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S U M M A R Y 

A novel time-lapse modelling scheme for airborne electromagnetic (AEM) monitoring data sets 
is presented, using data from multiple surveys applied to study the hydrorelated evolution of 
the Bookpurnong floodplain in South Australia. Additionally, it introduces a new wide-ranging 

approach for this type of study, incorporating new processing, validation and interpretation 

tools. 
Time-lapse studies are widespread in the literature but are not commonly applied to model 
electromagnetic (EM) data, particularly AEM data. This is linked to the challenges of per- 
forming overlapping data acquisition with inductive systems. The key features of the present 
time-lapse scheme include the definition of independent forward and model meshes, essen- 
tial for considering discrepancies in the location of soundings which arise in multitemporal 
AEM data acquisition. Moreover, the incorporation of system flight height in the inversion 

revealed important for achieving satisfactory data fitting and limiting artifact propagation in 

the time-lapse models. 
A novel processing workflow for AEM multitemporal data sets is also presented. This has 
proven important for effectively processing the multitemporal data sets, which presents new 

challenges in identifying noise coupling arising from the use of different systems across 
vintages of data, possible variations in acquisition settings operated by different field crews, 
and changes in subsurface resistivity in the survey area. Results generated from the time-lapse 
modelling are evaluated with an independent hydrogeological validation (IHV), designed 

to support the geophysical models validation and interpretation by providing a first-step 

hydrogeological evaluation. 
At Bookpurnong, along a sector of the Murray River floodplain, multitemporal AEM surveys 
were collected in 2015, 2022 and 2024, to study natural and engineered changes in the 
groundwater system over time. The time-lapse models show significantly smaller variations 
compared to those determined with individually modelled survey data sets, while delineating 

sharply bounded changes in resistivity across the floodplain. This highlights the effectiveness 
of the new time-lapse scheme in minimizing inversion variations typically encountered with 

independently modelled results affected by larger equivalence issues. 
Here, AEM models are first compared with resistivity borehole measurements, revealing a 
close match between the two methodologies and spatial variations in resistivity consistent with 

a meandering river across the floodplain. These variations are further validated and interpreted 

using the IHV approach, which revealed a direct correlation between the hydrological stress of 
the Murray River and the response of shallow aquifers. Additionally, time-lapse geophysical 
models, combined with a hydrostratigraphic analysis, allow for a direct correlation between 

shallow and deep hydrogeological responses. 
We believe that the time-lapse methodology described here can be widely applied to multitem- 
poral studies using AEM data sets, enabling the study of a broad range of natural processes 
with great accuracy and at the basin scale. 

C© The Author(s) 2025. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access
article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 1
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1  I N T RO D U C T I O N  

Airborne electromagnetic (AEM) surveys have seen growing application in recent years for environmental and hydrogeological studies 
(see, for example, Viezzoli et al. 2009 ; Knight et al. 2018 ; Goebel et al. 2019 ; Chandra et al. 2019 , 2021 ; Dumont et al. 2021 ; Minsley
et al. 2021 ) demonstrating their ability to effectively characterize subsurface electrical properties across large areas with everimproving 
precision. An overview on AEM for environmental, geotechnical and hydrogeological applications is provided by Auken et al. ( 2017 ). AEM
systems enable the collection of data over hundreds of line kilometres in a single day, with measurements typically taken every few tens of
metres and reaching depths of several hundred metres. Fur ther more, improvements in system accuracy and data repeatability, both crucial in
multitemporal geophysical analysis, now permit the consistent detection of the subsurface with sufficient precision to capture subtle changes 
over time. This is par ticularly impor tant in hydrogeophysical studies at the basin scale, where imaging hydrogeologically related processes
with appropriate resolution is crucial. 

Geophysical temporal studies have evolved from traditional comparison of separate inversions to time-lapse frameworks: They aim to 
emphasize data-driven changes in the models while minimizing variations caused by noise, inversion artifacts and limiting equivalences issues. 
Various time-lapse modelling procedures have been proposed in the literature, often employing specialized noise cancellation techniques. 
Examples include the ratio inversion (Daily et al. 1992 ), the cascaded inversion (Oldenborger et al. 2007 ; Miller et al. 2008 ) and the difference
inversion (LaBrecque & Yang 2001 ).More recently, time-lapse approaches have been developed to integrate two or more time steps into a
simultaneous inversion, incorporating all data sets within a unified framework (e.g. Kim et al. 2009 ; Hayley et al. 2011 ; Karaoulis et al.
2011a , b ). Despite the considerable time since the introduction of time-lapse techniques, examples detailing the application of AEM in such
studies remains scarce in the literature (e.g. Beamish & Mattsson 2003 ; Hauser et al. 2025 ). 

Several practical factors have limited the application of AEM for monitoring compared to, for instance, multitemporal galvanic studies. 
These include the relatively high cost of AEM surveys, the challenges in precisely matching EM sounding locations between repeated surveys,
changes in flight heights as well as the use of different EM systems and variations in their configuration and field operation. 

Additionally, the limited availability of modelling codes capable of handling AEM time-lapse data has likely hindered the broader 
adoption of such approaches. The constrained development of such tools likely stems from the inherent challenges of time-lapse AEM
inversion, which demands forward algorithms that properly model the different AEM system characteristics so that subtle changes in the
subsurface are detectable. While major variations can often be captured without time-lapse approaches, detecting small, yet meaningful, 
differences requires that only data-driven changes are reflected in the results. Ultimately, the sensitivity to such subtle variations should be
limited by the resolution of the AEM system itself and not by the modelling accuracy . 

To address the issue of limited tools for time-lapse inversion, we propose a novel, simultaneous, time-lapse inversion scheme tailored for
AEM applications that can handle multitemporal and multisystem acquisitions presenting discrepancies in EM sounding locations and flight 
heights. Together with this inversion scheme, we present a dedicated processing workflow for AEM monitoring data, aiming for consistent
and efficient multitemporal data set processing. 

These inversion and processing schemes are applied to an AEM monitoring data set composed of three surveys (approximately 20 km2 

in extent each), conducted with different SkyTEM time domain EM systems (Sorensen & Auken 2004 ) over the Bookpurnong floodplain in
South Australia. The goal of this study was to understand water quality exchanges over time between the highly saline aquifers and the Murray
River as it meanders through its floodplain. We reached this goal, not only by analysing the geophysical results themselves, but also through
an Independent Hydrogeological Validation (IHV). The IHV is a novel operational tool intended to bridge geophysics and hydrogeology 
and, in this study, to validate the time-lapse models in addition to the more traditional approach using borehole resistivity measurements.
Within the IHV, the Murray River streamflow and water quality trends are analysed, providing insights into their impact on the underlying
hydrogeological system. 

In the following, the time-lapse modelling strategy for the geophysical data is presented first, followed by its application to the
Bookpurnong study. Before presenting and validating the temporal evolution of this site, its hydrostratigraphic description is provided. 

2  M O D E L L I N G  S T R AT E G Y  

2.1 Geophysical modelling 

The time-lapse inversion of AEM data in this work is carried out within the EEMverter (Fiandaca et al. 2024 ), in a simultaneous process in
which all different data sets are inverted at once, with a data space d defined as 

d = [
d1 , · · · , dNTL 

]
(1) 

in which di represents the i -th data sets and NTL represents the number of different time-lapse data sets. 
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Figure 1. Model and forward mesh architecture for time-lapse modelling in EEMverter, where identical model meshes (3-D grey meshes) are defined and 
linked to their corresponding irregularly distributed forward meshes (1-D red meshes) through interpolation. The sketch highlights also the two types of mesh 
regularization applied: vertical/horizontal intramodel constraints (yellow lines and labels) and temporal model constraints (black lines and labels). 
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For each data set di , a corresponding model vector Mi is defined, with the whole inversion model space defined as: 

M = [
M1 , · · · , MNTL 

]
(2) 

Each model Mi contains two types of inversion parameters, the resistivity and the flight height: the resistivity is defined on a regular
esh, while the flight height is defined sounding-by-sounding. The inclusion of the flight height in the inversion process can be of great help

or obtaining acceptable misfit and/or models in the time-lapse inversion, particularly in low-resistivity environments. In such environments,
 small error in the height estimation can lead to shallow time-lapse artifacts and/or in worsening data fitting, with typical airborne height
easurements accuracy ranging between 0.3 and 1 metre, depending for instance on the system pitch angle. 

