
Worldspace ReSTIR for direct illumination
Storing precomputed reservoir values with a normal-aware hashgrid

Vlad T. Stefanescu
Supervisors: Michael Weinmann, Elmar Eisemann, Christoph Peters

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 21, 2025

Name of the student: Vlad T. Stefanescu
Final project course: CSE3000 Research Project
Thesis committee: Michael Weinmann, Christoph Peters, Georgios Smaragdakis

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

This thesis addresses the challenge of initial frame noise in real-time ray tracing
when using ReSTIR. We propose and evaluate an approach that integrates a normal-
aware hash grid for precomputed reservoir caching to improve direct illumination. The
research investigates how reservoir caching enhances visual quality alongside ReSTIR
and analyzes the associated trade-offs in memory usage and performance. Our con-
tribution includes the implementation and analysis of this caching strategy, assessing
its impact on visual fidelity across diverse scenes. Although the method significantly
reduces noise and improves initial sampling convergence, it can introduce visible grid
artifacts in scenes with many light overlaps. Furthermore, this approach incurs notable
memory overhead and increased frame times. This work demonstrates the potential
of normal-aware hash grids for ReSTIR improvements, providing a proof-of-concept
algorithm for stable, high-quality initial samples.

1 Introduction
Ray tracing simulates the physical behavior of light to generate photorealistic images, mak-
ing it central to modern computer graphics. Despite its visual fidelity, ray tracing has his-
torically been too computationally expensive for real-time applications such as video games
and interactive simulations. This bottleneck has limited its widespread adoption in contexts
where both speed and quality are required as late as 2017 [4].

Recent advances in hardware and rendering algorithms have begun to change this land-
scape. A particularly impactful development is Reservoir-based Spatiotemporal Importance
Resampling (ReSTIR) [2]. Directly computing the contribution of light sources in complex
lighting environments is computationally infeasible [4]. To handle this, Monte Carlo integra-
tion is used to approximate the lighting by sampling. However, it typically requires many
samples, and it is difficult to predict which samples will be effective. ReSTIR addresses
this by using resampled importance sampling [9] and reusing samples from previous frames
and neighboring pixels to improve efficiency and reduce noise. These samples are stored in
reservoirs, a data structure that maintains a representative sample from a potentially large
number of inputs. ReSTIR has enabled real-time ray tracing with significantly improved
visual quality and computational efficiency. However, its reliance on temporal data leads
to a critical limitation: the technique performs poorly in the initial frames of a sequence,
when no historical lighting information is available. This results in high visual noise and
poor image quality.

To address this limitation, this research investigates the effectiveness of a technique
called reservoir caching, implemented using a hash-grid structure that allows reservoirs to
be merged with pre-computed ones, thereby enabling the selection of higher-quality sam-
ples. This approach aims to reduce noise and improve image quality. Similar approaches
have been explored, such as the work by [3] and [10] who used grid-based reservoirs to effec-
tively manage many lights for global illumination when sampling secondary rays, although
with increased memory usage. However, there remains a gap in understanding how cached
reservoirs can be reused effectively for direct illumination.

This leads to the research question of this paper regarding how reservoir caching
improves quality in real-time ray/path tracing when used alongside ReSTIR, and what are
the associated trade-offs in terms of memory usage and performance.

Contribution. This work implements and analyzes a reservoir caching strategy designed
to improve ReSTIR sampling. We evaluate how the use of cached reservoirs affects visual

1

fidelity. Our experiments span two scenes, exploring the method’s benefits in different
situations. We analyze performance trade-offs and identify where caching provides the most
benefit.

The remainder of this paper is organized as follows: Section 2 reviews the background
and related work; Section 3 describes the specifics of the hash grid; Section 4 explains
the implementation choices; Section 5 presents the results; Section 6 addresses responsible
research considerations; Section 7 discusses the findings; and Section 8 concludes the paper
and outlines directions for future work.

