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Abstract. We develop a Fourier method to solve backward stochastic differential equations
(BSDEs). A general theta-discretization of the time-integrands leads to an induction scheme with
conditional expectations. These are approximated by using Fourier cosine series expansions, relying
on the availability of a characteristic function. The method is applied to BSDEs with jumps. Nu-
merical experiments demonstrate the applicability of BSDEs in financial and economic problems and
show fast convergence of our efficient probabilistic numerical method.
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1. Introduction. Whereas the theory and applications of classical forward sto-
chastic differential equations (FSDEs), with a prescribed initial value, are traditional
and have become widely known, we are concerned with backward stochastic differ-
ential equations (BSDEs). A BSDE is a stochastic differential equation for which a
terminal condition, instead of an initial condition, has been specified, and its solution
consists of a pair of processes. The linear type of equation was introduced by Bismut
in [5], where linear BSDEs were used in stochastic optimal control problems as ad-
joint equations in the stochastic version of the Pontryagin maximum principle. The
general notion of BSDE has been introduced by Pardoux and Peng [37]. They proved
existence and uniqueness of solutions of BSDEs under some Lipschitz conditions on
the driver function. Many researchers have attempted to relax these restrictions. For
example, the authors in [30] show existence of a minimal solution under more general
assumption for the driver function, which is assumed to be continuous with linear
growth in some of its arguments. Kobylanski [28] provided uniqueness and existence
results for a driver with quadratic growth in one of its arguments. For a general
introduction to BSDEs we refer the reader to [38, 13].

In recent years, BSDEs have received more attention in mathematical finance and
economics. For example, the Black—Scholes formula for pricing options can be repre-
sented by a system of decoupled forward-backward stochastic differential equations.
Market imperfections can also be incorporated, such as different lending and bor-
rowing rates for money, the presence of transaction costs, or short sales constraints.
These imperfections give rise to more involved nonlinear BSDEs. If the asset price
follows a jump-diffusion process, then the option cannot be perfectly replicated by
assets and cash; i.e., the market is not complete. A way to value and hedge options in
this setting is by utility indifference pricing, where a certain utility value is assigned
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to the possible profits and losses of the hedging portfolio. The pricing problem can
be solved by means of a BSDE with jumps.

The well-known Feynman—Kac theorem gives a probabilistic representation for
the solution of a linear parabolic partial differential equation (PDE) by means of the
corresponding FSDE and a conditional expectation. The solution of a BSDE provides
a probabilistic representation for semilinear parabolic PDEs; see, for example, [36],
which is a generalization of the Feynman—Kac theorem. Also, the converse relation
holds. This connection enables us to solve a semilinear PDE by probabilistic numerical
methods, like Monte Carlo simulation techniques.

Probabilistic numerical methods to solve BSDEs may, for example, rely on time
discretization of the stochastic process and approximations for the appearing condi-
tional expectations. Least-squares Monte Carlo regression to approximate the con-
ditional expectations is used in, for example, [29, 21, 4]. A rich literature exists on
other methods, based on, for example, chaos decomposition formulas [11]. In this
paper we employ a general theta-method for the time-integration [26] and propose a
new method to approximate the solution backward in time. This approach is based
on the COS method, which was developed in [16] for pricing financial options. The
method is based on Fourier cosine series expansions and relies on the characteristic
function of the transitional density, which enables us to approximate the conditional
expectations is a very efficient way. The characteristic function is in principle avail-
able for Lévy processes or affine jump-diffusion processes. The applicability of the
resulting method is therefore quite general. We call the method the BCOS method,
short for BSDE-COS method.

We start in section 2 with notation, definitions, and a further introduction to BS-
DEs, where also the link with semilinear PDEs is stated. A general time discretization
of the BSDE results in expressions with conditional expectations (section 3). These
conditional expectations are computed by the BCOS method (section 4), and the
problem is then solved backward in time. We perform extensive numerical experi-
ments in section 5. Then, in section 6, utility indifference pricing and the related
maximization problems are discussed. We derive a numerical scheme for the resulting
BSDE with jumps in section 6.3. Results in section 7 show the utility indifference ask
and bid prices.

2. Backward stochastic differential equations. We start with some notation
and definitions, for which we follow the survey paper [13]. Let w = (w¢)o<i<r be a
standard one-dimensional Brownian motion on a filtered probability space (2, F,F, P),
with F = (F)o<i<r the natural filtration of the Brownian motion w, and T a fixed
finite time horizon. We denote by H?Z(R) the set of predictable processes 1 : Q x

[0,7] — R such that E[fOT [n:|?dt] < oo and by L2(R) the set of Fp-measurable
random variables X : 2 — R that are square integrable. We consider the BSDE

(21) —d}/t = f(t, }/t, Zt)dt — thwt, YT = f,

where function f : Q@ x [0,7] x R x R = R is P ® B ® B-measurable. P is the set
of Fi-progressively measurable scalar processes on  x [0,7]. f(.) is the generator
or driver of the process, and the terminal condition & : Q — R is an Fp-measurable
random variable. For simplicity we use one-dimensional processes, but the BSDE
theory can be extended to higher dimensions, with d-dimensional processes w; and Y;
and an n x d-dimensional Z, process, as described in [13]. A solution to BSDE (2.1) is
given by a pair of processes (Y, Z), with Y a continuous real-valued adapted process

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/11/15 to 131.180.131.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

FOURIER METHOD FOR COMPUTATION OF SOLUTIONS BSDEs A861

and Z a real-valued predictable process satisfying fOT |Z;|2dt < 0o, P a.s., satisfying

T T
(2.2) Y,gz{—!-/ f(s,Ys,ZS)ds—/ Zydws, 0<t<T.
t t

Unlike an FSDE, the solution of a BSDE is thus a pair of adapted processes (Y, 7).
Note that BSDEs cannot be considered as time-reversed FSDEs, because at time ¢
the pair (Yz, Z;) is Fi-measurable and the process does not yet “know” the terminal
condition.

Function f and terminal condition £ are called standard parameters for the BSDE
if ¢ € LZ(R), f(.,0,0) € H2(R), and f is uniformly Lipschitz in y and 2, with Lipschitz
constant Ly. A result from [13, 38, 37] is that, given a pair of standard parameters
(f,€), there exists a unique solution (Y, Z) € H%(R) x HZ(R) to BSDE (2.1).

Markovian case for the BSDE. A linear parabolic PDE has a probabilistic rep-
resentation by means of the Feynman—Kac theorem. Here, we consider a semilinear
parabolic PDE of the form

(2.3a)
_%(t,x) — Lo(t,x) — f(t, @, 0(t, ), 0(t, 1) Dev(t, ) = 0, (t,2) € [0,T) x R,
(2.35) o(T,a) = gla), a€R,

with the differential operator of second order
(2.4) Lo(t,z) = p(t,x)Dyv(t, z) + S02(t, 2)D2v(t, z).
This PDE also has a probabilistic representation by means of the FSDE
(2.5) Xy =z, dXs=p(s,Xs)ds+ o(s,Xs)dws, t<s<T,
and the BSDE
(2.6) —dY, = f(s, X0" Yy, Zs)ds — Zydws,  Yr = g(X7"),

whose terminal condition is determined by the terminal value of FSDE (2.5). X!®
denotes the solution to (2.5) starting from z at time ¢, and (Y%, ZL*) is the corre-
sponding solution to the BSDE.

The coefficients ¢ : [0,7] x R — R and p : [0,7] x R — R in (2.5) are assumed
to be Lipschitz in « and satisfy a linear growth condition in 2. Functions f : [0, 7] x
RxR xR —Rand g: R — R are assumed to be uniformly continuous with respect
to x. Moreover, f satisfies a Lipschitz condition in (y, z), and there exists a constant
C such that |f(t,2,y,2)| + [g(z)| < C(1 + |2z[" + [y| + |2[), p = 1/2.

The conditions on f and £ guarantee the existence of a unique solution (Y, Z) to
the BSDE (2.6). Together with the Markov property of the process X, we notice that
there exists a deterministic function v(¢, z) such that the solution Y of the BSDE is
Y% =o(s, X5?®), t < s < T. The solution of the BSDE is said to be Markovian as it
can be written as a function of time and the state process X»*. The following results
hold.