The regular mesh for the definition of resistivity is then linked to a forward mesh for forward/Jacobian computations, following the
pproach presented for instance in Christensen et al. ( 2017 ) for 1-D EM computations and in Zhang et al. ( 2021 ), Engebretsen et al. ( 2022 )
nd Xiao et al. ( 2022b ) for 3-D EM computations. The link between inversion meshes (hereafter named model meshes) and forward meshes
s obtained through an interpolation: the inversion parameters M (i.e. resistivity in this study) are defined in the model meshes and then
nterpolated onto the forward meshes (with m indicating the interpolated parameters), for the computation of forward response and Jacobian.
he interpolation is carried out with a simple linear operator as: 

i = Ai · Mi (3) 

here the index i represents the time-lapse index of the data sequence and the matrix A contains the interpolation weights, computed with
 first-order inverse distance approach. Fig. 1 reports a sketch of model and forward meshes architecture just described for a time-lapse
nversion with NTL = 3 . 

The decoupling of model and forward meshes allows for a straightforward implementation of time-lapse inversion for surveys in which
he data acquisition has non-coincident sounding positions, as it always happens in AEM applications: The model meshes for all temporal
cquisitions can coincide in space, while the forward meshes follow the sounding positions. 

The inversion is carried out with an iterative re-weighted least-squares (IRLS) approach (Farquharson & Oldenburg 1998 ) that minimizes
he objective function Q defined as 

Q =
√ 

( d − f ( M) ) T · C−1 
d · ( d − f ( M) ) + MT · RT 

s · C−1 
Rs 

· Rs · M + MT · RT 
t · W T · C−1 

Rt 
· W · Rt · M 

Nd + NRs + NRt 

, (4) 

here Cd , CRs and CRt are the data and roughness covariance matrices (the subscripts s and t indicate space and time in the roughness
egularization), the matrices Rs and Rt determine the constrained parameters and W represents a re-weighting of the least-squares matrices
or applying norms different from the L2. 

art/ggaf414_f1.eps
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The roughness matrices Rs and Rt are defined as: 

Rs =

⎡ 

⎢ ⎢ ⎣ 

Rs1 · · · 0 
. . . 

. . . 
. . . 

0 · · · RsNTL 

⎤ 

⎥ ⎥ ⎦ 

(5) 

Rt =

⎡ 

⎢ ⎢ ⎣ 

Rt1 + Rt2 − · · · 0 0 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 · · · RtNTL −1 + RtNTL −

⎤ 

⎥ ⎥ ⎦ 

(6) 

In eq. ( 5 ) the space-roughness matrix, indicated as Rs , is a block-sparce matrix where each Rsi matrix contains the vertical and horizontal
constraints within model Mi . 

In eq. ( 6 ) the space-roughness matrix Rt is composed by blocks that link each Mi to the next-in-time model Mi+ 1 through Rti + and
Rti+ 1 − pairs (with + 1 and −1 indicating the model differentiation). 

Thanks to the decoupling between model and forward meshes and the spatial correspondence of the resistivity model meshes, the
constraint strength defined in CRt is uniform, regardless of the varying positions of the AEM soundings in the different data sets. The time-
roughness is defined using the asymmetric generalized minimum suppor t (AGMS) nor m defined in Fiandaca et al. ( 2015 ), which minimizes
the volumetric differences among constrained models. For tuning the AGMS settings, the guidelines suggested in Fiandaca et al. ( 2015 ) were
followed in both the synthetic and field data inversions presented in this study. In particular: 

(i) The p1 and p2 settings, which controls the transition sharpness of the AGMS norm, were set to the prescribed values for time-lapse
inversions, namely p1 = 1 . 35 and p2 = 2 . 0 , that is, values that give the weaker dependence of the focusing on the settings σ and α; 

(ii) The setting σ , which control the focusing sharpness, was set to σ = 5 per cent ( σ = 0 . 05 as relative variation), to fully penalize in the
focusing resistivity variations above 15 per cent, that is, the typical variation values seen in the independent inversions of the field data; 

(iii) The setting α, which controls the relative weight of data and time-lapse measures in the objective function and affects the size of the
time-lapse changes, was set to α = 1 . 0 , allowing for time-lapse variations over 10–30 per cent of the model; with this value, as shown in the
next paragraph, the time-lapse inversion of the data gives data misfit fully comparable to the independent inversion, ensuring that the relative
weight between data and time-lapse measures is well balanced. 

For completeness, the values of smoothness constraints contained in the CRs 
matrix were set in all the inversions of this study as

σvertical = 2 . 0 and σhorizontal = 0 . 3 (values expressed as relative variation between constrained parameters). 
The n + 1th model update of the IRLS inversion procedure is computed as: 

M( n + 1 ) = M( n) +
[ 
GT 

( n) · C−1 
d · G( n) + RT 

s · C−1 
Rs 

· Rs + RT 
t · W ′ T 

( n) · C−1 
Rt 

· W ′ 
( n) · Rt + λI 

] −1 

·
[ 
GT 

( n) · C−1 
d · (

d − f
(
M( n) 

)) + RT 
s · C−1 

Rs 
· Rs · M + RT 

t · W ′ T 
( n) · C−1 

Rt 
· W ′ 

( n) · Rt · M 

] 
(7) 

Where G( n ) represents the jacobian of the nth iteration, which is a block-sparse matrix defined as 

G =

⎡ 

⎢ ⎢ ⎣ 

G M1 · · · 0 
. . . 

. . . 
. . . 

0 · · · G MNTL 

⎤ 

⎥ ⎥ ⎦ 

(8) 

in which G Mi represents the jacobian of the i-th model and data sets. For computing the Jacobian of the parameters defined on the model
meshes G Mi , the Jacobian computed in the forward meshes is propagated through the chain-rule of differentiation as: 

G Mi = Gmi · Ai 
T (9) 

Finally, the depth of investigation (DOI) in the inversion is carried out following Fiandaca et al. ( 2015b ). 

2.2.1 Synthetic example 

The synthetic example in Fig. 2 further highlights the importance of these time-lapse constrains. In this instance, the same type of AEM data
later used in the field study is tested on a 100 m long synthetic model representative of the expected subsurface electrical properties at the real
site. Specifically, SkyTEM data, with a 10-m spacing between each EM sounding (red dots at the bottom of each model in Fig. 2 ), are used to
generate the forward responses over models that mimic the growth of a high resistivity anomaly (50 �·m) over a low-resistivity half-space (1
�·m). In Fig. 2 , time-lapse results are displayed as ratios obtained dividing the first model by the subsequent ones. The black-box shape shown
across the models represents the true high-resistivity anomaly evolution. The EM data includes gate times ranging approximately from 6E-06
to 12E-03 s. The modelling, as described in the previous section, is carried out using a 1-D EM forward response and decoupled forward
and model meshes, to ultimately compare the results obtained using independent and time-lapse frameworks. Both approaches use identical 
intramodel discretization and regularization to ensure that differences are solely due to the enforcement of AGMS temporal constraints in the
time-lapse inversion. 
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Figure 2. Synthetic test comparing independent and time-lapse schemes for inverting AEM temporal series. (a) Independent inversion models. (b) Time-lapse 
inversion models. From left to right in both (a) and (b), the true models simulate the growth of a high-resistivity anomaly with its true shape delineated by the 
overlaying black line. The models are shown over their DOI and the EM sounding positions are indicated at the bottom of each model (red dots). 
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In this noise-free example, the independent (Fig. 2 a) and time-lapse (Fig. 2 b) inversions exhibit significantly different models, while
aving an equivalent misfit value (approximately 0.3 in all cases). As expected, the time-lapse inversion yields more compact results due to
he suppression of equivalence-driven artifacts thanks to the temporal regularization. 