2 Background and Related Work

2.1 Ray Tracing and Direct Illumination
Ray tracing is a rendering technique that aims to realistically simulate the behavior of
light in a virtual environment. It operates by casting rays from the camera through each
pixel of the image plane into the scene. For the purposes of this research, our focus is
exclusively on modeling direct illumination. This means that we consider only the light
that travels directly from a light source to a surface point, without accounting for secondary
light transport effects such as reflections, refractions, or global illumination. When a ray
intersects a surface, the algorithm determines the contribution of direct light from all light
sources visible from that surface point to accurately calculate its color and shading. The
direct illumination Lo at a surface point x in direction ωo is given by the following equation
[6]:

Lo(x, ωo) =

∫
Ω

V (x,xs) fr(x, ωi, ωo)Le(xs,−ωi) |ωi · n| dωi (1)

where V represents the visibility between two points, fr is the BRDF, Le(x, ωo) is the
emitted radiance at point x in direction ωo, xs is the point on the light source in the direction
ωi, n is the surface normal at x, and Ω is the hemisphere above the surface of incoming
directions to point x.

2.2 Monte Carlo integration and Importance Sampling
Monte Carlo integration operates by selecting numerous random samples from the integral
domain. The integrand is then evaluated at each of these sample points. The average of
these evaluated values is taken as an estimate of the value of the entire integral. Importance
sampling improves Monte Carlo integration by drawing samples from a distribution that
emphasizes important regions of the integrand. These regions are places where the inte-
grand has higher values. This approach reduces variance by weighting the integrand values
according to the chosen sampling distribution. The integral is estimated as the average of
these weighted values: ∫

f(x) dx ≈ 1

N

N∑
i=1

f(xi)

p(xi)
, (2)

where xi are samples drawn from the distribution p(x). It helps if p(x) is similar in shape
to f(x).

2

2.3 Resampled Importance Sampling
Resampled Importance Sampling (RIS) [9] is a technique for approximating integrals. It uses
two probability density functions (PDFs): a source distribution p, and a target distribution
p̂. In practice p̂ is not a distribution as it does not need to be normalized but for the purposes
of this paper it will be called as such. The method is useful when p is easy to sample from
but poorly matches the shape of the integrand f , while p̂ is a better approximation of f but
more difficult or expensive to sample from directly.

RIS works by drawing M samples xi from the source distribution p, and then resampling
or weighting them based on how well they align with the target distribution p̂:

w(x) =
p̂(x)

p(x)
(3)

and using these weights to obtain good samples according to the probability mass function:

q(z) =
w(z)∑M

i=1 w(xi)
(4)

This produces a set of samples that can be used effectively in importance sampling to
approximate the integral of f . Using only one sample z we can estimate the integral using:∫

f(x) dx ≈ f(z)

p̂(z)

1

M

M∑
i=1

w(xi) (5)

This approach effectively leverages the shape of p̂ while avoiding the need to sample from it
directly. The RIS estimator is unbiased if at least one sample (M > 0) is used and both p
and p̂ are strictly positive wherever the integrand f is non-zero [9].

Algorithm 1: Weighted Reservoir Sampling [2]
1 class Reservoir:
2 y ← 0 // The output sample
3 wsum ← 0 // Sum of weights
4 M ← 0 // Number of samples seen so far
5 W // The sample contribution factor
6 function update(xi, wi)
7 wsum ← wsum + wi

8 M ←M + 1
9 if rand() < (wi/wsum) then

10 y ← xi

11 function reservoirSampling(S)
12 Reservoir r
13 for i← 1 to M do
14 r.update(S[i],weight(S[i]))
15 return r

3

Algorithm 2: Streaming RIS using weighted reservoir sampling [2]
1 foreach pixel q ∈ Image do
2 Image[q] ← shadePixel (RIS (q), q)
3 function RIS(q)
4 Reservoir r
5 for i← 1 to M do
6 generate xi ∼ p
7 r.update(xi, p̂q(xi)/p(xi))

8 r.W ← 1
p̂q(r.y)

· 1
r.M · r.wsum // Equation 5

9 return r

10 function shadePixel(Reservoir r, q)
11 return fq(r.y) · r.W

Algorithm 3: Combining the Streams of Multiple Reservoirs [2]
Input: Reservoirs r1, r2, . . . , rk to combine
Output: A combined reservoir equivalent to the concatenated input streams of

r1, . . . , rk
1 function combineReservoirs(q, r1, r2, . . . , rk):
2 Reservoir s
3 foreach r ∈ {r1, . . . , rk} do
4 s.update(r.y, p̂q(r.y) · r.W · r.M)
5 s.M ← r1.M + r2.M + · · ·+ rk.M

