
Looping Structures
in Symbolic Execution
Covering hard to reach
code which requires many
iterations through loops
Bram Verboom

Looping
Structures in
Symbolic
Execution

Covering hard to reach code which requires
many iterations through loops

by

Bram Verboom
to obtain the degree of Master of Science in Computer Science

at the Delft University of Technology,
to be defended publicly on April 21st, 2023

Student number: 4694384
Project duration: August 29, 2022 – April 21, 2023
Thesis committee: Dr. ir. T. E. Verwer, TU Delft, supervisor

Dr. T. Durieux, TU Delft
S. Dieck, TU Delft, daily supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Software is everywhere, and going back to a life without software is unimaginable. Unfortunately,
software does not always behave as expected, even though during the development cycle, software
is usually tested to verify its correctness. To aid in testing, methods such as fuzzing or symbolic
execution are used for automatic verification software systems. These methods are able to quickly
find inputs to the systems that cover large portions of the code base. However, both of these meth-
ods struggle to find inputs that cover code which requires many iterations through loops.

In symbolic execution, loops are a large contributing factor to the path explosion problem and
therefore the overall runtime. For loops containing conditional branches, each iteration is a new
decisionpoint. This leads to an exponential number of possible paths through a loop in comparison
to the number of iterations.

In this work, we investigate the use of loops in symbolic execution to reach portions of the code
which require numerous iterations through loops with conditional branches. We propose a novel
technique for symbolic execution that uses the effects of one or more iterations through a loop
to reach new parts of the code. By implementing this technique and applying it to a set of chal-
lenges designed to stress current tools and methods for software verification, we show that our
technique is able to efficiently reach new parts of these challenges. These areas are not reached by
state-of-the-art methods within the same time budget.

Anothermethod for verifying software behavior is active learning, where simplemodels are learned
from a system. These models capture the behavior of the system at a high level, allowing easier
analysis to verify the behavior of a system. During the automatic learning of thesemodels, loops are
not handled separately. This leads to models where the behavior of a system is not captured fully,
leading to incomplete analysis. We propose new methods for finding changes in behavior after
executing these loops numerous times. We have compared our techniques to existing methods and
show that this produces more complete models of a system.

ii

Preface
Before you lies the result of 8 months of hard work. Many hours spent on reading papers, writing
this thesis and building prototypes to explore concepts in the field of symbolic execution. I re-
member the first months of my thesis, not even knowing what to tackle, as so much in this field
has already been explored. One day, I just ran some experiments to see what happened for a very
small program. At that time, I was unaware of the impact those experiments would have on my
thesis. This program is still present in the introduction of this thesis, and shows one of the prob-
lems in current symbolic executors. After five months, a handful of prototypes and many restless
nights later, I managed to create something that worked. I cannot explain to you the joy and sense
of accomplishment I felt when seeing the following string of characters:

CIHGI-
HGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIB

After reading this thesis, you will hopefully understand how this repeating pattern shows that my
hard work finally paid off.

This thesis would have been different without the support of many, and I am grateful for all the
help. Iwant to thankmy supervisor, Sicco, for themany fruitful discussions andyour enthusiasmon
the topic. Thank you Simon, for your criticism onmywriting and for steering me towards progress.
Thank you to the PhD students and other staff members that I could ask for help, but maybe just
as important, the many times you got me to take a break and get some tea. Thank you to the other
master students, for sharing courses and defending our table. For asking what I was working on
and sharing your own work, for all the fun during and after the days of studying. You all made the
commute to Delft worth it. Thank you to all my other friends, for convincing me to do a master in
thefirst place, for bearingwithme and formaking themost out of the limited, yetmuchneeded time
away from studying. And last, but definitely not least, I want to thank my family for their massive
support, not only during my thesis, but throughout all my years of studying.

Bram Verboom
Sunday 9th April, 2023

iii

Contents

1 Introduction 1
1.1 Problem Statement . 2

1.1.1 Motivation . 4
1.1.2 Active Learning . 4

1.2 Research Questions . 5
1.3 Contributions . 5
1.4 Outline . 6

2 Background and Related Work 7
2.1 Automated Vulnerability Discovery . 7

2.1.1 White-, Grey- and Black-box . 7
2.2 Types of Faults . 7
2.3 Fuzzing . 8
2.4 SAT and SMT Solver . 8
2.5 Symbolic Execution . 8

2.5.1 Variable Assignment . 8
2.5.2 Conditional Statements . 8
2.5.3 Input Queue. 9
2.5.4 Path Explosion . 10
2.5.5 Source Code, Intermediate Representation or Binary 10
2.5.6 External environment. 10
2.5.7 Advancements in Solvers . 10

2.6 Automata Learning . 10
2.6.1 Definitions. 10
2.6.2 L* Learning Algorithm . 11
2.6.3 TTT . 12

2.7 Answering Conjectures. 12
2.7.1 Distinguishing Sequences . 12
2.7.2 W-method . 12
2.7.3 L* for Mealy Machines . 13

2.8 RERS Challenge . 13
2.9 Loop Summarization . 13
2.10 Related Work . 14

2.10.1 Model Learning with fuzzing . 14
2.10.2 Model Learning by Apartness . 14

3 Research Gap 16
3.1 Issues of Existing Approaches . 16
3.2 Position of Our Approach . 17

4 Execution Model 18

5 Detecting Loop Structures 19
5.1 Detecting the Loop . 19

5.1.1 Source Analysis . 19
5.1.2 CFG Analysis . 19
5.1.3 Stack-Based Detection . 19
5.1.4 Execution Model . 20

iv

Contents v

5.2 Repeatable Path . 20
5.3 Self Loop . 20
5.4 Multiple Loop Iterations . 21
5.5 Conclusion . 21

6 Loop Generalization 22
6.1 Generalizing Repeated Addition . 22

6.1.1 Generalization . 22
6.1.2 Forming the Input. 22
6.1.3 Loop Generalization . 23

6.2 Initial Experiments . 23
6.3 Dealing with Non-generalizable Loop Paths . 24

6.3.1 Assignments to Multiple Variables . 24
6.3.2 Multiple Assignments to Multiple Variables . 24

6.4 Conclusion . 25

7 Loop Structures in Symbolic Execution 26
7.1 Iteration Constraint . 26

7.1.1 Assignments to Multiple Variables . 26
7.1.2 Multiple Assignments to Multiple Variables . 27

7.2 Conclusion . 27

8 Symbolic Execution Experiments 28
8.1 Extension to Klee . 28
8.2 LLVM IR Symbolic Executor . 28
8.3 Building SymLoop . 29

8.3.1 SymLoop . 29
8.4 Setup of Running SymLoop . 29

8.4.1 Results of Running SymLoop . 31
8.5 Improvements . 31

8.5.1 Results of Running Improved SymLoop . 32
8.6 Increasing the Time Limit . 32
8.7 Limitations . 33
8.8 Optimizations . 33
8.9 Conclusion . 33

9 Learning State Machines 34
9.1 Loop-W-Method . 34

9.1.1 Complexity . 35
9.2 Symbolic Execution for Testing Loop Equivalence . 35
9.3 Experiment Setup . 36
9.4 Conclusion . 36

10 Results 37
10.1 Running the Initial Problem . 37
10.2 RERS Challenges . 37

10.2.1 Analysis of Results . 38
10.3 Active Learning . 39

11 Conclusion 41
11.1 Research Questions . 41
11.2 Future Work. 42

Glossary 45

Acronyms 46

A RERS Results 47

B Paper Submitted to ICGI 2023 50

1
Introduction

The use of software for all kinds of purposes continues to increase. Our coffee machines are on-
line, the lights in our offices turn on automatically when you walk in, and our hospitals keep your
medical records in electronic patient dossiers. We become more reliant on all these systems, and
a world without any software is hard to imagine. Although manufacturers make an effort to make
their products function as intended, wehave all probably experienced software systems crashing or
failing. Some of these crashes can even be exploited for malicious intent. A common vulnerability
is a buffer overflow, where an attacker can read or write data outside the bounds of the predefined
buffer. Code reviews are common, but not everyone has the knowledge to spot the small mistakes
that can compromise a system.

To aid in security testing, there exists methods such as fuzzing and symbolic execution that
can automatically find crashes or failing systems. When a crash or bug is found in a system, the
manufacturers can patch the system to prevent this from happening to end users. Fuzzers feed a
program under test with random data to hopefully trigger crashes. With some additional nonran-
domoptimizations, this technique has been successful in finding bugs inmany software systems. A
limitation of fuzzing is the ability to reach code that requires more complex patterns or constraints
on the input data. If you have the following condition in the code: input == 1234567, with 32-bit
numbers as input, satisfying this condition randomly has a 1 in 232 = 4294967296 chance of occur-
ring. With symbolic execution, finding inputs that make this condition true is trivial. The symbolic
executor creates mathematical constraints for each condition and uses a constraint solver to gen-
erate an input that satisfies the constraints. Although symbolic execution can cover some parts of
the code more quickly, the overhead of the constraint solver heavily impacts the overall execution
speed. In most cases, a fuzzer can cover the majority of the code in a fraction of the time compared
to a symbolic executor. However, fuzzers struggle with covering code that requires complex pat-
terns in the input. Wewould like to find inputs that lead to crashes, so being able to reach code that
does require many iterations through loops is desirable.

To illustrate how symbolic execution struggles with loops, we created an example programwith
a simple loop. The example C code is shown in Figure 1.1. This program takes in 2 inputs as com-
mand line arguments. The first input is a series of characters, and the second argument is a number
that is stored in the limit variable. An initial variable i is initialized to 0 and will be updated
when scanning the sequence of characters. The sequence of characters is scanned and checked
one character at the time. If a character is an ‘i’, the variable i is increased by one, and the program
will continue scanning the next character. The i variable therefore always contains the number of
‘i’ characters that that program has seen. If the character is a ‘p’, the i variable is checked. If the
variable i is larger than or equal to the limit, the program will crash. If the limit is not reached
yet, nothing happens and the next character is checked. When the character is neither an ‘i’ nor a
‘p’, the program will exit normally.

For symbolic execution, the sequence of characters is the symbolic input of the program. We set
the limit to a specific value for one run of symbolic execution. By increasing the limit, we can test
the ability of symbolic execution to reach code that requires more iterations through the loop. We
have tested the runtime of two different symbolic execution tools, JDart and Klee. The C program

1

2 1. Introduction

1 int main(int argc, char** args) {
2 assert(argc == 3);
3 int limit = atoi(args[1]); // Target to reach
4 int i = 0; // Internal state
5 int j = 0; // Loop variable
6 char symbol; // Character in input
7 char* trace = args[2]; // Input: array of symbols
8
9 while ((symbol = trace[j++]) != 0) { // Get next character in input

10 if (symbol == ’i’) {
11 i += 1;
12 } else if (symbol == ’p’) {
13 if (i >= limit){
14 assert(0); // Crash
15 }
16 } else {
17 return 0;
18 }
19 }
20 return 0;
21 }

Figure 1.1: C Program used for testing the runtime of Klee

used for Klee [3] is the code shown in Figure 1.1. The Java version required for running JDart [16]
is semantically equivalent and left out.

The results of the runtimeof the symbolic executors at different set limits are shown inFigure 1.2.
To our surprise, the runtime grows exponentially in relation to the limit. This gave us the initial idea
of improving symbolic execution by detecting looping structures.

These results canbeexplainedby thepathexplosionproblem in symbolic execution. In symbolic
execution, every branch creates a newdecision point for the symbolic executor, creating a newpos-
sible path to explore. To cover all the code of a program, all possible states of the program need to
be stored, where each possible state takes a different path through the program. This rapidly grow-
ing number of paths is called the path explosion problem. In the example, each iteration of the loop
allows three different paths; the input can be an ‘i’, the input can be a ‘p’ or the input can be some-
thing else. When the input is something else, the program exits. For an input of length 𝑛 there are
3𝑛 possible paths through the program. To find a specified limit, a breadth-first-search approach
would require running 3limit inputs to find the crash.

For this simple example, when knowing the underlying behavior, creating an input that crashes
the system for a certain limit is relatively straightforward. An ‘i’ character in the input always in-
creases the internal i variable by one, and the limit is compared to this i variable. Inputting a
sequence of limit ‘i’s with one ‘p’ should always trigger the crash. This holds for an arbitrary limit,
and generating this input does not take exponentially longer with an increasing limit. Instead, by
reasoning over the program we can construct the example in linear time with respect to the limit,
as the input is linear when compared to the limit.

1.1 Problem Statement
As illustrated by the example above, state-of-the-art symbolic execution fails to efficiently find
inputs that cover code which requires a few iterations through a simple loop. We argue that if
symbolic execution already fails for such a simple example, navigating code with more complex
loops with more than just addition will also fail. Additionally, in normal programs, loops iterating
for 10 or even 20 iterations occur frequently, andwe expect that loopswith evenmore iterations are
not uncommon. As many programs contain loops, this is a major contributor to the path explosion
in symbolic execution. The problem can be separated into two issues.

The first issue is the inability of current symbolic executors to detect that a path through the
loop has no effect on the internal state of the program. To elaborate, we look at the simple example
again. When a ‘p’ character is scanned before the limit is reached, no variables are changed, except
the one that keeps track of the current position in the sequence of input characters. If the symbolic

1.1 Problem Statement 3

0 5 10 15 200

100

200

300

400

500

Limit

Ti
m
e
(s
)

Normal scale

Klee
JDart

Figure 1.2: Time to run symbolic execution on program with a looping structure.

executor detects that none of the useful internal variables of the program have been changed, the
symbolic executor could halt that execution, as there exists a shorter path that reaches the same
internal state. For the example, this translates to stopping for inputs that contain a ‘p’ that does not
trigger the crash. If the executor has two inputs in its queue: ‘ii’ and ‘iip’, they represent the same
internal state, so the longest one with the ‘p’ could be pruned. Figure 1.3 illustrates the difference
between pruning these self-loops and not pruning. This would already make the runtime for the
example linear in relation to the limit.

i p

ii ip pi pp

iii iip ipi ipp pii pip ppi ppp

i p

ii ip

iii iip

Figure 1.3: Illustration of the path explosion for self loops. The figure on the left shows all paths for current symbolic
execution. The right figure shows the desired paths, where paths in red have equivalent internal states to their predecessor

and thus does not have to be explored further.

The second issue is the inability of symbolic execution to consider the effects of a loop when
executing the same path through the loop multiple times. By branching at each condition in the
loop, the executor has an exponential runtime for the simple example. By analyzing the code, we
can deduce that the i variable counts the number of ‘i’ characters in the input sequence. We can
extrapolate thebehavior of one iteration through the loop into a generalizationofmultiple iterations
through that loop. To trigger the crash, the last character of the input needs to be a ‘p’ and the i
variable needs to be larger than the limit. Therefore, to reach a certain limit, create a sequence of
that many ‘i’ characters and one ‘p’ character.

4 1. Introduction

In this work, we investigate the usage of loop detection and generalization strategies to aid
symbolic execution in reaching code that requiresmore iterations through a loop. In publicly avail-
able state-of-the-art symbolic executors, no extra care is taken to analyze loops. Doing loop detec-
tion and loop analysis to create generalizations can lead to higher coverage, or more quickly being
able to find certain crashes. We hope to create a new symbolic executor that has a sub-exponential
runtime when running it on the simple example shown in Figure 1.1.

To keep the research objective feasible, we limit the scope to programs that have a similar in-
put/output characteristic as shown in the example. Specifically, the input of aprogrammust be a se-
quence of characters or integers and one iteration through the main loop of the program consumes
one input of the input sequence. For our testing, we use the problems from the RERS challenge [15,
12, 11]. These problems adhere to the specific input/output behavior. The RERS challenge was de-
signed to test the limits of analysis and verification techniques to improve or create new methods.
A more in-depth explanation of the execution model can be found in Chapter 4.

There are several problems to be solved to be able to create a symbolic executor that can more
efficiently navigate loops in the code. These problems form the basis of the subquestions of this
research; these questions are shown in Section 1.2. The first major hurdle to overcome is the ability
to detect the existence of a path through a loop which can be repeated. How can we do this for one
iteration in themain loop? And can we do this with paths over multiple iterations through themain
loop? Do we have to stick to the input/output characteristics as described above, or is it possible
to do this for an arbitrary program?

With a path that can be repeated, the effects of that loop path should be analyzed. Does that
path change the internal state of the program? And if so, how? Ideally, we want to extrapolate the
effects of one iteration of that path into a generalization that captures changes to the internal state
when executing that path multiple times. In the example, the variable i was increased by one in
each iteration in the loop. A generalization of adding 1 for 𝑛 iterations is adding 𝑛 once. We expect
to be able to generalize this for some paths, such as the one from the example, but can we extend
this to any path with any change to the internal state?

1.1.1 Motivation
With our simple example, we have shown that state-of-the-art symbolic executors struggle with the
path explosion of loops. By analyzing the loop manually, it is relatively straightforward to create
inputs that cover the codewith the limit. Sincemanyprograms contain loops toprocess input,more
efficiently handling these loops can benefit the runtime of symbolic execution for these programs.
Since the runtime is currently exponential, a newmethodmight even find new errors. In Chapter 3,
weoutline the researchgap further. There is some researchon this topic, but no technique is general
enough to work for any program and loop structure. Some techniques rely on linear relationships
between input and internal variables, sometimes even requiring an input grammar. Other methods
rely on optimizable conditions and fail for branches which have conditions for which selecting
inputs which are closer to triggering the branch does not lead to finding an input which satisfies
the condition. The goal of this thesis is to create a general method which works for all loops.

1.1.2 Active Learning
In addition to extending symbolic execution, we also look at using symbolic execution for active
learning. In active learning, a model is learned from a system by feeding the system with input
and observing its behavior. Active learning is used to verify the functionality of the software. Af-
ter learning a model, analysts can compare the models against expected behavior. The analysis of
models that were learned from software has been successfully used to detect bugs in real imple-
mentations of TLS protocols by De Ruiter and Poll. In active learning, there is no distinction made
between transitions through states that form cycles in the model and transitions that are not part
of a cycle. Creating a distinction between those two sets of transitions can allow checking whether
the cycles in the loop are also cycles in the system fromwhich the model is learned. We investigate
whether the cycles in the model show different behavior after a number of iterations of that loop.
Identifying such a change results in many new states and thus aid the active learning process, see
Figure 1.4.

1.2 Research Questions 5

s0

i / I
p / P

(a) Change not found

s0

p / P

s1i / I

p / P

s2i / I

p / P

s3i / I

p / P

s4i / I

p / P

s5i / I

p / error_5

s6i / I

i / I
p / P

(b) Change in loop behavior found

Figure 1.4: Learned models of the same system. The learning process that produced the left model was unable to find a
change in behavior after 5 iterations through the ‘i’ loop. The learning process that results in the right model does capture

this behavior.

1.2 Research Questions
The main objective of this research is to extend symbolic execution with methods that allow more
efficient traversal of loops in the program. Hopefully, this can reduce the path explosion problem
for the instances where we consider current methods to be inefficient.

How can you extend symbolic execution to reach states that require repetitive iterations
through loops?

Answering the following sub-questions allows us to create an extension that allows symbolic
execution to reach code which requires several iterations through a loop.
RQ1: How can loop structures in symbolic execution be detected?
RQ2: Is it possible to generalize the assignments in loop structures into constraints for a symbolic
executor?
RQ3: How can loop structures be used to reach new branches in symbolic execution?
RQ4: Does detecting and using loop structures allow symbolic execution to cover more states of a
program?
RQ5: How can we use symbolic execution for equivalence oracles in active learning?

1.3 Contributions
In this thesis, we propose a new technique for symbolic execution that allows covering code that
requires many iterations through a loop. Some existing methods only work on linear relationships
between the input and some of the internal variables of the program. Some methods even require
that the input grammar of a program be specified. Our method is able to handle arbitrary updates
to the internal state of the program without needing an input grammar.

We implemented our symbolic executor and applied it to the RERS Challenge [15, 12, 11]. Our
approachoutperforms state-of-the-art symbolic executionand fuzzingbyfindingmore errorswithin
the same time window. In several cases, our symbolic executor can find errors in 5 minutes, which
the state-of-the-art symbolic executor Klee could not find in 24 hours. However, loop detection
comes with a runtime cost, which is why Klee found some errors which our methodology did not
find in the same time frame.

In addition to our symbolic executor, we also developed and implemented new methods for
equivalence checking of loops during active learning. We introduce two different methods:

• Our naive Loop-W-method works in all cases and is able to detect changes in loop behavior.
These changes can not efficiently be detected in traditional equivalence checking techniques
such as the W-method.

• Our symbolic method uses the concepts from the symbolic execution engine to create con-
straints to check the behavior of a loop path after many iterations. The symbolic method
requires more information from the underlying system, but has the benefit of requiring fewer
membership queries to get the same result as our naive method. Our symbolic method can
also guarantee that some of the cycles in a hypothesis model are correct.

When using our methods as equivalence checkers for learning models of the RERS problems,
both are able to find significantly more states than the traditional W-method equivalence checker.

6 1. Introduction

We have also condensed this thesis into a research paper that was submitted to the 16th In-
ternational Conference on Grammatical Inference. The paper has been included in this report as
Appendix B. At the time of writing, we have not received a notification of acceptance, as the review
process is still ongoing.

1.4 Outline
The next chapter introduces the necessary background information on symbolic execution, as well
as the concepts and methods for active learning. Chapter 2 also shows related work to address
the problems defined in this introduction. The chapter following the related work outlines the
issues with these methods and positions our approach in terms of the limitations of the existing
approaches. In Chapter 4, we provide the execution model that is used throughout this research.
Chapter 5 answers the first research question on detecting loop structures. Chapter 6 uses the
loop structures to answer the next research question on generalizing the effects of these structures.
The next chapter uses these generalizations to extend symbolic execution, with Chapter 8 applying
thesemethods in the experiments. The following chapter, Chapter 9, answers the research question
of using symbolic execution in the context of active learning. All results are shown in Chapter 10
including the analysis of the results. Chapter 11 provides the final conclusion and shows future
work.

2
Background and Related Work

2.1 Automated Vulnerability Discovery
AVD (Automated Vulnerability Discovery) is the process of automatically finding bugs, crashes, or
other faults in programs. Numerous techniques were developed over decades of research in this
area. The techniques vary fromrandomfuzzing: providing random input to aprogramanddetecting
if the program crashes, to more advanced techniques like symbolic execution that use the internals
of programs to reason about possible crashes.

2.1.1 White-, Grey- and Black-box
Techniques for AVD can be categorized based on several criteria. One of the criteria we are inter-
ested in is the level of knowledge required of the system. We outline the main differences below.

White-box methods are sometimes also called glass- or crystal-box methods, and just like the
contents of a glass box, the internals of these systems are fully visible. All intermediate steps for
producing the output are visible. For software systems, seeing their internals translates to viewing
their source code. White-box techniques also apply when inspecting compiled binaries. Although
some details are lost in the compilation process, the functionality is still embedded in the binary.

