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SUMMARY

Model and Sensor Based Nonlinear Adaptive Flight
Control with Online System Identification

Li Guo Sun

Consensus exists that many loss-of-control (LOC) in flight accidents caused by severe
aircraft damage or system failure could be prevented if flight performance could be
recovered using the valid and remaining control authorities. However, the safe maneu-
verability of a post-failure aircraft will inevitably be reduced due to the malfunction.
Non-conventional control strategies which rely on modern control techniques and
computational power are essential to control systems in post-failure flight conditions to
extract the most from the reduced, remaining aircraft control authorities and restore the
flight performance of an aircraft or achieve a safe landing. One such non-conventional
control strategy is called active fault tolerant flight control (FTFC), which is designed to
detect changes in an aircraft’s dynamics caused by structural, actuator, or sensor failure
and accommodate the damage or failure using an adaptive reconfiguration mechanism.
The active FTFC technique is able to deal with unanticipated and multiple simultaneous
failures.

The overall architecture of an active FTFC system ideally should consist of a fault
detection and diagnosis (FDD) module, a state reconstruction unit, a reconfigurable
control component, a control allocation unit and a flight envelope protection (FEP)
unit. Generally speaking, FTFC systems can be classified into two types: model-
based FTFC systems and model-free FTFC systems, according to whether any of the
system’s components require an aerodynamic model at their core or not. A model-
based FTFC system contains an aerodynamic model identification (AMI) module, which
supplies an accurate aircraft model to an indirect adaptive nonlinear controller in the
reconfigurable control block, to a dynamic flight envelope determination algorithm in
an FEP unit, or to an FDD unit. An aerodynamic model identification approach using
a physical, interpretable modeling structure can detect and even quantify structural
failures occurring in the aircraft structure or one of the control surfaces by monitoring
changes in stability derivatives and control derivatives.

There are many candidate control approaches which can achieve reconfiguration
when designing a reconfigurable flight controller. These reconfigurable control methods
may rely on many different reconfiguration mechanisms ranging from switching, model
following, matching to adaptive compensation. These methods include nonlinear adap-
tive control which achieves reconfiguration through compensation, and this method
is receiving increasing attention in the flight control aerospace research community.
Nonlinear adaptive control is divided into direct adaptive control and indirect adaptive

vii
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control, the difference is that the latter requires an online system model. Indirect
adaptive control is also called model-based or modular adaptive control, which has
some advantages over the direct adaptive control and other model-free control methods.
One advantage is that a modular control approach has the potential to yield a more
efficient controller which requires less control effort. Such an efficient controller can
be achieved by maintaining useful damping terms of an identified system model in the
closed-loop system. This is attributed to the good properties of many control design
techniques such as backstepping such that the dynamics of an original system can
be chosen to be canceled or maintained during a controller design process. Modular
adaptive control also has an inherited shortcoming, it can only guarantee input-to-
state stability, i.e. modular adaptive control cannot guarantee the stability of the
overall closed-loop system because its stability proof relies on the certainty equivalence
principle. The weakness of the certainty equivalence principle, i.e. convergence problem
of the model parameters, can be improved by enhancing model accuracy or reliability,
to do this, it becomes critical to develop advanced, powerful aerodynamic model
identification approaches capable of capturing changes in flight dynamics either during
a high maneuvering flight mission or a post-failure condition.

Flight envelope protection is a necessary technique that should be applied by
controller designers to prevent LOC incidents, taking into account highly maneuvering
flight tasks and/or highly perturbed flight conditions due to the ongoing failure. An FEP
component should provide a pilot with a safe flight envelope and pose constraints on the
reference commands fed to an internal controller to make the commands achievable.

An aerodynamic model that is valid over an entire flight envelope plays a crucial role
in full-envelope modular adaptive control and flight envelope protection. A globally
valid model is required for modular adaptive control to enable the designed controller
to work properly in a large operating range. Once estimated, the global model in a
model-based adaptive control method can be stored for later re-use when the same
flight condition is revisited. Except being needed by a model-based controller, an
accurate aerodynamic model is also required for flight envelope protection. Naturally,
the estimated aerodynamic model has to be valid for the current aircraft configuration
over the entire flight envelope to enable an evolution algorithm to estimate the boundary
of the safe flight envelope for the current flight condition. However, only a limited
number of model identification approaches are suited for estimating a globally valid
aerodynamic model, and each existing possible candidate has variant shortcomings
or limitations which make it hard to apply directly to identify an aircraft model. For
example, neural networks usually yield a nontransparent model structure which is hard
to interpret using physical knowledge of the system, and they commonly encounter
a convergence problem. Most kernel methods fall into the nonparametric type of
methods, which by nature need as many kernels as the data points under evaluation. It
should be kept in mind that only equation-error type model identification methods were
investigated in the work reported here. The assumption was made that a sufficiently
accurate estimation of aircraft states was available.

An alternate method to the modular adaptive reconfigurable control approach is the
acceleration measurements-based incremental nonlinear control (AMINC) method. An
accurate estimation of an aircraft is hard to achieve during a high maneuvering moment
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or at a transient period when the flight performance is highly perturbed due to aircraft
failure. Incremental nonlinear controllers such as incremental nonlinear dynamic in-
version (INDI), incremental backstepping (IBKS) and sensor-based backstepping (SBB)
are suited for reconfigurable flight control designs in the sense that they do not require
complete aircraft model knowledge.

The main research question for the research presented here was: How can an
advanced fault-tolerant flight control system be designed to increase the survivability
of an aircraft? This led to two subsidiary questions:

• How can the candidate function approximation methods, i.e. multivariate simplex
B-splines and kernel methods, be improved in terms of approximation accuracy
and computational efficiency, to meet the need of model-based adaptive control
and online flight envelope protection?

• What are the benefits of using an acceleration measurements-based control ap-
proach, i.e. the sensor based backstepping, as an alternative to a model-based
adaptive control approach, when designing a reconfigurable flight controller to
deal with aircraft failures in a generic fault-tolerant flight control (FTFC) system?

With regard to reconfigurable control, the identified model should enable the controller
to achieve active reconfiguration and restore the control performance. To answer
these questions, four different global model identification methods and two nonlinear
incremental adaptive controllers were developed.

Two model identification methods use a parametric model structure namely stan-
dard multivariate simplex B-splines. The focus was placed on how to achieve fast
parameter estimation during the research process for these two methods. In the third
identification method, a new model structure called tensor-product simplex B-splines
was extended from a single dimension case to a multidimensional case, with a focus
on demonstrating the advantage of this new compound model structure in terms of
the flexibility in model structure selection, computational efficiency and approximation
power. The fourth method uses a kernel type model structure which is also parametric.
The new recursive kernel approach was developed by combining a classical recursive
kernel method with a novel support vector regression approach.

A model identification method using standard multivariate simplex B-splines has
many advantages, it can avoid the over-fitting problem which occurs with an ordinary
polynomial method using a triangulation technique. The approximation power of a
simplex B-spline based method is determined by the per-simplex polynomial order and
smoothness order, and can be increased by increasing the density of the subdomains in a
triangulation. This simplex B-spline based function approximation method guarantees
that its output is bounded by the maximum and minimum B-coefficients, this facilitates
its certification for future real life applications. The linear regression formulation
of the simplex B-spline based method allows for applying most of the constrained
recursive parameter estimation methods. Furthermore, the simplex B-spline based
method has a sparse property, which can lead to high computational efficiency by
adopting distributed computation or other modern computing techniques. However,
a simplex B-spline method can easily yield a large amount of unknown parameters if the
function dimension exceeds 4, which results in a high computational load considering
the smoothness maintaining and covariance matrix updating.
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To enhance the computational efficiency of the model identification methods using
simplex B-splines, two recursive linear-regression model identification methods were
developed in this thesis: a substitution-based multivariate simplex B-spline (SB-MVSB)
method and a recursive sequential multivariate simplex B-spline (RS-MVSB) method. In
the SB-MVSB method, an efficient recursive solver is developed for a constrained linear
regression problem when using simplex B-splines. The constrained linear regression
problem is converted into a constraint-free linear regression problem using a general
solution for the equality constraints. This transformation was shown to reduce the scale
of the identification problem in terms of the number of unknown parameters, and thus
the computational load required for the model identification method can be reduced.

The RS-MVSB method consists of two consecutive procedures at one model evo-
lution step. The first procedure achieves updating of a local model covering the
current data point instead of a global model. The requirement of updating a complete
covariance matrix is avoided by only updating one local model, and therefore the
computational efficiency of this method is greatly enhanced. The second procedure
guarantees a smooth transition between this local model and its neighboring local
models.

The computational complexity of SB-MVSB and RS-MVSB was given from a math-
ematician point of view, then, they were validated using simulated flight test data
generated using a high-fidelity nonlinear model of an F-16 aircraft. Simulation results
showed that both methods can achieve higher approximation accuracy than ordinary
polynomial based methods, and both can be many, e.g. 10, times faster than an equality
constraint recursive least squares based MVSB (ECRLS-MVSB) method. The second
feature of these two methods facilitates their future onboard applications.

Tensor-product simplex (TPS) B-splines provide a compound structure, which pro-
vide more flexibility than a standard simplex B-spline model during model structure
selection. Using TPS B-splines, different dimension of inputs can be treated differently
depending on their characteristics determined from a priori knowledge. In the work
presented in this thesis, the TPS B-spline concept was extended from a single dimension
case into a more general multidimensional case. Compared to standard simplex B-
splines, TPS B-splines can make better use of a priori model knowledge. By reducing
many unnecessary basis polynomials from the regression vector, TPS B-splines have
the potential to lead to a lower computational load than standard simplex B-splines.
The TPS B-spline method was validated using a data set generated from a high-fidelity
nonlinear F-16 model. Simulation results showed that TPS B-splines can yield higher
approximation power than standard simplex B-splines with less B-coefficients.

Two similar recursive parametric kernel methods namely weight varying least squares
support vector regression (WV-LSSVR) and Gaussian process kernel based LSSVR (GPK-
LSSVR) were developed for aerodynamic model identification in this thesis. The focus
of this work was enhancing the approximation power of a recursive parametric kernel
method by choosing an optimal set of kernels for the kernel scheme. An offline method
called improved recursive reduced LSSVR (IRR-LSSVR) was used to determine optimal
kernels for a classical recursive kernel method. The new kernel method was validated
using a series of public available benchmark data sets well known to researchers from
the field of pattern recognition. GPK-LSSVR showed a higher approximation power than
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WV-LSSVR, and both of them showed a higher approximation power than a classical
recursive kernel method based on k-means clustering.

A novel type of acceleration measurements-based incremental flight control laws
was investigated with the aim of providing a reconfigurable control unit with a powerful
non-conventional flight control approach which could accommodate sudden structural
or actuator failures occurring in an aircraft. The preferred model-free, incremental
control approach used in this thesis was the SBB approach, which was initially developed
for control designs of nonlinear nonaffine-in-control systems. The SBB approach
achieves an accurate reference command tracking performance by approximate dy-
namic inversion. The SBB approach was extended to deal with sudden model changes
in an aircraft caused by structural or actuator failures. A hybrid two-loop angular
controller and a joint two-loop angular controller were designed for the RECOVER
model. In the hybrid two-loop angular controller, the angular control loop was designed
using a nonlinear dynamic inversion (NDI) control law, and the angular rate loop
controller using the SBB approach. In the joint two-loop angular controller, the overall
controller was designed using a backstepping technique with each loop stabilized
recursively. Both angular controllers were validated using the RECOVER model with
a focus on dealing with perturbed aircraft flight performance caused by failures. Two
benchmark fault scenarios were selected: a rudder runaway case and a flight 1862
engine separation scenario. Simulation results showed that both control setups can
guarantee the safety of the post-failure aircraft and achieve a proper reference tracking
performance. In comparison with the hybrid NDI/SBB angular controller, the joint SBB
angular controller resulted in a better reference tracking performance for the sideslip
angle, especially in the engine separation case.

An SBB controller contains a time scale parameter, other incremental control laws
such as incremental NDI (INDI) and incremental backstepping (IBKS) involve a control
effectiveness matrix. Before we can investigate how the time scale parameter or a control
effectiveness matrix affect the control performance of an incremental flight controller,
the parameter variations of a control effectiveness matrix need to be estimated and
analyzed. The TPS B-spline method and an immersion and invariance (I&I) method
were chosen to estimate a control effectiveness matrix for an F-16 aircraft. Although the
I&I approach initially was not aimed at high modeling accuracy, it was assumed in this
thesis that it is able to estimate the changing trend of the control derivatives. Simulation
results showed that TPS B-splines capture the changes in the control derivatives better
than the I&I approach in terms of consistency. For F-16, the control effectiveness matrix
does not evidently affect the control performance of an incremental flight controller
when a flight maneuver is moderate in terms of the variation of angle of attack and
airspeed.

Further research on modular adaptive reconfigurable control is required, for exam-
ple incorporating the SB-MVSB method or the WV-LSSVR method into control designs
to further check how well they are suited for modular adaptive control in terms of
approximation power and onboard computational efficiency. Further research on
acceleration measurements based reconfigurable control should include tests on the
SIMONA simulator, realistic test-flight with UAV and research aircraft.
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1
INTRODUCTION

1.1. FLIGHT SAFETY AND THE NEED FOR RESILIENCE
The use of mechanical and later electronic aids for controlling flight in aircraft has a
long history, almost as long as that of powered flight [90, 111]. The development of
flight control systems has seen three stages. In early aircraft, cables, pulleys, levers
and other mechanical devices were used to assist the pilot. Then hydro-mechanical
systems were developed and finally today we have fly-by-wire systems. Each flight
control system grew out of the previous system, with small aircraft mechanical systems
were possible and sufficient, but as aircraft increased in size and the air speed and
safety became paramount with the advent of mass commercial travel, the need grew
for assisted hydraulic-mechanical systems. Finally, with the airbus A320 airliner we
moved to completely fly-by-wire systems. In a parallel process, fighter aircraft developed
from comparatively simple aircraft, pilot controlled, such as the Spitfire and the Messer-
schmitt through to today’s sophisticated, fast and agile aircraft that require equally
sophisticated, fast and agile flight control systems to aid the pilots flying them.

The initial concept of fault tolerant flight control (FTFC) can be traced back to the
1950s [130], when the United Air Force carried out a series of flight tests on adaptive flight
control designs for fighter aircraft. These investigations were aimed at making these
control systems tolerant of uncertainties and at the same time design control systems
that would not need gain-scheduling. In the early 1990, Airbus started to use FTFC
techniques in the Airbus A340 aircraft to enhance safety, in particular, attention was paid
to making full use of redundant components, e.g., control surfaces, sensors, actuators.

Safety is critical when designing and operating civil aircraft because they carry
passengers and fly to and from areas that are densely polulated. To increase safety,
modern civil aircraft such as the Boeing 777 and Airbus A380, see Figs 1.1-1.2, are
equipped with flight envelope protection (FEP) systems that prevent these aircraft
from entering upset flight conditions. Existing FEP units contain a set of pre-defined
logic that is used to regulate the reference commands of a controller such as bank
angle φ, angle of attack α, and true airspeed VTAS. These aircraft control systems

1
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can be further improved by incorporating more advanced flight envelope protection
approaches including model-based static and dynamic estimation of the safe flight
envelope [19, 52, 54, 66, 85, 149, 164].

Figure 1.1: KLM Boeing 777-206/ER PH-BQD, by
Tommy Desmet, via airliners.net.

Figure 1.2: Airbus A380, available at
http://www.airbus.com/galleries/photo-gallery.

A high level of survivability is required when designing a flight control system for
the new generation of fighter aircraft. Aerodynamic designs of fighter aircraft tend to be
increasingly complex because these aircraft are required to have higher and higher levels
of flight performance, e.g., maneuverability. Due to the increased complexity of the
aerodynamic design and the need to fly multiple combat missions in harsh conditions,
e.g., to launch missiles and fly in desert conditions, a fighter aircraft is more likely to
encounter sudden model changes, e.g., structural or actuator damages, than a civilian
aircraft. To obtain a high level of flight performance, a powerful control method is
required for the flight control of a fighter aircraft. To enable a fighter aircraft to survive
sudden model changes, the flight control system should either be robust to the model
changes or be able to adapt to the changes.

Looking at the statistics for recent airliner accidents and incidents, those categorized
as ‘loss of control in flight’ cover 23% of all aircraft accidents [18, 116], and it is this
category that has recently received the most attention from industry. Some of these
types of flight accidents can be avoided using the technology and computational power
available at this moment [12, 85, 131]. Research into previous flight accidents [131]
and investigations of the FTFC strategies used suggests that an aircraft, under many
post-failure circumstances, can still achieve a certain level of flight performance using
the remaining valid control effectors [131]. However, the control authority or the safe
flight envelope of the aircraft will inevitably shrink due to structural/actuator failures.
Therefore, to avoid the aforementioned type of flight accidents, it is necessary to
employ suitable non-conventional control strategies to make the best possible use of the
remaining flight potential from a post-failure aircraft [85, 131]. Amongst other initiatives,
this is supported by the work of the Flight Mechanics Action Group 16 (FM-AG16) group,
a branch of the Group for Aeronautical Research and Technology in Europe (GARTEUR).
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1.2. FACTORS IN FAULT TOLERANT FLIGHT CONTROL
The use of FTFC has attracted a large amount of interest from the aerospace community.
Enhancing the survivability of an aircraft during an incident is the ultimate goal when
using or designing an FTFC system. In this thesis, a generic FTFC system is assumed to
have the following six basic components: fault detection & isolation, state estimation,
aerodynamic model identification, flight envelope protection, flight control law, and
control allocation, see Figure 1.3.

An FTFC system should have the following functions: once structural or actuator
failures occur in an aircraft, the FTFC system is expected to be able to, first, detect
the failure, second, determine the safe-flight-envelope, and third, prevent the aircraft
from entering any unsafe regions of the flight envelope by using reconfigurable control
techniques. Using the failure knowledge obtained by a fault detection and isolation (FDI)
unit, an online flight envelope protection (OFEP) unit will estimate a maneuvering safe-
flight envelope in real time. The situation awareness of the pilots can be improved by
incorporating a safe-flight-envelope indicator on the display interface to support their
decision-making [12, 85]. The detected failure information obtained by an FDI unit
also goes into the reconfigurable flight control unit, this allows the latter to perform
reconfigurations during control allocation.

Control Allocation
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Figure 1.3: The components included in an FTFC system. ( Note that the AMI block in the dashed ellipse is
required only for a model-based FTFC system.)

There are two types of FTFC systems: model-free FTFC systems and model-based
FTFC systems [86, 175]. In this thesis, a model-based FTFC system is defined as follows.

Definition. 1. Model-based FTFC system:
A model-based FTFC system is a model-based flight control system which can obtain



1

4 1. INTRODUCTION

failure knowledge using a fault detection & isolation unit, and improve the situation
awareness of a pilot or an automatic controller by specifying the current safe flight
envelope. It can accomplish the demanded flight tasks after accommodating ongoing fault
scenarios using a non-conventional reconfigurable flight control law. ä

By definition, a model-based FTFC system contains an aerodynamic model. This
model is essential when designing and applying a model-based FTFC system. An
accurate aerodynamic model is required for at least one of the following components:
FDI, reconfigurable control laws, and flight envelope protection, see Figure 1.3. In this
thesis, the work is limited to investigating the design of a model-based FTFC system, to
which an accurate aircraft aerodynamic model is crucial.

1.2.1. MODEL REQUIREMENTS FOR MODEL-BASED ADAPTIVE FLIGHT CON-
TROL

The existing control algorithms that can achieve reconfiguration within an FTFC system
can be classified into five categories according to the different reconfiguration mecha-
nisms that they use: optimization, switching, matching, model following, and adaptive
compensation [175]. Gain scheduling (GS) of linear control, linear parameter varying
(LPV) model based control and sliding mode control (SMC) fall into the category of
switching based methods, which accomplish reconfiguration by switching. To design
a controller using LPV models, a nonlinear system model is unnecessary. Instead,
one or more linear state space models are required to design a controller using a LPV
model based method. Similarly, in the implementation of most SMC approaches, only
a linear baseline model is required to determine the sliding surface. The reconfigurable
control approaches based on adaptive compensation mainly include direct and indirect
adaptive control methods. In an indirect adaptive control approach, a model-based
adaptive control algorithm requires an accurate online aerodynamic model, which
is assumed to be able to capture any changes in the flight performance caused by
maneuvers, structural failures or other aircraft damage. In this thesis, we focus on
model-based adaptive flight control algorithms for indirect adaptive control because a
model-based control algorithm has a number of advantages.

The model-based adaptive flight controller can have a higher control performance
than a model-free flight controller because the former can be designed to require
relatively low control power or effort relying on knowledge of the aerodynamic model
[162][p.37]. In model-free flight control approaches, for example in incremental control
approaches and robust nonlinear control methods, all dynamics of the controlled
system, excluding actuator dynamics, are inverted or compensated to make the closed-
loop system an ideal reference tracking system, i.e., an identity system. However,
some nonlinearities or nonlinear dynamics in the open-loop aircraft system are useful
feedback terms which can contribute to the stability of the system. For instance,
damping terms may be present in the aerodynamic model, and these potentially useful
nonlinearites should not be canceled in the controller design [162][p.37]. In a model-
based adaptive flight control design, e.g., model-based adaptive backstepping, the stable
dynamic terms mentioned above can be maintained in the final closed-loop system
without being canceled by the controllers. This results in a high performance controller
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in the sense that it requires relatively low control effort [162][p.37].
An accurate aerodynamic model plays an essential role in determining the perfor-

mance of a model-based adaptive flight controller. To allow the controlled system to
adapt for model uncertainties or other model changes, the aerodynamic model, which
is the heart of the control system, is required to be updated in real-time [27, 47, 87,
163]. Due to the limited computational capabilities of the onboard computers, it is
essential to choose or develop a recursive system identification algorithm requiring low
computational cost [87].

An online aerodynamic model derived using a certain identification method can
provide fault information on structural failures [181]. Given the estimated aircraft states,
the aircraft model identification problem is reduced into a function approximation
problem when using some type of identification methods [88]. Model structure selection
is one of the main issues when using a function approximator. Many aerodynamic model
identification methods, like the polynomial basis based method [87] and the neural
partial differential method [29], can yield a model with clear physical interpretation
due to the model structures that they use. Using these methods, the control derivatives
of all control surfaces and the stability derivatives can be either directly known from
the identified model or can be indirectly calculated from the model, and the structural
failure information can be attained by observing and analysing the changes in the
control derivatives.

To achieve full-envelope modular adaptive control, a global aerodynamic model
with local updating capability is indispensable [163]. In the implementation of such
a full-envelope control approach, a nominal full-envelope model is usually trained in
advance using flight test data and, possibly, wind tunnel data. Subsequently, a local part
of the global model is updated using local measured data to account for any possible
uncertainties or other model changes in real flight.

1.2.2. MODEL REQUIREMENTS FOR FLIGHT ENVELOPE PROTECTION

To achieve FTFC, not only a reconfiguring controller is needed, but also a flight envelope
protection unit. The latter prevents the aircraft from entering an upset flight condition.
Flight envelope protection can be categorized into two branches: static and dynamic
[85, 164]. Dynamic flight envelope protection can also be called online flight envelope
protection OFEP.

Some methods for static flight envelope protection (SFEP) need an aerodynamic
model of the aircraft that is valid in the entire flight envelope, and nearly all of them need
a function approximation algorithm. A SFEP is based on an a priori knowledge of the
aerodynamic model and thus has no real-time adapting capability. It is usually incapable
of accounting for severe model changes occurring in a real flight. In the first step of static
envelope estimation, attainable equilibrium sets or achievable trim points need to be
obtained using approaches such as wind tunnel testing, real flight test experiments and
high-fidelity model-based computation [19, 52, 66, 149]. According to the literature, the
model-based computation method relies on an accurate aerodynamic model which is
valid in the entire flight envelope. In the second step, the attainable equilibrium sets
obtained in the previous step are approximated and expanded to build a library for FEP
in the entire flight envelope. Central to the problem in step two is a model approximation



1

6 1. INTRODUCTION

problem using the available data. Potential function approximation approaches that
might be suited for this purpose include a polynomial based method, multivariate B-
splines, fuzzy logic, neural networks and other kernel methods.

The methods for OFEP also require an accurate aerodynamic model which is valid
within the entire flight envelope. The preferred methods for OFEP include formulating
the flight envelope estimation problem into a reachability problem [3, 72, 85, 92, 127,
150, 164]. A reachability analysis, i.e., solving the Hamilton-Jacobi-Bellman (HJB)
equations which are associated with a time-dependent integral cost function in real-
time, is conducted based on an accurate aerodynamic model. No matter what following
solvers, e.g., level set methods and cost function approximation methods, are chosen
to perform the reachability analysis, the aerodynamic model applied here has to be
accurate and valid for the entire flight envelope. Furthermore, to take into account
aircraft failures such as structural damage, the aerodynamic model has to be an online,
globally valid model which can reflect sudden model changes caused by possible
ongoing failures.

Note: the implementation of FEP is out of the scope of this thesis and only the global
model identification methods which can be used for FEP are studied. The candidate
methods are modified or improved in Part I of this thesis to satisfy the requirements
from FEP, i.e., high approximation power and high efficiency.

1.2.3. RECURSIVE AERODYNAMIC MODEL IDENTIFICATION

A powerful aerodynamic model identification method is indispensable for both model-
based adaptive flight control and FEP. For the purpose of full-envelope modular
adaptive control and FEP, a global model identification approach is needed, and for
adaptive model-based control and OFEP, the model identification algorithm needs to
be computationally efficient to allow for real-time model updating. Some state-of-the-
art model identification approaches are briefly reviewed in this section.

Many different methods have been proposed in the literature for aircraft model
identification. A joint method for state and parameter estimation is also called the one-
step method, as here the states and aerodynamic parameters are estimated simultane-
ously in one procedure [110]. There are many different one-step model identification
routines. An example is the maximum likelihood identification routine, which solves
the joint estimation problem by solving a global nonlinear optimization problem, i.e.,
maximizing a likelihood function composed of output or prediction errors [93]. Due
to the computational demanding property caused by global nonlinear optimization,
only a very few joint identification approaches are applicable online. One example
of the joint state and parameter estimation algorithms that can be implemented in
real-time is a nonlinear filtering method developed at the German Aerospace Research
Center DLR [51, 61]. Though online implementable, this model estimation algorithm is
still computationally very demanding, especially when a large number of aerodynamic
parameters is involved.

An alternative to a joint identification method is to use a two-step method. In a two-
step method, the states and the aerodynamic parameters are estimated in two consec-
utive steps [108]. The first step is also a joint state and parameter estimation problem,
however, this problem is relatively easy to solve since the aerodynamic parameters, the
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number of which is usually large, are not involved [86][p.116]. The estimation accuracy
of the first step is easy to guarantee, this is because only kinematic models of aircraft
are used in the first step, and the complex yet uncertain aerodynamic model is not
included. In the second step, the aerodynamic model identification problem is reduced
into an equation-error parameter estimation problem [68][p.216] once the aircraft state
has been estimated in the first step [106–108]. The aerodynamic model structure can
be assumed linear-in-the-parameters without sacrificing the reliability of the model in
most applications [106, 107, 109, 110]. Many regression algorithms can be applied to
solve the equation-error parameter estimation problem in the second step. Due to
the relative simplicity of the regression algorithms, two-step methods result in a lower
computational load and are better suited for being implemented online.

Aerodynamic model identification can also be performed in the frequency domain,
but not all the frequency-domain identification methods are suitable for real-time use
[68, 154]. Examples of methods which are suited for real-time implementation can be
found in [102, 104, 105, 134]. However, in this thesis we focus on identification methods
in the time domain. More specifically, the research scope of this thesis is limited to
developing powerful advanced algorithms for the equation-error parameter estimation
problem in the second step of the two-step routine.

Among all the system identification methods, such as function approximation ap-
proaches, there are many potential candidates that are powerful and thus might be
suited to providing accurate global aerodynamic models for model-based adaptive flight
control and OFEP. These methods can be divided into parametric and nonparametric
methods. The nonparametric methods include a number of reinforcement learning
methods, e.g., many neural networks, most of the kernel methods, support vector
machines, and fuzzy logic modeling methods [28, 68, 133, 166]. The parametric methods
include a few kernel methods and functional approximation methods such as polyno-
mial basis-based methods and variant spline polynomial basis-based methods.

One example of the parametric function approximation methods, which may be
capable of providing a real-time aerodynamic model for the purpose of model-based
adaptive flight control and OFEP, is the multivariate simplex B-splines (MVSB) method.
The MVSB method can be used to identify a global aerodynamic model of an aircraft.
Using this method, the fault detection and isolation (FDI) unit should be able to tell
which components or control surfaces are currently malfunctioning by judging the
identified parameters which represent the effectiveness of each control surface. Unlike
tensor product splines, the MVSB method is able to use scattered datasets [73]. The
approximation power of this method depends on the density of the simplices, i.e.,
subdomains, and the polynomial order within each simplex. In this method, the B-
spline bases, i.e., Bernstein basis polynomials, have been proven to be stable due to the
fact that the barycentric coordinates of the evaluation data points are defined based on a
local simplex within a triangulation [73]. The MVSB method leads to predictable model
outputs, i.e., their regions are predictable, once the B-coefficients are given [10, 73].

The computational efficiency of the state-of-the-art MVSB methods still needs to
be enhanced before it can be applied in a real application where an accurate real-time
model is required. Though the batch type MVSB method has been applied to modeling
a set of scattered datasets for F-16 aircraft [35], this method has not yet been widely
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investigated in the field of aircraft modeling. Although a recursive identification method
called equality-constrained recursive least squares (ECRLS) has been proposed for the
MVSB methods [37], all existing MVSB methods still have a high computational load if
the selected spline model is of large scale. The computational efficiency of the MVSB
method therefore needs to be improved before it can be used in real-time to provide
an online aerodynamic model for the purpose of fault detection, i.e., monitoring the
effectiveness of a control effector, and to provide a model for updating the safe-flight-
envelope model or updating of the controller parameters constituting the reconfigurable
control laws.

A recursive kernel method provides an example of a nonparametric method. This
method could also be used as a powerful model identification tool to detect failures
or as a foundation for a global prediction model that is used to determine a safe-
flight-envelope for an aircraft. There is a well-known open issue associated with the
regular recursive kernel methods: how to determine the number, the centers and radius
of the kernels [28]. The optimality of the kernels has a significant influence on the
approximation power of the regular recursive kernel methods. In the existing literature,
researchers usually use the k −means clustering method to determine the centers of
the kernels [28, 126]. However, this method cannot guarantee the optimality of the
kernel, and will probably limit the approximation power of the recursive kernel methods.
Therefore, a better way to determine the kernel related parameters needs to be found.

1.2.4. RECONFIGURABLE FLIGHT CONTROL

A generic FTFC system should contain a reconfigurable control unit, which should
be able to extract all the remaining control authorities of an aircraft and enable a
closed-loop system to respond appropriately to the reference commands regulated by
the FEP unit, see Figure 1.3. As mentioned in Section 1.2.1, there are many different
reconfigurable flight control laws, the reconfiguration mechanisms of which that help
to accommodate sudden changes in the aerodynamic model caused by structural or
actuator faults include robust switching and adaptive compensation [175]. According
to the requirements for an aerodynamic model, the reconfiguring flight control laws
can be classified into two categories: model-based control laws and model-free control
laws, see Figure 1.4. In Figure 1.4(a), a model identifier is designed to provide a real-time
accurate aerodynamic model for the adaptive controller. The reconfiguration of this type
of controllers is ascribed to the compensation of the real-time model, which accurately
captures the changes in the behavior of the flight performance. The reconfigurable
controller shown in Figure 1.4(b) does not require an aerodynamic model, but an extra
reconfiguration mechanism such as a switching or matching logic is needed [162, 175].

Both model-based and model-free reconfigurable control laws have advantages
and drawbacks. Model-free control laws include the sliding mode control laws, linear
parameter varying methods and conventional PID control laws. The drawback of using
these kinds of control laws is that controller switching or gain-scheduling is always
needed to achieve the controller reconfiguration. Model-based control laws include
adaptive nonlinear control laws such as adaptive nonlinear dynamic inversion (NDI)
and modular adaptive backstepping. Model-based nonlinear control approaches have
a few drawbacks. Firstly, they are sensitive to model inaccuracies, however, even the
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most powerful model identification schemes might yield a discrepancy between the
identified onboard aerodynamic model and the true system during acute failures or
actions requiring high maneuverability [2, 68]. Although a few robust nonlinear control
strategies can be incorporated in the model-based controller [113, 162] to get better
tracking performance, the robust control laws are susceptible to an assumption that
the model discrepancy is within a chosen boundary. Secondly, an online aerodynamic
model usually results in a high computational load, depending on the complexity of
the chosen system identification methods, which makes it necessary to make a trade
off between model accuracy and computational load when choosing a model structure
and the identification algorithm [68, 102, 163]. Thirdly, the stability of the closed-loop
system cannot be guaranteed by model-based adaptive control due to the weakness of
the certainty equivalence condition [162][p.70]. The convergence of model parameters is
hard to guarantee when identifying a closed-loop system without persistent excitation.
Finally, model-based nonlinear control approaches are more difficult to certify than
model-free flight control methods [45].

Controller System

Model Identifier

-

Commands u

y

θ̂

(a) Using indirect/model-based adaptive control
algorithm.

Controller System

Model-free

 reconfiguration

 mechanism

-

Commands u

y

Reconfigurable control

(b) Using reconfigurable control method which
requires no online model.

Figure 1.4: Control structure comparison between model-based and model-free reconfigurable control
methods.

Both model-based and model-free reconfigurable flight control laws were investi-
gated for the research presented in this thesis. With regard to model-based control, a
new model-based adaptive flight control system was designed for an F-16 aircraft by
combining nonlinear dynamic inversion with online aerodynamic model identification
using MVSB, see [156]. This work is not included in this thesis, however, and the
control related part of this thesis mainly focuses on model-free reconfigurable flight
control. More specifically, acceleration measurements based incremental flight control
laws form the main focus. We also investigated how the estimation accuracy of the
control effectiveness matrix affects the performance of an adaptive incremental flight
controller.

Recently, the incremental type of control laws, for example the incremental NDI
[129] and incremental backstepping [44], have attracted a large amount of attention
in the domain of aircraft flight controller design. Advantages of incremental control
laws are that they are not subject to model mismatches due to the nature of the
control approximation. Nevertheless, when used in a real flight control design, the
control performance of such incremental control approaches may still be affected by
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the identification accuracy of the control derivatives, especially when the aircraft model
has large parameter variations in the entire flight envelope or the sampling rate of the
flight control computer is low.

More recently, the adaptive NDI control law and the sliding mode control law
have been applied in a reconfigurable control for vehicle emergency relief (RECOVER)
model to improve the performance of a FTFC system in aircraft [6, 87]. An alternative
to this is the sensor-based backstepping (SBB) control approach, which is a special
type of incremental and high-gain control algorithm. The SBB method, because of its
incremental nature, is assumed to be able to tolerate large model uncertainties caused
by sudden damage occurring in an aircraft. Compared to the model-based methods,
the advantage of the SBB control algorithm is that it does not require accurate online
aerodynamic model information, the reliability of which cannot always be guaranteed
during a transition period when major structural or actuator failures happen to an
aircraft or when high maneuverable flight tasks are performed. Instead, the SBB
control method uses the derivatives of the controlled variables, which can be measured
using sensors such as angular accelerometers. Unlike other nonlinear incremental
methods, the SBB method has been developed based on singular perturbation theory
and Tikhonov’s theorem [46, 59]. As a consequence, the SBB control algorithm has a
time-scale tuning parameter due to the approximation controller solution which uses
the singular perturbation theory, and this parameter can therefore be used to help
simplify the tuning process of the controller parameters.

The SBB approach is investigated in Falkena et al.[46] and applied to design a flight
controller for small aircraft such as the Diamond DA 42. However, how this control
approach can be synthesized with control allocation techniques, with which a control
effectiveness matrix is associated, still needs to be investigated before it can be used to
design a flight controller for a large civil aircraft such as the Boeing 747-200, which has
many redundant control surfaces. In addition, the influence of the sensor noise, which
is associated with the sensor systems of the Boeing 747-200 aircraft, on the flight control
performance needs to be investigated further. Finally, the robustness of such an SBB
control approach to sudden structural or actuator failures, for example, rudder runaway
and engine separation failure, has yet to be tested, and needs to be studied in depth
before being applied in practice.

1.3. MAIN RESEARCH QUESTION

The main research question of this thesis is:

How can an advanced fault-tolerant flight control system be de-
signed to increase the survivability of an aircraft?

Following the literature, a generic model-based FTFC system requires a powerful aerody-
namic model identification approach and should contain a reconfigurable flight control
component. Therefore, the main question was split into two subquestions:
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1. How can the candidate function approximation methods,
i.e., MVSB and kernel methods, be improved in terms of
their approximation accuracy and computational efficiency, to
meet the needs of model-based adaptive control and OFEP?

2. What are the benefits of using an acceleration measurements-
based control approach, i.e., the sensor-based backstepping,
as an alternative to a model-based adaptive control approach,
when designing a reconfigurable flight controller to deal with
aircraft failures in a generic FTFC system?

The two subquestions formulated above are closely related. The first is associated
with model-based adaptive flight control and FEP, and the second contributes to a
reconfigurable flight control unit. As mentioned in Section 1.2, a reconfigurable flight
control unit, which is designed using either a model-based adaptive control approach
or an incremental control scheme, and an FEP unit are two of the most important
components in a generic FTFC system. An FEP unit is in charge of providing the pilot or
the automatic controller with the remaining control authority of a post-failure aircraft
by showing them the reachable reference commands after evaluating and analyzing
the ongoing structural or actuator failures. In addition, the sensor-based backstepping
(SBB) control approach, which is the kernel of the internal controller, should guarantee
that the outputs of the aircraft are tracking the reference commands provided by the FEP
unit.

As mentioned in Sections 1.2.1 and 1.2.2, model-based adaptive flight control ap-
proaches have many advantages, and both a full-envelope modular adaptive control and
an FEP require a powerful global model identification scheme. Therefore in this thesis,
global model identification methods were investigated for the aforementioned purposes
with a focus on improving approximation accuracy and computational efficiency.

1.4. SCOPE AND LIMITATIONS
This thesis contains two parts: global aerodynamic model identification part and
acceleration measurement-based incremental nonlinear control part. Part One focuses
on presenting recursive global aerodynamic model identification methods developed for
model-based adaptive reconfigurable control and model-based flight envelope protec-
tion. Part Two focuses on exploring the benefits of using acceleration measurement-
based incremental nonlinear control laws, which do not rely on complete, accurate
aerodynamic model knowledge, for fault-tolerant control purposes.

The scope of Part One of this thesis is limited to the study of two types of global
model identification methods: 1) the recursive identification method using multivariate
simplex B-splines; and 2) the recursive, adaptive, kernel method inspired by the support
vector regression method. The model identification methods studied and developed are
intended to provide accurate offline or online global aerodynamic models for model-
based adaptive flight control approaches and static or online FEP. The two types
of global model identification methods developed, i.e., the improved recursive MVSB
methods and adaptive kernel methods, have yet to be incorporated into a flight control
system or into a FEP problem. In this thesis, these two model identification methods are
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only validated independently. Investigating the reliability of the model under model-
based control or a FEP framework was considered beyond the scope of the thesis.
Furthermore, it was assumed that the global model identification methods developed in
this thesis contained two training steps. Firstly, an offline nominal global aerodynamic
model was trained using flight test data, wind tunnel data or data from a high fidelity
model. Secondly, the aerodynamic model was updated locally using current attained
flight test data.

In Part Two of this thesis, two incremental flight control approaches are investigated
and extended to deal with fault scenarios. In addition, a model identification method
using MVSB is applied to identify the control effectiveness matrix which is comprised of
control derivatives. How the control effectiveness matrix influenced the overall control
performance of the incremental controller was also investigated.

1.5. CONTRIBUTIONS
Three main contributions to FTFC are made with the research presented in this thesis.
Firstly, three recursive global model identification methods are developed. A substitu-
tion based strategy and a recursive sequential strategy are proposed to speed up the B-
spline basis based function approximation methods. In addition, a new type of recursive
kernel method is proposed for use after synthesizing the support vector selection
techniques into the regular kernel methods. These model identification methods can
be used either for the purpose of OFEP or to provide an accurate global aerodynamic
model for the design of model-based reconfigurable flight control systems.

Secondly, an acceleration measurements-based control approach called sensor-
based backstepping, which is a state-of-the-art control approach to a complex nonlinear
system and was developed over the past decade, see Hovakimyan et al.[59] and Falkena
et al.[45], is extended in its application. The control approach is applied to the RECOVER
model with a focus on dealing with sudden model changes caused by structural or
actuator failures. To accomplish this application, many related and specific techniques
are investigated, e.g., control allocation, sensor noise rejection technique, determination
of the overall control structure, i.e., hierarchy.

Thirdly, a tensor-product multivariate simplex B-spline method is extended in this
thesis and applied in an incremental flight control framework to provide an estimation
of the control effectiveness matrix for an incremental controller. The influence of the
control effectiveness matrix on the overall flight control performance is investigated
based on a nonlinear F-16 high fidelity model.

The list of journal papers, proceeding papers, and book chapters are given in
Appendix H.4.

1.6. THESIS OUTLINE
A thesis outline is shown schematically in Figure 2.1. The body of the thesis is divided
into two parts. In the first part, three recursive global model identification approaches
are presented in Chapters 3, 4 and 5. The second part, Chapters 6-9, focuses on recon-
figurable control approaches. Conclusions and final recommendations are presented in
Chapter 10.



1.6. THESIS OUTLINE

1

13

Ch2:Literature 

review on 

FTFC

Model

identification

methods

Sensor based 

backstepping

approach

Ch3:Substitution

Based MVSB

Ch5:SVR based 

adaptive kernel 

method

Ch4: Recursive 

sequential MVSB

Ch1:

Introduction

Ch6:Hybrid SBB 

flight controller

Ch7:Joint SBB

flight controller

Ch8:Adaptive

control using 

TPS B-splines

Ch9:Conclusion

Part I:

For model-based 

control& envelope 

prediction

Part II:

Reconfigurable

controller

Figure 1.5: Diagram for the contents of each chapters.

The existing baseline methods applied in the field of online aerodynamic model
identification, nonlinear reconfigurable control, and baseline methods applied in other
components included by a fault-tolerant flight control FTFC system are discussed in
Chapter 2.