6 s.W ← 1

p̂q(s.y)
· 1

s.M
· s.wsum // Equation 5

7 return s

2.4 ReSTIR
ReSTIR [2] is built directly on top of RIS. It uses a reservoir to store a single representative
light sample along with its weight, the sum of all sample weights, and the number of samples
considered as shown in Algorithm 1. New samples can be added incrementally, with the
reservoir maintaining the correct statistical distribution as if all samples were retained. In
addition, multiple reservoirs can be merged into one, effectively combining their sample data
as shown in Algorithm 3.

In each frame, multiple light samples are generated for every pixel’s shading point and
added to that pixel’s corresponding reservoir using streaming RIS (Algorithm 2). An op-
tional visibility pass may then be performed to verify whether the selected samples are valid.
During the spatial reuse pass, these reservoirs are merged with those of neighboring pixels
to enhance sampling density. In the temporal reuse pass, reservoirs are further combined
with those from the previous frame, allowing a small number of samples to approximate a
much larger effective sample set. Finally, during shading, Equation 5 is used to compute
the final color of the pixel. This is described in Algorithm 4.

4

Algorithm 4: RIS with spatiotemporal reuse [2]
Input: Image sized buffer containing the previous frame’s reservoirs
Output: The current frame’s reservoirs

1 function reservoirReuse(prevFrameReservoirs)
2 reservoirs ← new Array[ImageSize]

// Generate initial candidates
3 foreach pixel q ∈ Image do
4 reservoirs[q] ← RIS(q)

// Evaluate visibility for initial candidates
5 foreach pixel q ∈ Image do
6 if shadowed(reservoirs[q].y) then
7 reservoirs[q].W ← 0

// Temporal reuse
8 foreach pixel q ∈ Image do
9 q′ ← pickTemporalNeighbor(q)

10 reservoirs[q] ← combineReservoirs(q, reservoirs[q], prevFrameReservoirs[q′])
// Spatial reuse

11 for i← 1 to n do
12 foreach pixel q ∈ Image do
13 Q← pickSpatialNeighbors(q)
14 R← {reservoirs[q′] | q′ ∈ Q}
15 reservoirs[q] ← combineReservoirs(q, reservoirs[q], R)

// Compute pixel color
16 foreach pixel q ∈ Image do
17 Image[q] ← shadePixel(reservoirs[q], q)
18 return reservoirs

2.5 Related works
Boksansky et al. [3] introduced a method for real-time global illumination using grid-based
reservoirs organized in an array structure. In their approach, the center of each grid cell is
used as a representative shading point for light sampling, which simplifies data access and
spatial reuse. However, their method does not account for geometric features like surface
orientation, which can limit sample quality near boundaries or in highly detailed scenes.

Zhang et al. [10] extended spatiotemporal reuse in path tracing by introducing a normal-
aware hash grid to store and access secondary path samples more effectively. Their method
uses surface normals in conjunction with spatial position to improve neighborhood matching,
reducing artifacts and increasing reuse efficiency. While effective for indirect lighting and
secondary bounces, their technique was not applied to direct illumination.

In contrast, our work leverages the benefits of normal-aware hash grids specifically for
direct illumination, enabling more accurate and feature-aware reuse in primary visibility.
By incorporating surface orientation into the grid structure, we improve the spatial fidelity
of reservoir sampling, especially in scenes with high geometric complexity.

5

(a) Grid without normal binning: spatial cells
only.

(b) Grid with normal binning: spatial-
directional cells.

Figure 1: Visualization of the hash grid structure. The spatial grid (a) is extended with
directional bins (b) to account for surface normal orientation, yielding finer partitions of
sample space.

3 Hash grid
We render static scenes illuminated by triangle area lights, assuming Lambertian diffuse
materials and focusing solely on direct illumination. Our approach builds on ray tracing,
where rays are cast from the camera into the scene. When a ray intersects a triangle,
the shading point, i.e. the intersection point, is computed, and the rendering equation
(Equation 1) is evaluated at that location. Given the high computational cost of this process,
we employ importance sampling in combination with ReSTIR, enhanced through a hash
grid-based reservoir caching strategy to improve quality. This hash grid is precomputed and
then used during the initial sampling step of ReSTIR.