Black-boxmethods consider a system to be a black box: after being given an input, it produces
some output. How the system generates its result based on the input is completely hidden. Due
to the limited knowledge of a system, black-box techniques are less powerful when compared to
white-box methods.

Grey-boxmethods are amiddle groundbetweenwhite- andblack-boxmethods. Although there
is no general definition for grey-box, for these methods only limited information is available.

Another distinction is the notion of static or dynamic analysis. For static techniques, the ana-
lyzed programs or systems are never run. In situations where running a system and observing its
output is costly, static techniques can provide useful insights. Static analysis analyzes the source
code or binary. In dynamic techniques, the programs or systems are run to observe their behavior.
During runtime, the internal state of the system can be inspected. This allows dynamic techniques
to analyze different properties.

2.2 Types of Faults
Systems can contain various types of faults. AVD often focuses on bugs that lead to crashes, as a
crash of a system is easy to observe. Crashes can be caused by reading or writing to buffers past
their bounds, reading uninitialized memory, failing assertions, or other mistakes in developing the
system. Behavioral bugsormistakes arenot caughtbyvulnerability discovery, to illustrate: a system
that is meant to add numbers but insteadmultiplies them is behaviorally wrong. However, the code
does not contain any bugs that could trigger it to crash.

7

8 2. Background and Related Work

2.3 Fuzzing
There exists several techniques for finding vulnerabilities. One of these is fuzzing. In fuzzing, a
program or system is repeatedly provided with different inputs. By repeatedly providing different
inputs, a system might crash for one of the inputs. Dumb fuzzers can just try random inputs, but
more intelligent methods use coverage to guide the fuzzing process. AFL++[9] is one of the state-
of-the-art coverage guided fuzzers. AFL++ uses mutators to cover new areas of the system.

2.4 SAT and SMT Solver
The satisfiability problem, also known as SAT, is the problem of deciding whether a propositional
formula can be made true by an assignment of the variables in the formula. The problem is NP-
Complete, so finding a solution in polynomial time is believed to be impossible. If the formulas
extend to integers and strings, instead of just boolean operations, the problem is called SMT (Sat-
isfiability Modulo Theory). Especially for use in symbolic execution (see Section 2.5), being able
to use and solve mathematical formulas over numbers or strings is required, as most programs also
perform arithmetic on numbers or operate on strings. Formulas in propositional logic are a strict
subset of SMT formulas, so computing satisfiability for mathematical formulas can not be easier
then computing satisfiability for problems in propositional logic. Since the SAT problem is NP-
Complete, the SMT problem is also NP-Complete, therefore finding a solution in polynomial time
is also believed to be impossible.

There exist SMT-solvers that can solve mathematical formulas in non-polynomial time, and a
lot of effort has been put into making them faster and more efficient. An example of such a solver
is Z3 [18]. During this report, we will use the terms solver and SMT-solver interchangeably for a
program that solves a formula in modulo theory and indicates that it is unsatisfiable or satisfiable.
Additionally, if the formula is satisfiable, it givesbackamodel that satisfies the formula and includes
the assignments for each variable in the formula.

2.5 Symbolic Execution
Symbolic execution is a technique to find inputs for a program that traverse different paths in the
program. It can be used to detect bugs, but also to generate test suites that cover different behaviors
in the program under test. Instead of running a program normally, symbolic execution executes the
program abstractly and reasons about multiple possible inputs by leaving the inputs to a program
as free variables, creating symbolic expressions for internal variables, and then using a solver to
discover new paths in the program.

For this work, we will focus on dynamic symbolic execution or also called concrete symbolic
execution or concolic execution. This section will provide the reader with a basic understanding
of concolic execution.

Throughout the explanation of symbolic execution, we will use an example of running symbolic
execution for the program found in Figure 2.1. This program takes in an age as input. The program
then outputs whether the age is invalid, it is the age of a child, or it is the age of an adult.

2.5.1 Variable Assignment
When starting concolic execution, the program under test is run on a sample input. During the
execution, any changes to variables are recorded, and a path constraint is formed that matches the
expressions that are evaluated. Any input to the program is kept as free variables. For the example,
the initial assignment is age = input(). This creates the symbolic expression ‘age0 = input0’,
where ‘input0’ is the free variable representing the input to the program. If any variable is updated
again, a new constraint is formed which assigns the new value of that variable. Every time an as-
signment occurs, the symbolic executor will create a new symbolic variable that corresponds to the
current value of that variable in the code. These assignments follow the principle of SSA (Static
Single Assignment).

2.5.2 Conditional Statements
Whenever conditional statements are executed, the condition is evaluated and before continuing
to execute down that path, the following occurs: if the condition is satisfied (i.e. true), the negated

2.5 Symbolic Execution 9

age = input()

age ≥ 0

output('invalid')

output('child') output('adult')

age ≥ 18

N Y

N Y

Figure 2.1: Example program for explaining symbolic execution. The program is represented as a CFG

version of that condition is created and given to the SMT solver alongside the current path con-
straint. Afterward, the path constraint is updated such that the condition must be satisfied. When-
ever the condition is not satisfied (i.e. false), the solver is given the condition along with the path
constraint. Afterward, the negated condition is added to the path constraint. In both of these cases,
the solver is executed and if it can satisfy the given constraints, a new input to the program can be
formed and gets added to a queue of inputs. The model given back by the solver will contain con-
crete values for each symbolic input. The goal of using the solver is to find an input that executes
the opposite branch of the conditional statement. Throughout the report, we specifically chose to
use condition to refer to the expression that is contained in a conditional (i.e. if) statement, where
that condition decides which branch to take. When using the word constraint, we refer to a logical
formula that is used in the context of SMT solvers.

When looking at the example, if the initial input−1was provided as age, the condition age ≥ 0
would be false and execution would follow the N path. To find an input which reaches the other
path, the Ypath, the condition is converted to the constraint age0 ≥ 0. This condition is conjuncted
with the current path constraint andgiven to the solver: (age0 = input0)∧(age0 ≥ 0), the solver then
tries to find an assignment to the variables which satisfies the constraint. A possible assignment to
the input would be input0 = 1, so by inputting an age of 1, the Y path would be followed. After
solving for the current branch and adding the new input to the queue of inputs, the path constraint
is extended with the negated version of the condition (remember, the condition is false, yielding
the path constraint (age0 = input0) ∧ ¬(age0 ≥ 0). After adding this to the path constraint, the
execution is continued to the next statement, in this case outputting ‘invalid’ and exiting.

2.5.3 Input Queue
After running the program on the initial input, a new input is retrieved from the queue. All the
inputs in the queue follow a different path than the one used to construct that input. The input
is retrieved based on a heuristic, where each concolic execution engine uses a different heuristic
or allows the user to specify one of its built-in heuristics. A problem in symbolic execution is the
quickly growing queue of inputs, which may contain duplicates, so a strategy to remove redundant
inputs is beneficial to keep path explosion to a minimum.

For our example, the initial input −1 produced the input 1, so the queue just consists of the
input 1. The input 1 visits the age ≥ 0 conditional statement, which generates the input −1. After
following the Y path, it also visits the conditional statement age ≥ 18. This generates a new input
using the constraint (age0 = input0)∧(age0 ≥ 0)∧(age0 ≥ 18). An input that satisfies this condition
is 20. Since the input −1 is already ran, only the input 20 is run, which leads to all branches being
covered.

10 2. Background and Related Work

2.5.4 Path Explosion
Path explosion refers to the fact that the number of paths through a program grows exponentially
in terms of the length of the input or the number of conditions in a program. In theory, at every
condition a different path can be followed, leading to a decision point at every conditional state-
ment. Although in practice not all paths can be followed due to the constraints being unsatisfiable,
the number of paths still grows rapidly. Loops are a large contributor because, after each iteration
of a loop, a decision is made whether to exit the loop or continue another iteration. Additionally,
every conditional statement in a loop is another decision point, so for a loop that iterates 𝑛 times,
this condition creates 2𝑛 additional decision points.

2.5.5 Source Code, Intermediate Representation or Binary
Concolic execution can be made possible through different methods, some methods require the
source code of the program under test to instrument the program and add the code necessary for
the symbolic reasoning. Other methods work on an intermediate representation that a compiler
produces (commonly LLVM IR) to support more programming languages that produce this inter-
mediate representation. Some methods work on already compiled binary programs, for example,
if the source code is not (publicly) available.

2.5.6 External environment
A hard problem in symbolic execution is the use of external environments, such as the file system,
the network, external libraries, or other programs. Symbolically representing the interactions be-
tween the environment and the program under test can be done by simulating these interactions,
symbolically interpreting the libraries, or in other cases where either of those is not possible, exe-
cuting them normally and using the concrete values of these interactions.

2.5.7 Advancements in Solvers
A large contributing factor of the runtime of symbolic execution is the overhead of the solver. At
every branching point in the program, the solver needs to invokedwith the current path constraint.
Due to the heavy usage of the solver, symbolic execution automatically benefits from advances in
SMT solvers.

2.6 Automata Learning
Previously mentioned techniques focus on automatically finding errors that exist in the imple-
mented versions of the program (programmatic errors). Not all incorrect behavior causes imme-
diate crashes or errors. A coffee machine that allows you to get free coffee whenever you enter a
specific code is still functional, yet this behavior is still problematic. Models of systems allow an-
alysts to find logical errors in the system. For the coffee machine, a path can be found where the
brew coffee state could be reached without ever going through a payment state.

2.6.1 Definitions
This section contains some common definitions we will use throughout this paper.

State Machine
State machines are a common analogy to regular languages, as any regular language can be built
as a state machine that can decide whether a word (a series of input symbols) is a member of the
language. The state machines we use are DFA (Deterministic finite automaton). A state machine
D = (𝑄, 𝐹, Σ, Γ) is a 4-tuple consisting of:

• A finite set of states 𝑄 = {𝑞0, 𝑞2, … 𝑞𝑛} where 𝑞0 is the initial state,

• A mapping from state to accepting or rejecting 𝐹 ∶ 𝑄 → {+,−},

• An finite set of input symbols Σ

• A transition function mapping state and input to a new state: Γ ∶ 𝑄, Σ → 𝑄

2.6 Automata Learning 11

Mealy Machines
Mealymachines are anextensionof the statemachines introduced in thepreviousparagraph. Mealy
Machines also produce an output upon transitioning to a state when consuming an input symbol.
Because of this extra behavior, Mealy Machines are 5-tuplesM = (𝑄, 𝐹, Σ𝑖 , Σ𝑜 , Γ) consisting of:

• A finite set of states 𝑄 = {𝑞0, 𝑞1, … 𝑞𝑛} where 𝑞0 is the initial state,

• A mapping from state to accepting or rejecting 𝐹 ∶ 𝑄 → {+,−},

• An finite set of input symbols Σ𝑖

• An finite set of output symbols Σ0

• A transition function mapping state and input to a new state and the output it produces: Γ ∶
𝑄, Σ𝑖 → (𝑄, Σ𝑜)

[1] Proposed the MAT (minimally adequate Teacher) framework consisting of a Teacher and a
Learner interacting to let the Learner form a description of a regular set. A minimally adequate
Teacher should correctly answer two types of questions from the Learner, the simplest one of them
is themembership query and the other question is a conjecture. With these two types of questions,
a state machine can be constructed.

Membership Query
The student can askmembership queries to find out whether a sequence of symbols is a member of
the regular set. The Teacher then responds either with a yes or no. Typically, the teacher runs the
sequence of symbols through the program under test or against the regular set. The runtime of this
query is bounded in terms of runtime by the length 𝑛 of the sequence of symbols 𝑂(𝑛).

Conjecture
A conjecture is a hypothesis that the learner has of the regular set. The learner asks the teacher if
the hypothesis is correct. The hypothesis can either be correct or the teacher returns a counterex-
ample. This type of question is in practice a lot harder because the teacher also does not have full
knowledge of the regular set.

2.6.2 L* Learning Algorithm
We give a high-level overview of the L* (pronounce: L-star) learning algorithm that was introduced
in [1]. The L* learning algorithm abides by the minimally adequate teacher framework to actively
learn state machines of regular languages. The L* learner uses an observation table to keep track of
prefixes and suffixes alongwith theirmembership in the set. The observation table (𝑆, 𝐸, 𝑇) consists
of a nonempty set of prefixes 𝑆, a nonempty set of suffixes 𝐸 and amembership function 𝑇mapping
‘prefix ⋅ suffix’ and ‘prefix ⋅ input symbol ⋅ suffix’ to non-membership or membership (⊥ and ⊤ re-
spectively) 𝑇 ∶ (𝑆∪(𝑆 ⋅ Σ)) ⋅ 𝐸 → {⊤, ⊥}. The suffixes are along the rows and the prefixes are along the
columns. The prefix and suffix sets start with the empty word 𝑆 = 𝐸 = {ε}. The learner then asks
the teacher membership queries to fill out the observation table. This process will continue until
the observation table is filled. Whenever the observation table is filled, the learner checks whether
the table is closed and consistent. The observation table is closed if it can create transitions for
each unique state for all the symbols in the input alphabet. The observation table is consistent if
all rows in the observation table that correspond to the same state lead to the same states for every
symbol in the input alphabet. Once the observation table is closed and consistent, a hypothesis
model can be sent to the teacher. This hypothesis model is checked for equivalence. If the equiva-
lence checker finds a counterexample, for which the model does not match the system under test,
the observation table must be updated to reflect this counterexample. The original paper by An-
gluin suggested adding all prefix of the counterexample to the set S. Although there are methods to
reduce the counterexample to only addminimal information to the observation table, the approach
of adding all prefixes of the counterexample works.

12 2. Background and Related Work

2.6.3 TTT
The TTT algorithm [14] is also an active learning algorithm for constructing DFAs. The goal of cre-
ating TTT was to reduce the number of membership queries and make the observation tables less
redundant than the methods introduced before the TTT paper. To best explain the TTT algorithm,
we will introduce some additional notation.

• Σ∗: All finite words made from combining symbols in Σ, including the empty word ε.

• Σ+: All finite words made from combining symbols in Σ, excluding the empty word ε.

• 𝜆𝑞 ∶ Σ∗ → {⊤, ⊥} of 𝑞 with 𝜆𝑞(𝑣) = 𝑇 iff 𝐹(Γ(𝑞, 𝑣)) = ⊤

The TTT algorithm represents the observations in a different structure than the table of L*. TTT
uses a discrimination tree. This discrimination tree distinguishes between the states based on pre-
fixes. Due to the representation being redundancy-free, TTT can learn the same model with fewer
membership queries, while also having a lower space requirement [14].

2.7 Answering Conjectures
After a learning algorithm has created a hypothesis automaton based on its observations, a conjec-
ture needs to be answered to verify that the model is equivalent to the system under test.

A naive way to verify a hypothesis is to brute force all possible words up to a certain length. The
membership queries of running a word through the system is compared to the result of running the
same words through the hypothesis. If the membership indicates that the word is contained in the
language, but the hypothesis does not agree (or vice versa), this word forms a counterexample and
is given back to the learner to refine its hypothesis. This method guarantees that for all words up
to a certain length, the hypothesis is equivalent. However, this approach can be infeasible due to
the exponential complexity in terms of the length and alphabet size.

2.7.1 Distinguishing Sequences
A distinguishing sequence is an input sequence which distinguishes two states according to the
observed output of running this sequence. For a deterministic state or mealy machine are a set of
distinguishing sequences is the set which distinguishes all states from each other. This set has the
same size as the number of states in a model1.

2.7.2 W-method
One method for equivalence checking is the W-method. The W-method [7] with specified param-
eter 𝑤 can guarantee there does not exist a state machine with less than 𝑤 states more then the
current hypothesis. The W-method returns counterexamples as long as it can find behavior which
does not match the current hypothesis. If the W-method does not return a counterexample, the
model is correct or needs at least 𝑤 more states. In contrast with the brute-force approach, this
method is more efficient and uses a distinguishing set to be able to deduce in which state the sys-
tem is in. The W-method checks all words consisting of an access sequence 𝐴, a word with at most
𝑤 symbols of the input alphabet, and a distinguishing sequence. The access sequences and dis-
tinguishing sequences are created from the hypothesis model. The access sequences are a set of
words which each lead to a different state in the hypothesis model. If the output of running any
of these words through the system is different to the output of running the same word through the
hypothesismodel, a counterexample is found. The hypothesis then needs to be refined to correctly
capture this behavior.

As an alternative to checking all thewordswith atmost𝑤 symbols, there are alternativemethods
which perform better on average, but have less strong performance guarantees. One of thesemeth-
ods is the rrandom-W-Method. The random-W-method randomly chooses an access sequence, a
word of at most 𝑤 input symbols, and a random distinguishes sequence. These are concatenated
and checked. This process is then repeated a large number of times.

1For a mealy machine, this does not have to hold in all cases, but it holds for the worst case.

2.8 RERS Challenge 13

2.7.3 L* for Mealy Machines
A variation on the original L* algorithm LM* was specially created by Shahbaz and Groz for Mealy
Machines. The observation table is modified to include output strings instead of just recording ‘1’
or ‘0’ [23]. The suffix set E is also altered to initially include all the symbols of the input alphabet.
The rest of the algorithm still works and is kept as-is.

2.8 RERS Challenge
Since 2010, the RERS Challenge was held to test and improve software verification tools. In the
Rigorous Examination of Reactive System challenge, in each edition, a set of programs is published,
and some questions are asked about these programs. The RERS challenge has been created to test
the limits of software verification tools, as well as to expand the framework used for generating the
challenges themselves.

The programs in the RERS challenge are reactive systems: they repeatedly consume inputs from
a predefined set of input symbols and output symbols from a predefined alphabet. When pro-
cessing the input, the systems can also crash with a specific error code. The source code for each
program is available. There are several programs divided into two different categories. In the reach-
ability category, the aim is to be able to indicate for each error in the code whether it is reachable
by some input. The other category is the set of LTL problems, for this category, each problem gets
accompanied by a set of LTL (Linear temporal logic) formulas. For each of these formulas, a chal-
lenger needs to outputwhether the formula is true or false. Due to it being amore complex problem,
we have considered this category to be outside the scope of the thesis.

2.9 Loop Summarization
Tangent to this research is loop summarization, to simplify loops to be able to execute them faster
or analyze termination properties. In compilers, loop summarization is usually implemented to
reduce the runtime of a program. An example of loop summarization in action can be seen in the
compilation of the following program:

int with_loop() {
int res = 0;
for(int i = 0; i < num; i++) {

res += a;
}
return res;

}

For this program, the x86-64 gcc compiler with -O3 optimization flag generates the following
assembly:

with_loop(int, int):
test edi, edi
jle .L7
mov eax, edi
imul eax, esi
ret

.L7:
xor eax, eax
ret

In this code, the for loop is summarized as a multiplication. The following C code generates
nearly the same assembly, with only a different order. It shows that the compiler is smart enough
to rewrite repeated addition into a semantically equivalent multiplication.

int without_loop(int num, int a) {
if (num <= 0) {

return 0;

14 2. Background and Related Work

}
return num * a;

}

2.10 Related Work
For active learning, we could not find research specifically looking at the verification of the loops in
themodels. This seeming gap in research indicates a new area to explore andmarks the importance
of the research question on using loop detection for equivalence checking.

Other relevant and recent work on active learning or model learning is listed below.
MACE [5] uses symbolic execution to form a model of the program, where the model can then

again be used in symbolic execution. This continuous process allows better exploration of the pro-
gram, due to the constantly improving approximation of the program.

Using Adaptive distinguishing sequences (ADTs) [10], the total number of queries can be re-
duced. Whereas non-adaptive methods use all distinguishing sequences of a model, adaptive se-
quences check the behavior under the assumption that the system under learn is in the expected
state. Additionally, there exists models for which a preset distinguishing set cannot be found.

2.10.1 Model Learning with fuzzing
Fuzzing has also been applied to do model learning [6]. By fuzzing the system under learn and
capturing its input-output data, these traces can be used as a corpus to verify the model against. If
the outputs in the traces generated by the fuzzer does not match the output of a hypothesis model,
a counterexample is found and is given back to the teacher. In this work, there is no link back to
using the model to better guide the fuzzer.

2.10.2 Model Learning by Apartness
Recent work by Vaandrager et al. introduces a new learning algorithm called 𝐿#. Instead of keeping
track of an additional data structure such as an observation table, it directly constructs and opera-
tors on a partial mealymachine that includes all observations. Instead of focussing on equivalence,
theirworkuses apartness. When two states are apart, the states aredistinct in thehypothesismodel.
Apartness denotes a conflict in semantics. Their results show that 𝐿# is not strictly better than other
method such as TTT by needing a comparable number of membership queries. Their method does
however outperform state-of-the-art algorithms by requiring fewer number of symbols for learning.

This section shows existing techniques in symbolic execution to reduce the execution speed or
reduce the path explosion problem to be able to find errors requiring numerous through loop.

Klee [3] is a concolic execution tool developed by researchers who already had experience with
building symbolic execution tools beforehand [4]. Klee uses several techniques to improve the run-
time of the symbolic execution to reach more of the program. Most of the optimizations focus on
minimizing the number of calls to the solver. “Almost always, the cost of constraint solving domi-
nates everything else” [3]. Several of these techniques used for reducing the solver cost are listed
below.

• Rewrite expressions to simpler forms, such as simplifying 𝑥+0 = 0 to 𝑥 = 0. This is much like
compiler optimizations for simplifying expressions.

• Simplify constraint sets to remove redundant statements, such as 𝑥 > 1 ∧ 𝑥 = 10 to 𝑥 = 10,
since one constraint implies the other one.

• Concretize implied values whenever Klee detects that a value can only take on one specific
value, any subsequent accesses will use the concrete value instead of its symbolic value.

• Divide constraints into independent disjoint subsets to eliminate constraints that are irrele-
vant to the query. For example, the constraint set {𝑥 > 10, 𝑦 < 1} with the query 𝑥 = 10 can
be minimized to {𝑥 > 10} since the 𝑦 variable is irrelevant.

• Use a counter-example cache to skip the solver. When a subset of constraints is already un-
satisfiable, adding more constraints cannot make it satisfiable, therefore the query can be
skipped.

2.10 Related Work 15

Figure 2.2: High level overview of the methodology of Efficient Testing of Different Loop Paths. The image is taken from
the original paper [13].

SymCC [20] is another symbolic execution engine that was build to minimize execution speed.
The main speed benefits rely on compiling the symbolic execution right into the same program.
Engines like Klee are based more on interpretation, whereas SymCC is built as a compiler for C
and C++. The LLVM-based compiler is able to inject all the necessary code for symbolic execution.
During runtime, no time then needs to be spent on interpreting the code that is currently being
executed. In their paper, they state an average speedup of a factor of 12 when comparing against
Klee.

Although both SymCC and Klee improve the overall speed of symbolic execution, they do not
improve the overall search method. Therefore, when handling loops, both still struggle with the
path explosion problem. The next sections list relevant literature that tackles the path explosion
problem caused by loops.

