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A B S T R A C T

Solar photovoltaic (PV) energy is variable. The output power can change considerably in a matter of minutes,
imposing challenges on the control of systems connected downstream. The power from these systems can
be smoothed using electric storage, potentially increasing the system cost. An alternative is to deliberately
curtail the power before it starts to change. This strategy relies on ultra-short-term forecasting to determine
the curtailment point. Unfortunately, forecasting is prone to errors and high uncertainty even in the very short-
term, leading to control errors. We propose an active power curtailment control strategy for a stand-alone solar
photovoltaic system powering an electrolyzer. Our work’s novelty relies on the controller’s ability to deal with
large forecasting errors and high uncertainty, combining artificial intelligence for predicting the power ramps
and fuzzy logic to account for imperfect prediction. We validated our approach using a hardware emulator of
the photovoltaic system, power converter and electrolyzer. Under clear sky conditions, the curtailment results
in unnecessary energy loss, while under variable irradiance, the controller successfully smooths the power
ramps within 10% of the PV system’s nominal power. Although our approach was designed for a stand-alone
system, its concept can be directly applied to grid-connected systems as well.
1. Introduction

Renewable energy has grown significantly in the last years and is
expected to cover as much as 38% of the world’s electricity mix by
2027 [1]. In particular, solar energy is the most rapidly expanding
technology, exceeding the expectations by a 30% [1]. Solar energy
is highly variable and, due to passing clouds, it can result in sudden
and significant power changes of a PV plant. These changes, often
called ramps can have consequences on the network to which the
plant is connected. For grid-connected systems, these changes might
negatively influence the grid voltage and frequency [2]. Furthermore,
grid operators often impose limits on the allowed changes of power.
For example, Germany and Puerto Rico establish a ramp rate limit
of 10%/min [3]. A straightforward solution to power ramps of PV
systems is to add electric storage, but this is not a fixed requirement
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to do power smoothing. This objective can also be fulfilled by curtail-
ing the output PV power during a ramp event. For ramp-up events,
this is straightforward, as the power can be curtailed to the current
production level and slowly climb to the new maximum power point,
thus avoiding a ramp violation. On the other hand, for a ramp-down
event, the power will drop immediately if no storage is available. To
prevent this, the power must be slowly curtailed before the event [4].
Battery-less smoothing techniques also result in lower levelized costs of
electricity, especially when the smoothing requirement is small because
the investment costs of batteries exceed the cost of loss of energy due
to curtailment. However, this is only true when the prediction of ramps
is highly accurate [5]. In the stand-alone case, PV-electrolyzer systems
for hydrogen production can be operated with or without batteries. The
advantage of battery-assisted electrolysis is a constant operation despite
vailable online 29 June 2024
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the variations in irradiance, and the production during nighttime [6].
Also, in these systems, curtailment might be the cheapest option for
off-grid operation of solar-hydrogen systems [7].

Since battery-less power smoothing relies on short-term forecasting
(nowcasting), this tool becomes an essential ramp control [4,8–10]. As
an example, an algorithm of a power management system relies on
nowcasting as a first step to perform power smoothing based on signal
processing techniques [10]. For PV systems, a method using a sky image
facilitates determining whether or not a cloud will (partially) block the
sun. This information allows the estimation of the drop in PV power,
which determines the active power curtailment needed to smooth the
ramp [11]. Also, in this approach, the performance of the smoothing
approach depends heavily on the quality of the prediction.

These systems require a high level of prediction accuracy to per-
form the control [4,10] which is not achieved in practice. Nowcasting
irradiance ramps is a challenging task and even systems with artificial
intelligence fail to predict irradiance events in the very short term.
While some authors have discussed that knowledge on the accuracy
of predictions can improve the control strategies [8], how to include
such knowledge is not mentioned. Some strategies to deal with the
forecasting inaccuracy include using reinforced learning to adapt the
power curtailment even with low-quality predictions [12]. This study
tackles the problem of the inherent inaccuracy of ultra-short-term
forecasting (nowcasting) when applied to a smoothing technique based
on active power curtailment. Its novelty relies on combining the knowl-
edge of the forecasting uncertainty with fuzzy logic to smooth the
power from an off-grid PV system feeding an alkaline electrolyzer.
An experimental setup validates the control strategy emulating the
off-grid PV-electrolyzer system. Section 2 describes the models used
(Sections 2.1.1 and 2.1.2), while the experimental setup is introduced
in Section 2.2. The prediction module is presented in (Section 2.3.1)
along with the fuzzy logic controller (Section 2.3.2). Section 3 reports
the results and the discussion before the conclusion, presented in
Section 4.