3.1 Hash Grid Construction
The scene is discretized into a uniform 3D grid over the spatial domain as can be seen
in Figure 1a. To incorporate directional information, each spatial cell is further divided
across a discretized representation of the sphere of surface normals. This is achieved by
uniformly partitioning the polar angle θ ∈ [0, π] and the azimuthal angle ϕ ∈ [0, 2π) into
a fixed number of intervals, yielding a regular angular binning of the sphere. This can be
seen in the middle of the monkey in Figure 1b. Each combined (spatial, directional) cell
corresponds to a unique pair of spatial location and normal orientation bin.

A large number of surface samples are generated prior to reservoir construction. Triangle
primitives are sampled proportionally to their surface area, and a point is drawn uniformly
over the selected triangle. The surface normal at the sampled point is used to compute its
corresponding directional bin via its spherical coordinates (θ, ϕ), and the sample is assigned
to the appropriate cell’s sample pool.

Each spatial-directional cell in the hash grid stores a fixed number of independently
constructed light sample reservoirs. These reservoirs are built directly during a preprocessing
pass, where we use surface samples assigned to each cell to generate light samples. For each
reservoir, multiple surface points are randomly selected from the cell’s sample pool. At each
point, a light source is chosen and sampled, and the resulting sample is evaluated using
the rendering equation to compute a ReSTIR-compatible importance weight. This light
sample is then incorporated into the reservoir using standard one-sample RIS. Repeating

6

this process yields a set of representative, weighted light sample reservoirs per cell, capturing
the spatial and angular lighting distribution across the scene. These prefilled reservoirs form
the cache that is later used to guide initial sampling during rendering.

3.2 Using the Hash Grid
To improve the quality and stability of the initial sampling stage in ReSTIR, we extend
the standard RIS approach by incorporating information from the precomputed hash grid
of reservoirs. At each visible surface point, instead of generating an initial reservoir purely
from local light sampling, we first gather a set of reservoirs from the hash grid. These
reservoirs correspond to the cell containing the surface point in the combined spatial and
angular grid.

A number of reservoirs are selected at random from this cell and merged using Algo-
rithm 3. This produces an intermediate reservoir that encapsulates statistical information
from precomputed samples in similar spatial and angular contexts. Following this merge
step, additional light candidates are sampled using standard RIS (as described in Algo-
rithm 2) and incorporated into the same reservoir. The result is a hybrid initial sample that
leverages both global precomputed information and local sampling. These enriched initial
reservoirs are then passed to the spatiotemporal reuse phases of Algorithm 4, where they
are further refined through screen-space and temporal reservoir merging.

4 Implementation Choices
We implemented both the baseline ReSTIR algorithm and our hash grid variant on the
CPU. This decision was driven by project time constraints, as well as the desire for a direct
performance comparison between the two methods. Our experiments are limited to scenes
using only Lambertian diffuse materials.

4.1 ReSTIR Specifics
Candidate light samples are generated using streaming RIS with a fixed sample count of
M = 8 as shown in Algorithm 2. Triangle area lights are selected uniformly, followed by
uniform sampling of a point on the chosen triangle. As a result, the source probability
density is given by p(x) = 1/Nlights · 1/A(x), where A(x) is the area of the light triangle
containing sample x, and Nlights is the total number of triangle lights.

The target density p̂(x) corresponds to the unnormalized integrand of the rendering
equation (excluding the visibility term) p̂(x) = Le · fr · |ωi · n|, where Le is the emitted
radiance, fr is the BRDF (Lambertian in our case), and G is the geometry term. Because
light samples are generated uniformly over surface area, the target density must also be ex-
pressed in area measure. Converting the source density instead (e.g., to solid angle measure)
leads to visual artifacts and emphasizes the hash grid cell boundaries, which we aim to avoid.

We use a temporal reuse cap to prevent excessive growth in reservoir weights across
frames. We cap the multiplicity M of the previous frame’s reservoir before performing tem-
poral reuse. Specifically, we enforce a maximum value of Mprev = 10×Mcurr. This heuristic
stabilizes temporal accumulation and aligns with the way reservoir weights are computed
during merging, where the contribution of a sample is proportional to p̂q(r.y) · r.W · r.M ,

7

and the original weight sum wsum is ignored.