A substitution based recursive identification method using multivariate simplex B-
splines (MVSB) is developed in Chapter 3. In this method, the equality constraints
associated with the smoothness property of simplex B-splines are converted to make
the whole recursive identification method free-of-constraint. (Paper [138, 156])

A new recursive sequential strategy to reduce the computational cost required for
the multivariate simplex B-splines based recursive identification method is presented
in Chapter 4. In this method, the calculation of a global covariance matrix is avoided by
limiting the model updates at each time instant into local simplex updates. In addition, a
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strategy to impose the smoothness constraints on the triangulation is proposed. (Paper
[141])

A support vector regression based adaptive kernel method for realizing recursive
global aerodynamic model identification is proposed in Chapter 5. In this method, a
state-of-the-art recursive reduced support vector regression algorithm is applied to a
regular kernel method to help determine an optimal set of kernels. In addition, the ex-
tension of the local kernels is investigated with the aim of enhancing the approximation
power locally. (Paper [144])

The design of a hybrid sensor-based backstepping (SBB) angular controller is pre-
sented in Chapter 6. The sensor-based backstepping control approach is employed in
the body angular rate loop in combination with a simplified control allocation strategy.
The regular nonlinear dynamic inversion control method is used to design the controller
for the angular loop. In addition, the flight path controller is designed using regular PID
to complete the design of an autopilot for a Boeing 747-200. (Paper [139])

The design for a joint SBB angular controller is presented in Chapter 7. The SBB
control approach is employed to design a controller for the body angular rate loop.
Subsequently, the body angular rate controller is augmented using the backstepping
strategy to design an outer-layer controller for the angular loop. This controller is
validated using the RECOVER model, which consists of a set of benchmarks containing
aircraft fault scenarios. (Paper [140, 143])

A new tensor-product multivariate simplex B-spline method is extended from a
single-dimension case to a multi-dimension case in Chapter 8, and this method is
compared with standard simplex B-splines with a focus on the computational efficiency
and approximation power. In addition, the tensor-product MVSB model identification
method is incorporated into an adaptive incremental nonlinear flight controller, where
the simplex B-spline model provides the controller with a control effectiveness matrix.
The flight performance of the overall closed-loop flight control system is evaluated by
simulations using a high fidelity F-16 nonlinear model. (Paper [142])

The conclusions of this work and recommendations for future work are given in
Chapter 9.
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LITERATURE REVIEW ON

FAULT-TOLERANT FLIGHT

CONTROL COMPONENTS

A literature review on the methods used to design the basic components of a generic
FTFC system is presented in this chapter. An overview of a generic FTFC system is
given in Section 2.1. A classical online model identification routine called two-step
method [108] is introduced in Section 2.2 with an introduction to state estimation
using extended Kalman filters. Real-time aerodynamic model identification issues are
revisited in Section 2.3. The state-of-the-art methods in the field of fault detection and
diagnosis (FDD) are reviewed in Section 2.4. Reconfigurable flight control approaches
are revisited in Section 2.5. Finally, flight envelope protection and prediction issues are
discussed in Section 2.6.

2.1. BASIC COMPONENTS IN MODEL-BASED FAULT-TOLERANT

FLIGHT CONTROL
The next generation of aircraft requires higher levels of survivability. Military fighter
aircraft are devised to have high agility for air combat purposes, which makes the air-
frame structure or the actuators more complex. As a consequence, a higher probability
exists that one component of the complicated system can go wrong when the aircraft
is suffering from an emergent threat. Regular tasks such as launching a missile can
also cause a large instant disturbance to the aircraft configuration. Compared to fighter
aircraft, safety plays a much more important role in the design process of large civil
aircraft because the safety of large numbers of passengers relies on the safety of such
civil aircraft. Structural failures of the airframe, actuator failures, engine failures and
sensor faults need to be addressed using advanced fault detection or accommodation
techniques.

15
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To be more resilient, current fly-by-wire control systems of modern aircraft, e.g.
Boeing 787, Airbus 380, F-35 and Eurofighter, have been devised to have two new
components: 1) a sensor or actuator fault detection & diagnosis unit; 2) a flight envelope
protection unit. An excellent and extensive literature review on fault-tolerant flight
control system can be found in [175], which shows that the tendency to improve aircraft
safety is drawing increasing attention from the aerospace research community.

Two main types of FTFC systems exist: model-based FTFC systems and FTFC
systems requiring no system model. However, compared to a model-free FTFC sys-
tem, the model-based FTFC system has been shown to have unique capabilities and
advantages both from the aspect of reconfigurable flight control [41, 87, 99, 174] and
from the aspect of real-time aerodynamic model-based online flight envelope protection
[54, 85, 127, 164]. Therefore, only the model-based type of FTFC system is discussed in
this chapter.

-

-
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Figure 2.1: Block diagram of a conceptual modern model-based flight control system.

An overview of a model-based fault-tolerant flight control system, a definition of
which was given in Section 1.2, is shown in Figure 2.1. As indicated in Figure 2.1, an
FTFC system using model-based control laws usually consists of four basic components
and two additional advanced units. The four basic components are: 1) an aerodynamic
model identification (AMI) unit which may include state estimation; 2) an adaptive
model reconstruction unit; 3) a reconfigurable control law unit and 4) a control alloca-
tion unit. The two additional units are: a fault detection & isolation unit and a flight
envelope protection unit. The latter two units are usually introduced in the modern
FTFC systems to enhance the survivability of an aircraft further. A fault detection &
isolation unit is usually closely correlated to flight path reconstruction. Specifically,
the fault detection & isolation unit can provide failure information, e.g., failure type
and a rough estimation of the damage level, to the flight envelope protection unit and
the control allocation unit. The online flight envelope protection unit can predict the
current safe flight envelope in case of failures, and adjust the reference commands fed
to the reconfigurable control laws to make them consistent with the reduced safe flight
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envelope.
Among all of the six components, see Figure 2.1, the AMI part which sometimes also

involves state estimation and the reconfigurable control laws part are the main focus
of this dissertation, and will be discussed in detail. The other three blocks shown in
Figure 2.1 are also briefly introduced in this chapter for the sake of completeness.

2.2. STATE ESTIMATION,JOINT METHOD AND TWO-STEP METHOD

2.2.1. JOINT AND TWO-STEP AERODYNAMIC MODEL IDENTIFICATION

There are many different aircraft model identification algorithms ranging from time-
domain methods to frequency-domain methods. As mentioned in Section 1.2.3, the
focus of this thesis is the identification methods in the time domain. In the time domain,
the aircraft system identification methods can be classified into one-step (joint) methods
and two-step methods, depending on whether the system states and the unknown
aerodynamic parameters are dealt with in one single identification process or two.

The joint approach treats the unfiltered aircraft states and unknown aerodynamic
parameters equally in one single process. One example of this is the maximum likeli-
hood method [68]. An optimization solver such as a gradient-based optimizer is usually
required to solve a global optimization problem when using this type of methods. The
joint model identification algorithms have many merits and have been widely applied
in many fields [68]. This type of model identification methods is able to deal with
a system with process noise and the output fitting errors can be assumed correlated
with the model parameters. However, this type of identification methods result in a
high computational load if the number of unknown parameters is large due to the
computational complexity caused by global optimization. The number of unknown
parameters in a physical model of a fixed-wing aircraft varies from tens to one hundred,
see [68, 88], therefore, it is not a wise choice to use a joint model identification method
in this case. Due to the computational complexity introduced by the required global
optimization task, there are quite few joint aircraft model identification methods that
can be applied in real time. A representative example of such a method is a nonlinear
filtering method based on Kalman filters or unscented Kalman filters [51, 61].

An alternative to the joint method is the two-step method, which separates the
state estimation from the identification of the unknown aerodynamic parameters [108].
This two-step method is developed based on the fact that the aircraft states have
clear physical interpretation and they are able to be properly estimated using only
the kinematic equations with the aid of the Kalman filtering. The two-step model
identification method presented in [108] is capable of providing a real-time aerodynamic
model to a model-based ‘Reconfigurable Control Laws’ unit and an ‘Online Flight
Envelope Protection’ unit, see Figure 2.1.

2.2.2. FLIGHT PATH RECONSTRUCTION USING KALMAN FILTERS

Flight paths are required for many subsystems in a model-based FTFC system, and
need to be reconstructed from aircraft states. The aircraft states can be estimated
from the measured inputs, i.e. specific forces and angular accelerations, and measured
outputs. The preferred state estimation algorithms include an extended Kalman filter
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(EKF) and an iterated EKF. This dissertation does not focus on the algorithms, and the
reader is referred to [86] for more details. However, to be ready to implement the EKF,
the kinematic equations of a fixed-wing aircraft and the correspondingly augmented
expressions are given in Appendix A. In addition, how the aircraft states can be estimated
when an aircraft encounters a time-varying wind, i.e., a turbulence, was investigated
and was reported in Appendix B. A generalized version of the kinematic equations
were developed to enable an EKF to deal with time-varying wind speeds. The newly
formulated kinematic equations are generic because the assumption that the wind
speed is time invariant is removed.

It also should be noted that the fly-by-wire control system of a modern aircraft
normally no longer needs an independent state estimation component because most
of the measurement units currently used are so advanced that they can provide state es-
timations automatically. Additionally, many FDD methods are closely related to Kalman
filtering and state estimation, see Figure 2.1, thus fault detection and reconstruction of
the correct states can be achieved simultaneously.

2.3. REAL-TIME AERODYNAMIC MODEL IDENTIFICATION
An accurate onboard aerodynamic model is required for both the model-based fault
tolerant flight control problem and dynamic prediction problem of the safe flight
envelope. The field of recursive identification can be split into parametric methods and
nonparametric methods, in this thesis the focus is placed on the parametric methods.
One promising example of such online parametric identification methods is the ordinary
polynomial basis based (OPBB) method. This method has been intensively studied by
Klein, Morelli et al. [69] and other researchers, see [68, 88, 100, 137].

Other recursive parametric model identification methods include simplex B-splines,
radial basis function neural networks (RBF-NN), and other kernel based methods, which
will be introduced in Chapters 3, 4 and 5 rather than in this chapter.

2.3.1. RECONSTRUCTION OF DIMENSIONLESS FORCES AND MOMENTS
Dimensionless forces:
As preparation for the aerodynamic model identification process, the non-dimensional
moment coefficients can be reconstructed using the measured specific forces and states
as follows:

CX = X
1
2ρV 2S

= m AxAMI
1
2ρV 2S

(2.1a)

CY = Y
1
2ρV 2S

= m AyAMI

1
2ρV 2S

(2.1b)

CZ = Z
1
2ρV 2S

= m AzAMI
1
2ρV 2S

(2.1c)

Dimensionless moments:
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The non-dimensional moment coefficients are reconstructed using the measured
states as follows:

Cl =
L
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where ṗ, q̇ and ṙ are angular accelerations. In the work presented in this thesis, the an-
gular accelerations are derived from the rotational rates, but they will be measured using
angular accelerometers in future realistic applications, e.g., acceleration measurements-
based incremental flight control. For the meaning of the other symbols used in the above
equations, the reader is referred to the list of symbols.

2.3.2. AERODYNAMIC MODEL STRUCTURE SELECTION
For fault-tolerant flight control purposes, an aircraft aerodynamic model is required to
be updated in real-time. Model identification commonly includes two parts: model
structure selection and parameter estimation. The research reported in this thesis
is mainly focused on parameter estimation. To allow for real-time identification of
an aerodynamic model, parametric methods such as polynomials, neural networks,
splines and most of other recursive kernel methods are required to determine the model
structure in advance. In addition, it is necessary to make a trade off between modeling
accuracy and computational complexity when selecting a predefined model structure.

In the ordinary polynomial basis based (OPBB) identification method, the model
structure selection problem can be solved by ranking the polynomial terms according
to their effect factors using the orthogonal least squares methods [68, 137]. The basic
idea is to choose a subset of regressors from a pre-determined regressor pool based on
the feedback from the output fitting errors. A specific pre-defined aerodynamic model
structure for a Boeing 747 aircraft when using polynomial-based model identification
method [88, 89] is given in Appendix C to illustrate this method.

The model structure selection task for simplex B-spline basis based model iden-
tification methods is reduced into determining the optimal triangulation, function
dimensions and the per-simplex polynomial orders [33, 35]. For recursive kernel
methods, model structure selection becomes determining the number of kernels, and
the bandwidth and center positions of the kernels [28].

2.4. FAULT DETECTION AND DIAGNOSIS
The FDD unit is very important in a modern fault-tolerant flight control system [181–
183]. It should have the following functions. Firstly, it should be able to tell the controller
which sensor or actuator goes wrong. Secondly, it is required to tell the controller which
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failure the aircraft is currently suffering from, which ensures that the flight control mode
is switched to the correct mode. This information should also be communicated to
a control allocation unit to make sure that only the effectors which are still available
are involved in the new control distribution. Thirdly, under any sensor or actuator
failures, the FDD unit can be required to provide analytical redundancy and provide true
estimates of the sensor or actuator measurements to the flight path reconstruction unit.

In [94], Marzat et al. give a very complete overview of fault detection in aerospace
systems. In the field of practical application of fault diagnosis, modern FDD techniques
have been used for the flying A380 aircraft, which currently is the only practical appli-
cation of the model-based fault detection method for used in commercial aircraft. The
actual implementation of the FDD method is described in [53]. More recently, Lavigne et
al.[75] have performed more validation tests on model-based fault detection approaches
using A380 flight data. In addition to the above, there are many academic methods that
can be used to detect aircraft sensor or actuator failures, for example, robust observers,
sliding mode observers, decoupling strategies, and geometric approaches.

The methods for FDD can be categorized into three branches: air data fault de-
tection; inertial measurement unit (IMU) data fault detection and simultaneous fault
detection for both the air data sensor and the IMU. The existing approaches all need
measurements from both the air data sensor (ADS) and the IMU. One promising branch
of the available FDD methods is a physical model based approach [86, 159–161], which
exploits the properties of a physical aircraft model such that a transparent physical
interpretation exists.

Among the physical model based FDD methods, the preferred methods used for
the research reported in this thesis are those developed by Van Eykeren et al. [159,
161], where the kinematic relations of an aircraft are used in the adaptive form of an
extended Kalman filter. By observing a metric derived from the innovations of the EKF,
the approach in [159] is able to monitor the performance of each redundant sensor.
Subsequently, the failed sensors can be isolated according to this metric. The work in
[159] forms part of the contribution to the ADDSAFE project.

Some of the important and large European research projects addressing FDD issues
are listed in chronological order below.

1. Fault tolerant flight control activities (2004-2008): The research was carried out
by the GARTEUR(Group for Aeronautical Research and Technology in Europe)
Flight Mechanics Action Group FM-AG 16.

2. The FP7 European Project ADDSAFE (Advanced Fault Diagnosis for Sustainable
Flight Guidance and Control,2009-2012): The research focused on Advanced
Fault Detection and Diagnosis towards a more Sustainable Flight Guidance.

3. The FP7 European Project RECONFIGURE (2013-2015): The research deals with
aircraft GNC technologies that facilitate the automated handling of off-nominal
events, funded by the EU FP7.

Note: in the research reported in this thesis no further attention was given to fault
detection and diagnosis methods. Instead the following assumption was made:
Assumption 1:



2.5. RECONFIGURABLE FLIGHT CONTROL

2

21

For a certain structural and actuator failures, both the failure types
and a rough estimation of the lost quantities can be determined by
an FDD unit.

Under this assumption, a pilot is able to switch the flight control system to a suitable
control mode to handle the corresponding degraded working condition. For example,
the differential thrust control input will only be introduced in the case of a rudder
runaway failure or a vertical tail loss case.

2.5. RECONFIGURABLE FLIGHT CONTROL
An overview to the research programs addressing the reconfigurable flight control and
the flight control laws that can be used for the purpose of reconfigurable flight control is
given in this section.

2.5.1. OVERVIEW OF RECONFIGURABLE FLIGHT CONTROL
A concise overview of reconfigurable flight control approaches and research programs
with a focus on accommodating fault scenarios is given here, for more details, the
reader is referred to Zhang and Jiang [175], which gives an extensive overview of FTFC
approaches with more than 200 references. Note that the overview in this section does
not include the fault-tolerant control methods that only deal with sensor failures or
switches between redundant hardwares.

Classic reconfigurable flight control (RFC) methods, which can be traced back to
the 1980s, require a separate system for FDI. One such methods is that developed by
General Electric, where a separate FDI unit is built using an extended Kalman filter.
Subsequently, the information from the FDI unit is utilized in the flight control process
aimed at realizing an ideal command tracking performance.

Over the past few decades, there have been many research programs in the field of
RFC. Some important programs are listed below in chronological order.

1. Self-repairing flight control systems (SRFCS) (1984-1990) [43].

2. Automatic redesign for restructurable control systems (1984-1987) [91].

3. Self-designing flight control for the F-16 VISTA (1993-1996) [99].

4. The X-16 RESTORE program by the US Air Force (1996-2000) [22].

5. Advanced control technology for integrated vehicle (ACTIVE) and intelligent flight
control system (IFCS) F-15 program at NASA (1996-2004) [38].

6. Damage tolerant flight control systems for unmanned aircraft by Athena/Honeywell
(2007-2008) [49].

7. Fault-tolerant flight control by GARTEUR (2004-2008) [41].

The commonalities and differences between all of the above research programs are
summarized in Van Oort [162][pp.6-8] and Lombaerts [86]. For more details of each
separate research program or method, the reader is referred to the attached references.
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The first example of reconfigurable flight control in a real world problem was that
used in a Boeing F/A-18 E/F Super Hornet in 1999 [42]. The designed reconfigurable
controller could only accommodate a single stabilator failure mode, where the stabilator
was locked in a neutral position.

2.5.2. FLIGHT CONTROL LAWS

A brief overview of the control laws that are suitable for designing a flight controller
for an aircraft is given in this subsection. In Subsection 1.2.4, it is stated that the
reconfigurable control methods can be classified according to which reconfiguration
mechanisms they use, e.g. optimization, switching, matching, model following and
compensation [175]. Gain-scheduling control methods and control schemes developed
based on linear parameter varying (LPV) models achieve a control reconfiguration by
switching between different sets of gains or models. Adaptive control, which includes
direct and indirect adaptive control methods, achieves the controller reconfuguration
using a compensation mechanism [67].

In practice, gain-scheduling approaches still dominate the control designs of flight
control systems of today’s aircraft in service. However, in the research reported in this
thesis the main focus was placed on relatively modern nonlinear control laws which
requires no gain-scheduling procedure. Two nonlinear control laws namely nonlinear
dynamic inversion (NDI) and backstepping (BKS) were studied. Furthermore, adaptive
control mechanisms were studied. Adaptive control approaches include direct adaptive
control and indirect adaptive control. The NDI or BKS control methods become adaptive
control methods if certain adaptive mechanisms are introduced.

1. Feedback Linearization

If a nonlinear control system can be transformed into a linear system by a change of
coordinates and feedback, we say the system is linearizable. Feedback linearization is
also called nonlinear dynamic inversion (NDI), where the control input is chosen in such
a way that a nonlinear system is transformed into an equivalent linear system, for which
a new virtual control input needs to be further determined. This type of control law
can also be further categorized into two groups: input-to-state Linearization and input-
to-output linearization. The focus of the research reported in this thesis was input-to-
output type of feedback linearization control laws, which are extensively discussed in
literature, see [130].

Some authors argue that the stability of a multi-loop controlled system can be
guaranteed by using NDI. Others state that NDI cannot guarantee the stability of a multi-
loop closed-loop system if the original system cannot be transformed into an equivalent
linear system with a companion form by a change of coordinates and feedback.

Despite its numerous advantages relative to classical gain-scheduled flight control,
the feedback linearization based flight control approach has two inherent drawbacks.
The major drawback of feedback linearization is that it relies on exact cancellation of
the nonlinearities in the system, where the model dependency makes the feedback lin-
earization control law highly sensitive to discrepancies between the onboard model and
the true aircraft behavior [130, 162]. For small uncertainties, robust control techniques
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can be introduced into the controller design to achieve adequate performance. However,
if the uncertainties are large, adaptive schemes on top of the basic nonlinear control laws
are required, which grants the controller self-tuning capability by adapting the system
model in a real-time manner. A second problem of the feedback linearization method
is that not all systems can be transformed into a linearized form. Therefore, feedback
linearization is not applicable to these systems.

For systems that are not linearizable, quadratic approximate version of feedback
linearization controller [70] and dynamic feedback linearization [25] can be used.
Alternatively, backstepping technique can also be applied to these type of systems for
controller designs.

2. Backstepping

Backstepping is a recursive design method which steps back toward the control inputs
starting with the differential equations which are separated from the inputs by the largest
number of integrators[71]. Compared to feedback linearization, the backstepping
technique is able to address a wider range of controlled systems and allows for more
flexibility in the controller design. Firstly, it can deal with a system which can not be
transformed to a companion form. Secondly, it enables that stability metrics such as
Lyapunov function based stability conditions are incorporated in the controller design.

Lyapunov stability theory is a very important tool for both linear and nonlinear
control problems [130, 162]. The recursive backstepping control tool developed for
nonlinear control design, along with a Lyapunov function to prove stability of the
(multi-loop) closed-loop system, has been well received in the control community. To
handle small bounded uncertainties, robust backstepping is developed by introducing
nonlinear damping. Other techniques tackling uncertainties include command filtering
technique and singular perturbation based backstepping technique [44, 59].

3. Adaptive Control

Research into adaptive flight control can be traced back to the 1950s. The initial
objective was to design autopilots for high-performance aircraftoperating at a wide
range of speeds and altitudes and thus experiencing large parameter variations [130],
and to allow them to fly autonomously. The dynamic behavior of an aircraft depends on
its altitude, speed, and configuration. For a fighter aircraft like the F-35, the variations in
some modeling parameters may be over 10% during a flight task. For re-entry vehicles,
this number may reach 100%. In addition, structural failures such as frame damage can
cause large or very large configuration changes. Therefore, adaptive schemes which can
make the closed loop aircraft operate in a more optimal or safer state by taking into
account all the aforementioned system uncertainties or unpredictable changes is very
much needed in the field of aircraft controller design.

Two main configurations for adaptive controls exist: direct adaptive control which
directly tunes the controller gains and indirect adaptive control where the tuning gains
of the controller are indirectly tuned through adapting the system model. The focus of
the research presented in this thesis was the direct control method, in which a controller
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is coupled with an independent online estimator of system models.

3-A. Direct Adaptive Control

In the direct adaptive control approach, the system model is not identified and the
parameters of the controller are directly updated instead. The adaptation mechanism is
designed to adjust the identifier to match some desirable nonlinear controller in such a
way that the desired performance of the closed-loop system is achieved.

3-B. Indirect Adaptive Control

In the indirect adaptive control method, an identifier is designed to identify the
unknown system dynamics by estimating some model parameters, and the system
controller is designed based on certainty equivalence control scheme assuming that the
estimates of the unknown parameters are their true values. There are two main types
of indirect control laws: integral adaptive control and modular adaptive control. In
the modular adaptive control approach, a model estimator is designed to update the
system model, and it is assumed that the estimates of the model parameters can reach
or converge to their true values to allow for the application of the certainty equivalence
control schemes. The controller part is independent of the model identification part
in the gain-tuning mechanism. Unlike modular adaptive control, the integral adaptive
control schemes, for example the tuning function based and the Immersion & invariance
based adaptive control schemes, tune the system model parameters and the controller
parameters in a single cooperated or coupled way. To tolerate system uncertainties,
robust techniques such as nonlinear damping and command filtering techniques can
be incorporated into both integral adaptive control and modular adaptive control. It
should be noted that the weakness of certainty equivalence condition will be exposed
in the case that big model uncertainties exist or unpredicted dynamics, e.g., the aircraft
model configuration changes due to structural or actuator failures.

2.5.3. INCREMENTAL NONLINEAR CONTROL AND SINGULAR PERTURBA-
TION THEORY

1. Incremental Nonlinear Control

A brief introduction on two types of incremental nonlinear control approaches is
given in this section: incremental nonlinear dynamic inversion (INDI) and incremental
backstepping (IBKS). Due to the similarities between the INDI and IBKS control ap-
proaches in the sense of an incremental control concept, only the INDI is introduced
in this section. Furthermore, the incremental nonlinear control technique is only
discussed here within the scope of aircraft body angular rate control since it is the
aerodynamic description of the aircraft rather than the kinematics equations that suffer
from disturbances and model uncertainties.

Research into incremental nonlinear dynamic inversion is aimed at removing the
model-dependency related drawback of the regular nonlinear dynamic inversion control
law. The INDI control scheme requires measurements of angular accelerations and
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measured control surface deflections instead of a complete onboard aerodynamic
model. In the regular INDI or IB method, the incremental type of expression of the
dynamics of the most inner loop is derived by applying a first order Taylor Series
expansion to the derivative equations of the body angular rates [44, 129], see Eq. F.7 in
Appendix F. Alternatively, incremental nonlinear controller can also be developed using
singular perturbation theory [46, 59, 112].

2. Singular Perturbation Theory

Singular perturbation theory is a theoretical advancement that has been made in the
control of nonlinear singularly perturbed systems, which have the time scale separation
property, see [44, 67]. In [59], a singular perturbation theory based dynamic inversion
control approach is developed for a non-affine in control nonlinear system. Falkena et al.
[45] have devised an incremental flight controller, which is indicated as a sensor-based
backstepping controller, for a small commercial aircraft. More recently, the nonlinear
incremental control approach outlined in [45] has been extended in the sense that it
has been combined with a backstepping control design technique and validated against
disturbances, model uncertainties and sensor noise [44].

2.5.4. CONTROL ALLOCATION METHODS

The flight control laws outlined in the previous section yield desired control action,
i.e., moments. The task of control allocation is to distribute a desired control action
over the different control effectors available in some optimal way. A control allocation
method based on accurate estimation of the aerodynamic model or a single control
effectiveness matrix is expected to be able to enhance the performance of FTFC. The
quadratic programming control allocation method, which is promising and simple to
implement, is briefly discussed in this section. Many other more sophisticated good
control allocation methods have also been developed, see [17, 40, 55, 118].

The control allocation problem can be formulated into a quadratic program (QP),
which takes magnitude and rate constraints on the control effectors into account. This
QP problem can be solved efficiently, so quadratic programming is well suited for on-line
applications as an augmentation to the flight control law, for more details, the reader is
referred to [162].

The reachable flight envelope of an aircraft is likely to be reduced in the case of
a failure. Therefore, the reference signals of an FTFC should also be adapted, i.e.,
downscaled, accordingly instead of only focusing on control action distribution. This
task can be done by introducing pseudo control hedging (PCH) [63, 64], which can
compensate for the input characteristics such as actuator position limits, actuator rate
limits and linear dynamics of the actuator. In [57], PCH is incorporated into an adaptive
flight control setup based on nonlinear dynamic inversion.

However, PCH, which can approximately make a fast adjustment on the reference
commands, is only based on the capability or dynamics of the available control effectors.
In the past few decades, many different methods for safe-flight-envelope prediction and
protection have been developed and flight envelope prediction has become an inde-
pendent research field. Flight envelope prediction methods, which takes into account
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the control surface availability and output of the closed-loop system simultaneously, are
introduced in the next section.

2.6. FLIGHT ENVELOPE PROTECTION
All flight vehicles have a high safety level requirement compared to ground vehicles
[58, 85, 127, 164, 171]. A large percentage of the loss of control in flight (LOC-I), which is
the most frequent major cause of fatal accidents [12, 85, 151], can possibly be prevented
from happening or be recovered from in some accident cases using modern guidance
and control techniques [85, 127]. An overall FTFC system should be able to detect
and tolerate or adapt to the changes in the aircraft behavior following an accident.
In the research reported in this thesis the focus was placed on model-based FTFC
systems defined in Section 1.2, e.g., a physical aerodynamic model was used to design an
adaptive reconfigurable controller. Within the framework of FTFC, two main branches
exist aimed at enhancing flight safety, namely non-conventional reconfigurable control
laws, and flight envelope static or dynamic protection. Flight envelope protection is
aimed at preventing an aircraft, which is either in a highly maneuvering flight condition
or a post-failure case, from entering an upset flight condition by providing the pilot, or
an internal controller, with current achievable operating commands. In this thesis, the
flight envelope protection unit is treated as a block which is viewed as being parallel to
the reconfigurable control laws unit, see Figure 2.1.

Flight envelope protection can be categorized into two branches: static and dynamic,
i.e., online. The approaches for static envelope estimation include wind tunnel testing,
real flight test experiments and high-fidelity model-based computation of attainable
equilibrium sets or achievable trim points [19, 52, 66, 149]. After getting a safe envelope
set, a high dimensional envelope model can be constructed or expanded using regular
function approximation approaches such as polynomials, multivariate splines and
neural networks.

Online flight envelope protection (OFEP) has gained increasing attention from the
aerospace research community. For the purpose of OFEP, the approaches based on the
analysis of the forward reachability and backward reachability are the preferred methods
due to the intuitive physical interpretation of the interception safe set [54, 85, 127, 164].
In this type of methods, the OFEP problem is formulated into a reachability problem,
which is called mathematically a Bolza problem [11, 54], i.e., a continuous-time optimal
control problem in a fixed, finite time horizon, where the associated HJB equations with
a time-dependent integral cost function are solved in real-time [54, 60, 127, 164].

The Hamilton-Jacobi PDEs are commonly solved using level set methods [162] along
with other PDE solvers such as finite element methods, but these grid-based evolution
methods suffer from the curse-of-dimensionality. For OFEP, one major challenge is
the high computational load introduced by the evolution process of the Hamilton-
Jacobi PDEs. The challenge becomes even bigger if the system has a high number
of dimensions, e.g., higher than 5. One solution to reduce the computational load
is to take advantage of the time scale separation property of the aircraft system and
simplify a high-order aircraft system description into multiple low-order subsystems.
Alternatively, the development of more efficient mathematical tools can possibly be
pursued in the future to solve Hamilton-Jacobi PDEs more efficiently. For example, the
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max-plus method [95] provides a curse-of-dimensionality-free variant. However, this
state-of-the-art mathematical tool is not yet sufficiently mature and is far from ready for
a real life application.

Another alternative to the aforementioned methods for solving the Bolza problem
exists. To solve the HJB equations efficiently without suffering from the curse-of-
dimensionality, an alternative commonly used method is to approximate the cost
function using generic function approximation methods such as reinforcement learning
methods [14, 122]. Using reinforcement learning approaches such as radial basis
functions neural networks (RBF-NN) or MVSB, the approximated cost function of the
Bolza problem can be updated using a collocation method using training datasets, which
have a sufficient coverage of the entire flight envelope [4, 54, 60]. Huang et al. [60] have
developed a collocation method to solve the HJB equations using RBF-NN. This method
has been extended by Alwardi et al. [4] with an adaptive algorithm, which refines the
distribution of the RBF centers based on the feedback information of the approximation
errors. In [54], Govindarajan et al. present a collocation method for solving time-
dependent HJB equations using a sparse functional approximation algorithm called
MVSB, the sparsity of which contributes to the decrease of the computational load.

Finally, it should not be ignored that a prerequisite of all the OFEP methods and the
model-based static flight envelope protection methods is to achieve an accurate global
valid aerodynamic model which can reflect the ongoing changes in an aircraft’s flight
dynamics by capturing the changes in the aircraft structural or actuator configurations
taking into account possible damage.
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This part focuses on developing a new type of recursive methods for identifying a
global aerodynamic model, which is required for the work of model-based adaptive
control and model-based flight envelope protection. In a model-based flight control
system, the accuracy of an aerodynamic model might directly affects the command
tracking performance of the closed-loop aircraft system. The use of a global aerody-
namic model enables the estimated model to be stored for later reuse. If the same
flight condition is revisited, the model needs not to be estimated for a second time.
Many static flight envelope protection approaches and most of the online flight envelope
protection methods rely on an accurate aerodynamic model which is valid over the
entire flight envelope. In online flight envelope protection, the dynamic estimation of
a safe-flight-envelop is usually based on the evolution of a reliable and accurate global
valid aerodynamic model.

The preferred aircraft model identification method in this thesis is a two-step
method. This method consists of two consecutive procedures: a state estimation process
using an extended Kalman filter and a parameter identification process using a function
approximation algorithm. Given an accurate estimation of the states, the overall aircraft
model identification problem becomes an equation-error identification problem, which
can be solved using regular function approximation approaches.

In part one of this thesis, three new recursive type identification methods which can
provide precise global aerodynamic models are presented. They are shown in Chapter 3,
Chapter 4 and Chapter 5, respectively.

The identification methods using multivariate simplex B-splines are one of the main
focus in part one. This type of methods has many advantages over other methods. Firstly,
unlike ordinary tensor product splines, simplex B-spline based method can deal with
scattered data sets without needing pre-treatment. Secondly, simplex B-spline based
method has proven to have a high approximation power. Its approximation power can be
increased by increasing the density of the simplices and the polynomial order. Thirdly,
this method can guarantee a smooth transition between different local per-simplex
models. Fourthly, this method allows interpolation between simplices or extrapolation
outside of the well-studied subdomains with a boundary predetermined by the a priori
knowledge. In addition, Directional derivative can be easily calculated. Chapter 3 and
Chapter 4 developed two efficient parameter estimation algorithms for updating the
spline model in a recursive manner.

Recursive kernel methods have also proven to be a powerful model identification
tool, and have called the attention from many different research communities and
industry fileds. Using a nonlinear mapping through kernel functions, a kernel method is
able to transform a nonlinear function in an original input space into a linear function
in the kernel space. An open issue for recursive kernel methods is how to choose
an optimum or optimal set of kernels, which should be representing and the number
of which should be as as possible, in a computationally efficient way. In Chapter
5, an improved recursive reduced least squares support vector regression method is
used to provide kernel centers for a classical recursive kernel method. In addition,
to better capture the local data trends, the benefits of expanding the local kernels are
investigated.
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In the previous chapter, a literature review of each component in an overall model-
based fault-tolerant flight control system was given. A conclusion was drawn that an
accurate global aerodynamic model played an important role in designing a model-
based reconfigurable controller and a flight envelope protection unit. Using a two-
step method, aircraft model identification turns into equation error model identification
problem given accurate aircraft states. An equation error model identification problem
can be solved using many different function approximation approaches such as neural
networks, polynomial based methods and multivariate simplex B-spline based method.
The model structure of neural networks is non-transparent, and neural networks com-
monly suffers from a parameter convergence problem. The polynomial based method
is commonly subject to an overfitting problem. An alternative to the aforementioned
methods is the multivariate simplex B-splines (MVSB), which has received increasing
attention from the system identification field. The MVSB method has the potential
to lead to a higher accuracy than a regular model identification method based on
polynomial basis.

Model identification includes two parts of work: the abovementioned model struc-
ture selection and parameter estimation. This chapter focuses on parameter estimation.
With regard to recursive model identification methods using simplex B-splines, the
equality constrained recursive least squares (ECRLS) MVSB method is hard to apply
in real time when the number of B-coefficients is high, its computational load still
needs to be reduced to facilitate on-board applications. In this chapter, a substitution
strategy based on singular value decomposition is proposed to speed up a recursive
MVSB method.

A new substitution based (SB) recursive identification method, using multivariate simplex
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B-splines (MVSBs), has been developed for the purpose of reducing the computational
time in updating the spline B-coefficients. Once the structure selected, the recursive
identification problem using the MVSBs turns to be a constrained recursive identification
problem. In the proposed approach, the constrained identification problem is converted
into an unconstrained problem through a transformation using the orthonormal bases
of the kernel space associated with the constraint equations. The main advantage of this
algorithm is that the required computational time is greatly reduced due to the fact that
the scale of the identification problem, as well as the scale of the global covariance matrix,
is reduced by the transformation. For validation purpose, the SB-RMVSBs algorithm
has been applied to approximate a wind tunnel data set of the F-16 fighter aircraft.
Compared with the batch MVSBs method and the equality constrained recursive least
squares (ECRLS) MVSBs method, the computational load of the proposed SB-RMVSBs
method is much lower than that of the batch type method while it is comparable to
that of the ECRLS-MVSBs method. Moreover, the higher the continuity order is, the less
computational time the SB-RMVSBs method requires compared with the ECRLS-MVSBs
method.

3.1. INTRODUCTION
The control performance of a model-based automatic control system, like for example
the adaptive nonlinear dynamic inversion (ANDI) flight control system [87, 163] and the
module based adaptive backstepping flight control system [163], heavily relies on the
accuracy of the object model that is identified in real-time. Recently, de Visser et al. [34]
proposed a novel batch type identification method using multivariate simplex B-splines.
Comparing with the ordinary polynomial basis (OPB) based method, this simplex spline
basis (SSB) based method can provide a relatively more stable basis and enjoys a higher
approximation power owing to the fact that multiple local modules are identified instead
of identifying a single overall model[33]. Another main merit of the multivariate simplex
B-splines (MVSBs) is that they are capable of using the scattered dataset as training data.
This is a property that the multivariate sensor product splines method does not have
[34].

Later, de Visser and Chu et al. [37] developed an equality constrained recursive
least squares (ECRLS) based MVSBs identification method after combining the linear
regression formulation of the spline bases from [34] with the recursive least squares
identification method from [180]. The recursive identification method presented in [180]
can convert a constrained identification problem into a free-of-constraint identification
problem . In this recursive identification method, the constrained recursive identifica-
tion process is circumvented by merely injecting the equality constraint information into
the general least square solution calculated using an initial training data collection.

However, in order to enable the real-time aerodynamic model identification, it is
still necessary to reduce the computational load of the recursive MVSBs method. This
chapter is aimed at providing a more effective recursive identification method than
the ECRLS-MVSBs method developed in [37]. The new method should enjoy a much
lower computational load than the batch MVSBs, and have a lower computational load
than the ECRLS-MVSBs method. In this chapter, a new substitution based multivariate
simplex B-splines (SB-MVSBs) method is developed. The kernel-space bases based
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transformation can greatly cut down the computational time required by the SB-MVSBs
method.

This chapter is structured as follows. The preliminaries on the multivariate simplex
B-splines are introduced in Section 3.2. The SB-MVSBs method is developed in Section
3.3. In Section 3.4, the proposed SB-RMVSBs method is applied to a wind tunnel
data set of the F-16 fighter aircraft, and the selection of the spline function structure
is investigated. Subsequently, the proposed method is compared with both the batch
method and the ECRLS-MVSBs method in Section 3.5. Finally, this chapter is concluded
by Section 3.6.

3.2. PRELIMINARIES ON MULTIVARIATE SIMPLEX B-SPLINES
The basic principles for simplex splines are briefly introduced in this section. Without
this introduction, the formulation of the SB-MVSBs method will be incomplete.

3.2.1. SIMPLEX AND BARYCENTRIC COORDINATES

Let t be an n-simplex formed by the convex hull of its n + 1 non-degenerate vertices
(v0, v1, ..., vn) ⊂ Rn . The normalized barycentric coordinates of some evaluation point
x ∈Rn with respect to simplex t are defined as

b(x) := (b0,b1, ...,bn) ∈Rn+1, x ∈Rn (3.1)

which follows from the following implicit relation:

x =
n∑

i=0
bi vi ,

n∑

i=0
bi = 1 (3.2)

3.2.2. TRIANGULATIONS OF SIMPLICES

The approximation power of the multivariate simplex spline is partly determined by the
structure of the triangulation. A triangulation T is a special partitioning of a domain
into a set of J non-overlapping simplices:

T :=
J⋃

i=1
ti , ti ∩ t j ∈

{
∅, t̃

}
,∀ ti , t j ∈T (3.3)

with the edge simplex t̃ a k-simplex with 0 ≤k≤ n − 1. High quality triangulations can
be obtained using constrained Delaunay triangulation (CDT) methods, such as the 2-
dimensional CDT method presented by Shewchuk [128].

3.2.3. BASIS FUNCTIONS OF THE SIMPLEX B-SPLINES

According to [73] and [34], the Bernstein basis polynomial B d
κ (b(x)) of degree d in terms

of the barycentric coordinates b(x) = (b0,b1, ...,bn) from Eq. 3.2 is defined as:

B d
κ (b(x)) :=

{ d !
κ0!κ1!···κn ! b

κ0
0 bκ1

1 · · ·bκn
n ,x ∈ t

0 ,x ∉ t
(3.4)
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where κ = (κ0,κ1, ...,κn) ∈ N n+1 is a multi-index with the following properties: κ! =
κ0!κ1!...κn ! and |κ| = κ0 +κ1 + ...+κn . In Eq. 3.4 we use the notation bκ = bκ0

0 bκ1
1 ...bκn

n .
Given that |κ| = d , the total number of valid permutations of the multi-index κ is:

d̂ = (d +n)!

n!d !
(3.5)

In [30], it was proved that any polynomial p (b) of degree d on a simplex t can therefore
be written as a linear combination of d̂ basis polynomials in what is known as the B-form
as follows:

p t (b(x)) :=
{ ∑

|κ|=d c t
κB d

κ (b(x)) ,x ∈ t
0 ,x ∉ t

(3.6)

with c t
κ the B-coefficients which uniquely determines p t (b(x)), where the superscript ’t ’

indicates that p is defined on the simplex ’t ’. The total number of basis function terms is
equal to d̂ , which is the total number of valid permutations of κ.

3.2.4. VECTOR FORMULATIONS OF THE B-FORM
As introduced in [37], the vector formulation, according to Eq. 3.6, for a B-form polyno-
mial p(b(x)) in barycentric Rn+1 has the following expression:

p t (x) :=
{

Bd
t (b(x)) ·ct ,x ∈ t

0 ,x ∉ t
, (3.7)

with b(x) the barycentric coordinates of the Cartesian x. The row vector Bd
t (b(x)) in

Eq. 3.7 is constructed from individual basis polynomials which are sorted lexicographically[37].
The simplex B-spline function sm

d (b(x)) of degree d and continuity order m, defined
on a triangulation consisting of J simplices, is defined as follows:

sm
d (x) := Bd (b(x)) ·c ∈R, (3.8)

with Bd (b(x)) the global vector of basis polynomials which has the following full expres-
sion:

Bd (b(x)) := [ Bd
t1

(b(x)) Bd
t2

(b(x)) · · · Bd
t J

(b(x)) ] ∈R1×J ·d̂ (3.9)

Note that according to Eq. 3.7 we have Bd
t j

(b(x)) = 0 for all evaluation locations x that

are located outside of the triangle t j . This results in that Bd is a sparse row vector.
The global vector of B-coefficients c in Eq. 3.8 has the following formulation:

c :=
[

ct1> ct2> · · · ct J >
]>

∈RJ ·d̂×1 (3.10)

with each ct j a per-simplex vector of lexicographically sorted B-coefficients.
For a single observation on y we have:

f = Bd (b(x))c+ε (3.11)

with ε the residue. Then, for all the N observations, we have the following well-known
formulation:

f = X(b(x))c+ξ ∈RN×1 (3.12)
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with X(b(x)) ∈ RN×J ·d̂ a collection matrix of the row vector Bd from Eq. 3.9, and ξ =
[ε1,ε2, ...εN ]T the residue vector. For writing convenience, X(b(x)) will be written as X
in the remainder of this chapter.