In the example of Fig. 2 , the data was noise-free to highlight the characteristics of the time-lapse inversion and to reduce potential
oise-related bias in the comparison. However, when repeating the same inversion with added noise—3 per cent gate uncertainty plus a
ime-dependent noise decreasing as t− 1 

2 with level equal to 1 nV 
m2 at 1 ms—the models obtained with the time-lapse framework remained

ery similar. In contrast, the independent models further localize artifacts due to the noise effects. In both cases, the data fitting was
quivalent, with misfit values close to 1. The noise-added example is not shown here for brevity, but the performance of the time-lapse
ramework in suppressing non-data-driven differences under realistic noise conditions will be extensively presented in the field application
ections. 

 T H E  B O O K P U R N O N G  C A S E  S T U DY  

he case study presented in this work is located on a stretch of land of approximately 20 km2 referred to as the Bookpurnong floodplain,
hich forms part of the River Murray floodplain, in South Australia. In this part of the Murray Basin, the river, groundwater system and

gricultural areas are heavily managed to cope with the natural high-salinity (as defined for instance in Van Engelen et al. 2018 ) of the shallow
nconfined aquifers (see Section 3.1.1 for details). 

The river has multiple weirs and locks where water levels are controlled. The river-aquifer interaction naturally forces saline water
xchange towards the river, challenging the floodplain freshwater recharge. This directly threatens the survival of floodplain vegetation that
epends on freshwater and complicates the use of groundwater for agricultural activities. River discharge and flood events are the primary
ource of freshwater recharge on the floodplain, but its natural hydrological balance is heavily influenced by the anthropogenic activities on
nd adjacent to the floodplain. 

Numerous studies have focused on the Bookpurnong area using geophysical methods (Berens et al. 2004 ; Munday et al. 2005 ; Hatch
t al. 2010 ; Viezzoli et al. 2009 ; Munday & Soerensen 2018 ), supporting hydrogeological investigations. The following sections present the
ime-lapse modelling of a series of AEM surveys repeatedly acquired over the Bookpurnong floodplain in 2015, 2022 and 2024, specifically
imed at describing spatial variations in the thickness, lateral extent and evolution of the freshwater (or low salinity) lens at a high resolution.

The freshwater exchange between the river and underlying/adjacent aquifers is the primary source of variations along the floodplain. In
act, water levels have been reported as able to exceed those of the river (as noted in Yan et al. 2005 ) and to average in depth few metres
elow the surface: Large-scale variations of water table are then assumed to be negligible in the AEM monitoring results, also considering
hat the surveys were conducted at similar times of year (see Fig. 13 ). 

art/ggaf414_f2.eps
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Both qualitative and quantitative analyses will be provided, with the spatiotemporal interpretation supported by geophysical validation 
through resistivity borehole measurements and through the Independent Hydrogeological Validation, offering an additional layer of integration 
between geophysics and hydrogeology. 

3.1 Hydrogeological setting 

3.1.1 Hydrostratigraphy 

The Bookpurnong area lies within the Renmark Trough, a transitional zone where sedimentary sequences can reach thicknesses up to 500
m. These Cainozoic sediments form a closed groundwater basin, with the Murray River serving as the only surface connection to the
Southern Ocean through its mouth. This hydrostratigraphical setting led to naturally high salinity in the aquifers, as rainfall, surface water and
ground water accumulated within the basin over the past half a million years, combined with limited recharge capacity. For a comprehensive
description, we refer to Brown ( 1989 ). The main regional lateral flow in the Bookpurnong area is from east to west, with floodplain water
table located a few metres below the surface. As a result, highly saline groundwater discharges into the River Murray, where salt concentration
can be 2–3 orders of magnitude lower than in the floodplain (see next bullet points and Fig. 13 e). The site topography is characterized by
highland and floodplain areas. The highlands have elevations ranging from approximately 30–50 m.a.s.l., while the River Murray has carved
a floodplain valley with ground elevations between 9 and 18 m.a.s.l (Fig. 5 a). 

An overview of the geological units is sketched in Fig. 3 and listed below, including the maximum thickness and the salinity range of
each formation, where available, as reported in Yan et al. ( 2005 ), which provides a more comprehensive description: 

Woorinen Formation (Unsaturated): quater nar y unconsolidated red-brown silty sand and clay (aeolian dune) 
Blanchetown Clay (Unsaturated): quater nar y lacustrine unit, locally silty/sandy. Found regionally within the unsaturated zone. 
Loxton sands (Unconfined to semiconfined aquifer): highly heterogeneous coarse-grained sands transitioning into less permeable fine sands 
toward the base of the succession. These sands grade into low-permeability silty clay as they approach the Loxton Clay Formation (Max.
Thickness: 38 m; Water Salinity: 2–64 g L−1 ; Water Conductivity: 3–90 mS cm−1 ). 
Coonambigdal Formation (Aquitard): clay layer across the floodplain, consisting of clay and silt from episodic flooding (Max. Thickness: 11 
m). 
Loxton Clay and Bookpurnong Beds (Aquitard): poorly consolidated plastic silts and shelly clays (Max. Thickness: 25 m). 
Monoman Formation (Unconfined to semiconfined aquifer): clean, fine-to-coarse fluvial sands, deposited as point bar sands (Max. Thickness: 
25 m; Water Salinity: 13–46 g L−1 ; Water Conductivity: 19–66 mS cm−1 ) 
Pata Formation (Unconfined to semiconfined aquifer): poorly consolidated limestone with friable sand layers (Max. Thickness: 15 m; Water 
Salinity: 8–32 g L−1 ; Water Conductivity: 11–46 mS cm−1 ) 
Winnambool Formation (Aquitard): grey to pale green calcareous marl and silty clay (Max. Thickness: 7 m) 
Glenforslan Formation (Semiconfined aquifer): grey sandy limestone, similar to Pata Formation (Max. Thickness: from 16–30 m; Water 
Salinity: 3–27 g L−1 ; Water Conductivity: 4–39 mS cm−1 ). 
Finniss Formation (Aquitard): grey to dark grey clay with thin sand layers and hard bands (Max. Thickness: 14 m). 
Mannum Formation (Confined aquifer): Well-compacted and cemented grey limestone. Upwards leakage reported from the underlying 
Renmark Group aquifer (Max. Thickness: 101 m; Water Salinity: 2–25 g L−1 ; Water Conductivity: 3–36 mS cm−1 ). 

Yan et al. ( 2011 ) details the main horizontal flows within the hydrostratigraphic units but reports also vertical flows between different
aquifers due to incomplete isolation of the aquitards. These upwards flows enable the interaction between the Murray Group (Pata, Winnambool
and Glenforslan Formations in Fig. 3 ) and the water table aquifer (Monoman For mation), par ticularly in areas where the lower Loxton Clay
and Bookpurnong Beds have been eroded. Yan et al. ( 2011 ) also report significant salinity variations with depth. At the same time, the river
is considered to impact the ground water quality, with shor t-ter m fluctuations affecting the shallower Monoman Formation, while the Loxton
Sands and the Murray Group respond to longer term trends. 