RESULT 1 (see [36, 38]). Let v € C12 be a classical solution to (2.3), and suppose
there exists a constant C > 0 such that, for all (t,z), |v(t,x)| + |o(t,x)Dyv(t,x)| <
C(1+ |z]). Then the pair (Y, Z), defined by

(2.7) YET =u(s, X0"), Z0* =o(s, X0)Dyv(s, XE¥), t<s<T,
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is the solution to BSDFE (2.6) (a so-called verification result).
The converse result states the following: Suppose (Y,Z) is the solution to the
BSDE; then the function defined by v(t,z) = Ytt’m s a viscosity solution to the PDE.
The verification result follows from application of Itd’s lemma to v (¢, X;) [38]:

d’U(t, Xt) = (’Ut(t, Xt) + Ev(t, Xt)) dt + O'(t, Xt)DI’U(t, Xt)dwt
(28) = —f(t, Xt, ’U(t, Xt), O'(t, Xt)Dr’U(t, Xt))dt + O'(t, Xt)DI’U(t, Xt)dwt.

So, solving the semilinear PDE or the corresponding BSDE results in the same
solution. A PDE can be solved by applying numerical discretization techniques, and
for BSDEs probabilistic numerical methods are available. For example, Picard meth-
ods for Y (see [3, 20]) give rise to a sequence of “easy” linear BSDEs. Another
class of methods focuses on dynamic programming equations; see [8, 48, 22, 12]. Our
probabilistic solution method to the BSDE is in this class and consists of two steps:
First, the FSDE is simulated by a discretization scheme and the general theta-time-
discretization of the BSDE then results in expressions with conditional expectations
(see section 3). Second, the conditional expectations are computed by the BCOS
method (see section 4), and the problem is solved backward in time.

3. Discretization of the BSDE. We wish to discretize the forward stochastic
process,

t t
(3.1) Xo = g given, X; = X —l—/ (s, Xs)ds —|—/ o(s, Xs)dws,
0 0

and the backward process,

T T
(3.2) Yi=¢ —|—/ f(s,Xs)ds —/ Zsdws, &= g(Xr),

with X = (X, Y5, Zs). For this, we define a partition A : 0 = ¢ty < t1 < t2 <
e <ty < oo <ty =T, with fixed time steps At := t,,41 — t;,. For notational
convenience we write X,, = Xy, , Y = Y1, Zin = Z¢,,, and we define Aw,,41 =
Wiy — Wi, - With w, a Wiener process, the increments Awp,1 ~ N(0, At) are
normally distributed. The classical Euler discretization X* of the FSDE reads, in
this case,

(3.3)
X& =20, Xhi1= X5+ pltom, XAt + 0 (tm, X5)Awpir, m=0,...,M —1.

For the BSDE, we then start with

1 tm+1
(3.4) Y =Yt —l—/ f(s,Xs)ds —/ Zydws.
t t

m m

By a basic Euler discretization, backward in time, we would require the unknown value
Y41 to approximate Y,,,. This scheme hence does not suffice, as it would not take
into account the adaptability constraints on Y and Z. To obtain a computationally
viable backward induction scheme we should take conditional expectations, which
will result in an approximation scheme to the BSDE similar to that used in [51]. For
the F;, -measurable random variables Y, and Z,, it holds that E,,[Y,,] = Y, and
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En[Zm] = Zm, where E,,[.] represents the conditional expectation E[.|F;, ]. Taking
conditional expectations on both sides of (3.4) then results in

tm+1
Yy = Eon[Vinsd] +/ B, [f(s, X.)]ds
t

m

(35) ~ Em[Ym+1] + At@lf(tm, Xm) + At(l — 01)Em [f(tm_H, X7n+1)], 01 € [0, 1].

The integrand in (3.5) is a deterministic continuous function of time s, so that we
can use the well-known theta-time-discretization method to approximate the integral
[26]. Multiplying both sides of (3.4) by Aw,t1, taking the conditional expectation,
and applying the theta-method also gives us

tm+41 tm+1
0 = B [V 1 A ] + / By [ (5, X.) (s — wr, )]ds — / E,[Z.]ds
tm tm

~ Em[YerlAmerl] + At(]- - 92)Em[f(tm+la Xerl)Amerl]
(36) — AtOs 72, — At(]. — 92)]Em[Zm+1], 0, € [0, ].]

Note that for (3.5) and (3.6) we use two different time-discretization parameters 6; and
0, respectively. The above equations lead to a discrete-time approximation (Y2, Z4)
for (Y, Z):

(372) YA =g(XB), 28 = olta, X5)Dag(X5),
form=M-1,...,0:
Zim = =03 ' (1 = 02)Em [ Zin 1] + 2705 "B [Yins1 Awpnia]
(3.7b) + 05 (1 = 02)E [ (bt 1, X 1) A1),
(3.7¢) Yo = B[V + At01f (b, Xin) + At(L = 01)Em[f (bt 1, Xip )]

m

The use of #; = 0 gives us an explicit scheme for Y3, whereas 6; € (0, 1] results
in an ¢mplicit scheme. To solve for Z2, we should obviously have 6y # 0 in (3.7b),
which gives an explicit scheme for Z4. For the terminal value Z4; we use the relation
from Result 1. At the points where g is not continuously differentiable, we consider a
one-sided derivative.

The terminal condition is a deterministic function of X%, and X% is a Markov
process. Then it is easily seen, using an induction argument, that there are determin-
istic functions y(t,,, x) and z(t,,,x) so that
(3.8) Yo = yltm, X)), Ziy = 2(tm, X53).

So, the random variables Y3 and Z2 are functions of X2, and the conditional expec-
tations can be replaced by EZ,[.] = E[.|X2 = z]. Note that functions y and z depend
on the discretization partition A.

Equations (3.7) provide us with a scheme to solve the BSDE backward in time,
starting at terminal time 7. One could use least-squares Monte Carlo methods, like
the Longstaff-Schwartz method, to approximate the conditional expectations; see, for
example, [29, 21, 4]. The authors of [8] apply a Malliavin-based algorithm to solve
them, whereas [32] employs a binomial tree method. In the next section, we introduce
a Fourier method to solve the BSDE.

1Tt is also possible to take 1 = 2 = 1 in the first iteration with time step (At)2, which gives
the same convergence results.
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4. BCOS method. In this section we explain our method of choice to compute
the conditional expectations in (3.7) and solve the problem recursively, backward in
time. Our method is an extension of the COS method, which is a Fourier method
developed in [16] to compute European option prices. The COS method for computing
Bermudan options also consists of a backward-in-time scheme to find the conditional
expectations of the continuation value; see [17]. The method for solving BSDEs with
a COS method is called the BCOS method here. First, in section 4.1 we derive the
COS formulas and define the Fourier cosine coefficients. Then, sections 4.2 and 4.3 are
devoted to the approximation of functions z and y. Section 4.4 discusses the recursive
recovery of the Fourier coefficients, and section 4.5 the error components.

4.1. COS formulas and Fourier cosine coefficients. Suppose we wish to
approximate the expectation

(4.1) I:mmwﬂxam=4<wm>@m%

where v represents a general functional and p(¢|z) = P(X5,; = (| X5 = z) denotes
the continuous transitional density function. We assume that the integrand decays to
zero as ( — +oo. Because of that, we can truncate the infinite integration range to
a sufficiently finite interval [a,b] C R without losing significant mass of the density.
This gives us the approximation

b
(1.2) B = [ vltmn Op(Clo)ic

The notation I; is used to denote the different approximations of I and keeps track
of the numerical errors that set in at each step. Next, we replace function v by its
Fourier cosine series expansions on [a, b], that is,

oo
!/

(4.3) V(tme1,C) = Vi (tmt1) cos (kwg — a) ,

—a
k=0

with series coefficients {V;}72, given by

b

(4.4) Vie(tms1) = V(tm1,¢) cos </€7T<—> dg.

b—a b—

> indicates that the first term in the summation is weighted by one-half. We
interchange summation and integration and define
—a
) dg,
—a

which are the Fourier cosine series coefficients of the transitional density function

b
(4.5) Pr(x) == bf / p(¢|x) cos (kwg

a

p(Clx) on [a,b], Le.,

(4.6) p(¢lx) = ZPk cos( C:Z).

Truncation of the series summations gives us the approximation

b Nfll
ES Vet Pula).

k=0

(4.7) I =
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The Fourier cosine coefficients of the transitional density function can now be approx-
imated as follows [16]:

Pr(z) ~ - E - /Rp(C|x) Cos (lmg:z> d¢ = ; E a% (cp (blv_ﬂa‘a:) eilmﬁ)
(4.8) = %% <(b <bk_ﬂ-a}aj> eikﬂi—z) = Pp(x).

R(.) denotes taking the real part of the input argument, and ¢(.|z) is the condi-
tional characteristic function of X2, given X2 = z. The characteristic function
encountered here can be written as

(4.9)

plule) = p(u]0)e™ = glula)e™,  $lule) = exp (iup(tm, ©) At — 300> (b, 2)AL) .