3.2.5. GLOBAL CONTINUITY CONSTRAINTS

The formulation for the continuity conditions from [10] and [73] is used:

cti
(κ0,...,κn−1,m) =

∑

|γ|=m
c

t j

(κ0,...,κn−1,0)+γB m
γ (v) , 0 ≤ m ≤ r (3.13)

with v the Bernstein coordinates of the vertex which only belongs to the i th simplex,
γ= (

γ0,γ1, ...,γn
)

a multi-index independent of κ, | (κ0, ...,κn−1,m)+γ| = d . ti , t j denote
the i -th and j -th simplices separately.

Eventually, the following equality constraints should be maintained during the
calculation of the global B-coefficient vector c:

H ·c = 0 (3.14)

with H ∈ R(E ·R)×
(

J ·d̂)
the smoothness matrix [34], R is the number of continuity con-

ditions per edge. E is the number of edges in the specified triangulation. If all the
simplices’ surfaces connect smoothly on the edges within the whole triangulation, we
call the simplex splines globally continuous. Global continuity is determined by Eq. 3.13
and Eq. 3.14.

3.2.6. SPLINE FUNCTION SPACE AND A POLYNOMIAL FUNCTION SPACE

In this chapter, we use a new type of definition of polynomial function space:

Pd (n) := {pk (x) : pk |x ∈Pk , ∀x ∈Rn and ∀k ≤ d} (3.15)

with x the input vector, Pk the space of polynomials of degree k.
We use the following definition of the spline space, which is a modified form of the

definition given by Lai et al. in [73]:

Sm
d (n) := {sm

d (x) ∈C m : sm
d |x ∈Pd , ∀x ∈Rn} (3.16)

with Pd the space of polynomials of degree d , and n the dimension of function inputs.
Note that, the former represents the ordinary polynomial function bases with the

order up to d . For example, if we select x = [
x, y

]T , then P2 (2) := c1 + c2x + c4 y + c3x2 +
c6x y + c5 y2 with x and y two elements of x.

3.3. TRANSFORMATION BASED RECURSIVE IDENTIFICATION METHOD
The kernel space information of the equality constraint matrix H, formulated in Eq. 3.14,
has been utilized to transform the constrained recursive identification problem into a
free-of-constraint recursive identification problem.
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3.3.1. TRANSFORMATION OF CONSTRAINTS
Once the triangulation and the spline function structure are chosen, the equality
constraints have the property that they are time invariant and known a priori. In this
case, a straightforward substitution method can be applied to remove the constraints in
each recursion step.

Following from Eq. 3.8, the original constrained recursive identification problem has
the following expression:

f = B ·c+ε (3.17)

s.t. H ·c = 0 (3.18)

Assume that the singular value decomposition (SVD) result of H is as follows:

Hn×m = Vn×n

[ ∑
r×r 0r×(m−r )

0(n−r )×r 0(n−r )×(m−r )

]
UT

m×m (3.19)

where
∑ = diag

(
σ1 , · · · σr

)
is the diagonal vector of all singular values , σ1 ≥ ·· · ≥

σr > 0 and r is the rank of H. V = [
V1 V2

]
is an nth order orthogonal matrix,

V1 is an n by r matrix. U = [
U1 U2

]
is a mth-order orthogonal matrix, U1 is an m

by r matrix. Because c ∈ null (H), one feasible general solution for the homogeneous
equation Eq. 3.18 is:

c = U2y (3.20)

where the column vectors of U2 form an orthonormal basis of null (H) [96, 172]. y is a
column vector which needs to be calculated (identified) later, and its length is m−r . The
feasibility of the above mentioned conversion will be proved later in theorem 1.

By introducing this general solution into Eq. 3.17, we get the following formation:

f = BU2y+ε (3.21)

with U2 a basis for null (H). Since Eq. 3.21 only represents an unconstrained identifica-
tion problem, a regular recursive least squares identification method becomes capable
to solve it. In order to obtain the final unknown parameters (B-coefficients), we only
need to substitute the identified vector y into Eq. 3.20. The computational flow chart is
concluded as follows.
Algorithm 1:

step.1 determine the triangulation T , calculate the smoothness matrix H, and carry out
the SVD according to Eq. 3.19 to get U2.

step.2 calculate the spline basis vector according to Eq. 3.9.

step.3 identify the unknown vector y contained by Eq. 3.21 using a regular recursive least
squares method.

step.4 reconstruct the B-coefficient vector c from the vector y using Eq. 3.20. Return to
step.2 if a new data is available.
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Theorem 1: Optimal approximation
Given y the unique and optimal least square estimation vector of problem Eq. 3.21,

c = U2y is the optimal least squares solution of the constrained problem Eq. 3.17.
Proof:

Given U2 derived from Eq. 3.19, columns of matrix U2 constitute orthonormal bases
for the kernel space of H. Therefore, we have HU2 = 0. Hence, we can get HU2 · y = 0.
Because c = U2y as shown in Eq. 3.20, we can get H · c = 0. The equality constraints
H ·c = 0 are satisfied during parameter estimation.

Because Eq. 3.17 and Eq. 3.21 hold, we have

f−X ·c = ξ= f−XU2y (3.22)

We define the cost function of the least square problem as C (c) = min
c
ξT ξ, where c is the

vector to estimate. As y is the optimal and unique least square solution of problem 3.21,
we assume that it leads to a minimum residual vector ξd , so the minimum cost function
value can be written as C

(
y
) = ξT

d ξd . Because the two problems described by Eq. 3.17
Eq. 3.18 and Eq. 3.21 are identical systems in view of the output approximation, we can
get the following result: C (c) =C

(
y
)= ξT

d ξd from Eq. 3.22. ä

3.3.2. REMARKS
Note that, according to Eq. 3.21, the proposed recursive identification method has cut
down the scale of the original identification problem by multiplying the regression data
matrix by U2 from the right hand side.

There exist some similarities between the SB-MVSBs method and the orthogonal
least squares based identification method presented in [137]. In theory, the singular
value decomposition allows to reduce the structure of the aerodynamic model. By keep-
ing all (non-zero) singular values, the SB-MVSBs method has removed the dependent
columns in the data matrix. However, it is not reasonable to cut out the smallest singular
values and further reduce the scale of the model because the constraints are originally
added to the unknown parameters rather than to the regression data matrix.

3.4. VALIDATION USING WIND TUNNEL DATA OF THE F-16
FIGHTER AIRCRAFT

3.4.1. F-16 AERODYNAMIC MODEL STRUCTURE
According to the F-16 aerodynamic wind tunnel data presented in [114], the following
structure is a good option for X-direction aerodynamic force (moment) coefficient:

Fx

(
α,β,δe ,δl e f ,

qc

V

)
= f1

(
α,β,δe

)+ f2
(
α,β

) ·δle f

+ f3 (α) · qc

V
+ f4 (α) · qc

V
·δle f

(3.23)

Note that the engine thrust is assumed to be constant and its related term is removed
from Eq. 3.23. According to Eq. 3.23, once the q , V and δle f are fixed, we can derive the
following linear regression formulation for a three dimensional MVSBs function.

S (x) = B ·c (3.24)
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Figure 3.1: Different selection of d for Pd (3), Cm .

where B is the B-form spline vector calculated using Eq. 3.9.

According to de Visser [35], the global continuity matrix H for the three dimensional
MVSBs function should be calculated using Eq. 3.13.

In the simulation, an aerodynamic model of the F-16 aircraft was identified using
simulated flight test data generated with a nonlinear F-16 simulator based on a NASA
wind tunnel dataset [114]. The training inputs of the simulated flight test dataset
were obtained by generating 20,000 uniformly distributed inputs within their own valid
regions. The inputs of the test dataset containing 4331 points are produced by the
grids determined by α and β. The system output were calculated through the high
resolution interpolation from the wind tunnel data provided by [114] with δle f = 1◦,V =
600 f t/s, q = 0.1r ad/s, c̄ = 11.32m. Moreover, the model outputs of the aerodynamic
model is contaminated artificially by adding a white noise with a magnitude of 1%
(relative to its maximum and minimum value).

3.4.2. CROSS VALIDATION RESULTS IN DETERMINING THE STRUCTURE

In the numerical simulation, we have chosen the MVSBs function to have only one three
dimensional sub-function. The notation Sm

d (n) from Section 3.2 has been used, and the
overall spline function becomes the following expression:
S (x) = Sm

d (n), where n = 3, while d , m are kept undetermined. The partitioning vector of
α is [−20 10 40]. The partitioning vector of β is [−25 25]. The partitioning vector of δe is
[−20 20]. In order to enhance the approximation ability of this algorithm, all the inputs
are normalized into the closed range of [0 1]. In order to select a suitable structure for
the spline model of Cm , i.e., the nondimensional pitch moment coefficient, the effects
of the structural parameters, i.e., d and m, will be investigated. To demonstrate the
approximation power of the SB-MVSBs method, we compared it with the batch MVSBs
method.

Figure 3.1 shows the root mean squared errors (root mean squared errors (RMSE)) of
the fitting outputs (Cm) using the ordinary polynomial basis (OPB) based recursive least
squares identification method.

Figure 3.2(a) and Figure 3.2(b) show the RMSE of the training data set using the
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(b) SB-MVSBs training.

Figure 3.2: Different combination of m and d for Sm
d (3), T12, Cm .

batch MVSBs method and the proposed SB-MVSBs method respectively. Comparing
these two figures, it has been found that the SB-MVSBs method enjoys the same level
of approximation power as that of the batch MVSBs.
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Figure 3.3: Different combination of m and d for Sm
d (3), T12, Cm .

Figure 3.3(a) and Figure 3.3(b) show the RMSE of the testing data set based on the
B-coefficients identified using the batch MVSBs method and the SB-MVSBs method
respectively. As can be seen from these two figures, the approximation power of the
batch MVSBs method and the SB-MVSBs method are very close. Moreover, compared
with the results shown in Figure 3.1, Figure 3.3 indicate that both the batch MVSBs
method and the SB-MVSBs method enjoy a higher approximation power than the OPB
based recursive identification method.
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Table 3.1: Computational Complexity (CC) in time

Methods batch MVSBs ECRLS-MVSBs SB-MVSBs
CC O

(
m3)

O
(
3m2)

O {(m − r ) · (4m −3r )}

Table 3.2: Computational time for 20k data of Cm , T12, B-coefficient number 1008, Sm
6 (3)

condition S−1
6 (3) S0

6 (3) S1
6 (3) S2

6 (3) S3
6 (3) S4

6 (3)
ECRLS 104.5092 105.5291 105.0324 106.2780 106.2854 106.6970
SB-MVSBs(operated) 101.7709 33.2808 13.4270 5.3797 4.2410 3.7263
SB-MVSBs(normal) 139.4835 67.7009 24.0644 7.9068 6.0565 5.6464

3.5. COMPARISON WITH THE ECRLS-MVSBS AND THE BATCH

MVSBS

3.5.1. COMPUTATIONAL COMPLEXITY
The computational complexity of the substitution based MVSBs (SB-MVSBs) method
is split into two parts. Firstly, according to Eq. 3.21, the multiplication between the
B vector and the U2 matrix needs m · (m − r ) with r the rank of the continuity matrix,
and m the length of the B-coefficient vector c. Similar to the ECRLS method, the
computational complexity for the pure regression process using the recursive least
squares is O

(
3(m − r )2

)
. By summing them up, we can get the total computational

complexity of the SB-MVSBs method: C (m,r ) = (m − r ) · (4m −3r ) = 3r 2 − 7mr + 4m2.
The computational complexity in time of the batch MVSBs method, the ECRLS-MVSBs
method and the SB-MVSBs method are tabulated in Table 3.1.

Given m, function C (m,r ) monotonously increases as r < m. Therefore the mini-
mum computational complexity of the SB-MVSBs method is 4m2 when r = 0, while its

highest limit is 0. In addition, C (m,r ) = 3n2 holds when r =
(
7−

p
37

)

6 m.

3.5.2. COMPUTATIONAL TIME COMPARISON WITH THE ECRLS-MVSBS
In order to reveal the influence of the continuity order m on the computational com-
plexity in time, a numerical experiment is performed with different selection for the
continuity order m. In the remainder of this chapter, we will always choose the MVSBs
function to have only one three dimensional sub-function in all of the numerical
experiments. The simulation results are listed in Table 3.2. In Table 3.2, ’oper ated ’
means that the BU2 multiplication shown in Eq. 3.21 is executed in advance in a batch
manner. According to Table 3.2, the SB-MVSBs method require less computational time
than the ECRLS-MVSBs method, and this advantage will become more apparent with
the increase of the continuity order m.

3.5.3. EVALUATION RESULTS ON THE APPROXIMATION POWER
The OPB based recursive identification method, the batch MVSBs method and the SB-
MVSBs recursive identification method are utilized to fit the same training data set of
Cx respectively. The models identified using these three different methods respectively
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(a) Original wind tunnel data surface. (b) batch spline function surface.

(c) substitution spline function surface. (d) Polynomial fitting surface.

Figure 3.4: Validation surface of Cx (δe = 2o ), T12.

are validated using the testing data that are located on the mesh grids. The validation
surfaces of Cx are shown in Figure 3.4. Apparently, the SB-MVSBs method enjoys
an equal fitting accuracy to that of the batch MVSBs method while having a higher
approximation power than the OPB based recursive identification method.

The OPB based recursive identification method, the batch MVSBs and the SB-MVSBs
recursive identification methods are utilized to fit the same training data set of Cm . The
models identified using three different methods are validated using the same testing data
set as that mentioned previously. The validation surfaces of Cm are plotted in Figure 4.9.
We can get a similar conclusion as that drawn from last experiment that the SB-MVSBs
method has the same fitting power as the batch MVSBs method while having a higher
approximation power than the OPB based recursive identification method.

3.6. CONCLUSIONS
A new substitution based recursive MVSBs method is proposed for the online aero-
dynamic model identification. In view of the equality constraints contained by the
MVSBs, a SVD based transformation is empoyed to convert an originally constrained
recursive identification problem into a free-of-constraint identification problem. The
proposed recursive model identification method namely SB-MVSBs method was applied
to approximate a series of two wind tunnel data sets of F-16 aircraft, and were compared
with the batch MVSBs method and the ECRLS-MVSBs method. The numerical simu-
lation results show that the proposed SB-MVSBs method requires less computational
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(a) Original wind tunnel data surface. (b) batch spline function surface.

(c) substitution spline function surface. (d) Polynomial fitting surface.

Figure 3.5: Validation surface of Cm (δe = 2o ), T12.

time than the batch MVSBs method and the ECRLS-MVSBs method. In addition,
the computational time required by the SB-MVSBs decreases with the increase of the
continuity order m. The reduction of the computational time is caused by the fact that
the kernel space bases based transformation has cut down the scale of the original spline
basis based model.
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RECURSIVE SEQUENTIAL

MULTIVARIATE SIMPLEX

B-SPLINES ON AERODYNAMIC

MODEL IDENTIFICATION

The computational efficiency of an existing multivariate simplex B-splines (MVSB)
based recursive identification method still needs to be improved. Although the substi-
tution based MVSB (SB-MVSB) presented in Chapter 3 is more efficient than the ECRLS-
MVSBs method, it might be better to develop a more efficient recursive identification
approach for the MVSB regression framework in order to allow for online real-time
model identification of a complex nonlinear system.

In this chapter, a local per-simplex model updating technique is developed to
speed up a recursive MVSB method. Since this new method contains two sequential
mathematical operations at each updating cycle, it is referred to as a recursive sequential
MVSB method in the remainder of this thesis. In this approach, the overall input
space is divided into multiple sub-domains. At each updating time step, only the
covariance matrix which belongs to the currently active sub-domain is updated. In order
to guarantee global smoothness of the identified model, a smoothing (smearing) step,
i.e., the second sequential step, based on an optimal linear projection is performed at
each updating time instant.

Avoiding high computational loads is essential to online aerodynamic model identifica-
tion algorithms, which are at the heart of any model-based adaptive flight control system.
Multivariate simplex B-spline (MVSB) methods are excellent function approximation
tools for modeling the nonlinear aerodynamics of high performance aircraft. However,
the computational efficiency of the MVSB method must be improved in order to enable
real-time onboard applications, for example in adaptive nonlinear flight control systems.
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4. RECURSIVE SEQUENTIAL MULTIVARIATE SIMPLEX B-SPLINES ON AERODYNAMIC

MODEL IDENTIFICATION

In this chapter, a new recursive sequential identification strategy is proposed for the
MVSB method aimed at increasing its computational efficiency, thereby allowing its use
in onboard system identification applications. The main contribution of this new method
is a significant reduction of computational load for large scale online identification
problems as compared to the existing MVSB methods. The proposed method consists of
two sequential steps for each time interval, and makes use of a decomposition of the global
problem domain into a number of subdomains, called modules. In the first step the B-
coefficients for each module are estimated using a least squares estimator. In the second
step the local B-coefficients for each module are then smoothened into a single global B-
coefficient vector using a linear minimum mean square errors (LMMSE) estimation. The
new method is compared to existing batch and recursive MVSB methods in a numerical
experiment in which an aerodynamic model is recursively identified based on data from
an NASA F-16 wind-tunnel model.

4.1. INTRODUCTION
In the implementation of any model-based adaptive flight control system, like for
example nonlinear dynamic inversion control [87] and modular adaptive backstepping
control [47, 163], it is critical to at all times maintain an accurate onboard model
of the aircraft under control. Central to such a control system is a recursive system
identification loop, which constantly updates the onboard aerodynamic model as new
measurements become available [102, 103]. It is essential that this loop is computation-
ally efficient, as onboard computational capabilities in most applications are severely
limited. In the past, the field of recursive system identification has been well studied,
like for example variants of recursive least square methods and maximum likelihood
method, see, e.g., [82, 133] and [83]. More recently, it has been suggested that recursive
identification methods are developing towards the direction of nonlinear recursive
identification methods [37, 51, 115, 120, 167, 176, 179].

The field of recursive identification can be split into parametric methods and
nonparametric methods. However, this chapter will only focus on the parametric
methods. A classical online parametric identification method is the ordinary polynomial
basis based (OPBB) method. This method has been intensively studied by Klein, Morelli
et al. [68, 69, 88, 100, 137]. The model structure selection problem is solved by ranking
the polynomial terms according to their effect factors using the orthogonal least squares
methods [68, 137].

A recent promising parametric identification method is the multivariate simplex
B-splines (MVSB) method [9, 10, 34, 37, 73]. In [34] a new identification method
was introduced which used the B-form basis polynomials of multivariate simplex B-
splines in a linear regression framework. A batch estimation method is then adopted
to identify the coefficients of the splines, also known as B-coefficients. This linear
regression based MVSB scheme is a full-domain verifiable method due to the fact that
its functional output are bounded by the maximum and the minimum B-coefficients
[73]. In comparison with the OPBB identification method, the B-spline basis used
in the MVSB method enjoys higher numerical stability since it is defined in terms of
normalized Barycentric Coordinates [10, 73]. In addition, the approximation power of
the MVSB method can be increased far beyond the capabilities of any OPBB method by
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dividing the flight envelope into any number of subdomains called simplices [34, 73],
which are organized in a structure called a triangulation. Continuity constraints are
used to enforce a predefined continuity order between neighboring simplices in the
triangulation, thereby ensuring that the resulting spline function is globally continuous
[10, 73]. Compared with the well-known multivariate tensor product splines, the
advantage of MVSB method is that it can fit scattered multidimensional datasets on non-
rectangular domains [10, 20, 73].

Given the structure of the triangulation and the polynomial order of the basis
functions, the MVSB identification problem can be formulated as a constrained linear
system which can be solved using for example Lagrange multipliers [10]. The recursive
identification scheme from [180] has been introduced into MVSB theory by de Visser et
al. [37] in the form of the equality constrained recursive least squares (ECRLS) method.
In the ECRLS method, the B-coefficients are recursively updated using the newly
available data. This recursive identification algorithm has shown to be significantly
more efficient in terms of computational load than the above mentioned batch method.
However, real-time application of the MVSB is still hard to achieve due to the relatively
high computational complexity when the B-coefficient vector contains more than one
thousand elements. When applied to the problem of aerodynamic model identification
of aircraft with highly nonlinear aerodynamics and extensive flight envelopes, the total
number of elements in the B-coefficient vector can easily exceed this number. This may
be either caused by a high resolution of the triangulation, a high polynomial order within
each simplex, or a combination of both.

The objective of this chapter is to present an improved recursive identification
method using MVSB that has a lower computational load than the ECRLS method, while
having a comparable approximation power. It is found that the computational efficiency
of the ECRLS method can be further improved by avoiding the updating of the global
covariance matrix, which becomes highly time-consuming for large scale problems. The
merit of the new method is that it avoids the computation of a global covariance matrix
altogether, and therefore its computational efficiency can be higher than recursive MVSB
methods like ECRLS that do require the updating of a global covariance matrix.

Simulated flight data, generated with a subsonic F-16 flight simulation based on a
NASA wind-tunnel dataset [114], is used to validate the proposed recursive sequential
MVSB (RS-MVSB) method. The proposed new method is more efficient in computa-
tional terms than the batch MVSB and ECRLS methods at the cost of a minor loss in
approximation power. As a baseline comparison, the OPBB method is also implemented.
Our final goal is to provide an efficient MVSB method that is able to provide a global
nonlinear aerodynamic model for the advanced model based flight control systems of
the next generation fighter aircraft.

This chapter is organized as follows. In Section 4.2, preliminaries are given on multi-
variate simplex B-splines. In Section 4.3, the recursive sequential identification scheme
for the multivariate simplex B-splines is proposed. The analysis of computationally
complexity is provided in Section 4.4. In Section 4.5, the method is compared with both
the batch method and the ECRLS method for computational aspects. The new method is
applied in the identification of an aerodynamic model for the F-16 in Section 4.6. Finally,
the conclusions and remarks are given in Section 4.7.
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4.2. PRELIMINARIES ON MULTIVARIATE SIMPLEX B-SPLINES
The basic principles for simplex splines are briefly introduced in this section. Firstly,
subsection 4.2.1 introduces how to compute barycentric coordinates for a single sim-
plex. Secondly, the triangulation techniques are presented in subsection 4.2.2. Subsec-
tion 4.2.3 describes the calculation of the simplex B-splines basis within a single simplex.
Then, subsection 4.2.4 presents the methodology of constructing the global basis vector,
i.e., a B-form vector. Thereafter, the equality constraints on the global B-coefficient
vector are provided in subsection 4.2.5. Finally, the spline function space is defined.

4.2.1. SIMPLEX AND BARYCENTRIC COORDINATES
Let t be an n-simplex formed by the convex hull of its n + 1 non-degenerate vertices
(v0, v1, ..., vn) ⊂ Rn . The normalized barycentric coordinates of some evaluation point
x ∈Rn with respect to simplex t are defined as

b(x) := (b0,b1, ...,bn) ∈Rn+1, x ∈Rn (4.1)

which follows from the following implicit relation:

x =
n∑

i=0
bi vi ,

n∑

i=0
bi = 1 (4.2)

4.2.2. TRIANGULATIONS OF SIMPLICES
The approximation power of the multivariate simplex spline is partly determined by the
structure of the triangulation. A triangulation T is a special partitioning of a domain
into a set of J non-overlapping simplices:

T :=
J⋃

i=1
ti , ti ∩ t j ∈

{
∅, t̃

}
,∀ ti , t j ∈T (4.3)

with the edge simplex t̃ a k-simplex with 0 ≤k≤ n − 1. High quality triangulations can
be obtained using constrained Delaunay triangulation (CDT) methods, such as the 2-
dimensional CDT method presented by Shewchuk [128].

4.2.3. BASIS FUNCTIONS OF THE SIMPLEX B-SPLINES

According to [73] and [37], the Bernstein basis polynomial B d
κ (b(x)) of degree d in terms

of the barycentric coordinates b(x) = (b0,b1, ...,bn) from Eq. 4.2 is defined as:

B d
κ (b(x)) :=

{ d !
κ0!κ1!···κn ! b

κ0
0 bκ1

1 · · ·bκn
n ,x ∈ t

0 ,x ∉ t
(4.4)

where κ = (κ0,κ1, ...,κn) ∈ N n+1 is a multi-index with the following properties: κ! =
κ0!κ1!...κn ! and |κ| = κ0 +κ1 + ...+κn . In Eq. 4.4 we use the notation bκ = bκ0

0 bκ1
1 ...bκn

n .
Given that |κ| = d , the total number of valid permutations of the multi-index κ is:

d̂ = (d +n)!

n!d !
(4.5)
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In [30], it was proved that any polynomial p (b) of degree d on a simplex t can therefore
be written as a linear combination of d̂ basis polynomials in what is known as the B-form
as follows:

p t (b(x)) :=
{ ∑

|κ|=d c t
κB d

κ (b(x)) ,x ∈ t
0 ,x ∉ t

(4.6)

with c t
κ the B-coefficients which uniquely determines p t (b(x)), where the superscript ’t ’

indicates that p is defined on the simplex ’t ’. The total number of basis function terms is
equal to d̂ , which is the total number of valid permutations of κ.

4.2.4. VECTOR FORMULATIONS OF THE B-FORM
As introduced in [37], the vector formulation, according to Eq. 4.6, for a B-form polyno-
mial p(b(x)) in barycentric Rn+1 has the following expression:

p t (x) :=
{

Bd
t (b(x)) ·ct ,x ∈ t

0 ,x ∉ t
, (4.7)

with b(x) the barycentric coordinates of the Cartesian x. The row vector Bd
t (b(x)) in

Eq. 4.7 is constructed from individual basis polynomials which are sorted lexicographically[37].
The simplex B-spline function sm

d (b(x)) of degree d and continuity order m, defined
on a triangulation consisting of J simplices, is defined as follows:

sm
d (x) := Bd (b(x)) ·c ∈R, (4.8)

with Bd (b(x)) the global vector of basis polynomials which has the following full expres-
sion:

Bd (b(x)) := [ Bd
t1

(b(x)) Bd
t2

(b(x)) · · · Bd
t J

(b(x)) ] ∈R1×J ·d̂ (4.9)

Note that according to Eq. 4.7 we have Bd
t j

(b(x)) = 0 for all evaluation locations x that

are located outside of the triangle t j . This results in that Bd is a sparse row vector.
The global vector of B-coefficients c in Eq. 4.8 has the following formulation:

c :=
[

ct1> ct2> · · · ct J >
]>

∈RJ ·d̂×1 (4.10)

with each ct j a per-simplex vector of lexicographically sorted B-coefficients.
For a single observation on y we have:

y = Bd (b(x))c+ r (4.11)

with r the residue. Then, for all the N observations, we have the following well-known
formulation:

y = X(b(x))c+ε ∈RN×1 (4.12)

with X(b(x)) ∈ RN×J ·d̂ a collection matrix of the row vector Bd from Eq. 4.9, and ε =
[r1,r2, ...rN ]T the residue vector. For writing convenience, X(b(x)) will be written as X
in the remainder of this chapter.
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4.2.5. GLOBAL CONTINUITY CONSTRAINTS

To keep the smoothness among all subdomains, the following equality constraints
should be maintained during the calculation of the global B-coefficient vector c:

H ·c = 0 (4.13)

with H ∈ R(E ·R)×
(

J ·d̂)
the smoothness matrix [34][10], R is the number of continuity

conditions per edge. E is the number of edges in the specified triangulation. If all the
simplices’ surfaces connect smoothly on the edges within the whole triangulation, we
call the simplex splines globally continuous. Global continuity is determined by Eq. 4.13.

4.2.6. SPLINE FUNCTION SPACE AND A POLYNOMIAL FUNCTION SPACE

In this chapter, we use a new type of definition of polynomial function space:

Pd (n) := {pk (x) : pk |x ∈Pk , ∀x ∈Rn and ∀k ≤ d} (4.14)

with x the input vector, Pk the space of polynomials of degree k.
We use the following definition of the spline space, which is a modified form of the

definition given by Lai et al. in [73]:

Sm
d (n) := {sm

d (x) ∈C m : sm
d |x ∈Pd , ∀x ∈Rn} (4.15)

with Pd the space of polynomials of degree d , and n the dimension of function inputs.
Note that, the former represents the ordinary polynomial function bases with the

order up to d . For example, if we select x = [
x, y

]T , then P2 (2) := c1 + c2x + c4 y + c3x2 +
c6x y + c5 y2 with x and y two elements of x.

4.3. RECURSIVE SEQUENTIAL IDENTIFICATION METHOD WITH

MULTIVARIATE SIMPLEX SPLINE
The computational load of the batch [34] and ECRLS [37] methods increases to the
point of being impractical for use in online identification when the complexity and
required update rate of a system increases beyond a certain point. The new recursive
sequential least squares (RS-LS) method circumvents this problem by negating the need
to update an increasingly large covariance matrix, thereby providing an effective online
identification method for large scale systems of high complexity. In this section, the
theory of the RS-LS identification method is presented.

4.3.1. THEORETICAL DEVELOPMENT

Combining Eq. 4.12 with Eq. 4.13, the linear regression formulation of the multivariate
simplex B-splines is derived as follows:

y = X ·c+ε (4.16)

s.t. H ·c = 0 (4.17)
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Assume that the singular value decomposition of H is as follows:

Hn×m = Vn×n

[ ∑
r×r 0r×(m−r )

0(n−r )×r 0(n−r )×(m−r )

]
U>

m×m (4.18)

where
∑= diag

(
σ1 , · · · σr

)
is the diagonal vector of eigenvalues , σ1 ≥ ·· · ≥σr > 0

, and r is the rank of H. V = [
V1 V2

]
is an nth order orthogonal matrix, V1 is a n by r

matrix. U = [
U1 U2

]
is a mth-order orthogonal matrix, U1 is a m by r matrix. It can be

seen from Eq. 4.17 that c ∈ null (H).
Let J (c) be a least squares cost function of the global B-coefficient vector c =[

ct j
]J

j=1 ∈RJ ·d̂×1 as follows:

J (c) =
(
y−Xc

)> (
y−Xc

)
(4.19)

where X ∈ RN×J ·d̂ is a matrix of B-form regressors for N observations as derived in [37],
and vector y contains all N observations. J is the number of simplices, and d̂ is the length
of the coefficients vector located on each simplex.

A definition of the optimal linear minimum mean square error (LMMSE) estimation
from [98] is stated as follows:
Given a set of linearly independent vector bases M = {

η1,η2, ...,ηn−1,ηn
}
, we use a linear

combination ε̂ =
n∑

i=1
aiηi to approximate the unknown random variable vector ε. The

fitting error is defined as:

ξ= ε− ε̂= ε−
n∑

i=1
aiηi (4.20)

The mean square fitting error is defined as:

P =
∣∣∣∣∣

∣∣∣∣∣ε−
n∑

i=1
aiηi

∣∣∣∣∣

∣∣∣∣∣

2

(4.21)

Our mission is to derive n constant parameters a1, a2, ...an that make the mean square
error have the minimum value.

One theorem from [172] and [76] also needs to be introduced: If the set of vector
bases M = {

η1,η2, ...ηn−1,ηn
}

are orthonormal bases, then the linear minimum mean
square error (LMMSE) estimation of the random variable vector ε is given by

ε̂=
n∑

i=1

〈
ε,ηi

〉
ηi =

n∑

i=1
aiηi (4.22)

where
〈
ε,ηi

〉
is the inner product of ε and ηi .

4.3.2. RECURSIVE SEQUENTIAL MULTIVARIATE SIMPLEX B-SPLINES
This method will be illustrated using a training dataset generated by the following
function:

f = f (x1,x2) (4.23)



4

52
4. RECURSIVE SEQUENTIAL MULTIVARIATE SIMPLEX B-SPLINES ON AERODYNAMIC

MODEL IDENTIFICATION

where the column vectors x1, x2 are the inputs of function f . A spline function
sm

d (b (x1,x2)) is used to approximate function f .
A triangulation T is obtained using the Delaunay method according to the span in

each dimension of x = [x1,x2]T . In the recursive sequential MVSB scheme, a modular
subsystem is defined for each simplex (or set of simplices) of T . Each modular
subsystem defined on a small number of subdomains will be refered to as a module in
the remainder of this chapter. An example of constructing modules among the whole
triangulation for two dimensional training datasets is illustrated in Figure 4.1(a) and
Figure 4.1(b). s1, s2, ...s8 are eight simplices in T as shown in Figure 4.1(a). Two modules
are constructed as shown in Figure 4.1(b), where each module contains four simplices. In
practice, the number of simplices in each module is selected through a cross validation
process.

t1

t2 t3

t4

t5

t6t7

t8

(a) triangulation in two dimen-
sions.

t1

t2 t3

t4

t5

t6t7

t8

M1

M2

(b) module construction from triangu-
lation.

Figure 4.1: Illustration of module construction.

Let ci B-coefficient vector of the i th module. In the recursive sequential method, we
construct an independent estimation problem for each module. During every time step,
we update the identification vector ci which belongs completely to the specified module.
Although updating the covariance matrix for each module is inevitable, the computation
of the global covariance matrix is avoided. Because the global covariance matrix is many
times larger than the local covariance matrix which belongs to one single module, this
greatly reduces the computational time.

Let J be the number of simplices included in T . The discontinuous global B-
coefficient vector c has the following structure:

c = [
c1

>c2
> . . .ci

>cJ
>]>

(4.24)

The RS-MVSB method is comprised of two consecutive steps for each new data point:
1)updating the B-coefficient vector ci of one single module and constructing vector c;
2) deriving the smooth global B-coefficient vector c̃ from the discontinuous vector c by
some methodology under the constraints Eq. 4.17.

Given the splines’ triangulation T , the kernel space matrix U2 for the linear mapping
transformation is fixed and thus the orthonormal basis vectors which are columns of
U2 are fixed and time invariant. According to [96], the smooth vector c̃ which satisfies
Eq. 4.17 should have the same degree of freedom as the kernel space determined by the
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columns of matrix U2. Inspired by this conclusion, a hard curtailing method is proposed
to enforce the continuity constraints Eq. 4.17 at each recursive time step.

According to Eq. 4.17, vector c̃ should be located in the kernel space of H which is
determined by U2 as shown in Eq. 4.18. In addition, the column vectors of matrix U2 are
orthonormal bases of space null (H) according to [96]. Let

U2 =
{
η1,η2, ...ηn−1,ηn

}
(4.25)

By means of linear minimum mean square error (LMMSE) estimation from Eq. 4.22, the
final smooth global B-coefficient vector c̃ is derived from the discontinuous global B-
coefficient vector c as follows:

c̃ =
n∑

i=1

〈
c,ηi

〉
ηi (4.26)

Figure 4.2 provides an overview of the overall adaptive control system. The function
of the ’Onboard Spline Model’ block is to reconstruct an aircraft aerodynamic model,
and the ’Inner-loop Controller’ block is aimed at producing part of control input signals
using the identified aerodynamic coefficients. As can be seen from Figure 4.2, the
recursive sequential setup can be summarized into three steps:

1) As a preparation, the U2 matrix is derived from Eq. 4.18, and a local module for
each simplex of T triangulation is constructed. Let the number of simplices be J ,
then J estimation sub-problems are constructed.

2) When a new data point is available, the simplex index is used to decide which
module it belongs to. Suppose that the current data point belongs to the i th

module, then updating the local parameter vector segment ci of the i th module
using a least squares algorithm. Then we can get the corrected c according to
Eq. 4.24. Simultaneously, the regressors’ covariance matrix Pi of the i th module
is also updated.

3) The smooth global B-coefficient vector c̃ is derived from c using LMMSE estima-
tion according to Eq. 4.26. Then, go to step 2 and wait for new data points.

It should be noted here that the first step of the recursive sequential method is
independent of the second step. Therefore, we are allowed to skip the smoothing step
(LMMSE estimation) occasionally as long as the smoothed vector c̃ is not readily needed
in order to reduce the computational time. The main contribution of this algorithm
is that updating the global covariance matrix is avoided in using recursive least square
method, and therefore computational load is greatly reduced.

4.4. COMPUTATIONAL COMPLEXITY
The batch method, presented in [34], contains a matrix inversion. Therefore, the batch
method has a computational complexity of O

(
m3

)
with m the dimensionality of the

covariance matrix if it uses the Gaussian elimination to calculate the matrix inversion.
The computational complexity of the ECRLS method, presented in [180] and [37], is
O

(
3m2

)
[180] which is the result of the recursive updating of the global covariance
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Figure 4.2: Structure of an adaptive control system based on multivariate spline model.( Computational flow
chart of the RS-LS method is described in the central block.)

matrix. Therefore, the ECRLS method is more suitable for real-time applications because
the number of algebraic operations and the required memory volumes are reduced in
each cycle [180].

The computational complexity of the RS-MVSB method presented in Section 4.3
is the result of two operations. The first operation is the updating of the global
covariance matrix at each cycle. Since the computational complexity of the ECRLS
method is O

(
3m2

)
, we can calculate the computational time which is consumed in

updating the covariance matrix of the RS-MVSB method by substituting the scale of the
identification problem. Assume the number of modules in the T triangulation is k, then

the computational complexity of updating the covariance matrix is O
(
3
( m

k

)2
)
=O

(
3 m2

k2

)
.

The second operation is the smoothing of the global B-coefficient vector by Eq. 4.22:

O (m (m − r )+m (m − r )) ≈O (2m (m − r )) (4.27)

where r is the rank of the smoothness matrix H, and only the multiplication operation is
considered.

As mentioned in Section 4.3.2, the smoothing step in the recursive sequential
method is not necessary to be executed if the smooth global covariance matrix is not
readily needed. In this case, the computational complexity of the overall method reduces

to O
(
3 m2

k2

)
in each cycle. The computational complexity (CC) analysis is concluded in
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Table 4.1: Computational Complexity (CC) in time

Methods batch ECRLS RS-LS(R) RS-LS(N)

CC O
(
m3)

O
(
3m2)

O
(
3 m2

k2

)
O

(
2m2 −2mr +3 m2

k2

)

Table 4.1.
In Table 4.3, the letter ‘R’ is an acronym of ‘Reduced’, which means the LMMSE

smoothing process is carried out every 1000 time steps. Accordingly, the letter ‘N’ is
an abbreviation of ‘Not reduced’.

4.5. COMPUTATIONAL ASPECTS
In this section, the recursive sequential method is compared with the batch method
presented in [34] and the ordinary recursive least squares (ECRLS) method presented
in [37]. Firstly, the recursive sequential least squares based multivariate spline method
is applied to fit a bivariate dataset, and compared with the batch method and ECRLS
method. Secondly, it was validated by being applied to approximate a trivariate dataset
in a hybrid manner using multi-function structure. Thirdly, the proposed method was
applied to fit the same three dimensional dataset but with a different triangulation
structure, where total number of B-coefficients is larger than 2000 as a result of the
increased number of simplices. This experiment is designed for demonstrating the
advantage in terms of computational efficiency of the recursive sequential MVSB (RS-
MVSB) method when it is applied to large scale problems. All the numerical experiments,
presented in this chapter, were implemented in the Matlab running as interpreted
scripts and run on a quad core PC (Intel Xeon E3-1270@3.40 GHZ, RAM 16.0 GB).

4.5.1. DEMONSTRATION SETUP
In this section, two datasets are used. The first one is a trivariate dataset χ3d which
consists of 22000 scattered data points inR3, generated using a uniform random number
generator in the interval {[0,1] , [0,1] , [0,1]}:

χ3d = {x1, x2, x3} ∈ {U [0,1] ,U [0,1] ,U [0,1]} (4.28)

The output measurements of the data points were generated using a three dimensional
compound function:

ft (x1, x2, x3) = 0.33
{

f1 (x1, x2, x3)+ f2 (x1, x2)
}+k1 · v (4.29)

where k1 · v is a uniformly distributed white noise sequence of magnitude k1, the
subfunctions take the following formulation:

f1 (x1, x2, x3) = x1x2 +x3 sin(1.5x2 +x1) (4.30a)

f2 (x1, x2) = x2
2 sin(2x1 +10)+x1 cos(1.5x2) (4.30b)

20000 data points are used as training data and the remaining 2000 data are used as
validation data.
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Table 4.2: Comparison in 2-D, 168 parameters, 20000 data points

Methods batch ECRLS RS-LS(R)
normalized time 514.1 1.0 0.6110
time per cycle(ms) 53.97 0.105 0.0641
max (|ε|) 0.0792 0.0797 0.0839
RMSE (ε) 0.0201 0.0201 0.0201

The second dataset χ2d , which contains 20000 data points inR2, is a bivariate dataset
with its outputs generated using Eq. 4.30b together with k1 · v . In all of the following
numerical experiments, we selected k1 = 0.02.

4.5.2. COMPARISON WITH THE BATCH METHOD AND ECRLS METHOD
In the first numerical experiment, the bivariate training dataset χ2d consisting of 20000
scattered data points is used. For the multivariate spline function S (x) = Sm

d (n), we
select n=2, d=5, m=1, where n,d , and m are defined in Eq. 4.15. The structure of the
triangulation is determined by vertices located on the grid {[0,0.5,1] , [0,0.5,1]}.

The recursive sequential least squares (RS-LS) method developed in Section 4.3
was compared with the batch method presented in [34] and the ordinary recursive
least squares (ECRLS) method presented in [34]. The comparison results are shown in
Table 4.2. The length of the B-coefficient vector c̃ is 168. The total computational time,
which is shown in the first row, is normalized using the computational time of ECRLS
method. Apparently, the RS-LS method enjoys a significantly lower computational
time than the batch method and ECRLS method while maintaining equivalent fitting
accuracy (implied by max (|ε|) and root mean squared error (RMSE)). The RMSEs are
very close to the magnitude of the white noise add into the training data.

In the second numerical experiment, the RS-LS method is used to approximate
the three dimensional dataset χ3d consisting of 20000 data points, and the results are
elaborated in Table 4.3. In this case, a compound spline function S (x) = Sm1

d1
(n1) +

Sm2
d2

(n2) consisting of a trivariate and a bivariate simplex B-spline function is used to
approximate the function in Eq. 4.29. We selected n1 = 3, d1 = 5, m1 = 0 and n2 = 2,
d2 = 4, m2 = 1. In the implementation of the recursive sequential method, a virtual
covariance matrix with block diagonal form is constructed in Eq. 4.31.