2. Methodology

This work proposes a battery-less, uncertainty-based power smooth-
ing technique for a stand-alone PV-electrolyzer system. We validated
the operation of our technique with a hardware setup that emulates the
system. The emulation of this system requires three domains: a physical
domain that emulates the PV system, the electronic converter that
controls the PV system, and the electrolyzer, a modeling domain that
describes the behavior of the physical domain so it closely represents
a real system, and a control domain which supervises and controls
the whole system. Fig. 1 provides an overview of the system, and the
corresponding domains. Each of these domains is explained in detail
below.

2.1. Modeling domain

2.1.1. PV model
The emulated PV system consists of 6 PV modules connected in

series, with a total peak power of 2700 W. The PV module used as
a reference is a TRINA TALLMAX-M 450 [13]. The modules share the
same tilt (𝑎𝑚 = 19◦) and azimuth (𝐴𝑠 = 185◦). The size and orientation
f this system come from an optimization procedure for stand-alone PV
ydrogen systems as described in [14]. The model of this system is a
et of current–voltage (I–V) curves, one per simulation step, calculated
rom measured irradiance and ambient temperature. The monitoring
tation of the Photovoltaic Materials and Devices (PVMD) group of
U Delft (latitude 51.9997◦, longitude 4.3689◦) recorded the 1-min
lobal Horizontal Irradiance (GHI) using a silicon pyranometer on
3-June-2021 (clear day) and 31-July-2021 (variable day).

The calculation of the module’s I–V curve at a specific irradiance
evel requires the knowledge not of the horizontal irradiance, but
2

he irradiance impinging on the PV module (Plane-Of-Array, POA,
rradiance), and for this, the direct and diffuse components are needed.

The DISC decomposition model [15] allows the retrieval of the
irect Normal Irradiance (DNI) from the Global Horizontal Irradiance

GHI). The implementation of this model is readily available as a
ATLAB function from PV LIB [16]. Eq. (1) shows the calculation of

he Diffuse Horizontal Irradiance (DHI) from the GHI and the sun’s
levation angle, 𝑎𝑠 [17].

HI = GHI − DNI ⋅ sin
(

𝑎𝑠
)

(1)

These three quantities allow the calculation of the Plane-of-array
rradiance 𝐺POA. Eq. (2) [17] shows the calculation of 𝐺POA. Note that

it includes the three irradiance components obtained before. The Greek
letters 𝜌 and 𝛾 correspond to the albedo (assumed constant, with a value
of 0.2) and the angle between the sun and the PV module, (calculated
by MATLAB PVLIB’s function pv_getaoi), respectively.

𝐺POA = DNI ⋅ cos 𝛾 + DHI ⋅ SVF + 𝜌 ⋅ GHI ⋅ (1 − SVF) (2)

The model assumes an isotropic sky. This assumption implies that
the diffuse irradiance is the same across the sky dome and the portion
of the sky that the module, tilted at an angle 𝛼𝑚, sees (sky view factor)
is simplified as in Eq. (3) [17].

SVF =
1 + cos 𝑎𝑚

2
(3)

Following the procedure in [18], the plane-or-array irradiance, com-
bined with a two-diode model leads to the calculation of the module’s
I-V curve at each irradiance point.

2.1.2. Electrolyzer model
The electrolyzer is simulated as a power–voltage curve of a fictitious

1280 W, alkaline electrolyzer. This power is 2.1 times smaller than the
nominal power of the PV system, following the optimization procedure
described in [14].

A current–voltage curve models the electrolyzer. When the current
flows through the electrolyzer, its voltage increases as the electrons
must overcome energy barriers for the chemical reaction that decom-
poses water into hydrogen and oxygen molecules. These barriers are
the reversible voltage (minimum energy that the reaction needs, con-
sidered as 1.229 V) and overvoltages. We consider only the activation
overvoltage (energy of the reaction at the electrodes) described by a
modified version of the Tafel equation. Eq. (4) gives the current–voltage
characteristic of the electrolyzer [19].

𝐼 = 𝐼0 exp
(

( 𝐹
𝑅𝑇

)

( 𝑉
𝑛cells

) + 1.229
)

(4)

Its parameters are the universal gas constant (𝑅 = 8.314 J
molK ),

Faraday’s constant (𝐹 = 9.64 × 104 C), Temperature (𝑇 = 333.15 K),
exchange current (𝐼0 = 1.8 × 10−7 A), and the number of cells in
the stack (𝑛cells = 244). This last one was adjusted so the electrolyzer
voltage would lay between 300 and 400 V to avoid problems with the
protections of the inverter (see Section 2.2 for an explanation of the
setup). The power of the electrolyzer is the product of its current and
voltage. Ten voltage levels were defined, ranging from 300 to 400 V,
and at each point, the power was computed using Eq. (4) multiplied by
the corresponding voltage. The voltage of the electrolyzer, as a function
of the input power, is derived from these points and implemented in a
lookup table. Except for the physical constants, the parameters used
in Eq. (4) are fictitious.