During the spatial reuse pass, we select K = 8 neighboring pixels for merging from a
circle with a radius of 5 pixels centered around the reference point. These neighbors are
filtered based on both spatial distance to the shading point and the angular difference be-
tween surface normals. This filtering improves the quality of the reused samples by favoring
geometrically and directionally similar points.

4.2 Hash Grid Configuration
The hash grid is implemented as a 643 uniform 3D grid over scene space, extended with 64
directional bins to account for surface normal orientation. Each cell stores 64 independent
reservoirs. During the preprocessing stage, each reservoir is filled using 1024 randomly
selected surface samples from within the corresponding spatial-directional bin, as described
in subsection 3.1. The same source and target distributions are used such that the reservoirs
are directly compatible with the ReSTIR reservoirs. During the initial sampling stage, X = 4
reservoirs from the grid are merged before RIS is performed.

5 Experimental Setup and Results

5.1 Experimental Setup
For the experimental evaluation of our ReSTIR improvements using precomputed hash grid
reservoirs, we employed two distinct test scenes designed to challenge different aspects of the
sampling and reuse process. The first scene, referred to as City Grid, features a structured
urban layout composed of buildings, streets, and sidewalks. Illumination is limited to the
sidewalks, which are lit by streetlamps, creating direct lighting scenarios and occlusion
patterns between the urban structures.

The second scene, referred to as Monkeys, consists of a large, flat plane populated with
a diverse set of geometric primitives including spheres, cones, and several instances of the
Suzanne mesh (Blender’s stylized monkey head). The scene is illuminated by multiple
spherical light sources positioned at varying heights and distances, each emitting different
colored light. This setup produces a wide variety of shading conditions and overlapping
lighting effects.

In addition to the ReSTIR and Hash Grid methods, a uniform sampling renderer is
added to our comparison, which uses 1 uniform light sample per pixel. The reference images
are using the 2000 uniform light samples per pixel.

The experiments were conducted on a Windows-based system equipped with an Intel
Core i7-6700K with 16GB of RAM. The code was compiled using MSVC.

5.2 Qualitative Analysis
The rendering comparison in Figure 2 illustrates the effectiveness of different sampling tech-
niques in the city grid scene, with particular emphasis on the performance of the Hash Grid
method. Visually, the Hash Grid approach significantly reduces noise compared to Uniform
Sampling and ReSTIR. The illumination on surfaces such as the sidewalk and lamp post ap-
pears much cleaner and more stable, more closely approximating the reference image. This

8

Figure 2: Comparison of rendering methods for the City Grid scene illuminated mainly by
lanterns along the sidewalks. Shown are the first frames using 4 methods from left to right:
uniform sampling, ReSTIR, hash grid, and reference rendering.

Figure 3: Comparison of rendering methods for the Monkeys scene containing Suzannes and
geometric shapes illuminated by spheres. Shown are the first frames using 4 methods from
left to right: uniform sampling, ReSTIR, hash grid, and reference rendering.

suggests that the Hash Grid effectively captures direct lighting while maintaining spatial
coherence, resulting in a much higher quality visual output than base ReSTIR.

In contrast to the City Grid scene, the results of the Monkey Scene shown in Figure 3
reveal limitations of the Hash Grid approach. While it still performs better than Uniform
Sampling and ReSTIR in terms of overall shape definition, the noise reduction is less ef-
fective, and a distinct artifact pattern emerges. The Hash Grid introduces visible grid-like
structures across the surface, particularly noticeable on the ground plane, which breaks the
illusion of physically plausible lighting. These artifacts likely stem from limitations of the
grid’s resolution and reservoir count per cell.

Despite these issues, the Hash Grid still offers better geometry clarity and material sepa-
ration than ReSTIR, which exhibits high-frequency color noise and poor shading coherence.
Uniform sampling, as expected, fails to capture any meaningful lighting structure due to ex-
treme noise. Overall, while the Hash Grid improves detail recognition and lighting strength
in this scene, it suffers from visible spatial artifacts that detract from the final image quality,
highlighting the method’s sensitivity to scene complexity and density variation.

