Primal-Dual Method of Multipliers were studied. In this thesis,
we have used this method as an example to further investigate the effects of quantization on distributed
optimization schemes in a much broader sense. Using monotone operator theory, the effect of quantiza-
tion on all distributed optimization algorithms that can be cast as a monotone operator was researched for
two different problem subclasses. The averaging problem was used as an example of a quadratic problem,
while the Gaussian channel capacity problem was an example of the non-linear problem subclass. A fixed bit
rate quantizer was used in combination with a dynamic cell width, to analyse the robustness of distributed
optimization schemes against quantization effects. In particular, we have shown that for practical imple-
mentations it is possible to incorporate fixed bit rate quantization with dynamic cell width in a distributed
optimization algorithm without loss of performance for both problem classes.
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1
Introduction

Due to new technology, such as faster and cheaper processing power and larger overall systems, the interest
in the field of distributed signal processing has taken flight in the last few decades [1]. Examples are Big Data
[2], a field where the amount of data is too large to be processed by a single computer, but also the devel-
opments in Smart Grids [3]. Following these changes to a node based network, the benefits of distributed
optimization schemes became evident. The technological basis that supports distributed signal processing
is that modern systems almost all consist of networks with a large number of nodes, which all contain one or
more sensors, a processing unit, and communication abilities. This gives way to a new type of computation:
distributed algorithms. Contrary to central processing, distributed processing will use the nodes in the grid
to perform computations locally and only send required and processed information through the network,
without the use of a central processor.

To indicate the difference between the traditional centralized network and the proposed distributed net-
work, a graphical interpretation of both topologies is included in Fig. 1.1. It is clear from Fig. 1.1a that the
amount of connections in the centralized case are equal to the amount of nodes minus one (n −1) and the
distances can be rather large. Therefore, the amount of edges is fixed, regardless of the node locations, and the
distances depend on the layout of the network. Most decentralized algorithms require neighbour-based com-
munication only, as indicated in Fig. 1.1b. This eases the constraints on transmission power, as the distances
are smaller, and thus increases efficiency, although the number of connections depends on the topology. In
general, a node will have more than one connection, which intuitively means the local information can be
distributed by broadcasting to neighbouring nodes. As the connections are neighbour-based, it is easier to
include or exclude nodes in the distributed case. For all those reasons, distributed schemes are automatically
more scalable than conventional centralized systems and are also more robust against transmission errors
[4]. Due to these advantages, these schemes are rising in popularity, and while for some methods the effects
of quantization have been studied [5–7], the exact properties such as convergence rates and robustness are
yet to be discovered for many other distributed methods. Therefore, these distributed optimization schemes
will form the basis of this work.

Throughout the literature, distributed optimization problems are defined over a graph G = (V ,E), con-
sisting of the nodes V and connecting edges E . In Fig. 1.1b, the nodes are indicated as red dots and the
edges are blue lines. Most distributed optimization schemes can be categorized into two main classes: prob-
abilistic inference and convex optimization. The former contains the well-known sum-product and max-sum
algorithms, which solve the problem using belief propagation [8–10]. This method of solving works best for
quadratic problems in combination with acyclic graphs. However, many practical problems cannot be imple-
mented in a tree structure, or only in a very inefficient manner. In other words, the implemented graphs will
often contain loops, resulting in convergence problems. The other category, convex optimization, does not
have any constraints on the graph other than it being a connected graph (there has to be a path between any
two nodes in the graph) [4]. In this thesis, the convex optimization approach will be discussed thoroughly.
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Figure 1.1: Different network topologies.

1.1. Distributed optimization problem
The general form of an optimization problem, defined over a graph G = (V ,E), is the following:

minimize
∑
i∈V

fi (xi )+ ∑
(i , j )∈E

fi j (xi ,x j ) (1.1)

For the convex optimization case, the assumption is made that { fi } and { fi j } are all convex functions. This is a
valid assumption, as many optimization problems either are convex or can be relaxed to a convex form. One
of the most frequently used problems is averaging. This averaging problem is an example of a distributable
problem, for which many algorithms such as the gossip algorithm [11, 12], the alternating direction method
of multipliers (ADMM) [13, 14] and the primal-dual method of multipliers (PDMM) [15–17] exist. Numerous
other problems can be solved in a distributed manner as well.

The first step to decentralize a problem is to formulate the original problem as an optimization problem
over a certain graph G , as in Eq. (1.1). However, the original problem is not always distributable, as the orig-
inal functions may contain global variables, for example resulting from constraints. To solve this issue, the
optimization problem can be recast as a decentralized problem by adding local variables and constraints,
making it a distributed optimization problem. By choosing the best-suited distributed solver, the process is
complete. An example of this process will be included in Chapter 2.

One of the interesting aspects of these distributed algorithms is the convergence rate. Conditions for
convergence often exist, but convergence rates are not always specified. For example, the rates of ADMM
and PDMM have been studied [14, 17–20], in the case of PDMM even on systems including quantization [21].
Unfortunately, there is still much unknown about quantization effects in distributed signal processing. As
it is such a vast area of research, the work in [21] focussed on the averaging problem and cannot easily be
generalized to different classes of problems. Therefore, further research on this topic was called for.

1.2. Research question and document outline
In this thesis, quantization effects in distributed algorithms will be further explored and the convergence
rates will be analysed for two classes of problems. The central research question in this thesis is:

What are the effects of fixed rate quantization on the convergence of distributed optimization schemes in
synchronous operation? Is the convergence rate of such an optimization scheme robust against the errors
introduced by fixed rate quantization?
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The structure of this thesis is as follows: Chapter 2 contains the nomenclature and the principles behind
two optimization problems: the averaging problem and the Gaussian channel capacity problem. Chapter 3 is
a preliminary chapter, which informs about the details of solving a decentralized problem using the Primal-
Dual Method of Multipliers, the mathematical theory of monotone operators and the notion of operator split-
ting. In Chapter 4, the afore mentioned Primal-Dual Method of Multipliers and monotone operator theory
are combined to yield the Monotone Primal-Dual Method of Multipliers. Up to Chapter 4, all chapters have
assumed ideal transmissions, but this is not possible in practice. After the theory behind quantization is ex-
plained in preliminary Chapter 5, it is combined with the results from previous chapters in Chapter 6. The
theoretical results are verified by simulations, which are discussed in Chapter 7. A final conclusion, along
with a discussion and recommendations for future work are presented in Chapter 8.





2
Background

2.1. Nomenclature
In the course of this work, the following notation is used:

• Scalars will be indicated by a lower case letter (a).

• Vectors are displayed as a lower case, bold faced letter (v). Elements are selected using indices (scalar
and vector elements respectively vi and vi ).

• Matrices are indicated by an upper case letter (A). Elements are selected via indices (scalar, vector and
submatrix elements respectively ai j , Ai and Ai j ).

• S is used to indicate a generic mathematical operator.

• The transpose of a matrix or vector is indicated by a superscript T (AT or vT ).

• The inverse, either of a matrix or of an operator, is indicated by a superscript -1 (A−1 or S−1).

• The pseudo inverse (Moore-Penrose Matrix Inverse [22]) of a matrix is indicated by a superscript † (A†).

• In iterative processes, the iteration indicator (k) will be displayed brackets in subscript (z(k)).

• The fixed point of an operator and the end point of an algorithm are denoted by a subscript * (z∗).

• Unless otherwise specified, ‖•‖ is used as the 2-norm (‖•‖2).

• The base-2 logarithm is implied when using log(), any other bases will be indicated by subscript.

• A graph consisting of the nodes V and edges E is noted as G = (V ,E).

• The number of nodes in a certain graph is denoted as N .

• The number of undirected edges in a certain graph is referred to as M .

• The neighbours of a node i (all other nodes directly connected to node i via an edge) are noted by Ni .

2.2. Different optimization problems
As discussed in the introduction, the first step of solving an optimization problem in a distributed manner
is the problem formulation. Suppose we start with a standard convex optimization problem with equality
constraints1:

min
x

f (x) s.t. Ax = b (2.1)

1The equality constraints have to be affine for the problem to be a convex optimization problem.

7



8 2. Background

An important observation is the notion of consensus: the distributed problems that are considered are for-
mulated in such a way that all nodes try to achieve consensus about a global variable. For this purpose, each
node contains a local estimate of this global variable and to ensure consensus, the constraints for Eq. (2.1)
have to be consensus constraints: xi −x j = 0 if i and j are neighbours and xi and x j are the estimates at nodes
i and j . The assumption is made that f (x) is convex, but there are different possible subtypes of functions,
all with different properties. In this work, two different functions will be studied: the averaging problem and
the Gaussian channel capacity problem.

2.2.1. Averaging problem

For the averaging problem, the objective is to compute the average of a certain node-based parameter. Exam-
ples are the average light-intensity in an image or the average temperature in a room, the latter of which will
be used in the remainder of this work. Allow Ti to be the temperature at node i and xi ,(k) to be the estimate
of the average at node i , iteration k. The objective is to make all xi converge to the same x∗ and to let x∗ be
the average of the vector T. In other words: x∗ = 1

N

∑N
i=1 Ti . A function f (x) that yields this x∗ can be found.

For the averaging case, Eq. (2.1) becomes:

min
x

N∑
i=1

1

2
(xi −Ti )2

s.t. xi −x j = 0, ∀(i , j ) ∈ E (2.2)

Clearly, this is a quadratic problem, which has certain properties in relation to convergence. In order to test
the effects on non-quadratic problems, a different starting problem has to be defined.

2.2.2. Gaussian channel capacity problem

Apart from the averaging problem, the Gaussian channel capacity (GCC) problem is another example of a dis-
tributable optimization scheme. This problem is often found in multi-channel information theory analysis.
Suppose we have n channels, all with their own noise variance σ2

i , and a message is to be send using these
channels. The GCC problem consists of finding the optimal distribution of the total transmission power Ptot

among the channels. The optimal way to use the channels is the so-called water filling solution, which can
be computed algorithmically. For simplicity, it is assumed that the channels are ordered in such a way that
σ2

i ≤σ2
j if i < j .