The production of hydrogen (ℎ̇2, mol/s) is proportional to the
current, 𝐼 , flowing through every cell of the electrolyzer (number of
cells, 𝑛cells) according to Faraday’s law of electrolysis (Eq. (5)).

ℎ̇ = 𝜂 𝐼 𝑛 (5)
2 𝐹 2𝐹 cells
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Fig. 1. Overview of the implemented system. The physical domain consists of a DC power supply (Chroma 62100H), a boost converter, and a three-phase grid-tied inverter
built from Imperix PEB8024 half-bridge modules. An FPGA board (Imperix Bbox RCP) controls the switches of the boost converter and of the three-phase inverter. On top of the
physical domain, a modeling domain describes how the hardware reproduces the real system signals. The PV model consists of a set of current–voltage curves calculated from
measured data using the DISC decomposition model, a transposition model to calculate the Plane-of-Array irradiance, and a two-diode model. The boost converter controlling the
PV system performs a modified Perturb-and-Observe (P&O) Maximum Power Point Tracking (MPPT) algorithm. The inverter uses the Power–Voltage curve of the electrolyzer to
set its input voltage according to the received power, following the electric behavior of the electrolyzer. The control domain sets the reference points that ultimately perform the
power smoothing. It relies on an artificial intelligence module making one-minute ahead predictions of the ramps and the uncertainty associated with such prediction. Its output
feeds a fuzzy logic model that outputs the ramp set point, which is sent back to the Bbox-RCP in the physical domain. CMV, GHI and S.P. stand for Cloud Motion Vector, Global
Horizontal Irradiance and set point, respectively.
The Faraday efficiency, 𝜂𝐹 , describes losses caused by the cur-
rent not flowing through the electrodes (parasitic currents). This phe-
nomenon increases at low current density, 𝑖, as described by Eq. (6)
[20].

𝜂𝐹 = 𝑖2

𝑓1 + 𝑖2
𝑓2 (6)

where the fitting parameters are 𝑓1 = 2 × 104 A2∕m4 and 𝑓2 = 0.985
(dimensionless) [20].

2.2. Physical domain (Experimental setup)

The experimental setup consists of two main parts. A solar I–V curve
emulator and a power electronics module which concurrently performs
the MPPT and emulates the electrolyzer’s P–V curve. The solar emulator
is a Chroma 62100H - 600S DC-power source. Its software allows the
reproduction of a PV system I–V curve which can be programmed to
change in time [21]. The interface between the electrolyzer and the PV
system (output of DC power supply) is a boost converter, responsible
for controlling the PV system’s output either by performing maximum
power point tracking (MPPT) or setting a specific power set point. This
converter is connected to a three-phase inverter. Both converters are
implemented using Imperix PEB8024 (half-bridge) power modules and
power filters [22,23]. The Imperix Bbox-RCP unit controls the power
3

modules [24]. The control of all the converters can be easily developed
using MATLAB Simulink and sent to the Bbox-RCP.

The Perturb & Observe (P&O) maximum power point tracking algo-
rithm extracts the maximum power from the PV system. The modifica-
tion proposed in [25] allows a deliberate operation of the PV system
at a different power point rather than the maximum (i.e. curtailment)
with only a small change in the original P&O algorithm. This algo-
rithm drives a boost converter (interface between the PV system and
electrolyzer) and is implemented in the Bbox-RCP unit. Varying the
voltage of the DC-link between the boost converter and the inverter
according to the P–V curve of the electrolyzer allows the emulation of
this component. The P–V curve of the electrolyzer is also implemented
as a lookup table in the Bbox-RCP unit. Note that although the inverter
is connected to the grid, the system is not a grid-connected system.
This connection is there to dissipate the generated power, that in a real
system will be consumed by the electrolyzer. The emulated system is
a stand-alone (off-grid) system.

2.3. Control domain

2.3.1. Irradiance prediction module
The irradiance prediction module predicts one-minute-ahead ramps

of the global horizontal irradiance (GHI). In this work, a ramp is defined
as the percentage of change with respect to the last measured GHI
value. Rather than a single value, the model outputs the probability
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that a certain set of inputs belongs to a ramp class. By doing this, it
is possible to retrieve information not only on the most probable ramp
that will occur but also a measure of uncertainty of the prediction.