Based on the hydrostratigraphy described above, the resistivity distribution on the floodplain is expected to be characterized by 
relatively high-resistivity anomalies ( > 10 �·m), corresponding to freshwater inputs from the Murray River, superimposed on a pre-
dominantly low-resistivity background ( < 2 �·m) representative of the high-salinity aquifers and clayey aquitards. Intermediate resis- 
tivity values are also expected in fresh–salt water transition zones. In terms of temporal changes, increases in resistivity values across
the floodplain will likely be indicative of freshwater migration on the floodplain, whereas decreases in resistivity are expected to in-
dicate salinization dynamics. Additionally, given the reported vertical connectivity between aquifers and the variability of salinity with 
depth, also vertical resistivity changes, due to upwards or downwards water flows, may be observed. Resistivity in the highlands
is expected to be relatively high, comparable to river fresh water values or higher. River-induced variations are not expected there,
rather saline aquifer recharge may occur through agriculture drainage and irrigation of orchards grown in these areas which adjoin the
floodplain. 
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Figure 3. Sketch depicting the hydrostratigraphic setting at the Bookpurnong site. The diagram is not to scale. 
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.1.2 Water management of the area 

he River Murray is managed by several locks and weirs, with lock (and weir) 4 inside the case study area. At the Locks, measurements of
he river water level, discharge and electrical conductivity are provided (SA Water 2018 ). At the Bookpurnong floodplain site, recharge of the
hallow aquifer is heavily influenced by the irrigation drainage in highland areas, significantly affecting salinity distribution in the floodplain.
gricultural freshwater drainage to the underlying saline aquifer has increased its hydraulic gradient encouraging saline groundwater discharge

nto the river, which in turn prompted the construction of the Saltwater Interception Scheme (SIS) to mitigate its impact. In the Bookpurnong
rea, the SIS system, part of a larger-scale implementation across the region, is situated near the southeast meander of the river. Positioned at
he foot of the highland bank, where it joins the floodplain, the SIS extracts salt water and diverts it into a disposal basin located further east.
n lowering the hydraulic gradient form the highland to the river, it favours fresh water ingress from the river into its banks and the adjoining
aline floodplain sediments. 

.2 Geophysical survey and data processing 

he geophysical data set gathered in the Bookpurnong area consists of a multitemporal airborne EM data set measured in 2015, 2022 and
024 (Fig. 5 a). Each survey overlaps the same flight lines, covering around 200 line kilometres, with 30 acquisition lines of ∼7 km each,
paced approximately 100 m. The temporal acquisitions are designed to ensure data comparability between closely located measurements.
ie-lines were also measured to assess data quality both at the time of acquisition and across different surveys. The May 2015 survey
mploys the SkyTEM304 system, which features a rigid transmitter (TX) with a 340.8 m2 area and dual-moment energization with nominal
eak currents of 9 A and 116 A featured by current turn-off ramp times of 3.5 and 50 μs, respectively (Fig. 4 , red lines). It is worth
nderscoring that no data can be retained before the transmitter current is fully shut down. The respective TX OFF-times are 1.018 and
0 ms, with acquisition frequencies of 275 and 25 Hz, allowing the accurate retrieval of early and late times. The receiver (RX) is mounted
n the so-called zero position, where the RX coil is positioned to minimize the primary field flux interference. The RX features a 105 m2

rea with a 210 kHz low-pass cut-off frequency filter for the Z component and a high-moment front gate time of 70 μs. In June 2022,
he AEM survey employs a SkyTEM312 FAST system to overlap the same lines. The dual-moment measurement strategy remains, using
 transmitter with an area of 342 m2 . The respective peak currents for the High Moment (HM) and Low Moment (LM) are 6 and 110 A,
ith repetition frequencies of 275 and 25 Hz, turn-off ramp times of 12 and 300 μs and OFF-times of 1.018 and 15.0 ms (Fig. 4 , green

ines). The 2022 system is expected to provide the lower shallow resolution compared to the other systems due to its slower LM current shut

art/ggaf414_f3.eps
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Figure 4. Energization characteristics of the SkyTEM systems used in the 2015 (red), 2022 (green) and 2024 (blue) Bookpurnong monitoring. The first row 

shows the low-moment energizations, highlighting the shut-down ramp (panel a) and a complete measuring cycle (panel b). The second row (panel c and d) 
details the high-moment energizations. 
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down (Fig. 4 a). The receiver coil, placed in the zero-position, is featured with a 206.8 kHz low-pass cut-off frequency for the Z component
and a front gate time of 370 μs for the HM. In March 2024, the survey was conducted using the SkyTEM304 system, which differs from
the system used in 2015 for the TX area of 342 m2 , the HM current of 110 A, current turn-off ramp times of 5.5 μs for the LM and 42
μs for the HM, HM OFF time of 15 ms (Fig. 4 , blue lines) and an RX area of 325 m2 with a cut-off frequency of 203 kHz for the Z
component. 

The processing of AEM data occurs at different stages, possibly leading to terminology ambiguity depending on the context. Hereinafter,
by pre-processing we refer to the raw data manipulation performed by the contractor after acquisition and before delivery to the client (e.g.
stacking, filtering, etc.). By data processing, we refer to the culling of delivered data based on their noise content and proximity to coupling
structures. 

In this work, the data processing is carried out following the recommendations presented in Viezzoli et al. ( 2013 ), with particular attention
given to identify small power lines that cross the Bookpurnong area, as well as other major noise sources such as roads and infrastructures.
The data processing is performed with a novel ‘simultaneous’ approach, made possible by the flexible handling capabilities of the EEMStudio
(Sullivan et al. 2024 ). This approach is designed for processing temporal AEM series with overlapping flight lines, ensuring first that the same
coupling-affected areas were removed across all data sets by defining the most conservative data-cleaning distance from the structure and
applying it consistently. Fur ther more, this workflow was necessary to assess noise content that appeared to vary temporally across different
data sets. In fact, during the multitemporal data processing, noise disturbances near specific infrastructure were evident in one data set but
less pronounced in others. 

An example of this is shown in Fig. 6 , where a small power line disturbance is clearly visible in the SkyTEM 2015 (Fig. 6 c) and
2024 (Fig. 6 e) data sets, while SkyTEM 2022 data set (Fig. 6 d) shows almost noise-free transients for the same location. Fig. 6 pro-
vides just one example of the many similar cases identified during the Bookpurnong floodplain data processing, almost always linked
to small power lines (Fig. 6 b) that cross the area. In most cases, we could rule out the possibility that these issues arose from newly
constr ucted infrastr ucture, since the disturbances were absent in one of the later acquisitions even though the presence of such struc-
tures was already confirmed by historical maps (Google Earth LLC., LAT:-34.35◦, LONG: 140.57◦—WGS84). Moreover, in the in- 
stance of Fig. 6 , such noise-content differences were not ascribed to variations in systems ground height, as the systems were flown
at approximately 40 m above ground in all three surveys over this section. The coupling behaviour was also not attributed to the lat-
eral distance from the power line. In fact, the most disturbed transients are from the 2024 data set (blue dots), which are the far-
thest from the power line pylon, while the least coupled data are from the 2022 data set (green dots), which are closest to the pylon

location. 
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Figure 5. (a) LiDAR derived elevation map of the Bookpurnong area overlined by the AEM survey lines (2015, 2022, 2024) included in the time-lapse study. 
Lock 4 on the Murray River, a source of hydrogeological data for the next analysis, is also shown. (b) Close-up view of the AEM soundings distributed across 
the floodplain, emphasizing the varying spatial positions of data points on temporal-overlapped survey lines. 
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Questions remain open regarding the reasons behind these different effects observed in the delivered data. Such variations may arise
rom differences in the pre-processing performed by the data provider, as well as from variation in the mutual induction between the AEM
ransmitter and receiver coils and the power line due to the relative orientation more than the relative distance. 