Start off by using the channel with the lowest noise variance, and add power to this channel. Keep adding
power (Pi ) until either you reach the total amount of power Ptot , or σ2

i +Pi = σ2
i+1. If the latter is the case,

include the next channel and add power to both channel i and i +1. Again, continue adding power until all
power is used (Pi +Pi+1 = Ptot ) or σ2

i+1 +Pi+1 =σ2
i+2. Continue in this way until all power is distributed. This
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process is summarized in Algorithm 1

Algorithm 1: Water filling algorithm

Data: σ2,n,Ptot

Result: x
Sort σ2;
Pavai l able = Ptot ;
k = 1;
while P Avai l abl e > 0 do

if k<n then

PNext = min
(

P Avai l abl e
k ,σ2

k+1 −σ2
k

)
;

x1,..,k = x1,..,k +PNext ;
P Avai l abl e = P Avai l abl e −k ∗PNext ;
k = k +1;

else
PNext = P Avai l abl e

k ;
x1,..,k = x1,..,k +PNext ;
P Avai l abl e = 0;

end
end

In Fig. 2.1, an example is illustrated, with four different channels and total amount of power Ptot equal to
1. For simplicity, units have been omitted as they are not relevant for this example. The noise variances are
1, 1.5, 1.75 and 2. Therefore, 0.5 power is applied to the first channel. Then, with 0.5 power left, we include
the second channel and distribute the 0.5 power left between those two channels. As a result, channel 1 gets
0.75 power and channel 2 gets 0.25 power. Channel 3 and 4 both get 0 power, as they have too much noise. If
the total amount of power would be higher than 1 (and less or equal than 1.75), the remaining power would
be distributed between channels 1, 2 and 3. Clearly, the distribution of the power behaves like water, filling
from low to high, where the total amount of water is equal to the total amount of power. This behaviour was
the inspiration behind the name “water filling”.

Apart from this intuitive and iterative approach, the problem can also be solved by an optimization ap-
proach. The GCC problem can be cast as an optimization problem of the following form [23]:

min
x

− ∑
i∈V

log(σ2
i +xi )

s.t. x ≥ 0

1T x = Ptot (2.3)

This is a non-linear problem in the form of Eq. (2.1) with additional inequality constraints. In Section 3.2,
this problem is cast into the Primal-Dual Method of Multipliers framework, including these extra inequality
constraints. The next step after defining the problems is translating them to a decentralized problem, which
is discussed in the next chapter.
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Figure 2.1: Water filling example with four channels



3
Preliminary: Mathematical basis

For both the quadratic problem (averaging problem) and the non-quadratic problem (GCC), there are many
algorithms that solve the problem. Based on previous work, the Primal-Dual Method of Multipliers (PDMM)
was chosen as solving algorithm.

3.1. Solving the decentralized averaging problem using the Primal-Dual
Method of Multipliers

Assuming the standard form in Eq. (2.1), the next step is to separate the problem into a sum of node-based
functions:

min
x

∑
i∈V

fi (xi ) s.t. ai j xi +a j i x j = bi j , ∀(i , j ) ∈ E (3.1)

This is possible for every problem, even if multiple fi depend on the same variable x by introducing two
different variables xi and x j including xi = x j in the equality constraints. In Section 3.2, the proceedings
with inequality constraints are clarified. For the averaging problem, the separation is implicit in the problem
generation as it is already expressed as a sum of node-based functions. The next step is to transcribe Eq. (3.1)
into an unconstrained problem, using the primal Lagrangian:

Lp (x,ν) = ∑
i∈V

(
fi (xi )+ ∑

j∈Ni

νi j (ai j xi +a j i x j −bi j )

)

The primal Lagrangian consists of a function of the original variable and a new dual variable. This dual vari-
able is multiplied with the original equality constraint, so that the effect of the dual variable is non-existent if
and only if the original constraints are fulfilled. As the Lagrangian is a function of two variables, optimization
will have to occur in both variables to obtain the overall optimum. When the supremum of the Lagrangian is
taken with respect to the dual variable, two options occur:

• the original constraints on the primal variable x are fulfilled, in which case the dual variable is multi-
plied by zero and is thus arbitrary,

• the original constraints are not fulfilled, in which case the supremum over the dual variable is infinity.

By then taking the infimum over the original variable x, the optimum is found: find the x that minimizes the
cost but is also contained in the feasible set. In fact, optimizing this Lagrangian yields the same optimum
as the original constrained problem1. As previously stated, this optimum will be found by optimizing the
Lagrangian in the following way:

inf
x

sup
ν

Lp (x,ν) = sup
ν

inf
x

Lp (x,ν) = sup
ν

g (ν)

1For the optima to be equivalent, Slater’s condition must hold: the problem has to be strictly feasible. In the case of equality constraint
optimization, this is always the case.

11



12 3. Preliminary: Mathematical basis

g (ν) is called the dual problem and is defined as the infimum over x of the Lagrangian, which yields Eq. (3.2).

g (ν) = inf
x

Lp (x,ν)

=−sup
x

−Lp (x,ν)

=−sup
x

∑
i∈V

(
− fi (xi )− ∑

j∈Ni

νi j (ai j xi +a j i x j −bi j )

)
(3.2)

For the next step, the convex conjugate of the function fi is used.

Definition 3.1. The convex conjugate of a function, f ∗(u), is defined as [24]:

f ∗(u) = sup
x

(
uT x− f (x)

)
Utilizing Definition 3.1, Eq. (3.2) can be transformed to Eq. (3.3):

g (ν) = ∑
i∈V

− f ∗
i

( ∑
j∈Ni

ai jνi j

)
+ ∑

(i , j )∈E
νi j bi j (3.3)

The problem is that this function is not separable, as νi j is a variable that corresponds to a certain edge (i , j )
and is thus used by both nodes i and j . Therefore, it is necessary to define a new node-based variable λi | j , in
such a way that λi | j =λ j |i = νi j . Applying this notion to Eq. (3.3) and optimizing this dual function results in:

max
ν,λ

∑
i∈V

− f ∗
i

( ∑
j∈Ni

ai jλi | j

)
+ ∑

(i , j )∈E
νi j bi j s.t. λi | j =λ j |i = νi j

To turn this new optimization problem into an unconstrained one, the Lagrangian is used again, this time
yielding the dual Lagrangian.

Ld (ν,λ,ζ) = ∑
i∈V

(
− f ∗

i

( ∑
j∈Ni

ai jλi | j

)
+ ∑

j∈Ni

ζi | j (νi j −λi | j )

)
+ ∑

(i , j )∈E
νi j bi j (3.4)

ζi | j are the dual Lagrange multipliers, for which Fenchel’s inequality must hold with equality at the saddle
point [17]:

ζ∗i | j = a j i x j −bi j

As a result, we constrict the form of the dual Lagrange multipliers ζi | j to be ζi | j = a j i x j −bi j . Substituting this
equality in Eq. (3.4) yields:

Ld (ν,λ,x) = ∑
i∈V

(
− f ∗

i

( ∑
j∈Ni

ai jλi | j

)
− ∑

j∈Ni

λ j |i (ai j xi −bi j )

)
− ∑

(i , j )∈E
νi j (bi j −ai j xi −a j i x j )

This dual Lagrangian will be combined with the primal Lagrangian to result in the primal-dual Lagrangian
in:.

Lpd (x,λ) =Lp (x,ν)+Ld (ν,λ,x) = ∑
i∈V

(
fi (xi )− f ∗

i

( ∑
j∈Ni

Ai jλi | j

)
− ∑

j∈Ni

λ j |i (ai j xi −bi j )

)

To ensure primal and dual feasibility, two penalty terms are included, Hp and Hd .

Hp (x) = ∑
(i , j )∈E

ρp

2
‖ai j xi +a j i x j −bi j ‖2

Hd (λ) = ∑
(i , j )∈E

ρd

2
‖λi | j −λ j |i‖2
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The final problem becomes Lpdmm(x,λ) =Lpd (x,λ)+Hp (x)−Hd (λ). This can be solved iteratively, by the
following updates [17]:

xi ,(k+1) = argmin
xi

(
fi (xi )−xi

( ∑
j∈Ni

ai jλ j |i ,(k)

)
+ ∑

j∈Ni

ρp

2
‖ai j xi +a j i x j ,(k) −bi j ‖2

)
(3.5a)

λi ,(k+1) = argmin
λi

(
f ∗

i

( ∑
j∈Ni

ai jλi | j

)
+ ∑

j∈Ni

λi | j (a j i x j ,(k) −bi j )+ ∑
j∈Ni

ρd

2
‖λi | j −λ j |i ,(k)‖2

)
(3.5b)

After studying the latter update equation, it can be seen that the expanded form is equal to that of Eq. (3.6) if
ρd = ρ−1

p .

λi | j ,(k+1) =λ j |i ,(k) +ρp (ai j xi ,(k+1) +a j i x j ,(k) −bi j ) (3.6)

3.2. Solving the decentralized Gaussian channel capacity problem using
the Primal-Dual Method of Multipliers

Recall the GCC optimization problem in Eq. (2.3), where Ptot = 1. This problem cannot be cast into the PDMM
framework in the exact same way as the averaging problem, as there are both global inequality and equality
constraints, and no consensus constraints. The first step will therefore be to find the equivalent consensus
problem. For this purpose, the Lagrangian of this problem is constructed:

L (x,λ,µ) = ∑
i∈V

(− log(σ2
i +xi )

)−µ(1T x−1)−λT x

s.t. λ≥ 0 (3.7)

Even with the inequality constraints in Eq. (2.3), Slater’s condition still holds, so there is strong duality and
the solution to the Lagrangian is the same as the solution to the original problem. The Karush–Kuhn–Tucker
conditions (KKT conditions) of the Lagrangian in Eq. (3.7) are as follows [23]:

x∗ ≥ 0

1T x∗ = 1

λ∗ ≥ 0

λi ,∗xi ,∗ = 0 ∀i ∈V

−1

σ2
i +xi ,∗

−µ∗−λi ,∗ = 0 ∀i ∈V

Solving the last condition for xi ,∗ leads to

xi ,∗ = −1

µ∗+λi ,∗
−σ2

i (3.8)

Substituting Eq. (3.8) into Eq. (3.7) yields the dual function

g (λ,µ) = ∑
i∈V

(
− log(

−1

µ+λi
)+1+µσ2

i +λiσ
2
i

)
+µ

From this dual function, an implicit constraint on µ+λi arises: µ+λi < 0 ∀i ∈V . Although λi is a local node
variable, µ is still global. To make this problem distributed, a new variable µi is defined at each node, with
the constraint that µi = µ j = µ ∀(i , j ) ∈ E . After substituting this into the dual function, the dual problem
becomes:

min
λ,µ

∑
i∈V

(
log(

−1

µi +λi
)−µiσ

2
i −λiσ

2
i −

µi

N

)
s.t. µi =µ j , ∀(i , j ) ∈ E

0 >µi +λi∀i ∈V

0 ≤λi ∀i ∈V (3.9)
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This is again a separable optimization problem, this time including consensus constraints. It is important to
realise that only the first constraint is a consensus constraint among different nodes, the latter two are local
constraints at each node. From this point, the same derivation as in Section 3.1 can be followed. This leads
to the form as in Eqs. (3.5a) and (3.6) where xi = µi but the update on µi is now a constrained optimization
problem. In Section 4.2, we will proceed with this problem, but first a background on monotone operator
theory is presented.