Inserting the above equations into (4.7) gives us the COS formula for approximation
of I:

(4.10)
= km S _z—a b— GN_l/
Z (tmt1) <¢ (b — a‘ﬁc) 6”””“) = Z Vi(tms1)Pr ().
=0 =0

In order to solve the BSDE, we need to deal with expectations of the form
EZ, [0(tm41, X i1)Awpmi1]. With the help of the equality (A.3) in Appendix A.1,
they can be computed by

N-1

N / o X,%_H —a
Em[v(t7n+17X7n+l Aw7n+1 Vk m+1 m | COS km b—a Aw7n+1
=0
N—-1
’ . —kr . X,% —a
= O'(tmvx)Ath:O Vk(thrl)Em |:b —a Si (kﬂ—ﬁ>:|
iy k k
e e a
~ s A - . ‘ ik ==
o (tm, ) tkzzo Vi (t +1)9‘E<zb_a¢<b_aa:>e )
b N*l/
—a
(411) = oltm, 2)At— > Viltmi1) ) (x).
k=0

Now we return to the BSDE problem (3.7), where we defined the deterministic
functions y(t,, X2) = Y2 and z(t;,, X2) = Z5. Let Vi (tn1) be the Fourier cosine
coefficients of y(t;,+1,2) in (3.7¢), i.e

2 b x—a
(4.12) Vi(tmi1) = —a /a Y(tm+1, T) COS <k7rb — a) dx,

Zk(tms1) the Fourier cosine coefficients of function z(¢,,4+1,) in (3.7b), i.e

2 b
(4.13) Zi(tm+1) = 5o (l/a 2(tm+1,x) COS (k - a) dr,
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and Fy (t;,+1) the Fourier cosine coefficients of driver f(¢,,41, 2, y(tm+1, ), 2(tm+t1,T)),

ie.,
—a
dx.
—a

In sections 4.2 and 4.3, we will assume that the above coefficients are given. In section
4.4 the algorithm to recover these coefficients recursively, backward in time, will be
discussed.

(4.14) ]:k( m+1

T
(tm+1, T, Y(tm1, T), 2(tms1, ) COS (lmb

4.2. COS approximation of function z(t,,,«). For the computation of z(¢,,, )
n (3.7b), we need to compute three expectations, EZ,[Z2 ], EZ,[Y,2, 1 Aw,,41], and
EZ, [f (tmt1, Xy 41) Awyp1]. With the help of COS formulas we can derive the follow-
ing approximations for these expectations:

(4.15a)
N-1 k
B2 (72 ]~ S Zi(tmer)R u k=
m[ m+1] ];) k( +1) ((b(b—a‘x)e b )7
(4.15b)
N-1 ” %
T IRTT s ikmE=a
E [va—k—lAmerl — yk m+1 ,$)At%(b_a¢<b_a‘$)ek b—a> ,
(4.15¢)
N-1 ” &
T ~ KT ™ ik ==
Em[f(tm_,_l,XﬁJrl)Awm_i_l] ~ ];) ]:k(tm+1) ( my L )At% < agf) (b — a‘[l‘) e k ) .
We then find as COS approximation
10y b— a
— —a
Z2(tm, ) ~ — 2 Z Zi(tmg1)Pr(x)
02 2 =
L b- ply 10
a — U2 /
4.16 tme1) + ——Fr(tm tm, ) AtP; (),
(4.16) 32X (g Veltmin) 4 g i) ) ot )08 )

k=0
with @, and @) as defined in (4.8) and (4.11), respectively.

4.3. COS approximation of function y(t,,, x). For the computation of func-
tion y(tm, z) in (3.7c) there are two explicit parts, EZ [Y,2, ] and EZ, [f (tm1, X5 11)],
that are approximated by the following COS formulas:

N—-1
/ k z—a
(4.17a) EZ (Y] ~ Vi (tms1 §R(¢<b_7T )e b—a>,
k=0 a
N— 1/ k
T - x—a
(417b) E;En[f(tm+la 'm+1 ‘Fk m+1 <¢ <m) elkﬂ' ba) .
k=0
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In addition, when 6; > 0, we also have an implicit part, for which we define
h(tm,z) = E7 [Yn%+1] + AL = 0B, [f (bmg1, X )]

b—a

~

N—-1
Zyk tn1) @1 (@) + At(1 — 61) 2a Filtms1)®r(),

k=0 k=0

(4.18)

with @, from (4.8). Now we can write

(4.19) Y(tm, ) = AtO1 f (tm, T, Y(tm, ), 2(Em, ) + h(tm, x).

In order to determine function y(t,,, ) in (4.19), we will perform P Picard iterations
(see also [21]), starting with an initial guess, y°(tm, ) = EZ[Y,5, ] (see (4.17a)).
The convergence properties of the Picard iterations to the “true” values y(t,,, ) are
discussed in section 4.5.

4.4. Recovery of coefficients and algorithm. The computation of func-
tions z(tm,x) and y(tm,,z) at time-point ¢,, requires the Fourier cosine coefficients
Zi(tma1), Vie(tmt1), and Fi(tmr1) at time-point ¢,,+1. For the next time step in the
BCOS method we wish to compute functions z(t,,—1,z) and y(tm—1, ) at time-point
tm—1, for which we need the Fourier cosine coefficients of time-point ¢,,. The coeffi-
cients can be computed recursively, backward in time, as we explain in this section.

We assume a constant drift x4 and volatility o here, and

(4.20) X5 = X5 4 uAt + 0Awy, 1.

Now, function ¢(u) does not depend on x. In Remark 1 we will comment on the use
of more general functions u(t,z) and o(t, z).
First, the computation of the coefficients

(4.21) Zi(t) = bfa/abz(tm,x)cos (zm a)dx

can be divided into three parts, similar to (4.15). We then use the approximations

(4.22a)

2 T —
E* [Z2 ~
b—a/ [mH]COb(lmb

) dr ~ Z Z 'm+1 <b ) Mkj )
2

A r—a
=, Er Y1 AWy 1] cos kwb . dx

(4.22D)

~

N—-1 |
g

~ R Z - UAtyj( m41)P (b‘]_7r )le’ ’

7=0
2 b T —
g / IE,Z”n[f(t,le,XmJrl Awp41] cos (kﬂ'b )
(4.22¢)
Nfl/ .. .
ijm g
%3% Z mUAt.Fj(tm+1)¢<b_a) Mk’j 5
j=0
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2 b .. _x—a —
b—a/a e’ r=a cos (lmi_Z) dx.

These approximations can be found by inserting COS formulas (4.15). Note that the
approximation signs “~” are due to the errors of the COS formulas, i.e., truncation of
the integration range to a finite interval [a, b], truncation of the infinite sums to a finite
number of terms N, and the substitution of the series coefficients by the characteristic
function approximation. The coefficients Z(t,,) are then computed as follows:

with matrix elements

(423) Mk’j =

N-1
! 1-6
Z(tm) = %<Z [_ T2Zj(tm+1)

=0

¥k

1 1-0 '

Second, the coefficients Hy(t,,) of function h(t,,,z) in (4.18) are computed by

2 (b ;—
Hi(tm) = T a/ h(tm,x) cos (sz_ Z) dx
N-1

429 =R Dilten) + A= 0 F ] (77 ) Mu

Jj=0

The Fourier cosine coefficients Zj(t,,) in (4.24) and Hy(t,,) in (4.25), for k =
0,1,...,N — 1, can thus be computed by one matrix-vector multiplication. These
matrix-vector multiplications Mu can be done efficiently with the use of an FFT
algorithm; see [17]. With this the computational complexity is reduced from order
O(N?) to order O(N log N), with N the number of terms in the summations.

Finally, the coefficients " (t,,) of function f(ty,z,y" " (tm,x), 2(tm,)) are

given by
> dx.

They are approximated by a discrete Fourier cosine transform (DCT). For this we
need to compute the integrand f(t,,, 2, y* ' (tm, ), 2(tm, x)) on an equidistant z-grid
with IV grid points, as explained in the supplementary material [43]. With a converg-
ing Picard method, we have F(t,,) ~ F{ ~*(t,) for sufficiently many iterations P.
Then,

2 b P_1 T —a
e R R e e

(4.26)  FI 7 ty,) =

(4.27) Vie(tm) = A0, FL ™ () + Hi(tm).

With the aforementioned formulas we approximate the Fourier cosine coefficients
Zi(tm)s Vi(tm), and Fi(t,,) by using the coefficients of time-point ¢,,4+1. Starting
with the coefficients at the terminal time, we can solve them recursively, backward in
time. The evolution of the extra error introduced by approximation of the coefficients
has been discussed in detail in [17]. The final approximations of the functions y(t,,, )
and z(tm,, z) by the BCOS method are denoted by §(ty,, z) and 2(t,,, z), respectively.
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The overall algorithm to solve the BSDE (3.7) backward in time can be summarized
as follows.