5.3 Quantitative Analysis
In the City Grid scene (Figure 4a), the Hash Grid method initially achieves a lower RMSE
compared to ReSTIR, suggesting superior convergence in early frames. However, ReSTIR’s
error rapidly decreases and nearly matches Hash Grid after a few frames, implying dimin-

9

(a) City Grid (b) Monkeys.

Figure 4: Error (root mean squared error) in the scenes over the first 5 frames.

ishing advantages for Hash Grid over time. On the other hand, in the Monkeys scene
(Figure 4b), ReSTIR maintains a consistently lower RMSE than Hash Grid throughout the
sequence, possibly due to the visible grid artifacts noted earlier.

(a) Memory usage (measured in MB) compari-
son by scene and method.

(b) Average frame time (measured in ms) com-
parison by scene and method.

Figure 5: Performance measurements.

The hash grid introduces a significant memory overhead, particularly in the city grid
scene, where memory usage more than doubles, as illustrated in Figure 5a. This is likely
due to the scene’s high density, which limits the benefits typically gained from using a sparse
grid. Conversely, in the Monkeys scene, the abundance of empty space results in much lower
memory consumption by the grid. It should be noted that the reservoir structure is currently
unoptimized, and memory consumption could be substantially reduced for both the ReSTIR
and Hash Grid implementations. Nevertheless, the relative memory usage measurements
presented here remain a valid and accurate comparison. Regarding performance, frame
times increase by approximately 20 to 23 percentage points, as shown in Figure 5b. This
increase can be attributed to the overhead of hash grid access times. Optimizing the hash
function could potentially reduce this performance impact.

10

6 Responsible Research
This research project was conducted with careful consideration of both ethical aspects and
the reproducibility of the methods employed. Throughout the development, we relied on
several well-established open source libraries, including SDL [7], TinyBVH [1], and tiny-
objloader [5]. By using these tools, which are distributed under permissive licenses, we
ensured that our work respects intellectual property rights and contributes transparently to
the existing body of knowledge. Proper citation and adherence to licensing conditions were
strictly followed to maintain ethical standards.

The visual scenes used in this project were created by Rafayel Gardishyan, who kindly
granted explicit permission for their use. This respectful collaboration highlights our com-
mitment to ethical research practices by acknowledging and safeguarding the intellectual
property of content creators. Additionally, the base ReSTIR project was developed jointly
with Rafayel Gardishyan and Samuel Bruin.

To promote reproducibility, the full source code of this project has been made publicly
available on GitHub [8]. This openness enables other researchers and practitioners to re-
produce our results, verify our findings, and build upon the work. Along with the code, all
necessary assets and scene files are included to ensure that the research environment can be
replicated as closely as possible. By relying on widely used libraries with stable APIs, we
also minimized dependency-related discrepancies that could affect reproducibility.

7 Discussion
This research demonstrates that integrating a normal-aware hash grid for reservoir caching
can improve ReSTIR’s initial sampling, addressing its early-frame limitations due to insuf-
ficient temporal data. Qualitatively, the Hash Grid method yielded cleaner, more stable
illumination in the City Grid scene compared to ReSTIR, visually approximating reference
images. This is quantitatively supported by lower early-frame RMSE values in the City
Grid, confirming enhanced initial samples and accelerated convergence. This approach ef-
fectively fills a gap by applying normal-aware hash grids specifically to direct illumination,
improving image quality by leveraging spatial and directional coherence.

However, critical trade-offs and limitations emerged. The Hash Grid method introduced
distinct grid artifacts in the Monkeys scene, suggesting the fixed grid resolution or binning
strategy may struggle with highly varied lighting. Furthermore, the implementation incurred
significant memory overhead, particularly in dense scenes, and increased frame times due to
hash grid access. These performance considerations indicate that while the method improves
visual fidelity, its practical application requires careful attention to scene characteristics.

7.1 Limitations
Although the hash grid method demonstrates potential for enhancing geometric detail and
light selection, it exhibits inherent bias. As such, it may be more suitable for use during
the initial phases of rendering, with the possibility of being disabled in later stages. Due to
time constraints, our analysis is limited to a CPU-based implementation of the algorithm.
However, a GPU implementation is essential to fully evaluate its performance in real-time
scenarios. Another limitation is the narrow selection of test scenes, which may not fully
represent the method’s effectiveness across broader use cases.