The model is based on neural networks whose input are, a single
low-resolution (64 × 64 pixels) sky image centered around the sun,
last measured GHI, and cloud motion vector. The sky images were
taken using an all-sky imager (CMS-Shreder ASI-16 [26]) equipped
with a fisheye lens located at the above-mentioned PVMD group mon-
itoring station. The sky images are taken every minute, along with
the global horizontal irradiance (GHI), measured with a silicon pyra-
nometer provided with the sky imager. The high-resolution images are
first corrected to remove the fish eye distortion, cropped around the
sun (200 × 200 pixels), and then resized to a resolution of 64 × 64
pixels. Using optical flow from two consecutive images it is possible
to calculate the cloud motion vector which returns the direction and
speed of the main cloud layer and is expressed in cartesian coordinates
whose origin is the center of the sky image, which is also the center of
the sun.

The Farneback optical flow [27] is an image-processing method that
determines the vectors indicating how the pixels of two consecutive
images are moving. This pre-processing step returns all the vectors of
the pixels moving between two sky images. Since most of the pixels
remain static, a histogram of the directions of the vectors will exhibit
a bimodal distribution with one mode close to zero and the second
indicating the main cloud direction. The mean magnitude of the vectors
in this direction is the main cloud speed [28]. In practice, the cloud
motion vector is obtained by running a clustering algorithm (k-means)
with two clusters of magnitudes and directions obtained from the
optical flow. All values smaller than one standard deviation of each
vector component are excluded from the clustering (still pixels). The
largest of the two cluster centroids obtained through k-means is the
cloud motion vector (in pixels per minute) [28].

The neural network comprises two stages: one responsible for the
processing of the sky image, and the second which combines the image
analysis output with the auxiliary data (GHI, X and Y components of
the cloud motion vector). Fig. 2 shows the architecture of the neural
networks. The network responsible for processing the sky image is a
ResNet50 implemented in the Keras library [29]. The auxiliary data
network is a fully connected network of 3 layers with 64, 32, and 1
neurons, respectively. The first two layers use the Rectified Linear Unit
(ReLU) activation function, and the output layer uses a softmax activa-
tion function. The training loss is the sparse categorical loss entropy.
Note that this is a classification problem rather than a regression one. As
such, the softmax function of the last layer returns the probability that a
particular set of inputs belongs to one of the labeled classes. The labeled
classes are 20 ramp bins with equal frequency in each bin, which means
that the width of the bins is different, but the number of elements is
approximately the same. The labels are coded as integers from 1 to 20.
The class with the highest probability is the predicted class. Since each
class label is linked to a bin, the actual predicted ramp is the center
of the bin corresponding to that particular class. A cumulative sum of
the probabilities of all the classes allows the determination of the 5th
and 95th percentiles; their difference is a measure of uncertainty. These
two outputs, the predicted ramp (the bin center of the most probable
class) and the uncertainty (the difference between the 5th and 95th
percentiles of the cumulative sum of the probabilities of all classes),
are inputs to the fuzzy logic control. The training set consists of 27,723
samples and the validation set of 7431 samples.

2.3.2. Fuzzy logic controller
Fuzzy logic offers a solution to complex systems by describing them

as linguistic variables rather than complicated equations. The relations
between the inputs and outputs (already described by linguistic vari-
ables) are written using a set of if/then rules. This makes handling the
uncertainties and imprecision of the model an easy task. Fuzzy logic as
opposed to traditional set theory, relies on the fact that an element can
4

Fig. 2. Architecture of the prediction module. The acronym ‘‘CMV’’ refers to the cloud
motion vector; each component of this vector, X and Y, is a separate input to the
model. GHI is the Global Horizontal Irradiance. The fully-connected network has two
hidden layers with 64 and 32 neurons with a Rectified Linear Unit (ReLU) as activation
function. The output layer consists of 20 neurons (one per bin) with the softmax
activation function.

Table 1
Fuzzy controller variables and their linguistic descriptors.

Variable name Linguistic descriptor

Inputs

𝛥GHI Negative large, shallow, positive high
Predicted ramp Deep down, shallow, deep up
Previous slope Negative big, zero, positive big
Uncertainty Low, high

Output

Slope Negative large, zero, positive large

simultaneously (and partially) be a member of more than one set. In
other words, its degree of membership to a set is not a binary (yes/no)
function, but a continuous one. And this is mapped by a membership
function. Membership functions are useful in the fuzzyfication step,
where a crisp variable value is transformed into a fuzzy variable. The
linguistic variables are also linked to the membership functions in
the sense, that a variable ‘‘slow’’ can be described by a particular
membership function. The if/then rules describe the relation between
the system variables and constitute the implication step of a fuzzy
system (e.g. if TEMPERATURE is COLD then SPEED is FAST). These
are translated as minimum and maximum operators (equivalent to the
intersection and union of the traditional set theory) [30].

Our model used the Mandami min implication rule, which is the
minimum value of both input and output membership functions. This
rule typically results in clipping the output membership function at the
value of the input membership function, evaluated at the crisp input.
Converting the fuzzy output back to a crisp number is done by calcu-
lating the centroid of the clipped output membership function [30].