3.3. Monotone operator theory
Thus far, only mathematical functions have been used in the analysis. From this point on, mathematical
operators will be introduced as these operators will be used throughout this thesis. For this section, most
definitions and fundamentals are inspired by [25]. These operators are defined as

S(x) = {y ∈Rn |∃x ∈Rn : (x,y) ∈ S}

It is important to realize that applying an operator results in a set, so the formulation y ∈ S(x) is used. However,
in case S(x) is a singleton for any x, then S is a function for that x and the common notation y = S(x) is used,
although strictly {y} = S(x) would be more correct. Contrary to inverse functions, inverse relation always exists
(and as functions are a special type of relations, all functions will thus have an inverse relation although they
may not have an inverse function). In general, the inverse relation is defined as

S−1(x) = {(x,y)|(y,x) ∈ S}

Although not all properties of functions hold for relations, some do. They can for example be subject to
multiplication, so that

cS(x) = {(x,cy)|(x,y) ∈ S},c ∈R

Operators can also act upon operators, for which the notation S2 ◦S1(x) is used. This means the operator S1

first acts upon x, the result is then the input of the operator S2.

A fixed point of an operator is defined as any point where x∗ ∈ S(x∗). This means it is possible to stay in a
certain point if the operator is applied again, and if the operator yields a singleton it is even an equilibrium
point of the function. There are more definitions that are specific to operator theory:

Definition 3.2. The resolvent of an operator S is defined as

JcS (x) = (I + cS)−1(x)

Definition 3.3. The Cayley operator of S is defined as

CcS (x) = (2JcS − I )(x)

Definition 3.4. The proximal point is defined as the resolvent of the subdifferential of a function [25]:

Jc∂ f (x) = proxc f (x) = argmin
u

(
f (u)+ 1

2c
‖u−x‖2

2

)
Similar to functions, relations can also be classified, e.g. as being monotone or Lipschitz continuous. A
relation is called monotone if

(S(y)−S(x))T (y−x) ≥ 0 ∀x,y ∈Rn

In [26], an alternate condition for monotonicity is presented: an operator is monotone if and only if ran(I+S) =Rn .
Operators for which the following inequality holds are referred to as strongly monotone with parameter m.

(S(y)−S(x))T (y−x) ≥ m‖y−x‖2
2

A monotone operator is maximal if it is not contained properly by any other monotone operator. A related
and very powerful lemma is the following:
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Lemma 3.1. If S is maximal monotone on Rn and c > 0 :

0 ∈ S(x) ⇔ JcS (x) = x

Proof. Allow x to be a solution to the monotonic inclusion problem. Add x on both sides and apply basic
operator theory:

0 ∈ S(x) ⇔ x ∈ (I + cS)(x) ⇔ (I + cS)−1(x) = x ⇔ x = JcS (x)

where equality holds as the resolvent of a monotone operator is single valued [25].

It is possible to make a simple derivation from this lemma:

Corollary 3.1. If S maximal monotone on Rn and c > 0 :

0 ∈ S(x) ⇔CcS (x) = x

Proof. Apply Definition 3.3 in combination with Lemma 3.1:

CcS (x) = 2JcS (x)−x = x

A last important notion is Lipschitz continuity. This yields an upper bound on the rate of change, as

‖ f (y)− f (x)‖ ≤ L‖y−x‖
Non-expansive relations are operators that are Lipschitz continuous with parameter L ≤ 1. Contractive oper-
ators have a Lipschitz parameter L < 1.

After this background in operator theory, it is time to put this knowledge to use. The PDMM problem will
be translated into a monotonic inclusion problem using this monotone operator theory. Operator splitting
will then be applied to generate two sub-problems, which will be studied subsequently. Therefore, the notion
of operator splitting must first be introduced.

3.4. Operator Splitting
For solving a maximal monotonic inclusion problem such as 0 ∈ S(x), Lemma 3.1 shows that this is equivalent
to finding the fixed point of the resolvent, or even that of the Cayley operator by Corollary 3.1. However,
the inversion step in the resolvent and Cayley operator can be challenging. To overcome this, the so-called
operator splitting method can be used. This method decomposes the original operator S into two maximal
monotone operators. Splitting results in S = S1 + S2 and is only beneficial if the resolvents of the two sub-
operators are easily computed. An important notion following from this splitting is:

0 ∈ S1(x)+S2(x) ⇔ y ∈ S1(x) and −y ∈ S2(x) (3.10)

Many splitting algorithms exist, but two will be emphasised in this work: Peaceman-Rachford splitting and
Douglas-Rachford splitting. Although splitting into more than two sub-operators is possible, those splitting
algorithms are not covered in this thesis.

One of the methods of operator splitting is the following: As S1 is maximal monotone, x = JcS1 (x+cy), y ∈ S1(x)
[27, Corollary 2.3]. Therefore:

x− cy = JcS1 (x+ cy)+x− (x+ cy)

= (2JcS1 − I )(x+ cy)

=CcS1 (x+ cy)

Recalling Eq. (3.10), this implies x = JcS2 (x− cy), −y ∈ S2(x) and therefore

x+ cy = JcS2 (x− cy)+x− (x− cy)

= (2JcS2 − I )(x− cy)

=CcS2 (x− cy)
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Combining the two yields

x+ cy =CcS2 ◦CcS1 (x+ cy), x = JcS1 (x+ cy)

By defining z = x+ cy, the Peaceman-Rachford splitting method [28, 29] is found.

Definition 3.5. The Peaceman-Rachford splitting method is defined as

0 ∈ S1(x)+S2(x) ⇔ z(k+1) =CcS2 ◦CcS1 (z(k)),

x(k+1) = JcS1 (z(k+1))

From this, a slight adjustment can be made to create an 1
2 -averaged iteration, known as Douglas-Rachford

splitting [29, 30].

Definition 3.6. The Douglas-Rachford splitting method is defined as

z(k+1) =
1

2
(I +CcS2 ◦CcS1 )(z(k)),

x(k+1) = JcS1 (z(k+1)) (3.11)



4
Monotone Primal-Dual Method of

Multipliers

After this background on operator splitting, the monotone interpretation of the Primal-Dual Method of Mul-
tipliers algorithm will be discussed. For the sake of clarity, this approach will be referred to as MPDMM.

4.1. Monotone Primal-Dual Method of Multipliers for the averaging problem
The first step to solving the averaging problem using MPDMM is defining the dual problem using the convex
conjugate as defined in Definition 3.1. Recall the standard form of the separable optimization problem:

min
∑
i∈V

fi (xi ) s.t. Ai j xi + A j i x j = bi j (4.1)

Recall the averaging problem in Eq. (2.2):

min
x

N∑
i=1

1

2
(xi −Ti )2

s.t. xi −x j = 0, ∀(i , j ) ∈ E

This problem is indeed of the same form as Eq. (4.1), where fi (xi ) = 1
2 (xi −Ti )2, Ai j are scalars such that

ai j = −a j i ∀(i , j ) ∈ E and bi j = 0 ∀(i , j ) ∈ E . For simplicity, the following convention is used: ai j = 1 and
a j i = −1 if (i , j ) ∈ E , i < j . In the interest of generality, these simplifications are not included in the deriva-
tion of the MPDMM algorithm.

Applying Definition 3.1 and writing the dual problem in the more compact matrix form results in:

min f ∗(−ATν)+bTν (4.2)

Here, A is an RxN matrix for a graph with N nodes and R undirected edges, while ν is an R-dimensional
vector and b is also R-dimensional. The optimality condition is easily deduced by taking the derivative with
respect to the dual variable ν: 0 ∈ ∂ν f ∗(−Aν)+b. In the non-matrix form, this corresponds to

0 ∈ ∂νi j f ∗
i (−aT

i ν)+∂νi j f ∗
j (−aT

j ν)+bi j

Clearly, this problem is non-separable as both fi and f j depend on νi j . Following the same method as in the
previous chapter, two new node-based variables are created, λi | j and λ j |i , in such a way that at convergence
λi | j =λ j |i = νi j . Stacking all λi | j yields the λ vector, which therefore has twice the dimension of ν: λ ∈ R2R .
Note that 2R = M as the number of directed edges is twice the number of undirected edges. A new and
properly dimensioned matrix C is defined using the A matrix. To summarize, the following is known for a
graph with N nodes and R undirected edges/M directed edges:

• λ(l ) and λ(l +R) both correspond to the νi j of the l th edge, l < R.

17
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• C consists of two R×N blocks, where the top block only consists of the part of A that contains Ai j , i < j
and the lower block consists of the opposite: A j i , i < j . Hence, C ∈RM xN .

Thus, λ is a repetitive vector, where the first half and second half are equal. In the averaging case, ai j =−a j i

with the convention that ai j = 1 ⇔ i < j , (i , j ) ∈ E . Therefore, the top part of C consists of all positive values

in the A matrix (A+), while the bottom part consists of the negative values (A−): C =
[

A+
A−

]
. As λ and C are

now properly dimensioned, only b does not have a compatible dimension. For this purpose, a new vector d

is defined: d = 1
2

[
b
b

]
so that d ∈RM . This results in a different expression for Eq. (4.2):

min f ∗(−C Tλ)+dTλ+ IΛ(λ) (4.3)

where P is an M xM permutation matrix swapping the first and last R rows and IΛ(λ) is the indicator function
for the setΛ= {λ ∈RM |λ= Pλ}, as defined below.

IΛ(λ) =
{

0, λ ∈Λ
∞, λ ∉Λ

Following the definition of C , it is clear that C +PC =
[

A
A

]
. This leads to the following important notion:

(C +PC )x = 2d ⇔ Ax = b

This proves the equivalence of Eqs. (4.2) and (4.3). Taking the derivative of Eq. (4.3) with respect to λ yields
Eq. (4.4).