ALGORITHM 1. (BCOS method)

Initial step: Compute, or approzimate, the terminal coefficients Vi (tar),
Zi(tar), and Fi(tar)-

Loop: For m = M — 1 to m = 1: Compute the functions Z(t,,x),
flm,z, §(tm, ), Z2(tm, x)), and §(tm,x), and determine the correspond-
ing Fourier cosine coefficients Zy,(ty,), Fi(tm), and Vi (tm), as described
in sections 4.2, 4.3, and 4.4.

Terminal step: Compute 2(to,xo) and §(to, xo)-

Remark 1. For general drift p(t,«) and volatility o(¢,z) in (4.20) we need to
compute the following integrals to recover the Fourier cosine coefficients:

2 b g irr—a T —a
AR — .
(4.28) b—a/a (b(—b_a‘a:)e b=a COS (kwb_a>d:c,

which is not equal to qﬁ(%)./\/lkj (as in (4.22)). As the integration kernel is smooth,
we can approximate the integrals efficiently by, for example, a Clenshaw—Curtis
quadrature rule [19]. Another way is to approximate the coefficients Zj(¢,,) by using
a DCT.

The Euler discretization for general drift and volatility terms exhibits only first
order weak convergence, which may hamper the convergence of the discretized BSDE.
The usage of the simplified second order weak Taylor scheme may improve the con-
vergence rate, and for some processes one can use an exact simulation scheme.?

4.5. Errors and computational complexity. In the BCOS method when
solving BSDEs several approximation errors are encountered. In the first place there
are discretization errors, due to the discrete-time approximation of the stochastic
processes. Moreover, errors are introduced by the COS formulas and the Picard
method. These error components and the computational complexity are discussed in
this section.

Discretization error of the BSDE. We perform an error analysis® for the scheme
with 6, = 6y = L and assume constant ju and o (see (4.20)), so that X5 = X,,. We

2
define the local theta-discretization errors in (3.5) and (3.6) by

(4.29a)
t7n+1
Ry, (2) = / E7[f (s, Xo)lds — ALf (tm, Xin) — 3 AEL [f (b1, X1,
t

m

tma1
R (x) = / EE, [ (5 X )(ws — we, )]s — SACEE, [ (tan 1, Xon 1) Do ]

m

tma1
(4.29b)  — / EY [Z)ds + SAtZ, + SAEL [Zy41].
t

m

The orders of these errors depend on the smoothness of the integrands with respect to
time s. If functions f and g are sufficiently smooth and bounded, with bounded deriva-

2This is part of forthcoming research in [42].
3The error analyses for other processes and other discretization schemes for the FSDE, such as
the Milstein scheme, are part of forthcoming research in [42].
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tives, then the absolute values of the terms RY, (z), RZ,(x), ﬁﬂiﬁl [RY, 1 (Xmt1) Awp 1],

and (A RZ, (z) — EZ [RZ, 1 (Xm+1)]) can be bounded by C(At)3, with C' a constant
depending only on 7', functions g and f, and u, o (similar to [51, 49]).
The global errors due to the theta-time-discretization in (3.7c) and (3.7b) are
denoted by
€ (Xm) =Y (Xom) — Yn?(Xm% € (Xm) = Zm(Xom) — Zﬁ(Xm)a
(4.30) e (Xm) = f(tm, Xim) — f(tm, X5).

We omit the dependency of the local and global errors on the state of the FSDE for
notational convenience. For the y-component we have (m < M — 1)

(4.31) €m = Efn[egl+1] + %Ate{; + %AﬂEﬁz[e{n—H] + Ry,

With the Lipschitz assumption on driver function f, this error can be bounded, for
%Ath <1, by

1+ 2AtLy LAtLy 1AtL;
eml < — T Enllenll + — 2 lan + Ao Enllensa ]
1—1AtLy - LAtLy 1— 3AtLy
1

4.32 — (A3
432 4O
For the z-component we have
(433) €= ZEL[  Awp] +EL [y Awi] — EL (6 41] + 2 R

Substituting the similar equations for €” ., and €7, as in (4.31) and (4.33) gives
(m < M —2)

2
€m = A Em (€% 42w 1] + B (€], 1 Awm 1] + B €], 0 Awpn 1]
T 2 T T T [,z
+ IEm [E’If77,+1Awm+1] - EEm [6%1+2Awm+2] - Em [erfnJrZAmerQ] + Em [€m+2]
2 2 2

(4.34) +AtEfn[Rym+lAwm+1] At]Eﬁl[ ;+1]+AtR;.

Error €, ., is a function of X,, 5. The equalities (A.4) and (A.5) in Appendix
A.1 then give us
E7, [G?n-;-zAmerl] =E}, [Ym+2 (Xomt2) AWy — Y7$+2 (Xm+2)Awm+1]
= o AtED [Dy Y2 (Xmt2) — Danﬁrz (Xmt2)]

= En [Yim+2(Ximt2) Awmya — Y7$+2 (Xm+t2)Awpm o]
(4.35) = B [ 2 Awmya]-

We can also write error e,fn+2 as a function of X, 12, as

6{,14_2 - f(tm—Q—Qa Xm+2) - f(tm+27 Xﬁz+2)
= f(t7n+Qa Xm+27 Ym+2 (Xm+2)a Zm+2 (Xm+2))
(4.36) = Flmia Xons2, V2 o (Xms2)s 7840 Xns2).
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The equalities in Appendix A.1 result in

d
I f(tm+27 X$L+2)

d
E%[££¢+2Awm+l] = oAtE, | = f(tm+2, Xim+2) — dr

dx
(4.37) =E2,[e], s Awmaa).

Here % f denotes the total derivative of driver f to state x, where y and z also depend
on z. With the two equalities (4.35) and (4.37) we find

(4.38)

z T T [ 2 2 x 2 z x z
€m = ZEm[€£1+1Awm+1] + Em[6m+2] + E]Em[Rz{n+1Awm+1] + E (Rm - ]Em[ erl]) :

We can bound the absolute value of the first term by

2B €], 11 Awmga]] < 2B (€] 4[| Awma[] < 2sup el [ VAL
(4.39) < 2Lf(sup |6?7Jn+1| =+ sup |€1Zn+1|) VAL := 2Lf(|6?:n+1|00 + |€1Zn+1|00) VAL,

where the suprema are taken under the condition X,, = x.
We can now bound the absolute error by

(4.40) |5l < 2L VAL(€), 11 ]o0 + €5 g1100) + Ery[lef, o] +2C(AL)°.

Next we sum up the errors. For %Ath < %, At < 1, there exist constants Cy
and C5, depending on Ly, with (m < M — 3)

Eanem” = Eane%’n e o] + v At|61zn+1|00 + v At|€fn|00]
(4'41) < AE%[|6ym+2|oo +V At|€fn+2|oo + v At|6fn+3|00] +B= AEaneerZH + B,

1
ith A= ———(1 A
wit 1—LfAt( + C1At),
_ 1 3
B= (A"

THEOREM 1. Given

(4.42) ESilleid] ~ O ((A1)?), Ef,_y[lef ] ~ O ((A1)%),
then
(4.43) E2 [|eym| + \/E|efn|} <Q(A1)?, 1<m<M,

with Q a constant only depending on T, functions g and f, and u, o.
Proof. With (4.31), (4.33), (4.40) it is straightforward to show that

(444)  Ei_[lenall ~ O ((A2) and E_flens—sl] ~ O ((A1)2).
By induction we find

(4.45)
AZ(M=m)

1
EZ [lem|] < AZM=™EZ [leas_1| + |ear—a|] + TB for m < M — 3.
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It follows that (1 <k < M, AtM =T)

A 1< Ak < (1+C1At)k _ <1+ (Cy +Lf)At)k

1—LiAt 1—LsAt
(C1 + Lf)Atk (C1+ Lf)T
. < — | < -
(4.46) —eXp< 1—L;Aat ) =P \UT oA,

is bounded and

B < Co (
A—-1 Cl—l—Lf

(4.47) At)?. O

The authors in [49] obtain second order convergence in both Y and Z terms for
the case that the FSDE equals the Wiener process. Convergence of (Y2, Z2) to
(Y, Z) is discussed in [8, 48, 29, 21, 7] for the special case §; = 02 = 1. Under certain
conditions on functions f and g, error convergence of order O ((At)l/ 2) in the L2-
sense was found. The authors in [10] prove convergence of a discrete scheme with a
scaled random walk using a Donsker-type theorem. For the error analysis of other
schemes and LP-errors, we refer the reader to [47, 31].

Error in COS formulas. In section 3 we encountered deterministic functions y
and z, such that

Y(tm, X)) =Y (X0), 2(tm, X)) = Zn(Xp0).