The fuzzy control model takes four inputs, every minute: the pre-
dicted ramp (from the Prediction Module), the uncertainty of the
prediction (from the Prediction module), the last observed change
in the Global Horizontal Irradiance (𝛥GHI), and the previous slope
applied. The output is the slope (given as a percentage of change with
respect to the nominal power). This slope defines the power set point
sent to the system, every second. Using 𝛥GHI instead of the Plane-of-
array irradiance (𝐺POA) allows a generalization of our approach (𝛥GHI
is not system dependent as 𝐺POA).

Table 1 shows the system variables and their corresponding fuzzy
descriptors and Fig. 3(a) shows the membership functions for all the
inputs (Figs. 3(a), 3(b), 3(c), and 3(d)) and the output (Fig. 3(e)). A
description of the fuzzy rules can be found in Appendix.

3. Results

We used two scenarios to test our control strategy. Fig. 4 shows the
GHI of both scenarios along with the portion of the day considered for
the experiments. The first scenario corresponds to a clear day (13-June-
2021, Fig. 4(a)). The second scenario is a day with high irradiance
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Fig. 3. Membership functions of the fuzzy logic controller of (a) the irradiance changes, 𝛥GHI, (b) the predicted ramp, (c) the previous slope. (c) The uncertainty. Note that
everything above 0.5 is classified as ‘‘high’’ and everything below 0.3 as ‘‘low’’ uncertainty. The region between these numbers is fuzzy can be ‘‘high’’ and ‘‘low’’. (d) The output
slope.
variability (31-July-2021, Fig. 4(b)). The reader must be aware that
the results are presented in two time resolutions: the instantaneous,
which is 1 s resolution and is the time resolution at which the controller
acts. In other words, it sends a power set point every second (see
Section 2.3.2). The irradiance and prediction data have a lower time
resolution, namely one minute. The downsampling of the 1-s data to
1-min resolution takes place using the median every 60 s. The median
is less sensitive to extreme values, present within the variable scenario,
and the mode can either be non-existent or have multiple values,
especially with a small sample (60 points). Hence we consider that the
median can represent better the 1-min value.

3.1. Ramp prediction

The prediction model has a training accuracy of 19.51% and a val-
idation accuracy of 17.29%. Note that the training dataset is relatively
small, which can be one of the causes of the low accuracy. Many of the
samples also correspond to images with the sun blocked. Identifying
the sun automatically is almost straightforward, through identifying
the brightest pixels on the image [31]. However, when the sun is
covered, its location on the image needs to be estimated based on the
sun’s position in the sky. Although the estimation accurately identifies
the sun’s position, when the image is cropped around the sun, the
estimation error causes the sun not to be centered in the cropped image.
The mismatch error on cloudy images is larger because the image
is first corrected, and the sun is identified afterward. This can have
negative consequences downstream, because the cloud motion vector
is estimated from two consecutive cropped images, and it assumes that
the sun is in the middle of the image.

The calculation of the cloud motion vector might also be responsible
for the low prediction accuracy. It is calculated from the optical flow
results followed by a k-means clustering algorithm (see Section 2.3.1).
The optical flow returns the apparent movement of pixels between
two consecutive images. The main assumption is that the difference
between the two consecutive images, especially taken one minute apart,
is the movement of clouds. Although we applied a smoothing filter on
the image to remove noise, the movement of pixels might not entirely
correspond to clouds. Changes in the tone of the sky, clouds, objects
5

Fig. 4. Global Horizontal Irradiance of the two used scenarios. (a) a clear day, and
(b) a variable day. In both graphs, the shaded area marked as ‘‘This study’’ shows the
period used for the experiments.
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Fig. 5. Example of ramp prediction of (a) the clear scenario and (b) the variable
scenario.

moving on the scene, and glare, among others, might be identified as
moving pixels and can affect the estimation of the cloud motion vector.

Fig. 5 shows an example of the prediction for the interval used
for the clear and variable scenarios shown in Fig. 4. For the clear
scenario (Fig. 5(a)), the output is basically a constant that is lower than
the measured ramps. Many measured points fall into the uncertainty
range, as desired. For the variable case (Fig. 5(b)), the discrepancy
between the measured and the predicted ramps and the uncertainty
is higher. Note that, in Fig. 5(b), the predicted ramp and uncertainty
seem to saturate at ±0.4%. This behavior and the constant output of
Fig. 5(a) might be attributed to the binning method used for training
the data (see Section 2.3.1). Each ramp bin has a different width and
assigned a number to identify it. Hence the values that the classifier
learns are integers (bin numbers) and not actual ramp values. To
retrieve the actual ramp we used the value at the center of each bin
as a representative value of the whole bin. The extreme values of this
approach are precisely ±0.4%.