Loop Extended Symbolic Execution (LESE) was published in 2009 [22] and has since then be-
comeone of themore cited papers in this area of research. Their work introduces the symbolic vari-
ables for the number of times each loop is executed. These are linked to the patterns in a predefined
input grammar. Traditionally, symbolic execution creates a path constraint representing a single
path that is executed. LESE creates symbolic constraints for variables that representmultiple paths
through the loop. In their work, they look for linear relationship: ‘Specifically, our tool searches for
variables whose value is a linear function of trip count variables representing the number of times
one or more loops execute.’ This is also a limitation of the work, since non-linear relationships can
not be learned.

Efficient Testing of Different Loop Paths by Huster et al. introduced a methodology for an-
alyzing multiple different paths through a loop [13]. By leveraging static analysis, possible loop
paths are extracted from the program. Each loop path or iteration includes reads or writes to dif-
ferent variables. The different iterations are combined to cover different behavior of the loop. If
one path only reads from Var1 and modifies Var2, and another path only reads Var3 and writes to
Var4, the execution order of these iterations does not influence the final result. By analyzing the
read and writes for each iteration, they can create combinations of these iterations that affect each
other. An overview of the process is shown in Figure 2.2. The combinations are generated based on
the weights of basic blocks in the loops’ path. The weights indicate how often a basic block needs
to be covered. Based on weights, possible loop executions are generated that cover a set of basic
blocks.

Efficient LoopNavigation for Symbolic Execution [19] is anothermethod that tackles the same
problem. Our example shown in Chapter 1 closely resembles their example. Their approach creates
chains and constraints representing executing loops based on loop counters. When solving for new
paths which might require iterations through the loop, the system checks whether incrementing
any of the loop counters improves the current solution. This process allows them to reach branches
which require more loop iterations.

Veritesting [2] uses state merging to reduce the number of paths. The states are merged when
they have similar values for any internal variables. The values are conjuncted together in the path
constraint. Thepapermentions that booleanoperators arehowevernot allowed in sub-expressions.
Additionally, their results show that theirmethod still scales exponentially for an increasingnumber
of iterations [24].

3
Research Gap

As we have already concluded in the chapter on background and related work, we could not find
any research for active learning that specifically checks loops in models. This already shows the
research gap on this topic. In this chapter, we describe our approach for developing a method
that allows symbolic execution to reach codes which requires many iterations through a loop. Our
approach is formed from the limitations in existing methods.

3.1 Issues of Existing Approaches
To create our approach, we describe the limitations of current approaches. We have based these
issues on other methods from literature that tackle similar problems. Some methods have only one
limitation, where other methods have multiple of the issues described below.

Breadth first search With current state-of-the-art executors that are available to the public,
loops are not handled separately. When compiling source code to machine-readable instructions,
some of the information on where the loops are is lost. In machine code, or some form of inter-
mediate representation, the notion of a loop is just a series of statements with a (conditional) jump
to a previously executed block. The traditional way of symbolic execution is to do a breadth-first-
search. Whenever a conditional jump occurs where both branches are satisfiable, the state is split
into two separate states. The symbolic executor alternates further execution of these two states.
When a new conditional branch occurs in a state, that state is again split, and the symbolic execu-
tor divides its resources over all the discovered states.

There are heuristics to prioritize exploring some states and skipping others. For example, by
default Klee alternates between randomexploration and exploring stateswith newcoverage. This is
not a breadth-first-search, but this heuristics still fails for our example program in the introduction.

Restricted to linear relationships The problem for the example shown in the introduction has
also been mentioned in other literature. We wanted to test the proposed methods to solve that
problem, but we did not find any source code to run it on the example or other programs. The
example we showed has one aspect which most literature focuses on, there is a linear relationship
between the internal variable i and inputting an extra ‘i’ character. However, there is not always
a linear relationship between the input of the program and the internal state after processing that
input. A simple example for this is multiplication. If we had a program that is similar to one shown
in the introduction, but instead of adding 1 to the i variable, the variable is multiplied by 2. This is
no longer a linear relationship, but the transformation leads to an exponential relationship between
the number of ‘i’ characters in the input and the value of the i variable. Since a program can contain
any expression, detecting linear relationships only solves a small portion of the program.

Non-Optimizable conditions Some of the techniquesmentioned in Chapter 2 use optimization
strategies to find inputs which are closer to satisfying a specific conditions. Again, we refer to the
example from the introduction. In this example, adding an extra ‘i’ to the input brings the internal
state numerically closer to the conditionwhich contains the limit. The branch distance of a specific
condition (or branch) can be computed by taking the expression and computing how close the
current evaluation is to flipping that condition. If the current evaluation of a condition is 1 > 10,

16

3.2 Position of Our Approach 17

which is currently false, making this condition true would require the 1 to be changed to at least
11, or the 10 to at most 0 leading to a distance to 10. For the example from the introduction, the
branch distance can be used as a heuristic for generating inputs that would reach a limit. However,
this technique does not work for any condition or update to the internal variables. To illustrate,
consider the modulo operator. Taking the modulo 100 of an increasing variable only increases the
result at first, butwhen the variable reaches 100, the value suddenly becomes 0 again. This behavior
is hard to optimize for, as the value increases before it reaches its lowest value.

Require an input grammar Existing methods such as LESE[22] require an input grammar to be
able to learn relationships between the input of a program and its internal state. Although this can
be a powerful method, manually defining the input grammar of a program can be time-consuming.
Additionally, when a part of the input grammar is missing or incorrect, the relationship can still not
be deduced. In some scenarios, like reverse engineering, the behavior of the program to be tested is
unknown. Creating a complete input grammar for these programs becomes hard, if not impossible,
to do. Since the behavior of the program is already embedded in the binary or source code, wewant
to use this information and skip the additional step.

3.2 Position of Our Approach
Guided by the limitations of existing approaches, our aim is to create a symbolic execution engine
that can handle any updates to the internal state of the program. Ideally, our method should also
be applied without the need of an input grammar. And lastly, the method should work for any
conditions in the program under test, even conditions that have no apparent objective for which to
optimize.

4
Execution Model

A program can take on arbitrary forms. It can retrieve input from different sources, jump to arbi-
trary locations in the code, or be nondeterministic. To reason about the behavior of a program, we
define a single execution model. Although this model restricts the types of programs that can be
analyzed, we assume the execution model is general enough to allow programs that do not strictly
follow this execution model to be transformed into this execution model while being functionally
equivalent. For programs that can not be transformed into this execution model, extensions could
be made to our work to support their analysis. We have based the execution model on the RERS
challenges[15, 12, 11], to allow us to directly apply the model to these problems without needing
such a transformation step.

The basis of the executionmodel is an input-output pattern that mimics a mealy machine. After
giving an input to the program, it does an arbitrary computation and then outputs a result. Once it
outputs a result, it asks for new input. This loop continues until the program exits. Each input is
always one of the symbols of a predefined input alphabet. The program can loop forever when sup-
plied with the right continuous stream of inputs. After the input, the computation can modify the
internal variables of the program. Consequently, giving the same input symbol to the programmul-
tiple times in a rowmight lead to different results. However, the internal state resets after restarting.
The program will again behave the same and is deterministic.

A multi-path loop is one way to implement such an execution model. This loop retrieves the
input and has multiple branches with conditions over the current input symbol and the internal
state. Each branch can do a computation and possibly change the internal state. Algorithm 1 shows
the pseudocode of the execution model.

Algorithm 1 Execution Model
1: 𝑎 ← 0 ▷ Internal state
2: 𝑏 ← 1
3: 𝑐 ← 2
4: loop
5: 𝑖 ← 𝑖𝑛𝑝𝑢𝑡() ▷ Retrieve input
6: if 𝑖 = 1 then
7: 𝑎 ← 𝑎 + 1 ▷ Change internal state
8: end if
9: if 𝑖 = 2 ∧ 𝑎 = 2 then

10: 𝑏 ← 𝑏 + 1 ▷ Change internal state
11: end if
12: ⋯ ▷More branches that change internal state
13: if 𝑖 = −1 then
14: exit
15: end if
16: end loop

18

5
Detecting Loop Structures

This chapter focuses on answering our first research question. We repeat the question here:
RQ1: How can loop structures in symbolic execution be detected?

For this question, we will consider methods to detect loops in a program. After detection of a
loop and following a path trough that loop, we want to know whether that same path through the
loop can be repeated. We chose the term loop structure to incorporate both of these notions.

5.1 Detecting the Loop
In this section, we look at different methods for detecting a loop. Some methods require access to
the source code, while others only rely on themachine code or the intermediate representation that
gets generated at compile-time.

5.1.1 Source Analysis
One of the simplest ways to get themodels from a loop is by analyzing the source code of a program.
In the source code of most programming languages, loops are explicitly defined as a for or while
loop. These loops can be extracted from the source code and then used as extra information during
symbolic execution.

5.1.2 CFG Analysis
Fromall program representations, frommachine to source code, a CFG can be created. ACFG repre-
sents the transitions between different basic blocks in a program, where each basic block contains
a sequence of statements. The transitions between the blocks are created from conditional jumps.
Where a conditional jump determines which basic block to jump to next based on a condition. The
CFG is a directed graph with basic blocks as vertices in the graph. The edges of these directed
graphs are the conditional or unconditional jumps in the program. From these directed graphs,
loops can be detected. These loops then correspond to loops in the program.

A downside of this approach is that some transitions in the graph can never be executed in prac-
tice. Additionally, the basic blocks in the CFG have to be linked back to the running code while do-
ing symbolic execution. To make this linking easier, we will look at a detection method that works
during the runtime of the program.

5.1.3 Stack-Based Detection
The traditional runtime model of a program is based on having a stack. On the stack, local vari-
ables are stored in stack frames. Upon function calls, a new stack frame is created for that function.
The stack frame contains the local variables of that function, the saved instruction pointer, and the
saved base pointer. The base pointer is sometimes also called the stack pointer. By saving the in-
struction and base pointers, execution can be resumed to the function that was running previously.
In a loop, the same set of instruction is executed repeatedly. After an iteration of the loop, the pro-
gram jumps to the start of the loop by setting the instruction pointer to the first basic block of the

19

20 5. Detecting Loop Structures

loop. To detect this loop behavior at runtime, we can keep track of the instructions that are visited
for each stack frame. When we enter a new stack frame, the visited instructions are only tracked
in the current stack frame, which prevents two calls to the same method to count as a loop. The
most straightforwardway to keep track of these instructions is by saving the value of the instruction
pointer, since the instruction pointer is unique for each instruction. After each jump instruction,
we can check whether this new location has already been visited in the current stack frame.

A limitation for this method is the inability to detect loops resulting from recursion. In recur-
sion, a function calls itself. Every time this function calls itself, a new stack frame is created. This
new stack frame has not visited any of the instructions in the function, therefore no loop will be
detected. The impact of this limitation can sometimes be disregarded in practice, as some recursive
methods in the code will get converted to nonrecursive functions at compilation. This is the case
when tail-recursion optimizations can be applied. This optimization exists to reduce the impact of
creating a new stack frame for each recursive call.

5.1.4 Execution Model
Due to the assumptions on the execution model, there is another way to detect the main input-
output loop. The main input-output loop retrieves input at only one location. Therefore, every
time a new input is retrieved, the program is at the same location in the program. To detect a single
iteration in the loop, detecting when input is received is sufficient. When a new input is retrieved,
one iteration has been made through the loop since the retrieval of the previous input. Since this
method is simple yet effective for the RERS problems, it is the method we chose to use.

5.2 Repeatable Path
After detecting a path through the loop, we want to check whether the same path can be followed
once more. The intuition behind being able to follow the same path twice is that such a path might
be executed an arbitrary number of times. However, there is no guarantee that following a path
twice allows repeating it an arbitrary number of times. For a loop path to be repeatable, all the
conditions in the path need to be equivalent in the next iteration. If a condition was true on the
first iteration through the loop, that condition needs to remain true on the second iteration, if a
condition was false on the first iteration, the condition needs to be false on the second iteration.
In symbolic execution, a loop path through the program has a constraint that gets generated when
following that path. We call this constraint the loop constraint. Just like a path constraint, the loop
constraint contains constraints for all conditions as well as constraints for all updates to internal
variables. By extending the loop constraintwith a slightly updated version of itself, we can simulate
the behavior of repeating the same path. The extended loop constraint can be formed from a copy
of the loop constraint. In this copy, all symbolic variables that were assigned a new value need to
be updated so that it reflects executing the loop path again. If a path through the loop contains the
assignment i = i + 1, and an if statement with the condition i > limit, the loop path that
does not trigger this if statement has the following loop constraint: 𝑖1 = 𝑖0 + 1 ∧¬(𝑖1 > 𝑙𝑖𝑚𝑖𝑡). This
path only updates the i variable, so the extended loop constraint can be formed by increasing the
subscripts of the i variables in the loop constraint by one: 𝑖2 = 𝑖1 + 1 ∧ ¬(𝑖2 > 𝑙𝑖𝑚𝑖𝑡).

If the loop constraint combined with the extended loop constraint is still satisfiable, the same
path through loop can be repeated. This is true since the loop constraint contains all the conditions
of the path through the loop, and the extended loop constraint represents taking that same path
again. So if they are satisfiable in conjunction, the path can be executed at least twice.

5.3 Self Loop
When a loop path contains no assignments, the internal state of the system does not change. Re-
peating the same symbol will yield the same output. Loop paths with assignments that keep all the
variables at the end of the loop in the same state as before inputting the symbol, have no effect as
well.

To detect these self loops, the path constraint and a special self loop constraint can be given as
a formula to the SMT solver. The self loop constraint checks whether there are no changes to the
internal state. The self loop constraint can be formed as follows. Let 𝑎, 𝑏⋯𝑧 denote all variables
in the internal state. The symbolic shadow variables representing their respective values before

5.4 Multiple Loop Iterations 21

1 int containsEvenNumberOf1s(char* trace) {
2 int j = 0; // Loop variable
3 char symbol; // Character in input
4 int even = 1; // Internal state
5
6 while ((symbol = trace[j++]) != 0) { // Get next character in input
7 if (symbol == ’1’) {
8 if (even) {
9 even = 0;

10 } else {
11 even = 1;
12 }
13 }
14 }
15 return even;
16 }

Figure 5.1: Example function which checks whether there are an even number of ‘1’ characters in the input

executing the loop are 𝑎, 𝑏,⋯ 𝑧. With 𝑎, 𝑏,⋯ 𝑧 being their symbolic values after the loop (note that
for any variable that is not assigned, these are already equivalent). The self loop constraint can be
found in the following equation.

𝑎 = 𝑎 ∧ 𝑏 = 𝑏 ∧ ⋯ ∧ 𝑧 = 𝑧 (5.1)
A self loop exists if the path constraint, including the loop constraint, in conjunction with the self
loop constraint is satisfiable.

5.4 Multiple Loop Iterations
For loop paths, we only considered paths that take one iteration through a loop. However, in some
cases, the effects of inputting one symbol can be reversed by inputting another symbol. Take for
example a function which checks whether there is an even number of ‘1’ characters in a string, the
code of such a program is show in Figure 5.1. A single iteration over an input with ‘i’ does not yield a
repeatable path, because the even variable is changed and checked in the loop, therefore the same
loop path can not be repeated. Instead of only considering loop paths through one iteration of a
loop, we can also consider paths that take multiple iterations through the loop. The detection re-
mains the same, but instead of taking the path since the last iteration of the loop, you can take the
path through themultiple iterations of the loop. The loop constraint then captures a path overmul-
tiple iterations through the input-output loop in the program. For the containsEvenNumberOf1s
example, the loop constraint over two iterations of inputting a ‘i‘ character is repeatable. In fact,
this loop path is a self loop.

5.5 Conclusion
To recap, we have shown different techniques to detect loops. Both the stack-based detection
methods and CFG analysis are generally applicable to any program. The stack-based detection
method is easy to integrate into symbolic execution as it uses runtime behavior. For the rest of this
thesis, however, we will use the simplest solution that works. Based on the execution model, we
can use a simple technique that triggers on the input retrieval to detect a path through a loop. A
loop path can then be checked whether it is repeatable, if the loop path is repeatable, they might
be part of a looping structure. These loop paths can then be used for generalization. Generalization
of loop paths is part of the next research question and is discussed in the next chapter.

Loop paths with assignments which do not alter the internal state after a whole iteration are
self loops. Since executing self loops has no effect on further execution, these loops are especially
interesting for pruning states in symbolic execution. Chapter 7.

6
Loop Generalization

This chapter focuses on our second research question. We repeat the question here:

RQ2: Is it possible to generalize the assignments in loop structures into constraints for a
symbolic executor?

6.1 Generalizing Repeated Addition
For programs with loops over a sequence of (unconstrained) symbolic values with only addition,
we can construct path constraints that generalize over executing these loops an arbitrary number
of times. This section will explain the technique. The general idea relies on the fact that multiple
additions are equivalent to multiplication.

6.1.1 Generalization
The next step is to create a generalized constraint over executing the loop an arbitrary number of
times. Doing repeated addition is equivalent to multiplication. We introduce a new variable that
denotes the number of times the loop is executed. For the example in Table 6.1 this is 𝑛. Wemodify
the new constraint to use this variable to form a generalized constraint over the addition in the loop:
¬(𝑖1 > 𝑙𝑖𝑚𝑖𝑡) ∧ 𝑖2 = 𝑖1 + 𝑛 ∧ 𝑛 ≥ 0. There is however an issue, as the variable 𝑖 can now be updated
to any value larger than the limit, we also need to add a constraint that the condition still holds for
the final value: ¬(𝑖2 > 𝑙𝑖𝑚𝑖𝑡).

6.1.2 Forming the Input
After forming a generalized loop constraint, we add the constraint to the current path constraint
and continue the symbolic execution as normal. Due to the generalized constraint, more paths can
be solved. When a new condition is encountered and solved, themodel is retrieved from the solver.
Themodel needs tobe converted into a concrete sequenceof inputs. For all generalized constraints,
any constraint on the input needs to be repeated based on the free variable in themodel, which is 𝑛
in the example. If the model states that 𝑛 = 10, the concrete input contains a pattern of 10 repeated
symbols.

Name Constraint
First constraint 𝑖0 = 0 ∧ 𝑙𝑖𝑚𝑖𝑡 = 10
Second constraint 𝑖0 = 0 ∧ 𝑙𝑖𝑚𝑖𝑡 = 10 ∧ ¬(𝑖0 > 𝑙𝑖𝑚𝑖𝑡) ∧ 𝑖1 = 𝑖0 + 1)
Loop constraint ¬(𝑖0 > 𝑙𝑖𝑚𝑖𝑡) ∧ 𝑖1 = 𝑖0 + 1
Extended loop constraint ¬(𝑖1 > 𝑙𝑖𝑚𝑖𝑡) ∧ 𝑖2 = 𝑖1 + 1
Generalized loop constraint ¬(𝑖1 > 𝑙𝑖𝑚𝑖𝑡) ∧ 𝑖2 = 𝑖1 + 𝑛 ∧ 𝑛 ≥ 0 ∧ ¬(𝑖2 > 𝑙𝑖𝑚𝑖𝑡)

Table 6.1: Example of constraints used to detect loops

22

6.2 Initial Experiments 23

Assignment Generalization Constraints

𝑖 ← 𝑎 𝑖 ← 𝑎 𝑎 is constant
𝑖 ← 𝑖 + 𝑎 𝑖 ← 𝑖 + 𝑎𝑛 𝑎 is constant

𝑖 ← 𝑎𝑖 + 𝑏 𝑖 ← {
𝑖 + 𝑏𝑛, if 𝑎 = 1
𝑖𝑎𝑛 + 𝑏 1−𝑎

𝑛

1−𝑎 , otherwise
𝑎 and 𝑏 are constant

𝑖 ← (𝑖 + 𝑎)mod 𝑏 𝑖 ← (𝑖 + 𝑎𝑛)mod 𝑏 𝑎 and 𝑏 are constant

Table 6.2: Assignment expressions that are generalizable when repeated. In all the generalization expressions, the variable
𝑛 indicates the number of times the assignment expression is repeated

6.1.3 Loop Generalization
There are more looping expressions than just incrementing a variable by one. Repeated addition
is equivalent to multiplication. Repeated multiplication is exponentiation. Table 6.2 shows a few
more expressions that we have generalized. Variables inside a loop path that are not reassigned
can be considered constants. If an assignment expression includes such a variable, the variable is
interpreted as a constant. Most expressions are straightforward, and we have left out their deriva-
tions for brevity. The derivation for repeatedly executing the expression 𝑖 ← 𝑎𝑖 + 𝑏 is shown in
Equation 6.1.

𝑖1 = 𝑎𝑖0 + 𝑏
𝑖2 = 𝑎𝑖1 + 𝑏 = 𝑎(𝑎𝑖0 + 𝑏) + 𝑏 = 𝑎2𝑖0 + 𝑎𝑏 + 𝑏
𝑖3 = 𝑎𝑖2 + 𝑏 = 𝑎(𝑎2𝑖 + 𝑎𝑏 + 𝑏) + 𝑏 = 𝑎3𝑖0 + 𝑎2𝑏 + 𝑎𝑏 + 𝑏
𝑖4 = 𝑎𝑖3 + 𝑏 = 𝑎(𝑎3𝑖0 + 𝑎2𝑏 + 𝑎𝑏 + 𝑏) + 𝑏 = 𝑎4𝑖0 + 𝑎3𝑏 + 𝑎2𝑏 + 𝑎𝑏 + 𝑏
𝑖𝑛 = 𝑎𝑖𝑛−1 + 𝑏 = 𝑎𝑛𝑖0 + 𝑏(𝑎𝑛−1 + 𝑎𝑛−2 + ... + 𝑎0)
Using the finite series
𝑚

∑
𝑘=0

𝑧𝑘 = 1 − 𝑧𝑚+1
1 − 𝑧

𝑖𝑛 = 𝑎𝑛𝑖0 + 𝑏(𝑎𝑛−1 + 𝑎𝑛−2 + ... + 𝑎0) = 𝑎𝑛𝑖0 + 𝑏 ∗
𝑛−1

∑
𝑘=0

𝑎𝑘

= 𝑎𝑛𝑖0 + 𝑏
1 − 𝑎𝑛−1+1
1 − 𝑎

= 𝑎𝑛𝑖0 + 𝑏
1 − 𝑎𝑛
1 − 𝑎

(6.1)

6.2 Initial Experiments
We implemented the generalized repeated addition for the simple program shown in Figure 1.1 by
manually instrumenting the program. We implemented the loopdetection, generalization, and then
forming the input. When running these experiments, the technique generated inputs that visit the
limit in seconds, even for arbitrarily large limits.

This implementation needs manual instrumentation for loops, assignments, and if statements.
In practice, this is error-prone to do by hand and should be done automatically. We could have
implemented this, however the generalizations for these expressions are not applicable to any loop
path. One of our motivating factors was the limitation of current methods to work on any loop. To
support any loop, we need a new method to create loop expressions for any loop path.

24 6. Loop Generalization

6.3 Dealing with Non-generalizable Loop Paths
The formulas derived in Table 6.2 provide insight into simple statements. However, it is hard if not
impossible to create generalized expressions for arbitrary expressions, especially if multiple as-
signment statements are present in a loop. A way to deal with this is to add loop constraint multiple
times to the model, for each iteration through the loop.