0 ∈−C∂ f ∗(−C Tλ)+d+NΛ(λ) (4.4)

Here, the normal cone operator NΛ(λ) is used, which is the derivative of the indicator function and defined
as

NΛ(λ) =
{
; λ ∉Λ
{g|gT (y−λ) ≤ 0,∀y ∈Λ} λ ∈Λ

Eq. (4.4) is a so-called monotonic inclusion problem, as all operators are monotone1. Peaceman-Rachford
splitting will now be applied, where S1 = −C∂ f ∗(−C Tλ) + d and S2 = NΛ(λ). To start further analysis of
this splitting method, the resolvents will be studied initially. An important insight about the resolvent is
the following: JcS2 (y) = JNΛ (y) = proxcIΛ (y) and therefore Definition 3.4 can be applied. This leads to the
derivation in Eq. (4.5), where the final result reads the projection of y ontoΛ.

JcS2 = argmin
u

(
IΛ(u)+ 1

2c
‖u−y‖2

2

)
= argmin

u∈Λ
‖u−y‖2

2

=ΠΛ(y) (4.5)

The solution to the constrained optimization problem in the second line of Eq. (4.5) can be computed
explicitly. Let us call this solution u+. The Lagrangian of the constrained optimization problem reads:

L(y,u,κ) = ‖u −y‖2
2 +κT (Pu−u)

Since y is known, the optimality condition can be analysed by computing the gradient with respect to the
other variables:

∇u = 0 → 2(u+−y)+P Tκ−κT = 0

∇κ = 0 → (Pu+−u+) = 0

1∂ f ∗ = (∂ f )−1, (∂ f )−1 is monotone as the inverse of a monotone operator is monotone. The subdifferential of the convex function f is
monotone. As the normal cone operator is the subdifferential of a convex function, this is also a monotone operator.
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Combining these equations yields u+ = 1
2 (I+P )y so that JcS2 (y) = 1

2 (I+P )y. Returning to the original problem,
we see that the Cayley operator CcS2 (y) = (2JcS2 − I )(y) = Py, so this entire Cayley operator can be replaced by
the permutation matrix P . This permutation matrix represents the transmission of data along the edges of
the graph.

Now for the other resolvent: let λ+ = JcS1 (z) so that λ+ = (I + cS1)−1(z) ⇔ λ+ = z− cS1(λ+). Recall the
definition for S1: −C∂ f ∗(−C Tλ)+d so that

λ+ = z− c
(−C∂ f ∗(−C Tλ+)+d

)
(4.6)

Let x+ be the subgradient of the convex conjugate:

x+ ∈ ∂ f ∗(−C Tλ+) (4.7)

Substituting Eq. (4.7) into Eq. (4.6) yields

λ+ = z+ c
(−C x++d

)
From Eq. (4.7) it can also be derived that 0 ∈ ∂ f (x+)+C Tλ+ which after substituting λ+ results in:

x+ = argmin
x

(
f (x)+zT (C x−d)+ c

2
‖C x−d‖2

2

)
Following the definition of the Cayley operator, CcS1 = 2JcS1 − I becomes y =CcS1 (z) = 2λ+−z. Thus, the steps
will iterate in the following way:

x(k+1) = argmin
x

(
f (x)+zT

(k)(C x−d)+ c

2
‖C x−d‖2

2

)
(4.8a)

λ(k+1) = z(k) + c(C x(k+1) −d) (4.8b)

y(k+1) = 2λ(k+1) −z(k) (4.8c)

z(k+1) = Py(k+1) (4.8d)

For the sake of clarity, the dimensions of the variables and matrices are now specified:

• x ∈RN

• C ∈RM xN

• d ∈RM

• λ ∈RM

• y ∈RM

• z ∈RM

• P ∈RM xM

As discussed earlier, the permutation operator corresponds to exchange of variables. In Eq. (4.8d) it is clear
that two neighbouring nodes exchange their variables zi j and z j i by this permutation operator. By first sub-
stituting Eq. (4.8c) into Eq. (4.8d) and then simplifying, an alternate expression for z(k+1) can be found. This
expression for z(k+1) can be substituted into Eqs. (4.8a) and (4.8b), yielding

x(k+1) = argmin
x

(
f (x)+xT C T Pλ(k) +

c

2
‖C x+PC x(k) −2d‖2

2

)
λ(k+1) = Pλ(k) + c(C x(k+1) +PC x(k) −2d)
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These are exactly equal to the PDMM update equations in Eqs. (3.5a) and (3.6) under the assumption that
ρd = ρ−1

p , so the PDMM operation can indeed be cast as an monotonic inclusion problem with Peaceman-
Rachford splitting. For the averaging problem, the definitions earlier in this section can be substituted into
Eqs. (4.8a) to (4.8d) which results in:

x(k+1) = argmin
x

(∑
i∈V

(
1

2
(xi −Ti )2

)
+zT

(k)C x+ c

2
‖C x‖2

2

)
(4.9a)

λ(k+1) = z(k) + cC x(k+1) (4.9b)

y(k+1) = 2λ(k+1) −z(k) (4.9c)

z(k+1) = Py(k+1) (4.9d)

It is important to observe that C is not full rank, and neither is PC . As z is only altered by these two

matrices, there is an uncontrollable subspace of z which will be denoted by U= [
C PC

]⊥
. If z(0) is initialized

as a random vector, there is a large probability that a part of z(0) is contained in this uncontrollable subspace
U: ∏

U

z(0) 6= 0

Therefore, this part of z will never leave U and only get permuted every iteration. At convergence, z will
therefore not reach the actual fixed point but rather reach a limit cycle with two states z̄1 and z̄2, caused by
the permutation of the uncontrollable subspace. These states have a fixed distance to the actual fixed point
z∗, where this distance is exactly equal to the norm of the part of z in U. As the controllable part of z still
converges to z∗, the derived x still converges to the fixed point x∗, which is equal to the average of x. As only
the controllable part of z influences the solution x, its behaviour is most relevant. The uncontrollable part of z
might mask certain properties of the convergence of z, which shows the necessity to nullify the uncontrollable
part. An important counterargument will rise in the following chapter, where the transmission of data will be
discussed. In fact, the variable that will be transmitted is z, or a difference vector derived from z, so the
uncontrollable part might still have influence there. For these reasons, multiple scenarios were studied:

• Initialize z(0) = 0, so
∏

U z(0) = 0. This works perfect for MPDMM, but as will be discussed in the next
chapter, quantization will add an error to z. Therefore, it can occur that quantization injects an error
into U which causes the algorithm to converge to z̄1 and z̄2.

• Split z into its controllable and uncontrollable part by projecting onto U. This will show the behaviour
of the controllable part while the error by the uncontrollable part can also be studied separately.

• Double iterations. By considering the difference between z(k) and z(k+2) as iterates, there will be con-
vergence to a certain point z̄. This point is not the true fixed point z∗, but it has a finite distance to z∗.
It can be proven that the double iterates z(k+2) converge to this new fixed point. To do so, let x∗ be the
fixed point of x. Combine Eqs. (4.9b) to (4.9d) at convergence to yield

z(k+1) = Pz(k) +2cP (C x∗−d) (4.10)

Following this, the next iteration can be written as

z(k+2) = PPz(k) +2cPP (C x∗−d)+2cP (C x∗−d)

= z(k) +2c ((C x∗−d)+P (C x∗−d)) (4.11)

Closer study of (C x∗−d)+P (C x∗−d) shows the following:

(C x∗−d)+P (C x∗−d) = (C +PC )x∗−2d

=
[

A
A

]
x∗−

[
b
b

]
These are exactly the primal feasibility constraints, so

[
A A

]T
x∗−

[
b b

]T = 0 for feasible x∗. Apply-
ing this insight to Eq. (4.11) results in:

z(k+2) = z(k) +2c ((C x∗−d)+P (C x∗−d))

= z(k)

= z̄
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Note that k can be chosen to be even or uneven, but the fixed point z̄ is different for the even and
uneven iterates, resulting in z̄1 and z̄2.

To examine the behaviour of the algorithms, the norm ‖z(k) − z∗‖ plays a crucial role. To compute this, the
actual z∗ has to be known exactly. For the averaging problem, it is possible to compute the z∗ explicitly, given
x∗. This can be done using the following method: Let z∗,1 be a z with empty uncontrollable subspace after
convergence, and let z∗,2 be the z at the next iteration, following the iteration in Eq. (4.10) with d = 0. As
convergence is reached, the iteration after z∗,2 will yield z∗,1 again:

z∗,2 = P (z∗,1 +2ρC x∗) (4.12a)

z∗,1 = P (z∗,2 +2ρC x∗) (4.12b)

For these z updates, Eq. (4.8a) is used, again with d = 0. This means the derivative of f (x∗)+zT
(k)C x+ c

2‖C x∗‖2
2

with respect to x∗ is zero:

∇ f (x∗) =−C T z∗,1 −ρC T C x∗ (4.13a)

∇ f (x∗) =−C T z∗,2 −ρC T C x∗ (4.13b)

Substituting Eq. (4.12a) into Eq. (4.13b) results in

∇ f (x∗) =−C T Pz∗,1 −2ρC T PC x∗−ρC T C x∗
=−C T Pz∗,1 −ρC T PC x∗−ρC T PC x∗−ρC T C x∗
=−C T Pz∗,1 −ρC T PC x∗−ρC T (PC x∗+C x∗)︸ ︷︷ ︸

=0

=−C T Pz∗,1 −ρC T PC x∗ (4.14)

Rearranging Eq. (4.13a) and Eq. (4.14) yields the following set of equations:

−C T z∗,1 − (∇ f (x∗)+ρC T C x∗)︸ ︷︷ ︸
g1

= 0

−C T Pz∗,1 − (∇ f (x∗)+ρC T PC x∗)︸ ︷︷ ︸
g2

= 0

So in more compact form:

−
[

C T

PC T

]
z∗,1 =

[
g1

g2

]

z∗,1 =−
[

C T

PC T

]† [
g1

g2

]
(4.15)

As only the controllable subspace of z is used in Eq. (4.15), there is no limit cycle and z∗,1 = z∗,2 = z∗. This
explicitly computed z∗ can now be used to show the error ‖z(k) −z∗‖ at each iteration.