Fig. 6 shows the measured against the predicted ramps for the clear
(Fig. 6(a)) and the variable (Fig. 6(b)) scenarios. Note that the predicted
ramps are located only at particular intervals (bin centers) that span
over a wide range of measured ramps. Increasing the number of bins
can reduce the scattering within each bin and lead to a more accurate
prediction.

The prediction result do not need to be accurate because the fuzzy
logic will convert these values into a language descriptor (e.g. LOW,
LARGE, see Table 1) making it able to deal with the imprecision and
uncertainty, which is the main goal of this work.
6

Fig. 6. Measured and predicted ramps of (a) the clear scenario and (b) the variable
scenario.

3.2. Ramp control

Fig. 7 shows the results of applying our proposed approach to
the clear scenario. Under clear conditions (Fig. 7(a)), our approach
always operates in a curtailment condition after the initial system
startup. It is worth mentioning, that an initial power drop of 30%
was deliberately introduced to avoid problems with the curtailment
set point. After this sudden power decrease, the system stabilizes and
increases monotonically. For a clear scenario, the ramps are always
within the required limits (Fig. 7(b)).

Fig. 8 shows the results for the variable scenario. Similar to the clear
scenario, the controller curtails the power most of the time, and under
shallow ramps, the controller even keeps the power at a constant level
(Fig. 8(a)). This results in an evident ramp smoothing, reducing ramp
violations (Fig. 8(b)) and proving that our approach is able to meet the
objective.

Fig. 8(a) also shows that the P&O algorithm fails under variable
conditions. This occurs because the controller sends a power set point
higher than the actual MPP. Note that the P&O implemented in this
work is a modified version of the traditional P&O. This version tracks
MPP in the absence of a power set point. Otherwise, it uses the same
P&O logic to track a curtailment set point [25]. If the power set
point is larger than the actual MPP, the algorithm will keep reducing
the voltage until it reaches the short-circuit condition, attempting to
find a point outside the power–voltage curve of the PV module. The
sampling time of the P&O algorithm is 5 ms, which explains the sudden
drops in the power of Fig. 8(a). A watchdog timer monitors the PV
power to detect and correct this condition. When this timer detects a
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Fig. 7. Results of the clear scenario with 1 s resolution. (a) Instantaneous PV power
(𝑃𝑃𝑣), and (b) one-minute PV power ramps, given as a percentage of the nominal PV
power, (𝑃nom). The 10% ramp limit is marked as a red band. Points outside these bands
are considered ramp violations.

faulty condition, it removes the power set point, restoring the normal
operation of the algorithm. The failure of the P&O is only visible in
the 1 s resolution data. It does not affect the power smoothing results.
Note that the aggregation method for the downsampling to 1 min is the
median.

Fig. 9 compares the operating point (as a percentage of the max-
imum power point) of the 1-min resolution data of the clear and
variable scenarios. While in the clear moments most of the points are
centered around 80% of the theoretical MPP, in the variable scenario,
the operating points are more distributed and can even get lower
than 20% of the theoretical maximum. This stricter control, needed to
smooth 1-min ramps, leads to an energy loss of 53.1% with respect to
the theoretical maximum power point. Section 3.3 provides an in-depth
discussion on how to improve this aspect.

Applying control to a clear day results in unnecessary power cur-
tailment that can go as low as 70% of the theoretical maximum power
point (Fig. 9). The system generates 3.77 kWh during the 100 min at
its theoretical maximum power point and 2.91 kWh under controlled
power. This represents a loss of 22.8% of the potential generated
energy. Because of this, for a clear moment, no control action is needed.
An ideal controller should be able to (a) avoid any control action in
clear conditions or (b) ensure a minimum curtailment. In this sense, the
traditional P&O MPP algorithm is more than suitable. Identifying clear
moments before they occur is fundamental to applying the traditional
P&O during these moments instead of unnecessarily curtailing energy.
Our approach is based on one-minute ahead prediction to smooth
7

Fig. 8. Results of the variable scenario with 1 s resolution. (a) Instantaneous PV power.
Note the sudden power drops to zero as a result of a failure of the P&O algorithm.
An example of these peaks is marked with an arrow (‘‘P&O error’’). (b) One-minute
PV power ramps, given as a percentage of the nominal PV power, (𝑃nom). The 10%
ramp limit is marked as a red band. Points outside these bands are considered ramp
violations.