Cg =




C11

C12

.
C1i

.
C1m

C2t




(4.31)

where C1i is covariance matrix of the i th simplex in triangulation T1, C2t is the global
covariance matrix of the triangulation T2. Let n1 and n2 be the total number of B-
coefficients which belong to T1 and T2 separately, then the size of the square matrix
C1i is n1

m with m the number of modules in Sm1
d1

(n1) and the size of the square matrix C2t
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Table 4.3: Comparison in 3-D, 366 parameters, 20000 data points

Methods batch ECRLS RS-LS(R) RS-LS(N)
normalized time 709.0420 1.0 0.3150 0.4057
per cycle(ms) 348.9557 0.4922 0.1552 0.1997
max (|ε|) 0.0795 0.0750 0.0745 0.0736
RMSE (ε) 0.0200 0.0199 0.0205 0.0201

Table 4.4: Comparison in 3-D, 2808 parameters, 20000 data points

Methods batch ECRLS RS-LS(R) RS-LS(N)
normalized time 243.42 1.0 0.0154 0.1317
per cycle(ms) 10094.4 41.4682 0.6390 5.4641
max (|ε|) 0.0824 0.0792 0.0860 0.0915
RMSE (ε) 0.0200 0.0201 0.0253 0.0242

is n2. Assume the current data point is located in the i th module of Sm1
d1

(n1), then the
local covariance matrix for the current time step is:

Cl =
[

C1i

C2

]
(4.32)

To get the results in Table 4.3, the support vertices {[0,1] , [0,1] , [0,1]} were selected to
construct the T triangulation. The length of the B-coefficient vector c̃ is 366.

It can be seen from Table 4.3 that both the ECRLS method and the RS-LS method are
significantly faster than the batch method. The best performing RS-LS method, i.e., RS-
LS(R-s), is more than 2000 times faster than the batch method. According to column 2
and 3, RS-LS method is 3 times faster than the ECRLS method while maintaining nearly
the same approximation ability (implied by the RMSE). Note that, the RMSEs are very
close to the magnitude of the white noise added to the training data.

Thirdly, the advantage of the RS-MVSB method for large scale and multi-function
identification problems is demonstrated using the three dimensional dataset χ3d , which
contains 20000 data points as described in Section 4.5.1. In this numerical experi-
ment, a spline function S (x) = Sm1

d1
(n1)+ Sm2

d2
(n2) is used to approximate the function

ft (x1, x2, x3) shown in Eq. 4.29. A different triangulation T was constructed using
the support vertices {[0,0.5,1] , [0,0.5,1] , [0,0.5,1]}. The B-spline function Sm1

d1
(n1) was

constructed using n1 = 3, d1 = 5, m1 = 0, and Sm2
d2

(n2) was constructed using n2 = 2,
d2 = 4, m2 = 1. The length of the global B-coefficient vector c̃ is 2808.

In this numerical experiment, 20000 data points from dataset χ3d from Eq. 4.28 were
used as training data for the batch method, the ECRLS method and the RS-LS method.
The results in Table 4.4 clearly show that the ECRLS method is more than 200 times
faster than the batch method, while the RS-LS method is 60 times faster than the ECRLS
method while the approximation power (implied by RMSE) is close to that of the batch
method. The RMSE approaches the magnitude of the white noise added to the training
data. Again, this speedup is the direct result of not having to update a global covariance
matrix.
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4.6. APPLICATION ON AERODYNAMIC MODEL IDENTIFICATION

OF THE F-16
In this section, the recursive sequential algorithm was applied to identify an aero-
dynamic model of the F-16 fighter aircraft based on data from a NASA wind-tunnel
database of the F-16 [114]. The next generation of fighter aircraft will have highly non-
linear aerodynamics. In order to obtain accurate aerodynamic models for such aircraft,
their full flight envelopes need to be partitioned using high resolution triangulations.
The result of this is a longer B-coefficient vector for the simplex B-splines. In case the
aerodynamic model needs to be updated online, for example after a damage event,
the batch and ECRLS methods may become infeasible due to their low computational
efficiency. This section is aimed at demonstrating the approximation power of the new
RS-MVSB method when dealing with a large scale, complicated nonlinear modeling real-
world problem. The RS-MVSB method is compared with both the polynomial basis
based identification method and the batch MVSB method. In the remainder of this
chapter, we assume that all aircraft states have been obtained from the ‘State Estimation’
block, e.g., an extended Kalman filter, shown in Figure 4.2. The model identification
method proposed in this chapter forms the second step of the so-called two step method
[108].

4.6.1. F-16 AERODYNAMIC MODEL STRUCTURE

Fx

(
α,β,δe ,δle f ,

qc

V

)
= f1

(
α,β,δe

)+ f2
(
α,β

) ·δl e f

+ f3 (α) · qc

V
+ f4 (α) · qc

V
·δl e f

(4.33)

According to Eq. 4.33, we can derive the following linear regression formulation for
compound multivariate B-splines.

Fx = Fx1Fx2 (4.34)

where

• Fx1 =
[

B1,B2 ·δle f ,B3 ·
qc

V
,B4 ·

qc

V
·δle f

]

• Fx2 =
[
c>1 ,c>2 ,c>3 ,c>4

]>

For simplicity, let B3 = B4, then the third term and the fourth term in Eq. 4.34 can be
merged:

Fx = Fx3Fx4 (4.35)

where

• Fx3 =
[

B1,B2 ·δl e f ,B3 · qc
V · (1+δle f

)]

• Fx4 =
[
c>1 ,c>2 ,c>3

]>
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According to de Visser [35], the global continuity matrix for the combined spline
function has the following expression:

H =



H1

H2

H3


 (4.36)

with H1,H2,H3 the continuity matrices of the three independent sub functions.
In the implementation of the RS-MVSB method, a virtual covariance matrix in the

block diagonal form is constructed in Eq. 4.37.

Cg =




Ctn1

Ctn2

.
Ctni

.
Ctnm

Ctn2

Ctn3




(4.37)

where Ctni is the covariance matrix of the i th simplex in triangulation T1, Cn2 and Cn3

are covariance matrices of triangulation T2 and T3 separately. In this equation, tn1 +
tn2 + ...+ tni + ...+ tnm = n1 where n1, n2 and n3 are the total number of B-coefficients
which belong to T1, T2 and T3 separately. The local covariance matrix at the current
time step is:

Cl =



Ctni

Ctn2

Ctn3


 (4.38)

4.6.2. ORIGINAL WIND TUNNEL DATA FOR AN F-16 AIRCRAFT

The inputs of the training dataset were obtained by randomly generating 20000 input
states inside the domain of the NASA wind-tunnel model. The inputs of the validation
dataset containing 4331 points are produced by the grids determined by α and β. The
outputs of both datasets were calculated using Eq. 4.33 based on the wind-tunnel data
provided by [114] with δle f = 1deg r ee,V = 600 f t/s, q = 0.1r ad/s, c = 11.32m. To
investigate the effects from the measurement noise, the white noise with a magnitude
of 1% (relative value to the corresponding upper and lower extreme) has been added to
the model outputs, i.e., CX , Cm , in generating the training datasets. This observation
noise together with Eq. 4.33 is playing the same role as Eq. 4.29.

In this chapter, we are only concerned with the identification of the longitudinal
force and moment coefficients. In addition, only the results for CX and Cm are provided
since they show much more significant nonlinearities than CZ . Three-dimensional
surfaces of longitudinal force coefficient CX and moment coefficient Cm when δe = 0
were plotted in Figure 4.3 and Figure 4.4 separately. Highly nonlinear behavior of the
aerodynamic coefficients can be observed in these figures.
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Figure 4.3: CX wind-tunnel data surface (δe = 0o ,

δl e f = 1o ,
qc
V = 0.0018866).

Figure 4.4: Cm wind-tunnel data surface (δe = 0o ,

δle f = 1o ,
qc
V = 0.0018866).

4.6.3. MODEL STRUCTURE SELECTION AND RECURSIVE SEQUENTIAL IDEN-
TIFICATION

In the simulation, the MVSB function approximator contains three subfunctions: S (x) =
Sm1

d1
(n1)+Sm2

d2
(n2)+Sm3

d3
(n3), where we selected n1 = 3, n2 = 2, d2 = 4, m2 = 1; n3 = 1,

d3 = 3, m3 = 1 with d1, m1 undetermined. That is, the compound spline function is the
following: S (x) = Sm

d (3)+S1
4 (2)+S1

3 (1). The partitioning vector of α is
[−20 10 40

]
.

The partitioning vector of β is
[−25 25

]
. The partitioning vector of δe is

[−20 20
]
.

The inputs were normalized into the range of [0 1] in order to further improve the
approximation accuracy. In order to select a suitable model structure for the spline
model, the effects of the structural parameters, i.e., d and m, will be investigated.
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Figure 4.5: Different combination of d for Pd (3) together with P4(2) and P3(1).

The results of the identification experiment with the OPBB method are shown in
Figure 4.5. The approximation results on the training dataset using batch MVSB method
and RS-MVSB method are given separately in Figure 4.6. Figure 4.6(a) and Figure 4.6(b)
clearly shows that the approximation accuracy of both methods will increase with the
increase of d , while decrease with the increase of continuity order m. Apparently, the
approximation accuracy of the RS-MVSB method is very close to that of the batch MVSB
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(b) RS-MVSB training.

Figure 4.6: Different combination of m and d for Sm
d (3) together with S1

4(2) and S1
3(1).
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Figure 4.7: Different combination of m and d for S(3)m
d together with S1

4(2) and S1
3(1).

method when continuity order is less than two, although the performance of the new
method is lower than the batch MVSB method when continuity order is high. Compared
with Figure 4.5, Figure 4.6 also shows that the MVSB method has a higher approximation
power than the OPBB method, especially when the polynomial order is larger than 3.

The approximation accuracy of the aforementioned methods are validated using
4331 validation data points; the RMSEs are plotted in Figure 4.7(a) and Figure 4.7(b)
separately. According to Figure 4.7(a), the fitting accuracy of the Batch MVSB will
increase with the increase of d and it will decrease with the increase of m. According
to Figure 4.7(b), when the continuity order m is lower than 3, the fitting accuracy of the
RS-MVSB will also increase when the polynomial order increases or the continuity order
decreases. On the other hand, when the continuity order is equal to 3, the quality of fit
will decrease with the increase of d . Comparing Figure 4.7(b) with Figure 4.7(a), it can
also be seen that the RS-MVSB method has a slightly lower fitting accuracy than batch
MVSB, which is the price paid for the increased computational efficiency of updating the
B-coefficients.
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Finally, the performance of the RS-MVSB method is illustrated by comparing the
predicted output on the 4331 knots with wind-tunnel data output. For the plotting of
the 3 dimensional surface, we selected δe = 2o in order to fix the third dimension δe . The
spline function has the following structure: S (x) = S0

5 (3)+S1
4 (2)+S1

3 (1). The structure of
the OPBB approximator has the following form:P (x) = P5 (3)+P4 (2)+P3 (1).

(a) Original wind-tunnel data surface. (b) Spline function surface, T12,T4,T2.

(c) Polynomial fitting surface.

Figure 4.8: Validation surface of CX
(
α,β,δe = 2o)

with δle f = 1o ,
qc
V = 0.0018866, 4331 data.

The wind-tunnel model for CX for δe = 2o is shown in Figure 4.8(a) as a comparison
baseline. The spline function surface reconstructed from the estimated global B-
coefficient vector c̃ is given by Figure 4.8(b). Comparing Figure 4.8(b) and Figure 4.8(c)
with Figure 4.8(a), it can be seen that the MVSB model closer resembles the wind-tunnel
model than the OPBB model. The surfaces of Cm plotted in Figure 4.9(a), Figure 4.9(b),
and Figure 4.9(c) show a similar result.

Finally, the most important advantage of the RS-MVSB method over the ECRLS
MVSB method is that it requires a lower computational time at each recursive step when
updating the B-coefficients. In the above mentioned simulation experiment, the length
of the B-coefficient vector is 740 and the computational time of the RS-MVSB method is
0.9766 ms per data point. Whereas, the computational time of the ECRLS MVSB method
is 3.6582 ms per data point. The low computational time requirement makes the RS-
MVSB method more suitable for application in real-time adaptive flight control systems
than the ECRLS MVSB method and the batch MVSB method.
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(a) Original wind-tunnel data surface. (b) Spline function surface, T12,T4,T2.

(c) Polynomial fitting surface.

Figure 4.9: Validation surface of Cm
(
α,β,δe = 2o)

with δle f = 1o ,
qc
V = 0.0018866, 4331 data.

4.7. CONCLUSIONS
A new recursive sequential strategy is developed and combined with the multivariate
simplex B-splines with the aim of increasing the computational efficiency over existing
multivariate spline based identification methods. This new recursive sequential multi-
variate B-splines method, called the RS-MVSB method, enables the online identification
of large scale nonlinear aerodynamic models which are at the heart of modern adaptive
model-based flight control systems. The RS-MVSB method consists of two sequential
procedures at each time step. The first is the estimation of the B-coefficients for the
local spline functions defined on the local simplex modules. The second procedure is
the LMMSE-based smoothing step which results in a smooth global spline function.

The performance of the RS-MVSB method was compared to existing batch and recur-
sive methods for simplex B-spline identification in a set of three numerical experiments.
It was shown that the RS-MVSB method enjoys a significant advantage in terms of
computational efficiency over the existing ECRLS method for large scale problems at
a cost of a slight decrease in approximation power. In particular, the approximation
power of the RS-MVSB method is comparable to the batch MVSB method and the ECRLS
MVSB methods when the continuity order of the spline functions is lower than 2. For
continuity orders larger than or equal to 2, the approximation power of the RS-MVSB
method is lower than existing MVSB methods. In addition, all MVSB methods have a
higher approximation power than the OPBB approximation method.

The RS-MVSB method is applied in the recursive identification of an aerodynamic
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model using data from a NASA nonlinear wind-tunnel data set of the F-16 fighter aircraft.
A comparison with the ordinary polynomial method and the batch MVSB method
shows that the new RS-MVSB method has all the advantages of the MVSB method,
i.e., high approximation power, while at the same time greatly reducing the required
computational time in updating the spline model parameters.



5
ONLINE ADAPTIVE KERNEL

METHOD BASED ON SUPPORT

VECTOR REGRESSION

In Chapter 3 and Chapter 4, two different recursive identification methods using mul-
tivariate simplex B-splines (MVSB) were presented. Each of them has a higher com-
putation efficiency than a regular equality constrained recursive least square (ECRLS)
MVSB method. However, our research scope has so far been limited to the spline-based
parametric method. Kernel methods, on the other hand, could also be an efficient model
identification approach, and very well provide an accurate model approximation of a
complex nonlinear system. Kernel methods, which can be parametric methods in a
few cases, have received much attention from the industry in the past few decades and
have shown their power in many real-world applications. Therefore, we explore whether
there could be certain recursive kernel methods which are suitable for deriving a highly
accurate global online aerodynamic model. In this chapter, a new recursive parametric
kernel method is developed. Firstly, a support vector selection technique from the field
of support vector machines is applied to determine kernel centres for a regular radial
basis function (RBF) based kernel method. Secondly, we investigate how to modify
or expand the kernel functions to enhance overall modelling accuracy by taking into
account local data trends.

The optimality of the kernel number and kernel centers plays a significant role in
determining the approximation power of nearly all kernel methods. However, the pro-
cess of choosing optimal kernels is always formulated as a global optimization task,
which is hard to accomplish. Recently, an improved algorithm called recursive reduced
least squares support vector regression (IRR-LSSVR) was proposed for establishing a
global nonparametric offline model. IRR-LSSVR demonstrates a significant advantage
in choosing representing support vectors compared others. Inspired by the IRR-LSSVR,
a new online adaptive parametric kernel method called Weights Varying Least Squares

65
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Support Vector Regression (WV-LSSVR) is proposed in this chapter using the same type
of kernels and the same centers as those used in the IRR-LSSVR. Furthermore, inspired
by the multikernel semiparametric support vector regression, the effect of the kernel
extension is investigated in a recursive regression framework, and a recursive kernel
method called Gaussian Process Kernel Least Squares Support Vector Regression (GPK-
LSSVR) is proposed using a compound kernel type which is recommended for Gaussian
process regression. Numerical experiments on benchmark data sets confirm the validity
and effectiveness of the presented algorithms. The WV-LSSVR algorithm shows higher
approximation accuracy than the recursive parametric kernel method using the centers
calculated by the k-means clustering approach. The extended recursive kernel method,
i.e., GPK-LSSVR, has not shown any advantage in terms of global approximation accuracy
when validating the test data set without real-time updates, but it can increase modeling
accuracy if real-time identification is involved.

5.1. INTRODUCTION
Seeking optimality in selecting the number and the centers’ position of the kernel basis
functions has been a defining feature of applying the kernel basis function based iden-
tification method [126][28], particularly those dealing with complex dynamic systems.
Given a modeling data set, the task of determining the centers and the number of the
kernel basis functions becomes a global optimization problem, which usually requires a
high computational load especially when the modeling data set is of large scale [21, 28].
Many contributions concerning kernel selection exist in the literature. Among many
examples are the orthogonal least squares [26], clustering algorithms such as k-means
[28], and more recently, many efforts in reducing the dependency between the kernel
basis number and the training data number[21, 65, 120]. Despite the abovementioned
contributions in selecting the centers and number of the kernel basis functions, a novel
type of learning machine called support vector machine (SVM) has proven to be a good
alternative. As suggested by Bernhard et al. [13], the SVM has an advantage in providing
high-quality centers for other kernel methods. In other words, the kernel methods using
the centers calculated by SVM enjoy higher approximation accuracy than the classical
radial basis function (RBF) machine.

Support vector machines (SVMs) proposed based on structural risk minimization
(SRM) principle are state of the art learning algorithms for pattern recognition and
function approximation [28, 126, 165]. Specifically, it has been successfully applied in
many fields, including feature selection [77], face recognition [79], image segmentation
[169], and text classification [97]. To reduce the computational complexity in the training
process, one branch of SVMs, namely least squares support vector machine (LSSVM),
was proposed by Suykens et al. [145, 148]. In LSSVM, only a linear equation set needs to
be solved rather than a quadratic programming problem as in classical SVMs. In terms
of real-world application, LSSVM has achieved promising results in many different fields
such as particle swarm optimization [80], fault diagnosis [7], thunderstorm prediction
[123], foreign exchange rate forecasting [81], breast cancer diagnosis [121], aero-engine
model reconstruction [177], and time series prediction [124]. However, LSSVM has
also introduced a new problem, that is, its solution suffers from lack of sparseness
and robustness [147]. In LSSVM, all training samples become support vectors owing
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to the equality constraints, and its loss function takes a squared errors form. As a
consequence, it needs a high computational load in training and lacks robustness. To
overcome these drawbacks, many efforts have been made by Suykens [146], De Kruif
and De Vries [32], Hoegaerts [56], Zeng and Chen [170] and Jiao [62] et al. For large data
sets, Brabanter et al. [31] and Karsmakers et al.[65] recently developed the fixed-size
kernel (SVR) modeling method. More recently, a novel and much sparser LSSVR method
named improved recursive reduced LSSVR (improved recursive reduced least squares
support vector regression (IRR-LSSVR)) is proposed by Zhao and Sun et al.[179] after
combining a reduced technique [24] with the iterative strategy [62]. In each iteration,
all the remaining non-support data points will be evaluated, and the data leading to a
maximum reduction in the overall squared fitting errors is introduced. Above all, IRR-
LSSVR exploits an improved criterion for selecting optimal support vectors recursively,
which takes into account the adaptation of existing weights by the will-selected support
vectors when introducing a new support vector. Consequently, IRR-LSSVR leads to a
sparser SVM model when compared to other LSSVR methods. That is to say, it needs less
support vectors while keeping almost the same approximation accuracy without greatly
increasing the computational time in training [179].

Furthermore, the choice of kernel function type plays a paramount role in deter-
mining the modeling performance of a kernel method. When the modeling system has
different data trends in different subdomains, the kernel method using single kernel
commonly cannot lead to a satisfying result, i.e., the model does not globally fit the data.
Multikernel learning algorithms [15, 74, 117, 178] have been intensively investigated
during the last decade. Their superiority of leading to high approximation accuracy has
been demonstrated by Ong et al.[117].

The objective of this chapter is to present an adaptive fixed-size kernel method called
WV-LSSVR for real-time global model identification applications, which takes advantage
of IRR-LSSVR in selecting kernel centers, for the global model real-time identification.
Additionally, the multikernel effect on the kernel basis function based modeling method
is also investigated, and a new online GPK-LSSVR kernel method is developed by ex-
tending the single Gaussian kernel into a compound kernel recommended for Gaussian
process regression. GPK-LSSVR should be seen as an improved version of WV-LSSVR,
which improves the approximation power of the WV-LSSVR method.

This chapter is structured as follows. In Section 5.2, the preliminaries on reduced
LSSVR are briefly introduced. The new adaptive methods will be developed in Sec-
tion 5.3. Results and analysis will be given in Section 5.4. Finally, the paper is concluded
by Section 5.5.

5.2. PRELIMINARIES ON RECURSIVE REDUCED LSSVR

Because the centers of the kernels used in the laterly proposed kernel method will be
calculated using recursive reduced LSSVR (RR-LSSVR), the preliminaries on RR-LSSVR
are briefly introduced in this section.
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5.2.1. REDUCED LEAST SQUARES SUPPORT VECTOR REGRESSION

Given a training data set {(xi ,di )}N
i=1 where xi ∈ Rm is the input with m-dimension and

di ∈ R is its corresponding model output. The least squares support vector regression is
solved by solving the following optimization problem:

min
w,e,b

{
1

2
wT w + C

2

N∑

i=1
e2

i

}
(5.1)

s.t. di = wTϕ (xi )+b + ei , i = 1, ..., N . where w is the normal vector of the hyperplane,
b is the offset, e = [e1, ...,eN ]T denotes the prediction residual vector, C ∈ R+ is the
regularization parameter, ϕ (·) is the mapping from the input space to the feature space.
In literature, this constrained optimization problem is solved by introducing Lagrangian
factors:

L (w,b,e,α) = 1

2
wT w + C

2

N∑

i=1
αi

(
di −wTϕ (xi )−b −ei

)
(5.2)

where α is the Lagrangian multiplier vector. The conditions for optimality are

∂L

∂w
= 0 → w =

N∑

i=1
αiϕ(xi ), (5.3a)

∂L

∂b
= 0 →

N∑

i=1
αi = 0, (5.3b)

∂L

∂ei
= 0 →αi =Cei , (5.3c)

∂L

∂αi
= 0 → wTϕ (xi )+b +ei −di = 0, (5.3d)

Eliminating the vectors w and e, the following linear equations set is obtained:

[
0 1T

1 K̄

][
b
α

]
=

[
0
d

]
(5.4)

where 1 = [11, ...,1N ]T ,d = [d1, ...,dN ]T ,K̄i j = k
(
xi , x j

)=ϕ(xi )Tϕ(x j )+δi j /C with

δi j =
{

1, if i = j

0, if i 6= j
, i , j = 1, ..., N

k
(
xi , x j

)
is the kernel function on the paired input vectors

{(
xi , x j

)
, i = 1, ..., N ; j = 1, ..., N

}
.

The commonly used kernel function is the Gaussian defined by

k
(
xi , x j

) = exp
(
−

∥∥xi −x j
∥∥2 /2γ2

)
. After obtaining the solution α from Eq. 5.4, for any

new testing sample x ∈Rm , the predicting value is derived as follows:

f (x) =
N∑

i=1
αi k (xi , x)+b (5.5)
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Assuming that {(xi ,di )}M
i=1 is a reduced subset of original training samples, and are

used to construct an approximation to the aforementioned normal LSSVR. From Eq. 5.3,
the sparse expression of w can be rewritten as w = ∑

i∈S
αiϕ(xi ) with S the index subset

of {1, ..., N }. After substituting w into Eq. 5.1, we get the equivalent formulation of the
optimization problem[176]:

min
b,αS

{
L (bαS ) = 1

2
αT

S KαS +
C

2

N∑

i=1

(
di −

∑

j∈S
α j ·

ϕ
(
x j

)T
ϕ (xi )−b

)2} (5.6)

where Ki j = k
(
xi , x j

)
, i , j ∈ S, αS denotes the sub-vector of α indexed by S. Eq. 5.6

can be reformulated into the following economy form[176]:

min
b,αS

{
L = [

bαT
S

]([
0 0T

0 K /C

]
+ [

1T K̂
][

1
K̂ T

])[
b
αS

]

−2
([

1T K̂
]

d
)T

[
b
αS

]} (5.7)

where K̂i j = k
(
xi , x j

)
, i , j ∈ S, 1 is a vector of all ones in an appropriate dimension, 0 is

a vector of all zeros in an appropriate dimension. Let ∂L/∂b = 0 and ∂L/∂αS = 0, Eq. 5.7
can reach its optimal value at

(
R +Z Z T )[ b

αS

]
= Z d (5.8)

where

R =
[

0 0T

0 K /C

]
, Z =

[
1T

K̂

]

By solving Eq. 5.8, a reduced LSSVR estimator is derived for a testing sample x:

f (x) =
∑

i∈S
αi k (xi , x)+b (5.9)

5.2.2. IMPROVED ALGORITHM FOR SELECTING SUPPORT VECTORS
In IRR-LSSVR [179], an improved criterion was developed for RR-LSSVR. In each itera-
tion, all the remaining non-support data points will be evaluated, and the data leading
to a maximum reduction in the overall squared fitting errors is introduced. Above all,
the adaptation of the weights by the will-selected support vectors is taken into account
when introducing a new support vector.

5.3. PARAMETRIC KERNEL METHODS WITH THEIR CENTERS DE-
TERMINED BY LSSVR

The property of a kernel, a nonlinear mapping function from the original space to
the feature space, directly determines the approximation accuracy of SVM. Meanwhile,
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sparseness plays a crucial role in making the kernel models enjoy a better prediction
performance in terms of generalization performance and testing time. However, the
kernel center selection process usually has a high computational time requirement.
Since IRR-LSSVR has a superiority in efficiently selecting optimal locations and numbers
of all kernels, it provides a tool for all the general kernel methods to determine the
number and locations of the kernels when constructing the global model. In both kernel
methods proposed in this chapter, IRR-LSSVR is utilized to deal with the pre-collected
static training data pool to get the optimal support vectors S = {x1, x2, ..., xM }, which are
later used as kernel centers.

In many circumstances, like for example in real-time model identification, an
online global kernel method provides a good alternative to the other possible online
identification algorithms. In the remainder of this chapter, we will focus on developing
an online kernel method based on IRR-LSSVR. A fixed-size online parametric kernel
method has been developed by introducing a classical weights updating technique after
the kernel centers have been determined using IRR-LSSVR.

As a further step, kernel extension has been studied inspired by the multikernel
support vector regression, which has shown its superiority in terms of improving
approximation power. As indicated by Zhao and Sun [178], apart from introducing
new support vectors, an alternative way to enhance modeling accuracy is to expand the
kernel basis functions, like for example adding a constant term and a linear term to the
Gaussian kernel. Specifically, kernel extension becomes essential when the local data
trend among different subdomains of the system varies greatly.

5.3.1. RECURSIVE KERNEL METHOD USING THE SUPPORT VECTORS
In IRR-LSSVR, a Gaussian kernel was adopted by Zhao et al.[179] with the expression:

k (xn ,xm) = exp

{
−‖xn −xm‖2

2γ2

}
(5.10)

Note that the Gaussian kernels are centered on the selected support vectors as shown
in Eq. 5.9, and the outputs of the kernel basis functions ker (xi , ·) constitute inputs in
the feature space rather than outputs. As shown in Eq. 5.9, the weights α are associated
with each of the support vectors. If we want to develop a new online fixed-size kernel
method for identifying the global model in real-time, we can collect abundant modeling
data with enough excitation information at first, and then use IRR-LSSVR to calculate
the centers for the parametric kernel method. Having determined the number and the
centers of the kernels, we can then use a classical recursive least squares approach to
update the weights for each kernel basis functions at each time step. In each iteration,
the mapping relationship between the two input spaces remains the same, but the
surface shape of the implicit function defined in the high dimensional feature space is
always adapted.

In this section, a novel online fixed-size kernel method is developed. This method
employs Gaussian kernels as well as the kernel number and positions calculated using
IRR-LSSVR. Having chosen the kernel determination technique, we can then realize
an online regression framework by applying a classical recursive least squares method.
Specifically, the weights α are set as initial weights, which determine the initial shape of
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the function output surface in the feature space. Unlike the weightsα, the scalar variable
b shown in Eq. 5.9 is not updated at each time step. Since the weights of the proposed
method vary with time, the method is referred to as weights varying LSSVR (WV-LSSVR)
for short.

Before proceeding, we need to have a discussion on the WV-LSSVR. IRR-LSSVR is an
offline learning machine, therefore, we need to collect, in advance, enough representing
modeling data with full coverage of the system under identification. Besides, the kernel
selection method, i.e. IRR-LSSVR, is a nonparametric method, and the scale of the
model increases continuously with the increment of the support vector number. Apart
from the kernel center selection process, the WV-LSSVR becomes a parametric online
kernel method suitable for identifying dynamic global model in real-time. As a result,
the WV-LSSVR is a hybrid kernel method, which comprises two processes: kernel center
selection process using pre-collected modeling samples and recursive identification of
the kernel weights.

5.3.2. EXTENSION OF THE KERNEL BASIS FUNCTION
A widely used kernel function for Gaussian process regression is given by the exponential
of a quadratic form, with the addition of constant and linear terms [[28], p.307]:

k (xn ,xm) = an0 ·exp

{
−an1 ‖xn −xm‖2

2

}
+an2 +an3xT

n xm (5.11)

where xn is the input vector of the current evaluation data and xm is one of the support
vectors selected offline using IRR-LSSVR. Note that the term involving θ3 corresponds to
a parametric model that is a linear function of the input variables.

By introducing an1 = 1
γ2 , we can get

k
(
xi ,x j

)= θi 1 ·exp

{
−

∥∥xi −x j
∥∥2

2γ2

}
+θi 2 +θi 3xT

i x j (5.12)

where xi ∈ S, and S = {x1, ...,xn} is the selected sub set of support vectors calculated
using IRR-LSSVR. Once again, the kernel functions are centered on the selected support
vectors, and their bandwidth is chosen the same as those used in IRR-LSSVR. This novel
adaptive kernel method will be referred to as Gaussian process kernel based LSSVR
(GPK-LSSVR) in the remainder of this chapter. The parameters of the kernel model that
needs to be recursively updated has the following expression:
c = [θ11,θ12,θ13, · · · ,θi 1,θi 2,θi 3, · · · ,θM1,θM2,θM3]>, where i ∈ [1, · · · , M ] and M is the
number of support vectors.

GPK-LSSVR includes two stages: kernel determination in an offline manner using
pre-collected data and weight updates in real-time using new data samples. The
detailed training methodology for GPK-LSSVR is depicted by Algorithm 1. Note that the
algorithmic flow chart for WV-LSSVR is similar to Algorithm 1. The only difference lies in
step.3. WV-LSSVR keeps using the nominal Gaussian kernel functions shown in Eq. 5.10
instead of extending it into compound kernel functions shown in Eq. 5.12.

Algorithm 1. GPK-LSSVR
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step.1 Based on the a priori experience of the model, gather and select offline input-
output training data set {(xi ,di )}N

i=1 with as large a coverage of the input space as
possible.

step.2 Choose the optimal support vector set {(xi ,di )}M
i=1 from {(xi ,di )}N

i=1 and calculate
the unknown parameters αS , b as shown in Eq. 5.8 using IRR-LSSVR from [179].

step.3 Extend the nominal Gaussian kernel shown in Eq. 5.10 into the kernel shown in
Eq. 5.12. The kernel centers are determined by the support vector set {(xi ,di )}M

i=1.
The initial value of θ1 = [θ11,θ21, · · · ,θM1] is determined by αS , and the initial
values of θ2 and θ3 are set to be zero.

step.4 Update the parameters θ1, θ2 and θ3 using recursive least squares method when
evaluating new testing data. Execute step.4 recursively for each new data.

5.3.3. COMPUTATIONAL COMPLEXITY

According to [179], IRR-LSSVR has a computational complexity of O
(
M ·N 2

)
in time

at each iteration when selecting support vectors, where M is the number of selected
support vectors and N is the total number of modeling data. Because WV-LSSVR and
GPK-LSSVR both use IRR-LSSVR to determine the kernel centers, see step.2 of Algorithm
1, they enjoy the same computational complexity in time as IRR-LSSVR at each iteration
while determining the kernel centers. The second part of the computational complexity
of WV-LSSVR and GPK-LSSVR is caused by the recursive updating of the kernel model
using newly available data. This part of computational complexity is tabulated in
Table 5.1 with m the dimension of the input variables. As shown in Table 5.1, the compu-

Table 5.1: Computational complexity in each time step

algorithms time memory
WV-LSSVR O

(
m ·M +M2)

O
(
m ·M +M2)

GPK-LSSVR O
(
m ·M + (3M)2)

O
(
m ·M + (3M)2)

tational complexity of both methods comprises two parts: kernel basis regression vector
computation O (m ·M), and the parameter update using the recursive least squares
method O

(
M 2

)
or O

(
(3M)2

)
. According to Table 5.1, the computational complexity

in evaluating a new data will increase quadratically if the number of support vectors
increases.

5.4. EXPERIMENTS AND RESULTS
To demonstrate the feasibility and efficiency of WV-LSSVR and GPK-LSSVR methods,
we will carry out a set of 14 experiments using benchmark data sets and a data set
from a real-world object. Among the benchmark data sets, motor-UPDRS, total-UPDRS,
winequality-red, winequality-white, concrete, autoMPG, abalone, Boston housing are
from the well-known UCI repository 1, and stock, delta elevators, delta ailerons, kine-

1Available from URL:http://archive.ics.uci.edu/ml/.
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matics, cpu-act, puma8NH are found from the ltorgo collection2. Detailed information
on these data sets has already been provided on the websites given in the footnotes. In
addition, one data set from a real-world system is also used to validate the methods,
that is, the data from the diesel engine[16]. Note that all these data sets have also
been applied in [179]. All experiments are done on an Intel i5 CPU E31270 (3.40 GHz)
processor with 16.00 GB RAM in a Matlab2010b environment.

The root mean squared errors (RMSE) and normalized mean squared errors (NMSE)
criteria are used to evaluate the approximation power of the proposed methods, where
the RMSE is defined as:

RMSE =

√√√√√
N∑

i=1

(
d̂i −di

)2

N
(5.13)

The NMSE is defined as:

N MSE = 1

M2 N

N∑

i=1

(
di − d̂i

)2
(5.14)

where

M2= 1

N −1

N∑

i=1

(
di − d̄

)2

with d̄ the mean of the measured values, d̂i the predicted value, and di the measured
value.

5.4.1. COMPARISON WITH THE K-MEANS CLUSTERING APPROACH
For comparison purpose, a classical k-means clustering (KMC) based RBF kernel method
[13, 28] was also implemented. Two new online kernel methods proposed in this chapter,
i.e., WV-LSSVR and GPK-LSSVR, and the abovementioned KMC-RBF were compared
to each other with special focus on the optimality of the selected kernel centers. The
aforementioned benchmark data sets were applied to validate the performance of the
kernels chosen using IRR-LSSVR and the KMC method separately. As a first step in the
numerical experiments, the training data set was utilized to calculate the number and
centers for all the kernel basis functions. As a second step, the same training data set
was used again to train the model in a recursive manner. As a third step, the identified
model from the previous process was evaluated using the testing benchmark data sets
without further updates of the model parameters. Note that all the kernel parameters
are selected the same as those used in IRR-LSSVR [179].

To depict the effects of the k-means clustering threshold σ and the kernel number
on the approximation accuracy of KMC-RBF, the ’total UPDRS’ data set from the UCI
repository is selected as validation data set at first. The simulation results are plotted
in Figure 5.1 and Figure 5.2. As can be seen from Figure 5.1, when the threshold σ

decreases, RMSE also decreases. In addition, once σ is smaller than some value, i.e.,
0.01, the influence of its reduction on the approximation accuracy becomes negligible.
In Figure 5.1, the RMSE first decreases, then increases, and gets its minimum around
750. Figure 5.2 gives the same trend information on NMSE.

2URL:http://www.liaad.up.pt/ ltorgo/Regression/DataSets.html.
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Figure 5.1: RMSE of KMC-RBF, under different σ,
total UPDRS.
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Figure 5.2: NMSE of KMC-RBF, under different σ,
total UPDRS.
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Figure 5.3: RMSE for total UPDRS, γ = 25, C =
2−2, σ= 0.01.
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Figure 5.4: NMSE for total UPDRS, γ = 25, C =
2−2, σ= 0.01.

Figure 5.3 and Figure 5.4 give the comparison results of KMC-RBF, GPK-LSSVR
and WV-LSSVR basing on the ’total UPDRS’ data set. Although IRR-LSSVR is an
offline method, it is utilized to provide a baseline for the comparison results of the
abovementioned methods. The effects of different kernel number and different kernel
centers on the approximation power are demonstrated. As can be seen from Figure 5.3,
GPK-LSSVR enjoys the same level of approximation accuracy as both WV-LSSVR and
IRR-LSSVR, while it has a far more higher approximation accuracy than KMC-RBF. Due
to similarity and limitation of space, except for ’total UPDRS’, the comparison results for
all of the other benchmark data sets are tabulated in Table 5.2. In all of the following
numerical experiments, σ is selected as 0.01, and other parameters for IRR-LSSVR are
chosen the same as those in [179].

In Table 5.2, seTime denotes the consumed time for the kernel selection process,
trTime is the time for identifying the global model recursively, and dimension means
the dimensionality of the functional input vector. Additionally, teTime represents the
evaluation time using the test samples without model adaptation, while trNum and
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teNum stand for the number of training data points and testing data points separately.
Last but not the least, ]SV gives the number of support vectors. The numbers of the
support vectors are chosen the same as those used in [179].

According to Table 5.2, both WV-LSSVR and GPK-LSSVR enjoy a lower RMSE when
compared to the KMC-RBF method. This indicates that the kernels used in both WV-
LSSVR and GPK-LSSVR methods, which are determined using IRR-LSSVR, have higher
approximation power than the kernels used in KMC-RBF method, which are calculated
using the KMC algorithm. When compared with WV-LSSVR, GPK-LSSVR leads to more
or less the same global approximation accuracy.

Furthermore, the seTime of IRR-LSSVR is comparable to, even if it is not always
smaller than, that of the KMC.

5.4.2. RECURSIVE IDENTIFICATION RESULTS ON EXTENDED KERNEL BASIS

FUNCTIONS

Indicated by [178], multikernel SVMs have demonstrated superiority in enhancing the
approximation power, especially when the local data trend in one sub domain differs
greatly from that in another sub domain. In view of this, the effects of extending the
kernel basis functions are explored in a recursive model identification framework. To
illustrate the benefits of the extended kernel basis function, the GPK-LSSVR method is
compared with WV-LSSVR, and the results are tabulated in Table 5.3. This experiment
consists of two steps. At the first step, IRR-LSSVR was utilized to calculate the kernel
centers for both WV-LSSVR and GPK-LSSVR using the benchmark training data sets.
Subsequently, both of the preceding methods were employed to learn and evaluate the
testing benchmark data sets at the second step. Note that, the validation results shown in
this section are different from those shown in section 4.1. That is, updates of the model
parameters are involved in the test phase while we were deriving simulation results for
this section. Besides, it should be kept in mind that GPK-LSSVR and WV-LSSVR use the
same kernel centers as those of IRR-LSSVR, which warrants a fair comparison.
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Figure 5.5 and Figure 5.6 give the comparison results of IRR-RBF, GPK-LSSVR and
WV-LSSVR using ’total UPDRS’ data set. WV-LSSVR and GPK-LSSVR methods lead to
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a higher approximation accuracy than IRR-LSSVR, which is mainly because that the
test benchmark data are also involved in updating the model in the former methods.
In addition, as can be seen from Figure 5.5, GPK-LSSVR enjoys a higher level of
approximation accuracy than WV-LSSVR. This improvement should be ascribed to
the extension of the kernel basis function, since the extended kernel allows a fast
adaptation to higher degree of nonlinearity in local data trends and provides higher
degree of freedom on modeling parameters for optimization. Again, due to similarity
and limitation of space, except for ’total UPDRS’, the comparison results for all of the
other benchmark data sets are tabulated in Table 5.3. In all of the following numerical
experiments, kernel parameters are chosen the same as those used in IRR-LSSVR from
[179].

In Table 5.3, trTime gives the computational time of selecting kernel centers using
IRR-LSSVR, while teTime shows the total recursive identification time on the benchmark
testing data sets. Besides, the column marked with baseline RMSE shows the RMSE
values of the baseline method (i.e.IRR-LSSVR) when evaluating the testing data without
updating the model. As can be seen from the RMSE column, the approximation accuracy
of both WV-LSSVR and GPK-LSSVR methods is higher than that of the baseline method,
this is mainly because the testing data are also used to update the global model in
real-time. Furthermore, if we compare GPK-LSSVR with WV-LSSVR, it is found that the
former enjoys a higher approximation accuracy than the latter in recursive identification
using the aforementioned parametric kernel methods. In addition, GPK-LSSVR always
has a higher approximation accuracy than WV-LSSVR although the magnitude of the
improvement varies on different data sets. This is due to the fact that the Gaussian
process kernel provides higher degrees of freedom than the single Gaussian kernel for
the recursive parametric kernel method, which allows the kernel model to track the
different data trends among different sub domains. Finally, it should also be noted that
the computational time of GPK-LSSVR remains comparable to that of the WV-LSSVR,
which is consistent with the analysis result shown in Table 5.1.

5.5. CONCLUSIONS
In the field of SVMs, convincing results have been achieved on techniques of selecting
optimal support vectors for LSSVR. Specifically, the support vector selection technique
employed in IRR-LSSVR has shown its superiority to other methods. To achieve the same
level of modeling accuracy, IRR-LSSVR needs fewer support vectors than other LSSVR
methods.

In this chapter, we propose a general recursive parametric kernel method called WV-
LSSVR, which is suitable for identifying global models in real-time. In order to calculate
the centers for all kernels, the support vector selection technique from the field of SVMs
is used. Instead of directly solving a global optimization problem, WV-LSSVR obtains all
the kernel centers by using IRR-LSSVR, where support vectors are chosen in a recursive
way. Specifically, IRR-LSSVR is employed to analyze a pre-collected modeling data set so
as to acquire a suitable number of support vectors, which are later set to be the centers
of the kernels in WV-LSSVR.
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For the purpose of improving the approximation accuracy of the global model,
especially when considering different data trends among different subdomains, an
improved version of WV-LSSVR called GPK-LSSVR is developed by extending the kernel
basis functions. A kernel basis function recommended for Gaussian process regression
is adopted in GPK-LSSVR. The advantage of the Gaussian process kernel is that it helps
to simplify the implementation of the proposed recursive kernel method.