Nonetheless, this could have led to model artifacts if the data sets were processed separately as it would have been difficult to identify the
mall power lines by analysing just one data set at the time, as in the case of SkyTEM 2022 of Fig. 6 . The ‘simultaneous’ approach aimed for
he most conservative processing by allowing to cull out all data (both the LM and HM) that presented coupling in any of the multitemporal
atasets and/or were measured near a coupling structure. 

.3 Data modelling and geophysical validation 

he data modelling follows the workflow outlined in Section 2.1 , employing a 1-D EM forward response with accuracy within 1 per cent when
ompared to AarhusInv ( Auken et al. 2015 ). Viezzoli et al. ( 2010 ) demonstrated that this 1-D modelling approach is an adequate approximation
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Figure 6. Different effects of the power line on the Bookpurnong 2015, 2022 and 2024 data sets. (a) Zoomed-out map. The coloured dots indicate the EM 

soundings removed, highlighted by the red boxes in the panels on the right. The white square indicates the location of the power line. (b) Zoomed-in view of 
the power line on the floodplain, whose north–south direction is indicated by the black line. (c, c′ , c′ ′ ) SkyTEM 2015 data for Low and High moments, with 
EM transients removed from the selection highlighted by the light red box. (d, d′ , d′ ′ ) Similar to the previous description, but for the SkyTEM 2022 data. (e, 
e′ , e′ ′ ) Similar to the previous description, but for the SkyTEM 2024 data. 
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for depicting the hydrogeological features of this site. After the data processing, a total of 13868, 15734 and 14741 EM soundings were
included in a first independent inversion round of the 2015, 2022 and 2024 data sets, respectively. The same data are subsequently unified
within the time-lapse inversion framework. The purpose of running the independent inversions first is to establish a reference for tuning the
time-lapse inversion and enable comparison between the two approaches on a real data application, allowing to move beyond the synthetic
example (Section 2.2.1 ). 

Independent and time-lapse inversions were configured with some shared characteristics. Both follow a multicycle process (Fiandaca 
et al. 2024 ), starting with a preliminary cycle designed to run a single-layer inversion to set better starting values than homogeneous or

art/ggaf414_f6.eps
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Figure 7. Real-case comparison of independent and time-lapse inversions performed on the Bookpurnong data sets. (a) 2015 resistivity model obtained through 
independent inversion. (b) Ratio of 2022 to 2015 independent resistivity models. (c) Ratio of 2024 to 2022 independent resistivity models. (d) 2015 resistivity 
model obtained through time-lapse inversion. (e) Ratio of 2022 to 2015 time-lapse resistivity models. (f) Ratio of 2024 to 2022 time-lapse resistivity models. 
All ratio model shows differences greater than ±5 per cent. 
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radient. This step preceded the subsequent multilayered cycle, where the model discretization consisted of 21 layers logarithmically spaced
rom 5 to 500 m. This discretization was found to strike a good balance between system resolution, investigation targets and the computational
ost of the time-lapse inversion. 

The regularization remained consistent between the independent and time-lapse models and employed an L2 norm and vertical and
orizontal constraints which allow model variations of up to 200 and 30 per cent, respectively. The strength of the spatial and temporal
onstraints has been kept constant to avoid introducing bias in time-lapse differences due to inhomogeneous regularization. Data uncertainties
ere incorporated through the inverse of the covariance matrix included in eq. ( 4 ), accounting for them in the model updates. Regarding the
odel space parametrization, the AEM system flight height was included as an inversion parameter for both the independent and time-lapse

nversions. This addition was important for achieving satisfactory misfit in both approaches as the system flight height has a significant
mpact on the computation of AEM responses, especially when operating in conductive environments where the sensitivity on this parameter
s stronger. 

As presented in Section 2.1 , the time-lapse approach defines the forward and model meshes independently to account for the varying
ocations of EM soundings across different data sets. Time-lapse constraints are enforced between model meshes, using AGMS-type constraints
ith settings: α = 1, σ = 0.05, p1 = 1.35 and p2 = 2.00 (see Section 2.1 for the explanation of the setting choice). 

Fig. 7 reports the models obtained for the different years from both the independent and time-lapse inversion approaches. In the upper
ow, the independent models are presented: the 2015 model is displayed in terms of resistivity values (Fig. 7 a), followed by the ratio between
he 2022 and 2015 resistivity models (Fig. 7 b), and the ratio between the 2024 and 2022 resistivity models (Fig. 7 c). In the lower row, the
orresponding time-lapse models (Figs 7 d–f) are shown. Here and in the following, all resistivity models are cropped over their DOI and
hen ratio models are computed, they are limited to the most conservative DOI among the two models involved in the ratio. 

In the ratio panels of Fig. 7 , only variations greater than ±5 per cent are displayed to isolate significant changes. Consistently with the
esults from the synthetic experiment (Fig. 2 ), the time-lapse modelling reveals significantly more compact/conservative estimates of change
ompared to the independent inversion results. 

.3.1 Misfit analysis 

egarding the misfit comparison between independent and time-lapse inversions, Table 1 presents the misfit values obtained for each model
rom both approaches, which are almost identical. 

A uniform noise model was applied to the modelling of all three data sets, with the data gate standard deviations set to a minimum of 3
er cent, summed with the standard deviation measured during the stacking procedure. For instance, Fig. 8 (b) shows the gate-by-gate standard
eviation for all EM soundings acquired (prior to our processing) by SkyTEM in 2024. Thanks to the high signal-to-noise characteristics of
he site, only the last few gates of the high moment display a slight increase in standard deviation. 

The spatial distribution of the misfit is also alike between independent and time-lapse models. This ensures that the values of AGMS
etting used in this study are conservative, i.e. favour (or do not hinder) data fit in contrast to focusing of the time-lapse anomalies (in
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Table 1. Data misfit values for the independent and time-lapse inversions of the Bookpurnong AEM surveys conducted 
in 2015, 2022 and 2024. 

Data Misfit SkyTEM304 –2015 SkyTEM312 FAST–2022 SkyTEM304 –2024 

Independent inversions 1.22 0.78 0.80 
Time-Lapse inversion 1.22 0.78 0.79 

Figure 8. Data (panel a) and relative standard deviation (panel b) for all gates of the low and high moment of the EM soundings acquired during the SkyTEM 

2024 survey. The reported data are prior to data processing. 
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particular for the setting α, which controls the relative weight of data and time-lapse measures in the objective function and affects the size
of the time-lapse changes). 

Fig. 9 further illustrates the misfit distribution and the specific fitting of the decay curves. Figs 9 (a), (d), and (g) display the ‘Gate-by-Gate’
spatial distribution of the misfit, plotted according to the position of each EM sounding in the area for the 2015, 2022 and 2024 surveys,

respectively. In this visualization, the misfit for each gate, defined as φGATE , i = |dGAT Eobs , i 
−dGAT E f wr , i 

| 
σi 

, is plotted vertically, where the vertical 

position of each gate is given by zGATE ,i = i 
N · zmax . Here, i represent the index of the i -th gate, N is the total number of gates, and zmax 

is the maximum depth of the model. Since SkyTEM is a dual moment system, the first gate number for the High Moment correspond to
iFirst , HM 

= NLM 

+ 1 , where NLM 

is the total number of gates for the Low Moment data. This representation enables the identification of any
spatial correlation in the misfit, and aids in visualizing systematic issues in the fitting of specific gates. This helps to pinpoint areas where
certain gates might exhibit poor fits, revealing potential inconsistencies or issues in the data also across the temporal data sets. Examples of
this can be observed by examining the 2015 and 2022 misfit distributions across gates and space. In the 2015 data set (Fig. 9 a), systematic
issues are evident in the early Low Moment gates, as well as a poorly fitted band corresponding to the early High Moment gates. Additionally,
the 2022 misfit distribution exhibits an interesting behaviour (Fig. 9 d), where the misfit for the first 2–3 low-moment gates increase sharply
in the southern half of the survey compared to the same gate times in the nor ther n par t. These systematic misfits appear equivalent also in the
independent inversions. There is no additional information available to explain these misfit patterns, though in 2022 case it could be due to
an interruption between survey flights resulting in system changes. The 2024 survey appears to be uniformly well-fitted throughout (Fig. 9 g).