Fig. 9. Distribution of the operating point of both scenarios. The operating point is
given as a percentage of the theoretical maximum power point with 1-min resolution.

instantaneous ramps. With a single-prediction value it is impossible to
identify clear moments. Using historical data could give an indication of
the present conditions. The probability that the sky conditions remain
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Fig. 10. Theoretical 1-min hydrogen generation of the clear and variable scenarios with
and without control. Note that the vertical axis has a logarithmic scale. Although the
typical unit used for hydrogen is kg, because hydrogen is very light and its production
is low, for clarity’s sake, the hydrogen generation is expressed in grams (g).

the same in a very short period is very high, so a simple persistence
model could be already an improvement for clear moments. A larger
forecasting horizon has the drawback that as the prediction horizon
increases, so does the prediction uncertainty. This could result in more
ramp violations in exchange for higher energy production because it is
possible that the controller misapplies the traditional P&O instead of
curtailment in a variable situation.

Fig. 10 shows the effect of our strategy on hydrogen generation.
In line with Figs. 7 and 9, the effect of the control strategy on the
clear scenario is only a generation reduction, without affecting the
generation rate, which remains constant (the hydrogen generation
increases linearly with time. Note that the vertical axis is logarithmic).
This also occurs with the controlled power of the variable scenario, with
the lowest generation. The uncontrolled variable scenario has steep
changes. While the electrolyzer can handle these changes in power,
other components in the system might have problems with the sudden
increase in generation, as they respond slower [6]. Even though this
study does not consider the electrolyzer temperature, this variable
might determine the hydrogen production efficiency. With steep up
ramps, the efficiency might be lower because a higher temperature
results in higher efficiency, but the temperature cannot follow the
ramps as fast as the changes in the electric set points. Then, the
electrolyzer would operate at a higher power with a lower temperature,
reducing efficiency.

3.3. Limitations of this study and future improvements

Our study assumes that the irradiance remains constant during each
minute, changing only at the top of the minute. In reality, irradiance
is not discrete. The measurement system takes images every minute,
which justifies the time resolution. Additionally, the hardware emulator
is limited to 100 I–V curves per simulation block, making time down-
sampling impractical as only a few minutes could be simulated rather
than a full hour. The prediction module and the fuzzy logic controllers
can still be optimized. The study aims to prove the concept rather than
provide a fully optimized system.

Although the prediction module has a low classification accuracy,
the system was designed to deal with imperfect predictions, turning the
disadvantage of its low accuracy into a tool for analyzing our solution.
Naturally, the prediction module can be improved by increasing the
number of training points (nearly 28,000 in this study), the number of
classification bins and hyperparameter tuning. The dataset consists of
many training examples with the sun covered, which might affect the
low accuracy of the algorithm. A more balanced dataset can also boost
8

the prediction accuracy.
The approach in this work used empirically determined rules based
on the observations of the system. Adding more rules can improve
the system’s performance, but manual tuning might be cumbersome.
Switching to a neuro-fuzzy approach where the shape and position of
the membership functions and the inference rules can be determined
from training data [30], can facilitate the process and improve the
system’s performance.

The simulation of the electrolyzer assumes a constant operating
temperature, which is only true if there is an external control system.
This assumption simplifies the system considerably. In reality, without
thermal control, the temperature of the electrolyzer depends on the
current flowing through the electrolyzer. At the same time, the cur-
rent force the applied voltage to change because the current–voltage
characteristic of the electrolyzer also depends heavily on temperature.

4. Conclusion

We presented a control strategy for a battery-less stand-alone PV-
electrolyzer system to smooth power ramps from the PV system without
the need for electrical storage using active power curtailment. This
approach typically needs ultra-short-term forecasting to determine the
curtailment level. Our control system acknowledges that the prediction
is imperfect and incorporates information on the uncertainty to deal
with inaccurate predictions using fuzzy logic.

We validated our control strategy with a hardware emulator and
prediction from measured data. Using this approach, although it com-
promises 53% of the potential energy generation, is possible to smooth
PV power ramps to a limit of 10% of the PV plant capacity on very
high variable moments, and with very imprecise predictions without
any storage nor power interruption to the electrolyzer.
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Appendix. Fuzzy rules

(1) If uncertainty is LOW and predicted ramp is DEEP DOWN and
previous slope is POSITIVE BIG then slope is NEGATIVE LARGE.

(2) If uncertainty is LOW and predicted ramp is DEEP DOWN and
𝛥GHI is NEGATIVE LARGE and previous slope is not NEGATIVE
BIG then slope is ZERO.

(3) If uncertainty is LOW and predicted ramp is DEEP DOWN and
𝛥GHI is NEGATIVE LARGE and previous slope is ZERO then slope
is ZERO.

(4) If uncertainty is HIGH and 𝛥GHI is POSITIVE HIGH and previous
slope is ZERO then slope is POSITIVE LARGE.

(5) If uncertainty is HIGH and 𝛥GHI is NEGATIVE LARGE and previ-
ous slope is ZERO then slope is NEGATIVE LARGE.