Although the code shown in Figure 1.1 is generalizable using the formulas mentioned above, we
will explain the generation of constraints for arbitrary expressions using it. In this example, only
one variable is assigned a newvalue: variable 𝑖. For now, we assume the casewhere just one variable
is reassigned, and that only one reassignment is done. We will later expand this to deal with loop
paths where multiple variables are reassigned, and where each variable can be reassigned multiple
times.

Given the following loop constraint: ¬(𝑖0 > 𝑙𝑖𝑚𝑖𝑡) ∧ 𝑖1 = 𝑖0 + 1, and the fact that we assigned
a new value to the variable 𝑖, we can create the loop path that represents executing the loop one
more time. For every assignment, we replace the current variable with a new one. For example: the
current variable 𝑖1 is replaced with 𝑖2. Additionally, all the original variables in the path constraint
need to be updated with the current assignment, so 𝑖0 will become 𝑖1. Combining both steps: after
replacing 𝑖1 with 𝑖2 and 𝑖0 with 𝑖1, we get the loop path for executing this loop again. In the example,
this yields the following extended loopconstraint¬(𝑖1 > 𝑙𝑖𝑚𝑖𝑡)∧𝑖2 = 𝑖1+1. Becauseof the subscript
notation, creating the extended loop constraint from the loop constraint can be done by replacing
every 𝑖𝑘 with 𝑖𝑘+1 where 𝑘 is an integer.

The path constraint after going through the loop 𝑛 times, the unrolled loop constraint, is shown
in Equation 6.2.

¬(𝑖0 > 𝑙𝑖𝑚𝑖𝑡) ∧ 𝑖1 = 𝑖0 + 1 ∧
¬(𝑖1 > 𝑙𝑖𝑚𝑖𝑡) ∧ 𝑖2 = 𝑖1 + 1 ∧

⋮
¬(𝑖𝑛 > 𝑙𝑖𝑚𝑖𝑡) ∧ 𝑖𝑛+1 = 𝑖𝑛 + 1

(6.2)

6.3.1 Assignments to Multiple Variables
Up to now, we only considered generalizing loops where one variable is reassigned, but the con-
cepts can be extended to loop constraints where more than one variable is reassigned. Forming
the extended loop constraint is done similarly as shown earlier. By taking the loop constraint and
for every reassigned variable in the loop path, increasing the subscript of all the corresponding
variables in the loop constraint by one creates the extended loop constraint.

When there are multiple assignments in the current loop path, it is still possible to form an un-
rolled loop constraint. Instead of only replacing the subscript for a single variable, all the vari-
ables that get a new assignment must be incremented. With these reassigned variables denoted as
𝑎, 𝑏,⋯ , 𝑧, and 𝑃 denoting the loop constraint. The extended loop constraint can be created by sub-
stituting every 𝑎𝑖 with 𝑎𝑖+1, every 𝑏𝑖 with 𝑏𝑖+1 up to substituting every 𝑧𝑖 with 𝑧𝑖+1. For substitution,
we will use the following notation: [𝑎𝑖/𝑎𝑖 + 1]𝑃 for replacing every 𝑎𝑖 with 𝑎𝑖+1 in 𝑃, between the
square braces, there can be multiple substitutions, and each variable in P is only substituted once.
The updated unrolled loop constraint can be seen in Equation 6.3

[𝑎𝑖/𝑎𝑖+1, 𝑏𝑗/𝑏𝑗+1, ⋯ , 𝑧𝑘/𝑧𝑘+1]𝑃 ∧
[𝑎𝑖/𝑎𝑖+2, 𝑏𝑗/𝑏𝑗+2, ⋯ , 𝑧𝑘/𝑧𝑘+2]𝑃 ∧

⋮
[𝑎𝑖/𝑎𝑖+𝑙 , 𝑏𝑗/𝑏𝑗+𝑙 , ⋯ , 𝑧𝑘/𝑧𝑘+𝑙]𝑃

(6.3)

6.3.2 Multiple Assignments to Multiple Variables
Up to now, we have assumed that each variable is reassigned only once in a single loop path. It can
also occur that a variable is assigned to multiple times. In these cases, replacing 𝑎𝑖 through 𝑧𝑖 by
𝑎𝑖+1 through 𝑧𝑖+1 respectively in the loop constraint does not represent executing the loop once
more and yields incorrect results. Let us take the following loop constraint: 𝑎1 = 𝑎0+1∧𝑎2 = 𝑎1 ∗2,

6.4 Conclusion 25

where the variable 𝑎 is first increased by one and then doubled. Increasing all subscripts by one
results in the constraint 𝑎2 = 𝑎1+1∧𝑎3 = 𝑎2∗2, but this is not correct, because 𝑎2 is constraint twice
when combined with the original loop constraint. The solution is to increase the subscripts by two.
Or in general, increase the subscripts by the number of reassignments to that variable. In this case,
𝑎 is reassigned twice. Once for incrementing it by one and once for doubling it. Therefore, all the
subscripts need to be increased by 2. With the example, the extended loop constraint becomes
𝑎3 = 𝑎2 + 1 ∧ 𝑎4 = 𝑎3 ∗ 2. To generalize this to multiple variables with multiple assignments, we
need an additional symbol for each variable, representing howmany times an assignment is done in
the loop path. For this, we use the bar above the corresponding variable name, so 𝑎 represents the
number of times the variable 𝑎 is reassigned in the loop path. In Equation 6.4 the revised unrolled
loop constraint is denoted.

[𝑎𝑖/𝑎𝑖+1∗𝑎 , 𝑏𝑗/𝑏𝑗+1∗𝑏 , ⋯ , 𝑧𝑘/𝑧𝑘+1∗𝑧]𝑃 ∧
[𝑎𝑖/𝑎𝑖+2∗𝑎 , 𝑏𝑗/𝑏𝑗+2∗𝑏 , ⋯ , 𝑧𝑘/𝑧𝑘+2∗𝑧]𝑃 ∧

⋮
[𝑎𝑖/𝑎𝑖+𝑙∗𝑎 , 𝑏𝑗/𝑏𝑗+𝑙∗𝑏 , ⋯ , 𝑧𝑘/𝑧𝑘+𝑙∗𝑧]𝑃

(6.4)

6.4 Conclusion
In this chapter, we first looked at generalizing loops with simple update statements. We provided
generalizations for these update statements to capture the effects of these updates statements on
internal variables in the program. These generalizations allow one to calculate the values of the
internal variables after running these update statements multiple times. It is non-trivial to create
generalization expressions for any update statements. To still use the effects of repeating a loop
path with any update statements, we create the unrolled loop constraint. This loop constraint cap-
tures the changes of internal variables when executing the loop an arbitrary number of times.

7
Loop Structures in Symbolic Execution

This chapter defines our method to use looping structures in symbolic execution. In this chapter,
we focus on the third research question:

RQ3: How can loop structures be used to reach new branches in symbolic execution?

The goal of this chapter is to use the unrolled loop constraint from the previous chapter to create
a path constraint that represents taking an arbitrary number of iterations through the loop over the
detected loop path.

7.1 Iteration Constraint
Although a generalized constraint is not possible, we can create a disjunction of executing the loop
once, executing the loop twice or executing the loop thrice, and so on.

The final value of the variable 𝑖 after executing the loop an arbitrary number of times is denoted
by 𝑖𝑓. This results in the following disjunction, (𝑖1 = 𝑖𝑓 ∧ 𝑗 = 1) ∨ (𝑖2 = 𝑖𝑓 ∧ 𝑗 = 2) ∨ (𝑖3 = 𝑖𝑓 ∧ 𝑗 =
3) ∨ ⋯ ∨ (𝑖𝑙 = 𝑖𝑓 ∧ 𝑗 = 𝑙) where 𝑙 is the maximum number of times we can execute the loop using
this constraint. We call this disjunction the iteration constraint. Notice that we added additional
constraints over the variable 𝑗, their purpose will become apparent later and can be ignored for
now.

What value to choose for 𝑙 is still a decision to be made, and for now we left this as a choice to
the user. Choosing a higher number of 𝑙 leads to a larger constraint, but represents executing the
loop more times. Having a larger constraint can lead to an increased runtime for the solver.

During symbolic execution, we can use the unrolled loop constraint and the iteration constraint
to create a path constraint representing executing the loop an arbitrary times up to the limit.

After forming both the unrolled loop constraint and the iteration constraint, they are added to
the current path constraint, and symbolic execution is continued. As usual, upon encountering
a branch, the solver is called with the current path constraint and the (possibly inverted) branch
condition. If this yields satisfiable, an input needs to be constructed from the model. To create
the input, we need to know the number of times the loop needs to be executed. For this purpose,
we have added the additional constraint on 𝑗 to every disjunction in the iteration constraint. The
value of 𝑗 denotes the number of times the loop is required to execute to reach the given path. Upon
getting a model that satisfied the path constraint, we can inspect the value of 𝑗 to only append the
symbols to the new input trace that are inside the loop when executing it 𝑗 times.

Tominimize the length of the input, an optimization strategy can be added to the solver. With an
optimization strategy to minimize 𝑗, the solver still satisfies the path constraint while also minimiz-
ing the value of 𝑗. This makes sure that the loop is executed the least the number of times necessary
while still reaching the path it is solving.

7.1.1 Assignments to Multiple Variables
For the iteration constraint, we assumed there was only one variable that was reassigned. However,
multiple variables can be assigned to in a loop path. In the previous chapter on generalizations, we

26

7.2 Conclusion 27

make the same extension to assignments to multiple variables.
For the iteration constraint, instead of having just one variable taking one of the values in the

loop, all the variables need to be equivalent to the same assignment in the loop. Equation 7.1 shows
the revised iteration constraint. The variables 𝑎 through 𝑧 are again the reassigned variables. 𝑎𝑓
through 𝑧𝑓 represent the final values of 𝑎 through 𝑧 after doing an arbitrary number of (but at most
𝑙) iterations through the loop. Just like earlier, 𝑙 represents the number of iterations through the
loop, a configurable parameter.

(𝑗 = 1 ∧ 𝑎1 = 𝑎𝑓 ∧ 𝑏1 = 𝑏𝑓 ∧ ⋯ ∧ 𝑧1 = 𝑧𝑓) ∨
(𝑗 = 2 ∧ 𝑎2 = 𝑎𝑓 ∧ 𝑏2 = 𝑏𝑓 ∧ ⋯ ∧ 𝑧2 = 𝑧𝑓) ∨

⋮
(𝑗 = 𝑙 ∧ 𝑎𝑙 = 𝑎𝑓 ∧ 𝑏𝑙 = 𝑏𝑓 ∧ ⋯ ∧ 𝑧𝑙 = 𝑧𝑓)

(7.1)

Note the placement of the ∨ and ∧ operators. You could also suggest creating a loop constraint
where each variable needs to equal one of the values in the loop. This is incorrect, as one variable
could then take on the value of executing the loop once, where another value could take on the
value of executing the loop twice. All variables need to be equivalent to the same iteration.

7.1.2 Multiple Assignments to Multiple Variables
Just like wementioned when creating the unrolled loop constraint in Section 6.3.2, a loop path can
include multiple assignments to the same variable.

The iteration constraint needs updating as well, as the variables must only be equivalent to one
of their values after doing a whole cycle in the loop, not to any of its intermediate values during the
loop. For this, we again need the number of assignments for each of the variables in the loop path.
Equation 7.2 shows the updated iteration constraint.

(𝑗 = 1 ∧ 𝑎1+0∗𝑎 = 𝑎𝑓 ∧ 𝑏1+0∗𝑏 = 𝑏𝑓 ∧ ⋯ ∧ 𝑧1+0∗𝑧 = 𝑧𝑓) ∨
(𝑗 = 2 ∧ 𝑎1+1∗𝑎 = 𝑎𝑓 ∧ 𝑏1+1∗𝑏 = 𝑏𝑓 ∧ ⋯ ∧ 𝑧1+1∗𝑧 = 𝑧𝑓) ∨

⋮
(𝑗 = 𝑙 ∧ 𝑎1+(𝑙−1)∗𝑎 = 𝑎𝑓 ∧ 𝑏1+(𝑙−1)∗𝑏 = 𝑏𝑓 ∧ ⋯ ∧ 𝑧1+(𝑙−1)∗𝑧 = 𝑧𝑓) ∨

(7.2)

With the updated iteration constraint and the unrolled loop constraint added to the current path
constraint, symbolic execution can continue to execute. Whenever a variable is used that was up-
dated in the unrolled loop constraint, the symbolic value of that variablemust match the final value
in the iteration constraint. In the construction in Equation 7.2, we used 𝑎𝑓 through 𝑧𝑓 for variables
𝑎 through 𝑧 respectively for the symbolic values after executing the loop path. After adding these
constraints to the path constraint, the path constraint now represents taking 1 up to 𝑙 iterations of
that same loop path. It can be seen as executing all these iterations at the same time. When solving
for new branches, the solver will find an iteration that satisfied that branch. If this branch cannot
be satisfied, this branch cannot be reached with the current path constraint.

7.2 Conclusion
In this chapter, we introduced the concept of the iteration constraint which ensures that the values
of all internal variables are equal to one of the iterations through the loop. The iteration constraint
can be created from a loop path. Combined with the unrolled loop constraint created from that
same loop path, a symbolic executor can create a path constraint that represents following a loop
path once, twice, all the way up to the unrolled loop amount.

8
Symbolic Execution Experiments

This chapter contains the experiments and results of applying the concepts outlined in Chapter 7
in a custom symbolic executor. These results allow us to answer the fourth research question:

RQ4: Does detecting and using loop structures allow symbolic execution to cover more
states of a program?

8.1 Extension to Klee
To allow comparing our method for loop detection to the traditional approach, we wanted to im-
plement our loop detection as an extension to Klee. This would result in an equivalent execution
speed for both of the methods. When inspecting the Klee source code, we had troubles to under-
stand its behavior as the code is heavily optimized. After a long time of struggling to find out how
to see the symbolic constraints in Klee, we were able to print them out. Our goal was to use these
constraints to reconstruct a loop path and check whether this path was repeatable according to
Section 5.2. However, the only constraints we were able to get were a few constraints over the free
input variables. We could not find constraints for any of the internal variables, or other conditions
in a simple program. When taking a step back, we realized this was the expected behavior of Klee:
it optimized all the other expressions, since all the variables had concrete values. This was a major
hurdle, and we tried to disable these optimizations. In the end, we were able to disable some of
them, but not all. Unfortunately, we had to cut our losses and give up on making an extension to
Klee. We could have persistent and probably figured this out, but this would require much more
time than planned. Instead, we focussed on testing the methods themselves.

8.2 LLVM IR Symbolic Executor
As a second attempt, we began implementing a symbolic execution engine from scratch based on
the LLVM Immediate Representation. Since many programming languages are compiled to LLVM
IR, andKlee also uses this, wewanted tobuild a symbolic execution enginebasedon this instruction
set. Although the instruction set for LLVM is relatively small, this still was not a small task. We gave
ourselves two weeks to see how far we would get. If after these two weeks, we made significant
progress towards a symbolic execution engine, we would continue this path. After two weeks, we
had a lot of functionality, however, we again discovered a major hurdle: pointer casting. We did
not foresee pointer casts to exist in the programs we were testing with, as the programs in C did not
use pointer casts. Unfortunately, initialization of arrays makes heavy use of pointer casts. Using
pointer casts is one thing, but having to implement them correctly is a completely different story.
We again had to drop our plan and switch to plan C: create a symbolic executor based on simple
instrumentation and a limited instruction support. This led us to the creation of SymLoop . The rest
of the chapter explains our implementation of our method in this Java-based symbolic executor.

28

8.3 Building SymLoop 29

8.3 Building SymLoop
Webuilt a symbolic executorwith the ability to detect and create constraints for loops over its input
using the non-generalizable formulas from Section 6.3. This allows us to test our methodology. Our
goal was to extend the existing symbolic executor Klee to be able to compare apples to apples.

8.3.1 SymLoop
The symbolic executor is implemented in Java and can only run symbolic execution on Java pro-
grams with strict requirements. The program-under-test follows the execution model outlined in
Chapter 4. The Java versions of the RERS problems of 2020 follow this execution model. Figure 8.1
shows an example of the minimal structure. If the input reaches an error state, the custom error
verifier is called.

Our symbolic executor, from here on referred to as ‘SymLoop’, first instruments the code to be
able to form constraints for the SMT solver. During the instrumentation phase, every variable gets a
separate shadow variable that corresponds to this variable in the SMT solvers’ representation. Any
changes to the original variables are reflected in their corresponding shadow variable. The pro-
grams are instrumented to retrieve input from the symbolic executor. The output of the program
is also passed to the symbolic executor. On every conditional branch, the symbolic executor gets
invoked with the branch condition. This allows the symbolic executor to generate inputs that exe-
cute different paths through the program. This instrumented version then gets compiled and canbe
run with SymLoop linked as a library. This process starts the symbolic execution. The SMT solver
Z3 [18] is used for all the satisfiability queries. To compare the results of SymLoop versus stan-
dard symbolic execution, we can disable its loop detection entirely, leaving a standard symbolic
executor with the same performance characteristics of SymLoop.

Due to our assumption of the executionmodel, we know that every time a new input is retrieved,
the program is in the same location in the loop. Right before inputting a new symbol, SymLoop
generates the loop constraint since inputting the previous symbol. From the loop constraint the
extended loop constraint is created following the steps in the previous sections. If the current path
constraint in conjunction with the extended loop constraint is satisfiable, a loop is detected.

Inputting the last symbol again will lead to executing the same path through the program. From
this intuition, both the iteration constraint and the unrolled loop constraint are generated and
added to the current path constraint. Additionally, SymLoop adds an optimization strategy to the
SMT solver to minimize the number of iterations through the loop. The upper limit of the number
of iterations through the loop can be specified as an argument for running the symbolic execution.
The maximum amount of iterations through the loop we refer to as the unrolled loop amount and
in the results, it is denoted with the letter l. If none of the loop paths are satisfiable (so none can
be repeated), nothing is added to the path constraint.

Detection depth
Apart from theunrolled loopamount, SymLoopallowsusers to set thedetectiondepthd. Thedetec-
tion depth denotes up to howmany symbols back the loop constraint and extended loop constraint
are created and checked for satisfiability. For example, if the detection depth is 3, first the loop con-
straint and extended loop constraint are generated and checked for the path through the program
since inputting the last symbol, then the loop path is checked since inputting the second to last
symbol, and lastly, the loop path is checked from inputting the last 3 symbols. For the first one that
yields satisfiable, the unrolled loop constraint gets added to the path constraint. This functionality
allows detecting loops that require up to d input symbols in a row.

8.4 Setup of Running SymLoop
To test SymLoop we ran some experiments. We ran SymLoop on the Java versions of the RERS
reachability problems of 2020. All the problems contain a multitude of intentional errors. For each
problem, we kept track of the time it took SymLoop to find each error. Additionally, we ran Klee [3]
on the same problems to be able to compare our solution to the state-of-the-art. For Klee, the same
measurements are used: the time it took to find each error.

We chose to run SymLoop with two different sets of parameters. One version ran with a detec-
tion depth of 5 and an unrolled loop amount of 10. The second version ran with 10 and 50 for the

30 8. Symbolic Execution Experiments

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3
4 public class ProblemPowersOfTwo {
5 static BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));
6
7 private String[] inputs = { ”i”, ”p”};
8
9 public int i = 0;

10 public boolean cf = true;
11 public boolean done = false;
12
13 public void calculateOutput(String input) {
14 cf = true;
15 if (cf && input.equals(”i”)) {
16 i += 1;
17 cf = false;
18 }
19 if (cf && input.equals(”p”)) {
20 cf = false;
21 if (i > 128) { Errors.__VERIFIER_error(7); }
22 if (i > 64) { Errors.__VERIFIER_error(6); }
23 if (i > 32) { Errors.__VERIFIER_error(5); }
24 if (i > 16) { Errors.__VERIFIER_error(4); }
25 if (i > 8) { Errors.__VERIFIER_error(3); }
26 if (i > 4) { Errors.__VERIFIER_error(2); }
27 if (i > 2) { Errors.__VERIFIER_error(1); }
28 }
29 }
30
31 public static void main(String[] args) throws Exception {
32 // init system and input reader
33 ProblemPowersOfTwo eca = new ProblemPowersOfTwo();
34
35 // main i/o-loop
36 while (true) {
37 // read input
38 String input = stdin.readLine();
39
40 try {
41 // operate eca engine output =
42 eca.calculateOutput(input);
43 } catch (IllegalArgumentException e) {
44 System.err.println(”Invalid input: ” + e.getMessage());
45 }
46 }
47 }
48 }

Figure 8.1: Example of the Java structure necessary to run our custom symbolic executor

8.5 Improvements 31

detection depth and unrolled loop amount respectively. The choice of these parameters is some-
what arbitrary, but the intuition was to have one for detecting smaller loops that had a bit less
overhead and one that was able to detect bigger loops but probably would be slower due to the
additional overhead of doing longer loops over more inputs.

Along with the two versions of SymLoop with the loop detection enabled, we ran one version
that had loop detection fully disabled. This version we consider to be the baseline of most of our
testing. We could have opted for Klee to be the baseline, but due to its many optimizations, it runs
significantly faster and does not allow us to solely compare the benefits of adding the loop detec-
tion.

8.4.1 Results of Running SymLoop
The initial runs of SymLoop on the RERS reachability challenges of 2020 yielded results that in-
dicated the solution was significantly worse compared to the baseline (remember, SymLoop with
loop detection disabled). The experiments involved running the tool, so either Klee or SymLoop ,
for 10 minutes on each problem.

As we expected, SymLoop was no match for Klee, as Klee is heavily optimized. Still, it provides
insight into how many of the errors a state-of-the-art tool could find in the specified time budget.
All errors found by SymLoop were also found by Klee, and almost always within a fraction of the
time.

SymLoop with loop detection enabled, failed to find many errors on a handful of problems
within the 10-minute time budget. On other problems, it failed to find some errors. When com-
paring SymLoop with the baseline, both versions find fewer errors. On Problem 12, SymLoop is
not able to find any errors. And for every problem, the baseline finds the same or more errors than
SymLoop finds. The main takeaway of the first run was that the loop detection in SymLoop was
performing way worse when compared to the baseline. We expected there to be some overhead to
loop detection, but we did not expect such a large discrepancy.

After further investigation and profiling the loop detection, we found some culprits to the slow-
downs that allow improving SymLoop .

8.5 Improvements
Profiling SymLoop indicated that a significant portion of the time was spent on generating the un-
rolled loop constraint by substituting each variable in the constraint individually. The SMT library
Z3 has a method to substitute multiple variables in a constraint at once, for which it only has to tra-
verse the whole constraint once instead of once for each variable. Making use of this functionality
was enough to mitigate this issue while being functionally equivalent.

Profiling indicated that the runtime of SymLoop is dominated by calls to the SMT solver Z3. So
the goal of the next improvements is to reduce the number of calls to the solver.