To demonstrate the effectiveness of WV-LSSVR and GPK-LSSVR, a set of numerical
experiments are carried out using benchmark data sets. At first, classical KMC-RBF is
implemented so as to provide a comparison baseline. Compared with KMC-RBF, the
kernel centers calculated using IRR-LSSVR lead to a higher approximation accuracy
in identifying the global model. Subsequently, GPK-LSSVR method, in which the
Gaussian kernels are extended with a linear term and a constant term, is compared
with WV-LSSVR in a recursive identification framework. In this numerical experiment,
the testing benchmark data are evaluated using WV-LSSVR and GPK-LSSVR while the
recursive identification is running. The results validate the hypothesis that a suitable
extension of the kernel basis function helps to enhance the approximation power
of the recursive parametric kernel method. In the future, techniques for choosing
representative modeling data in advance need to be investigated, because all kernel
centers are uniquely determined by pre-collected modeling data.
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In the work presented in Part I, three new model identification methods are devel-
oped for the purpose of providing an online global aerodynamic model for a model-
based adaptive flight control unit or a flight envelope protection unit, see Figure 2.1.
Although the ultimate goal of these studies is to achieve model-based reconfigurable
flight control and online flight envelope protection in case of aircraft structural or
actuator failures, the global aerodynamic model identification methods developed in
this thesis have not been incorporated into real designs of a flight envelope protection
approach or a model-based adaptive flight controller. Some relevant work was done
in [156] where the substitution based MVSB method developed in Chapter 3 is used to
design a model-based adaptive NDI controller for an F-16 aircraft, but this work is out of
the scope of this thesis and therefore is not included.

In Part II, this thesis will focus on developing a new and powerful fault-tolerant
flight controller. Model-based reconfigurable control methods have advantages and
disadvantages. One evident disadvantage is that it needs an accurate online aerody-
namic model, which is hard to achieve during a high maneuvering flight condition or
when damage occurs to an aircraft. As an alternative to model-based adaptive control
methods, the acceleration measurement-based nonlinear incremental control (AMINC)
methods are supposed to have the capability of tolerating large model uncertainties
thanks to the nature of an incremental and approximate control strategy. The sensor-
based backstepping developed in [46] has shown to be theoretically similar to the regular
incremental backstepping control approach in section 7.4.2. In Chapters 6 and 7,
two double-loop angular controller developed based on a sensor-based backstepping
control approach are presented.

In Chapter 8, a state-of-the-art compound structure related to simplex B-splines
is studied. This work is mainly aimed at providing more options for selecting model
structures when using multivariate simplex B-splines. The objective is to enhance the
modeling accuracy using less spline-structure related unknown parameters. Further-
more, this work is partially aimed at estimating a control effectiveness matrix for a
regular incremental backstepping or nonlinear dynamic inversion controller. The new
model structure called tensor-product simplex (TPS) B-splines is extended from a single-
dimension case into a more general multi-dimension case. In addition, TPS B-splines are
used to estimate a control effectiveness matrix to meet the need of a regular incremental
nonlinear dynamic inversion controller.





6
HYBRID SENSOR BASED

BACKSTEPPING CONTROL

APPROACH FOR FAULT-TOLERANT

CONTROL

Model-based adaptive flight control relies on an accurate onboard aerodynaic model.
The accuracy of the identified model can hardly be guaranteed in some flight conditions,
and model identification usually results in a high computational load in the onboard
computer. An acceleration measurements-based incremental control approach such
as a sensor based backstepping (SBB) control method does not require full real-time
model information, instead it uses angular acceleration measurements. Incremental
control is able to accomodate large model uncertainties due to its approximating
adjustment characteristic. An SBB control method is essentially a nonlinear control
approach of the incremental type, which usually shows high-gain characteristic. This
method is developed based on a singular perturbation theory and initially developed
for approximate dynamic inverion control of a nonlinear nonaffine-in-control system.
Unlike other incremental control approaches, the SBB method even does not require
real-time knowledge of the control effectiveness matrix. In this chapter, a sensor based
backstepping control approach is extended to design a flight controller for the fault-
tolerant control purpose. It is first applied to design a body angular rate controller for
a Boeing 747-200 aircraft. In this step, control surface redundancies are concerned
by exploiting the control allocation technique. Then, it is combined with an angular
controller, which is designed using a regular nonlinear dynamic inversion control
method. Finally, the double-loop angular controller is augmented into a full autopilot.
This autopilot is validated by means of flying the Reconfigurable Control for Vehicle
Emergency Relief (RECOVER) benchmark model. In addition, the flight performance
of the closed-loop system is also evaluated against the engine separation fault and the
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rudder runaway scenario.

Recently, an incremental type sensor based backstepping (SBB) control approach, based on
singular perturbation theory and Tikhonov’s theorem, has been proposed. This Lyapunov
function based method uses measurements of control variables and less model knowledge,
and it is not susceptible to the model uncertainty caused by fault scenarios. In this chapter,
the SBB method has been implemented on a fixed wing aircraft with its focus on handling
structural changes caused by damages. A new hybrid autopilot flight controller has been
developed for a Boeing 747-200 aircraft after combining nonlinear dynamic inversion
(NDI) with SBB control approach. Two benchmarks for fault tolerant flight control
(FTFC), named rudder runaway and engine separation, are employed to evaluate the
proposed method. The simulation results show that the proposed control approach leads
to a zero tracking-error performance in nominal condition and guarantees the stability of
the closed-loop system under failures as long as the reference commands are located in the
safe flight envelope.

6.1. INTRODUCTION
Research on previous flight accidents [131] and their corresponding fault tolerant flight
control (FTFC) strategies suggests that an aircraft, under many post-failure circum-
stances, can still achieve a certain level of flight performance with the remaining valid
control effectors. However, as a consequence of the structural/actuator failures, the
control authority or the safe flight envelope of the aircraft is inevitably limited.

Among all fault scenarios, the incidents categorized as ’loss of control in flight’ count
for as much as 17% of all aircraft accidents [116, 152], and have received most attention.
These kinds of failures can be avoided by taking suitable control strategies [131] as
suggested by the results of the Flight Mechanics Action Group 16 (FM-AG16), which is
a branch of the Group for Aeronautical Research and Technology in Europe (GARTEUR).
For example, an FTFC strategy, which involves a fault detection and isolation (FDI) block
and a reconfigurable control block, makes it possible to remove the post-failure aircraft
from danger [88, 131].

Much research has been done on FTFC in the past few decades. For the purpose of
providing a validation platform for modern FDI and FTFC strategies, 6 fault scenarios
have been embedded in the Reconfigurable Control for Vehicle Emergency Relief (RE-
COVER) benchmark model by the FM-AG 16 group including El Al flight 1862 (i.e.engine
separation) and rudder runaway[131].

As suggested by Smaili et al. [131], Alwi and Edwards et al. [6] and Lombaerts and
Smaili et al. [87], a powerful and advanced control approach is essential to increase
the operational performance of the post-failure aircraft. The chosen control algorithms
should have at least two of the following merits: it needs to be robust to the sudden
structural changes of the aircraft, not relying on an accurate and full aerodynamic model,
or it needs to contain a powerful model identification strategy by itself to provide all
of the accurate model information for the FDI and reconfigurable control units in real-
time.

A number of FDI methods, as well as reconfiguring control approaches, have been
proposed in the literature [6, 119, 135, 163, 173, 174]. More recently, the work of
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Lombaerts et al. [87], as a part of the GARTEUR FM-AG 16 program, has provided
practical validation results of a piloted adaptive nonlinear dynamic inversion (ANDI)
controller on the Simulation, Motion, and Navigation (SIMONA) research simulator
(SRS). The kernel of this work is a two-step online identification approach aiming at
getting the physical model. In this work, rudder runaway case, El Al flight 1862 fault
and stabilizer runaway scenarios were studied. The ANDI rate controller guarantees
the stability of the post-failure aircraft and enables the pilot to land the aircraft safely.
Thereafter, Alwi and Edwards et al.[6] validated another type of reconfigurable control
method on the SRS, which was designed using a model reference sliding mode control
method together with a constant control allocation matrix. In this work, only El Al
flight 1862 scenario was evaluated. The sliding mode control method, which relies on
relatively little information of the failure and the extent of the damage to the airframe,
has also proven to be able to guarantee the stability of the closed-loop system subject to
a certain class of model uncertainties (i.e.structural and actuator changes) caused by the
separation of the right wing engines.

Except for utilizing the potential of the remaining control surfaces, researchers have
also studied the feasibility of using the differential thrust in emergencies. In the case
of rudder or vertical tail failure, the differential thrust control is an effective way to
counteract the yawing moments induced by the stuck rudders and thus allow the aircraft
to track heading angle commands [48]. A propulsion-controlled aircraft (PCA) system
has been developed by the NASA Dryden Research Center, and was first evaluated on
a piloted B-720 simulation [50]. In this PCA system, differential thrust was used as
an emergency substitute for failed control surfaces [23] such as vertical tail loss with
no rudder authority or rudder runaway case [48, 158]. Further research on the PCA
system has been carried out by NASA Dryden and Ames Research Centers[158]. Many
simulations and actual flight tests of different flight platforms have been performed.

In this chapter, a sensor based backstepping (SBB) approach, which is capable of
coping with aerodynamic model changes induced by the failure scenarios, is extended
in its application and validated. In 2007, Hovakimyan et al.[59] proposed an advanced
controller for non-affine systems, which involves the singular perturbation theory (
singular perturbation theory (SPT)), Tikhonov’s Theorem and a backstepping strategy.
Thereafter, Falkena and van Oort et al. [45] extended its application and named it
as SBB control approach. The SBB method was utilized to design a controller for
the aircraft moment equations, and was also evaluated on an aerodynamic system
with uncertainties and measurement noises. Indicated by [45, 59], as a result of
the backstepping control technique, the system stability can be guaranteed by using
Lyapunov functions in this SBB approach. In addition, similar to the incremental NDI
flight control scheme, the SBB control approach does not need to adapt to uncertain
parameters or unknown model structure, which is essential to most model-based
conventional backstepping or NDI control approaches. The adaptation requirement is
circumvented by using measurements of state derivatives rather than the full knowledge
of the model, which is subject to structural or actuator changes.

The objective of this chapter is to present an alternative reconfigurable control
approach to the FTFC. This paper uses the SBB control approach proposed in [45], but
the focus is shifted to extending its application to designing a generic attitude controller
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for a large civil aircraft and handling structural faults for FTFC purposes. In this chapter,
the SBB control law is utilized to design a body angular rate controller, while NDI control
laws are adopted to design an outer loop angular controller. El Al flight 1862 scenario
and rudder runaway fault case, which are challenging benchmark failure scenarios
embedded in the RECOVER benchmark model, are utilized to validate the adaptation
ability of the inner rate control loop. In rudder runaway case, the differential thrust
of engines is introduced to generate necessary yawing moments in order to counteract
the aerodynamic yawing moment produced by the stuck rudders. To make the flight
simulation results more convincing, a regular flight path controller is also designed using
PID control laws.

In Section 6.2, the validation platform is introduced. Subsequently, the basic
body angular rate motion equations and the NDI control method are provided in
Section 6.3. Thereafter, the single-loop body angular rate controller based on the sensor
based backstepping (SBB) approach, as well as a hybrid NDI/SBB attitude hold/change
controller, is presented in Section 6.4. In Section 6.5, the simulation experiment results
and the corresponding analysis are provided. Finally, concluding remarks are given by
Section 6.6.

6.2. VALIDATION PLATFORM
The RECOVER benchmark model of Boeing 747-200 aircraft has been discussed in detail
in [131, 132]. This high-fidelity benchmark model was developed for validating the
advanced FTFC techniques, and it contains six benchmark fault scenarios:

1. stuck elevators (with/without turbulence)

2. stuck aileron (with/without turbulence)

3. stabilizer runaway (with/without turbulence)

4. rudder runaway (with/without turbulence)

5. loss of vertical tail

6. El Al failure case (dynamic/static method)

Among all of the failure scenarios, El Al flight 1862 scenario and rudder runaway fault
case are the top two challenging cases[87], because they greatly cut down the safe flight
envelope of the aircraft. Therefore, only these two fault scenarios will be applied to
validate the new sensor based control method proposed in this chapter.

6.2.1. RUDDER RUNAWAY AND ENGINE SEPARATION SCENARIOS
The losses and the remaining functional control surfaces in El Al flight 1862 are summa-
rized as follows.

1. Lost surfaces due to the loss of hydraulic systems: outboard trailing-edge flaps,
δaor, δsp1, δsp4-5, δsp8-9, δsp12, δeil, δeor.
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2. Functional but affected surfaces: horizontal stabilizer (half trim rate), δair, δail

(both at half rate), and the lower rudder δrl (lag).

3. Fully functional surfaces: inboard trailing-edge flaps, δsp2-3, the left outboard
elevator δeol, and the right inboard elevator δeir.

In the rudder runaway case, the rudder deflects to the left limit position, inducing
a yawing tendency of the aircraft to the left. Since the aerodynamic blow-down is
taken into account in the RECOVER simulation model, the rudder deflection limit of
this scenario varies with the airspeed. As a result, the maximum rudder deflection is
slightly below 15 deg for an airspeed of around 270 kt and close to 25 deg for an airspeed
approaching 165 kt.

6.2.2. OVERALL AUTOPILOT FLIGHT CONTROL SYSTEM

An autopilot has been designed for the Boeing 747-200 aircraft, which has four control
loops as shown in Figure 6.1(a). In the fourth layer of this overall control diagram, an
altitude controller is designed using the regular PID control law. In the third loop, a flight

path controller has been designed using the regular PID control scheme, where
[
χ,γ,V

]>

are the controlled variables.
[
φ,θ,β

]> are controlled variables of the angular control loop

in the second layer and
[
p, q,r

]> are the controlled variables of the first rate control loop.
The airspeed is controlled by the collective engine pressure ratio (EPR) Pc . And Pd is the
differential EPR used to actively generate a yawing moment. The spoilers are employed
to assist the ailerons in order to enhance the control authority of the aircraft in the roll
channel.

Assuming that the airspeed is able to be governed independently by regulating the
engine thrust, the remaining most crucial thing in designing an autopilot flight path
controller becomes designing a powerful and reliable angular controller (including rate
controller). For the nominal case, i.e., fault-free, and the engine separation failure, a
hybrid NDI/SBB angular controller has been designed using regular functional control
surfaces without introducing the differential thrust. Compared with the incremental
NDI, the advantage of the SBB rate controller is that it does not require the control
effectiveness matrix, whose identification values are not adequately trustable during
the transient period when sudden structural changes occur to the aircraft. The control
structure is given in Figure 6.1(b) with u = [δa ,δe ,δr ]> the control input vector.

To handle the rudder runaway fault, the differential thrust has been introduced to
counteract the yawing moment induced by the rudder, and a hybrid NDI/SBB attitude
controller has been designed. The structure of this controller is depicted in Figure 6.1(c),
where u = [δa ,δe ,Pd ]>. Note that, the fault type is assumed to be detectable in the
rudder runaway fault scenario.

To validate the new flight controller, a simulated flight test benchmark was designed,
see Figure 6.2. In this figure, ‘F’ denotes failure, and 4 indicates an incremental quantity.
The simulated flight test is a quite similar flight task to the trajectory tracking assignment
carried out by Alwi and Edwards et al. [6], which enables the results in this chapter to be
compared to the results presented in [6, 87]. It should be noted that the altitude tracking
control task would be switched into flight path angle command tracking mode at the
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Figure 6.1: Fault-tolerant controller configuration.

650th second in order to mimic a landing process with fixed gliding slope, i.e., γ=−3deg.

0 50 280 650500400200 800

=90
o

he=200mF he=-200m = -3 deg

time[s]

=180 deg

Figure 6.2: Simulated flight test benchmark.

All simulated flight tests in this chapter are started from the same trim point with
VTAS = 133.8m/s, altitude=600m and δih =−0.65deg
.
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6.3. ATTITUDE CONTROLLER AND PRELIMINARIES ON RATE

CONTROL

6.3.1. ATTITUDE CONTROLLER USING NDI
In order to ensure the angular control performance at a high level, the NDI control law
from [87] is utilized to design an attitude controller for Boeing 747-200 aircraft. The
reference commands for the inner rate loop are derived from the angular control loop
as follows:




pr
qr
rr


=




1 sinφ tanθ cosφ tanθ
0 cosφ −sinφ
wp

u2+w2
0 −up

u2+w2




−1 




νφ
νθ
νβ


−




0
0

Aβ





 (6.1)

with
Aβ = 1√

u2 +w2

[−uv

V 2

(
Ax − g sinθ

)+
(
1− v

V 2

)(
Ay + g sinφcosθ

)

− v w

V 2

(
Az + g cosφcosθ

)]

where Ax , Ay , Az are the acceleration along the body axes without the gravitational

effects, and
[
νφ ,νθ ,νβ

]>
is the virtual angular command vector. The development of

Aβ is presented in the Appendix Section E. For further details about attitude controller
design, the reader can refer to [86].

6.3.2. RATE CONTROL BASIS AND CONTROL ALLOCATION

In order to introduce the control allocation more clearly, it is assumed, in this section,
that an NDI rate controller has been designed for the aircraft according to [87]. The
control inputs can be solved using the following formulation:

MCA ·u =




I
1
2ρV 2S





νp
νq
νr


+ I−1




p
q
r


×


I




p
q
r







−




bClstates
c̄Cmstates

bCnstates






 (6.2)

with

MC A =



b 0 0
0 c̄ 0
0 0 b


ME (6.3)

where
[
νp νq νr

]>
are the virtual rate commands, MCA is the control allocation matrix,

ME is the control effectiveness matrix, u is the vector consisting of all the control
inputs and Clstates ,Cmstates ,Cnstates are the non-dimensional moments contributed by all
of the current states. In the NDI rate controller, the unknown matrix ME and the non-
dimensional moments induced by the current states, i.e., Clstates ,Cmstates ,Cnstates , need to
be identified in real-time [87]. One representative aerodynamic model identification
method is the two-step identification method [108].

The Boeing 747-200 aircraft has 30 independent control inputs including 25 de-
flectable control surfaces, four engine pressure ratios (EPRs) and one flight gear (mode)
input [131]. To simplify the control allocation logic, some of the aircraft inputs can
be combined and the following 19 equivalent control variables can be used instead
[5, 6, 158]:

u = [
δa ,δsp,δe ,δih,δr ,Pt ,Pd

]> (6.4)
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with
δa = [

δair,δail,δaor,δaol
]

δsp = [
(
δsp1 +δsp4

)
,
(
δsp2 +δsp3

)
,
(
δsp10 +δsp11

)
,
(
δsp9 +δsp12

)
]

δe = [
δeir,δeil,δeor,δeol

]

δr = [
δru,δrl

]

Pt =
[
Pt1 ,Pt2 ,Pt3 ,Pt4

]

Pd = 1

4

[(
Pt1 −Pt4

)+ (
Pt2 −Pt3

)]

(6.5)

with Pc the collective engine pressure ratio (EPR), Pd the differential EPR and Pt the
vector consisting of four total EPRs. They are defined as follows:

Pc = mean (Pt )

Pt1 = Pt2 = Pc +Pd

Pt3 = Pt4 = Pc −Pd

(6.6)

Supposing that the matrix ME in Eq. 6.2 has been identified and is currently available,
an optimizer can be designed to solve the control allocation problem described by
Eq. 6.2. However, the overall control effectiveness matrix and thus the control allocation
operation may become unreliable during the transient period when structural model
changes happen suddenly. In order to enhance the reliability of the control allocation
operation in implementing the new control method, the ME matrix used in this chapter
is simplified in further:

ME =



C̃lδa 0 C̃lδr

0 C̃mδe 0
C̃nδa 0 C̃nδr


 (6.7)

with
C̃lδa =−Clδair +Clδail −Clδaor +Clδaol−

Clδsp1 −·· ·−Clδsp4 +Clδsp9 +·· ·+Clδsp12

C̃nδa =−Cnδai r +Cnδai l
−Cnδaor +Cnδaol

−
Cnδsp1 −·· ·−Cnδsp4 +Cnδsp9 +·· ·+Cnδsp12

C̃mδe =Cmδeir +Cmδeil +Cmδeor +Cmδeol

C̃lδr =Clδru +Clδrl

C̃nδr =Cnδru +Cnδrl

(6.8)

Note that, Eq. 6.8 indicates that the control surfaces belonging to the same category
would get equally distributed deflection commands in the control allocation process.

6.4. THE SBB RATE CONTROLLER
In 2002, a singular perturbation theory based nonlinear control method was presented
by Khalil et al. [67]. More details on approximate dynamic inversion are included in
Appendix H. Then this control law was developed further by Hovakimyan et al. [59] to
control a non-affine nonlinear system. In 2011, Falkena et al. [45] combined the singular
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perturbation theory with the backstepping technique, and developed an incremental
type nonlinear backstepping control approach called the sensor based backstepping
(SBB) approach. This Lyapunov function based control method can both guarantee the
stability of the closed-loop system and avoid the requirement of full aerodynamic model
information [44, 45].

In approximate dynamic inversion, the controller dynamics introduced by an ap-
proximation process, see Appendix H, can be viewed as a subsystem cascaded to the
body angular rate dynamic system. This allows us to use the singular perturbation theory
based SBB control approach to design a body angular rate controller for the Boeing
747-200 aircraft model. The structure of the rate controller is shown in the first level
of Figure 6.1(a).

6.4.1. SENSOR BASED BACKSTEPPING RATE CONTROL
The following expression holds for the rotational motion of equations for body angular
rates:
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(6.9)

Rewrite Eq. 6.9, a simplified formulation of the aircraft motion equations is derived:

ẋ = f (x)+g ·u (6.10)

with

x = [
p q r

]>
(6.11a)

yr = [
pr qr rr

]>
(6.11b)

e = x−yr (6.11c)

g = 1

2
ρV 2S · I−1MCA (6.11d)

f (x) =−I−1
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In order to design a single-loop body rate backstepping controller, the control
Lyapunov function V is chosen as follows:

V (e) = 1

2
e>e+ 1

2
kλ>λ

V̇ (e) = e>ė+kλ>e
(6.12)

with e = e (t ), k a diagonal matrix of controller gains, and λ = ∫ t
0 ed t an integral term

introduced to remove the tracking errors caused by the internal dynamics. Note that
λ̇= e holds.

Using Eq. 6.11c, the following expression can be derived for the desired state of the
control system:

e = xdes −yr (6.13)
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ė = ẋdes − ẏr (6.14)

Substituting Eq. 6.14 into Eq. 6.12 results in:

V̇ (e) = e>ė+kλ>e = e>
(
ẋdes − ẏr +kλ

)
(6.15)

To stabilize this system, ẋdes can be selected as:

ẋdes =−ce+ ẏr −kλ

=−c
(
x−yr

)+ ẏr −kλ
(6.16)

with c a positive diagonal matrix to stabilize the system. This yields the desired system:

ė =−c
(
x−yr

)
(6.17)

The following notation is defined for later usage:

ured = MCA ·u (6.18)

with ured a three dimensional vector denoting the equivalent inputs. After substituting
Eq. 6.18 into Eq. 6.11d, the SBB controller for Eq. 6.10 can be derived according to [45,
59, 67]:

εu̇red =−sg n

(
∂ẋ

∂ured

)
[ẋ− ẋdes ]

=−sg n

(
∂ẋ

∂ured

)[
ẋ+c

(
x−yr

)− ẏr +kλ
] (6.19)

where ε is a tuning parameter with a small positive value, i.e., 0<ε¿ 1. From Eq. 6.9, the
following formulation can be obtained:

− sg n

(
∂ẋ

∂ured

)
=−sg n

(
1

2
ρV 2S · I−1

)
(6.20)

Substituting Eq. 6.20 into Eq. 6.19, the control inputs are computed as follows:

u̇red =−1

ε
sg n

(
1

2
ρV 2S · I−1

)[
ẋ+c

(
x−yr

)− ẏr +kλ
]

(6.21)

Using integration, the equivalent control input ur ed can be calculated as follows:

uredk = uredk−1 +
∫ kT

(k−1)T
u̇red ·d t (6.22)

According to Eq. 6.18, the control input u can be solved using a control allocation
algorithm if MCA is available.

Note that, the objective of this chapter is to present a flight controller which does not
require an online aerodynamic model. However, Eq. 6.18 is still dependent on the partial
aerodynamic model, i.e., a control effectiveness matrix MCA) identified in real-time. In
order to remove this online model dependency, a fixed MCA matrix is usually used (see.
[6]). The drawback of doing so is that the optimality of the control allocation can not
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be guaranteed since it is directly determined by the accurate knowledge of MCA. In this
chapter, a fixed MCA is assumed to be available at a trim point.

To simplify the implementation of the controller, the requirement of the control
allocation is removed from the design procedures. Remember that the control surfaces
have been categorized into 3 groups (see. Eq. 6.8). In each group, a control surface
is chosen as the representative control input. Consequently, a representative control
input vector urep = [

δ1rep ,δ2rep ,δ3rep

]
can be derived with δ1rep , δ2rep , δ3rep a representative

control surface deflection selected from each category respectively. For example, the
representatives can be selected as follows: δ1rep = δail, δ2rep = δeil and δ3rep = δru

(or δ3rep = Pd ). The control allocation matrix MCArep can be calculated from the
aforementioned fixed matrix MCA using Eq. 6.7. This means there exists the following
assumption at this place:

MCArep ·urep ≈ MCA ·u (6.23)

After substituting Eq. 6.23 into Eq. 6.11d, the SBB controller can be redesigned for the
system Eq. 6.10. Consequently, the term ∂ẋ

∂ured
in Eq. 6.19 and Eq. 6.20 should be replaced

by ∂ẋ
∂urep

, and Eq. 6.20 becomes:

− sg n

(
∂ẋ

∂urep

)
=−sg n

(
1

2
ρV 2S · I−1MCArep

)
(6.24)

While, Eq. 6.21 becomes:

u̇rep =−1

ε
sg n

(
1

2
ρV 2S · I−1MCArep

)[
ẋ+c

(
x−yr

)− ẏr +kλ
]

(6.25)

Subsequently, urep can be calculated using Eq. 6.22. In calculating sg n
( 1

2ρV 2S · I−1MCArep

)
,

the same method as that used in [59] is adopted. That is, only the sign of the diagonal
elements of the matrix (in the bracket) are used in designing the body angular rate
controller.

The configuration of the SBB rate controller is summarized in Figure 6.3. ‘TA’ is the

 g · u

f(x)

yr

x

-e

u=udes(t- )
u

+

TA

 
udes desu 1

- sgn(g) (e+ce+k )

Backstepping control law

Figure 6.3: flow chart of the SBB inner-loop controller.

acronym of tuning algorithm (TA), and τ represents the time delay between the achieved
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control input u and the controller output udes, which is caused by the dynamics,
saturation or failures of the actuators. It also should be noted that the SBB method
contains a tuning parameter called time-scale constant parameter denoted by ε, which
helps to simplify the tuning process of other control gains.

6.4.2. COMMAND FILTER AND INTEGRATION SATURATION

A command filter is designed to regulate the given reference commands in order
to enhance handling qualities of the closed-loop aircraft system. By regulating the
reference command into an achievable command, the command filter can play a crucial
role in preventing the aircraft from leaving the safe flight envelope.

The windup effect associated with the integrator needs to be removed. The satura-
tion effect may become even severe when some structural failures happen to the control
surfaces or there exists a big time-delay on the control effector, e.g., the propulsion
system. In this chapter, a tuning algorithm (TA) block was designed to prevent the
closed-loop system from integral windup. It uses the discrepancy information between
the achieved control inputs u and the integrator outputs udes. As shown in Figure 6.3, the
TA block will compare udes with u and the saturated position limits. If the actuators are
saturated or the changing rate of u is far more slower than udes, the integration operation,
which intends to increase the difference (determined by the sign of u̇des ), will be skipped
in the current time instant.

6.4.3. SLIDING MODE DIFFERENTIATION

In [78], Levant et al. designed a sliding mode diffentiator. The sliding mode method
guarantees a precise differentiation under measurement noises. In our work, we firstly
get the body angular rates from an extended Kalman filter. Then we use a sliding mode
differentiator to calculate the body angular accelerations ṗ, q̇ , ṙ for Eq. 6.19.

6.5. RESULTS AND ANALYSIS
Up to now, a hybrid NDI/SBB angular control approach has been developed in Sec-
tion 6.3 and Section 6.4. In order to allow the aircraft to track the flight path commands
(χr , γr and VTASr), the airspeed controller and the flight path angle controller are
designed to complete the autopilot designing. Cooperative control of flight path angle
and airspeed can be achieved using the total energy control principles (TECS) [168] or
the model-based dynamic inversion method [84], which takes into account couplings of
flight dynamics. Both of these two methods have the potential to enhance the airspeed
and the flight path control performance. However, the focus of this chapter is limited to
validating the proposed hybrid NDI/SBB angular controller, which does not require any
online model information. In this chapter, a flight path controller is designed using the
regular PID control laws, where γ, χ are regulated independently (see. Figure 6.1(a)). In
addition, an independent airspeed controller is designed using PID, where Pc are chosen
as control inputs. It should be noted that the flight path control-loop does not require
the adaptation for changes in aerodynamic forces, e.g., lift, drag and side-force.

The overall flight path controller will be validated using the aerodynamic model
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Table 6.1: Control input units and maximum values

Control Unit Min Max Full hydraulic rate Half hydraulic rate
δai deg -20 20 +40/-45 deg /s +27/-35 deg /s
δao deg -25 15 +45/-55 deg /s +22/-45 deg /s
δe deg -23 17 ±37 deg /s +30/-26 deg /s
δr deg -25 25 ±50 deg /s ±40 deg /s
δih deg -12 3 ±0.2-±0.5 deg /s ±0.1-±0.25deg/s
δsp1−4,δsp9−12 deg 0 45 +75 deg /s 0
δsp5 δsp8 deg 0 20 +75 deg /s 0
δsp6 δsp7 deg 0 20 +25 deg /s 0
Pt1−4 - 0 1.62 ± 0.2 s−1 ± 0.2 s−1

Table 6.2: Command filter parameters and command ranges

Commands Unit Min Max ωn ζ

p rad -0.2 0.2 6 rad/s 1
q rad -0.2 0.2 3 rad/s 1
r rad -0.1 0.1 3 rad/s 1
φ deg -20 20 2.5 rad/s 1
θ deg -12 12 2.5 rad/s 1
β deg -20 20 2.5 rad/s 1

of Boeing 747-200 aircraft. It will be firstly evaluated for the nominal case and then
evaluated using rudder runaway and right engine separation failures introduced in
Section 6.2. Eq. 6.8 and Eq. 6.6 are implemented to realize the control allocation, i.e.,
equally distributed.

6.5.1. COMMAND FILTER SETUP AND ACTUATOR WORKING RANGE
The actuators of the control surfaces are modeled with saturation limits and deflection
rate limits (see Table 6.1). In this chapter, a command filter developed in [47] would
be utilized. This filter has an adjustable natural frequency ωn and damping ratio ζ.
The scheduling limits on the body angular rate commands and the attitude angular
commands are listed in Table 6.2.

6.5.2. OUTER LOOP CONTROLLER PARAMETERS
As mentioned in Sec.6.2, a PID controller has been designed to control VTAS, χ, γ and
he. The PID parameters of these outer loop controller are listed in Table 6.3. It should
be noted that a sine function with the following formulation has been employed in
designing the altitude controller:

Table 6.3: PI parameters of the outer loop PID controllers

Channel χ←φ γ← θ he ← γ VTAS ← Pc

Proportional gain 2 0.7 0.139 0.02
Integral gain 0.1 0.3 0 0.0025
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Table 6.4: Hybrid NDI/SBB attitude controller parameters, ε= 0.15, nominal/engine separation

Channel proportion integration
Angular control [1,0.5,1] [0,0,0]
Body rate control [0.1,0.2,0.1] [0,0,0]

γr = arcsin

(
ḣecmd

VTAS

)
(6.26)

where ḣecmd denotes the virtual (i.e.commanded) derivative of the altitude, i.e., the
output of the altitude PID controller.

6.5.3. VALIDATION RESULTS OF THE NOMINAL AIRCRAFT

The proposed hybrid NDI/SBB attitude controller, see Figure 6.1(b), is tested by flying
the Boeing 747-200 aircraft in the nominal state, i.e., fault-free case. The numerical
simulation results are plotted in Figs. 6.4-6.15. The idea of a fault-free test of the
controller is to show the capability of the proposed controller. The chosen values of the
controller parameters are listed in Table 6.4.

 

 

Pt1,Pt2,Pt3,Pt4

en
gi

n
e

p
re

ss
u

re
ra

ti
o

[1
00

%
]

time [s]
0 100 200 300 400 500 600 700 800

0

0.4

0.8

1.2

1.6

Figure 6.4: Engine Pressure Ratios, nominal.
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Figure 6.5: Angular rates, nominal.

Figs. 6.4-6.15 give the validation results of the controller under the nominal flight
case. The designed control command sequences, see Figure 6.2, were fed to the
autopilot. Figure 6.4 shows the changing history of the EPRs, and the EPRs are regulated
to keep the true airspeed between 142 m/s and 122 m/s throughout the simulation, see
Figure 6.6.

The body angular rate changes are illustrated in Figure 6.5, and the tracking perfor-
mance of the angular commands is depicted in Figs. 6.7-6.9. As can be seen from Figs.
6.7-6.9, the inner component, i.e., attitude controller, of the autopilot controller enables
the aircraft to closely track the attitude commands.

Figs. 6.10-6.12 show the commanded and actual deflections of aileron, elevator
and rudder respectively. Specifically, Figure 6.10 shows the commanded and actual
aileron deflections. As can be seen from them, the actual control surface deflections
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Figure 6.7: Roll angle, nominal.
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Figure 6.8: Pitch angle, nominal.
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Figure 6.9: Angle of sideslip, nominal.

highly match the commanded deflections, which also means there exists no integration
saturation.

Finally, the tracking performance in the flight path control level are illustrated in Figs.
6.13-6.15. The tracking commands of he, γ and χ are well followed. In all simulation
experiments of this chapter, the aircraft is in the altitude control mode before the 650th

second. And the altitude control loop is switched into the flight path angle control mode
at the 650th second. The three-dimensional trajectory is shown in Figure 6.16.

6.5.4. VALIDATION RESULTS USING FAULT SCENARIOS
In the first simulation experiment, the hybrid attitude controller shown in Figure 6.1(b)
is evaluated. The controller parameters have already been listed in Table 6.4.

The simulated flight test results of the right engine separation scenario are plotted
in Figs. 6.17-6.28. The engine separation failure is triggered at the 200th second, see
Figure 6.17.

Figure 6.17 shows the EPRs of the remaining working engines (engine ]1 and engine
]2). The EPRs are adjusted to keep VTAS around 140 m/s, see Figure 6.19, and try to slow
down the airspeed before landing. It should be noted that the true airspeed shows a
decrease fight right after 280th second due to the inadequate supply of power during the
climbing. The changing histories of the actual values of p, q , and r are illustrated in
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Figure 6.10: Commanded and actual aileron
deflections, nominal.
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Figure 6.11: Commanded and actual elevator
deflections, nominal.
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Figure 6.12: Commanded and actual rudder
deflections, nominal.
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Figure 6.13: Altitude, nominal.

Figure 6.18, and they show stability character even under the engine separation failure.
During the coordinate turning, see Fig. 6.20, from 50s to 120s, p and r are regulated
cooperatively. While, they are all kept around zero during level straight flight.

The attitude command tracking performance of the proposed controller is depicted
in Figs. 6.20-6.22. The figures clearly show that φ and θ have a zero tracking error , β
will keep smaller than 1.8 deg. The tracking error of β decreases slowly, this is because
the remaining control authority of the rudders are quite limited. This is due to the fact
that a relatively large part of the working range of the rudders has been occupied by the
requirement of compensating the yawing moment produced by the right wing engine
separation as can be seen in Figure 6.25.

The changing history of the commanded and actual (under the physical limitations)
control surface deflections are depicted by Figs. 6.23-6.25. The control surface deflec-
tions of aileron, elevator and rudder are plotted separately. As can be seen from Figs.
6.23-6.24, δeil δeor and δaor are not active/responding under this failure scenario, which
is consistent with the description of the engine separation scenario given by Section 6.2.
In Figure 6.25, there exists large difference between the commanded and the actual
rudder deflection after the 200th second, which indicates that the rudder often, e.g.,
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Figure 6.14: Flight path angle, nominal.
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Figure 6.16: Three-dimensional trajectory, nominal.

200th 400th seconds, needs to work in a saturated state.

Figs. 6.26-6.28 provide the records of the command tracking performance in the
flight path level. The heading angle command as well as the altitude command has been
well tracked. It should be mentioned that the aircraft is under the altitude control mode
before the 650th second. Therefore, the flight path angle controller is acting as an inner-
loop controller, which is thus not necessary to remove the transient tracking errors.
As indicated by [6, 87], the climbing capability would be greatly reduced in the engine
separation scenario. That is, a deep climbing becomes not achievable without airspeed
loss even when the engine thrust is saturated. In our simulation, the aircraft climbs from
H = 600m to H = 800m in about 50 seconds. The airspeed loss is about 10m/s, which
is the price paid for the climbing. Finally, the three-dimensional trajectory is shown in
Figure 6.29, where the curve for the nominal case is borrowed from Figure 6.16.

The hybrid NDI/SBB attitude controller is validated using the rudder runaway
scenario. As shown in Figure 6.1(c), differential thrust is utilized to compensate the



6

102
6. HYBRID SENSOR BASED BACKSTEPPING CONTROL APPROACH FOR FAULT-TOLERANT

CONTROL

 

 

Pt1,Pt2

F
en

gi
n

e
p

re
ss

u
re

ra
ti

o
[1

00
%

]

time [s]
0 100 200 300 400 500 600 700 800

0.6

0.8

1

1.2

1.4

1.6

Figure 6.17: Engine Pressure Ratios, engine
separation.
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Figure 6.18: Angular rates, engine separation.
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Figure 6.19: True airspeed, engine separation.
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Figure 6.20: Roll angle, engine separation.

yawing moment induced by the failure. The controller parameters are tabulated in
Table 6.5. The rudder runaway test of the hybrid controller is also performed for showing
the adaptation ability of the proposed controller when the aircraft model changes
suddenly.

The validation results of the hybrid NDI/SBB attitude controller in the rudder
runaway case are plotted in Figs.6.30-6.43. The changes of the total EPRs (Pt ) are shown
in Figure 6.30, and all of them reach saturation limits just after the rudder runaway
failure occurs. The true airspeed is controlled by the collective thrust Pc , and its
changing history is plotted in Figure 6.32. VTAS ranges from 135 m/s to 160 m/s. This
is made possible by limiting the upper bound of the total thrust Pt when the rudder is
stuck to the left limit. The differential thrust Pd is regulated to actively generate yawing
moment once needed by the flight control mission.

Table 6.5: Hybrid NDI/SBB attitude controller parameters, ε= 0.35, rudder runaway

Chanel proportion integration
Angular control [1,1,1] [0.12,0.12,0.02]
Body rate control [2,1,0.1] [0,0,0]
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Figure 6.21: Pitch airspeed, engine separation.
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Figure 6.22: Angle of sideslip, engine separation.
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Figure 6.23: Commanded and actual aileron
deflections, engine separation.
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Figure 6.24: Commanded and actual elevator
deflections, engine separation.

As shown in Figure 6.31, the rudder runaway failure occurs at the 200th second, and
it produces a big influence on the body angular rates in a short transient period. The
yawing rate r shows a spike around the 200th second. This is caused by two factors: the
influence from the stuck rudder and the control reaction. Specifically, it is the rudder
failure that makes the yawing rate r reaches −0.1 rad/s. While, it is the control reaction
(using the differential thrust) as well as the side-force counteraction effect induced by
the instantaneous nonzero β that makes r approach +0.05 rad/s.

The angular command tracking performance of the hybrid controller are illustrated
in Figs. 6.33-6.35. φ and θ have nearly a zero tracking error, and β keeps smaller than
9.2 deg and it varies with time. The deterioration in the tracking performance of β is
caused by the rudder runaway failure scenario, which nearly uses up all the control
authority of the differential thrust. The non-zero tracking errors of β is comparable to
those presented in [87] under the same fault scenario.

Figs. 6.36-6.37 provide the changing history of the commanded and actual (limited
by the actuator dynamics and failures) control surface deflections for the roll and pitch
channel respectively. In Figure 6.38, the actual control surface deflections of the stuck
rudders are plotted. It should be noted that the deflection angles of the rudders vary
although they are stuck to the left limit after the 200th second, see Figure 6.38. The
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Figure 6.25: Commanded and actual rudder
deflections, engine separation.
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Figure 6.26: Altitude, engine separation.
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Figure 6.27: Flight path angle, engine separation.
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Figure 6.28: Heading angle, engine separation.
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Figure 6.29: Three-dimensional trajectory, engine separation.
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Figure 6.30: Engine Pressure Ratios, rudder
runaway.
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Figure 6.31: Angular rates, rudder runaway.
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Figure 6.32: True airspeed, rudder runaway.
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Figure 6.33: Roll angle, rudder runaway.

changes in deflection angles of rudders are caused by the fact that the aerodynamic
blow-down has been taken into account by the RECOVER model. This has been
confirmed by the fact that a correlation can be observed between (higher) airspeed and
(lower) deflection angle, see [87].

Figs. 6.39-6.41 show that he, γ and χ are closely tracking their own reference
command respectively. It also should be noted that the autopilot controller is switched
from altitude controller into flight path hold controller at the 650th second. That is, the
aircraft is controlled in the altitude control mode during the first 650 seconds. Therefore,
it is reasonable that the tracking error of γ appears to be relatively large in a few transient
periods.

The changing history of the deflection angles of spoilers are depicted in Figure 6.42.
The spoiler is assisting the ailerons to realize the control in the roll channel. Finally, the
three-dimensional trajectory is shown in Figure 6.43. Again, the curve for the nominal
case is borrowed from Figure 6.16. It can be observed from Figure 6.43 that a wider turn
is needed by the post-failure aircraft. Though the roll angle is still kept around 20 deg,
the sideslip angle is relatively big, which explains why the turn becomes wider.
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Figure 6.34: Pitch angle, rudder runaway.
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Figure 6.35: Angle of sideslip, rudder runaway.
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Figure 6.36: Commanded and actual aileron
deflections, rudder runaway.
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Figure 6.37: Commanded and actual elevator
deflections, rudder runaway.

6.6. CONCLUSIONS
This paper has presented a new autopilot flight controller with four levels of control
loops. The core of the autopilot flight controller is a hybrid NDI/SBB attitude control
unit, which does not require real-time full aircraft model information. The controller
is applied to the RECOVER model of the Boeing 747-200 aircraft, and evaluated using
rudder runaway and EL AL 1862 benchmark fault scenarios developed by the GARTEUR
FM-AG 16. The numerical simulation results show that the proposed hybrid NDI/SBB
attitude controller can keep the safety of the aircraft even when the aforementioned
failures occur, and can ensure a zero tracking error performance for roll angle and pitch
angle commands as long as the aircraft is still controllable with the remaining valid
control surfaces.