4.2. Monotone Primal-Dual Method of Multipliers for the Gaussian
channel capacity problem

The final problem that was discussed in the PDMM preliminary was Eq. (3.9). This can be solved by MPDMM,
using a similar method as in the averaging case, described in the previous section. Note that the optimization
problem within PDMM is in this case a constrained optimization problem. The iterates are expressed in the
same form as Eqs. (4.8a) to (4.8d):

λ(k+1),µ(k+1) = argmin
λ,µ

(q(λ,µ)) = argmin
λ,µ

(∑
i∈V

(
log(

−1

µi +λi
)−µiσ

2
i −λiσ

2
i −

µi

N

)
+zT

(k)Cµ+ ρ

2
‖Cµ‖2

2

)
s.t. λi ≥ 0, µi +λi < 0 ∀i ∈V (4.16a)

β(k+1) = z(k) +ρCµ(k+1) (4.16b)

y(k+1) = 2β(k+1) −z(k) (4.16c)

z(k+1) = Py(k+1) (4.16d)
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As Eq. (4.16a) is now a constrained optimization problem, the proceedings are slightly different from the
averaging case. Let Ci be the i-th column of C , so rewriting q(λ,µ) to fit all terms in the summation yields:

q(λ,µ) = ∑
i∈V

(
log(

−1

µi +λi
)−µiσ

2
i −λiσ

2
i −

µi

N
+zT

(k)Ciµi + ρ

2
C T

i Ciµ
2
i

)

Taking the partial derivatives results in:

∂µi (q(λ,µ)) = −1

µi +λi
−σ2

i −
1

N
+C T

i z+ρC T
i Ciµi = 0 (4.17a)

∂λi (q(λ,µ)) = −1

µi +λi
−σ2

i = 0 (4.17b)

An expression for λi can be obtained by rewriting ∇λi (q(λ,µ)):

λi =−µi − 1

σ2
i

Substituting this into the expression for ∇µi (q(λ,µ)) yields:

− 1

N
+C T

i z+ρC T
i Ciµi = 0

=⇒ µi =
1
N −C T

i z

ρC T
i Ci

(4.18)

The constraints onλ still have to be checked. If λi < 0 and the constraint is thus active, the optimal λi will
be 0. In this case, Eq. (4.18) is no longer correct, but λi = 0 has to be substituted into Eq. (4.17a). This yields:

−1

µi
−σ2

i −
1

N
+C T

i z+ρC T
i Ciµi = 0

−1︸︷︷︸
a0

+
(
−σ2

i −
1

N
+C T

i z
)

︸ ︷︷ ︸
a1

µi +ρC T
i Ci︸ ︷︷ ︸

a2

µ2
i = 0

µi =
−a1 ±

√
a2

1 −4a0a2

2a2
(4.19)

Recall the constraint on the pair µi ,λi : µi +λi < 0. As it is known that λi = 0, this reduces to µi < 0. Further
examination of Eq. (4.19) shows that there will always be exactly one solution for µi that is negative.

Proof. As the network is connected and C T
i Ci is exactly the number of neighbours of node i , C T

i Ci is strictly
larger than zero. Therefore:

a2 > 0

−4a0a2 = 4a2 > 0

a2
1 −4a0a2 > a2

1√
a2

1 −4a0a2 > |a1|
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In Algorithm 2, the MPDMM algorithm for the GCC problem is summarized.

Algorithm 2: MPDMM algorithm for the GCC problem.

Data: σ2,n,r ho, M axI ter ati ons
Result: x,z
µ= 1;
λ= 1;
µTemp = 1;

λTemp = 1;
er r _x =∞;
k = 0;
while k <MaxIterations && er r _x > er r _bound do

for i=1:n do

µTemp =
1
N −C T

i z

ρC T
i Ci

;

λTemp =−µTemp − 1
σ2 ;

if λTemp > 0 then
λ=λTemp ;
µ=µTemp ;

else
λ= 0;
a0 =−1;

a1 =−σ2
i − 1

N +C T
i z;

a2 = ρC T
i Ci ;

µ= −a1−
√

a2
1−4a0a2

2a2
;

end
end

end

As in the averaging case, there is an uncontrollable part of z which causes convergence to a limit cycle
with two limit points instead of the actual single fixed point. Similar methods as in the averaging case can
be used: projection onto the controllable and uncontrollable subspaces of z, zero initialisation and two-step
differences. Another important issue is that z∗ cannot be computed explicitly in the same manner as in the
averaging case. The easiest way to see this is to allow the constraints on λ and µ to be a barrier function, the
subgradient does not yield a singleton at the edges of the feasible set. Therefore, the z∗ will be estimated by
the projection of z̄ on the controllable subspace of z. This z̄ is only a valid limit point if x converges. But, as x∗
can be computed explicitly, the convergence of x can be checked, which validates the z̄ and thus z∗.

4.3. Inexact Krasnosel’skĭı-Mann iterations
As will become clear in Chapters 5 and 6, the effect of quantisation on the iterations is one of the key aspects
of this thesis. Therefore, the inexact Krasnosel’skĭı-Mann iteration in Definition 4.1 [31] is used as a first study
on the effect of these quantisation errors.

Definition 4.1. The inexact Krasnosel’skĭı-Mann iteration is defined as

z(k+1) = z(k) +α(k)(S(z(k))+ε(k) −z(k))

= (
(1−α(k))I +α(k)S

)
(z(k))+α(k)ε(k) (4.20)

where S is a non-expansive operator, and fix S = {x : x = S(x)} 6= ;. ε(k) is the error of approximating S(z(k)).
The error after each iteration e, and an extra parameter τ can be defined.

e(k) , (I −S)(z(k)) =
(z(k) −z(k+1))

α(k)
+ε(k)

τ(k) ,α(k)(1−α(k))
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It is clear to see the similarities between Eqs. (3.11) and (4.20). In fact, if α(k) = 1
2 ∀k and S = CcS2 ◦CcS1 ,

Eq. (4.20) becomes:

z(k+1) =
1

2
(I +CcS2 ◦CcS1 )(z(k))+

1

2
ε(k)

Hence, the Douglas-Rachford splitting iterations can be cast as inexact Krasnosel’skĭı-Mann iterations, where
1
2ε(k) describes an error, for example due to quantisation.

In [31, Proposition 1(iii)], it is proven that if (τ(k))k∈N ∉ l 1+ and
(
α(k)‖ε(k)‖2

2

) ∈ l 1+, the sequence of errors
(e(k))k∈N converges strongly to zero. Indeed, it is proven that the sequence (z(k))k∈N converges weakly to a
solution z∗ ∈ fix S. Moreover, suppose that C2 = ∑

k∈Nα(k)‖ε(k)‖ < +∞, M(k) =
∑k

j=0α j and ēk = 1
M(k)

∑k
j=0 e j

then ‖ē(k)‖ ≤ 2(d0+C2)
M(k)

with d0 = d(z(0),z∗). This result confirms the initial hypothesis that convergence can still

occur even if quantization errors are included. Further analysis can now be done, starting with a background
on quantization.



5
Preliminary: Quantization

Thus far, we have used the notion of distributed algorithms to indicate problems that are solved throughout a
graph. However, this requires data to be transmitted along the edges of this graph. To implement distributed
algorithms, data compression is necessary and plays an important role, with both benefits and disadvantages.
As discussed in the previous chapter, MPDMM requires the transmission of data. This transmission was
cast in the permutation operator P . As z ∈ Rn in general, a problem arises: the exact values can never be
transmitted in a limited bandwidth transmission. Therefore, lossy encoding, although it inevitably introduces
an error, will be required.

Quantization is the act of transcribing an input to a limited set of symbols, which can then be trans-
mitted [32]. Within signal processing, quantization is used to map signals to a finite set of values, known as a
codebook. This means multiple input values will be mapped to one specific code, so quantization itself can be
seen as a mathematical operator. The range of the input values that correspond to a specific code is called the
cell, where different codes can have different cell sizes and structures. Although many quantization schemes
exist, the simplest and most intuitive one will be explained: the uniform scalar quantizer. For this quantizer,
all cells except the outermost two have identical cell widths∆, only the code corresponding to each cell is dif-
ferent. The code corresponding to each cell is (2a+1)∆

2 , where a ∈N, |a| ≤ n
2 and n the amount of cells/codes.

The input-output relation of the uniform scalar quantizer with 4 levels is indicated in Fig. 5.1, the range is in-
dicated in red. The codebook and corresponding cells are described in Table 5.1. Clearly, quantization using
this scheme is lossy; there is no point to point mapping and information will therefore be lost. This is mod-
elled by quantization noise, nq . For the non-outermost cells, the quantization noise is limited to ∆

2 , while the
outermost cells can have unlimited quantization noise. This unlimited quantization noise is referred to as an
out of range error, as the input is outside the range of the quantizer ([−2∆,2∆] for the quantizer in Fig. 5.1).
Effectively, this means the input of the quantizer is not only approximated by a nearby quantization level, but
also limited in the norm. Not only the quantization error nq but also out of range errors will turn out to have
a significant role in the convergence of distributed algorithms.

5.1. Entropy
Earlier, the relation between quantization noise and the amount of cells was introduced. Clearly, allowing
more cells results in less quantization noise. Two different situations occur: there can either be a limited

Figure 5.1: The input-output relation of a 2 bit uniform scalar quantizer with cellwidth ∆.
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Table 5.1: Codebook and cell definition for a 2 bit uniform scalar quantizer with cellwidth ∆.

Codebook Cell minimum Cell maximum
∆/2 0 ∆

3∆/2 ∆ ∞
−∆/2 ∆ 0
−3∆/2 −∞ −∆

number of possible input messages or an unlimited amount. Examples of limited possibilities are discrete
systems and status updates, whereas the transmission of real or complex numbers is an example of a system
with an unlimited amount of messages. In the case of a finite number of feasible messages, lossless quan-
tization will occur if there are equally many cells, each containing one message. In the case of unlimited
possibilities, there will always be a quantization error as infinitely many, infinitely small cells are required for
lossless quantization. This is impossible in practice, although it can be emulated by using a relatively high bit
rate. To determine the amount of bits required for transmission, the first step is to determine the entropy of
the message. Two different cases are defined: the discrete and continuous entropy. For the discrete messages,
so a finite number of feasible messages, the entropy is calculated using the following equation [33]:

H(X ) =
a∑

i=1
pi log pi

where there are a different messages, each with their own probability pi . In case there are infinitely many
possible messages, the continuous entropy is used, defined in Definition 5.1.

Definition 5.1. The differential entropy is defined as [34]:

h(X ) =−
∫
X

fX (x) log( fX (x))d x

In this work, the messages consist of continuous mathematical variables and therefore, differential en-
tropy is used. The problem is that fX (x), the distribution of the transmitted variables, is unknown. As a result,
the exact bit rate is hard to determine. However, for scalar quantization the bit rate can be upper-bounded
by the differential entropy of a Gaussian distribution, as long as the variances are equal [35, Theorem 3.1],
resulting in Eq. (5.1).

h(X ) ≤ 1

2
log(2πeσ2) (5.1)

Assuming this, differential entropy leads to the worst case entropy resulting in an upper bound on the entropy.
As previously stated, this entropy is a measure for the amount of bits the quantizer uses. However, there is
one more factor that plays an important role: distortion. Quantization of a continuous variable using a finite
number of bits always introduces an error, or distortion. Intuitively, allowing a large distortion will require
fewer bits because the result is allowed to have a larger error. Indeed, for a uniform quantizer, the bit rate can
be approximated as in Eq. (5.2) [36].