To the right of each Gate-by-Gate misfit plot, the data (blue lines) and fit (black lines) are shown for a survey line (Figs 9 b, e, h) and for
some individual transients extracted (Figs 9 c, f, i). This visualization confirms the overall satisfactory fitting. 
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Figure 9. Spatial misfit analysis from the time-lapse inversion of the AEM series acquired over Bookpurnong. (a, d, g) Gate-by-gate spatial distribution of the 
misfit for the 2015, 2022 and 2024 data sets, respectively ( Z -axis is proportional to gate time). (b, e, h) Comparison between data (blue line) and fit (black line) 
for the LM and HM components. The upper plots show system ground clearance/height. (c, f, i) Comparison between data (blue line) and fit (black line) for 
EM transients extracted from the area marked by a black box and red padding. 
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As it will appear when presenting the inversion models, the systematic change in misfit behaviour of the 2022 survey across the floodplain
oes not introduce any correlated structure in the time-lapse inversions. On the contrary, the higher systematic misfit observable in the 2015
nversion probably triggers a localized time-lapse difference at around −35 to −55 m of elevation, as further commented in Section 3.4 . 

.3.2 Comparison with borehole logging 

efore proceeding with the interpretation phase, the models are assessed by complementing the misfit analysis with borehole resistivity
nd geomorphological comparisons. This analysis focuses on the 2022 time-lapse model as, in June of that year, two borehole log-EM
easurements have been collected near an AEM survey line and close to a secondary channel of the Murray River (Fig. 10 ). In Fig. 10 (a), two
EM lines are extracted and the log-EM measurement locations highlighted. The sections are presented with a 10 × vertical exaggeration, and

he 3-D interpolated model is overlaid with light transparency. This visualization highlights first how the high-resistivity features consistently
lign with the river channel and banks, demonstrating strong coherence between the model and the primary geomorphological features.
ig. 10 (b) allows the comparison between the closest AEM line to the log-EM borehole measurements, placed approximately 10 m apart
rom the flight line. The match between the borehole log-EM data and the time-lapse model is precise, demonstrating the capability of the
EM model to delineate the high-resistivity anomaly associated with the secondary channel of the Murray River. This is achieved despite the

oarser vertical discretization compared to the log-EM sampling ( ∼10 cm spacing). The blue mesh at the end of the section displays a portion
f the AEM model mesh, with vertical discretization equal to that used for the 1-D forward mesh. Figs 10 (c) and (d) offer a more quantitative
omparison, showing the 1-D log-EM measurements (RMK 406 and RMK 407) plotted alongside the five closest 1-D AEM models. This
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Figure 10. Comparison between the 2022 time-lapse AEM geophysical model and two log-EM measurements (RMK 406 and RMK 407), collected in June 
2022. (a) 2-D sections for Line 28 and Line 30, showing the relative positions of the two log-EM measurements. (b) Detailed view of Line 30 close to the 
borehole locations. The blue grid on the right represents the model mesh. Each white dot along the section indicates the position of an EM sounding. (c, d) 
1-D comparison between the RMK 407 and RMK 406 log-EM measurements and the five closest 1-D models extracted from the 2-D line. The vertical scale 
is expressed as depth from the surface. 
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last comparison further confirms the inversion ability to capture the transition from high-resistivity values near the river channel to lower
resistivity at greater depths. 

3.4 Site evolution analysis 

The evolution of the Bookpurnong area in terms of electrical resistivity is first analysed by displaying the ratios between the time-lapse
geophysical models at different depths. Fig. 11 presents depth slices at different elevations for the 2015 (panels a–h), 2022 (panels i–p) and
2024 (panels q–x) models. The 2015 model is used as the baseline and is reported in absolute resistivity values. For the 2022 and 2024 models,
resistivity variations are presented as cell-by-cell ratios of the model mesh: the 2022 model is divided by the 2015 model, and the 2024
model by the 2022 model. This chronological analysis is meant to display the progressive temporal evolution of the site. In the ratio models,
blue anomalies indicate a decrease in electrical resistivity compared to the previous time step, while red anomalies show an increase. The
colorbar for the ratio models is displayed on a logarithmic scale where no-change areas appear in neutral white, while regions of increasing
or decreasing resistivity intensify in colour, proportionally to the magnitude of temporal variation. 

The ratio analysis shows that most of the investigated volumes present no significant variations (white zones), with bounded areas nearby
to the river channel that present spatially coherent differences. These localized variations confirm the capability of the AEM time-lapse
approach to handle data sets acquired with different systems and non-coincident flight lines. In turn this highlights the value of the AEM
method on this type of monitoring. 

The 2022 model displays an increase in resistivity in the shallow portions (Figs 11 j and k) from to 2015, especially at the el-
evation corresponding to the river channel. Deeper down a significant resistivity reduction follows near the model bottom (Figs 11 o
and p). It is worth noting the presence of a high-resistivity anomaly, located between −35 and −55 m of depth, and clearly visi-
ble in the animation linked via the QR code of Fig. 11 (see also Signora, 2025a ). This anomaly arises from the ratio between the
2022 and 2015 data sets, where the 2015 data exhibited a misfit issue in the early gates of the HM (see Fig. 9 a). Therefore, we
consider this resistivity feature to result from this issue and deem it unlikely to be real. It will not be further analysed, as it is out-
side the primary depth range of interest for the shallow river–aquifer interaction. However, should this depth range become of inter-
est, a more detailed examination will be necessar y. An alter native perspective on this uncertain high-resistivity band is presented in
Fig. 12 (e). 

In 2024, the evolution is nearly opposite to the 2022, showing a widespread decrease in shallow layers resistivity (Figs 11 r and s) and a
strong resistivity increase below −70 m, peaking at the model bottom (Figs 11 w and x). In this case, no resistivity anomalies are visible in
the −35 to −55 m depth range, further suggesting data issues in the 2015 data set. 

Notably, the time-lapse models reveal opposite evolution in resistivity values between the shallow and deeper deposits. Nevertheless, the 
deep variations (Figs 11 p and x) among the years show a very similar spatial distribution, with well-defined boundaries corresponding to an
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Figure 11. Depth slices from the time-lapse models obtained from the 2015, 2022 and 2024 AEM surveys. (a–i) Resistivity depth slices from the 2015 model. 
(j–p) Corresponding depth slices showing the cell-by-cell resistivity ratio between the 2022 and 2015 models. (q–x) Depth slices showing the ratio between 
the 2024 and 2022 models. In the ratio depth slices no-change areas appear in neutral white colour. Scan the QR code to access the depth slices animation. 
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rea directly beneath the river channel. As these anomalies approach the lower DOI limit, a test was perfor med—confir ming the modelling
ensitivity to these structures (details and results are reported in Appendix A ). 

To further assess the model variations over the years, Fig. 12 presents vertical sections extracted to intersect multiple times the alternation
etween the river channel meanders and the floodplain. In Figs 12 (a)–(c), the sections are displayed as resistivity values, while in Figs 12 (e)–
f), they are shown as ratios between models, consistently with the approach used in Fig. 11 . In Figs 12 (a)–(c), the areas with compatible
reshwater values, indicated by the high-resistivity anomalies, extend from the surface to a depth of approximately −20 m in elevation. The
ertical axis marks the −10 m elevation level, which roughly corresponds to the depth of the river channel. The ratio sections (Figs 12 e and
) confirm the trends observed in Fig. 11 . In the 2022 model, there is an increase in resistivity in the shallow (from the surface down to
20 m.a.s.l.) and mid-depth sections ( −35 to −55 m.a.s.l.), where the previously mentioned misfit issues occur. In contrast, the deeper model

hows a decrease in resistivity. In 2024, a generalized decrease in resistivity is observed in the upper section, without significant changes at
id-depths, and an increase in resistivity at greater depths. For a more comprehensive evaluation, a video displaying sections across the entire
oodplain is available via the QR codes provided in Fig. 12 ( Signora, 2025c ). 