This paper uses the singular perturbation theory based sensor based backstepping
(SBB) control approach, and extends its application to the body angular rate control of
the Boeing 747-200 aircraft with special concern on sudden model changes. In addition,
this SBB rate controller is combined with the NDI attitude controller and the PID flight
path controller, and an autopilot flight controller has been synthesized. In the controller
design, the control allocation problem is simplified by bounding a number of the control
surfaces into a group. In addition, a second order command filter is adopted to enhance
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Figure 6.38: Actual rudder deflections, rudder
runaway.
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Figure 6.39: Altitude, rudder runaway.
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Figure 6.40: Flight path angle, rudder runaway.
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Figure 6.41: Heading angle, rudder runaway.
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Figure 6.42: Actual spoiler deflections, rudder runaway.

the handling quality. Compared with the classic adaptive nonlinear dynamic inversion
(ANDI) control approach or adaptive backstepping control law, the hybrid NDI/SBB
attitude control setup needs less online model information. However, for the SBB body
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Figure 6.43: Three-dimensional trajectory, rudder runaway.

angular rate control approach, more research is needed into investigating the effects
of time-delay in the actuator dynamics, as well as the measurement noise, before the
method can be applied in real-world applications. For example, the influence from the
engine response, which has a significant time-delay in real life (especially in low thrust
levels), needs to be further investigated.
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In Chapter 6, a hybrid double-loop angular controller was developed. Its inner-loop
controller, i.e., the body angular rate controller, was designed using a sensor based
backstepping control approach; its outer-loop controller, i.e., angular controller, was
designed using a regular nonlinear dynamic inversion method. A potential drawback
of this hybrid control structure is that two control loops are treated separately and
the stability of the overall close-loop system is hard to prove. The Lyapunov function
based recursive backstepping technique enables an overall controller to be designed
loop by loop while guaranteeing the stability of the overall system in the Lyapunov
sense. Therefore, we design a double-loop angular controller in this chapter using
a recursive backstepping technique instead of a hybrid control structure. Similar to
Chapter 6, the control power and adaptation ability of the new controller are validated
using the RECOVER model against the engine separation failure and rudder runaway
fault scenario.

The sensor based backstepping (SBB) control law, based on singular perturbation theory
and Tikhonov’s theory, is a novel incremental type high gain control approach. This
Lyapunov function based method is not susceptible to model uncertainty since it uses
measurements instead of onboard model variables. Considering these merits, we extend
the SBB method to handle sudden structural changes in the fault tolerant flight control
of a fixed wing aircraft. A new double-loop joint SBB attitude controller has been
developed for a Boeing 747-200 aircraft using the backstepping technique. Compared with
a double-loop nonlinear dynamic inversion angular control approach, the double-loop
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SBB attitude control setup enables the verification of the system stability and allows more
interaction between the angular rate loop and the angular loop. The benchmark rudder
runaway and engine separation failure scenarios are employed to evaluate the proposed
method. The simulation results show that the proposed joint SBB attitude control method
can lead to a zero tracking error performance in the nominal condition and can lead to
smaller sideslip angles than that led by the hybrid SBB approach when the aircraft is under
failures.

7.1. INTRODUCTION
Under many post-failure circumstances, an aircraft can still achieve a certain level of
flight performance with the remaining valid control effectors [88, 131]. However, as a
consequence of the structural/actuator failures, the remaining control authority and the
safe flight envelope of the aircraft is inevitably reduced.

Research on previous flight accidents [6, 131] shows that a suitable fault tolerant
flight control (FTFC) approach is crucial to keep the stability and safety of the aircraft
when structural failures or actuator failures occur. As the kernel of the FTFC system,
a reconfigurable flight control algorithm needs to be powerful enough to tolerate the
sudden changes occurring to an aircraft [6, 87, 131]. Possible candidates include
robust control methods, e.g., sliding mode approach, model based adaptive nonlinear
control approaches, e.g., adaptive nonlinear dynamic inversion and modular adaptive
backstepping, and model-free nonlinear control methods, e.g., measurement based
incremental nonlinear dynamic inversion and incremental backstepping [6, 119, 135,
163, 173, 174].

Recently, one promising fault tolerant control approach called adaptive nonlinear
dynamic inversion (ANDI) was presented by Lombaerts et al. [87]. This method was
applied to design a flight control system for the Reconfigurable Control for Vehicle
Emergency Relief (RECOVER) benchmark model. To enable the close-loop control
system to adapt to the post-failure state, a two-step online identification approach was
employed to identify a physical aerodynamic model in real-time. However, the online
model could become unreliable during the transient period after other more severe
failures occur. In [87], Lombaerts et al. validated this ANDI controller in a piloted
simulation on the Simulation, Motion, and Navigation (SIMONA) research simulator
(SRS). Specifically, the rudder runaway case, the El Al flight 1862 fault, i.e., engine
separation, and the stabilizer runaway scenarios were employed to evaluate the ANDI
controller. The ANDI rate controller was proven to be able to enhance the stability of the
post-failure aircraft and alleviate the high workload of the pilot.

Thereafter, Alwi and Edwards et al. [6] developed another promising reconfigurable
flight controller using a model reference sliding mode control method with the assis-
tance of a constant control allocation matrix. In [6], the sliding mode controller was
also validated on the SRS using the El Al flight 1862 scenario. The sliding mode control
scheme, which relies on relatively little information of the failure and the extent of
the damage to the airframe, was also proven to be able to enhance the stability of the
closed-loop system subject to a certain degree of model uncertainties (i.e.structural and
actuator changes) caused by the separation of the right engine. However, the drawback
of the sliding model control method is that the stability of the closed-loop system can be
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only proven under several boundary assumptions concerning uncertainties. Similar to
other robust control methods, the sliding mode controller, developed based on a state
space model, only works in a limited neighborhood of a linearization point in theory.

In the past decade, nonlinear control approaches developed for singular perturbed
systems have caught wide attention [67]. After combining a backstepping designing
procedure with Tikhonov’s Theorem and singular perturbation theory, Hovakimyan et
al.[59] developed an approximation based nonlinear controller for non-affine systems.
Later, this nonlinear control approach was extended by Falkena and van Oort et al.
[45, 46] with the focus shifted to application. In [45, 46], the measurements of the
derivatives of the controlled variables, e.g., body angular rates, are incorporated into the
control solution. In addition, this controller indicated as the sensor based backstepping
(SBB) approach was investigated against model uncertainties and measurement noises.
In the SBB control approach, the Lyapunov function based backstepping design strategy
guarantees multi-loop stability of the system [45, 59]. Actually, the SBB control approach
should be viewed as a specific high-gain incremental nonlinear control scheme, which
does not require online full model information. Unlike other incremental nonlinear con-
trol approaches (e.g.incremental NDI and incremental backstepping), an SBB control
system does not require full knowledge of the control effectiveness matrix. Instead, it
only needs to know the sign of the control effectiveness matrix.

More recently, Sun and de Visser et al. developed an angular controller using a
hybrid sensor based backstepping (SBB) control approach in [139] and validated it
using the RECOVER model. This hybrid SBB method consists of an angular controller
designed using regular nonlinear dynamic inversion control laws and a body angular
rate controller designed using the singular perturbation theory based SBB method
from [46]. One advantage of the double-loop hybrid angular controller is that it can
tolerate sudden changes induced by failures without requiring accurate online model
information. Except for the control algorithm itself, [139] also presented a solution to the
control allocation problem of a civil transportation aircraft, which matches the central
control laws. In addition, differential thrust control was introduced to actively generate a
yawing moment, which is required either by a flight task, e.g., a left turn, or by the need of
counteracting the undesired yawing moment induced by a rudder failure or a vertical tail
failure. The related simulation results are consistent with those indicated or presented
in [23, 50, 158] and [48]. That is, differential thrust plays a crucial role in preventing an
aircraft from loss-of-control in emergencies such as the rudder runaway case.

The objective of this chapter is to present an alternative fault-tolerant controller with
its core a double-loop angular controller designed using a joint SBB control approach.
The joint SBB control method presented in this chapter should be viewed as an extension
of the hybrid SBB control approach presented in [139]. In [139], an angular controller,
which is located in the second control loop, was designed using regular NDI control
laws. As a consequence, the influences from body angles, i.e., φ, θ and β, are not
directly involved in the body angular rate control. Most importantly, the stability of
the double-loop hybrid NDI/SBB controller can not be guaranteed on a theoretical
level. In this chapter, a joint SBB control method is designed using only a backstepping
designing strategy, which greatly increases the interaction between the angular control
loop and the body angular rate control loop. Most importantly, this Lyapunov function
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based backstepping technique guarantees the stability of the overall double-loop control
system. The joint SBB control approach is used to design an angular controller for
a Boeing 747-200 aircraft model. The performance of the new joint SBB method is
compared to that of the hybrid method in [139] for two different failure cases; the El
Al flight 1862 scenario and the rudder runaway fault case. For the rudder runaway
fault scenario, differential thrust provides the required yawing moment to counteract
the asymmetric yawing moment induced by the failed rudders.

This chapter is outlined as follows. In Section 7.2, the overall control structure is
introduced. Subsequently, the basic body angular rate and angular motion equations
as well as the simplified version of a control allocation method are given by Section 7.3.
Thereafter, a new double-loop angular controller based on the joint SBB approach is
presented in Section 7.4. In Section 7.5, the performance of the new joint SBB method
is compared to the hybrid SBB method from [139] in a number of simulations with the
RECOVER model. Finally, Section 7.6 concludes this chapter.

7.2. VALIDATION PLATFORM

7.2.1. A VALIDATION BENCHMARK MODEL

The RECOVER benchmark model of Boeing 747-100/200 is a high-fidelity benchmark
model developed for the verification of new FTFC techniques [131, 132]. Six benchmark
fault scenarios have been embedded into this model. Since the El Al flight 1862 scenario
and the rudder runaway fault case are the top two challenging cases [87], they are chosen
in this chapter to validate the new joint SBB controller. The losses and the remaining
functional control surfaces of the aircraft, when these two fault scenarios occur, have
been summarized in [131, 139]. In the RECOVER benchmark model, the dynamics of
EPR are modeled as G(S) = 1

2·S+1 with a changing rate limitation, i.e., 0.5 s−1. It also
should be mentioned that the engine response, in reality, has a significant lag especially
when it is in low thrust level.

7.2.2. OVERALL AUTOPILOT FLIGHT CONTROL SYSTEM

Multi-loop designing setup using the SBB control approach has the advantage that it
does not require real-time and accurate model information, e.g., the control effective-
ness matrix. In addition, the backstepping multi-loop design plugs relatively more
influence from the outer angular loop into the inner body angular rate loop, which is
an effect of state feedbacks (compensation) from the outer loop.

As shown in Figure 7.1(a), an autopilot containing four control loops is designed for
a Boeing 747-200 aircraft. Among these four loops, the altitude controller and flight
path controller used in this chapter are exactly the same as those in [139]. In the flight

path controller,
[
χ,γ,V

]> are controlled variables.
[
φ,θ,β

]> are controlled variables in

the angular control loop and
[
p, q,r

]> are the controlled variables in the first control
loop. The airspeed is controlled by the collective engine pressure ratio (EPR) Pc . And
differential EPRs (Pd ) is used to actively generate a yawing moment. The spoilers are
assisting the ailerons to generate adequate roll moment.

In [139], a hybrid SBB angular flight controller was designed after combining the
nonlinear dynamic inversion technique, i.e., attitude controller, with the sensor based
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backstepping technique, i.e., body rate controller. In this chapter, a joint double-
loop angular controller will be designed for the Boeing 747-200 aircraft using only
backstepping techniques.

In the nominal case or under the engine separation failure, the designed joint
double-loop SBB angular controller uses regular functional control surfaces without
introducing the differential thrust. The control structure is given by Figure 7.1(b)
with u = [δa ,δe ,δr ]> the control input vector. On the contrary, the differential thrust
is introduced in the joint double-loop SBB attitude controller to generate a required
yawing moment to counteract the yawing moment induced by the rudder runaway fault
when this failure occurs. The controller structure is depicted by Figure 7.1(c), where
u = [δa ,δe ,Pd ]>.

In this chapter, the rudder runaway fault is assumed to be detectable. Once the
rudder runaway fault is detected, the angular controller needs to be switched from the
regular mode shown in Figure 7.1(b) to the differential thrust control mode shown in
Figure 7.1(c). It should be noted that although differential thrust control has been widely
investigated in the past few decades in the field of flight control, it is still a well known
open issue that what is the best way to incorporate it into the regular flight control mode.

It needs to be noted that similar figures to Figure 7.1 have been given by [139].
However, they differ in the structure of the double-loop angular controller located in
the central block.

To validate the new flight controller presented in the following sections, the sim-
ulated flight test benchmark depicted in Figure 7.2 is employed. Figure 7.2(a) shows
the command sequences according to time axis. And Figure 7.2(b) describes a flight
trajectory of a fault-free Boeing 747-200 aircraft equiped with a joint double-loop SBB
angular controller.

All simulated flight tests in this chapter start from the same trim point.

7.3. EQUATIONS OF MOTION AND SIMPLIFIED RATE CONTROL

ALLOCATION

7.3.1. MOMENT AND ANGULAR RATE EQUATIONS
A Boeing 747-200 aircraft has 30 independent control inputs including 25 deflectable
control surfaces, 4 engine pressure ratios (EPRs) and 1 flight gear (mode) input [131]. To
simplify the control allocation logic, we can combine some of the aircraft inputs and use
the following 19 equivalent control variables instead [5, 6, 158]:

u = [
δa ,δsp ,δe ,δi h ,δr ,Pt ,Pd

]> (7.1)

where
δa = [

δai r ,δai l ,δaor ,δaol
]

δsp = [
(
δsp1 +δsp4

)
,
(
δsp2 +δsp3

)
,
(
δsp10 +δsp11

)
,
(
δsp9 +δsp12

)
]

δe = [
δei r ,δei l ,δeor ,δeol

]

δr = [
δr u ,δr l

]

Pt =
[
Pt1 ,Pt2 ,Pt3 ,Pt4

]

Pd = 1

4

[(
Pt1 −Pt4

)+ (
Pt2 −Pt3

)]

(7.2)
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Figure 7.1: Fault-tolerant controller configuration.

with Pc the collective engine pressure ratio (EPR), Pd the differential EPR and Pt the
vector of total EPRs. They are defined as follows:

Pc = mean (Pt )

Pt1 = Pt2 = Pc +Pd

Pt3 = Pt4 = Pc −Pd

(7.3)

The rotational equations of motion of the Boeing 747-200 aircraft have the following
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Figure 7.2: Designed command sequences for a flight test.

expression[88, 139]:
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ṙ


=−



I−1






p
q
r


×


I




p
q
r







− 1

2
ρV 2S · I−1




bClst ates
c̄Cmst ates

bCnst ates






+ 1

2
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(7.4b)

with

Aβ = 1√
u2 +w2

[−uv

V 2

(
Ax − g sinθ

)+
(
1− v

V 2

)(
Ay + g sinφcosθ

)− v w

V 2

(
Az + g cosφcosθ

)]
(7.5)

where Ax , Ay , Az are the aerodynamic-related specific force components, i.e., the
accelerations along the body axes without the gravitational effects, MCA is the control
allocation matrix. Note that, Ax , Ay , Az are usually measured using accelerometers, the
β̇ equation in Eq. 7.4a is exact given accurate estimates of the translational variables,
i.e., u, v , w . The aircraft dynamics in the angular rate and attitude levels constitute a
standard second order cascaded system with the following expression:

ẋ1 = f (x1,ξ)+gx2 (7.6a)

ẋ2 = h (x1,x2,ξ)+ku (7.6b)
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with

x1 = [
φ θ β

]>
(7.7a)

x2 = [
p q r

]>
(7.7b)

f (x1,ξ) =
[

0 0 Aβ
]>

(7.7c)

g =




1 sinφ tanθ cosφ tanθ
0 cosφ −sinφ
wp

u2+w2
0 −up

u2+w2


 (7.7d)

k = 1

2
ρV 2S · I−1MCA (7.7e)

h (x1,x2,ξ) =−I−1
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
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where Clstates , Cmstates , Cnstates are the nondimensional moments contributed by all cur-
rent states, the vector ξ denotes the system states excluding x1,x2, i.e., ξ = [α,u, v, w]>.
Keep in mind that the variables related to kinematic equations can always be known
precisely. On the contrary, the variables bounded with body angular rate dynamics are
always difficult to be accurately estimated due to model uncertainties. In the worst case,
it is even not possible to obtain an accurate model which represents the body angular
rate dynamics.

7.3.2. SIMPLIFIED CONTROL ALLOCATION
In order to introduce the control allocation problem more clearly, we take the control
allocation problem in designing an adaptive NDI rate controller (see [87]) as an example.
The control inputs can be calculated using the following formulation:

MCA ·u =




I
1
2ρV 2S
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
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νq
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r
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r
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


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bClstates
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bCnstates






 (7.8)

with

MCA =



b 0 0
0 c̄ 0
0 0 b


ME

where
[
νp ,νq ,νr

]>
is the virtual body angular rate command vector, ME is the

control effectiveness matrix, u is the control input vector from Eq. 7.1.
In an adaptive NDI or classical adaptive backstepping rate controller, the unknown

matrix ME and the nondimensional moments induced by current states
, i.e., Clstates ,Cmstates ,Cnstates , need to be identified in real-time [87]. One representative
aerodynamic model identification method is the two-step identification method [108].

Supposing that the matrix ME in Eq. 7.8 has been identified, we can then design an
optimizer to solve the control allocation problem described by Eq. 7.8. However, in order
to purely demonstrate the power of the new control method proposed in this chapter, the
ME matrix used in this chapter is simplified in further:

ME =



C̃lδa 0 C̃lδr

0 C̃mδe 0
C̃nδa 0 C̃nδr


 (7.9)
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with
C̃lδa =−Clδair +Clδail −Clδaor +Clδaol−

Clδsp1 −·· ·−Clδsp4 +Clδsp9 +·· ·+Clδsp12

C̃nδa =−Cnδai r +Cnδai l
−Cnδaor +Cnδaol

−
Cnδsp1 −·· ·−Cnδsp4 +Cnδsp9 +·· ·+Cnδsp12

C̃mδe =Cmδeir +Cmδeil +Cmδeor +Cmδeol

C̃lδr =Clδru +Clδrl

C̃nδr =Cnδru +Cnδrl

(7.10)

Due to this simplification, the control surfaces belonging to the same category would get
equal deflecting commands.

7.4. JOINT ANGULAR/ANGULAR RATE CONTROLLER USING THE

SBB APPROACH
The actuator dynamics can be viewed as a subsystem cascaded to the body angular
rate dynamic system. Since the actuator dynamics are much faster than the body rate
dynamics, an aircraft has the time-scale separation property. This allow us to use the SBB
control approach to design a body angular rate controller for the Boeing 747-200 aircraft
model. The structure of the double-loop angular controller are shown in Figure 7.1(a).

7.4.1. SBB CONTROL APPROACH
The control law designed using backstepping technique usually has a desirable property
that the tracking error of the outer-loop commands are directly involved in regulating the
inner loop control inputs. In order to fully explore this potential advantage in designing
a multi-loop controller, a joint angular/angular rate controller is developed with two
backstepping control loops using the SBB control method.

With regard to Eq. 7.6,the backstepping procedure starts by defining the tracking
errors as: {

z1 = x1 −yr

z2 = x2 −α
(7.11)

where α is the virtual control to be designed in the first step, and yr =
[
φr θr βr

]>
.

Step 1: Rewriting the z1 dynamics

ż1 = f (x1,ξ)+gx2 − ẏr = f (x1,ξ)+ g (α+z2)− ẏr (7.12)

We select a control Lyapunov function (CLF):

V1(z1) = 1

2

[
z>1 z1 +k1λ

>
1 λ1

]
(7.13)

where the gain k1 > 0 and the integrator term λ1 = ∫ t
0 z1d t are introduced to eliminate

the tracking error caused by the neglected control term, i.e., a term that is inevitably
neglected due to un-modeled uncertainties. The derivative of V1 is given by:

V̇1 = z>1 ż1 +k1λ
>
1 z1 = z>1

[
f (x1,ξ)+gx2 − ẏr +k1λ1

]
(7.14)



7

118
7. JOINT SENSOR BASED BACKSTEPPING APPROACH FOR FAULT-TOLERANT FLIGHT

CONTROL

The virtual control α is selected as:

α= g−1 [−c1z1 − f (x1,ξ)+ ẏr −k1λ1
]

(7.15)

to render the derivative

V̇1 =−c1z>1 z1 (7.16)

negative definite.
Step 2:
Rewriting the system in terms of the state z1 and z2:

{
ż1 = f (x1,ξ)+g(α+z2)− ẏr

ż2 = ẋ2 − α̇= h (x1,x2,ξ)+ku− α̇ (7.17)

The CLF in Eq. 7.13 is augmented for the (z1,z2)-system with an extra term that penalizes
the tracking error z2:

V2 (z1,z2) = 1

2
z>1 z1 +

1

2
k1λ

>
1 λ1 +

1

2
z>2 z2 +

1

2
k2λ

>
2 λ2 (7.18)

Taking the derivative of V2 results in

V̇2 = z>1 ż1 +k1λ
>
1 z1 +z>2 ż2 +k2λ

>
2 z2

= z>1
{

f (x1,ξ)+g
[

g−1 (−c1z1 − f (x1,ξ)+ ẏr −k1λ1
)+z2

]
− ẏr

}

+k1λ
>
1 z1 +z>2 (h (x1,x2,ξ)+ku− α̇)+k2λ

>
2 z2

=−c1z>1 z1 +z>2
(
gz1 +h (x1,x2,ξ)+k2λ2 +ku− α̇)

(7.19)

Then we can get a regular backstepping control law:

u = k−1 (−c2z2 −gz1 + α̇−h (x2)−k2λ2
)

(7.20)

To design a sensor based backstepping (SBB) controller, we do not need h (x1,x2,ξ) and
k which represent the dynamics of the angular rate loop. Instead of substituting ż2 =
ẋ2 − α̇= h (x1,x2,ξ)+ku− α̇ in Eq. 7.19, ż2 is provisionally viewed as control inputs:

V̇2 = z>1 ż1 +k1λ
>
1 z1 +z>2 ż2 +k2λ

>
2 z2

= z>1
{

f (x1)+g
[

g−1 (−c1z1 − f (x1)+ ẏr −k1λ1
)+z2

]
− ẏr

}

+k1λ
>
1 z1 +z>2 ż2des +k2λ

>
2 z2

=−c1z>1 z1 +z>2
(
gz1 +k2λ2 + ż2des

)

(7.21)

In order to make V̇2 negative definite, we can select:

ż2des =−c2z2 −k2λ2 −gz1 (7.22)

Following Eq. 7.4b, an equivalent control input vector ured is defined as:

ured = MCA ·u (7.23)

It should be noted that MCA is assumed to be time invariant in Eq. 7.23 in this chapter.
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After substituting Eq. 7.23 into Eq. 7.4b, the SBB controller for Eq. 7.4 can be designed
as follows [59]:

εu̇red =−sg n

(
∂ż2

∂ured

)
· [ż2 − ż2des]

=−sg n

(
∂ż2

∂ured

)
· [ż2 +gz1 +k2λ2 +c2z2

] (7.24)

where ε is a tuning parameter with small positive value, i.e., 0 < ε<< 1, ż2 = ẋ2 − α̇, ẋ2 is
measurable and α̇ can be calculated according to Eq. 7.15.

According to Eq. 7.11 and Eq. 7.4b, we have

∂ż2

∂ured
= 1

2
ρV 2S · I−1 (7.25)

Therefore, the controller in Eq. 7.24 becomes:

u̇red =−1

ε
· sg n

(
1

2
ρV 2S · I−1

)
· [ż2 +gz1 +k2λ2 +c2z2

]
(7.26)

The dynamic pressure is assumed constant during our failure cases. Considering the
variation of dynamic pressure, the reader is referred to retune ε in Eq. 7.26, but this topic
is out of the scope of this thesis. By integrating u̇red, the equivalent control inputs ured

can be derived:

uredk = uredk−1 +
∫ kT

(k−1)T
u̇red ·d t (7.27)

According to Eq. 7.23, the control input u can be solved using a control allocation
algorithm if MCA from Eq. 7.8 is available. Unfortunately, the need of MCA makes the
controller dependent on the aerodynamic model. It is assumed in this chapter that a
fixed MCA is available around a trim point.

To simplify the implementation of the controller, the requirement of control alloca-
tion is removed from the design procedure. Remember that the control surfaces have
been categorized into 3 groups (see. Eq. 7.10). From each group, a control surface is
chosen as the representative control input. Consequently, a representative control input
vector urep = [

δ1rep ,δ2rep ,δ3rep

]
can be derived. For example, the representatives can be

selected as follows: δ1rep = δail, δ2rep = δeil and δ3rep = δru (or δ3rep = Pd ). The control
allocation matrix MCArep can be calculated from the aforementioned fixed matrix MCA

using Eq. 7.9. It should be noted that the following assumption is made at this place:

MCArep ·urep ≈ MCA ·u (7.28)

After substituting Eq. 7.28 into Eq. 7.6b, the SBB controller can be redesigned for the
system Eq. 7.6. Consequently, the term ∂ż2

∂ured
in Eq. 7.24 and Eq. 7.25 should be replaced

by ∂ż2
∂urep

, and Eq. 7.25 becomes:

− sg n

(
∂ż2

∂urep

)
=−sg n

(
1

2
ρV 2S · I−1MCArep

)
(7.29)
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Correspondingly, Eq. 7.26 becomes:

u̇rep =−1

ε
sg n

(
1

2
ρV 2S · I−1MCArep

)
· [ż2 +gz1 +k2λ2 +c2z2

]
(7.30)

Subsequently, urep can be calculated using Eq. 7.27. In calculating sg n
( 1

2ρV 2S · I−1MCArep

)
,

the same method as that used in [59] is adopted. That is, only the sign of the diagonal
elements of the matrix (in the bracket) are used in designing the controller.

The configuration of the double-loop attitude controller has the framework shown in
Figure 7.3. In this figure, ‘TA’ is the acronym of a tuning algorithm, and τ represents the

++

- -

u = udes (t −τ)

TA

∫ ∫

∫udes

x2

h(x1,x2,ξ)

f (x1,ξ)

k ·u g ·x2
x1u

z2
z1 yr

α
(
z1,x1,yr

)

u̇des

control
law

plant

− 1
ε sg n

(
∂ż2
∂urep

)[
ż2 +g ·z1 +k2λ2 +c2 ·z2

]

Figure 7.3: Flow chart of the joint SBB attitude controller.

time delay between the commanded and the actual control inputs. Detailed description
about ‘TA’ block can be found in [139]. As can be seen from Figure 7.3, the effects from
the outer loop dynamics denoted by the term gz1 are directly involved in regulating the
control inputs in the inner loop.

7.4.2. INCREMENTAL BACKSTEPPING, SENSOR BASED BACKSTEPPING AND

THEIR RELATION
For a two-loop angular/angular rate controller designed for a system described by
Eq. 7.6, the regular IBKS and the singular perturbation based IBKS, i.e., the sensor based
backstepping approach, have the following forms:

4u =−k−1 · (c2z2 + [ẋ2 − ẋ2r ]+gz1
)

(7.31)

u̇ =−1

ε
si g n

(
∂ż2

∂u

)(
c2z2 + [ẋ2 − ẋ2r ]+gz1

)
(7.32)

The reader is referred to [2, 44] for more details on designing a two-loop regular
incremental backstepping controller. The control diagrams for both control methods
are given in Figure 7.4.

Comparing Eq. 7.32 with Eq. 7.31, it can be noticed that the two approaches are
theoretically similar in the sense that both of them employ one-step control adjustment,

i.e., ∆u or
∫ kT

(k−1)T u̇ ·d t . More precisely, the following links between these two controllers
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Figure 7.4: Block diagrams for SBB and IBKS control systems.

exist:

4u =
∫ kT

(k−1)T
u̇ ·d t , u̇ ·T (7.33)

if and only if the absolute values of the diagonal elements in k−1 equal to 1
ε , where T , ε

are the sampling time and the time scale parameter. Regarding the relationship between
the SBB and IBKS approaches, the ε should be understood as a parameter determined
by control derivatives contained by the k matrix, see Eq. 7.6, and the sampling time
T . The SBB approach can be viewed as a special case for an acceleration mesurement-
based incremental backstepping control method since they both perform only one-step
incremental regulation at each sampling time instant.

7.4.3. COMMAND FILTER AND DIFFERENTIATOR
A command filter is needed to regulate the given reference commands to enable that the
closed-loop aircraft system has adequate handling qualities. In addition, the command
filter is also playing a crucial role in constraining the aircraft within the safe flight
envelope. The reference rate commands should be scheduled according to aircraft
speed, altitude and damage degree.

The saturation effects from the integrator need to be removed. When some failures
happen to the control surfaces or the control effector such as the propulsion system has
a big time delay, these saturation effects become much more serious. In this paper, a
tuning algorithm (TA) block was designed to handle this by evaluating the discrepancy
information between the measured control inputs um and the integrator outputs udes,
see Figure 7.3. The mechanism of the ‘TA’ block is described as follows:

udes =
∫ kT

0
u̇∫ ·d t (7.34)

with

u̇∫ =
{

0, if
(
uu −udes

)≤ 0 and u̇des ≤ 0; or
(
udes −ul

)≤ 0 and u̇des ≥ 0; or t
(∣∣um −udes

∣∣> ς1
)> ς2

u̇des, el se
(7.35)

where udes and um are the controller output and measured control input respectively,
and ul and uu are the lower and upper position limits. The ς1 and ς2 are constant values
acting as thresholds which depend on the dynamics or time delay of the actuators. The
t (·) function calculates the lasting time for the case where the conditions in the bracket
are satisfied. It can be noticed from Eq. 7.35 that the first two conditions in the ‘if’ branch
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Table 7.1: Joint SBB attitude controller parameters, ε= 0.15, nominal/engine separation

Channel proportion integration
Angular control [1,0.5,2] [0,0,0]
Body rate control [0.1,0.2,0.1] [0,0,0]

aim at removing integrator saturation, the third condition takes into account long-term
actuator time delay or actuator failures, e.g., control surfaces that are stuck.

In this chapter, we assume that angular accelometers are not available. A 5th-
order sliding mode differentiator presented in [78] is employed to calculate high quality[
ṗ, q̇ , ṙ

]> using filtered signals of
[
p, q, r

]>, which are outputs of an extended Kalman
filter block.

7.5. RESULTS AND ANALYSIS
To validate the joint double-loop SSB angular controller developed in Section 7.4, a flight
path controller, see Figure 7.1(a), designed using regular PID control laws are combined
with the angular controller forming a new autopilot flight controller. In addition, an
independent propulsion controller was designed for the aeroengine using PID. In this
engine controller, Pc and VTAS are the control input and controlled variable respectively.

The new autopilot flight controller will be applied to the Boeing 747-200 aircraft. It is
firstly evaluated for the nominal case and then evaluated for two fault scenarios: rudder
runaway and right engine separation. Eq. 7.10 and Eq. 7.3 were adopted for control
allocation purpose.

7.5.1. COMMAND FILTER SETUP AND ACTUATOR WORKING RANGE
The actuators of the control surfaces are modeled as first order low-pass filters. Their
saturation limits and deflection rate limits have been presented in [139]. In addition, a
command filter presented in [47] is utilized in this chapter. This filter has an adjustable
natural frequencyωn and damping ratio ζ. For the scheduling limits on the body angular
rate commands and the attitude angular commands, we use the same setups as those
presented in [139].

7.5.2. VALIDATION RESULTS OF THE NOMINAL AIRCRAFT
The proposed double-loop SBB angular controller (see Figure 7.1(b)) is evaluated by
flying the Boeing 747-200 aircraft in the nominal (fault-free) state. In addition, the
simulation results derived using the joint SBB method are compared with those obtained
using the hybrid SBB method (see ref.[139]). The idea of a fault-free test of the controller
is to show the nominal capability of the proposed controller. The chosen controller
parameters are listed in Table 7.1. It should be mentioned that the autopilot presented in
this chapter uses the same flight path controller and altitude controller as those in [139].

Figures 7.5-7.19 illustrate the validation results of the designed controller under
the nominal case. Outside the autopilot, the reference command sequences shown
in Figure 7.2(a) were performed. Figure 7.5 shows the changing history of EPRs, and
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Figure 7.5: Engine Pressure Ratios, nominal.
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Figure 7.6: Roll rates, nominal.
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Figure 7.7: Pitch rates, nominal.
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Figure 7.8: Yaw rates, nominal.

the EPRs are regulated to keep the true airspeed between 122 m/s and 142 m/s, see
Figure 7.9. In Figs. 7.6-7.8, the changes in body angular rates are illustrated. During
most of the time period, the curve for the joint SBB method and that of the hybrid SBB
method overlap. However, the body rate changes for the hybrid SBB method are slightly
more aggressive than those for the joint SBB method during transient periods. The
angular tracking performance is depicted in Figs. 7.10-7.12. The inner angular controller
using the joint SBB approach enables the aircraft to closely track the angular reference
commands. Compared with the hybrid SBB approach, the joint SBB method leads to
slightly more moderate changes of the roll angle and pitch angle. In addition, the joint
method leads to a much smaller β than that of the hybrid SBB method according to
Figure 7.12.

Figs. 7.13-7.15 show the commanded and actual control deflections of ailerons,
elevators and rudders respectively. As can be seen, the actual control surface deflections
match the commanded ones due to the fact that the aircraft is fault-free. Compared with
the hybrid SBB method, the joint SBB method leads to more desired control deflections
of ailerons and rudders, see Figure 7.13 and Figure 7.15. This is the reason that the joint
SBB method leads to a much smaller β, see Figure 7.12, from 50 s to 100 s.

Finally, the command tracking performance in the flight path control level is demon-
strated in Figs. 7.16-7.18. It can be clearly seen that both control methods can lead
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Figure 7.9: True airspeed, nominal.
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Figure 7.10: Roll angle, nominal.
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Figure 7.11: Pitch angle, nominal.
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Figure 7.12: Angle of sideslip, nominal.

to a relatively good tracking performance in the χ, γ and he channel respectively. To
add visualization clarity of the flight task, a three-dimensional trajectory of the aircraft
is plotted in Figure 7.19. Figure 7.19(a) shows two three-dimensional trajectories of an
aircraft which are obtained using the joint controller and hybrid controller respectively.
To enhance the clarity, the corresponding ground tracks are given by Figure 7.19(b). A
conclusion can be drawn from Figure 7.19 that an autopilot using the joint SBB method
leads to a quite similar flight path to that led by an autopilot using the hybrid SBB
control approach. The tiny difference between those two trajectories are caused by the
difference of airspeed.

7.5.3. VALIDATION RESULTS UNDER TWO BENCHMARK FAILURE SCENAR-
IOS

In the first numerical simulation experiment, the joint SBB attitude controller shown
in Figure 7.1(b) is validated by flying the aircraft under the engine separation failure
scenario. This controller parameters are tabulated in Table 7.1. The validation results
are given by Figs. 7.20-7.32.
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Figure 7.13: Commanded and actual aileron
deflections, nominal.
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Figure 7.14: Commanded and actual elevator
deflections, nominal.
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Figure 7.15: Commanded and actual rudder
deflections, nominal.
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Figure 7.16: Altitude, nominal.
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Figure 7.17: Flight path angle, nominal.
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(a) Three-dimensional trajectory, nominal.
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Figure 7.19: Trajectory comparison results using the joint and hybrid SBB angular controllers respectively.
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Figure 7.20: Engine Pressure Ratios, engine
separation.
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Figure 7.21: Angular rates, engine separation.
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Figure 7.22: True airspeed, engine separation.
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Figure 7.23: Roll angle, engine separation.
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Figure 7.24: Pitch angle, engine separation.
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Figure 7.25: Angle of sideslip, engine separation.
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Figure 7.26: Commanded and actual aileron
deflections, engine separation.

 

 

δeor
δeir
δecmd

el
ev

at
o

r
d

efl
ec

ti
o

n
s

[d
eg

]

time [s]

F

0 100 200 300 400 500 600 700 800
−5

0

5

10

Figure 7.27: Commanded and actual elevator
deflections, engine separation.

Under the engine separation failure, engine ]1 and ]2 remain functional. Their
changing history are shown in Figure 7.20. The collective thrust Pc , i.e., mean of EPRs, is
regulated to keep the true airspeed between 130 m/s and 145 m/s, see Figure 7.22. VTAS is
decreased after the 650th second, because we want the simulated flight be more similar
to the real landing case of the Boeing 747-200 aircraft.

The changes of body angular rates are illustrated in Figure 7.21. It can be seen that p,
q and r stay at zero during level-straight flight even though the engine separation fault
occurs. In addition, the body angular rate changes caused by the fault (around the 200th

second) are relatively small when compared to those demanded by the roll command
between 50s and 100s.

The tracking performance of the joint SBB angular controller is depicted in Figs. 7.23-
7.25. Zero-error tracking performance are guaranteed in the φ and θ channels, and β

is kept at zero except a short period, i.e., from 285s to 330s. During this short period,
β is non-zero due to the fact that the remaining operational authority of the rudder is
quite limited since a large part of its working range has been occupied by generating the
yawing moment, which is aimed at counteracting the yawing moment induced by the
right engine separation. It should be noted that the aircraft needs a higher level of thrust
when it is climbing, i.e., from 285s to 330s, in order to make the airspeed maintained.
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Figure 7.28: Commanded and rudder deflections,
engine separation.

 

 

he
her

al
ti

tu
d

e
[m

]

time [s]

F

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

Figure 7.29: Altitude, engine separation.
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Figure 7.30: Flight path angle, engine separation.
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Figure 7.31: Heading angle, engine separation.
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(a) Three-dimensional trajectory.
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Figure 7.32: Trajectory comparison results between the nominal case and engine separation case.

However, the increase in thrust will lead to a large yawing moment which needs to be
counteracted by the rudders. Compared to the simulation results presented in [139], i.e.,
the dashed curve in Figure 7.25 is the same as that in [139], the joint method leads to
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Table 7.2: Joint SBB attitude controller parameters, ε= 0.35, rudder runaway

Channel proportion integration
Angular control [0.25,0.2,0.1] [0.1,0.1,0]
Body rate control [1,1,1] [0,0,0]

a much smaller β than that led by the hybrid SBB method during most of the time, i.e.,
except the period from 280s to 330s. In addition, the magnitude of the sideslip angles led
by both methods are comparable under the engine separation case in the period from
280s to 330s.

The changing history of the commanded and actual deflections of the control
surfaces are depicted by Figs. 7.26-7.28. The control surface deflections of ailerons,
elevators and rudders are plotted separately. It can be observed from Figs. 7.26-7.27
that δeor and δaor are not active/responding under this failure. Actually, δeil is also
not active/responding under this failure. In Figure 7.28, a large difference between the
commanded and the actual rudder deflections shows up after the failure is triggered. It
indicates that the rudders are working in a saturated state.

Figures. 7.29-7.31 provide the records of the tracking performance in the flight path
control level. The closed-loop aircraft is able to track the reference commands, i.e., χr, γr

and her, with zero error. It should be mentioned that the flight path controller is acting
as an inner controller before the 650th second, which makes the actual γ not necessary
to follow its reference command γr with zero tracking error in this stage. According to
Figure 7.22 and Figure 7.29, the aircraft is climbing from 600m to 800m within 50s while
sacrificing 7.5 m/s of airspeed.

The three-dimensional trajectory of the damaged aircraft, under the right engine
separation case, is compared with that of the nominal aircraft, see Figure 7.32(a). The
second curve marked with ’nominal’ is the same as that in Figure 7.19. To increase
the clarity, the ground tracks of the nominal, i.e., fault-free, aircraft and the post-failure
aircraft are compared in Figure 7.32(b). As can be seen from Figure 7.32, the trajectory
difference of the aircraft between the nominal case and the engine separation case is
negligible. Specifically, the aircraft under the engine separation fault can fly a right
turn with the same turning rate as that of the nominal aircraft, see the second turn in
Figure 7.32(b).

In the second simulation experiment, the joint SBB attitude controller using the
control structure shown in Figure 7.1(a) is validated using rudder runaway fault scenario.
As shown in Figure 7.1(c), differential thrust is introduced to counteract the yawing
moment induced by the stuck rudders. The controller parameters are selected as shown
in Table 7.2.

During the simulation, the rudder runaway fault scenario was triggered at the 200th

second. The validation results of the joint SBB angular controller are plotted in Figs.
7.33-7.46.

The changes of the total EPRs (Pt) are shown in Figure 7.33, and all of them reach
saturation limits immediately after the failure occurs. As shown in Figure 7.35, the true
airspeed is maintained between 130 m/s and 163 m/s by controlling the collective thrust
Pc . The differential thrust Pd is responsible for producing yawing moment needed by
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Figure 7.33: Engine Pressure Ratios, rudder
runaway.
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Figure 7.34: Angular rates, rudder runaway.
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Figure 7.36: Roll angle, rudder runaway.

the flight control task. To ensure that the true airspeed is below 163 m/s after the rudder
failure occurs to the aircraft, a dynamic upper limit of Pt is employed with its highest
value equal to 1.3.

As shown in Figure 7.34, the rudder runaway failure occurring at the 200th second
produces great influences on p, q and r . Both the roll rate and the pitch rate have
demonstrated a spike around the 200th second. This is caused by the over-reacting of
the control effectors, i.e., ailerons and differential thrust. At the beginning, the yawing
moment induced by the stuck rudder drives the yawing rate r to −0.08 rad/s. Then, the
yawing moment produced by the differential thrust as well as that contributed by the
instantaneous nonzero β drives r to 0.037 rad/s within an extremely short time period.

The angular command tracking performance of the joint SBB controller is illustrated
in Figs. 7.36-7.38. As shown in Figs. 7.36 and 7.37 respectively, the tracking errors of φ
and θ nearly equal to zero. In Figure 7.25, the dashed curve is the same as that in [139].
As shown in Figure 7.25, β is kept between 4 deg and 8.6 deg. This is ascribed to the fact
that the rudder runaway failure is so severe that it uses up all of the control authority of
the differential thrust. As a consequence, β cannot be further reduced using the main
control effector (the differential thrust). However, the nonzero tracking errors of β is still
comparable to or even smaller than those presented in [87] and [139] under the same
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Figure 7.37: Pitch angle, rudder runaway.
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deflections, rudder runaway.
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deflections, rudder runaway.

fault scenario.
In terms of the sideslip angle control, the joint SBB approach has an equal or a

slightly better performance than the hybrid SBB approach from [139]. This is because
the joint SBB angular controller leads to sideslip angles with a slower changing rate
than those led by the hybrid SBB angular controller, see. Figure 7.38. That is, the non-
zero sideslip angle stays around a steady position. In addition, the maximum non-zero
sideslip angles produced by both methods are nearly the same. It should be kept in mind
that the aircraft inevitably has to fly with a non-zero sideslip angle under the rudder
runaway case due to the reduced control authority. In that sense, although Figure 7.38
shows the hybrid SBB controller produces smaller sideslip angles than those produced
by the joint SBB controller from the 340th second to the 410th second, it still does not
mean the hybrid SBB control approach has a better performance than the joint SBB
control approach.