H (X ) ≈ h (X )− 1

2
log

(
12D∆(k)

)
(5.2)

Here, D∆(k) is the distortion caused by the cell width ∆. For this distortion, the following holds: D∆(k) =
∆2(k)

12
Combining Eqs. (5.1) and (5.2), and the definition of the distortion yields

H (X ) ≤ 1

2
log

(
2πeσ2

X

)− 1

2
log

(
12D∆(k)

)
≤ 1

2
log

(
2πeσ2

X

∆2
(k)

)
(5.3)
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5.2. Dynamic Quantizer
For different scenarios, different optimal quantizers exist. In case of a steady entropy, the simplest quantizer
is a fixed bit rate, fixed cell quantizer using entropy encoding. This means the entropy is determined and
the bit rate and cell width are chosen subsequently. On the other hand, the entropy of the input variable
might change over time, usually decreasing due to redundant information in the variable. To cope with this
dynamic entropy, there are two options:

• Using an adaptive bit rate, the bit rate of the quantizer changes over time to adjust for the difference in
entropy. The cells remain unchanged.

• Using a dynamic cell width, the cells are altered while the bit rate remains constant to accommodate
the changing entropy.

Both options follow directly from Eq. (5.3), as either ∆(k) is constant which results in a different H(X ) or vice
versa. In this work, a dynamic cell width quantizer is chosen, while the bit rate is kept constant.





6
Quantization effects in distributed

optimization schemes

After the background on quantization, the consequences of quantizing messages in MPDMM can be dis-
cussed. Recall from Chapter 4 that MPDMM can be written in the Peaceman-Rachford and Douglas-Rachford
updates. Different problems will generate different operators S1 and thus CcS1 , although in general CcS2 will
be the permutation operator in MPDMM. The convergence of these operators can now be discussed, includ-
ing the effects of quantization.

The convergence depends on two different error terms. As MPDMM does not converge instantly, there
is a certain error at every iteration. This error is squared to yield the squared error ‖z(k) − z∗‖2. Note that
this error is present in both quantized and non-quantized MPDMM, as in many other distributed algorithms
such as ADMM. The second error term is the quantization error ‖nq,(k)‖. This extra error is only present while
quantizing; its effect is to be determined. It is proven in [21] that for quadratic problems, the quantization
noise will have little influence on the convergence rate if it is dominated by the MPDMM error. In other words,
the quantization noise has to be smaller than the accuracy of the MPDMM iteration: ‖z(k)−z∗‖2 >> ‖nq,(k)‖2.

6.1. Geometric convergence of the Monotone Primal-Dual Method of
Multipliers variable z

For the PDMM algorithm, it is empirically shown that the primal variable has a geometric convergence
bound. In MPDMM, not only the primal variable but also the controllable part of the dual variable converges
geometrically. A theoretical proof for this bound is not yet available for all classes of problems, but can be
derived for certain classes. To determine the convergence of MPDMM, we first examine ‖z(k) −z∗‖2. By def-
inition, CcS2 = P is Lipschitz and non-expansive. Suppose CcS1 is also Lipschitz with parameter L ∈ [0,1],
so that they are both non-expansive. Then CcS2 ◦CcS1 is also non-expansive. For the averaged operator
1
2 (I+CcS2 ◦CcS1 ), the same holds. Due to this insight, S′ will be used as a shortcut notation for either CcS2 ◦CcS1

or its 1
2 -averaged operator. The quantization step is in practice incorporated in the transmission step, so in

the permutation operator. However, they can be modeled as two separate operations. In Fig. 6.1, a block
diagram of the non-averaged operator is displayed. A new variable is defined, z̃(k+1) = S′(ẑ(k)). The quantized
version of z̃ is now represented by ẑ:

Definition 6.1. ẑ(k) , z̃(k) +nq,z̃(k) is the quantized version of z̃(k)

Figure 6.1: Block diagram of the non-averaged operator.
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Combining this insight with Definition 6.1, the link between z̃(k+1) and ẑ(k) is the following:

z̃(k+1) = S′(ẑ(k))

= S′(z̃(k) +nq,z̃(k) )

Suppose z∗ is a fixed point of S′ such that S′(z∗) = z∗. As S′ is non-expansive:

‖z̃(k+1) −z∗‖ = ‖S′(z̃(k) +nq,z̃(k) )−S′(z∗)‖
≤ L‖z̃(k) −z∗+nq,z̃(k)‖
≤ L‖z̃(k) −z∗‖+L‖nq,z̃(k)‖ (6.1)

For geometric convergence of z̃ with parameter p: ‖z̃(k+1) −z∗‖ ≤ p‖z̃(k) −z∗‖ so

L‖z̃(k) −z∗‖+L‖nq,z̃(k)‖ ≤ p‖z̃(k) −z∗‖
L‖nq,z̃(k)‖ ≤ (p −L)‖z̃(k) −z∗‖

‖nq,z̃(k)‖ ≤
p −L

L
‖z̃(k) −z∗‖

This leads to an important notion: p−L
L has to be non-negative so p ≥ L and thus we conclude that the conver-

gence bound is slower if quantization noise is added. However, Eq. (6.1) shows that if the quantization error
is significantly smaller than the MPDMM error, the effect of quantization on the convergence is negligible.
This follows from Eq. (6.1):

L‖z̃(k) −z∗‖+L‖nq,z̃(k)‖ ≈ L‖z̃(k) −z∗‖
Recalling Eq. (6.1), we can consider the previous iteration k:

‖z̃(k) −z∗‖ ≤ L‖z̃(k−1) −z∗‖+L‖nq,z̃(k−1)‖
such that combining this with Eq. (6.1) yields

‖z̃(k+1) −z∗‖ ≤ L2‖z̃(k−1) −z∗‖+L‖nq,z̃(k)‖+L2‖nq,z̃(k−1)‖
This gives rise to

‖z̃(k+1) −z∗‖ ≤ Lk+1‖z̃(0) −z∗‖+
k∑

i=0
L1+i‖nq,z̃(k−i )‖

As shown by the Krasnosel’skĭı-Mann iterations, the sum of errors should be finite for MPDMM to converge.
Recall from the end of Chapter 4 that there is an uncontrollable subspace of z that causes convergence to

two limit points z̄1 and z̄2, which both have a finite but non-zero distance from z∗. In other words:

r ≤ ‖z(k+1) −z∗‖ ≤ ‖z(k) −z∗‖
One of the solutions to this problem was to consider two step differences. This means a new operator S′′ can
be defined as two steps of the MPDMM algorithm:

S′′(z) = (S′ ◦S′)(z)

which has a fixed point

z̄ ∈ fix(S′ ◦S′) ⊇ fix(S′)

Here, fix(S′◦S′) ⊇ fix(S′) as the original z∗ is always contained within fix(S′◦S′), but the alternating limit points
of fix(S′◦S′) are not in fix(S′). Studying the behaviour of two step iterations is therefore nothing different than
studying this new operator with fixed point z̄:

z(k+2) = (S′ ◦S′)(z(k)) ⇔ z′(k+1) = S′′(z′(k))

Moreover, the following holds:

0 ≤ ‖z(k+2) − z̄‖ ≤ ‖z(k) − z̄‖
Therefore, all previous derivations hold for both one step and two step iterations.
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6.2. Message definition: the difference vector
As in [21], the difference between iterations will be quantized and send instead of the actual variables. This
difference will converge to zero if z converges to a fixed point. This difference will be referred to as
v(k+1) , ẑ(k)−z̃(k+1). As this difference is transferred, v(k+1) is the input of the quantizer, yielding the quantized
version v̂(k+1) , v(k+1) +nq,v(k+1) . The ẑ(k+1) can then be reconstructed as

ẑ(k+1) , ẑ(k) − v̂(k+1)

= ẑ(k) − (ẑ(k) − z̃(k+1) +nq,v(k+1) )

= z̃(k+1) −nq,v(k+1)

This is again linear in nq,v(k+1) so all previous derivations and results still hold. In fact, this is similar to Defi-
nition 6.1 if nq,z̃(k) = −nq,v(k) . A block diagram indicating the process can be seen in Fig. 6.2. Combining the

Figure 6.2: Block diagram of the full system, including quantization

definitions of v(k+1) and ẑ(k) yields an alternate definition for v(k+1):

Definition 6.2. v(k+1) = ẑ(k) − z̃(k+1) = z̃(k) −nq,v(k) − z̃(k+1)

Using Definition 6.2, an upper bound of v(k+1) can be examined.

‖v(k+2)‖ = ‖z̃(k+1) −nq,v(k+1) − z̃(k+2)‖
≤ ‖z̃(k+1) − z̃(k+2)‖+‖nq,v(k+1)‖
= ‖S′(z̃(k) +nq,z̃(k) )−S′(z̃(k+1) +nq,z̃(k+1) )‖+‖nq,v(k+1)‖
≤ L‖(z̃(k) +nq,z̃(k) )− (z̃(k+1) +nq,z̃(k+1) )‖+‖nq,v(k+1)‖
= L‖z̃(k) +nq,z̃(k) − z̃(k+1) −nq,z̃(k+1)‖+‖nq,v(k+1)‖
= L‖(v(k+1))−nq,z̃(k+1)‖+‖nq,v(k+1)‖
≤ L‖v(k+1)‖+L‖nq,z̃(k+1)‖+‖nq,v(k+1)‖
a= L‖v(k+1)‖+ (1+L)‖nq,v(k+1)‖ (6.2)

In (a), the equality ‖nq,z̃(k+1)‖ = ‖nq,v(k+1)‖ is used. Yet again, it follows that the quantization noise has influ-
ence, but it might be negligible compared to the variable v itself.