Another issue with creating the unrolled loop constraint was that after adding each iteration
of the unrolled loop constraint, SymLoop would give the current constraint to the solver to check
if it was still satisfiable. The goal of this was to stop on loops that were not repeatable of at least
the unrolled loop amount. However, in most cases, the constraint was still satisfiable, as it was a
repeatable loop. We adjusted the strategy such that instead of checking after each iteration of the
unrolled loop constraint, SymLoop only checks once at the end. If the original path constraint in
conjunction with the unrolled loop constraint is not satisfiable, the path is not considered a loop,
and the symbolic execution continues as normal. Again, this change was functionally equivalent to
the original behavior, but skips a lot of unnecessary calls to the solver.

A method that requires a bit more explanation is the optimization to skip solving for branches
as long as the path constraint (including any loop paths) does already capture the current input.
Let us illustrate this with an example: if a program has a looping path over the input i, after seeing
this path once, the loop is detected and the path constraint is extended with an iteration constraint
and unrolled loop constraint for this looping path. This path constraint already captures the path
constraint for inputs ii, iii, iiii, etc. If the next symbol in the input is actually an i, the full
input up to now would be ii. Since the path constraint already captures having run this input,
solving any encountered branch only has to be done once. If the next symbol is again an i, no
additional calls to the solver have to be made. This can be skipped as long as the input matches

32 8. Symbolic Execution Experiments

the looping pattern. Note that the path constraint does not represent going through the loop an
infinite amount of the pattern, but up to the unrolled loop amount, from that point solving needs to
be enabled again. If the loop continues, after one iteration the loop is detected again and solving
can again be skipped.

8.5.1 Results of Running Improved SymLoop
Running the experiments again with the optimized version of SymLoop yielded improved results.
Compared to the baseline, it finds most errors a bit slower. However, the two runs of SymLoop
are not able to find all the errors within the 10-minute time limit. The version of SymLoop with
loop detection enabled performed in most cases only slightly worse than the baseline with loop
detection disabled. However, in a few cases, SymLoop was able to find extra errors, for example on
problem 13. There, the d10-l50 variant was able to find errors 14 and 65. The following two traces
were hitting errors 14 and 65.
Error 14: CIHGI

HGIHGIHGIHGIHGIHGIHGIHGIHGIHGIB
Error 65: CIHGI

HGIHGDG

A large portion of these inputs repeats and is generated by using an unrolled loop constraint.
This indicates our method works as expected and can find some errors that Klee is not able to find
in the same time budget.

Both of these errorswere foundby the same version of SymLoop , the d10-l50 variant, which can
exercise longer loops. The d5-l10 variant did not find these errors. When counting the number of
repetitions in the inputs, the first one is 37 repetitions of IHG, and the second error is 29 repetitions
of the same pattern. This explains why the d5-l10 variant is unable to capture the errors, as the
unrolled loop amount is 10. Given enough time, it would theoretically be able to find them, but in
practice, this would already require a sufficiently long trace.

8.6 Increasing the Time Limit
Since Klee found different errors, we expected the time budget of 10 minutes to be too limiting for
SymLoop . To investigate whether giving it more time would also allow SymLoop to find the same
errors that Klee found, we increased the time budget to 2 hours. This still allows us to run all the
problems sequentially and be done within a day. Alongside the 2-hour runs of the two versions of
SymLoop , we reran Klee and SymLoop with loop detection disabled for the same 2 hours on each
problem to make a fair comparison.

Klee is not able to find errors 14 and 65 in problem 13. Even running Klee for 24 hours did not
result in finding these errors. On problems 12, 13, and 15, SymLoop can find errors that neither
Klee nor the baseline was able to find. See the listing below for all the errors and the traces needed
to reach the errors. None of these errors were found byKlee or the baselinewithin 2h. In all of these
errors, a repeating pattern occurs, which indicates the usefulness of SymLoop .
Problem 12:
- Error 68: EGIIGAJEIDEGAJEIDEGAJEIDEGAJEIDEGAJEIDEGAJEIDEGJ

Problem 13:
- Error 14: CIHGI

HGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIB
- Error 47: CIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGIHGEJ
- Error 65: CIHGI

HGIHGIHGDG

Problem 15:
- Error 17: IBJBGJBJBGJBJBGJBJBGJBJBGJBJBGJBJBGJBJBGJBJBGJBJBGJBJBGJBJBGJBJBGJBJBGJBJBGJBJBG

JBJBGJBJBGJE
- Error 30: LGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDH

CGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCGCDHCA
- Error 39: LOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILF

COILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCOILFCL
- Error 53: LHABJBHABJBHABJBHABJBHABJBHABJBHABJBHABJBHABJBHABJBHABJBHABJBHABJBHABJBHABJBHABJ

BHABJBHABJBHABJBM
- Error 63: IBCKAKBCKAKBCKAKBCKAKBCKAKBCKAKBCKAKBCKAKBCKAKBCKAKBCKAKBCKAKM

8.7 Limitations 33

8.7 Limitations
Wehave also profiled the runtime of the SymLoop to investigate where the tool spends its time. The
majority of its time is spent in Z3 on solving the path constraints. For symbolic execution, spending
the majority of the execution time on solving the path constraints is expected. However, the path
constraints we generate for loops are larger and contain more possible options for the solver to
consider. This reduces the overall speed in terms of executions per second.

Our solution is not perfect for this use case, as Klee was still able to find some errors that Sym-
Loop was not able to find in the same amount of time. For SymLoop to be able to reach these errors
will most likely require some of the optimizations that Klee uses to minimize the overhead intro-
duced by the solver. We have implemented the optimizations. In the next section, we discuss some
of these optimizations.

8.8 Optimizations
Klee is still able to find most errors in significantly less time compared to SymLoop . As mentioned
earlier, we assume most of this is due to the optimizations in Klee. To investigate whether these
optimizations improve the runtime, we implemented some of the optimizations in SymLoop .

The most notable optimization is automatic inference of concrete values. When an assignment
occurs in symbolic execution, the new value is an expression. In some cases, these expressions
only contain concrete values. If the expression only contains concrete values, the new value can
be calculated by evaluating the expression. Instead of using the expressions for the variables, we
can already evaluate these expressions and give these to the solver. These assignments are simpler
than the expressions, and thus allow the solver to more quickly decide on satisfiability.

Additionally, after adding a constraint which makes the model unsatisfiable, adding more con-
straints cannot make the model satisfiable again. This allows skipping the solver altogether when
the model is unsatisfiable. This can be the case when adding a constraint which evaluates to false.

Alongside the concretization of the assignment values, we also scan any added constraints for
equality operators. If those equality operators are at the root of the expressions, or there is an and
operator at the root with an equality child node, this can be treated similarly to the assignment of
variables. If the equality contains a variable on the right or left side and a concrete value on the
other side, the variable must be equal to that value.

8.9 Conclusion
In this chapter, we created the symbolic execution engine SymLoop, which uses the techniques de-
scribed in earlier chapters. The symbolic executor runs on the Java versions of the RERS problems
by instrumenting the problems. Any solver queries are handled by Z3. We tested initial versions
of SymLoop and were able to find errors that Klee did not find. Howerver, SymLoop suffered from
performance problems, so we implemented some optimizations to decrease the solve times.

9
Learning State Machines

In this chapter, we showmethods for more efficiently handling loops during equivalence checking
in active learning. Our goal is to answer the following research question:

RQ5: How can we use symbolic execution for equivalence oracles in active learning?

In active learning, equivalence checks are used to in theMAT framework to find inconsistencies
between a hypothesis model and the system under test.

In the introduction in Figure 1.4, we showed two example models learned from the same pro-
gram. In one of these models, there is only one state with self loops. In the other model, there is
a change detected after executing the ‘i’ loop for five iterations. In traditional equivalence checks,
there is no distinction made between loops and other transitions. To be able to detect the change
using the traditional W-method would require a 𝑤 of at least 5, leading to 25 possible paths to ver-
ify. Just like the path explosion problem in symbolic execution, the number of paths also grows
exponential in relation to the number of states which behave equivalently.

If we have insight into the system under test and expect that there is a looping behavior which
changes after a number of iterations, we canmore efficiently find counterexamples for a hypothesis
model. In these cases, not all paths of a certain length have to be explored, but just the cycles. Our
first methodology for detecting these changes uses the same notions as the W-method. However,
instead of verifying all paths, it only checks cycles in the hypothesis model.

9.1 Loop-W-Method
TheW-method is not able to efficiently find counterexamples for systems that requiremultiple iter-
ations through a loop before showing different behavior. To illustrate, let 𝑑 be the number of inputs
that are in the loop, and let 𝑛 be the number of iterations through the loop before it shows differ-
ent behavior for one of the distinguishing traces. Let Σ denote the input alphabet, a set containing
all the input symbols, and let 𝑄 denote the states in the hypothesis. Note that |𝑄| then denotes
the number of states as well as the number of access sequences and the number of distinguishing
traces. The W-method requires a depth of at least 𝑑 ⋅ 𝑛. To find a counterexample for such a loop
then requires |𝑄| ⋅ |Σ|𝑑⋅𝑛⋅|𝑄| membership queries, with the average at half that amount.

To reduce the amount of queries necessary for equivalence checking for loops, we introduce
the Loop-W-method. This method requires an additional parameter 𝑙. The parameter 𝑙 denotes up
to which depth, the number of iterations, a looping is checked. For each cycle in the hypothesis
model and for each distinguishing sequence, the access sequence: 𝐴, the loop sequence: 𝐿, and the
distinguishing sequence𝐷 are concatenated. This forms the sequence 𝐴⋅𝐿 ⋅𝐷. This sequence needs
to be formed for all the iterations through the loop up to depth 𝑙: 𝐴 ⋅ 𝐿𝑖 ⋅ 𝑤 ⋅ 𝐷 ∀ 𝑖 ∈ [1..𝑙]. If checking
any of these sequences results in an output that does not match the hypothesis, it is returned as a
counterexample.

34

9.2 Symbolic Execution for Testing Loop Equivalence 35

9.1.1 Complexity
The Loop-W-method is able to find counterexamples for loops more efficiently. To compare com-
plexity, we need the number of cycles in a system. We use the 𝑐 to denote the number of cycles in
the hypothesis model. To find a counterexample for a looping model requires 𝑐 ⋅ 𝑙 ⋅ |𝑄|membership
queries, since each cycle needs to be checked. In the complexity analysis for the W-method, we
assumed the number of iterations through the loop before it shows different behavior to be known
beforehand. The configurable parameter 𝑙 must be at least the number of iterations, therefore we
assume 𝑙 to be configured as 𝑛. To find a counterexample for such a loop using the Loop-W-method
requires 𝑐 ⋅ 𝑛 ⋅ |𝑄|membership queries. To better compare this to the complexity of the W-method,
we need some bounds on the number of cycles (𝑐) in a hypothesis model.

To get a lower bound for the number of cycles, the hypothesis model must be able to infinitely
handle all the input symbols. This can be achieved by having one sink state which has transitions
for every symbol in the input alphabet loop back to itself. All other states can be constructed to lead
to this final sink state, with no additional cycles. The minimum number of cycles is then defined
by the size of the input alphabet |Σ|.

For a complete hypothesis model, every state must have a transition for every symbol of the
input alphabet. Therefore, there are a total of |Σ|𝑠 edges. A cycle is a sequence of these edges with a
maximum length of 𝑠. If the sequence becomes longer, at least one state must be visited twice. If a
state is visitedmore thanonce, the path is no longer a cycle. A cycle starts in a specific state, so there
are 𝑠 possible starting points. There are only |Σ| edges leading out of this state that are possible as
subsequent edges. This reduces the maximum number of cycles in a model to |𝑄| ⋅ |Σ||𝑄|. With this
upper bound included in the complexity formula, the upper bound for the number of membership
queries is |𝑄| ⋅ |Σ||𝑄| ⋅ 𝑛 ⋅ |Σ|.

For the W-method, there are |𝑄| ⋅ |Σ|𝑑⋅𝑛⋅|𝑄| membership queries needed. The W-method is expo-
nential for the number of states, the number of symbols in the loop and the number of iterations
through the loop. Our Loop-W-Method is only exponential relative to the number states. This stems
from the upper bound on the number of cycles in a model. For models with fewer loops, the Loop-
W-method requires even less membership queries.

9.2 Symbolic Execution for Testing Loop Equivalence
In previous section, we have shown the naive method for checking loops in hypothesis models.
However, with symbolic execution, we can verify these loops aswell. Although the Loop-W-method
is applicable in any scenario, the symbolic method is only possible when the underlying behavior
of the software is available. The system is no longer a black box, and the symbolic method needs
full access to the system, making it a white box method.

Checking for self loops is done by generating the access trace to one of the states in the loop
and the subsequent symbols to execute this loop. The access sequence and loop symbols are then
run by the symbolic executor. The symbolic executor collects the path constraint from the looping
part. This loop path can then be checked for a self loop, as described in Section 5.3. If the loop
path is a self loop, the model is correct for this loop and no counterexample can be found.

When the loop path is not a self loop, the unrolled loop and iteration constraints are created to
depth 𝑙 according to Section 6.3 and Section 7.1, respectively. These constraints are added to the
current path constraint. Afterward, for each distinguishing trace of the hypothesis, its path con-
straint is collected by running ‘access sequence ⋅ loop sequence ⋅ distinguishing sequence’. This
results in the path the distinguishing trace takes after one iteration through the loop. The path con-
straint consists of two types of constraints. Constraints that originate from assignment statements
and constraints that originate from branch conditions. These constraints are separated based on
their types in to two different constraints, the assignment constraint and the branch constraint.
The branch constraint is then negated. The assignment constraint, the negated branch constraint
and the path constraint (created by running the loop once and adding the unrolled loop constraint)
get conjuncted together and given to the solver. If the solver finds a satisfiable model, the dis-
tinguishing trace follows a different path in one of the iterations. The trace then shows different
behavior for this distinguishing trace after executing the loop a number of times1. The input that

1Difference in path does not necessarily mean different behavior. You can construct two paths with equivalent behavior.
However, in our experiments this never occurred.

36 9. Learning State Machines

forms a counterexample for this loop is reconstructed from the model. The counterexample allows
the learner to update the hypothesis. If none of the distinguishing traces yields a counterexample,
the loop in the model are indistinguishable up to depth 𝑙. For each tested loop, this check calls the
symbolic executor once for each distinguishing trace.

Initially, we experimented with checking all distinguishing traces for a loop in one call to the
solver. This resulted in larger models with more constraints. Oftentimes, these models were too
complex for the solver to handle, leading to unnecessary long solve times or even timeouts of the
solver. When the path through the loop is simpler, and the number of distinguishing traces is min-
imal, using this methodology might yield better results.

When comparing the symbolic method to the Loop-W-method, the symbolic method uses sig-
nificantly less membership queries. By collecting the path constraint, checking a loop in a system
only requires running the system for each distinguishing trace. When comparing this to the Loop-
W-method, the system needs to be run for each iteration in the loop for each distinguishing trace.
Additionally, the symbolic method detects changes in the whole path of each distinguishing trace,
whereas the Loop-W-method only can detect changes in the last output of the system. The benefit
of the Loop-W-method is that it requires no access to the underlying system, making it applicable
in any situation, whereas the symbolic method needs to collect the path constraints.

9.3 Experiment Setup
We use the RERS challenges from 2020 for the experiments. The RERS challenge includes multiple
problem categories, where the LTL problems lend themselves better for active learning. However,
the LTL problems of 2020 are too simple and can be learned with W-method equivalence checkers
with a shallow depth. This thesis focuses on the reachability problems that require more sophisti-
cated methods to find counterexamples of hypothesis models. We use problems 12, 13 and 15 for
active learning.

We implemented the Loop-W-method as an equivalence checker in the LearnLib framework
[17, 21]. When the symbolic equivalence checker gets a new model to verify, it generates the set of
distinguishing traces for themodel. To generate the set of distinguishing traces, we use the existing
functionality from LearnLib. The equivalence checker finds all loops in the hypothesis model. To
reduce the number of loops to check, we only consider cycles, loops where only the first and last
nodes of the loop are equal, while all the other nodes are unique. A Depth-first search (DFS) finds
these cycles. After finding the loops, each loop is checked by concatenating the access sequence
𝐴 with the loop sequence 𝐿 and one of the distinguishing sequence 𝐷. This is repeated for each
of the distinguishing sequences. If this does not yield a counterexample, the loop sequence 𝐿 is
added once more to get 𝐴 ⋅ 𝐿 ⋅ 𝐿 ⋅ 𝐷 and to check for equivalence. This process is repeated until a
counterexample is found, or the specified depth limit 𝑙 is reached.

For the symbolic equivalencechecker,we implemented themethodologyoutlined inSection9.2.
SymLoop collects the path constraint, and checks for self loops using the self loop constraint. If it
finds a self loop, the symbols that excites this behavior must be self-loops in a learned model. If a
loop is not a self loop, it generates the unrolled loop constraint before checking each distinguishing
sequence. We ran the learning process using the three separate equivalence checkers. The stan-
dard W-method, the naive Loop-W-method and the symbolic method for verifying loops. For the
learner, we used the TTT algorithm of LearnLib. Section 10.3 shows the results.

9.4 Conclusion
Current methods for equivalence checking do not handle loops differently than other transitions.
In some systems, these loops can show different behavior. We propose loop equivalence checkers
for checking the behavior of the system after many iterations through loops. In black box sce-
narios, the Loop-W-method can be applied. For systems where path constraints can be collected,
the SymLoop equivalence checker can verify the behavior and guarantee equivalent behavior for
some self-loops. Unrolling the path constraint allows detecting changes for distinguishing traces
when following the loop once in comparison with following the loop multiple times. For systems
where running membership queries is costly, symbolic execution reduces the cost associated with
model checking. Additionally, symbolic execution can detect changes in paths through the system,
whereas the Loop-W-method can only detect changes in the output.

10
Results

This chapter shows the results of running symbolic execution andactive learningon theRERSprob-
lems of 2020. But first, we look at the results of running symbolic execution on theprogramoutlined
in the introduction.

10.1 Running the Initial Problem
In Chapter 1, we outlined the problemof running symbolic execution on a simple program. Wehave
rerun the experiments for this programusing SymLoop and have included the results in Figure 10.1.
We have run two different versions of SymLoop to illustrate the differences. SymLoop with a loop
unroll amount (𝑙) of 0 only detects self loops and skips executing those. SymLoopwith a loop unroll
amount of 50 also generates constraints for executing any non-self loop up to 50 iterations.

We compare our two versions of our symbolic executor to the state-of-the-art tools when run-
ning the sameprogram. Figure 10.1 shows the time to find an error that requires iterations through a
loop. Both versions of SymLoop yield much better results compared to Klee and JDart on the same
problem, by finding the error significantly faster. Additionally, when JDart did not find an input to
cover the code that requires only 16 iterations, SymLoopwas able to continue finding errors. There
is still a non-linear trend when nearing 200 iterations through the loop to find the error. Increasing
the loop unroll can partially solve this issue, but checking for satisfiability takes longer for larger
models.

When looking at the log-scaled plot, there is also a small difference in startup time. The startup
time of SymLoop is lower than the startup time of Klee or JDart. Since JDart and Klee can run
on arbitrary programs, including programs that access the system, this requires more setup time.
However, this difference is relatively small, at most 1 second. Therefore, we deem this negligible
when the run time of these tools goes up to 400 to 600 seconds.

10.2 RERS Challenges
In Figure 10.2, we have collected the results of running symbolic execution on a few of the RERS
reachability problems of 2020. We ran each method for 2 hours and recorded the time it took to
find each error. The figure shows the number of errors each method has found over time. For the
baseline, we used our original implementation of the symbolic execution engine, with any loop
detection or loop unrolling disabled. When creating SymLoop , we also optimized the calls to the
solver. These optimizations can be done for the baseline as well, so we also ran the optimized base-
line.

For SymLoop , we included two runs, both of the runs use a detection depth of 10 and a loop
unroll amount of 50. The run labeled ‘SymLoop - intermediate’ was our initial version of SymLoop
with loop detection enabled, whereas ‘SymLoop - optimized’ includes all optimizations explained
in Section 8.8. The full results are available in Appendix A. To compare to state-of-the-art methods,
we have included Klee as state-of-the-art symbolic executor. AFL++ is included as the state-of-the-
art fuzzing tool. We have summarized all the results for symbolic execution into Table 10.1. For
each different tool or version of SymLoop , the number of discovered errors is shown.

37

38 10. Results

0 50 100 150 2000

200

400

600

Limit

Ti
m
e
(s
)

Normal scale

Klee
JDart

SymLoop l=0
SymLoop l=50

0 50 100 150 200

10−1

100

101

102

Limit

Ti
m
e
(s
)

Log scale

Klee
JDart

SymLoop l=0
SymLoop l=50

Figure 10.1: Time to run symbolic execution on the example show in Chapter 1. The graph shows the time needed to find
an error for a certain limit. For Klee we stopped running past a limit of 19. When running JDart past a limit of 16, it crashed

and did not find the error.

Program d l m P11 P12 P13 P14 P15 P17 P18
Total Errors 18 17 43 15 55 30 42
AFL++ 120m 18 15 27 15 0 30 30
Baseline 0 10m 18 14 22 15 36 30 1
Baseline - long 0 120m 18 15 22 15 40 30 30
Baseline - optimized 0 120m 18 16 23 15 40 30 30
Klee 120m 18 16 25 15 41 30 30
SymLoop - initial 5 10 10m 18 13 0 15 7 24 0
SymLoop - initial 10 50 10m 18 12 0 15 4 24 0
SymLoop - intermediate 10 50 120m 18 17 26 15 45 30 14
SymLoop - optimized 10 50 10m 18 17 26 15 44 30 25
SymLoop - optimized 10 50 120m 18 17 35 15 45 30 30

Table 10.1: The number of errors found by each program for each RERS problem. The column ‘d’ shows the detection
depth, and ‘l’ shows the loop unroll amount. The ‘m’ column denotes the runtime in minutes for each tool.

10.2.1 Analysis of Results
When looking at the results of Problem 11 and Problem 14 in Figure 10.2, all methods were able to
reach the same number of errors in a very short time span. For problems which do not have these
behaviors, our results from RERS Problem 11 show that the loop detection has minimal impact on
the overall run-time, the total time to find all 18 errors is 1.2 seconds for SymLoop and 1.7 for the
baseline. For Problem 14, all 15 errors were found within 12 and 9.4 seconds for the baseline and
SymLoop respectively. This shows that for some programs, there is a performance penalty for loop
detection. This performance penalty is the result of invoking the solver more often. The solver
is invoked more often to check for repeatable loop paths. Additionally, when loops are detected,
the unrolled loop constraints and iteration constraints add additional complexity to the path con-
straint. This extra complexity leads to longer solve times.