.4.1 Independent hydrogeological validation of shallow-model evolution 

he hydrostratigraphy of the Bookpurnong area consists of alternating aquifers and aquicludes (Fig. 3 ), with naturally occurring ground
ater characterized by high salinity. Salinity levels vary both horizontally within the same hydrogeological structure and vertically between
ifferent aquifers. The Murray River serves as the primary source of freshwater, sustaining the shallow aquifer (Yan et al. 2005 ). The observed
ariations in the time-lapse geophysical models are therefore likely associated with changes in groundwater quality, driven by freshwater
nfiltration from the Murray River into lateral deposits. 

This hypothesis can be tested using an IHV, a novel approach based on the available time-series data from the Murray River and designed
o bridge geophysics and hydrogeology. Specifically, time-series of the discharge, water level and salinity of the Murray River are analysed
here the water level and salinity data are measured at different locks on the river and flows calculated using site-specific rating tables (SA
ater 2018 ). 

Fig. 13 presents geophysical depth slices just below the river channel elevation, displaying the resistivity distribution at 7 m.a.s.l. for
he May 2015 model (Fig. 13 a) alongside the ratio models for June 2022 and March 2024 (Figs 13 b and c). Figs 13 (d)–(f) presents the River
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Figure 12. Vertical sections from the time-lapse models obtained from the 2015, 2022 and 2024 AEM surveys. (a–c) Resistivity vertical sections extracted 
at the location indicated in panel (d). (e) Vertical section showing the cell-by-cell ratio between the 2022 and 2015 models. (f) Vertical section showing the 
cell-by-cell ratio between the 2024 and 2022 models. Scan the QR code to access the vertical section animations (top and bottom QR codes for RES and ratio 
analysis, respectively). 
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Murray time-series for water level, salinity and discharge, respectively. The water level and salinity are extracted from Lock 4. The discharge
is selected from Lock 7 since no discharge measurements were available at lock 4. The red lines overlying the discharge plot indicate the
AEM survey dates. 

The comparison of geophysical depth slices with time-series data starts on 2015 May 20 (Fig. 13 a), when river discharge was relatively
low ( ∼50 m3 s−1 ). At this time, the AEM depth slice reveals high-resistivity values concentrated near the river channel, suggesting fresh
water infiltration into lateral deposits and highlighting the influence of river discharge on the hydrogeological system. By June 2022, when
the first ratio depth slice is available, river discharge had significantly increased to 300–550 m3 s−1 , with water levels approximately 2.5 m
higher. This higher streamflow likely enhanced freshwater infiltration, as evidenced by a widespread increase in resistivity values (red areas
in Fig. 13 b). This suggests an intensified exchange and dispersion of fresh water into the lateral deposits, driven by elevated river discharge.
In May 2024, discharge levels had decreased to ∼100 m3 s−1 , similar to those of 2015, while electrical conductivity (EC) had risen to ∼400
μS cm−1 , twice as high as in 2015 and 2022. This decreased streamflow with increased water EC coincides with a pronounced reduction in
electrical resistivity in the geophysical slice (Fig. 13 c, blue areas), further indicating the dynamic interaction between river and infiltration of
water into the surrounding deposits. 

Although the discharge values in 2015 and 2024 are similar, the total amount of fresh water infiltration is influenced not only by the
streamflow at a given time but also by historical streamflow and water quality. To illustrate this, Fig. 14 presents the resistivity ratio between the
2015 and 2024 models. Compared to the ratios shown in Fig. 13 , the variations in magnitude are less pronounced, and the resistivity changes
exhibit a patchier distribution. This figure confirms that the freshwater distribution in 2024 differs from that in 2015, despite the comparable
streamflow rates. These obser vations suppor t the hypothesis that, under similar streamflow conditions, the actual water balance is influenced
by prior river discharge events. In the case of 2024, this includes the high-discharge levels in 2023 and, notably, a major flood in December
2022. The large-scale flooding event likely contributed to the observed spatial variability and patchy resistivity patterns, highlighting the 
long-term impact of past hydrological conditions on groundwater dynamics. 

3.4.2 Deep-model evolution analysis 

The IHV was intended to validate the changes observed in the shallow portion of the time-lapse geophysical models (elevation > −25 m.a.s.l.),
supporting hydrogeological interpretations in the depth range of main focus for this study. This shallow section is particularly relevant for
water management and the development of strategies to mitigate salinization. 

The previous IHV does not extend to the deeper model analysis, whereas Fig. 11 shows changes occurring throughout the entire depth
of the models, including significant variations down to the depth of investigation at −105 m. Fig. 15 offers a 3-D view to highlight the
spatial relationships between the changes in the ratio models (Figs 15 d and e) and the absolute resistivity values distribution (Figs 15 a–c).

art/ggaf414_f12.eps
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Figure 13. Comparison between the time-lapse AEM depth slices beneath the river channel elevation and the time-series hydrogeological indexes available 
for the site. (a) Resistivity model from the 2015 time-lapse inversion. (b) Ratio between the 2022 and 2015 time-lapse resistivity models. (c) Ratio between the 
2024 and 2022 time-lapse resistivity models. (d) Water level series measured at lock 4 reported as meters AHD (Australian Height Datum). (e) Water salinity 
series measured at lock 4. (f) River Murray discharge as reported for lock 7 station. 
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Figure 14. Ratio between the 2024 and 2015 time-lapse resistivity models 

Figure 15. (a–c) Resistivity volumes extracted for the shallow part (Elevation > −25 m.a.s.l, Resistivity > 2 �·m) and the deep part (Elevation < −25 m.a.s.l, 
Resistivity > 1.5 �·m) from the 2015, 2022 and 2024 time-lapse models. The plan-view is shown in the bottom-left corner of each panel. (d, e) Volumes 
showing differences greater than ±8 per cent from the 2022/2015 and 2024/2022 ratio-models. Red colours indicate resistivity increases, and blue shows 
decreases. 
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Table 2. (a) Shallow and deep volumetric variations for the 2015, 2022 and 2024 resistivity models. For shallow volumes, extraction is based on resistivity values 
greater than 2 �·m. For deep volumes, the resistivity threshold is reduced to 1.5 �·m. Green-shaded cells highlight the year with the highest freshwater-like 
resistivity volumes in both shallow and deep model portions. (b) Volumetric variations exceeding ±8 per cent from the model ratios 2022/2015 and 2024/2022. 
Red shaded cells indicate the largest resistivity increases recorded across different years and at both shallow or deep depths. 