11

8 Conclusions and Future Work
Our work demonstrates the potential of a normal-aware hash grid for caching precomputed
reservoirs to enhance ReSTIR’s direct illumination capabilities. Our findings across City
Grid and Monkeys scenes showed improved geometry clarity and lighting strength, partic-
ularly in mitigating initial frame noise. While the method showed promise in structured
environments, its sensitivity to complex scenes resulted in grid-like artifacts, highlighting
it’s limitations. This outcome, alongside observed memory overhead and increased frame
times, collectively provides a good proof-of-concept for the benefits of reservoir caching with
a normal-aware hash grid for direct illumination. This is a good starting point for further
analysis of this method and which cases are better suited to it.

Future research should explore updating hash grid values dynamically during rendering
by integrating newly generated light samples into the reservoirs, effectively enabling tempo-
ral reuse in world space. Experimenting with adaptive grid structures and optimized hash
functions is crucial to address artifacts and reduce performance overhead. Further inves-
tigation of the benefits of the method during camera movements could improve temporal
stability. Additionally, optimizing the reservoir memory layout is essential to broaden ap-
plicability; this can be further extended to changing the structure from a hash grid to an
octree. Finally, a GPU implementation of this algorithm is critical for exploring memory
layout considerations and optimizing real-time performance.

References
[1] Jacco Bikker. tinybvh: Single-header bvh construction and traversal library. https:

//github.com/jbikker/tinybvh, 2025. Accessed: 2025-06-19.

[2] Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wo-
jciech Jarosz. Spatiotemporal reservoir resampling for real-time ray tracing with dy-
namic direct lighting. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
39(4), July 2020.

[3] Jakub Boksansky, Paula Jukarainen, and Chris Wyman. Rendering Many Lights with
Grid-Based Reservoirs, pages 351–365. Apress, Berkeley, CA, 2021.

[4] Yangdong Deng, Yufei Ni, Zonghui Li, Shuai Mu, and Wenjun Zhang. Toward real-time
ray tracing: A survey on hardware acceleration and microarchitecture techniques. ACM
Computing Surveys, 50:1–41, 08 2017.

[5] Syoyo Fujita and contributors. Tinyobjloader: A tiny but powerful single-file wavefront
.obj loader. https://github.com/tinyobjloader/tinyobjloader, 2016. Accessed:
2025-06-19.

[6] James T. Kajiya. The rendering equation. In Proceedings of the 13th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’86, pages 143–150,
New York, NY, USA, 1986. Association for Computing Machinery.

[7] SDL Development Team. Simple DirectMedia Layer (SDL). https://github.com/
libsdl-org, 2025. Accessed: 2025-06-20.

[8] Vlad Stefanescu. Hash-grid. https://github.com/vload/Hash-Grid, 2025. GitHub
repository.

12

https://github.com/jbikker/tinybvh
https://github.com/jbikker/tinybvh
https://github.com/tinyobjloader/tinyobjloader
https://github.com/libsdl-org
https://github.com/libsdl-org
https://github.com/vload/Hash-Grid

[9] Justin Talbot, David Cline, and Parris Egbert. Importance Resampling for Global
Illumination . In Kavita Bala and Philip Dutre, editors, Eurographics Symposium on
Rendering (2005). The Eurographics Association, 2005.

[10] Hangyu Zhang and Beibei Wang. World-space spatiotemporal path resampling for path
tracing. Computer Graphics Forum (Proceedings of PG 2023), 2023.

13

	Introduction
	Background and Related Work
	Ray Tracing and Direct Illumination
	Monte Carlo integration and Importance Sampling
	Resampled Importance Sampling
	ReSTIR
	Related works

	Hash grid
	Hash Grid Construction
	Using the Hash Grid

	Implementation Choices
	ReSTIR Specifics
	Hash Grid Configuration

	Experimental Setup and Results
	Experimental Setup
	Qualitative Analysis
	Quantitative Analysis

	Responsible Research
	Discussion
	Limitations

	Conclusions and Future Work