Because the number of errors detected on problems 11 and 14 is the same, we will not look fur-
ther into these results. On Problem 18, all tools except the intermediate version of SymLoop were
able to find 30 errors. The intermediate version spent a lot of time on solving constraints, without
making much progress. This also indicates the benefit of the optimizations we implemented. We
got the most interesting results on Problems 12, 13 and 15. On these problems, SymLoop was able
to find more errors within the two-hour time limit. Additionally, these problems show the benefit
of optimizing the solver expressions, the optimized version is able to find the same errors on Prob-
lem 12 and 15, yet it requires significantly less time. On Problem 13, the non-optimized version is
not able to find the same number of errors. Looking more closely at the specific errors that each
method was able to find, we see that for some problems, Klee, and the baseline were able to find

10.3 Active Learning 39

0 2,000 4,000 6,0000

5

10

15

Er
ro
rs

Problem 11

0 2,000 4,000 6,0000

5

10

15

Problem 12

0 2,000 4,000 6,0000

10

20

30

Problem 13

0 2,000 4,000 6,0000

5

10

15

Time (s)

Er
ro
rs

Problem 14

0 2,000 4,000 6,0000

20

40

Time (s)

Problem 15

0 2,000 4,000 6,0000

10

20

30

Time (s)

Problem 18

Klee
Baseline

Baseline - optimized
SymLoop - intermediate
SymLoop - optimized

AFL++

Figure 10.2: Number of errors found over time on the RERS problems. We have ran all methods for 2 hours. The variants of
SymLoop all use a detection depth of 10 and a loop unroll amount of 50.

errors SymLoop did not find within the same time frame. On problem 13, error 64 was found by
Klee and the baseline, but not by SymLoop . The only other case where this occurred is on problem
15, with error 1.

Although finding more errors can be a goal by itself, this might be achievable with performance
optimizations alone. Instead, we view our method as capable of efficiently finding a new class of
errors. Our method specifically focuses on reaching new code (and thus errors) that requires many
iterations through loops. As shown by the two cases on problem 13 and problem 15, running a
traditional symbolic execution method alongside our symbolic execution can be necessary to find
more errors in the same time frame.

10.3 Active Learning
We have learned models for problems 12, 13, 15 and 17 of the RERS challenges. Our method stacks
the W-method with depth 1, and the symbolic loop detector with a maximum loop size of 10 input
symbols and an unrolled loop depth of 50. This is represented as ‘W1’ for W-method with depth 1,
and ‘Symb D10L50‘ respectively. We have run the same experiment using aW-method with a depth
of 10 and the Loop-W-method. We let the methods run for 5 days before stopping them manually.

Table 10.2 shows the number of states for each of the models. Due to the complexity of the
problems, only Problem 17 yielded an equivalent number of states for each method. On problems
12 and 13, the W-method did not find many states, whereas both SymLoop and Loop-W were able

40 10. Results

P12 P13 P15 P17
W10 137 99 507 743
W1 + SymLoop D10L50 11513 7125 483 743
W1 + Loop-W D10L50 9838 2380 266 743

Table 10.2: Results of learning models of the RERS problems. Each row represent a different equivalence checker. For each
equivalence checker, the table shows the number of states found per problem. The methods were run for 5 days, or until

they finished.

to find counterexamples for the hypothesis. As shown, loop equivalence checking can result in
models with more states. An important observation is that the symbolic equivalence checker is
only invoked a few times for each problem, and the preceding W-method with a depth of 1 found
most counterexamples. When comparing SymLoop to Loop-W, SymLoop was able to find more
states while requiring fewer membership queries.

Overall, we have shown that treating loops in models differently from other transitions in hy-
pothesis models can lead to more complete models of the system.

11
Conclusion

This chapter lists our conclusions and answers the research questions proposed in Section 1.2. We
also discuss the overall outcome of the research and note areas for future work.

11.1 Research Questions
In the introduction, we started this thesis with the following research question:

How can you extend symbolic execution to reach states that require repetitive iterations
through loops?

During this thesis, wehave answered all of our researchquestions anddeveloped anewsymbolic
executor with the ability to detect and use loops in the input. By implementing the method and
running it on the RERS challenges, we have shown that this method works and is able to quickly
reach code that requires many iterations through loops. Below, we repeat our sub-questions and
reiterate how our method works.

How can loop structures in symbolic execution be detected?
We have shown different techniques for loop detection in Chapter 5. The stack-based method can
always be applied, but in our work we used the retrieval of input as a detector for loop iterations.
This method works due to our assumptions on the execution model.

We introduced the notion of loop path extension, which allows us to check whether a certain
loop path can be executed again. This check can be performed by checking for satisfiability of
the extended loop constraint in conjunction with the current path constraint. Additionally, we
proposed a method for detecting self loops with no changes to the internal state.

Is it possible to generalize the assignments in loop structures into constraints
for a symbolic executor?
In Chapter 6, we showed generalization for loop structures with simple assignments. Using these
generalizations, we were able to create constraints for variables that were reassigned in the loop.
Some initial experiments proved that this method was a solution for loop structures with simple
assignments. However, this method was not able to deal with arbitrary expressions in the loop. To
create constraints for arbitrary loop paths, we introduced the concept of unrolled loop constraints.

How can loop structures be used to reach new branches in symbolic execution?
By creating an iteration constraint that represents taking one iteration in the unrolled loop con-
straints, symbolic execution can continue after creating the iteration and unrolled loop constraints.
Finding inputs for any future branch constraint allows any of the loop iterations to be used. Cre-
ating the iteration and loop constraints allows our symbolic executor to satisfy branches with any
of the iterations through the loop with just one call to the solver. When a branch is satisfiable, our
technique generates an input which contains the exact input that executes the loop the required

41

42 11. Conclusion

number of times to visit the targeted branch. The solver checks many paths through a loop at the
same time, where state-of-the-art methods only consider one path per call to the solver.

Does detecting and using loop structures allow symbolic execution to cover
more states of a program?
We have verified our symbolic executor on the RERS Problems. Even though these problems are
heavily obfuscated, our symbolic executor is able to find errors in these programs that state-of-
the-art tools are not able to find. The inputs that triggered these new errors showed long looping
patterns, signifying the ability of our symbolic executor to cover more states in programs. We out-
perform state-of-the-art fuzzing and state-of-the-art symbolic execution.

How can we use symbolic execution for equivalence oracles in active learning?
Current methods for equivalence checking in active learning do not handle loops differently than
other transitions. In some systems, these loops can show different behavior after a number of itera-
tions through them. Wepropose loop equivalence checkers for checking the behavior of the system
after many iterations through loops. In black-box scenarios, the Loop-W-method can be applied.
For systems where path constraints can be collected, the SymLoop equivalence checker can verify
the behavior and guarantee equivalent behavior for some self-loops. Unrolling the path constraint
allows detecting changes for distinguishing traces when following the loop once in comparison
with following the loop multiple times. For systems where running membership queries is costly,
symbolic execution reduces the cost associatedwithmodel checking. Additionally, symbolic execution
can detect changes in paths through the system, whereas the Loop-W-method can only detect
changes through the output. Our complexity analysis and results show that these special methods
for loops are significantly more efficient at finding counterexamples for loops than the traditional
W-method.

11.2 Future Work
In this thesis, we implemented ourmethodonly for a single executionmodel. To apply our symbolic
execution technique to any program, we suggest adding the stack-based detection for loops.

Additionally, we showed generalized expressions for some specific assignment expressions in
Section 6.1.3. In our implementation, we did not use these generalizations, as unrolling loops also
handles these cases andevenhandlesmore. However, the generalizations canbemore efficient than
loop unrolling, as they result in smaller models for the solver. Additionally, when more iterations
than the unroll amount are required, applying these generalizations can help reach those areas of
the code faster.

Bibliography
[1] Dana Angluin. “Learning regular sets from queries and counterexamples”. In: Information and

Computation 75.2 (Nov. 1987), pp. 87–106. ISSN: 08905401. DOI: 10.1016/0890-5401(87)
90052-6. URL:https://linkinghub.elsevier.com/retrieve/pii/0890540187900526
(visited on 09/23/2022).

[2] Thanassis Avgerinos et al. “Automatic exploit generation”. In: Communications of the ACM
57.2 (2014). Publisher: ACM New York, NY, USA, pp. 74–84.

[3] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “Klee: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs.” In:OSDI. Vol. 8. 2008, pp. 209–
224.

[4] Cristian Cadar et al. “EXE: Automatically generating inputs of death”. In: ACM Transactions
on Information and System Security (TISSEC) 12.2 (2008). Publisher: ACMNewYork, NY, USA,
pp. 1–38.

[5] Sofia Cassel et al. “Extending Automata Learning to Extended Finite State Machines”. In:Ma-
chine Learning for Dynamic Software Analysis: Potentials and Limits: International Dagstuhl
Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers. Ed. byAmel Ben-
naceur, Reiner Hähnle, and Karl Meinke. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 149–177. ISBN: 978-3-319-96562-8. DOI: 10.1007/978-
3-319-96562-8_6. URL: https://doi.org/10.1007/978-3-319-96562-8_6 (visited
on 09/28/2022).

[6] Tom Catshoek. “Exploiting structure in counterexamples to speed up equivalence check-
ing in the minimally adequate teacher framework: Active Learning”. In: (2021). URL: https:
//repository.tudelft.nl/islandora/object/uuid%3A8e5486e4-da37-43ac-
8653-3f1e87a95253 (visited on 09/20/2022).

[7] T.S. Chow. “Testing Software Design Modeled by Finite-State Machines”. In: IEEE Transac-
tions on Software Engineering SE-4.3 (May 1978). Conference Name: IEEE Transactions on
Software Engineering, pp. 178–187. ISSN: 1939-3520. DOI: 10.1109/TSE.1978.231496.

[8] JoeriDeRuiter andErikPoll. “Protocol state fuzzingofTLS implementations”. In:24thUSENIX
Security Symposium (USENIX Security 15). 2015, pp. 193–206.

[9] Andrea Fioraldi et al. “AFL++ combining incremental steps of fuzzing research”. In: Proceed-
ings of the 14th USENIX Conference on Offensive Technologies. 2020, pp. 10–10.

[10] RobertM.Hierons et al. “Using adaptive distinguishing sequences in checking sequence con-
structions”. In: Proceedings of the 2008 ACM symposium on Applied computing. SAC ’08. New
York, NY, USA: Association for ComputingMachinery, Mar. 16, 2008, pp. 682–687. ISBN: 978-
1-59593-753-7. DOI: 10.1145/1363686.1363850. URL: https://doi.org/10.1145/
1363686.1363850 (visited on 02/27/2023).

[11] Falk Howar, Bernhard Steffen, andMaikMerten. “Lessons learned in the ZULU challenge”. In:
(), p. 18.

[12] Falk Howar et al. “The RERS challenge: towards controllable and scalable benchmark synthe-
sis”. In: International Journal onSoftwareTools forTechnologyTransfer23.6 (2021). Publisher:
Springer, pp. 917–930.

[13] Stefan Huster et al. “Efficient Testing of Different Loop Paths”. In: Software Engineering and
FormalMethods. Ed. by RaduCalinescu andBernhard Rumpe. LectureNotes in Computer Sci-
ence. Cham: Springer International Publishing, 2015, pp. 117–131. ISBN: 978-3-319-22969-0.
DOI: 10.1007/978-3-319-22969-0_9.

43

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://linkinghub.elsevier.com/retrieve/pii/0890540187900526
https://doi.org/10.1007/978-3-319-96562-8_6
https://doi.org/10.1007/978-3-319-96562-8_6
https://doi.org/10.1007/978-3-319-96562-8_6
https://repository.tudelft.nl/islandora/object/uuid%3A8e5486e4-da37-43ac-8653-3f1e87a95253
https://repository.tudelft.nl/islandora/object/uuid%3A8e5486e4-da37-43ac-8653-3f1e87a95253
https://repository.tudelft.nl/islandora/object/uuid%3A8e5486e4-da37-43ac-8653-3f1e87a95253
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1145/1363686.1363850
https://doi.org/10.1145/1363686.1363850
https://doi.org/10.1145/1363686.1363850
https://doi.org/10.1007/978-3-319-22969-0_9

44 Bibliography

[14] Malte Isberner, Falk Howar, and Bernhard Steffen. “The TTT algorithm: a redundancy-free
approach to active automata learning”. In: International Conference on Runtime Verification.
Springer, 2014, pp. 307–322.

[15] Marc Jasper et al. “RERS 2019: Combining Synthesis with Real-World Models”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Dirk Beyer et al. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2019, pp. 101–115. ISBN: 978-
3-030-17502-3. DOI: 10.1007/978-3-030-17502-3_7.

[16] Kasper Luckow et al. “JDart: A Dynamic Symbolic Analysis Framework”. In: Tools and Algo-
rithms for theConstructionandAnalysis of Systems. Ed. byMarshaChechik andJean-François
Raskin. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2016, pp. 442–459.
ISBN: 978-3-662-49674-9. DOI: 10.1007/978-3-662-49674-9_26.

[17] Maik Merten et al. “Next Generation LearnLib”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Ed. by Parosh Aziz Abdulla and K. Rustan M. Leino. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 220–223. ISBN: 978-3-642-19835-
9. DOI: 10.1007/978-3-642-19835-9_18.

[18] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Ed. by C. R. Ramakrishnan and Jakob
Rehof. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008, pp. 337–340.
ISBN: 978-3-540-78800-3. DOI: 10.1007/978-3-540-78800-3_24.

[19] Jan Obdržálek and Marek Trtík. “Efficient Loop Navigation for Symbolic Execution”. In: Au-
tomated Technology for Verification and Analysis. Ed. by Tevfik Bultan and Pao-Ann Hsiung.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 453–462. ISBN:
978-3-642-24372-1. DOI: 10.1007/978-3-642-24372-1_34.

[20] Sebastian Poeplau andAurélien Francillon. “Symbolic executionwith ${$SymCC$}$: Don’t in-
terpret, compile!” In: 29th USENIX Security Symposium (USENIX Security 20). 2020, pp. 181–
198.

[21] Harald Raffelt, Bernhard Steffen, and Therese Berg. “LearnLib: a library for automata learning
and experimentation”. In: Proceedings of the 10th international workshop on Formal meth-
ods for industrial critical systems. FMICS ’05. New York, NY, USA: Association for Computing
Machinery, Sept. 5, 2005, pp. 62–71. ISBN: 978-1-59593-148-1. DOI: 10.1145/1081180.
1081189. URL: https://doi.org/10.1145/1081180.1081189 (visited on 02/24/2023).

[22] Prateek Saxena et al. “Loop-extended symbolic execution on binary programs”. In: Proceed-
ings of the eighteenth international symposiumonSoftware testingandanalysis. 2009, pp. 225–
236.

[23] Muzammil Shahbaz and Roland Groz. “Inferring Mealy Machines”. In: FM 2009: Formal Meth-
ods. Ed. by Ana Cavalcanti and Dennis R. Dams. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2009, pp. 207–222. ISBN: 978-3-642-05089-3. DOI: 10.1007/978-3-
642-05089-3_14.

[24] Vaibhav Sharma et al. “Veritesting Challenges in Symbolic Execution of Java”. In: ACM SIG-
SOFT Software Engineering Notes 42.4 (Jan. 11, 2018), pp. 1–5. ISSN: 0163-5948. DOI: 10.
1145/3149485.3149491. URL: https://doi.org/10.1145/3149485.3149491 (visited
on 12/08/2022).

[25] Frits Vaandrager et al. “A new approach for active automata learning based on apartness”. In:
Tools and Algorithms for the Construction and Analysis of Systems: 28th International Confer-
ence, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceedings, Part I. Springer, 2022,
pp. 223–243.

https://doi.org/10.1007/978-3-030-17502-3_7
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-642-19835-9_18
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-24372-1_34
https://doi.org/10.1145/1081180.1081189
https://doi.org/10.1145/1081180.1081189
https://doi.org/10.1145/1081180.1081189
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1145/3149485.3149491
https://doi.org/10.1145/3149485.3149491
https://doi.org/10.1145/3149485.3149491

Glossary
conjecture Aquestion in theminimally adequateTeacher framework that aLearner asks theTeacher

on whether a given hypothesis matches the regular set the Learner is learning. 11

extended loop constraint Constraint that represents executing the loop one time more than the
loop constraint. 20, 22, 24, 25, 29, 45

generalized loop constraint Constraint that represents executing the loop an arbitrary number of
times. This loop constraint can only be created for simple loop paths. 22

iteration constraint Constraint that represents assigning the variables to one of the iterations in
the extended loop constraint. 26, 27, 29, 31, 38

L* The L* learning algorithm introduced by [1] to learn state machines of regular language 11–13

LM* The LM* learning algorithm introduced by [23] to learn Mealy Machines 13

loop constraint Constraint generated when taking one or multiple iterations through a loop. 20,
22, 24, 29, 45

membership query A query in theminimally adequate Teacher framework that a Learner asks the
Teacher on whether a given string t is a member of the regular set that the Learner is learning.
11

path constraint In symbolic execution, apath constraint is a conjunctionof constraints that repre-
sent following the current execution path. The path constraint contains both the assignment
to variables as the conditions that the execution path took. 20, 29

self loop constraint Constraint that checks whether a path through a loop is a self loop that keeps
all the variable in the same state as before executing this path 20, 36

unrolled loop constraint Constraint that represents executing the loop an arbitrary amount up to
a certain limit, by unrolling the assignments in the loop. This type of constraint can be created
for any loop path. 24–27, 29, 31, 32, 35, 36, 38

45

Acronyms
AVD Automated Vulnerability Discovery 7

CFG Control Flow Graph 9, 19, 21

DFA Deterministic finite automaton 10

LTL Linear temporal logic 13

MAT minimally adequate Teacher 11, 34, 45

SMT Satisfiability Modulo Theory 8, 10

SSA Static Single Assignment 8

46

A
RERS Results

In the tables below we have included the time it takes to find errors on each RERS problem. Each
row in a table represents a different solution. The column m indicates the time limit for running
that specific solution. The column labeled #err contains the number of errors found. Each column
after #err shows a specific error. The numbers in the table are the time it took to find the specific
error. A minus (-) denotes that a solution did not find the error within the specified time.

47

48 A. RERS Results

Program
d

l
m

#err
0

9
13

24
26

39
42

48
52

60
62

74
75

82
91

93
94

95
afl

120
18

2
6

19
53

6
11

33
11

56
1

1
34

5
48

28
2

15
0

baseline
0

10
18

1
3

6
4

3
5

8
2

10
1

3
2

7
3

2
1

5
0

baseline-long
0

120
18

1
3

6
4

3
6

8
2

4
1

3
2

8
3

3
1

5
0

baseline-optim
ized

0
120

18
0

1
1

1
1

1
1

0
2

0
1

0
1

0
0

0
1

0
klee

120
18

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

loop-sym
-initial

10
50

10
18

1
4

7
5

4
6

9
2

6
1

3
2

8
3

3
2

5
0

loop-sym
-initial

5
10

10
18

1
4

7
5

5
7

9
2

6
1

3
2

9
3

3
2

5
0

loop-sym
-interm

ediate
10

50
120

18
1

3
5

4
4

5
7

1
9

1
3

2
7

2
2

1
4

0
loop-sym

-optim
ized

10
50

10
18

0
1

1
1

1
2

1
0

1
0

1
0

1
1

1
0

1
0

loop-sym
-optim

ized
10

50
120

18
0

1
1

1
1

1
1

0
1

0
1

0
1

1
0

0
1

0

Table
A.1:Resultsfrom

running
on

Problem
11.

Program
d

l
m

#err
3

6
8

10
25

26
28

37
56

65
68

71
73

74
76

77
79

afl
120

15
22

1926
120

18
134

697
25

21
-

32
-

35
21

47
158

14
19

baseline
0

10
14

63
-

31
18

34
432

28
29

-
20

-
64

27
36

67
25

23
baseline-long

0
120

15
29

556
67

57
41

446
83

46
-

35
-

30
19

34
33

8
28

baseline-optim
ized

0
120

16
2

27
2

1
1

21
4

2
500

1
-

2
2

1
7

1
1

klee
120

16
2

4
1

1
2

23
2

2
776

1
-

2
2

2
3

1
1

loop-sym
-initial

10
50

10
12

181
-

277
170

-
-

196
200

-
114

-
205

188
135

221
74

161
loop-sym

-initial
5

10
10

13
119

250
99

112
91

-
127

129
-

72
-

130
123

80
-

65
117

loop-sym
-interm

ediate
10

50
120

17
244

138
108

117
101

614
125

126
618

60
2595

246
346

71
978

28
122

loop-sym
-optim

ized
10

50
10

17
5

6
7

7
16

38
8

9
38

3
156

5
7

3
6

1
4

loop-sym
-optim

ized
10

50
120

17
6

7
8

8
42

44
9

11
44

3
252

6
8

4
6

2
5

Table
A.2:Resultsfrom

running
on

Problem
12.

Program
d

l
m

#err
1

3
10

11
14

16
23

30
31

34
35

37
45

47
48

49
52

60
61

62
64

65
68

70
71

72
74

75
79

82
83

86
87

90
94

97
afl

120
27

3
43

1
-

-
17

97
10

97
6

9
42

-
5987

119
6

33
-

-
6939

-
7037

104
7

5
98

13
14

-
101

3567
-

103
105

-
2110

baseline
0

10
22

5
5

7
-

-
20

12
17

15
1

3
15

-
-

15
6

24
-

-
-

-
-

13
8

4
22

9
7

-
22

-
-

8
36

-
-

baseline-long
0

120
22

11
6

7
-

-
23

14
19

21
1

3
17

-
-

4
6

27
-

-
-

-
-

20
8

5
25

10
7

-
24

-
-

11
13

-
-

baseline-optim
ized

0
120

23
2

0
1

-
-

1
2

2
1

0
0

1
-

-
1

0
2

-
-

-
6888

-
1

1
0

1
1

1
-

1
-

-
1

1
-

-
klee

120
25

1
1

1
-

-
1

1
1

2
1

1
1

-
-

2
1

1
3865

-
-

1273
-

1
1

1
5

1
1

-
2

-
1418

1
1

-
-

loop-sym
-initial

10
50

10
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

loop-sym
-initial

5
10

10
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

loop-sym
-interm

ediate
10

50
120

26
75

10
13

-
1062

18
32

321
61

1
8

40
-

6092
41

12
2548

-
-

-
-

861
42

17
67

65
312

33
-

64
-

1563
22

29
-

-
loop-sym

-optim
ized

10
50

10
26

2
1

4
-

148
9

3
5

4
0

1
3

-
134

10
1

41
-

-
-

-
122

10
2

10
5

5
8

-
5

-
485

2
3

-
-

loop-sym
-optim

ized
10

50
120

35
2

1
3

3095
132

7
41

38
12

0
1

42
3276

576
3

1
9

3670
3038

3361
-

113
9

1
1

12
4

6
3084

7
2356

440
2

3
2830

3639

Table
A.3:Resultsfrom

running
on

Problem
13.