(a) RES (b) RATIO 

2015 2022 2024 2022/2015 2024/2022 

Volumes with ρ > 2 �·m [m3 ] Volumetric variations > 8 per cent [m3 ] 
Shallow ( > −25 m.a.s.l.) 3.68e07 ± 6 per cent 4.21e07 ± 4 per cent 3.59e07 ± 4 per cent 1.01e07 ± 9 per cent 3.06e06 ± 7 per cent 

Deep ( < −25 m.a.s.l.) Volumes with ρ > 1.5 �·m [m3 ] Volumetric variations > 8 per cent [m3 ] 
8.8e07 ± 60 per cent 1.7e08 ± 70 per cent 1.98e08 ± 40 per cent 1.09e07 ± 9 per cent 1.43e + 08 ± 4 per cent 
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he resistivity volumes extracted in the latter frames aim to distinguish fresher water from the poorly resistive saline background ( < 1.5
·m). In the shallow region ( > −25 m.a.s.l.), near the river channel, resistivity values above 2 �·m are extracted, while in the deeper parts

 < −25 m.a.s.l.), values greater than 1.5 �·m are displayed. Table 2 provides a quantitative breakdown of the high-resistivity volumes,
eparating shallow and deep regions. Confidence intervals for the extracted resistivity volumes were calculated as percentage variations by
djusting the lower and upper extraction limits by ±0.1 �·m. For the ratio models, the extraction limits were adjusted by ±1 per cent.
ractically, for the shallow fresh water, the resistivity threshold was modified to 1.9 and 2.1 �·m, and the mean percentage variation was
alculated relative to the volume extracted at the 2 �·m. The same procedure is applied to the deep fresh water volumes, this time varying
he 1.5 �·m threshold. Consistently, for the ratio models, the 8 per cent threshold was varied to 7 and 9 per cent, and the mean percentage
ariation calculated. The volume analysis reveals that: 

(i) The largest high-resistivity shallow volume occurs in 2022, consistently with the fresh water discharge analysis (IHV, Fig. 13 ). 
(ii) The smallest shallow high-resistivity volume is in 2024, with values similar to 2015, also aligning with the IHV. 
(iii) In the deep region, the behaviour is opposite: the peak in high-resistivity volume is in 2024, with the lowest in 2022. 

These deep variations are spatially evident in Figs 15 (a)–(c), and in the plan-view reported in the bottom-left corner of each panel. The
olume ratios of Figs 15 (d) and ( e) reinforce the previous statements, confirming that when shallow resistivity increases (now interpreted
ith the IHV as fresh water incomes), deep resistivity volumes decrease. Conversely, an increase in deep high-resistivity volumes is observed
ith a concurrent shallow resistivity decrease (reduced river discharge and freshwater), as seen in 2024. 

The specular behaviour between the shallow and deep parts suggests a physical correlation, potentially indicating that shallow fresh water
xchange influences the deeper, semiconfined aquifers. Interestingly, the analysis reveals the deep variations ( < −50 m.a.s.l.) to concentrate
eneath the river channel exchange area (see Fig. 15 ). As a preliminary interpretation, the deep changes may be induced by fresh water
nflows from the Murray River on the floodplain. This shallow-deep communication is coherent with Yan et al. ( 2011 ), which report vertical
onnectivity in the aquifers and decreasing salinity with depth in the hydrostratigraphic column. As fresh water accumulates in the shallow
oodplain, a downwards pressure gradient could be generated from the top of the hydrostratigraphic column, caused by the fresh volume
itting on more saline water and preventing its sinking. Thus, the peak fresh water volume in 2022 (Fig. 15 d, shallow red anomaly) might
ave pushed saline water downward, resulting in the observed low-resistivity anomaly (Fig. 15 d, deep blue anomaly). Conversely, in 2024,
ith reduced freshwater volumes, upward filtration could explain the increased deep resistivity anomaly (Fig. 15 e) due to fresher deep water

ising. 
Although still preliminary, these deep variations align with the repor ted ver tical interconnection of aquifers in the area, salinity trends

nd the localization of deep variations within the projection of the river channel. This suggests a potential relationship between shallow and
eep hydrogeological domains, providing valuable insights for land managers and hydrogeological modelers. To expand and validate these
nterpretations, a new IHV should be planned as a future step, likely requiring more advanced hydrogeological modelling. 

 C O N C LU S I O N S  

n this work, a novel simultaneous time-lapse inversion scheme is proposed and applied to a multitemporal AEM data set, proving able to
andle differences in acquisition lines, flight heights and the use of different acquisition systems. Specifically, to address discrepancies in
cquisition lines, the time-lapse scheme defines independently forward and model meshes, overcoming the modelling issue of non-coincident
EM soundings. Another modelling feature is the inclusion of AEM system flight height in the inversion parametrization, which proved

mportant for achieving satisfactory data fitting and limiting artifact propagation in the models. 
Along with this novel inversion approach, a new processing workflow for AEM monitoring data sets has been applied to effectively

andle the multitemporal data, which posed new challenges compared to traditional ones, thus requiring dedicated treatment. 
The field application focused on the Bookpurnong area, South Australia, along a floodplain sector of the Murray River, where multitem-

oral AEM surveys (2015, 2022 and 2024) were conducted to study the groundwater system and its evolution over time. 
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The time-lapse results showed small variations across most of the model—an important quality-control indicator considering that three 
different AEM system, with differences in flight paths and elevations, were incorporated into the modelling. This, combined with the presence
of sharply bounded anomalies along the river channel, supported the effectiveness of the applied time-lapse scheme. 

The time-lapse results were first assessed through misfit analysis, which showed an equal fit to the data compared to independent
inversion while revealing significantly smaller variations in the models. The time-lapse model assessment was then expanded by comparing 
borehole resistivity log EM measurements on the floodplain, revealing an accurate match between the two. 

The time-lapse shallow variations were ultimately validated and interpreted using an Independent Hydrogeological Validation approach, 
supporting the direct correlation between the hydrological stress of the Murray River and the hydrogeological response of the floodplain
aquifers. In contrast, the deeper model variations showed an opposite response compared to the shallow ones, suggesting a possible correlation
between shallow and deep aquifers. 

We believe that the AEM time-lapse methodology developed in this work can be applied to monitor different types of processes,
surpassing the capabilities of single-time AEM investigations and enabling accurate analysis of basin-scale processes. 
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P P E N D I X  A  

n the following we present a test to assess the sensitivity in the deepest portion of the time-lapse models to evaluate the reliability of
he resistivity anomalies/variations observed at these depths. Specifically, the test involved the computation of forward responses using

odels in which the deep variations have been removed. In particular, the deepest portions of the 2022 and 2024 models—(below 80 m, see
ig. 11 )—have been modified, swapping the 2015 model into the 2022 one and the 2022 into the 2024 model. The forward responses resulted

n increased data misfit for the 2022 and 2024 modified models, as reported in Table A1 . 
To spatially localize this increase, Fig. A1 presents a 3-D view of the misfit, similar to what is shown in Fig. 9 . Specifically, panels

a) and (b) show the misfit distribution of the time-lapse models already presented in the manuscript (Figs 9 d and g), but this time from a
ottom-up view. Figs A1 (c) and (d) display the misfit of the forward modelling test with swapped bottom part in the starting models, showing
ow the increase is almost entirely localized where the deep resistivity anomalies develop. 

To further support this analysis, panels (e)–(h), display the ratio between the ‘swapped’ and original misfit, highlighting again how the
ncreased misfit is confined in correspondence with the deep structure of interest. From the top view (panels g and h), no appreciable misfit
ifferences are visible, as expected since the models in that region were identical. 

These results confirm that without the presence of these deep structures in the time-lapse model it is not possible to fit the data as well,
upporting their data-driven rather than model-driven origin. 
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Figure A1. (a, b) Gate-by-gate 3-D distribution of the misfit for the 2022 and 2024 time-lapse models presented in the manuscript. (c, d) Same distribution for 
the forward modelling test in which the deep parts of the 2022 and 2024 models have been changed. (e, f) Ratio between original and swapped misfit for the 
same years, shown from a bottom view. (g, h) Same ratio, visualized from a top view. 

Table A1. Misfit of the time-lapse models presented in the manuscript (first row) for the 2015, 
2022 and 2024 models, and misfit of the forward test where the deep portions of the 2022 and 
2024 models have been changed (second row) 

2015 2022 2024 

Original model misfits 1.22 0.78 0.79 
Swapped model misfits 1.22 0.81 0.81 
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article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
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