These functions are approximated by COS formulas, and the corresponding Fourier
coefficients are recovered backward in time, resulting in the approximations

(4.48) Gltm, X5) and  Z(tn, X2).
The errors of these numerical approximations are denoted by

(4.49a) cos(tms Xim) 7= Y(tm, Xip) = G(tm, Xpn),
(4.49b) €205 (tmy X5) 1= 2(tm, X2) = 2(tm, X5).

Fourier series expansions and their convergence properties have been discussed
in [9]. Errors of the COS method are introduced in three steps (see section 4.1):
the truncation of the integration range, the substitution of the density by its cosine
series expansion on the truncated range, and the substitution of the series coefficients
by the characteristic function approximation. A detailed error analysis was given in
[16, 17] and in the supplementary material [43]. For a sufficiently wide computational
domain [a,b] the truncation error in our domain of interest can be neglected, be-
cause the truncated mass of the density function is negligible. The error component
I — I (equations (4.10)) converges exponentially in the number of terms in the series
expansions for smooth density functions and a sufficiently wide integration interval.
The transitional density that is related to the Euler scheme is smooth and results in
exponential convergence in N. A density function with a discontinuity in one of its
derivatives gives rise to an algebraic convergence in N. We refer the reader to [44]
for more information on the convergence of discontinuous functions. Algorithm 1 ex-
plains how to recover the coefficients Zi(t,,), Vi (tm), and Fi(t,,) backward in time.
This introduces an additional error. The use of DCTs to approximate the Fourier
cosine coeflicients gives an error with algebraic index of convergence two in N, as we
demonstrate by an example in [43] (section 3).
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Convergence of Picard iterations. With P Picard iterations we find the fixed point
y of the equation

(4.50) y = At01 f(tm, 2, Y, 2(tm, ) + h(tm, ).

The driver function f is assumed to be Lipschitz in y and z, with Lipschitz constant
Ly. For At small enough, i.e., LyAtf; < 1, a unique fixed point exists, and the Picard
iterations converge toward that point for any initial guess. The fixed-point technique
converges to the true solution at the geometric rate At Ly, which depends on the
Lipschitz condition of the driver function.

Total error. The absolute value of the total errors can be bounded by

(4.51a)
|Egn(vaX$)| = Yo (Xm) — ﬂ(tm,Xﬁﬂ <Y (Xom) — Y,.,%(X,%ﬂ + |€‘7é05(tm,X,%)|,
(4.51b)
|5fn(Xm,X$)| = Zm (X)) — é(tvaﬁﬂ <N Zm(Xm) — Z,%(X,%ﬂ + |€éos(tm,Xﬁ)|-

For the numerical experiments in section 5 we take N sufficiently high. Then we
can neglect the errors ecpg and are able to investigate the error of the discretization
scheme.

Computational complexity. The computation time of the BCOS method is linear
in the number of timesteps M. For each discrete time-point t,, we perform the
following operations: A

e Computation of 2(t,,,z) and h(t,,,z) on an z-grid, in O(N?) operations.
e Initialization Picard method: Computation of §°(t,,,r) on an z-grid, in
O(N?) operations.
e Computation of §%(t,,,z) on an x-grid by P Picard iterations, in O(PN)
operations.
e Computation of Zi(t,,) and Hy(t,,) by the FFT algorithm, in O(N log N)
operations.
e Computation of F(t,,) ~ Fi *(tm) by DCT (see [43]), in O(N log N) op-
erations.
e Computation of Vi (tm) ~ VI (tm), in O(N) operations.
For the approximation of the coefficients F ™' (t,,) in (4.26) by a DCT we first need
to compute Z(tm, z), h(tm,z), and §°(tm, z) on an z-grid with N equidistant points,
which is of order O(N?). This is the most time-consuming part of the algorithm.
However, these functions can be computed in parallel. In total, the complexity of the
BCOS method, Algorithm 1, is O (M (N2 + PN + Nlog N + Nlog N + N))

5. Numerical experiments. In this section we discuss two numerical exper-
iments. MATLAB 7.11.0 is used for the computations, with an Intel(R) Core(TM)
i5-2520M CPU @ 2.50GHz and 7.7 GB RAM. To test the general theta-method we
distinguish between four discretization schemes:

Scheme A: 6, =0, 6y=1, Scheme C: 6, =1, 6,=1,
Scheme B: 0, =0.5, 0, =1, Scheme D:  6; = 0.5, 65 =0.5.

For all four schemes, z(t,,,x) can be solved explicitly, and y(t,,,z) is solved
explicitly for scheme A and implicitly with P = 5 Picard iterations for the other
schemes.

Similarly to [16], we prescribe a computational domain [a,b] by

(5.1) [a,b] = [xg + K1 — L\/Ka, ®o + K1 + L\/ka],
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with cumulants x; = T and ky = 02T, and L = 10. Furthermore, we set the number
of terms in the Fourier cosine series expansions equal to N = 22, For these values the
BCOS method has converged in N to machine precision.

5.1. Example 1. The first example is taken from [50]. The underlying process
is the Wiener process, i.e., X; = w;. The BSDE reads

(5.2) dY, = —f(t, X0, Yy, Z0)dt + Zyduo,
(52b) f(t, Xt, }/t, Zt) = }/tZt — Zt + 25}/15 — sin(t + Xt) COS(t + Xt) —2 sin(t + Xt),
(520) Yr = g(XT) = sin(XT + T)

The exact solution is given by
(5.3) (Yz, Zt) = (sin(X¢ + 1), cos(Xy +1)).

We take terminal time 7" = 1, which gives (Yp, Zy) = (0, 1). Note that driver f(.)
depends also on time t and state X;. For the results of the BCOS method, we refer
to Figure 1. We observe that the approximated value §(tg,xo) converges with O(At)
for the schemes A, B, and C and O((At)?) for scheme D. The approximated value
#(tg, o) converges with O((At)?) for scheme D and with O(At) for the other three
schemes, which is in accordance with the error analysis in section 4.5.

10 T T 10 SEEE} FEEEE RS B
: SRS S Scheme A
o —— Scheme B
10 &7 : Y Scheme C [
: . iiiiin] ———Scheme D
107 v, i
=
N 2
= 10~
o
—
b5} -3
© 10
107
10°
10°
0 1 2 3
10 10 10 10
M

FIG. 1. Results for ezample 1 (N = 2°). Left: Error in §(to,z0). Right: Error in 2(to,xo).
(Color available in electronic version.)

Table 1 shows CPU times for scheme D, for different values of M and N. Each
test required less than one second. Computation of the functions 2(t,,, z), A(tm,x),
and §°(t,,, ) on an z-grid is the most time-consuming part of the algorithm. The
computation time is linear in the number of time steps M and of O(N log N) order
in the number of terms in the Fourier cosine series expansions.

5.2. Example 2: Black—Scholes call option. In this example we compute
the price v(t, S;) of a call option by a BSDE where the underlying asset follows a
geometric Brownian motion,

(54) dSt = ﬂStdt + 5'Stdwt.

The exact solution is given by the Black—Scholes price, which is known analytically
[6]. For the derivation of the Black—Scholes PDE we set up a self-financing portfolio
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TABLE 1
CPU time (s).

M 4 8 16 32 64 128 256 512
N =29 0.0301  0.0304 0.0412 0.0639 0.1071 0.1966  0.3736  0.7292

N 26 27 28 29
M =256 | 0.0940 0.1109 0.1552 0.3736

Y;: with a; assets and bonds with risk-free return rate r. Markets are assumed to
be complete in this model, there are no trading restrictions, and the option can be
exactly replicated by the hedging portfolio, that is, Y7 = max(Sr — K,0). Then, the
option value at the initial time should be equal to the initial value of the portfolio.
The portfolio evolves according to the stochastic differential equation

(5.5) dY; = r(Y; — apSe)dt + aydS, = (rYt + B

TO'CLtSt) dt + 6atStdwt.

If we set Z; = GaS, then (Y, Z) solves the BSDE

(56&) dY; = —f(t, St, Y;g, Zt)dt + tho.)t,
(5.6b) F(t, 50 Ys 2) = =Y = F==2,,
(5.6¢) Yr = max(Sr — K, 0).

Y; corresponds to the value of the portfolio, and Z; is related to the hedging strategy.
In this case, the driver function f(.) is Lipschitz continuous and linear with respect
to y and z. The option value is given by v(t,S;) = Y; and 6S;vs(t, St) = Z;. For the
tests, we use the parameter values

(5.7) So =100, K =100, 7 = 0.1, i = 0.2, & = 0.25, T = 0.1,

with the exact solutions Yy = v(tg, So) = 3.65997 and Zy = 7.Sovs(to, So) = 14.14823.
For the numerical approximation, we switch to the log-asset domain X; = log .S, with

(5.8) dX, = (i — $6°)dt + Gdw,.