49

Program
d

l
m

#err
4

15
18

25
27

28
36

41
59

60
73

76
77

90
97

afl
120

15
95

33
2

126
108

6
12

1
15

10
4

17
2

93
127

baseline
0

10
15

12
6

1
8

7
1

4
0

2
3

2
5

1
6

4
baseline-long

0
120

15
12

6
1

8
7

1
4

0
89

3
2

5
1

6
10

baseline-optim
ized

0
120

15
2

1
0

1
1

0
1

0
1

1
0

9
0

1
1

klee
120

15
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

loop-sym
-initial

10
50

10
15

186
9

1
11

10
2

6
0

167
4

1
7

1
8

179
loop-sym

-initial
5

10
10

15
16

8
1

11
9

2
6

0
150

4
3

7
1

8
14

loop-sym
-interm

ediate
10

50
120

15
13

6
1

8
7

1
4

0
2

3
2

5
1

6
11

loop-sym
-optim

ized
10

50
10

15
15

1
0

1
1

0
1

0
1

1
0

13
0

1
12

loop-sym
-optim

ized
10

50
120

15
10

1
0

1
1

0
10

0
1

1
0

12
0

1
1

Table
A.4:Resultsfrom

running
on

Problem
14.

Program
d

l
m

#err
1

4
7

8
9

12
15

16
17

20
21

24
25

27
28

30
31

33
34

35
38

39
44

46
49

53
54

60
63

64
68

71
72

74
76

78
80

82
84

87
88

89
90

93
94

95
afl

120
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

baseline
0

10
36

-
380

264
189

196
303

426
-

-
101

285
470

252
189

321
-

412
230

491
465

292
-

198
207

103
-

413
203

-
-

-
170

335
364

388
229

271
353

276
-

355
288

258
449

172
240

baseline-long
0

120
40

3549
305

684
166

627
255

131
290

-
506

239
583

212
165

577
-

521
203

350
501

247
-

170
178

356
-

330
175

-
744

-
151

122
294

548
202

225
286

697
320

375
134

220
193

153
660

baseline-optim
ized

0
120

40
168

10
11

5
5

16
16

29
-

25
11

6
7

5
8

-
17

6
11

9
8

-
17

5
11

-
10

5
-

9
-

4
12

9
30

6
7

9
7

10
12

4
7

6
16

7
klee

120
41

882
5

7
4

9
15

6
29

-
5

7
9

6
6

4
-

33
17

28
8

6
-

6
7

5
-

5
16

-
6

2668
7

6
11

7
22

15
8

8
10

3
10

20
15

6
8

loop-sym
-initial

10
50

10
4

-
-

-
-

-
307

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
553

-
-

-
-

-
-

192
-

-
-

-
134

-
-

loop-sym
-initial

5
10

10
7

-
-

-
466

-
-

-
-

-
-

-
-

-
462

-
-

-
-

-
-

-
-

82
-

-
-

-
516

-
-

-
337

-
-

-
-

-
-

-
-

-
-

-
101

350
-

loop-sym
-interm

ediate
10

50
120

45
-

2221
1292

487
512

1659
4257

5237
3576

1272
1513

639
1116

91
4996

3861
2570

906
2883

5085
1564

3715
51

548
92

5437
4267

542
3445

1919
5907

4164
1916

3003
2310

73
122

2034
86

2387
2067

4273
1268

775
309

4519
loop-sym

-optim
ized

10
50

10
44

-
94

213
20

21
64

12
89

145
48

56
12

9
20

71
183

4
28

299
83

59
167

22
248

125
205

114
23

-
276

308
190

82
90

97
212

50
86

9
104

88
56

189
256

16
34

loop-sym
-optim

ized
10

50
120

45
-

88
121

28
230

205
206

83
176

256
71

223
49

28
12

199
4

41
115

79
122

187
142

29
137

303
225

29
2551

78
342

19
12

85
91

120
57

223
59

97
85

226
55

239
204

246

Table
A.5:Resultsfrom

running
on

Problem
15.

Program
d

l
m

#err
0

2
11

12
19

22
23

25
31

35
37

46
50

51
53

56
61

63
66

69
72

76
78

79
85

86
95

96
97

99
afl

120
30

223
2

78
73

91
165

6
60

63
69

77
59

60
73

60
71

8
73

2
60

62
118

82
92

104
178

63
62

77
66

baseline
0

10
30

8
492

1
23

568
19

4
6

19
5

14
566

12
516

1
16

4
24

3
2

21
14

9
23

17
10

22
7

493
439

baseline-long
0

120
30

9
574

515
26

552
22

4
6

21
5

14
16

13
25

1
18

5
28

3
2

23
15

1
26

19
10

24
7

553
8

baseline-optim
ized

0
120

30
1

76
2

4
77

3
84

1
3

1
2

2
2

4
0

3
1

4
1

1
3

2
2

4
3

2
1

1
77

1
klee

120
30

2
2

2
2

4
3

2
2

2
2

6
3

2
2

2
2

2
3

2
1

9
3

2
4

3
2

5
2

2
2

loop-sym
-initial

10
50

10
24

9
-

-
27

-
23

4
6

22
5

15
17

-
25

1
18

5
29

3
2

24
15

1
27

20
11

-
7

-
8

loop-sym
-initial

5
10

10
24

9
-

-
27

-
23

4
6

-
5

15
17

14
26

1
18

5
29

3
2

-
16

1
27

20
11

25
7

-
8

loop-sym
-interm

ediate
10

50
120

30
7

533
276

23
535

20
3

5
19

4
13

14
11

21
0

15
4

24
2

2
590

13
1

23
17

9
5

6
533

7
loop-sym

-optim
ized

10
50

10
30

1
87

78
4

83
3

1
1

3
1

2
2

2
3

0
2

1
4

1
1

3
2

0
4

3
2

1
1

83
1

loop-sym
-optim

ized
10

50
120

30
1

71
1

3
71

2
75

1
2

1
2

2
1

3
0

2
1

3
0

0
2

2
1

3
2

1
1

1
71

1

Table
A.6:Resultsfrom

running
on

Problem
17.

Program
d

l
m

#err
0

1
5

7
12

14
19

23
25

26
29

30
31

34
48

52
53

62
64

65
66

71
72

73
77

79
83

86
91

95
afl

120
30

108
59

2667
1307

41
1232

172
244

166
2366

472
201

1060
69

45
70

107
758

164
241

44
241

1420
347

285
1145

78
1381

2905
788

baseline
0

10
1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
426

-
-

-
-

-
-

-
-

-
-

-
-

-
-

baseline-long
0

120
30

1695
1556

885
1272

3818
1180

3549
1941

3776
1832

1298
1462

1437
1247

2954
431

1794
1606

1645
1740

2946
908

1447
1545

1125
1924

4030
3182

1958
1623

baseline-optim
ized

0
120

30
42

119
20

30
34

28
27

48
33

45
31

36
35

29
49

39
129

39
40

43
36

21
114

38
26

84
40

27
48

40
klee

120
30

39
69

18
42

92
31

50
65

27
39

15
20

18
13

79
49

65
29

48
82

66
63

27
31

27
70

51
14

28
16

loop-sym
-initial

10
50

10
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

loop-sym
-initial

5
10

10
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

loop-sym
-interm

ediate
10

50
120

14
7016

6111
1878

4135
5071

3532
-

-
-

-
-

-
-

-
-

-
-

-
6648

7074
5460

2262
5370

6103
3322

-
938

-
-

-
loop-sym

-optim
ized

10
50

10
25

-
324

138
249

293
213

-
-

277
407

260
-

300
47

431
334

394
335

-
376

309
148

303
322

200
425

343
210

430
340

loop-sym
-optim

ized
10

50
120

30
375

321
134

241
279

207
198

429
270

411
251

290
286

236
433

330
397

964
342

385
297

148
287

320
194

672
341

204
432

38

Table
A.7:Resultsfrom

running
on

Problem
18.

B
Paper Submitted to ICGI 2023

This appendix includes the paper thatwas submitted to the 16th International Conference ofGram-
matical Inference (ICGI).

50

Detecting Changes in Loop Behavior for Active Learning

Detecting Changes in Loop Behavior for Active Learning

Anonymous Author

Editor:

Abstract

In active automaton learning, there is no distinction between transitions that are inside
a loop and those that are not. When using automata to model the behavior of software
systems, it can be useful to add such a distinction because the system’s behavior can
change over the number of iterations through these loops. We introduce a loop equivalence
checker, which focuses on verifying the behavior of loops in a hypothesis model. It detects
changes in behavior after taking many iterations through a loop, requiring very long traces
to execute. We propose two methods to test such traces. Our naive approach simply tests
each iteration of the loop. Our symbolic approach that uses symbolic execution to check all
of these iterations at once. The symbolic approach requires more computation but much
fewer queries to the system under test. Additionally, for some loops, the symbolic approach
can guarantee executing the loop multiple times has no effect on the behavior. We present
results of applying our approaches to problems from the RERS challenge. Compared to
traditional equivalence testing methods such as the W-method, our loop checking finds more
counterexamples, and thus states, for models with loop dependencies. We also applied our
symbolic executor to the RERS challenge, and our method outperforms the state-of-the-art
executor Klee by finding more errors.

Keywords: Active Learning, Equivalence Checker, State Machines, Mealy Machines,
Symbolic Execution, Symbolic Loop Execution, Loop Detection, W-Method

1. Introduction

Active learning has become a key technique for finding behavioral bugs in software systems.
Analyzing models that were learned from software has successfully been used to detect bugs
in real implementations of for instance TLS protocols by (De Ruiter and Poll, 2015) and
(Fiterau-Brostean et al., 2020), SSL (Sivakorn et al., 2017), and openVPN (Daniel et al.,
2018). One of the main hurdles for these learning problems is to efficiently find counterex-
amples to hypothesized models, i.e., to answer equivalence queries. Existing equivalence
checkers such as the W-method (Chow, 1978) focus on equivalence checking of a model
by testing every transition up to a certain depth w. After the W-method terminates, it
guarantees that if the hypothesis is incorrect, the system under learning has at least w more
states than the hypothesis. We propose a new method for answering these queries based
on a pattern commonly observed in software systems: loops. Software often contains loops
that iterate up to a certain limit. In equivalence checks, such loops are verified in the same
manner as any of the other transitions. In software, however, loops tend to behave differ-
ently only after a possibly large number of iterations. We investigate the behavior of loops
to determine the number of iterations required for a behavioral change. Identifying such a
change results in many new states and thus aid the active learning process, see Figure 1.

1

51

Anonymous

s0

i / I
p / P

(a) Change
not found

s0

p / P

s1i / I

p / P

s2i / I

p / P

s3i / I

p / P

s4i / I

p / P

s5i / I

p / error_5

s6i / I

i / I
p / P

(b) Change in loop behavior found

Figure 1: Learned models of the same system. The learning process that produced the left
model was unable to find a change in behavior after 5 iterations through the ‘i ’
loop. The learning process resulting in the right model does capture this behavior.

In this paper, we present two methods to test for looping behavior: Loop-W a straight-
forward adaptation of the commonly used W-method (Chow, 1978), and SymLoop a method
that relies on symbolic execution of an arbitrary number of loop iterations. For the second
method, we make use of instrumentation to keep track of the code and paths traversed by a
system execution. The first method is fully black box and investigates the hypothesis model
to extract looping transitions. We test both methods on problems from the RERS 2020
challenge, which are complex software systems for which the input-output behavior can be
represented using (large) Mealy machines. We implement our new methods as equivalence
checkers in the LearnLib active learning library (Merten et al., 2011) and demonstrate that
our methods improve the performance of active learning on the RERS problems. In addi-
tion, by comparing against the state-of-the-art symbolic execution tools Klee (Cadar et al.,
2008) and JDart (Luckow et al., 2016), we show that SymLoop’s new symbolic execution
of loops typically leads to many more code branches being reached when given the same
run-time limit. This is a very encouraging result, as both of these state-of-the-art tools use
highly optimized interaction with the symbolic solver.

Besides these results, a key contribution of SymLoop is the constraints it uses to ef-
ficiently test for loop execution. Our encoding of the looping path constraints makes it
possible to test for an arbitrary number of loop iterations using a single call to the symbolic
solver. Although this constraint may be large, it is in our experience much more efficient
to use a single call than to call the solver again for every additional iteration. As we show
below, even on simple code examples, state-of-the-art struggles when they need to solve
looping structures.

1.1 Motivation: loops in symbolic execution

There are some limitations in symbolic execution that make the process hard if not infeasible
for larger programs. One of the limiting areas is the path explosion problem (Baldoni et al.,
2018). This often occurs due to programs making use of looping structures. When running
symbolic execution for these structures, each iteration of the loop discovers new paths. With
each conditional statement inside the loop, it also creates new decision points.

2

52 B. Paper Submitted to ICGI 2023

Detecting Changes in Loop Behavior for Active Learning

int main (int argc , char∗∗ args) {
int l im i t = a t o i (args [1]) ; // Target to reach
int i = 0 ; // In t e rna l s t a t e
int j = 0 ; // Loop v a r i a b l e
char symbol ; // Character in input
char∗ t r a c e = args [2] ; // Input : array o f symbols
while ((symbol = t ra c e [j ++]) != 0) { // Get next symbol

i f (symbol == ’ i ’) { i += 1 ; }
else i f (symbol == ’p ’) {

i f (i >= l im i t){ a s s e r t (0) ; }
} else { a s s e r t (0) ; }

}
}

Figure 2: C Program used for comparing Klee (JDart uses similar Java code) and SymLoop.

We have tested two different state-of-the-art symbolic execution tools. The C program
used for Klee (Cadar et al., 2008) can be found in Figure 2. The Java version for running
JDart (Luckow et al., 2016) is semantically equivalent. The program takes an input trace, a
series of symbols, and changes the internal state of the program based on this trace. There
are two possible input symbols: an i or a p. The i symbol increases the internal variable
i by one, whereas the input p checks if the i variable is larger than a specified limit. The
limit is given as an input argument as well, but is constant during the symbolic run. We
use this limit to test the runtime on different input lengths.

The results of Klee and JDart compared to our new method called SymLoop can be
found in figure 3. We included two different runs of SymLoop, in the run denoted by l = 0,
we only skip exploring inputs with self loops and do not unroll the loops. For the run
labeled l = 50, the detected loops are also unrolled for 50 iterations. Where off-the-shelf
symbolic executors like Klee and JDart do not scale, our method is able to reach code that
requires many iterations through a loop. When looking at the log scaled plot, we see that
the runtime of SymLoop with l = 0 grows sub-exponential in terms of the limit, whereas
Klee and JDart appear to be exponential for this use case. SymLoop with l = 50 is able to
find errors more quickly for larger limits. The runtime pattern for l = 50 is due to unrolling
a loop 50 times being expensive when it is not needed, and cheap when it is.

Many software programs contain loops, and even for a relatively low number of itera-
tions of these loops, symbolic execution takes a considerable amount of time to reach errors.
Reaching code and finding bugs that require significantly more iterations of the loop is in-
feasible. Our main contribution is reaching code that requires more iterations of these loops
without inducing a large increase in run time. We expect that adding the SymLoop con-
structions to state-of-the-art symbolic executors will increase their performance on software
containing loops. We leave making such an implementation for future work.

3

53

Anonymous

0 50 100 150 200
0

200

400

600

Limit

T
im

e
(s
)

Klee
JDart

SymLoop l=0
SymLoop l=50

(a) Normal Scale

0 50 100 150 200

10−1

100

101

102

Limit

T
im

e
(s
)

Klee
JDart

SymLoop l=0
SymLoop l=50

(b) Log Scale

Figure 3: Time needed for running symbolic execution on the program from Figure 2 to
find an error for a certain limit. For Klee we stopped running past a limit of 19.
When JDart crashed past a limit of 16, and did not find the error.

2. Related Work

We consider relevant literature in both active learning and symbolic execution. Symbolic
execution is a program analysis technique to test whether certain properties hold for a given
program. A program is initially fed with a seeding input. Symbolic execution keeps shadow
variables of all the expressions and variables in the program. The inputs to the program
are initialized as free variables, to then use a Satisfiability Modulo Theory (SMT) solver
to generate new inputs for the program. Each assignment will add a constraint to the
path constraint. Assigning to a variable is done through static single assignment, for each
new assignment a new shadow variable is introduced. At every branching point along the
current execution path, the solver is invoked. Both the path constraint and the (possibly
negated) branch constraint are given to the solver. The solver will then yield unsatisfiable if
it can not find an input that triggers the opposite path of the branch. If the solver returns
satisfiable, a new input can be retrieved from the solver model. When executing this input,
it will take the opposite branch compared to the current input. The new inputs are added
to a queue and after finishing executing the current input, the next input is executed.

Klee (Cadar et al., 2008) is one of the more used symbolic execution engines. Cadar
et al. noticed that most of the time in symbolic execution is spent on solving SMT queries.
Klee is optimized to reduce the number of calls to the SMT solver, or, if unavoidable, make
the SMT queries simpler. Similarly to Klee, SymCC (Poeplau and Francillon, 2020) also
focuses on reducing the overhead of the solver. Yet the main contribution is to reduce
the overhead of interpreting the code. Instead of interpreting its LLVM IR, SymCC is
implemented as a compiler pass that includes the symbolic execution directly in the program.
Although both Klee and SymCC yield significant speedups, the path explosion itself is not
tackled. Next section lists research into ways of reducing the path explosion problem,
specifically for loops.

Loop Extended Symbolic Execution (LESE) Saxena et al. (2009) introduces sym-
bolic variables for the number of times each loop is executed. These trip counts are linked

4

54 B. Paper Submitted to ICGI 2023

Detecting Changes in Loop Behavior for Active Learning

to the patterns in a predefined input grammar. Traditionally, symbolic execution creates
a path constraint representing a single path that is executed. LESE creates symbolic con-
straints for variables that represent multiple paths through the loop. In their work, they
look for linear relationship between the trip counts. Although the method should work for
the example shown in Section 1.1, the use of an input grammar and only considering linear
relations are limiting.

Efficient Testing of Different Loop Paths by Huster et al. introduced a methodol-
ogy for analyzing multiple different paths through a loop (Huster et al., 2015). By leveraging
static analysis, possible loop paths are extracted from the program. Each loop path or it-
eration includes reads or writes to different variables. The different iterations are combined
to cover different behavior of the loop. If one path only reads from Var1 and modifies Var2,
and another path only reads Var3 and writes to Var4, the execution order of these iterations
does not influence the final result. By analyzing the read and writes for each iteration, they
can create combinations of these iterations that affect each other. The results show that
this approach is able to cover code with loops more effectively.

Efficient Loop Navigation for Symbolic Execution Obdržálek and Trt́ık (2011) is
another method that tackles the same problem. Our example shown in section 1.1 closely
resembles their example. Their approach creates chains and constraints representing ex-
ecuting loops based on loop counters. When solving for new paths which might require
iterations through the loop, the system checks whether incrementing any of the loop coun-
ters improves the current solution. This process allows them to reach branches which require
more loop iterations.

Angluin introduced the minimally adequate teacher (MAT) framework for learn-
ing a deterministic finite automaton (DFA) from a system (Angluin, 1987). The core of the
MAT framework is a teacher and a learner. The learner constructs a hypothesis model based
on membership queries. When it constructs a hypothesis model, the teacher is invoked to
perform an equivalence query. The teacher verifies whether the system under learn matches
the hypothesis model. If the teacher finds an inconsistency, a counterexample is returned
to the learner to form a new hypothesis model. This process continues until the teacher can
not find a counterexample for the current hypothesis. The hypothesis is then output as the
final model. In the same paper, Angluin introduced the L∗ learning algorithm. Since the
introduction of this algorithm, new methods have been proposed to reduce the runtime, the
memory overhead or the number of membership queries to learn a model.

TTT was introduced by Isberner et al. to reduce redundancy in the observation table
of L∗ by keeping track of a discrimination tree and a discriminator trie for storing the
discriminators. This results in a significant reduction in memory and also reduces the
number of membership queries necessary to construct hypotheses.

Recent work by Vaandrager et al. introduces a new learning algorithm called L#.
Instead of keeping track of an additional data structure such as an observation table, it
directly constructs and operators on a partial mealy machine that includes all observations.
Instead of focussing on equivalence, their work uses apartness. When two states are apart,
the states are distinct in the hypothesis model. Apartness denotes a conflict in semantics.
Their results show that L# is not strictly better than other method such as TTT by needing
a comparable number of membership queries. Their method outperforms state-of-the-art
algorithms by requiring fewer number of symbols for learning.

5

55

Anonymous

Equivalence Methods In MAT learning, to check if a hypothesis is correct, an equiv-
alence checker is needed. The most common equivalence checker is the W-method by
Chow. The W-method verifies a hypothesis model by taking the access sequence (A) of
each state, all possible sequences of length w over the input alphabet, where one of them is
denoted by W and all distinguishing traces of the model, where one is denoted D. These
three parts are concatenated, and each sequence A·W ·D is checked for equivalence with the
model. Checking a single trace is done by resetting the system under learn and running the
trace, if the output of the system matches the output of running that same trace through
the model, the model matches the system. If the outputs do not match, a counterexample
is found and the trace is given back to the learner to refine the hypothesis.

Using Adaptive distinguishing sequences (ADTs) (Hierons et al., 2008), the total
number of queries can be reduced. Whereas non-adaptive methods use all distinguishing
sequences of a model, adaptive sequences check the behavior under the assumption that the
system under learn is in the expected state. Additionally, there exists models for which a
preset distinguishing set cannot be found.

3. Loop Equivalance Checking

During equivalence checking in active learning, finding counterexamples is crucial to be
able to update the hypothesis of the learner. In this paper, we focus on checking the
loops in a hypothesis model. We propose two methods to perform this check: asking many
membership queries by combining unrolled loops with equivalence queries: the Loop-W-
method, and symbolically executing the loop (requiring no membership queries): SymLoop.
In theory, we only require a single symbolic test, which guarantees the system behaves
the same no matter how many iterations the loop is executed. In practice, we split large
conjunctions into separate calls to an SMT solver.

3.1 The Loop-W-method

The W-method is not able to efficiently find counterexamples for systems that require
multiple iterations through a loop before showing different behavior. To illustrate, let d be
the number of inputs that are in the loop, and let n be the number of iterations through
the loop before it shows different behavior for one of the distinguishing traces. Let I denote
the number of symbols in the input alphabet and s the number of states in the hypothesis.
Note that s also denotes the number of access sequences and the number of distinguishing
traces. The W-method requires a depth of at least d×n. To find a counterexample for such
a loop then requires s× Id×n×s membership queries, with the average at half that amount.

To reduce the amount of queries necessary for equivalence checking for loops, we intro-
duce the Loop-W-method. This method requires an additional parameter l. The parameter
l denotes up to which depth, the number of iterations, a looping is checked. For each loop
in the hypothesis model and for each distinguishing sequence, the access sequence: A, the
loop sequence: L, and the distinguishing sequence D are concatenated. This forms the
sequence A ·L ·D. This sequence needs to be formed for all the iterations through the loop
up to depth l: A · Li · W · D ∀ i ∈ [1..l]. If checking any of these sequences results in an
output that does not match the hypothesis, it is returned as a counterexample.