6.3. Two step differences
As discussed in Chapter 4, a solution to the problem concerning the uncontrollable part of z was to study
double iterations. A variant on this is redefining v to send two-step differences as opposed to one-step differ-
ences:

Definition 6.3. The two step difference is defined as:

v2,(k+1) , ẑ(k−1) − z̃(k+1)

This leads to a new definition for ẑ(k+1) as well:

ẑ(k+1) = ẑ(k−1) − v̂(k+1)

= ẑ(k−1) − (ẑ(k−1) − z̃(k+1) +nq,v2,(k+1) )

= z̃(k+1) −nq,v2,(k+1)

(6.3)

Following Definition 6.2, v2,(k+1) can be redefined as well:



32 6. Quantization effects in distributed optimization schemes

Definition 6.4. v2,(k+1) = z̃(k−1) −nq,v2,(k−1) − z̃(k+1)

Following the same steps as in Eq. (6.2) reveals that the same upper bound holds for v2,(k+1) as well.

For both v(k+1) and v2,(k+1), the convergence properties can be determined using previous results. It is
trivial that v∗ = 0 if z(k) converges to a single fixed point z∗. On the contrary, v∗ 6= 0 if z(k) converges to two
different states z̄1 and z̄2. However, v2,∗ = 0 in all cases, even if z converges to both z̄1 and z̄2. Therefore,
‖v2,(k)‖ converges geometrically with parameter m if

‖v2,(k+1) −v∗‖ ≤ m‖v2,(k) −v∗‖
‖v2,(k+1)‖ ≤ m‖v2,(k)‖ (6.4)

Combining Eqs. (6.2) and (6.4) yields

L‖v(k)‖+ (1+L)‖nq,v(k)‖ ≤ m‖v(k)‖

‖nq,v(k)‖ ≤
m −L

1+L
‖v(k)‖

The covariance matrix of the transmitted variables (in this case v2,(k+1)) is of importance as it is used to
determine the entropy of the message. This entropy can be computed by using the diagonal elements from
the covariance matrix as variance σ2 in Eq. (5.1).

Definition 6.5. The covariance matrix of vector v2,(k)) is defined as

cov(v2,(k)) = E[(v2,(k) −E[v2,(k)])(v2,(k) −E[v2,(k)])
H ]

The definition of the covariance matrix can be rewritten to

cov(v2,(k)) = E[v2,(k)vH
2,(k)]−E[v2,(k)]E[vH

2,(k)]

(a)¹ E[v2,(k)vH
2,(k)]

¹ trace(E[v2,(k)vH
2,(k)])I

= E[trace(v2,(k)vH
2,(k))]I

= E[‖v2,(k)‖2]I

where the positive semi-definiteness of E[v2,(k)]E[vH
2,(k)] is used in (a). Note that this proof does not have

any requirements on the expectation of v2,(k). To summarize, the variance of v2,(k) is upper bounded by
E[‖v2,(k)‖2]I and v2,(k) converges geometrically with r for some nq,v2,(k) , thus the variance decreases with at
least 2r .
Recall that the entropy depends on the variance:

H (X ) ≤ 1

2
log

(
2πeσ2

X

∆2
(k)

)

Therefore, if the decrease in variance is known, the same decrease in cell width can be implemented to main-
tain a fixed bit rate for the quantization, while decreasing the quantization noise.

Furthermore, for the one step difference v(k), an interesting observation can be made. Note that v(k), the
difference between two consecutive iterations, will contain the uncontrollable part of z. Although it is known
that v∗ 6= 0, we still transmit the one step differences v(k) using a quantizer with decreasing cell width and a
constant amount of cells. As discussed in Chapter 5, quantization can be seen as a mathematical operator
where out of range errors can occur if the input range of the quantizer is not sufficiently large. This property of
the quantization operator can be used to alter the uncontrollable part of z. The quantization operator limits
the range of v(k), which can be translated into a limitation on z(k). As v(k) is the difference between iteration
k and k +1, during which the uncontrollable subspace gets permuted, the uncontrollable subspace has an
extra limitation: it has to be repetitive. This means that the upper and lower half of the projection of z(k) onto
the uncontrollable subspace U have to be equal:

P
∏
U

z(k) =
∏
U

z(k)
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Therefore, out of range errors will suppress the two limit point alternating behaviour, resulting in convergence
to a single limit point. However, this has no influence on the convergence of the controllable part of z(k), nor
on the convergence of x(k). In the two step difference case, there is no direct limit on the difference between
z(k) and z(k+1), so the uncontrollable part of z(k) does not have to be identical after permutation. As a result,
the flip state is not suppressed and two different z̄ can be found.





7
Results

To validate the theory in the previous chapters, simulations in MATLAB are discussed in this chapter. Two
different cases are discussed: the averaging problem and the GCC problem. For each problem, a different
topology was selected. For the averaging case, a large number of nodes were randomly distributed in a square
area, while the GCC problem uses a significantly smaller amount of nodes. The difference in amount of nodes
is due to the different nature of the two problems. For each problem, two different penalty parameters ρ are
used: a near optimal one, empirically determined, and a non-optimal one. In Table 7.1, the parameters used
in each problem are summarized.

Table 7.1: Parameters for the different problems

Averaging Problem GCC Problem
Number of nodes 100 10
Amount of edges 402 30
Optimal ρ 0.89 0.033
Non-optimal ρ 2.40 0.89

7.1. Averaging problem
The topology of the grid used for the averaging problem can be seen in Fig. 7.1. First of all, the MPDMM
algorithm itself is verified. In Fig. 7.2a, the behaviour of z(k) is visualized. Clearly, the controllable part of
z(k) converges to z∗ while the uncontrollable part does not converge to z∗ but stops converging at a finite
distance. The controllable subspace of z(k) will be referred to as zp,(k) as only this subspace has an influence
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Distributed network, consisting of 100 nodes

Figure 7.1: Randomly distributed network topology with 100 nodes.
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on x(k). Figure 7.2b shows the behaviour of x(k), which converges to x∗ despite the uncontrollable part of z(k)

being non-zero. For the sake of brevity, further plots of x(k) will not be included as only z(k) is (indirectly)
transmitted along the edges.

0 100 200 300 400 500 600 700

Iteration

10-20

10-15

10-10

10-5

100

105

1010

R
es

pe
ct

iv
e 

er
ro

r

MPDMM, ρ  = 2.4

||z
p,(k)

-z
*
||2

||z
(k)

-z
*
||2

(a) Convergence of z for MPDMM on the averaging
problem

0 100 200 300 400 500 600 700

Iteration

10-25

10-20

10-15

10-10

10-5

100

105

||x
(k

)-x
*||2

MPDMM, ρ  = 2.4

(b) Convergence of x for MPDMM on the averaging
problem

Figure 7.2: Results of the primal and dual variables for the monotone interpretation of the PDMM algorithm on the averaging problem
with non-optimal ρ.

7.1.1. Fixed cell width quantization
The next step is to include quantization, with a fixed bit rate and fixed cell width. The specifications of the
fixed rate quantizer are:

• 10 bits,

• ∆= 0.01 and fixed.

The effect of quantization can be clearly seen in Fig. 7.3. The norm of the error follows that of the regular
MPDMM algorithm, until the quantization noise becomes dominant. By using a dynamic cell width quan-
tizer, a fixed rate can be attained while constantly decreasing the quantization noise floor, so the convergence
of MPDMM should not be affected.



7.1. Averaging problem 37

0 100 200 300 400 500 600 700

Iteration

10-20

10-15

10-10

10-5

100

105

1010

R
es

pe
ct

iv
e 

er
ro

r

QMPDMM, ρ  = 2.4, ∆  = 0.01, 10 bits

||z
p,(k)

-z
*
||2, no quantization

||z
p,(k)

-z
*
||2, one step difference

||n
q
||2, one step difference

||z
p,(k)

-z
*
||2, two step difference

||n
q
||2, two step difference

Figure 7.3: QMPDMM results of the averaging problem for non-optimal ρ using a 10 bit, fixed cell width quantizer.
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Figure 7.4: QMPDMM results of the averaging problem for non-optimal ρ using a 10 bit, dynamic cell width quantizer with cell width
rate -1/500.

7.1.2. Dynamic cell width quantization
To decrease the quantization noise floor over time, a dynamic cell width quantizer is used. A geometric rate
will be used as dynamics for the cell width. The rate of cell width change is determined empirically, based on
the convergence rate of the MPDMM algorithm. As stated in Section 6.3, the change in entropy, the conver-
gence of v and the convergence of z are all related. If the rate of the cell width is too high, all the messages
will be outside the range of the quantizer so out of range errors will occur. If the rate of the cell width is too
low, the quantization error will dominate over the MPDMM error and the overall convergence rate is affected.
It turns out the convergence rate of the MPDMM algorithm is a good estimate for the rate of the cell width
decrease.

The results for an initial cell width of 0.01 with rate −1
500 and a ten bit quantizer are included in Fig. 7.4.

Clearly, the error in z is lower bounded by the maximum of the MPDMM error and the quantization noise Nq .
It attains the normal MPDMM convergence until the quantization noise becomes dominant.

As theorized in the previous chapters, convergence will not be affected if the MPDMM error is dominant
over the quantization noise. As the MPDMM error itself cannot be changed, the quantization noise has to be
lowered, which is achieved by decreasing the cell width faster. This yields Fig. 7.5, which uses a rate of −1

50 .
Clearly, the convergence is not slower due to quantization, it is even faster than in the non-quantized case.
This is an interesting observation, as less information is transmitted but the algorithm converges faster. An
explanation for this behaviour has not yet been proven, although it is theorized that the out of range errors
play an important role in the process.

Before studying this hypothesis, a different subject has to be discussed: the parameters of the quantizer.
The rate of the quantizer cell width is not the only parameter that influences the convergence of the algo-
rithm, but there are two more parameters: the initial cell width and the bit rate. There is a dependency
between these three parameters as the bit rate and cell width determine the range of the quantizer. There-
fore, the initial range of the quantizer is determined by the initial cell width and bit rate. To keep the initial
range constant, the initial cell width is increased to ten while the bit rate is decreased to a single bit. The rate
of the quantizer cell width is kept constant at −1

50 . The simulation results can be seen in Fig. 7.6, where again
the algorithm including quantization outperforms the non-quantized version. Using a single bit quantizer
effectively means transmitting the sign, with a single reproduction level (either positive or negative), which
makes the practical implementation very straightforward.