Figures. 7.39 and 7.40 shows the changes of the commanded and actual (limited
by the actuator dynamics and failures) control surface deflections in the roll and pitch
channel, respectively. In Figure 7.41, the changes of the actual rudder deflections are
plotted. It should be noted that the deflection angles of rudders vary although they are
stuck to the left limit under the rudder runaway failure. The reason of doing so can be
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Figure 7.42: Altitude, rudder runaway.
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Figure 7.43: Flight path angle, rudder runaway.
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Figure 7.44: Heading angle, rudder runaway.
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Figure 7.45: Spoiler deflections, rudder runaway.

found in [87] and [139].
As can be seen from Figs. 7.42-7.44, χ, γ and he are closely tracking their own

reference command, respectively. That is, zero tracking errors are ensured in the steady
state. It should be mentioned that the aircraft is under altitude control mode during the
first 650s, and it is under the flight path angle control mode after the 650th s. Since the
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Figure 7.46: Trajectory comparison results between the nominal case and rudder runaway case.

flight path angle controller is an inner controller during the first 650s, the tracking errors
of γ are allowed to be nonzero during a few transient periods, see Figure 7.43.

The changing history of the spoiler deflections is depicted by Figure 7.45. The spoil-
ers are assisting the ailerons in producing roll moment. Finally, the three-dimensional
trajectory of the post-failure aircraft is compared with that of the fault-free aircraft
in Figure 7.46(a). Similar to Figure 7.32(b), Figure 7.46(b) provides the ground tracks
correspondingly. Again, the second curve marked with ’nominal’ is as that in Figure 7.19.
It can be observed that the post-failure aircraft needs a wider turn than the fault-free
aircraft, see the second right turn from Figure 7.46(b). This is partially due to the fact
that the sideslip angle of the post-failure aircraft is nonzero. It should be noted that the
bank angles of the post-failure aircraft and the nominal aircraft are not equal though
the roll angles are equal (20 deg). This difference is caused by the nonzero β under the
rudder runaway fault scenario.

7.6. CONCLUSIONS
This chapter has extended the singular perturbation theory based sensor based back-
stepping (SBB) method presented in [46] to design a double-loop angular controller
with a focus on handling the sudden structural changes associated with the benchmark
failures. The double-loop SBB attitude controller is designed using the backstepping
technique, which guarantees the stability of the quasi-cascade subsystem, i.e., the body
angular rate dynamics and the angular motion dynamics. Another advantage of the
proposed method is that it does not require real-time full model information of an
aircraft.

The double-loop SBB angular controller is combined with an outer-loop flight path
controller designed using regular proportional-integral-derivative (PID) control laws.
The overall autopilot flight controller has four levels of control loops, and was evaluated
using a Boeing 747-200 aircraft under the nominal case and two benchmark fault
scenarios, i.e., rudder runaway and engine separation, developed by the GARTEUR FM-
AG 16 group. In dealing with the rudder runaway fault scenario, the differential thrust
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is introduced to compensate the unexpected yawing moment induced by the failed
rudders.

The numerical simulation results show that the double-loop joint SBB angular con-
troller can lead to zero tracking errors as long as the given angular reference commands
are within the safe flight envelope. Compared with the hybrid SBB angular controller
presented in [139], the new joint SBB method leads to better zero-hold performance in
controlling sideslip angle when the aircraft is flying in the nominal condition or under
the engine separation scenario. Under the rudder runaway fault scenario, the new
method presented in this chapter leads to equivalent control performance of sideslip
to that of the hybrid SBB control method mentioned above.
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TENSOR-PRODUCT SIMPLEX

SPLINES FOR AERODYNAMIC

MODEL STRUCTURE SELECTION

AND ADAPTIVE CONTROL

Standard simplex B-spline based model identification methods were studied with a
focus on enhancing the computational efficiency of the parameter estimation process
in Chapters 3 and 4. This chapter is aimed at providing more flexible options for
choosing model structures when using multivariate simplex B-splines. A tensor-product
simplex B-spline model structure was extended from a single dimension case into a
multidimensional case. More a priori knowledge of the the model can be taken into
account when defining spline model structures. Two double-loop attitude controller
design methods, namely a hybrid controller and a joint controller were presented
in Chapters 6 and 7. Central to each controller is an acceleration measurement-
based incremental nonlinear control (AMINC) law. This control approach contains a
time-scale parameter which is related to a control effectiveness matrix, so taking into
consideration the estimation of the control effectiveness matrix, the tensor-product
simplex B-spline method was used for this purpose.

Recently, recursive function approximation approaches using multivariate simplex B-
splines have been investigated for the aim of providing an accurate global aerodynamic
model for use in adaptive flight control systems. To enable a real-time implementation,
the efficiency of this model identification approach still needs to be enhanced without
sacrificing modeling accuracy. In this chapter, a new mathematical procedure for con-
structing spline models is presented, which provides more options for selecting an efficient
model structure. For this, a new multivariate spline approach indicated as the tensor-
product simplex B-splines is applied. Using this new approach, more a priori knowledge
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can be taken into account when defining model structures. The new tensor-product
simplex B-splines can lead to a lower computational load compared to standard simplex
B-splines because fewer global B-coefficients are required for comparable approximation
power. Most importantly, the new spline approach maintains the natural feature of the
multivariate simplex B-splines in the sense that the global B-form regression vector is
normalized, each basis polynomial is guaranteed to be well-conditioned numerically,
and differentiability is maintained along each input dimension. An F-16 nonlinear
model is used to generate data to validate the new approach. Simulation results show
that the new approach can achieve a higher level of approximation accuracy using less
parameters when modeling the aerodynamic moment coefficients, and can provide proper
and bounded estimations of the control effectiveness matrix, which is comprised of the
directional derivatives of the output of the spline functions.

8.1. INTRODUCTION
A powerful model identification method is required when designing a model-based
adaptive flight control system. Among all of the model identification methods found
in the literature, one promising option is the multivariate simplex B-splines (MVSB)
method, which is a parametric functional approximator [10, 34, 37, 73]. In [34], a
batch method using multivariate simplex B-splines is proposed. In 2011, de Visser
et al. [37] proposed a recursive simplex B-spline method indicated as the equality
constrained recursive least squares (ECRLS) MVSB. As an extension to the regular
smoothness constraints on the B-coefficients, de Visser et al. [37] also take into account
the differential constraints in propagating the spline model to avoid the divergence
around the boundary of the spline model during extrapolation. Sun et al. [138] present
a substitution strategy to enhance the computational efficiency of the recursive simplex
B-spline method presented in [37].

Simplex B-splines have the following benefits. Firstly, they give a higher approxima-
tion power than regular polynomials as the approximation power is dominated by both
the density of simplices and the polynomial order within each simplex [34]. Secondly,
a continuous global model is provided by enforcing continuity between spline sub-
domains [36, 73]. Finally, the output of the aerodynamic model is bounded once the B-
coefficients of the spline model is bounded. This property is attributed to the partition-
of-unity property in that the B-form regression vector is normalized with each of its
elements non-negative. These three benefits enable the online global aerodynamic
model identified using the simplex B-splines to have a high approximation power and a
high level of reliability. Since enhancing the accuracy of an aerodynamic model usually
helps to enhance the power of a model-based adaptive flight controller, an aircraft
equipped with a simplex B-spline model-based controller has the potential to achieve
a high level of flight performance during maneuvers [155, 157].

When sufficient a priori knowledge is available on the physics of the system, using
standard simplex B-splines is not optimal, because they will introduce large numbers of
basis polynomials in the B-form regression vector which have no clear physical meaning.
This is essentially due to the inherent nature of the standard simplex B-splines that
each dimension of the inputs is treated equally when constructing the global B-form
basis vector. To optimize the model structure and reduce the computational load for
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the purpose of real-time model identification, the total number of both the simplices
and the global B-coefficients can be reduced further by choosing another structure for
the simplex B-splines. Typical examples where the model structure of the simplex B-
splines can be optimized include: 1) a certain dimension of the function input is affine
to the outputs or is less coupled with other inputs according to a pr i or i knowledge.
2) the highest polynomial order of a certain input dimension is known and much lower
than that of the other input dimensions according to a pr i or i knowledge. One such
example is the aerodynamic model of F-16 aircraft. For an F-16, the aerodynamic force
and moment coefficients are affine to the control surface deflections, and the highest
polynomial orders required for the control inputs are relatively low [114].

An accurate and fast control allocation (CA) solver plays an important role in
model-based adaptive flight control [39]. The CA problem associated with an adaptive
nonlinear dynamic inversion (NDI) controller which uses a polynomial structure has
been thoroughly investigated, see [39, 87, 163]. However, the literature on investigating
how the simplex B-spline based aerodynamic models can be incorporated into an
adaptive nonlinear flight control system is still limited. In Tol et al. [157], three CA solvers
for an adaptive NDI framework are presented: a linear CA solver, a successive linear
CA solver and a nonlinear CA approach. All of them are developed based on a global
re-parameterization of the spline function, i.e., the spline function is transformed from
the barycentric coordinates to the global Cartesian coordinates. Furthermore, because
the parametric aerodynamic model identified using the standard simplex B-splines [37]
is non-affine in the control inputs, the CA unit requires either a local linearization
technique or a parameterization technique. For all three CA solvers, the gradient of the
spline function needs to be calculated once, or a number of times, at each CA step.

Standard simplex B-splines have a shortcoming during control allocation for the
purpose of flight control. This is that, in the successive linear CA solver and the nonlinear
CA solver [157], a large number of simplices neighboring to the current operating point
are involved, and a local optimum needs to be determined for each simplex. This is
due to the fact that the control inputs are highly coupled with the aircraft states in
the standard simplex spline model structure. The control inputs are treated equally,
compared to the aircraft states, and are equally involved in partitioning the entire
function input space. Once the control input changes, the evaluation point may enter
another subdomain even if the control input stays in the same partitioning in that single
dimension.

To solve the shortcoming of using standard simplex B-splines mentioned above, a
new compound structure is developed for the multivariate simplex B-splines in this
chapter. The new approach is referred to as the multivariate tensor-product (TP) simplex
B-splines in the remainder of this chapter because the tensor product operator is applied
when deriving the global B-form basis vector. The concept of the TP simplex B-splines
is presented in Govindarajan et al. [54], in this chapter we extend the new spline
approach to include any number of spatial dimension tensor products. The properties
and application issues of the TP simplex B-splines will be discussed. Specifically, we
investigate the application of the new method to the identification of the aerodynamic
moment coefficients.

The new TP simplex spline allows the decomposition of the global model domain
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into smaller subsets of lower dimension. Each of the lower dimensional subsets can
support a standard simplex B-spline function. The global TP simplex spline function is
then formed by taking the tensor product of the lower dimensional splines. For example,
based on expert knowledge of the aerodynamics of an aircraft, the user may decide to
model the aerodynamic moment coefficients using bivariate simplex splines, while the
influence of the control surfaces is modeled using only a univariate spline function. The
complete TP simplex spline basis is then formed by taking the tensor product between
the bivariate, and univariate splines thereby forming a 3-dimensional basis with limited
cross-couplings. To apply this approach the function output of a system is assumed to
be affine in a certain dimension of inputs or the highest polynomial orders required
for certain dimensions are assumed to be lower than those of other dimensions. In
these dimensions, a lower dimensional simplex B-spline basis is defined. Due to the
application of multivariate TP simplex B-splines, the overall multidimensional control
input space is divided into multiple sub domains, which are not strict simplices.

Tensor-product simplex B-splines have a number of advantages compared to stan-
dard simplex B-splines. Firstly, more a pr i or i knowledge of the system under consid-
eration can be taken into account in a more proper way by the TP simplex B-splines
since this method allows for more flexible model structure selection. Secondly, the
model structure and the polynomial terms in the basis regression vector have a more
transparent physical interpretation because some high-order basis terms, which may
be considered un-physical for a certain inputs, can be discarded by tensor-product
simplex B-splines. Thirdly, the computational load of the simplex B-spline identification
method is reduced, given the same model dimension and the highest polynomial order
of each dimension, due to the reduction of the length of the global basis regression
vector. Finally, tensor-product simplex B-splines require a lower number of training data
attributed to the reduced length of the global basis regression vector and the global B-
coefficient vector.

The objective of this chapter is to present a new generalized tensor-product structure
for multivariate simplex B-splines, which provides more options for model structure
selection when using the splines. The crux is that this new spline gives the user
the freedom to use expert knowledge of the system to influence the model structure
selection; something that is infeasible using standard simplex B-splines. The control
effectiveness matrix for an F-16 aircraft can be derived conveniently from a TP simplex
spline model with higher or equivalent accuracy compared to standard simplex B-
splines. Additionally, the optimization algorithm in the control allocation block can be
simplified because the TP simplex B-spline structure produces less sub domains in the
dimensions of the control inputs and requires fewer B-coefficients than the standard
simplex B-spline model structure. These features allow the tensor-product simplex B-
splines to be implemented in real-time, i.e., on board, with lower computational load
requirements compared to an equivalent standard simplex spline, see [37].

The structure of this chapter is as follows. The problem statement will be given
in Section 8.2. Preliminaries on multivariate simplex B-splines will be given in Sec-
tion 8.3. The new tensor-product simplex B-splines and their properties are presented
in Section 8.4. In Section 8.5, the model structure selection for an F-16 aircraft is
discussed, and tensor-product (TP) simplex B-splines are compared to standard simplex
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B-splines in terms of approximation power and computational load. In Section 8.6, a
data set obtained from a simulated flight trajectory is used to validate the new model
structure further, and the calculation of the control derivatives is validated. The TP
simplex B-splines are used to estimate a control effectiveness matrix for an incremental
backstepping controller in Section 8.7. This chapter is concluded in Section 8.8.

8.2. PROBLEM STATEMENT

The main focus of this chapter is online identification of an aerodynamic model for an
F-16 aircraft using the multivariate tensor-product simplex B-splines. This model iden-
tification routine focuses on the second step of the two-step method, and turbulence
on the aerodynamic model of an F-16 aircraft is not taken into account in this chapter.
In addition, the calculation of the control effectiveness matrix is discussed in detail
and the optimization based control allocation process is introduced briefly. Similar
to Tol et al. [155], the aerodynamic model identification block is aimed at providing
parameter adaptation in real time for an adaptive nonlinear dynamic inversion (NDI)
body angular/angular rate control system. The spline model-based NDI control system
is briefly introduced in this section for the purpose of making the tensor-product simplex
B-spline model structure easier to understand. But it should be kept in mind that
investigation on spline model-based control system is not the focus of this chapter and
thus not included in the remaining sections; for this we refer to the literature [157].

The overall framework of the adaptive nonlinear dynamic inversion (NDI) based
body angular rate flight control system is shown in Figure 8.1. In this figure, ‘CA’ is
the acronym for ‘control allocation’; ‘IEKF’ stands for ‘iterative extended Kalman filter’;
‘AMI’ represents ‘aerodynamic model identification’; ‘LC’ denotes ‘linear controller’. The
function a (x) represents the state, i.e., x, contributed part of the spline model, the
function b (x) represents the part of the spline model which is contributed by the control
inputs.
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Figure 8.1: Rate control structure using adaptive nonlinear dynamic inversion (ANDI) with the recursive spline
method located in the aerodynamic model identification (AMI) block.
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In this chapter, we mainly focus on the aerodynamic model identification block,
i.e., the block named ‘AMI’ in Figure 8.1, and discuss the ‘CA Solver’ block briefly.
The aerodynamic model identification method using multivariate simplex B-splines
designed in the ‘AMI’ block should be able to provide an accurate real-time model for the
purpose of adapting the controller parameters. The developed identification approach
should allow the control allocation algorithm, i.e., in the ‘CA’ solver block, to be as simple
and precise as possible. To accomplish the control allocation, the calculation of the
control effectiveness matrix from the spline model will be discussed in detail.

8.2.1. AERODYNAMIC EQUATIONS AND PRELIMINARIES ON AIRCRAFT MODEL

IDENTIFICATION

For a fixed wing aircraft such as F-16, the following rotational dynamic equations hold:
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ṗ
q̇
ṙ
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where u = [δa ,δe ,δr ]>, and the control allocation matrix MCA is defined as follows:
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


b 0 0
0 c̄ 0
0 0 b


ME =




b 0 0
0 c̄ 0
0 0 b







CLδa
CLδe

CLδr

CMδa
CMδe

CMδr

CNδa
CNδe

CNδr


 (8.2)

As a preparation for the aerodynamic model identification process, the non-dimensional
moment coefficients can be reconstructed using the measured states as follows:
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L
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(8.3)
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(8.4)

Cn = N
1
2ρV 2Sb
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(8.5)

In aerodynamic model identification for an F-16, 8 input dimensions are possibly
required for modeling CM:

[α,β,
qc̄

V
,δe ,δlef,δT,

pb

2V
,

r b

2V
] (8.6)

Similarly, there are 8 possible input arguments for CL and CN:

[α,β,
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2V
,

r b

2V
,δa ,δr ,δlef,

qc̄

V
] (8.7)
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8.2.2. CONTROL ALLOCATION RELATED TO THE SIMPLEX B-SPLINES
In the standard simplex B-splines, each dimension of the inputs will be treated equally
and each input is involved in the triangulation, i.e., partitioning the whole input space
into multiple sub domains. A 2-D example is shown in Figure 8.4 where ‘x’ is a scalar state
and ‘u’ is a single input. The solid point on the dashed vertical line denotes the current
working point with the current state x0 = 0.5. Then, we start to seek an optimal input u
along the dashed vertical line. The problem now is that the optimum could be located
in all the four simplices on the left-hand side [157]. When using the successive linear
CA solver or the nonlinear CA solver from [157], all these four neighboring piece-wise
models need to be parameterized and a local optimum needs to be calculated for each
per-simplex local model. If the state x and input u are of higher dimensions, the number
of the piece-wise models involved in the CA process will grow exponentially. This will
make the global optimization process in the control allocation solver very complex.
To this end, a new compound structure is introduced for the simplex B-splines in this
chapter, the new spline model structure is referred to as tensor product (TP) simplex B-
splines in the remainder of this chapter. Compared to the standard simplex spline model
structure, less local piece-wise models are involved in the optimization at one sample
step when using the TP simplex B-spline model structure. This is ascribed to the fact
that the control inputs are treated differently from other system states, and the control
inputs are less involved in partitioning the entire function input space when using the
TP simplex B-spline model structure.

x

u

0 0.5 1 1.5 2

0

1

2

t1
t2

t3

t4
t5

t6

t7

t8

(x0,u0)

Figure 8.2: Control allocation optimization using the
bi-variate simplex B-splines, single state x, single
input u [155].
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Figure 8.3: Control allocation optimization using
the tensor-product simplex B-splines, single state x,
single input u, .

As shown in Figure 8.3, the TP simplex B-splines lead to four rectangular subdo-
mains. Recall that standard simplex B-splines in this case lead to eight simplices, see
Figure 8.4. A 3-D example is shown in Figure 8.4. In the 3-D case, when using standard
simplex B-splines, each subdomain has a shape of tetrahedron. In contrast, when using
TP simplex B-splines, each subdomain is a triangular prism.

Existing literature in which the control allocation problem related to the multivariate
simplex B-spline aerodynamic model is discussed is limited to [155, 157]. Two types of
optimization based control allocation approaches are presented in [157]. The first one
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y0

y1

y2

(x1, x2)

Figure 8.4: Piece-wise model partitioning in tensor-product simplex B-splines, 3-D demonstration, [54].

is indicated as the local linearization based control allocation approach, because the
global spline function is locally linearized around a simplex by calculating the directional
derivatives in terms of the inputs. The second is referred to as the parameterization
based control allocation in the remainder of this chapter, because it parameterizes the
spline function on a specific simplex, i.e., current working point, in terms of global
coordinates, i.e., Cartesian coordinates. Then, the cost function of the optimization
problem is calculated from the parameterized spline model. In the first approach, it is
assumed that the linearized model stands for the whole input space with the arguments
defined in the Cartesian coordinates. In the second approach, only a locally-valid spline
model is derived by parameterizing the global spline model on a specific simplex, which
covers the current work point or is its neighbors.

To accomplish the second control allocation approach mentioned above, a B-form
basis vector in the global coordinates, i.e., Cartesian coordinates, needs to be calculated
according to [33][p.148-158]. If the second control allocation approach is applied
to standard multivariate simplex B-splines, it usually yields multiple local optimum
solutions among the neighboring simplices of the current working point.

The TP simplex B-splines with a compound structure are well suited to approximate
aerodynamic force and moment coefficients. One reason is that the aerodynamic force
and moment coefficients are affine to certain control inputs in many cases, e.g., the roll
moment of an F-16 aircraft is affine to the aileron deflections according to the expert
knowledge. Secondly, these compound splines allow for treating aircraft states and
control inputs in a different manner, which can simplify the control allocation approach.
The standard nonlinear model of the F-16 fighter aircraft taken from [114] is used to
validate the TP simplex B-splines approach presented in this chapter.
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8.3. PRELIMINARIES ON MULTIVARIATE SIMPLEX B-SPLINES
For the purpose of completeness, the preliminaries of the regular simplex B-splines will
be introduced briefly in this section. For more details on multivariate simplex B-splines,
the reader is referred to [34, 37, 73].

8.3.1. TRIANGULATIONS, BARYCENTRIC COORDINATES AND PIECE-WISE

BASIS FUNCTION
In essence, a simplex B-spline function is a piece-wise polynomial function with con-
tinuity constraints enforced between different pieces. The approximation power of
an multivariate simplex spline function is partly determined by the triangulation. A
triangulation T is a special partitioning of a domain into a set of J non-overlapping
simplices:

T :=
J⋃

i=1
ti , ti ∩ t j ∈

{
∅, t̃

}
,∀ i 6= j , ti , t j ∈T (8.8)

with the edge simplex t̃ a k-simplex with 0 ≤k≤ n −1. The n-simplex denoted by ti or t j

is formed by the convex hull of its n+1 non-degenerate vertices (v0, v1, ..., vn) ⊂Rn . High
quality triangulations can be obtained using constrained Delaunay triangulation (CDT)
methods, such as the 2-dimensional CDT method presented in Shewchuk [128].

For the purpose of making later citation easier, a single n-simplex is written as t after
discarding the subscript. The normalized barycentric coordinates of an evaluation point
x ∈Rn with respect to simplex t are defined as:

b(x) := (b0,b1, ...,bn) ∈Rn+1, x ∈Rn (8.9)

which follows from the following implicit relation:

x =
n∑

i=0
bi vi ,

n∑

i=0
bi = 1 (8.10)

According to [73] and [34], the Bernstein basis polynomial B d
κ (b(x)) of degree d in

terms of the barycentric coordinates b(x) = (b0,b1, ...,bn) from Eq. 8.10 is defined as:

B d
κ (b(x)) :=

{ d !
κ0!κ1!···κn ! b

κ0
0 bκ1

1 · · ·bκn
n ,x ∈ t

0 ,x ∉ t
(8.11)

where κ = (κ0,κ1, ...,κn) ∈ N n+1 is a multi-index with the following properties: κ! =
κ0!κ1!...κn ! and |κ| = κ0 +κ1 + ...+κn . In Eq. 8.11, we use the notation bκ = bκ0

0 bκ1
1 ...bκn

n .
Given that |κ| = d , the total number of valid permutations of the multi-index κ is:

d̂ = (d +n)!

n!d !
(8.12)

In [30], it is proved that any polynomial p (b) of degree d on a simplex t can be written as
a linear combination of d̂ basis polynomials in what is known as the B-form as follows:

p t (b(x)) :=
{ ∑

|κ|=d c t
κB d

κ (b(x)) ,x ∈ t
0 ,x ∉ t

(8.13)
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with c t
κ the B-coefficients which uniquely determines p t (b(x)), where the superscript ‘t ’

indicates that p is defined on the simplex ‘t ’. The total number of basis function terms is
equal to d̂ , which is the total number of valid permutations of κ.

8.3.2. VECTOR FORMULATIONS OF THE B-FORM

As introduced in [37], the vector formulation, according to Eq. 8.13, for a piece-wise B-
form polynomial p(b(x)) in barycentric Rn+1 has the following expression:

p t (x) :=
{

Bd
t (b(x)) ·ct ,x ∈ t

0 ,x ∉ t
, (8.14)

with b(x) the barycentric coordinates of the Cartesian x. The row vector Bd
t (b(x))

in Eq. 8.14 is constructed from each individual basis polynomials which are sorted
lexicographically [37] (see. Eq. 8.11).

The simplex B-spline function sm
d (b(x)) of degree d and continuity order m, defined

on a triangulation consisting of J simplices, is defined as follows:

sm
d (x) := Bd

g (b(x)) ·c ∈R, (8.15)

with Bd
g (b(x)) the global vector of basis polynomials which has the following full expres-

sion:

Bd
g (b(x)) := [ Bd

t1
(b(x)) Bd

t2
(b(x)) · · · Bd

t J
(b(x)) ] ∈R1×J ·d̂ (8.16)

The subscript ’g’ denotes ’global’. Note that, according to Eq. 8.14, we have Bd
t j

(b(x)) = 0

for all evaluation locations x that are located outside of simplex t j . This results in that
Bd is a sparse row vector.

The global vector of B-coefficients c in Eq. 8.15 has the following formulation:

c :=
[

ct1> ct2> · · · ct J >
]>

∈RJ ·d̂×1 (8.17)

with each ct j a per-simplex vector of lexicographically sorted B-coefficients.

8.3.3. GLOBAL CONTINUITY CONSTRAINTS

To keep the smoothness of the spline model among all sub domains, the following
equality constraints should be maintained during the calculation of the global B-
coefficient vector c:

H ·c = 0 (8.18)

with H ∈ R(E ·R)×
(

J ·d̂)
the smoothness matrix [34][10], the R is the number of continuity

conditions per edge, and E is the number of edges in the specified triangulation.

8.3.4. THE DIRECTIONAL DERIVATIVE OF B-FORM POLYNOMIALS

The m−th order derivative of the B-form polynomial p(b (x)) on a single simplex t in the
direction u ∈Rn is [37]:
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Dm
u p t j (b (x)) = d !

(d −m)!

∑

|κ|=d−m
c t ,(m)
κ (a (u))Bd−m

κ (b (x))

= d !

(d −m)!
Bd−m (b (x))Pd ,d−m (a (u)) · c t j

(8.19)

with Pd ,d−m the de Casteljau matrix transforming the B-coefficients from degree d to
d −m. To calculate the barycentric coordinates of the unit directional vector u, i.e., a (u),
a point v located in simplex t j is usually chosen, and the other point is determined by

w = v−u. Then we get a (u) = b (v)−b (w). The following property holds:
n+1∑
k=1

ak (u) = 0.

8.4. TENSOR-PRODUCT COMPOUND STRUCTURE FOR SIMPLEX

SPLINES

8.4.1. CRITERION FOR CHOOSING TENSOR-PRODUCT SIMPLEX B-SPLINES

In a standard simplex B-spline function, each argument with regard to each function
dimension will be treated equally. For example, if one intends to include the term x2 · y2

in a polynomial basis vector, the per-simplex polynomial order needs to be set as d = 4
at minimum. However, during the model identification process of a certain physical
systems, it may be known from the a priori knowledge that the polynomial order of
each function dimension is not required to be higher than a certain value, e.g., equal
or smaller than 2. That is, when using the standard simplex B-splines, many terms in
the basis polynomial vector, for example x3, x4 y3 and y4, have no contribution to the
function outputs and therefore are not desirable. In fact, these terms may even degrade
the physical correctness of the model by fitting measurement noise. In this case, these
terms can be removed from the model using a tensor-product (TP) simplex B-spline
model structure, where the B-form global basis vector maintains normalized.

To demonstrate the case for tensor-product simplex B-splines, a typical illustration
example is given below.
Example 1:
Given a system which can be modeled using a simplex B-spline function f = sm

d (x,u)
with x and u two arguments. Suppose that u is affine to the output f or the required
order of u is lower than that of x. In addition, it is assumed known that the polynomial
order of x is up to n1, and the polynomial order of u is up to n2. ä

In this case, if we use a standard simplex B-spline model, it would yield a two
dimensional simplex B-spline function: sm

(n1+n2) (x,u) = B(n1+n2)
g (b(x,u)) · cstd . Instead,

if we apply the tensor-product simplex B-splines to model the same system, the spline
function has the following expression: sm

(n1+n2) (x,u) =
[
Bn1

g (b(x))⊗Bn2
g (b(u))

] ·ct p which
results in much less polynomial basis.

If we transform the simplex B-splines from the barycentric coordinates back into the
Cartesian coordinates, the standard spline contains the terms containing xn1+1, xn1+2, ..., xn1+n2

and un2+1,un2+2,...,un2+n1 , which are actually not desirable and perhaps even unphysi-
cal. The TP simplex spline only contains terms containing x1,x2,...,xn1 and u1,u2,...,un2

For example, if n1 = n2 = 2 then the regression vector for TP simplex B-splines contains
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terms x2
1 , x2

1u, x2
1u2, x1, x1u, x1u2, 1, u, u2. A regression vector for standard MVSB

includes the following six extra terms: x4, x3u, x3, u3, xu3, u4. Therefore, each local
regression vector, which belongs to a local simplex or sub domain, generated using the
tensor-product simplex B-splines contains a lower number of polynomial terms than
that generated using standard simplex B-splines when identifying a system described by
Example 1.

8.4.2. GENERALIZED STRUCTURAL DEFINITION FOR TENSOR-PRODUCT SIM-
PLEX B-SPLINES

The model structure of TP simplex B-splines can be extended into arbitrary dimension
and arbitrary combination. For example, an input vector xn ∈ Rn can be arbitrarily split

as follows: xn = [
x>1 ,x>2 , · · · ,x>N

]>
with xi ∈ Rni and

N∑
i=1

ni = n. For simplicity, a general

definition for the structure of the TP simplex B-splines is given below:

Structural Definition for tensor-product simplex B-splines:
Given an n-dimension function, a function approximator using tensor-product simplex
B-splines could be denoted as stp (n) = stp (n1,n2, · · · ,nN) with n = n1 +n2 +·· ·+nN.

8.4.3. PROPERTY OF TENSOR-PRODUCT SIMPLEX B-SPLINES
Given an n1-dimension vector x, a multidimensional polynomial function has the
following expressions:

p t j (x) := Bdx
t j

(b(x)) ·c
t j
x , cx ∈RJx ·d̂x ,x ∈ t j (8.20)

with b(x) in barycentric Rn1+1.
Similarly, given an n2-dimension vector y, its univariate polynomial function corre-
spondingly are as follows:

p ti (y) := B
dy
ti

(b(y)) ·cti
y , cy ∈RJy ·d̂y ,y ∈ ti (8.21)

with b(y) in barycentric Rn2+1.
The global vector formulation of the spline basis can be derived using Eq. 4.9. Let

them be written as Bdx
g (b(x)) and B

dy
g (b(y)) respectively. Then, the global vector of the

B-form spline basis with regard to both arguments x and y are derived as follows:

Bd
x y (b(x),b(y)) = Bdx

g (b(x))⊗B
dy
g (b(y)) (8.22)

It can be proved that the sum of all elements of the global basis vector Bd
x y (b(x),b(y)) is

equal to 1. That is, the stable local basis property of the splines is maintained.

Stable Basis Vector Theorem:
Given |Bdx

g (b(x))| = 1, |Bdy
g (b(y))| = 1 with | · | 1-norm and each element in both row

vectors positive, it holds that |Bd
x y (b(x),b(y))| = 1.

Proof:
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Let the row vector Bdx
g (b(x)) = X = (a1, a2, · · · , am), B

dy
g (b(y)) = Y = (b1,b2, · · · ,bn) and

Bd
x y (b(x),b(y)) = Z = Bd

x y (b(x),b(y)) = (Z1,Z2, · · · ,Zm) for simplicity, then we have:

Z = X⊗Y

= (a1, a2, · · · , am)⊗ (b1,b2, · · · ,bn)

= (a1 ·Y, a2 ·Y, · · · , ai ·Y, · · · , am ·Y)

(8.23)

By defining Zi = ai ·Y and Z = (Z1,Z2, · · · ,Zi , · · · ,Zm), it yields that:

|Z| =
m∑

i=1
|Zi |

=
m∑

i=1
ai · |Y|

=
m∑

i=1
ai ·1

= |X| = 1

(8.24)

ä
Correspondingly, the global polynomial function becomes:

p t (x,y) := Bd
x y (b(x),b(y)) ·cx y , cx y ∈R Jx d̂x ·Jy d̂y ,x ∈ tx j and y ∈ tyi (8.25)

The overall continuity matrix becomes:

Hx y =
[

Hx ⊗ IJy d̂y

IJx d̂x
⊗Hy

]
(8.26)

with Hx y ∈R
(
Ex ·Rx ·Jy d̂y+Jx d̂x ·Ey ·Ry

)×(
Jx ·d̂x ·Jy d̂y

)
.

The directional derivatives become:

∂p t (x,y)

∂xi
=
∂Bd

x y (b(x),b(y))

∂xi
·cx y (8.27)

and

∂p t (x,y))

∂y j
=
∂Bd

x y (b(x),b(y))

∂y j
·cx y (8.28)

where

∂Bd
x y (b(x),b(y))

∂xi
=
∂Bdx

g (b(x))

∂xi
⊗B

dy
g (b(y))+Bdx

g (b(x))⊗
∂B

dy
g (b(y))

∂xi
=
∂Bdx

g (b(x))

∂xi
⊗B

dy
g (b(y))

=
[

dx !

(dx −mx )!
Bdx−mx (b (x)) ·Pdx ,dx−mx (a (ux ))

]
⊗B

dy
g (b(y))

(8.29)
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∂Bd
x y (b(x),b(y))

∂y j
=
∂Bdx

g (b(x))

∂y j
⊗B

dy
g (b(y))+Bdx

g (b(x))⊗
∂B

dy
g (b(y))

∂y j
= Bdx

g (b(x))⊗
∂B

dy
g (b(y))

∂y j

= Bdx
g (b(x))⊗

[
dy !

(
dy −my

)
!
Bdy−my

(
b

(
y
)) ·Pdy ,dy−my

(
a

(
uy

))
]

(8.30)
with Pdx ,dx−mx (a (ux )) and Pdy ,dy−my

(
a

(
uy

))
the de Castejau matrix, see [37].

In this chapter, only the first order directional derivative is required to construct the
control effectiveness matrix. Therefore, m equals 1.

Based on Eqs. 8.29-8.30, considering dual partial derivatives, we can get:

∂Bd
x y (b(x),b(y))

∂xi ·∂y j
=
∂Bdx

g (b(x))

∂xi
⊗
∂B

dy
g (b(y))

∂y j
=

[
dx !

(dx −mx )!
Bdx−mx (b (x)) ·Pdx ,dx−mx (a (ux ))

]

⊗
[

dy !
(
dy −my

)
!
Bdy−my

(
b

(
y
)) ·Pdy ,dy−my

(
a

(
uy

))
]

(8.31)
Using Eq. 8.31, the cross partial derivatives of p t (x,y) defined in Eq. 8.25 can be derived
as follows:

∂p t (x,y)

∂xi∂y j
=
∂Bd

x y (b(x),b(y))

∂xi∂y j
·cx y (8.32)

Eq. 8.32 and Eq. 8.31 together show that the partial derivative of p t (x,y) can be treated
differently in different dimensions. In contrast, standard simplex B-splines can only
obtain homogeneous directional derivatives in each dimension.

It also should be noted that the continuity orders defined for different dimensions
are maintained during the process of combination from Eqs. 8.20-8.21 to Eq. 8.25. For
example, if p t (x) is second order differentiable with respect to xi and p t (y) is first order
differentiable with respect to y j , then p t (x,y) is second order differentiable with respect
to xi and first order differentiable with respect to y j .

Eq. 8.31 shows vector y can be treated differently from x. More generally, TP
simplex B-splines enable the input space to be divided into multiple segments, and treat
different segments differently in terms of selection of polynomial orders or smoothness
requirements. For example, the overall input vector u can be divided as: u = [

x,y,z
]
. This

leads to the following expression:

∂Bd
x y z

(
b (x) ,b

(
y
)

,b (z)
)

∂y j
= Bdx

g (b(x))⊗
∂B

dy
g

(
b(y)

)

∂y j
⊗Bdz

g (b(z))

= Bdx
g (b(x))⊗

[
dy !

(
dy −my

)
!
Bdy−my

(
b

(
y
)) ·Pdy ,dy−my

(
a

(
uy

))
]
⊗Bdz

g (b(z))

(8.33)

where Bd
x y z

(
b (x) ,b

(
y
)

,b (z)
)

is defined in the same way as in Eq. 8.22.
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8.4.4. COMPUTATIONAL COMPLEXITY OF TP SIMPLEX SPLINES

The TP simplex B-splines presented in Section 8.4.3 provide users with more options
during model structure selection when using simplex B-splines. Taking the identi-
fication of Cl as an example, it is assumed that we lack a priori knowledge of the
structure of the spline function concerning the arguments α, β and p̄. Specifically, the
detailed model structure as shown in [101, 157] is assumed unknown for the sake of our
argument, and we only know that Cl is affine to δa . Actually, this assumption is realistic
according to [114]. In this case, the model structure can be further simplified according
to the a priori knowledge. Instead of constructing a four dimensional spline function
sm

d

(
α,β, p̄,δa

)
, we can construct an equivalent model using the tensor-product structure

by setting x = [
α,β, p̄

]
and y = δa in Eq. 8.20 and Eq. 8.21.

Compared to a standard simplex B-spline model, the tensor-product simplex B-
splines require fewer B-coefficients than the former and therefore lead to lower com-
putational load in a real-time implementation. According to [125] and [73][p.110], a

Delaunay triangulation produces O
{

n
d f
v

}
simplices, with nv the number of vertices and

d f the dimension of the functional space.

The number of the sub domains produced by the tensor-product simplex B-splines
is compared with that of the standard simplex B-splines, and the results are listed in
Table 8.1. In this table, x, y , z and k represent the number of partitioning knots in each
dimension of the arguments, and n, n1, n2 and n3 denote the dimension of the basis
function.

Table 8.1: Total number of simplices produced by TP simplex splines and standard simplex splines when using
standard Delaunay triangulation method

algorithms
case one case two case three

n = 3,n1 = 2,n2 = 1 n = 4,n1 = n −1,n2 = 1 n = 4,n1 = n −2,n2 = 1,n3 = 1

standard simplex splines, O
(
x · y · z

)( n
2 ) (

x · y · z ·k
)( n

2 ) (
x · y · z ·k

)( n
2 )

TP simplex splines, O
(
x · y

)( n−1
2 ) · (z −1)

(
x · y · z

)( n−1
2 ) · (k −1)

(
x · y

)( n−2
2 ) · (z −1) · (k −1)

ratio O (std)
O(tps) ≥ 3

3
2 ≈ 5.20 ≥ 8

p
2 ≈ 11.31 ≥ 64

As shown in the first column of Table 8.1, the ratio of the number of the sub domains
is:

(
x · y · z

)( n
2 )

(
x · y

)( n−1
2 ) · (z −1)

=p
x y · z

n
2

(z −1)
(8.34)

Given that x ≥ 2, y ≥ 2, z ≥ 2 and n = 3, the partial derivative of Eq. 8.34 with regard to z is:
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p
x y · z

n
2

(z −1)
|d z =

p
x y · z

3
2

(z −1)
|d z

= 3

2

z
1
2

z −1
− z

3
2

(z −1)2

= z
1
2

z −1
·
(

3

2
− z

z −1

)

= z
1
2

z −1
·
(

3

2
−1− 1

z −1

)

(8.35)

p
x y · z

n
2

(z−1) |d z = 0 when z = 3, and Eq. 8.34 has a minimum:

p
x y · z

n
2

(z −1)
=p

x y · z
3
2

(z −1)

≥p
x y · 3

3
2

(3−1)

≥
p

2 ·2 · 3
3
2

(3−1)

≥ 3
3
2

(8.36)

It is proved that tensor-product simplex B-splines produce a lower number of
sub domains than the standard simplex B-splines when using the standard Delaunay
triangulation method. Similarly, the same conclusion can be drawn for the remaining
two cases in Table 8.1. To summarize, the tensor-product simplex B-splines produce a
lower number of sub domains, i.e., simplices, than the standard simplex B-splines.

Remarks: Recall that the local per-simplex basis regression vector produced by tensor-
product simplex B-splines always contains a lower number of polynomial terms than
that produced by standard simplex B-splines, see Section 8.4.1. To summarize, com-
bining the conclusions from both Section 8.4.1 and Section 8.4.4, we can draw the
conclusion that the tensor-product simplex B-splines require a lower number of global
B-coefficients than the standard simplex B-splines. Therefore, it is more likely that the
former causes a lower computational load than the latter in the real-time implementa-
tion.

8.5. VALIDATION AND COMPARISON WITH STANDARD SIM-
PLEX SPLINES

8.5.1. F-16 MODEL STRUCTURE SELECTION WITH COMPLETE A PRIORI

KNOWLEDGE
The estimation of the non-dimensional moment coefficients is investigated in this
chapter. According to the complete a priori knowledge from [114], the following model
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structures can be assumed for the moment coefficients of an F-16 aircraft:

Cl
(
α,β, p̃, r̃ ,δa ,δr ,δl e f

)=Cl
(
α,β

)

+Clδle f

(
α,β

)
δle f +Clδa

(
α,β

)
δa +Clδr

(
α,β

)
δr

+Clr (α) r̃ +Clr δle f (α)δle f r̃ +Clp (α) p̃ +Clpδle f (α)δl e f p̃

(8.37)

with p̄ = pb
2V and r̄ = r b

2V .

Cm
(
α,β, q̃ ,δe ,δle f

)=Cm
(
α,β,δe

)+Cmδle f

(
α,β

)
δle f

+Cmq (α) q̃ +Cmqδl e f (α)δle f q̃
(8.38)

with q̄ = qc̄
V .