6

56 B. Paper Submitted to ICGI 2023

Detecting Changes in Loop Behavior for Active Learning

3.2 SymLoop

Learning models for systems where the source code is available allows additional techniques,
since the system is no longer a black box. Instead of the naive approach of checking every
iteration of a loop, we can use dynamic analysis techniques like symbolic execution. This
allows detecting behavioral changes of systems after a number of iterations through a loop.

3.2.1 Execution Model

For the symbolic equivalence checker, we assume the execution model of the programs
under learn. The execution model follows the input-output pattern of Mealy Machines.
The program must contain one core loop that retrieves the input and produces an output.
The program repeats this loop. An invalid input or reaching the end of the input will cause
the program to terminate. In each input-output cycle, the internal state of the program
may change. All operations are deterministic, so running the program again with the same
input will yield the same output. The inputs are symbols from a fixed alphabet.

We based the execution model on the RERS Challenges (Jasper et al., 2019; Howar et al.,
2021). The challenges are built to encourage combining research fields for better software
verification. The problems are generated to be realistic problems of scalable complexity.
Due to our execution model assumptions, we can form path constraints for a single iteration
through the input-output loop. These loop constraints represent following a specific loop
path through the program.

3.2.2 Self loops

When a loop path contains no assignments, the internal state of the system does not change.
Repeating the same symbol will yield the same output. Loop paths with assignments that
keep the variables at the end of the loop in the same state as before inputting the symbol,
have no effect as well. In both cases, the symbol that excites this behavior must be self-loops
in a learned model. The same process can be done for loops over multiple symbols. The
loop constraint then captures a path over multiple iterations through the input-output loop
in the program.

To detect self loops using symbolic execution, the path constraint and a special self loop
constraint can be given as a formula to the SMT solver. The self loop constraint checks
whether there are no changes to the internal state. The self loop constraint can be formed
as follows. Let a, b · · · z denote all variables in the internal state. The symbolic shadow
variables representing their respective values before executing the loop are a, b, · · · z. With
a, b, · · · z being their symbolic values after the loop (note that for any variable that is not
assigned, these are already equivalent). The self loop constraint is defined as a = a ∧ b =
b ∧ · · · ∧ z = z. A self loop exists if the path constraint, including the loop constraint, in
conjunction with the self loop constraint is satisfiable.

3.2.3 Repeatable loop paths

Some loop paths do contain assignments that change the internal state, yet still allow
repeating the same loop path. To detect changes in behavior after repeating this loop a
certain number of times, we form a constraint that represents executing this loop multiple

7

57

Anonymous

times. This constraint is created from the loop constraint. With a through z denoting
the internal variables, the loop constraint contains expressions over these variables and the
input. For a loop to be repeatable, the loop constraint that follows the loop path must still
be satisfiable after going through the loop once. To verify this, create an extended loop
constraint. The extended loop constraint is created from a copy of the loop constraint.
Due to the use of static single assignment, every variable that is reassigned in the loop
path needs to be updated to reflect its current value. For example: the loop constraint
i1 > 1 ∧ k1 = k0 + 1 represents a path with a branch where the input variable i must
be greater than 1 and the variable k is increased by one. The extended loop constraint
then becomes i2 > 1 ∧ k2 = k1 + 1. For the general construction of the extended loop
constraint, we introduce some additional notation. Let P denote the loop constraint to be
extended. Let [a/b]X denote substituting every a with b in X. And let â, b̂ · · · ẑ denote
the number of reassignments in the loop path to variables a, b · · · z respectively. The loop
constraint can then be updated using [ai/ai+â, bj/bj+b̂, · · · , zk/zk+ẑ]P to form the extended
loop constraint.

If the current path constraint, including the loop constraint, in conjunction with the
extended loop constraint, is satisfiable, the same path through the loop can be repeated
once more. To create a loop constraint that represents executing this loop an arbitrary
amount, up to a specified limit l, repeat the substitution process l times and check for sat-
isfiability. This repeated substitution generates the unrolled loop constraint. The unrolled
loop constraint is shown in equation 1.

[ai/ai+1∗â, bj/bj+1∗b̂, · · · , zk/zk+1∗ẑ]P ∧

[ai/ai+2∗â, bj/bj+2∗b̂, · · · , zk/zk+2∗ẑ]P ∧
...

[ai/ai+l∗â, bj/bj+l∗b̂, · · · , zk/zk+l∗ẑ]P

(1)

Choosing the right value for l is however still a non-trivial decision. After continuing
symbolic execution with the unrolled loop constraint added to the path constraint, only
the right choice for l leads to generating inputs that trigger different branches. To solve
having to decide on the exact number of iterations through the loop, we add an iteration
constraint. This iteration constraint allows further symbolic execution to use any number
of iterations through the loop, up to the limit l. In the iteration constraint, all variables
need to be equal to their respective symbolic values in one of the iterations through the
loop. Equation 2 defines this relation.

(j = 1 ∧ ak+0∗â = af ∧ bk+0∗b̂ = bf ∧ · · · ∧ zl+0∗ẑ = zf) ∨
(j = 2 ∧ ak+1∗â = af ∧ bk+1∗b̂ = bf ∧ · · · ∧ zl+1∗ẑ = zf) ∨

...

(j = l ∧ ak+(l−1)∗â = af ∧ bk+(l−1)∗b̂ = bf ∧ · · · ∧ zl+(l−1)∗ẑ = zf) ∨

(2)

Variables af through zf represent the symbolic values of variables a through z after
executing this loop up to l times. The iteration constraint also includes the variable j to
allow easy access to the number of iterations that is required to visit a specific branch after
getting a satisfiable model from the solver.

8

58 B. Paper Submitted to ICGI 2023

Detecting Changes in Loop Behavior for Active Learning

3.2.4 Using SymLoop as equivalence test

Checking for self loops is done by generating the access trace to one of the states in the loop
and the subsequent symbols to execute this loop. The access sequence and loop symbols
are then run by the symbolic executor. The symbolic executor collects the path constraint
from the looping part. This loop path can then be checked for a self loop. If the loop path
is a self loop, the model is correct for this loop and no counterexample can be found.

When the loop path is not a self loop, the unrolled loop and iteration constraints are
created according to section 3.2.3 to depth l. These are added to the current path constraint.
Afterward, for each distinguishing trace of the hypothesis, its path constraint is collected by
running ‘access sequence · loop sequence · distinguishing sequence’. This results in the path
the distinguishing trace takes after one iteration through the loop. The path constraint
consists of two types of constraints. Constraints that originate from assignment statements
and constraints that originate from branch conditions. These constraints are separated
based on their types in to two different constraints, the assignment constraint and the
branch constraint. The branch constraint is then negated. The assignment constraint, the
negated branch constraint and the path constraint created by running the loop once and
adding the unrolled loop constraint get conjuncted together and given to the solver. If the
solver finds a satisfiable model, the distinguishing trace follows a different path in one of
the iterations. The trace then shows different behavior for this distinguishing trace after
executing the loop a number of times1. The input that forms a counterexample for this
loop is reconstructed from the model. The counterexample allows the learner to update
the hypothesis. If none of the distinguishing traces yields a counterexample, the loop in
the model are indistinguishable up to depth l. For each tested loop, this check calls the
symbolic executor once for each distinguishing trace.

4. Experiments

We use the RERS challenges from 2020 for the experiments. The RERS challenge includes
multiple problem categories, where the LTL problems lend themselves better for active
learning. However, the LTL problems of 2020 are too simple and can be learned with W-
method equivalence checkers with a shallow depth. This paper focuses on the reachability
problems that require more sophisticated methods to find counterexamples of hypothesis
models. We use problems 11 through 18 for symbolic execution2 and problems 12, 13 and
15 for active learning.

To verify our methodologies for symbolic execution and active learning, we set up three
different experiment. In the experiments for symbolic execution, we only focus on getting
more coverage, whereas in the active learning experiment, learning models is the goal.

1. Difference in path does not necessarily mean different behavior. You can construct two paths with
equivalent behavior. However, in our experiments this never occurred.

2. We were unable to run on Problem 16, as the instrumentation would cause the Java methods to exceed
the maximum size. Splitting the methods could resolve the issue.

9

59

Anonymous

4.1 Symbolic execution

We built a symbolic execution engine called SymLoop that instruments Java source files to
keep track of the symbolic values of each concrete variables. Z3 (de Moura and Bjørner,
2008) is used to answer any SMT queries. SymLoop detects loops by creating the extended
loop constraints, and checks if it is self looping. Traces with self loops are skipped. If
the loop is not a self loop, it creates the extended loop constraint and iteration constraint
and adds these to the current path constraint. The symbolic execution then continues as
normal. Continuing allows future solver queries to use one of the loop iterations. To speed
up the symbolic execution, the executor evaluates expressions without symbolic values to
constants. We use a simple heuristic to choose which input to run next. Any input which
covers an unvisited branch takes precedence. If two inputs both cover new branches or both
cover no new branches, shorter inputs are run first. Ties are handled by taking inputs that
have been generated first. To compare our symbolic execution engine, we can also disable
the loop detection and loop unrolling for a more traditional symbolic execution approach,
we call this version the baseline. Additionally, we ran Klee for the same amount of time.
During symbolic execution, we keep track of the errors found by each tool.

4.2 Model Learning

We implemented the Loop-W-method as an equivalence checker in the LearnLib framework
(Merten et al., 2011; Raffelt et al., 2005). When the equivalence checker gets a new model
to verify, it generates the set of distinguishing traces for the model. To generate the set
of distinguishing traces, we use the existing functionality from LearnLib. The equivalence
checker finds all loops in the hypothesis model. To reduce the number of loops to check,
we only consider cycles, loops where only the first and last nodes of the loop are equal,
while all the other nodes are unique. A Depth-first search (DFS) finds these circuits. After
finding the loops, each loop is checked by concatenating the access sequence A with the
loop sequence L and one of the distinguishing sequence D. This is repeated for each of the
distinguishing sequences. If this does not yield a counterexample, the loop sequence L is
added once more to get A · L · L ·D and to check for equivalence. This process is repeated
until a counterexample is found, or the specified depth limit l is reached.

For the symbolic equivalence checker, we implemented the methodology outlined in
Section 3.2.4. SymLoop collects the path constraint, checks for self loops and generates the
unrolled loop constraint before checking each distinguishing sequence. We ran the learning
process using the three separate equivalence checkers. The standard W-method, the naive
Loop-W-method and the symbolic method for verifying loops. For the learner, we used the
TTT algorithm of LearnLib. The next section shows the results.

5. Results

5.1 Symbolic Execution

For the RERS Challenges, the results of running symbolic execution for 2 hours can be
found in table 1. On problems 11, 14, 17 and 18, there is no difference in the number of
unique errors found. For problem 12, 13, and 15, there are differences. For these problems,
we plotted the number of errors found over time in figure 5.1. All methods quickly find the

10

60 B. Paper Submitted to ICGI 2023

Detecting Changes in Loop Behavior for Active Learning

0 2,000 4,000 6,000
0

5

10

15

Time (s)

E
rr
or
s

Problem 12

0 2,000 4,000 6,000
0

10

20

30

Time (s)

Problem 13

0 2,000 4,000 6,000
0

20

40

Time (s)

Problem 15

Klee
Baseline
SymLoop

Figure 4: Number of errors found over time on the RERS problems. We have run all
methods for 2 hours. SymLoop was run with a detection depth of 10 and a loop
unroll amount of 50.

P11 P12 P13 P14 P15 P17 P18

Baseline 18 16 23 15 40 30 30
Klee 18 16 25 15 41 30 30
SymLoop 18 17 35 15 45 30 30

Table 1: Results of running symbolic execution for 2 hours on the RERS problems 11
through 18, excluding 16. Each row represent a different symbolic executor. For
each executor, the table shows the number of unique errors found per problem.

bulk of the errors, however SymLoop is able to find more errors. On problem 12, the 17th
error is found within 5 minutes, where Klee and the baseline do not find this error within
the 2-hour time limit. Although SymLoop finds more errors, on both problem 13 and 15,
the baseline and Klee are able to find an error that SymLoop did not find.

5.2 Model Learning

We have learned models for problems 12, 13, 15 and 17 of the RERS challenges. Our method
stacks the W-method with depth 1, and the symbolic loop detector with a maximum loop
size of 10 input symbols and an unrolled loop depth of 50. This is represented as the
‘W1’ for W-method with depth 1, and ‘Symb D10L50‘ respectively. We have run the same
experiment using a W-method with a W of 10 and the Loop-W-method. We let the methods
run for 5 days before stopping them manually. Table 2 shows the number of states for each
of the models. Due to the complexity of the problems, only problem 17 yielded an equivalent
number of states for each method. On problems 12 and 13, the W-method did not find
many states, whereas the both SymLoop and Loop-W were able to find counterexamples
for the hypothesis. As we have shown, loop equivalence checking can result in models with
more states. An important observation is that the symbolic equivalence checker is only

11

61

Anonymous

P12 P13 P15 P17

W10 137 99 507 743
W1 + SymLoop D10L50 11513 7125 483 743
W1 + Loop-W D10L50 9838 2380 266 743

Table 2: Results of learning models of the RERS problems. Each row represent a different
equivalence checker. For each equivalence checker, the table shows the number of
states found per problem. The methods were run for 5 days, or until they finished.

invoked a few times for each problem, and the preceding W-method with a depth of 1 found
most counterexamples. When comparing SymLoop to Loop-W, SymLoop was able to find
more states while requiring fewer membership queries.

6. Conclusions and future work

We have developed an extension for symbolic execution to cover paths that require many
iterations through a loop. Our results for running SymLoop on the RERS challenges of
2020 show that our method is able to find more errors than the state-of-the-art symbolic
executor Klee.

Current methods for equivalence checking do not treat loops differently than other tran-
sitions. In some systems, these loops can show different behavior. We propose the loop
equivalence checker for checking the behavior of the system after many iterations through
loops. In black box scenarios, the Loop-W-method can be applied. For systems where
path constraints can be collected, the SymLoop equivalence checker can verify the behavior
and guarantee equivalent behavior for self-loops. For systems where running membership
queries are costly, symbolic execution reduces the cost associated with model checking. Ad-
ditionally, symbolic execution can detect changes in paths through the system, whereas the
Loop-W-method can only detect changes through the output. Our results show that our
methods are able to uncover significantly more states when comparing it to the traditional
W-method for learning models of the RERS problems.

For symbolic execution for loops, we assumed properties about the execution model.
SymLoop was built as a research prototype with the goal of testing our methodology. Future
research could generalize the execution model to detect, unroll and create constraints for
loops in any software program.

The current learner methods do not handle counterexamples from loops differently from
other counterexamples. If a loop must be unrolled to show different behavior after a number
of iterations, most of the behavior can be transferred from the existing loop in the model. A
learner that uses this knowledge can create a new hypothesis while needing less membership
queries for the system under learning.

12

62 B. Paper Submitted to ICGI 2023

Detecting Changes in Loop Behavior for Active Learning

References

Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, November 1987. ISSN 08905401. doi: 10.1016/0890-5401(87)
90052-6. URL https://linkinghub.elsevier.com/retrieve/pii/0890540187900526.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finoc-
chi. A survey of symbolic execution techniques. ACM Computing Surveys (CSUR), 51
(3):1–39, 2018. Publisher: ACM New York, NY, USA.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, and others. Klee: unassisted and auto-
matic generation of high-coverage tests for complex systems programs. InOSDI, volume 8,
pages 209–224, 2008.

T.S. Chow. Testing Software Design Modeled by Finite-State Machines. IEEE Transactions
on Software Engineering, SE-4(3):178–187, May 1978. ISSN 1939-3520. doi: 10.1109/
TSE.1978.231496. Conference Name: IEEE Transactions on Software Engineering.

Lesly-Ann Daniel, Erik Poll, and Joeri de Ruiter. Inferring openvpn state machines using
protocol state fuzzing. In 2018 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 11–19. IEEE, 2018.

Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakr-
ishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis
of Systems, Lecture Notes in Computer Science, pages 337–340, Berlin, Heidelberg, 2008.
Springer. ISBN 978-3-540-78800-3. doi: 10.1007/978-3-540-78800-3 24.

Joeri De Ruiter and Erik Poll. Protocol state fuzzing of TLS implementations. In 24th
USENIX Security Symposium (USENIX Security 15), pages 193–206, 2015.

Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri De Ruiter, Konstantinos Sago-
nas, and Juraj Somorovsky. Analysis of dtls implementations using protocol state fuzzing.
In 29th USENIX Security Symposium, Online, August 12–14, 2020, pages 2523–2540,
2020.

Robert M. Hierons, Guy-Vincent Jourdan, Hasan Ural, and Husnu Yenigun. Using adaptive
distinguishing sequences in checking sequence constructions. In Proceedings of the 2008
ACM symposium on Applied computing, SAC ’08, pages 682–687, New York, NY, USA,
March 2008. Association for Computing Machinery. ISBN 978-1-59593-753-7. doi: 10.
1145/1363686.1363850. URL https://doi.org/10.1145/1363686.1363850.

Falk Howar, Marc Jasper, Malte Mues, David Schmidt, and Bernhard Steffen. The RERS
challenge: towards controllable and scalable benchmark synthesis. International Journal
on Software Tools for Technology Transfer, 23(6):917–930, 2021. Publisher: Springer.

Stefan Huster, Sebastian Burg, Hanno Eichelberger, Jo Laufenberg, Jürgen Ruf, Thomas
Kropf, and Wolfgang Rosenstiel. Efficient Testing of Different Loop Paths. In Radu
Calinescu and Bernhard Rumpe, editors, Software Engineering and Formal Methods,
Lecture Notes in Computer Science, pages 117–131, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-22969-0. doi: 10.1007/978-3-319-22969-0 9.

13

63

Anonymous

Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm: a redundancy-
free approach to active automata learning. In International Conference on Runtime
Verification, pages 307–322. Springer, 2014.

Marc Jasper, Malte Mues, Alnis Murtovi, Maximilian Schlüter, Falk Howar, Bernhard
Steffen, Markus Schordan, Dennis Hendriks, Ramon Schiffelers, Harco Kuppens, and
Frits W. Vaandrager. RERS 2019: Combining Synthesis with Real-World Models. In
Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen, editors, Tools and
Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, pages 101–115, Cham, 2019. Springer International Publishing. ISBN 978-3-030-
17502-3. doi: 10.1007/978-3-030-17502-3 7.

Kasper Luckow, Marko Dimjašević, Dimitra Giannakopoulou, Falk Howar, Malte Isberner,
Temesghen Kahsai, Zvonimir Rakamarić, and Vishwanath Raman. JDart: A Dynamic
Symbolic Analysis Framework. In Marsha Chechik and Jean-François Raskin, editors,
Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science, pages 442–459, Berlin, Heidelberg, 2016. Springer. ISBN 978-3-662-
49674-9. doi: 10.1007/978-3-662-49674-9 26.

Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. Next Generation
LearnLib. In Parosh Aziz Abdulla and K. Rustan M. Leino, editors, Tools and Algorithms
for the Construction and Analysis of Systems, Lecture Notes in Computer Science, pages
220–223, Berlin, Heidelberg, 2011. Springer. ISBN 978-3-642-19835-9. doi: 10.1007/
978-3-642-19835-9 18.

Jan Obdržálek and Marek Trt́ık. Efficient Loop Navigation for Symbolic Execution. In
Tevfik Bultan and Pao-Ann Hsiung, editors, Automated Technology for Verification and
Analysis, Lecture Notes in Computer Science, pages 453–462, Berlin, Heidelberg, 2011.
Springer. ISBN 978-3-642-24372-1. doi: 10.1007/978-3-642-24372-1 34.

Sebastian Poeplau and Aurélien Francillon. Symbolic execution with ${$symcc$}$: Don’t
interpret, compile! In 29th USENIX Security Symposium (USENIX Security 20), pages
181–198, 2020.

Harald Raffelt, Bernhard Steffen, and Therese Berg. LearnLib: a library for automata learn-
ing and experimentation. In Proceedings of the 10th international workshop on Formal
methods for industrial critical systems, FMICS ’05, pages 62–71, New York, NY, USA,
September 2005. Association for Computing Machinery. ISBN 978-1-59593-148-1. doi:
10.1145/1081180.1081189. URL https://doi.org/10.1145/1081180.1081189.

Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. Loop-extended
symbolic execution on binary programs. In Proceedings of the eighteenth international
symposium on Software testing and analysis, pages 225–236, 2009.

Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D Keromytis, and Suman Jana.
Hvlearn: Automated black-box analysis of hostname verification in ssl/tls implementa-
tions. In 2017 IEEE Symposium on Security and Privacy (SP), pages 521–538. IEEE,
2017.

14

64 B. Paper Submitted to ICGI 2023

Detecting Changes in Loop Behavior for Active Learning

Frits Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wißmann. A new ap-
proach for active automata learning based on apartness. In Tools and Algorithms for
the Construction and Analysis of Systems: 28th International Conference, TACAS 2022,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceedings, Part I, pages 223–243.
Springer, 2022.

15

65

	Introduction
	Problem Statement
	Motivation
	Active Learning

	Research Questions
	Contributions
	Outline

	Background and Related Work
	Automated Vulnerability Discovery
	White-, Grey- and Black-box

	Types of Faults
	Fuzzing
	SAT and SMT Solver
	Symbolic Execution
	Variable Assignment
	Conditional Statements
	Input Queue
	Path Explosion
	Source Code, Intermediate Representation or Binary
	External environment
	Advancements in Solvers

	Automata Learning
	Definitions
	L* Learning Algorithm
	TTT

	Answering Conjectures
	Distinguishing Sequences
	W-method
	L* for Mealy Machines

	RERS Challenge
	Loop Summarization
	Related Work
	Model Learning with fuzzing
	Model Learning by Apartness

	Research Gap
	Issues of Existing Approaches
	Position of Our Approach

	Execution Model
	Detecting Loop Structures
	Detecting the Loop
	Source Analysis
	CFG Analysis
	Stack-Based Detection
	Execution Model

	Repeatable Path
	Self Loop
	Multiple Loop Iterations
	Conclusion

	Loop Generalization
	Generalizing Repeated Addition
	Generalization
	Forming the Input
	Loop Generalization

	Initial Experiments
	Dealing with Non-generalizable Loop Paths
	Assignments to Multiple Variables
	Multiple Assignments to Multiple Variables

	Conclusion

	Loop Structures in Symbolic Execution
	Iteration Constraint
	Assignments to Multiple Variables
	Multiple Assignments to Multiple Variables

	Conclusion

	Symbolic Execution Experiments
	Extension to Klee
	LLVM IR Symbolic Executor
	Building SymLoop
	SymLoop

	Setup of Running SymLoop
	Results of Running SymLoop

	Improvements
	Results of Running Improved SymLoop

	Increasing the Time Limit
	Limitations
	Optimizations
	Conclusion

	Learning State Machines
	Loop-W-Method
	Complexity

	Symbolic Execution for Testing Loop Equivalence
	Experiment Setup
	Conclusion

	Results
	Running the Initial Problem
	RERS Challenges
	Analysis of Results

	Active Learning

	Conclusion
	Research Questions
	Future Work

	Glossary
	Acronyms
	RERS Results
	Paper Submitted to ICGI 2023