As previously stated, the quantized version of the algorithm outperforms the non-quantized algorithm in
some cases. One of the main factors that could influence the performance is the range limitation by quantiza-
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Figure 7.5: QMPDMM results of the averaging problem for non-optimal ρ using a 10 bit, dynamic cell width quantizer with cell width
rate -1/50.

tion. The quantizer not only has a decreasing cell width, but as a result also a decreasing range. The resulting
out of range errors, which lead to a non-uniform error distribution, might be key in this behaviour. The out
of range errors in the simulation from Fig. 7.6 were studied and in Fig. 7.7, the percentage of out of range
errors is displayed for each iteration. Clearly, this percentage is relatively high and constant. To investigate
the effects of these out of range errors, the same simulation as in Fig. 7.6 is repeated, with the difference that
infinitely many cells are used. As a result, there are no out of range errors, while the quantization error of
the data that was in range in the original simulation remains unchanged. Clearly, the rate of convergence is
significantly slower in the case with infinitely many cells and no out of range errors.
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Figure 7.6: QMPDMM results of the averaging problem for non-optimal ρ using a single bit, dynamic cell width quantizer with cell
width rate -1/50.
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Figure 7.7: The percentage of out of range errors for the simulation in Fig. 7.6.
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Figure 7.8: QMPDMM results of the averaging problem for non-optimal ρ using infinitely many dynamic cells with cell width rate -1/50.
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Figure 7.9: A visualization of the effect of out of range errors on the course of z.

An explanation for this behaviour, although not mathematically verified, is that the out of range errors
limit the step size of the algorithm and will therefore help attain the lower bound set by the quantization
noise. In Fig. 7.9, an example indication of the course of z is plotted. Because of the non-empty uncontrollable
subspace, the z will alternate between two states, which converge to two different end points (orange x) with
a fixed distance from z∗ (blue x). However, if such a step is limited in range by quantization, the step will
be shorter, as indicated by the green x. The distance between z∗ and this new point can be smaller than
distance between z∗ and the original new point, as indicated with red lines. Therefore, the convergence for
this iteration seems faster than without quantization. After this iteration, the next step is unpredictable as
there is a new starting point, the green x. However, the assumption is made that the algorithm will converge
in a similar fashion towards the two end points. In the simulation results, we see indeed in Fig. 7.8 a much
larger gap between the quantization noise and the error in z than Fig. 7.6.

For the previous results, a non-optimal ρ was used. This means the algorithm can still be tuned to be
faster, which might have an influence on the quantization effects. Indeed, the results for the optimal ρ are
slightly different than those for a non-optimal ρ, which can be seen in Fig. 7.10. The MPDMM rate is attained,
although for this ρ the quantized variant is not faster than the non-quantized algorithm.
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Figure 7.10: QMPDMM results of the averaging problem for near-optimal ρ using a single bit, dynamic cell width quantizer with cell
width rate -1/24.
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Figure 7.11: Randomly distributed network topology with 10 nodes.

7.2. Gaussian channel capacity problem
The topology of the grid used for the GCC problem can be seen in Fig. 7.11. For this problem too, the first step
is to verify the MPDMM algorithm. First of all, recall that there is no exact solution for z∗, so an estimation
has to be done:

z∗ ≈∏
U⊥

z( f i nal ) = z( f i nal ) −
∏
U

z( f i nal )

Note also that the solution of MPDMM is the combination ofµ andλ. To confirm the validity of the estimated
z∗, the convergence of x(k) has to be confirmed. x∗ can be determined analytically, from which µ∗ andλ∗ can
be derived and vice versa. Therefore, the estimation of z∗ can be verified by the computed x( f i nal ), which
should be equal to x∗. In Fig. 7.12b, it is clear that x(k) indeed converges to x∗, which validates the estimation
of z∗. Figure 7.12a shows the convergence of the controllable subspace of z(k) and z(k) as a whole.

As the algorithm is now verified, the same steps as in the averaging case can be taken. Figure 7.13 shows
that the quantized algorithm using a one bit quantizer is again a little faster than the original algorithm, while
still converging to the same z∗. This z∗ was verified to be correct by the method described earlier.

For the optimal ρ, it was not possible to use a single bit quantizer without loss of performance. The best
result, which can be seen in Fig. 7.14, was found using an eight bit quantizer, where again the convergence is
slightly faster after quantization.
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Figure 7.12: Results of the primal and dual variables for the monotone interpretatation of the PDMM algorithm on the GCC problem
with non-optimal ρ.
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Figure 7.13: QMPDMM results of the GCC problem for non-optimal ρ using a one bit, dynamic cell width quantizer.
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Figure 7.14: QMPDMM results of the GCC problem for near-optimal ρ using an eight bit, dynamic cell width quantizer.



8
Conclusion, discussion and future work

In this thesis, the effects of quantization on distributed optimization schemes were studied. Theoretical re-
sults as well as simulation results have shown that fixed rate quantization can be integrated in a distributed
optimization scheme. The conclusions for each of the discussed classes of problems will now be discussed.

8.1. Conclusions for the averaging problem
The monotone Primal-Dual Method of Multipliers algorithm was verified, after which the effects of quantiza-
tion were investigated. For the initial simulation, a fixed cell width quantizer was used. This confirmed that
as long as the natural PDMM error dominates the quantization noise, quantization has no significant effect
on the rate of convergence. However, as the PDMM error decreases over iterations, the quantization noise
becomes more and more dominant, until they reach the same order. As soon as the quantization noise is too
large, convergence is slowed to the rate of the quantization noise. In the case of a constant cell width, this
means there is no rate and thus the algorithm stops converging.

By using the dynamic cell width quantizer, the quantization noise has a constant rate and the convergence
of the PDMM algorithm is indeed bounded by that of the natural algorithm itself and the quantization noise.
By estimating the rate of the PDMM algorithm and using that rate to decrease the cell width, it turned out
there was no significant loss in performance, and in some cases even a gain in convergence speed. Even
with a single bit quantizer, it was possible to converge as fast or even faster than the non-quantized PDMM
algorithm for some problems. If the ρ parameter was tuned optimally, there was no longer an increase in
convergence rate, but the original convergence rate was attained. The reasons for this gain in speed are still
to be determined, although it is expected that the out of range errors introduced by the quantizer play a key
role in this behaviour. The performance of the two step difference message-passing implementation was
slightly better than that of the one using one step difference messages.

8.2. Conclusions for the Gaussian channel capacity problem
Before any analysis was done, the implementation of the MPDMM algorithm for the GCC problem was ver-
ified. Then, the quantization effects were studied. For the GCC problem, the results of the fixed cell width
quantizer are similar to that of the averaging case. The algorithm converges until the quantization error is in
the same order as the error of the PDMM algorithm itself, then it follows the rate of the quantization noise.
For a ten bit quantizer, this rate was below the natural PDMM rate and convergence was thus not negatively
affected, and again, a decrease of bits to a single bit quantizer was possible without sacrificing performance.
For the optimal ρ, the lowest rate was an eight bit quantizer, which had similar performance to that of the
ten bit quantization scheme. The performance of the two step message-passing implementation and the
one step message-passing implementation were not significantly different, although the one step messages
seemed to be slightly faster for this problem.
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8.3. Final conclusion
After the analysis of both the theoretical and empirical results, the research questions can now be answered:

It is possible to apply fixed rate quantization in distributed optimization schemes in synchronous oper-
ation without losing performance. The two types of quantization errors - quantization noise and out of
range errors - have different effects on the convergence of said optimization schemes, but given certain con-
straints on the errors, the convergence rate of the optimization schemes is unaffected. The robustness of the
optimization schemes against the quantization errors holds for applications where finite precision is the
aim; infinite precision whilst maintaining performance is not possible for a non zero quantization error.

8.4. Discussion
In this work, some assumptions were made, which will now be revisited and discussed.

In Chapter 5, the comparison is made between the quantized version and the unquantized version of
a variable. In the simulations, all variables are represented by a finite number of bits and thus quantized.
However, the quantization that occurs by representation a variable as a 64-bit double according to the IEEE
Standard 754 yields such a small quantization error that it is neglected throughout this work.

In Chapter 6, the assumption is made that the PDMM and MPDMM algorithms converge geometrically.
Although there is no strict proof yet for all types of problems, this is proven for the averaging case and there
is strong empiric evidence that convergence rate is geometric for many more problems, such as the GCC
problem. Therefore, this assumption was made and verified by simulation for each problem before the effects
of quantization were studied.

Chapter 7 states the parameters for each simulation, which were often tuned empirically. There are three
important tuning parameters: the bit rate, the initial cell width and the rate of cell width decrease. It might
therefore be possible to achieve similar performance with fewer bits, by using a larger initial cell width and
different rate of cell width decrease. The exact dependence of the convergence speed on these three param-
eters is not known exactly, although it is suspected that they are not independent of each other. The exact
relation between these parameters was not in the scope of this thesis, but may provide valuable information
for the practical implementation of distributed optimization schemes.

8.5. Future work
Apart from the assumptions, there are also some elements that were not studied or just briefly mentioned
and not further studied. These aspects will now be discussed.

8.5.1. Asynchronous operation
In this work, the PDMM algorithm was configured in synchronous operation. However, this has a couple of
disadvantages in practice, such as the need for a synchronous clock signal at all nodes, and the transmit and
receive phases being simultaneous. Therefore, a study on the effects in asynchronous operation, where the
nodes transmit alternately at a random interval, would be recommended.

8.5.2. Piecewise affine and fully dynamic rate
Thus far, we have seen that the algorithm including quantization has two possible outcomes:

• The algorithm converges until machine precision.

• The algorithm stops converging before the machine precision level is achieved.

The latter is caused by the quantization noise level being too high compared to the PDMM error itself.
In the dynamic cell width scenario, this is typically caused by a too large rate of cell width decrease. This
inspired an idea for a different rate for the quantizer cell width: start off with a steep rate and lower this rate
over time to create a piecewise affine rate. A disadvantage is that when the algorithm stops converging due to
the cell width being too small, there is no way of continuing. To deal with this issue, the following suggestion
is made:

• Start with an overestimate of the convergence rate of the PDMM algorithm as rate of change for the
dynamic cell width.

• Iterate until the algorithm stops converging.
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• Increase the cell width slightly and lower the rate of change.

• Repeat this iterative process.

This method will maximize the rate and correct for a too fast change in cell width. For the practical im-
plementation, the combination of such dynamics and asynchronous operation might be very powerful, and
therefore the suggestion is made to investigate this in future work.

8.5.3. Packet loss and dynamic graphs
In this thesis, the assumption is made that there is a fixed graph with nodes that all contain local data. How-
ever, one of the benefits of distributed optimization schemes is that they allow for a dynamic graph, where
nodes enter and leave the network. The nature of these networks is often wireless, which implies lossy trans-
mission. This lossy transmission is not only in the form of quantization, which was the centre of this work,
but also the possibility of corrupt transmissions and packet losses. The effect of packet losses in combination
with quantization was not researched in this work, but will contain valuable information for the practical
implementation of the quantized distributed optimization schemes.
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