Results of the BCOS method for all four schemes are presented in Figure 2. The
approximated values §(to, xo) and 2(tg, xo) both converge with O(At) for schemes A,
B, and C and with O((At)?) for scheme D, as expected.

We would like to emphasize that solving the BSDE is done under the historical,
real-world P-measure. However, the exact Black—Scholes solution does not depend on
f. In Figure 3 we see results for different values of drift i. The convergence rates
in M are the same, but a higher value of i gives a larger error for the same number
of time steps M. This is due to the Lipschitz constant L; = max( %,T), which is
increasing in ji.

6. Exponential utility maximization and utility indifference price. In a
financial market with jumps or with constrained hedging strategies it is usually not
possible to perform a perfect hedge which exactly attains the option payoff as the
final value; there is a so-called replication error. If markets are not complete, there
are different ways to value options [13]:
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FIG. 2. Results for ezample 2 (N = 2°). Left: Error in §(to,z0). Right: Error in 2(to,xo).
(Color available in electronic version.)
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F1G. 3. Results for example 2 for different values of fi (scheme C). (Color available in electronic
version.)

e Superstrategies are strategies with a positive replication error. The super-
replicating option price is the minimal initial investment to find a strategy
that always dominates the payoff of the option [14].

o Risk-minimizing strategies are used when the problem requires a strategy
with minimal variance for the replication error. They were first introduced
by Follmer and Sondermann in [18].

o Utility indifference pricing maximizes the utility of the replication error. The
corresponding price makes an agent indifferent in terms of expected utility
between selling the option or not selling it. Utility indifference pricing was
introduced by Hodges and Neuberger in [24].

We focus on utility indifference pricing, which basically consists of solving two
utility maximization problems, one with and one without an option liability. In the
next section we consider a general utility maximization problem. We employ the
model of Morlais in [34], making use of an exponential utility function and jumps in
the asset price. The problem can be defined by a BSDE including jumps. We refer the
reader to [39, 45, 25, 33, 38] for the setting where asset prices follow only a diffusion
process. This model is generalized by jumps in [2, 34].
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6.1. Exponential utility maximization under jump-diffusion with op-
tion payoff. Following the notation in [34], the probability space (2, F,P) is now
equipped with two independent stochastic processes: the standard Brownian motion
w and a real-valued Poisson point process defined on Q x [0,T] x E, with F := R/{0}.
We denote by N(dJ,dt) the associated Poisson random measure whose compensator
is assumed to be of the form v(dJ)dt, where v(dJ) stands for the Lévy measure, which
is positive and satisfies

(6.1) V({0}) =0 and /E(l/\|J|)2z/(dJ) < 0.

N(B,t), B C R, is the number of jumps with size in set B which occur before or
at time ¢, and v(B) counts the expected number of jumps in a unit time interval.
F is the completed filtration generated by both processes w and N. The so-called
compensated Poisson random measure, N, is given by

(6.2) N(dJ,dt) = N(dJ,dt) — v(dJ)dt.

The asset price is supposed to follow the jump-diffusion process
(6.3) dS;/Si— = b(t)dt + o(t)dw; + / B(t, J)N(dJ,dt);
E

S;_ represents the value of the asset just before a possible jump occurs. The jumps
may model the occurrence of, for example, market crashes or default losses. An agent
sells a bounded Fr-measurable option payoff £ = g(St) at time ¢ = 0. He is endowed
with some initial capital w and then invests ay, t € [0,T], of his portfolio W in
assets, where the superscript emphasized the dependence on a. The remaining part is
invested in a risk-free opportunity with zero rate of return, i.e., r = 0. The dynamics
of this self-financing portfolio read

ds, -

(6.4) dwWp = atS—t = oub(t)dt + aro(t)dw + at/ B(t, J)N(dJ,dt), Wg =w.
t— E

At terminal time 7" there is an uncertain claim &, and the agent is able to reduce the

risk by his trading strategy. The attitude of the agent toward possible profits and

losses is measured by an exponential utility,

(6.5) (z) = —exp(—nx), n>0.

The utility function is monotonically increasing and concave; 7 is the coefficient of
absolute risk aversion and represents the degree of risk aversion. A higher value of
7 corresponds to a higher level of risk aversion. A negative amount of final wealth
has a higher weight than a positive amount; in other words, more weight is given
to unfavorable losses. n = 0 corresponds to risk neutrality and n = oo to absolute
risk aversion. The agent wants to maximize his expected utility at time 7', and his

objective function now reads
T
ds
Ul w+ / ar—t— €|,
0 St

where we maximize over the investment opportunities « in the constraint set .4 with
admissible strategies. Possible trading strategies may be restricted; for example, an

(6.6) V(w) = maxE [UW(W5 —&)] = maj‘(E

acA a€
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agent may be forced not to hold a negative number of assets. For the tests in section
7 we will take A = [min, Qmaaz]-

The objective function can also be characterized by a backward stochastic differ-
ential equation with jumps (BSDEJ), as follows:

(6.7) V(w) = U(w — Yy) = —e 1Yo,

where (Y, Z,U) is the solution to a BSDEJ, given by [34]

(68&) d}/t = —f(t, Zt, Ut)dt + thWt + / Ut(J)N(dJ, dt), YT = f,
E
oy 1P
2
+ gléﬁ [g <acr(t) — (z + %%)) + Ju(.) — aBl(t, )|n1 :
_ [ eetuld) —mud) -1
(6.5¢) Ol = | - ().

The solution of the above BSDEJ consists of a triplet of processes (Y, Z,U) in S (R) x
L%(w) x L?(N).* Existence and uniqueness results for this BSDEJ are provided in
[34]. For more information about existence and uniqueness of BSDEJs, we refer the
reader to [46, 1, 40]. Furthermore, there exists an optimal predictable strategy of € A
that attains the minimum in (6.8¢c) for (t,z,u) = (¢, Z¢, Uy).

6.2. Utility indifference price. Now we start with the utility indifference
price, where the idea is the following. The seller of an option receives the option
premium and hedges the option with an optimal strategy that maximizes the utility
of the portfolio value at the terminal time minus the payoff. We also determine the
expected utility without the option trade. The utility indifference price of the option
is defined as the additional initial wealth with which the seller can achieve the same
utility as without the option.

Let ug(w) denote the utility maximization value without the option payoff,

(69) uo(w) = max B[4 (W),

and let ug(w) denote the utility maximization value in presence of the option,

(6.10) ug(w) = max E[U (Wg —§)].

ateA
The seller’s indifference price (ask price) v* satisfies
(6.11) up(w) = ug(w + v*).

In other words, it is the price at which a seller is indifferent, in the sense that the
expected utility under optimal trading remains the same, between selling the option

4Following [34], S>®(R) is the set of all adapted processes Y with cadlag paths such that
supg (supse(o, 1) 1Yt]) < oo L?(w) is the set of all predictable processes Z such that IE[fOT |Zs|2ds] <

oo L2(N) is the set of all P® B(E)-measurable processes U such that E[fOT S5 1Us(J)|?v(dJ)ds] < co.
P stands for the o-field of all predictable sets of [0,7T] x © and B(FE) the Borel field of E.
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for price v® and not selling any option. We need to solve for v®, and with the theory
in section 6.1 we find

(6.12) Uw—YY) =d(w+v" —YF) = =YY,

where Y2 and Y;* follow BSDEJ (6.8) with terminal conditions Y7 = 0 and Yy = £,
respectively. With this we can value an option under jump-diffusion and when the
trading strategies are constrained, for example, A = [min, ®maz], With the help of
BSDEJs.

The buyer’s indifference price (bid price) v® is defined in a similar way and satisfies

(6.13) uo(w) = u_g(w — v°).
Again, with the BSDE approach we find that
(6.14) Yw—-Y) =tw—-2"-Y; ") = =Y -y, "

Below is a list of properties of utility indifference prices (see, for example, [23, 39]).
We here denote by v(n, &) the option price with coefficient of absolute risk aversion 7
and option &.
e Prices v” and v® are independent of initial wealth w.
e Bid and ask prices are related via v’ (n, &) = —v?(n, —£).
e The ask price is larger than the bid price: v® > LE
e If the market is complete, i.e., there are no jumps and A = R, then the
option is perfectly replicable. The driver function reduces to f(¢,z,u) =

—z% — % g 2 and the utility indifference prices reduce to the Black-Scholes
prices.