(6) If uncertainty is HIGH and 𝛥GHI is NEGATIVE LARGE and previ-
ous slope is POSITIVE BIG then slope is NEGATIVE LARGE.

(7) If uncertainty is HIGH and 𝛥GHI is POSITIVE HIGH and previous
slope is POSITIVE BIG then slope is ZERO.

(8) If uncertainty is HIGH and 𝛥GHI is POSITIVE HIGH and previous
slope is NEGATIVE BIG then slope is POSITIVE LARGE.

(9) If uncertainty is HIGH and 𝛥GHI is NEGATIVE LARGE and previ-
ous slope is NEGATIVE BIG then slope is POSITIVE LARGE.

(10) If uncertainty is HIGH and 𝛥GHI is SHALLOW and previous slope
is NEGATIVE BIG then slope is POSITIVE LARGE.

(11) If uncertainty is HIGH and 𝛥GHI is SHALLOW and previous slope
is ZERO then slope is ZERO.

(12) If uncertainty is HIGH and 𝛥GHI is SHALLOW and previous slope
is POSITIVE BIG then slope is ZERO.

(13) If uncertainty is LOW and predicted ramp is DEEP DOWN and
𝛥GHI is SHALLOW and previous slope is NEGATIVE BIG then slope
is ZERO.

(14) If uncertainty is LOW and predicted ramp is DEEP DOWN and
𝛥GHI is SHALLOW and previous slope is ZERO then slope is
NEGATIVE LARGE.

(15) If uncertainty is LOW and predicted ramp is DEEP DOWN and
𝛥GHI is POSITIVE HIGH and previous slope is NEGATIVE BIG
then slope is ZERO.

(16) If uncertainty is LOW and predicted ramp is DEEP DOWN and
𝛥GHI is POSITIVE HIGH and previous slope is ZERO then slope
is NEGATIVE LARGE.

(17) If uncertainty is LOW and predicted ramp is SHALLOW and 𝛥GHI
is NEGATIVE LARGE then slope is ZERO.

(18) If uncertainty is LOW and predicted ramp is SHALLOW and 𝛥GHI
is SHALLOW and previous slope is NEGATIVE BIG then slope is
ZERO.

(19) If uncertainty is LOW and predicted ramp is SHALLOW and 𝛥GHI
is SHALLOW and previous slope is POSITIVE BIG then slope is
NEGATIVE LARGE.

(20) If uncertainty is LOW and predicted ramp is SHALLOW and 𝛥GHI
is SHALLOW and previous slope is ZERO then slope is ZERO.

(21) If uncertainty is LOW and predicted ramp is SHALLOW and 𝛥GHI
is POSITIVE HIGH and previous slope is NEGATIVE BIG then slope
is POSITIVE LARGE.

(22) If uncertainty is LOW and predicted ramp is SHALLOW and 𝛥GHI
is POSITIVE HIGH and previous slope is ZERO then slope is
POSITIVE LARGE.

(23) If uncertainty is LOW and predicted ramp is SHALLOW and 𝛥GHI
is POSITIVE HIGH and previous slope is POSITIVE LARGE then
slope is ZERO.

(24) If uncertainty is LOW and predicted ramp is DEEP UP and 𝛥GHI is
POSITIVE HIGH and previous slope is NEGATIVE BIG then slope
is POSITIVE LARGE.

(25) If uncertainty is LOW and predicted ramp is DEEP UP and 𝛥GHI
is POSITIVE HIGH and previous slope is ZERO then slope is
POSITIVE LARGE.
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(26) If uncertainty is LOW and predicted ramp is DEEP UP and 𝛥GHI
is POSITIVE HIGH and previous slope is POSITIVE BIG then slope
is ZERO.

(27) If uncertainty is LOW and predicted ramp is DEEP UP and 𝛥GHI
is NEGATIVE LARGE and previous slope is NEGATIVE BIG then
slope is POSITIVE LARGE.

(28) If uncertainty is LOW and predicted ramp is DEEP UP and 𝛥GHI
is NEGATIVE LARGE and previous slope is ZERO then slope is
POSITIVE LARGE.

(29) If uncertainty is LOW and predicted ramp is DEEP UP and 𝛥GHI is
NEGATIVE LARGE and previous slope is POSITIVE BIG then slope
is ZERO.

(30) If uncertainty is LOW and predicted ramp is DEEP UP and 𝛥GHI
is SHALLOW and previous slope is ZERO then slope is ZERO.

(31) If uncertainty is LOW and predicted ramp is DEEP UP and 𝛥GHI
is SHALLOW and previous slope is NEGATIVE BIG then slope is
POSITIVE LARGE.

(32) If uncertainty is LOW and predicted ramp is DEEP DOWN and
𝛥GHI is SHALLOW and previous slope is POSITIVE BIG then slope
is ZERO.
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