6.3. Discretization and BCOS method for BSDEJs. In this section, we
explain the BCOS method to solve BSDEJ (6.8). We suppose that the asset price
follows the following FSDE:

(6.15) dS,/S;_ = bdt + odw, +/ B(I)N(dJ,dt), with B(J) =e’ —1.
E

Moreover, E is assumed to be a finite set, E' = {j1, j2, ..., jn, }, with Lévy measure
v({je}) = Ape, where A = v(R) is the intensity rate. In other words, p, is the
probability of jump size j, and v(dJ) = A",2, pidj,(dJ). So,

4

(6.16) /E BN (T, d) = S B0 N (e}, dt).

(=1

We define p1 := b — [, (J)v(dJ) and switch to the log-asset domain X; = log S;,
ie.,

(6.17) dX; = (u — 107 —|—/ JV(dJ)) dt + odw; —|—/ JN(dJ,dt).
E E
The Euler discretization of FSDE (6.17) reads

(6.18) Xﬁﬂ = X5+ (u — 107 —l—/ Jl/(dJ)) At 4+ 0 Awp, 41 —l—/ JN(dJ, At),
E E
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where we defined N(dJ, At) = N(dJ, (tm,tmy1]) = N(dJ, tmi1) — N(dJ,ty). The
characteristic function of X2 11, given XA =z, reads

o(u|z) = o(u|0)e™ = ¢(u)e™®, with
(6.19)

nj
d(u) = exp (iu(p — 10°)At — 2u’o®At) e AAUpa(w)=1) 1 (y) = Zpgemje.

For the discretization of the BSDEJ, we start from

(6.20)
tm—+1 tm+1 tm1
Y = Y —|—/ f(s,Zs,Uq)ds —/ Zydws — / / dJ ds).
t"n tnl tnl

Both processes w and N are independent. Taking conditional expectations of both
sides of (6.20) and applying the theta-method results, similar to (3.5), in

(621) Y, ~ Em[Yerl] + Atﬁlf(tm, Zims Um)
+ At(l - el)Em[f(tm+17 Zm+17 Um+1)]7 91 S [07 1]

Multiplying both sides of (6.20) by Aw,,+1 and taking conditional expectations
gives us, similar to (3.6),

0~ Em[YerlAmerl] + At(]- - 92)Em[f(tm+la Zerla Uerl)AWerl]
(622) — At05Z,, — At(l — og)Em [Z7n+1], 0y € [0, 1]

Multiplying both sides of (6.20) by N({j,}, At) and taking conditional expecta-
tions gives

O:Em[Ym+1N({jg},At)]+/tm+1 B [ £(5. 20, UDN ({5 — t)] ds

m

t7n+1
(6.23) - / PeAEy, [Us(je)] ds,
t

m

where we used the Ito isometry for

(6.24) Utu/ U ()N (dJ, ds)N ({jg},At)]

m—+1 m+1
=E,, U / Uy (J)N(dJ, ds / / 8;,(J)N(dJ, ds)
tm E

t7n+1
= Em |:/ pg/\US(jg)dS] .
tm

By the theta-discretization we get

0~ Em [YerlN({j@}a A)] + At(1 = 03)En [f (tms1, Zm1, Um+1)N({j€}v At)]

(6.25)
— pg)\AtG:;Um(jg) — pg/\At(l — 6‘3)Em[Um+1(jg)], 03 € [0, 1], fort=1,... NUR

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/11/15 to 131.180.131.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

FOURIER METHOD FOR COMPUTATION OF SOLUTIONS BSDEs A881

The above equations lead to a time-discretization (Y2, Z%, UA) for (Y, Z,U), as
follows:
(6.26a)

it = 9(X5p),

form=M-—-1,...,0:

—92_1(1 — 62)En, [Zﬁ—k—l] ﬁo_lEm [Yn%ﬂAme]

(6.26b) + 05" (1 = 02)Epn[f (bt 1, Zin1s Uy 1) Ao

Um(e) = =05 (1 = 03)En [US 41 (G0)) + 5705 B Yot N ({Ge}, Ab)]
(6.26¢) + 25051 (1 = 03)Em[f (tmi1s Zimr1s Ums )N (e}, AD)], =1,y

(6.26d)
VA =B Y] + Aty f(tm, Z5,US) + AL — 01)En [f (tms1, Zii1: U1

As the terminal condition is a deterministic function of X%, and because X is
a Markov process, it is easily seen that there are deterministic functions y(t,,, ),
2(tm, x), and u(t,, z, je) so that

(6.27)
VA =y(tm, X5), Z5 = 2(tm, X5), Uh(e) = ultm, X5,d0), £=1,...,n;.

So, the random variables Y2, Z5. and U2 (je) are functions of X2 for each m =
0,..., M. The functions y(t,,, x), z(tm, x), and u(t,,, x, j¢) are obtained in a backward
manner. Similar to section 4, the Fourier cosine coefficients of the functions z (¢, x),
fltm, 2(tm, ), u(tm, x,.)), and y(tm,x) are denoted by Zi(tm,), Fi(tm), and Vi(tm),

respectively. Let U (t,,) be the Fourier cosine coefficients of u(t,,,z, j¢), i.e

y 2 b T—a
(6.28) Up(tm) = - a/ u(tm, x, je) cos <k7rb_ a) de, (=1,...,n;.

We obtain the following COS formulas to approximate the conditional expecta-
tions in (6.26¢); see Appendix A.2 for details.

(6.29a)

N-1 Lk
/ ™ ikw L=
]Em 'm+1 ]f Z/{ 'm+1 ( < ) € b_a) )
P b—a

(6.29b)

2

T =~ . ]C ikmX—a k 1
En [Y7$+1N({]Z}7 At)} ~ . yk(tm+l)§R{¢ (b _ﬂ-a) e poAAL {GXP (Zbiji) - 1] } ;

£
I

En [£(bmt1, Zimen, Uni) N ({e}, A0)]

(6.29¢)
N-1 .
,]:k (tm1) {¢ <k—ﬂ-) eikw%pz)\At {exp <z ke ) — 1] } .
— b—a b—a

Furthermore, we use the COS formulas (4.15) and (4.17) from sections 4.2 and 4.3,
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obtained with the equality in Appendix A.1, to find

1 N-1
1—62b—a / 1 b—a ’ ,
2tm,2) ~ ———— kZ:O Z(bm+1) i () + 370= = kZ:O Vi(tmt1) o ALDY (2)
N—-1
1-— 92 b—a / ’
. tm Atd ,
(6.30a) + 3 ;) Fi(tm1)o Atd ()
(6.30b)
—1
. 1—03b—a /
u(tm,l',][) ~ = 03 3 2 ;) u’f(tm-‘-l)@k(w)

/ 1 1- 93
+ 2 (myk(tmﬂ)-F 7 fk(tm+1))
-R {qb <—k7T ) R At {exp (i—kﬂ-jl) — 1} } ,
b—a b—a
(6.30¢)
b N-1
Y(tm, ) & 52D Vkltmsr) + A1 = 01) Fr(tmi1)) ()

2

k=

+ At@lf(tm,z(tm,x),u(tm,x, ))

(=]

The coefficients Zi(ty,), Fi(tm), and Vi (tn) are recovered in a similar way, as ex-
plained in section 4.4. The computation of the Fourier cosine coefficients Uf (t,,) of
function w(t,,, z, j¢) can be decomposed into three parts. In summary, this results in

N-—1
[ o1-9 1 K
uﬁ(tmwa%(Z [— 0 () + g [exp (Zb_fl) —1] Vi (tsn)

j=0
1-6 ki '
(631)  +— 2 At [exp (’biji) - 1] ‘Fj(tm+1)‘|¢ (b]_—wa) Mm)

With the above equations we can recover the Fourier cosine coefficients recursively
and solve the BSDEJ backward in time.

6.4. Reference values. We first explain briefly how we can use the COS method,
in a completely different way, to obtain reference values for the numerical tests in sec-
tion 7. The utility maximization problem,

(6:32) V(w) = max E[U(WF — g(Sr)],

is a two-dimensional (2D) stochastic control problem with the following underlying
processes:

(6.33a) dS;/S;— = bdt + odw; + / B(J)N(d.J, dt),
E
(6.33b) AW = apbdt + azodw; + oy / B(J)N(dJ, dt).
E

We can solve this problem by dynamic programming and the 2D-COS method. This
method was developed in [41] for pricing rainbow options, for which the payoff depends
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on two or more asset price processes, and can also be applied to stochastic control
problems.

If it is not possible to invest in assets and to hedge the risky option, i.e., a; = 0 for
all t € [0, 7], then the portfolio value W* = w is constant, and the problem reduces
to

(6.34) V(w) = E[UW(w — g(S7))] = —e ™E [eng(ST)} '

We can approximate this one-dimensional expectation by using the one-dimensional
COS formula from [16].

7. Numerical experiments BSDEJ. In this section we use the BCOS method
to value a put option under jump-diffusion asset prices by using utility indifference
pricing, as explained in section 6.2. For the numerical tests, we use the following
parameter values:

(7.1) So=1,K=1,b=0.1779, 0 = 0.2, T = 0.1.

The jumps occurring are assumed to be bivariate distributed with possible jump sizes
jl and jQ, with

(7.2) j1 = —0.1338, jo = —0.9838, p1 = p» = 0.5, A = 0.0228,

so that the expected value is —0.5588 and the standard deviation is 0.4250. These
values correspond to the real-world P-measure for the jump-diffusion asset price in
[27].

Similarly to [16], we choose the computational domain

(73) [a,b]z |:$0+/€1—L\//€2+\/a, $0+/‘\31+L\//‘\32+\/1€_4:|, L =12

The cumulants k1, ko2, and k4 of the Brownian motion and the Merton jump-diffusion
process are, for example, given in [16]. Again we set the number of terms in the
Fourier cosine series expansions equal to N = 2°.

We distinguish between three theta-discretization schemes:

Scheme E: 6, =1, 6,=1, 63=1,
Scheme F: 0, =0.5, 6o =1, 03=1,
Scheme G: 01 = 0.5, 02 = 0.5, 03 =0.5.

For solving (6.26) in the first time iteration, m = M — 1, we set 61 = 0 = 65 = 1,
because the driver function f(.) depends on the unprescribed values z(tps,x) and
u(ty,x,.).

No hedge. We start with the setting where it is not possible to invest in assets
and to hedge the risky option, i.e., ay = 0 for all ¢t € [0,T]. In Figure 4 results of the
BCOS method are shown. The left plot shows the initial values of the BSDEs, Yog,
Yo_g, and Yy, for different values of 7, and the right plot gives the bid and ask prices.
The dots are the values obtained by the BCOS method, while the black circles give
the reference value obtained by the COS method as described in section 6.4. The
approximated values correspond to the reference values.

Restricted hedging strategy. For the second test we assume that the set of admis-
sible strategies is given by A = [—15, 15]. In other words, a maximum of 15 Euro
is used to buy or sell assets. We use Newton’s method to find the optimal strategy
in (6.8¢c). Figure 5 presents the results of the BCOS method. The reference values
(black circles) are obtained by the 2D-COS method.
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F1G. 4. Results Yo and utility indifference prices (scheme G, N = 2°, M = 64, At = 0.1/64).
(Color available in electronic version.)
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FIG. 5. Results Yy and wutility indifference prices (scheme G, N = 2°, M = 64, At = 0.1/64).
(Color available in electronic version.)

Convergence in M. For the last test we investigate the convergence of the error
in the number of time steps M for 7 = 1 and with terminal conditions £ and —&.
Reference values are obtained by choosing a large number of time steps M. The results
are shown in Figure 6. The approximated value §(tg,z¢) converges with O(At) for
schemes E and F and with O((At)?) for scheme G, as expected. The values 2(to, zg),
i(to, o, j1), and a(to, xo,j2) converge with O(At) for all three schemes. Again the
scheme with 0; = 1/2, ¢ = 1,2, 3, gives the best convergence rate. The CPU times for
different values of N and M are shown in Table 2.

8. Conclusions and outlook. In this paper we proposed a probabilistic nu-
merical method for solving backward stochastic differential equations (BSDEs). The
first step consists of discretizing the BSDE by taking conditional expectations and ap-
plying a general theta-discretization for the time-integrals. Then, the BCOS method
solves the problem backward in time by approximating the conditional expectations
with the help of COS formulas. The Fourier cosine coefficients are recovered recur-
sively in an efficient way by using discrete Fourier cosine transforms and an FFT
algorithm.

Numerical tests demonstrate the applicability of the BCOS method for BSDEs
in economic and financial problems. In the tests we observed different convergence
results for Zy and Yy. The convergence of the error in the number of time steps
depends on the smoothness and the Lipschitz constant of the driver function and
the terminal condition. In general, we achieve the highest convergence rate for the
theta~scheme with 6; = 0y = 1/2.
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FiG. 6. Convergence in M (N = 2°). Upper left: Error in §(to,xo). Upper right: Error in
2(to,zo). Lower left: Error in i(to,xo,j1). Lower right: Error in i(to,xo,j2). (Color available in
electronic version.)

TABLE 2
CPU time (s).

M 4 8 16 32 64 128 256 512
N=29 0.0694 0.1086  0.1908 0.3358 0.6428  1.2555  2.4931  4.9387

N 26 27 28 29
M =256 | 0.7897 1.0745 1.5204 2.4931

Utility indifference pricing is used to value options in an incomplete market under
a jump-diffusion asset price process, possibly with a restricted hedging portfolio. The
bid and ask prices are represented by BSDEs with jumps. We extended our BCOS
method to solving these BSDEJs under jump-diffusion with a finite number of jump
sizes. Numerical experiments show highly satisfactory and efficient pricing results.
The theta-scheme with 6; = 6, = 03 = 1/2 gives the fastest convergence.

The COS method is applicable for all Lévy processes and is especially efficient
for the affine class. BSDEs driven by Lévy processes are discussed in [35], and they
are a challenging extension of the BCOS method. Another interesting extension are
second order BSDEs [15], which will be part of our future research.

Appendix A. COS formulas. In this section we explain how to approximate
several conditional expectations under the discrete process

(A1) X$+1 = X2+ p(tm, ©) At + 0 (tm, T) Awpmi1 + / JN(dJ, At),
E

with characteristic function
o(ulz) = @(ul0)e™ = ¢(u|z)e™®, with

(A.2) o(u|z) := exp (tup(ty, 2) At — 3uo?(t,, 2)At) erAtles(W=1)
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where ¢ (u) = 3,7, pee’* denotes the characteristic function of jump size J.

A.1. Computation of expectation E? [- Awy,41]. Integration by parts gives
us, for sufficiently smooth v,

EZ, [0(tmt1, Xins1) Awme1

=E7 |v (tm+1, T+ w(tm, ) At + o (tm, ) Awm+1 + / JN(dJ, At)) Awm+1i|
L E

: éf (t + p(tm, w)At +o(t )<+/JN(dJAt)>¢*%(fm)2dg
™| Varva Jp O\ E TR ISR O B , e

=E¥ oltm, ) At Dzv(tm.‘.l,x + p(tm, ©) At + o (tm,z)¢ + / JN(dJ, At))eé(\/i_tydg}
™| VervAt Jr E
(A.3)
= 0(tm, z) AtEZ, [Dzv(tm_‘_hX,%_H)] .

For the error analysis in section 4.5 we assume constant g and o terms; then
iterated conditioning gives

(A.4) EZ, [v(tmio, Xinio) Awmia] = 0AES, [Dyv(tmio, Xio o))
and
E7, [U(tmﬂ,XﬁH)Ame]

~En [U (tm”’ @+ U0+ 0 D + 0 Awmyr + /E IN(dJ, mt)) Ame]

(A.5)
= O’AtEfn [Dzv(tm+23 Xy%JrZ)] .

The derivation for diffusion processes can be found by omitting the jump part in
the derivation.

A.2. Computation of expectation EZ ['N({jg},At)}. Equation (6.29b)

and, similarly, equation (6.29¢) require the computation of

EL, [0(tm1, X2 )N ({eh, A0)] = B, [otmsr, Xin 1)V (e}, AD)]

(A.6) — B, [0(tmsr, X)) v({de}) At
The first part in (A.6) can be written as
(A7) E7, [0(tms1, X1 )N ({e}, A1)
N-1
!

~ Vi(tms1)R (Efn [N({jg}, At) exp (iu(X,%H — a))D ,
0

el
Il

with

Er [N({e} At exp (iu(Xntr = a))| = B exp (iu(@ + (b, 2) Al + 0 (bm, 2) At = a))]

(A.8) JEZ, {N({jg},At) exp (iu /E TN(dJ, At))] .
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Now let 74,q = 1,2,..., Na¢, denote the jump times between t,, and t,, 1, with
jump sizes J. . Then, we find by the law of iterated expectations the following
equality:

NAt NAt
E {N({jg},At) exp <m/ JN(dJ, At))] =E|> 1;,(J)exp | iu)_ Jn
E qg=1 =1

Nat Nat

Z]'Jﬁ Tq eXP ZU’ZJTL ‘NAt
_i —AAt /\At lee Ty exp Zuan

—Z —aar (AAH" /\At Z 1,,(J7,) exp (iudy,)| E {exp | iu Z Jr,

=Y RO i)

n=0
(A.9)
_ eiujfpg)\Ate)‘At(‘p"(u)fl).

We end up with the approximation

(A.10) Ef, [v(tmsr, X )N (e}, A1)

~ ZI Vie(tm41)R ((b(u)em(r_a) [exp (iuje) — 1] pg/\At) )
k=0
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