Cn
(
α,β, p̃, r̃ ,δa ,δr ,δle f

)=Cn
(
α,β

)

+Cnδle f

(
α,β

)
δle f +Cnδa

(
α,β

)
δa +Cnδr

(
α,β

)
δr

+Cnr (α) r̃ +Cnr δle f (α)δl e f r̃ +Cnp (α) p̃ +Cnpδle f (α)δl e f p̃

(8.39)

Accordingly, each subfunction in the above expressions can be identified using a
spline function. Eqs. 8.37-8.39 become:

Cl
(
α,β, p̃, r̃ ,δa ,δr ,δle f

)= s11
(
α,β

)

+ s12
(
α,β

)
δle f + s13

(
α,β

)
δa + s14

(
α,β

)
δr

+ s15 (α) r̃ + s16 (α)δle f r̃ + s17 (α) p̃ + s18 (α)δl e f p̃

(8.40)

Cm
(
α,β, q̃ ,δe ,δl e f

)= s21
(
α,β,δe

)+ s22
(
α,β

)
δle f

+ s23 (α) q̃ + s24 (α)δle f q̃
(8.41)

Cn
(
α,β, p̃, r̃ ,δa ,δr ,δle f

)= s31
(
α,β

)

+ s32
(
α,β

)
δl e f + s33

(
α,β

)
δa + s34

(
α,β

)
δr

+ s35 (α) r̃ + s36 (α)δle f r̃ + s37 (α) p̃ + s38 (α)δle f p̃

(8.42)

8.5.2. F-16 MODEL STRUCTURE SELECTION WITH LIMITED A PRIORI KNOWL-
EDGE

According to Section 8.5.1, each subfunction in Eqs. 8.37-8.39 is at most of dimension
3, and the total number of the unknown parameters is relatively low. In this particular
case, TP simplex B-splines have no chance to show its advantage over standard simplex
B-splines in terms of computational efficiency. However, this kind of complete a priori
knowledge on model structures usually does not apply to most of other nonlinear
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systems, e.g., aircraft systems. In order to demonstrate the advantages of TP simplex
B-splines using the data set from an F-16 aircraft, it is assumed in this chapter that only
very limited a priori model knowledge is available, see the assumption below.

Assumption on limited a priori model structure knowledge:
The dynamics of a nonlinear system, which includes but is not only limited to an F-
16 aircraft system, can be captured using a simplex B-spline model structure with the
following property: the polynomial orders required for certain inputs are unnecessary to
be as high as other inputs. More precisely, it is assumed for an F-16 model that the required
polynomial orders for the control surface related inputs, i.e., δa, δe, δr, are lower than those
for other dimensions of inputs. That is, the control inputs of the system are less coupled
with the system states.

Under the abovementioned assumption, the spline model for the 3 dimensionless
moment coefficients could be chosen as follows:

Cm
(
α,β, q̄ ,δe ,δlef,δT

)=
[

Bd1m
g m

(
α,β, q̄

)⊗Bd2m
g m (δe )⊗Bd3m

g m (δlef) ,δT

]
·cg m (8.43)

Cl
(
α,β, p̄, r̄ ,δa ,δr

)=
[

Bd1l
g l

(
α,β, p̄, r̄

)⊗Bd2l
g l (δa)⊗Bd3l

g l (δr )
]
·cg l (8.44)

Cn
(
α,β, p̄, r̄ ,δr ,δa

)=
[

Bd1n
g n

(
α,β, p̄, r̄

)⊗Bd2n
g n (δr )⊗Bd3n

g n (δa)
]
·cg n (8.45)

For the purpose of control allocation, the control derivatives are required, and they
can be obtained through calculating the partial derivatives of a TP simplex B-spline
function. Combining Eqs. 8.43-8.45 with Eqs. 8.29-8.30, the control derivatives can be
calculated as follows:

Dδe
·Cm

(
α,β, q̄ ,δe ,δlef,δT

)=

Bd1m

g m
(
α,β, q̄

)⊗
∂Bd2m

g (b(δe ))

∂δe
⊗Bd3m

g m
(
δlef

)
,δT


 ·cg m

=
[

Bd1m
g m

(
α,β, q̄

)⊗
[

d2m !

(d2m −m2m )!
Bd2m−m2m (b (δe )) ·Pd2m ,d2m−m2m

(
a

(
uδe

))]⊗Bd3m
g m

(
δlef

)
,δT

]
·cg m

(8.46)
with D the partial derivative operator.

Dδa
·Cl

(
α,β, p̄, r̄ ,δa ,δr

)=

Bd1l

g l

(
α,β, p̄, r̄

)⊗
∂Bd2l

g (b(δa ))

∂δa
⊗Bd3l

g l (δr )


 ·cg l

=
[

Bd1l
g l

(
α,β, p̄, r̄

)⊗
[

d2l !(
d2l −m2l

)
!
Bd2l−m2l (b (δa )) ·Pd2l ,d2l−m2l

(
a

(
uδa

))]⊗Bd3l
g l (δr )

]
·cg l

(8.47)

Dδr
·Cl

(
α,β, p̄, r̄ ,δa ,δr

)=

Bd1l

g l

(
α,β, p̄, r̄

)⊗Bd2l
g l (δa )⊗

∂Bd3l
g (b(δr ))

∂δr


 ·cg l

=
[

Bd1l
g l

(
α,β, p̄, r̄

)⊗Bd2l
g l (δa )⊗

[
d3l !(

d3l −m3l
)
!
Bd3l−m3l (b (δr )) ·Pd3l ,d3l−m3l

(
a

(
uδr

))]]
·cg l

(8.48)
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Dδr
·Cn

(
α,β, p̄, r̄ ,δr ,δa

)=

Bd1n

g n
(
α,β, p̄, r̄

)⊗
∂Bd2n

g (b(δr ))

∂δr
⊗Bd3n

g n (δa )


 ·cg n

=
[

Bd1n
g n

(
α,β, p̄, r̄

)⊗
[

d2n !

(d2n −m2n )!
Bd2n−m2n (b (δr )) ·Pd2n ,d2n−m2n

(
a

(
uδr

))]⊗Bd3n
g n (δa )

]
·cg n

(8.49)

Dδa
·Cn

(
α,β, p̄, r̄ ,δr ,δa

)=

Bd1n

g n
(
α,β, p̄, r̄

)⊗Bd2n
g n (δr )⊗

∂Bd3n
g (b(δa ))

∂δa


 ·cg n

=
[

Bd1n
g n

(
α,β, p̄, r̄

)⊗Bd2n
g n (δr )⊗

[
d3n !

(d3n −m3n )!
Bd3n−m3n (b (δa )) ·Pd3n ,d3n−m3n

(
a

(
uδa

))]]
·cg n

(8.50)

As shown in Eqs. 8.43-8.45, the a priori model information can be easily taken into
account by TP simplex B-spline model structure, and the control surface deflections are
treated differently from other aircraft states.

In view of the computational complexity of control allocation, TP simplex B-splines
have some advantages over standard simplex B-splines. As shown in [157], the identified
spline function needs to be parameterized, and the gradient, perhaps also the Hessian
matrix, of the polynomial basis vector needs to be calculated for each per-simplex local
model at each optimization step during control allocation. Using standard simplex B-
splines, a large number of simplices will be involved in the control allocation optimiza-
tion process at each sample step. This is because the control input is also involved in
the partitioning of the aircraft state space, e.g., a three dimensional space defined on α,
β and q̄ . Once the control input is adjusted, the current evaluation point will probably
enters another simplex.

In contrast, as indicated by the results shown in Table 8.1, much less simplices are
involved in an optimization process during control allocation when using TP simplex B-
splines. This is because the control inputs are assumed less coupled with other aircraft
states in TP simplex B-splines. The control input is not involved in the partitioning of
defined on the aircraft states. To summarize, the computational load of the control
allocation solver caused by calculating a large number of per-simplex local optimum
can be relieved.

With the function inputs determined by Eqs. 8.43-8.45, model structure selection for
system identification problem using the simplex B-splines is reduced into the selection
of triangulation vertices, per-simplex polynomial orders and smoothness orders. The
working ranges of the control inputs and the state variables of an F-16 aircraft are shown
in Eq. 8.51.

α := [−10,45][deg] δe := [−25,25][deg]

β := [−30,30][deg] δa := [−21.5,21.5][deg]

q := [−30,30][deg/s] δr := [−30,30][deg]

p := [−30,30][deg/s] δle f := [0,25][deg]

r := [−30,30][deg/s] VTAS := [50,300][m/s]

(8.51)
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8.5.3. SIMULATION RESULTS COMPARED TO STANDARD SIMPLEX B-SPLINES

This section is focused on demonstrating the benefits of using the TP simplex B-spline
model structure compared to the standard simplex B-spline structure. Specifically, the
approximation power of the TP simplex B-splines is investigated for different polynomial
degrees, and the results are compared with those from the standard simplex splines.
However, the data sets used in this section are limited to a 3-D data set and a 5-D
data set. In contrast, the focus of Section 8.6 is shifted from the validation of the TP
simplex spline model to its application to an F-16 aircraft. More validation results will
be given in Section 8.6 where the approximation accuracy for the roll and yaw moment
coefficients of an F-16 aircraft are also investigated. Keep in mind that different data sets
and triangulations will be used in Section 8.6. The validation results are extended to all
three moment coefficients of an F-16 aircraft in Section 8.6, and the polynomial order
is chosen at a fixed number. Two scenarios are used to demonstrate the approximation
power of the TP simplex B-splines in this section:

Scenario 1: The term Cm
(
α,β,δe

)
shown in Eq. 8.38 is approximated using a 3-D data set

generated using the wind tunnel data of an F-16 aircraft. The stp
(
α,β,δe

)−stp (2,1)
and sstd

(
α,β,δe

)
model structures are used for the TP simplex and the standard

simplex splines, respectively.

Scenario 2: The pitch moment coefficient Cm is approximated from a 5-D data set
generated using the wind tunnel data of an F-16 aircraft. The stp

(
α,β, q̃ ,δe ,δl e f

)−
stp (3,1,1) and sstd

(
α,β, q̃ ,δe ,δle f

)
model structures are used for the TP simplex

and the standard simplex splines, respectively.

For both scenarios 1 and 2, the training data set consists 12000 scattered data points,
and the test data set consists of 4000 data points.

It should be noted that the term Cm
(
α,β,δe

)
shown in Eq. 8.38 is only a subfunction

of Cm, therefore, it is different from Cm. To indicate the difference, Cm
(
α,β,δe

)
will be

written as C∗
m

(
α,β,δe

)
in the remainder of this chapter. In scenario 1, the grids chosen

to build a triangulation are: [−10,10,45], [−30,30],
[−25,0,25]. An stp

(
α,β,δe

)− stp (2,1) TP simplex B-spline structure is used after assum-
ing that the third dimension δe is less correlated to the other two dimension of inputs.
The individual dimensions for the spline function division and the smoothness order
are chosen as n1 = 2,m1 = 1, n2 = 1,m2 = 1. In addition, as a comparison, a 3-D function
using standard simplex B-splines is approximated without splitting the entire function
into multiple sub structures, where n = 3,m = 1.

The Solver for Spline Model Identification

The function approximation problem shown by Eqs. 4.8 and 4.13 is rewritten as
follows:

Y = X ·c+ξ
Hc = 0

(8.52)
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where X is the regression matrix with each row vector built using Bd
g (b(x)), Y is the

observation vector. It is assumed that E (ξ) = 0, Cov (ξ) =∑
with

∑
the residual covariance

matrix.
The cost function of the spline function approximation problem is:

J (c) = 1

2
(Y−X ·c)>

∑−1 (Y−X ·c) (8.53)

The optimization problem is formulated as follows:

min
c

J (c) , sub j ect to Hc = 0 (8.54)

Using Lagrange multipliers this problem can be formulated as a Karush-Kuhn-Tucker
(KKT) system, and an solution can be efficiently derived either using an iterative solver
developed by Awanou and Lai et al. [9, 10] or using a substitution-based solver, see
Chapter 3. The first solver is batch type method, the second solver suits for online
implementation.

Table 8.2: Approximation power comparison between TP simplex B-splines and standard simplex B-splines,
3-D C∗

m
(
α,β,δe

)

TP simplex B-splines, stp (2,1),T4,T2 standard simplex B-splines, sstd (3), T24

polynomial order
n1 = 2,m1 = 1,n2 = 1,m2 = 1

polynomial order
n = 3,m = 1

coef. num. RMSE max error coef. num. RMSE max error
d1 = 2,d2 = 2 144 0.0189 0.0987 d = 2 240 0.0238 0.1142
d1 = 3,d2 = 3 320 0.0139 0.0840 d = 3 480 0.0153 0.0964
d1 = 4,d2 = 3 480 0.0110 0.0596 d = 4 840 0.0116 0.0727
d1 = 4,d2 = 4 600 0.0108 0.0577 d = 4 840 0.0116 0.0727
d1 = 5,d2 = 5 1008 0.0080 0.0603 d = 5 1344 0.0082 0.0372

According to the results shown in Table 8.2, TP simplex B-splines can lead to a higher
approximation accuracy than the standard simplex B-splines using less B-coefficients in
the sense that the former yields a lower RMSE.

In scenario 2, the grids are: [−10,10,45] , [−30,30] , [−25,25] , [0,25] , [−90,90]. An
stp

(
α,β, q̃ ,δe ,δle f

)− stp (3,1,1) structure is used when using TP simplex B-splines after
assuming that the fourth and the fifth dimensions are less correlated with the other three
dimension of inputs, n1 = 3, d1 = 3, m1 = 1, n2 = 1, d2 = 3, m2 = 1, n3 = 1, d3 = 3,
m3 = 1. In addition, as a comparison, a 3-D function using standard simplex B-splines
is approximated without splitting the entire function into multiple sub structures, n = 5,
d = 3, m = 1. According to Table 8.3, the number of simplices increases very fast with

Table 8.3: Approximation power comparison between TP simplex B-splines and standard simplex B-splines,
5-D Cm

TP simplex B-splines, stp (3,1,1),T6,T1,T1 standard simplex B-splines, sstd (5),T96

polynomial order
n1 = 3,m1 = 1,n2 = 1,m2 = 1,n3 = 1,m3 = 1

polynomial order
n = 5,m = 1

coef. num. RMSE max error coef. num. RMSE max error
d1 = d2 = d3 = 2 540 0.0286 0.1514 d = 2 2016 0.0342 0.1690
d1 = d2 = d3 = 3 1920 0.0214 0.1519 d = 3 5376 0.0253 0.1166
d1 = 4,d2 = d3 = 3 3360 0.0177 0.1177 d = 3 5376 0.0253 0.1166

the increase of dimensions. Using standard simplex B-splines, a triangulation contains
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96 simplices when the spline function is dimension 5. The results shown in Table 8.3
support the conclusion presented in Section 8.4.4 that TP simplex B-splines usually yield
much less simplices than standard simplex B-spline model structure. Similar to the
results shown in Table 8.2, results shown in Table 8.3 also show that TP simplex B-splines
have the potential to result in higher approximation accuracy using less B-coefficients
than standard simplex B-spline model structure.

8.6. APPLICATION TO AN F-16 FOR MOMENT COEFFICIENT

AND CONTROL DERIVATIVE ESTIMATION
The model identification method which uses TP simplex B-spline model structure is
further validated using two simulated flight-trajectory data sets generated using a high-
fidelity nonlinear F-16 model, see [114]. All three dimensionless moment coefficients are
estimated using online data points available in a flight mission. The trim condition of the
aircraft is: VTAS = 152.40 m/s, he = 4.572 km. To obtain the first data set, the modified
3211 inputs shown in Figure 8.5 were applied to the open-loop F-16 model. To obtain
the second data set, a sequence of angular commands was applied to a closed-loop
F-16 model, which is equipped with an adaptive nonlinear dynamic inversion (ANDI)
controller, see Appendix G. Each of the data sets mentioned above contained 3000 data
points. The work presented in this section is focused on how well the TP simplex B-
spline approach is suited for estimating all three nondimensional moment coefficients
using the real-time data available in a simulated flight. In addition, attention is also paid
on how to calculate the directional (control) derivatives, which constitute the control
allocation matrix.

8.6.1. TRIANGULATIONS AND POLYNOMIAL ORDER DETERMINATION
The overall model structures of the spline models of Cm, Cl and Cn are shown in Eqs.
8.43-8.45. The triangulation of the simplex B-splines is constructed using the vertices
shown in Eq. 8.51. The number of simplices in each triangulation is depicted in Table 8.4.

Table 8.4: The number of simplices contained by each triangulations

moments Cm Cl Cn

triangulation T1m ,T2m ,T3m T1l ,T2l ,T3l T1n ,T2n ,T3n
simplex number 6,1,1 21,1,1 21,1,1

The selected polynomial orders for the non-dimensional moment coefficients are
listed in Table 8.5. Following the setups in Table 8.4 and Table 8.5, the overall B-

Table 8.5: Selection of polynomial orders and smoothness orders for the estimation of moment coefficients

moments Cm Cl Cn
polynomial order d1m = 3,d2m = 3,d3m = 2 d1l = 2,d2l = 3,d3l = 3 d1n = 2,d2n = 3,d3n = 3
smoothness order m1m = 0,m2m = 0,m3m = 0 m1l = 0,m2l = 0,m3l = 0 m1n = 0,m2n = 0,m3n = 0

coefficient vectors cg m , cg l and cg n , shown in Eqs. 8.43-8.45, have 1441, 5040 and
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5040 elements, respectively. Then, by using the substitution based speedup strategy
presented in [138], the lengths of the unknown vectors are reduced to 769, 1264 and
1264, respectively. It can be seen that the new speedup approach taken from [138] greatly
reduces the scale of the original parameter identification problems.

8.6.2. VALIDATION RESULTS USING A 3211 OPEN-LOOP DATA SET
As mentioned at the beginning of this section, the changing history of the control inputs
during collecting the first data set is illustrated in Figure 8.5. The 3211 type aileron,
elevator and rudder inputs are applied to the open-loop nonlinear F-16 aircraft model
sequentially. As can be seen in Figure 8.5, the magnitude of the 3211 type aileron inputs
has been slightly modified to avoid a roll angle which is larger than 90 deg.
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Figure 8.5: Excitation inputs to the open-loop model,
3211.
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Figure 8.6: Comparison of the actual, reconstructed
and estimated values of the non-dimensional mo-
ment coefficients.

The first data set is used as the training data set to demonstrate the applicability
of the tensor-product simplex B-splines. The functional approximation power of the
tensor-product simplex B-splines is depicted in Figure 8.6. In these figures, ‘act’, ‘recon’
and ‘est’ denote ‘actual’, ‘reconstructed’ and ‘estimated’, respectively. The actual value
is constructed from wind-tunnel data of the F-16 aircraft model and interpolation, see
[114]. The reconstructed values are the moment coefficients constructed from the
measured states using Eqs. 8.3-8.5.

As shown in Figure 8.6, the output value of the spline function, i.e., Cl, stays very close
to the actual and reconstructed value of Cl. The fitting error is negligible. Comparing the
results shown in the period of 25-30 seconds with those shown in the period of 7-10
seconds, it can be found that the roll moment in the second period is larger on average
than that in the first period. In Figure 8.6, small tracking errors only appear around
the 14th and 15th seconds. Similar to the fitting results for Cl, the fitting errors of Cn

shown in Figure 8.6 are also negligible. To summarize, the TP simplex B-splines with its
structure shown in Eqs. 8.43-8.45 have shown adequate approximation power in fitting
the moment coefficients of an F-16 aircraft.

As presented in [87], the control effectiveness matrix, which is comprised of control
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derivatives, needs to be calculated in real time to fulfill an adaptive nonlinear dynamic
inversion controller. Therefore, the directional derivatives of the TP simplex B-spline
functions with regard to the control surface deflections are studied in this chapter. Five
elements of the control allocation matrix MCA, see Eq. 8.2, are plotted in Figure 8.7. The
actual values labeled with ‘act’ were obtained using the simulated wind tunnel data table
from [114] and interpolation.
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Figure 8.7: Elements of the control allocation matrix MCA with respect to aileron, elevator and rudder.

In Figure 8.7, Clδa
stands for the directional derivative of Cl along the direction of

δa . The Clδr
, Cnδa

, Cnδr
and Cmδe

can be interpreted in the same way. In Figure 8.7(a),
the estimated directional derivative is compared with the actual partial derivative. The
actual value of b ·Clδa

stays around −1.38 and reaches −0.78 at the 14.8th second. The
estimated value of b ·Clδa

maintains the same sign, and is bounded between −1.42 and
−0.85. The biggest difference between the actual value and the estimated value appears
around the 15th second, and the difference is around −0.65.

The estimated value of b ·Clδr
is compared with its actual value in Figure 8.7(b). The

estimated value stays close to 0.19 and maintains the same sign. The biggest difference
is around 0.2, which shows between 15 and 19 seconds. As shown in Figure 8.7(b), the
estimated b ·Cnδa

stays around −0.38, which is close to the actual value. Similarly, the
estimated b ·Cnδr

, as shown in Figure 8.7(b), keeps around −0.85. For both b ·Cnδa
and

b ·Cnδr
, the biggest difference between their estimated and actual values appears around

the 15th second, when the angle of attack has a big variation.
The estimated value of c̄ ·Cmδe

is plotted in Figure 8.7(a). Because the actual value
can not be obtained directly by interpolation from the wind tunnel data table, the actual
value shown in Figure 8.7(a) is the estimated value using small perturbation based
centered difference. The estimated c̄ ·Cmδe

maintains between −2.65 and −0.8 with

its sign negative definite. Except the period between the 12.5th and 18th seconds, the
estimated value stays close to −1.65.

To summarize, from the adaptive NDI control point of view, the control effectiveness
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matrix is not estimated optimally, which will therefore lead an non-optimal controller.
Nevertheless, the estimated control effectiveness matrix should be applicable for the
purpose of adaptive NDI control and does not destroy the stability of the NDI control
system since its elements always stay very close to the actual values and are bounded in
a proper region.

8.6.3. VALIDATION RESULTS USING A DATA SET FROM A CLOSED-LOOP

FLIGHT TEST

In Section 8.6.2, a validation data set was obtained by running the open-loop F-16
aircraft with a 3211 type control inputs, and the function approximation power of the
tensor-product simplex B-splines was demonstrated preliminarily. In this section, a
typical flight task of the closed-loop F-16 aircraft system is considered to validate the
TP simplex B-spline model structure further. A double-loop adaptive NDI angular
controller is designed for the F-16 aircraft [114]. The controlled variables in the outer
loop areφ,α and β. The controlled variables in the inner loop are the body angular rates
p, q and r . For more details about how to design the adaptive NDI angular controller,
the reader is referred to Lombaerts et al. [86][p.222-232]. A modified step-type reference
command is given to the roll angle channel at the 3th and 10th seconds with a magnitude
of 20 deg. Similarly, a modified step-type reference command is given to the angle of
attack channel at the 15th and 22th seconds with a magnitude of 10 deg, see Appendix
G.

The recorded control surface deflections for this angular command tracking task
of the closed-loop F-16 control system are plotted in Figure 8.8. From Figure 8.8, it
can be clearly seen that the ailerons and rudders are regulated by the controller in
a coordinate way to track the step-type roll reference command at the 3th and 10th

seconds. The commanded deflections of the elevator has a minimum value of −6.5
and a maximum value of −0.75. Due to the influence from the short period mode, the
commanded elevator deflections show an oscillation after the 23th second and have a
trend of stabilizing the pitch motion.

The second data set, collected from the closed-loop system, is used as a validation
data set aimed at showing the applicability of the tensor product splines in real-time
application. The fitting performances in terms of the moment coefficients are plotted
in Figure 8.9. Similar to the results shown in Figure 8.6, the estimated values of Cl

and Cm shown in Figure 8.9 closely track the changes of their actual values, which are
constructed from the wind tunnel data tables by interpolation.

The estimated values, reconstructed values and the actual values of Cn are plotted
in Figure 8.9. Unlike the results shown in Figure 8.6, the estimated values of Cn show
a minor steady estimation error between the 5th and the 9th seconds when compared
with the actual values. This estimation difference is mainly due to the fact that the initial
values of the B-coefficient vector are not obtained from a training data set with sufficient
data coverage. Except the time period of 5-9 seconds, the fitting errors of Cn stay close to
zero.

Similar to Section 8.6.2, the directional derivatives of the moment coefficients
are calculated with regard to the aileron, elevator and rudder. The changes of the
control derivatives are plotted in Figure 8.10. They are also compared with the actual
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Figure 8.8: Recorded inputs of the closed-loop model,
which is equipped with an ANDI controller.
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Figure 8.9: Comparison of the actual, reconstructed
and estimated values of the non-dimensional mo-
ment coefficients, closed-loop data.

aerodynamic coefficients which are derived from the wind tunnel data tables presented
in [114]. As shown in Figs. 8.10(a)-8.10(b), the estimated values of four elements of the
control allocation matrix namely b ·Clδa

, b ·Clδr
,b ·Cnδa

and b ·Cnδr
are bounded and

stay close to their actual values. The magnitude of the directional derivative of c̄ ·Cm

with respect to the elevator keeps higher between the 18th and 23th seconds than other
period. This indicates that the elevator has a high efficiency when the angle of attack is
large. For all of the elements in the control allocation matrix, the sign of their estimated
values keeps unchanged during the whole simulation.
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Figure 8.10: Elements of the control allocation matrix MCA with respect to aileron, elevator and rudder, closed-
loop data.

To summarize, the modeling approach using the TP simplex B-splines is able to
approximate the data set from a simulated closed-loop flight of an F-16. The estimated
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control derivatives are properly bounded and stay close to the actual values. Comparing
Figure 8.9 with Figure 8.6, it can also be seen that the magnitude of the moment
coefficients of the second data set is much lower than that of the moment coefficients
in the first data set. That is, the first data set stands for more agile maneuver than the
second data set.
Remarks:

The directional derivatives of a highly nonlinear function which describes a dynamic
system are always hard to estimate accurately or even not possible to estimate accurately
under some circumstances. In the standard simplex B-spline functions, each argument
is treated equally in the sense that each argument is assigned the same polynomial
orders in the basis polynomials, see Eq. 4.4. Correspondingly, the standard simplex B-
spline model structure has the chance to introduce some un-physical polynomial basis
terms. These unnecessary terms are the terms that cause model mismatches.

In this chapter, only the output fitting errors are involved (evaluated) in the cost
function. In this case, the first order directional derivatives in terms of control surface
deflections cannot be guaranteed to track their corresponding actual values closely.
However, if we have some a priori knowledge of the directional derivatives, e.g., the
upper and lower bounds, these differential constraints can be taken into account
during fitting the function outputs in order to enhance the estimation accuracy of the
directional derivatives, see de Visser et al. [37].

8.7. APPLICATION TO INCREMENTAL BACKSTEPPING AND THE

COMPARISON
An incremental backstepping controller is designed for the F-16 aircraft model. The
formulations of the aircraft motion equations used in this chapter are taken from van
Oort et al. [163], and the incremental backstepping controller is designed using the
method taken from Sonneveldt et al. [135] and Acquatella et al. [1]. The control
allocation matrix demanded by the incremental controller is identified using the TP
simplex B-splines, regular polynomial based method and Immersion & Invariance
method, see [2], respectively. The I&I technique is initially aimed at making the
tuning process of the modeling parameters independent from the tuning process of
the controller parameters when using an integral (tuning function) adaptive control
method. But it is used in this work to estimate a single effectiveness matrix with a focus
on how well it can reflect the model parameter variations concerning the requirements
from a controller. The identified control derivatives are compared to the true values
obtained from the wind tunnel data tables. Thereafter, the flight performance of the
incremental backstepping controller, which uses the control allocation matrix identified
using the TP simplex B-spline identifier, is compared with the controllers using the
control allocation matrix, which is identified using other identification algorithms.

The changes in the control effectiveness parameters are plotted in Figure 8.11. As
shown in the 5 figures, the directional derivatives calculated using the TP simplex B-
splines are more precise than those obtained using either ordinary polynomials or the
I&I method. The polynomial based method results in the worst estimation of the control
effectiveness. The trends of the parameters are well captured by the TP simplex B-splines
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Figure 8.11: Elements of the control allocation matrix MCA, comparison between B-splines and the
polynomials.

without evident oscillation in the estimating errors.

The angular and body angular rate control performances are depicted in Figs.
8.12(a)-8.12(f). The adaptive incremental backstepping controller using the TP simplex
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Figure 8.12: Control performance of an incremental backstepping controller with the control effectiveness
matrix identified with polynomials and B-splines, respectively.

B-splines results in almost the same level of control performance as that of the other
controllers, which use the I&I estimator or the actual effectiveness matrix, on the roll
angle and the angle of attack. However, the flight controller using the polynomial based
identifier results in worse control performance on the yaw rate r .
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8.8. CONCLUSIONS
In this chapter, a novel compound structure for multivariate simplex B-splines is
presented. The spline method using this compound model structure is referred to as
the tensor-product (TP) simplex B-spline method. The TP simplex B-spline structure
provides more options for model structure selection when using simplex B-splines.
Different function inputs are allowed to be treated differently in terms of the selection
of polynomial orders. Compared to the identification methods which use standard
simplex B-splines, the linear regression modeling methods using TP simplex B-splines
have a lower computational load requirement in the sense that it requires fewer B-
coefficients. Specifically, if certain function inputs are less coupled with other inputs and
the polynomial orders for those dimensions need not to be as high as other dimensions,
the TP simplex B-splines, which require fewer B-coefficients than standard simplex B-
splines, are recommended. In the TP simplex B-spline approach, the global basis vector
maintains normalized, which contributes to the stability of the function approximation
algorithm. When using TP simplex B-splines, the highest order of partial derivatives
along each function input dimension is maintained.

The validation includes three parts. Firstly, the TP simplex B-spline based model
identification method is validated using data sets generated using a F-16 nonlinear
aircraft model. A 3-D and a 5-D function approximation problem related to the
dimensionless pitch moment coefficient is used to demonstrate the advantages of TP
simplex B-splines over standard simplex B-splines. Simulation results show that TP
simplex B-splines have the potential to result in higher approximation power than
standard simplex B-splines while using less B-coefficients. Secondly, TP simplex B-
splines were further validated using simulated flight test data in a simulated flight test to
show the applicability and efficiency of the new approach. The simulation results show
that TP simplex B-splines are able to achieve an appropriate approximation accuracy
in modeling all the three aerodynamic moment coefficients. In addition, the control
derivatives can be estimated properly. Most precisely, the estimated control derivatives
stay close to their actual values with their magnitudes bounded in a reasonable region.
In the future, to estimate the directional derivatives more accurately, the differential
constraints should be taken into account when identifying the B-coefficients. Thirdly,
the control derivatives estimated using TP simplex B-splines are incorporated into
an incremental backstepping (IBKS) controller designed for an F-16 aircraft model.
Compared to an I&I approach, TP simplex B-splines can better capture the changing
trend of the control effectiveness matrix. However, simulation results show that an IBKS
controller is not sensitive to the estimation accuracy of the control effectiveness matrix.



9
CONCLUSIONS AND

RECOMMENDATIONS

The goal of the research discussed in this thesis was twofold. First, to develop new
powerful, cost-saving and computationally effective time-domain methods for identi-
fying global models of nonlinear systems such as aircraft systems. Second, to extend
acceleration measurements-based incremental control approaches to deal with struc-
tural or actuator failures occurring in an aircraft. The first was mainly developed for
designing a model-based adaptive flight controller and for developing a model-based
offline or online flight envelope protection approach. The second aimed at providing
an alternative nonlinear reconfigurable control approach to fault-tolerant flight control.
This goal is reflected by the main research question of this thesis:

Main research question

How can an advanced fault-tolerant flight control system be designed to increase the
survivability of an aircraft.

Three new global model identification methods and two acceleration measurements-
based incremental nonlinear flight control laws were developed to answer the above
research question.

9.1. OVERVIEW OF THE WORK ON MODEL IDENTIFICATION
Among those three global model identification algorithms developed in Part One of
this thesis, two of them use multivariate simplex B-splines (MVSB) and the third one
was developed by combining a recursive kernel method with a support vector machine
scheme. To enhance the computational efficiency of the parametric model identification
methods using multivariate simplex B-spline polynomials, two recursive linear regres-
sion schemes were developed yielding two improved recursive linear-regression model

165
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identification methods using MVSB. These two methods were validated using simulated
flight test data generated with a high-fidelity nonlinear model of an F-16 aircraft. A
novel recursive and parametric kernel method was developed for aerodynamic model
identification. This focus of this work was to enhance the approximation power of
a recursive and parametric kernel method by determining an optimal set of kernels
for the kernel scheme. The adaptive kernel method was validated using a series of
public available benchmark data sets well known to researchers from the field of pattern
recognition [176, 179].

The global model identification methods function as follows. Firstly, a nominal
aerodynamic model has to be trained in advance using pre-collected flight test data or
wind-tunnel data. Then, the nominal model can be applied in a real-time situation,
where the global model is allowed to be updated locally using flight test data for the
current flight conditions. These global model identification methods then allow the
estimated models to be stored for later re-use in a model-based adaptive flight controller
for cases where the same flight conditions are revisited.

9.2. OVERVIEW OF ACCELERATION MEASUREMENTS-BASED IN-
CREMENTAL CONTROL

A novel type of acceleration measurements-based incremental flight control laws was
investigated and reported in Part Two of this thesis. The research aimed at providing
a FTFC system with a powerful non-conventional flight control approach which could
accommodate sudden structural or actuator failures occurring in an aircraft. In this part,
a sensor-based backstepping approach is extended to handle sudden model changes in
an aircraft caused by structural or actuator failures. A hybrid two-loop attitude controller
and a joint two-loop angular controller were designed for the RECOVER model, the
rate controller was designed using an acceleration measurements-based incremental
controller. Both the hybrid two-loop angular controller and the joint two-loop angular
controller were validated using the RECOVER model with a focus on dealing with two
benchmark fault scenarios: namely a rudder runaway case and a flight 1862 engine
separation scenario.

A global model identification method using tensor-product MVSB was developed.
This new modeling method provides a user with more flexibility with respect to model
structure selection and can enhance the clarity of a physical interpretation of the
estimated model. Depending on a priori knowledge of a plant under estimation, the
multivariate B-spline model can be chosen to have a different model structure, where
a certain dimension of the spline function is treated differently from other dimensions.
The tensor-product multivariate simplex B-splines method was applied to fit a nonlinear
global model for a F-16 aircraft using simulated flight data generated using a high-fidelity
nonlinear F-16 model. The control derivatives were derived from the tensor-product
multivariate simplex B-spline model to provide a control effectiveness matrix for an
incremental flight controller. How the estimation accuracy of the control effectiveness
matrix, which is identified using the tensor-product simplex B-splines method, affects
the performance of an incremental flight controller was investigated.

In the following, the conclusions obtained throughout the different chapters are
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synthesized and presented. A general conclusion is given in Section 9.5. Finally, in
Section 9.6, some recommendations for future research are presented.

9.3. RECURSIVE GLOBAL MODEL IDENTIFICATION METHODS
A global aerodynamic model is needed by a model-based fault-tolerant fight control
(FTFC) system. Reconfigurable flight control methods based on a model-based adaptive
control law have attracted a large amount of interest from the aerospace community
over the past few decades because this type of methods extracts the most of the
potential of the aircraft at current operating condition and can therefore enhance the
aircraft’s survivability in the case of failure. A full-envelope modular reconfigurable
flight controller requires a global aerodynamic model which is valid in the entire flight
envelope of an aircraft. At the meantime, the significance of flight envelope protection
FEP has caught wide attention from engineers in the field of guidance navigation and
control. One preferred branch of the FEP methods is the global aerodynamic model
based offline or online FEP method. Central to the model-based FEP method is again an
accurate global aerodynamic model. Once the aircraft states are given, an aerodynamic
model identification problem is reduced into a system identification problem which can
be solved using an equation-error approach. The equation-error approach is commonly
based on a function approximation algorithm. A parametric function approximation
scheme namely multivariate simplex B-splines MVSB and an adaptive kernel method
are the potential candidates which can be well suited for the above-mentioned purpose.
However, these two methods need to be improved either in computational efficiency or
in approximation accuracy. The first subquestion related to the main research question
was therefore:

The First Subquestion:

How can the candidate function approximation methods, i.e., MVSB and kernel
methods, be improved in terms of their approximation accuracy and computational
efficiency, to meet the needs of model-based adaptive control and online flight envelope
protection OFEP?

To answer the first subquestion related to the main research question, the following
were developed:

1. A substitution based solver was developed for solving an equality-constrained
problem as in identifying a linear regression model using simplex B-splines
(Chapter 3, Paper [138, 156]).

2. A recursive sequential routine was developed for updating a global linear regres-
sion model when using multivariate simplex B-splines (Chapter 4, Paper [141]).

3. A novel tensor-product (TP) multivariate simplex B-spline model structure was
extended into a multidimensional case, and a detailed analysis of the properties of
this model structure is given in Chapter 8 (Paper [142]).
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4. A novel recursive parametric kernel method was developed by combining a regular
recursive parametric kernel method with an improved recursive reduced least
squares support vector regression (IRR-LSSVR) (Chapter 5, Paper [144]).

The linear regression model based on Bernstein basis polynomials was essential to all
further applications of an aircraft model, for example model-based adaptive flight con-
trol and model-based flight envelope protection. However, the computational efficiency
of existing parameter estimation techniques for deriving a multivariate simplex B-spline
model still needs to be enhanced to enable the method to be applied in real-time. The
two solutions to this end, proposed in this thesis, are summarized and concluded below.

Overview of Chapter 3 A substitution-based solver was developed for a linear regression
modeling method using MVSB. The substitution solver was based on a singular value de-
composition of the constraint matrix and a transformation using the vectors contained
by the kernel space of the equality constraint matrix. The original equality constrained
linear regression model identification problem was converted into a constraint-free
linear regression modeling problem which could be solved using an ordinary least
squares or recursive least squares identifier.

Conclusions of Chapter 3 The substitution-based mathematical transformation re-
duced the size of the original linear regression problem in the sense that the scale of the
parameter covariance matrix was reduced, this resulted in an effective linear regression
model updating algorithm when using MVSB. The computational complexity of the
substitution based (SB) MVSB approach was given after an analysis of the complexity
of the algorithm from the mathematical perspective. An equality constrained recursive
least squares MVSB (ECRLS-MVSB) has a computational complexity of O

(
3m2

)
, and the

SB-MVSB method has a computational complexity of O {(m − r ) · (4m −3r )} with m and r
the total number of B-coefficients and the smoothness order, respectively. The analysis
proved that the computational complexity of the SB-MVSB approach was much lower
than that of an ECRLS-MVSB method, and the gap between these two methods was even
larger when the rank of the constraint matrix was high. Thereafter, the SB-MVSB method
was validated using simulated flight test data generated using a high-fidelity nonlinear
F-16 model, and was compared with a model identification method using ordinary
polynomial basis. These two methods were applied to model the nondimensional force
and moment coefficients of an F-16 aircraft. The comparison of results showed that the
SB-MVSB method led to higher approximation accuracy than the ordinary polynomial
based method.

Main findings of Chapter 3:

A substitution based solver developed using a singular value decomposition can reduce
the computational load of a recursive function approximation algorithm which uses a
linear regression form of the MVSB model.

Overview of Chapter 4 A recursive sequential scheme was developed for deriving and
updating a linear regression model when using MVSB. The aim was to enhance the
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computational efficiency of the recursive MVSB method by transforming a global model
identification problem at each time step into a per-simplex local-model-updating prob-
lem. This recursive model identification method is denoted as a recursive sequential
(RS) MVSB approach in this thesis. In this method, the updating routine of the linear
regression model consists of two consecutive steps. In step one of this approach, a
per-simplex local model only is updated instead of updating the entire global model
define on all the simplices. The high computational load resulted from the requirement
to update the global covariance matrix is avoided. In step two, to allow for a smooth
transition between different per-simplex local models, a linear minimum mean square
errors (LMMSE) estimation, i.e., a linear projection with an optimality criterion, of the
global B-coefficient vector is performed.

Conclusions of Chapter 4 The new recursive model identification method, i.e., RS-
MVSB, was proven to be able to comply with the equality constraints resulting from the
requirements on a smooth transition between different simplices. The computational
complexity over time of the RS-MVSB and ECRLS-MVSB was given following an analysis
from a mathematical operation prospective. The ECRLS-MVSB method has a computa-
tional complexity of O

(
3m2

)
and the RS-MVSB method has a computational complexity

of O
(
3 m2

k2

)
with k the number of local models. The analytical results showed that the RS-

MVSB was more computationally economic than the ECRLS-MVSB method. Two series
of simulation experiments were performed. Firstly, the RS-MVSB method was validated
using a 2-dimension data set and a 3-dimension data set designed artificially with white
noise, and the method was compared with the ECRLS-MVSB method. Simulation results
showed that RS-MVSB approach resulted in a much lower computational load than
ECRLS-MVSB without evidently sacrificing its approximation power. As shown in the
results for a 3-D demonstration example where the B-coefficient number was 2808,
the RS-MVSB method was 60-70 times faster than the ECRLS-MVSB method when the
codes were programmed in the Matlab running as interpreted scripts and run on a
quad core PC (Intel Xeon E3-1270@3.40 GHZ, RAM 16.0 GB). Secondly, to demonstrate
the high approximation power of the RS-MVSB method during aerodynamic model
identification, the method was validated using a simulated flight test data generated
using a high-fidelity nonlinear F-16 model, and it was compared with ECRLS-MVSB
and a modeling method using an ordinary polynomial basis (OPB). The model structure
selection of MVSB was also investigated with a focus on how the polynomial order
and smoothness order affected the approximation power of the MVSB method. The
simulation results showed that the new recursive global model identification method,
i.e., RS-MVSB, led to a more accurate aerodynamic model than the ordinary polynomial
based method and it yielded an accuracy comparative to that of ECRLS-MVSB as long as
that the smoothness order was not chosen to be relatively high, e.g., larger than 2.

Main findings of Chapter 4:

An RS-MVSB method can reduce a computational load during model identification by
only executing local updating of a local per-simplex model.
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Overview of the algorithm part of Chapter 8 To provide more options for model
structure selection when using MVSB, a novel tensor-product (TP) multivariate simplex
B-spline (MVSB) model structure was studied. The tensor-product multivariate simplex
B-splines (TP-MVSB) global model identification approach was extended from a single-
dimension case into a multi-dimension case, and the properties of this new model
structure were analyzed in detail. In a standard MVSB model, each dimension of inputs
is treated identically where there is no chance to set different polynomial orders for
different inputs. However, for some systems, a sufficiently accurate model can be
achieved by choosing low polynomial orders for the spline polynomials in a certain
dimension. For example, indicated in the a priori knowledge, a model under study might
be affine in certain inputs. In the TP-MVSB approach, an input dimension, which is
less correlated with other dimensions and does not require a polynomial order that is
as high as other dimensions, can be treated differently from all the other inputs. The
calculation procedure of the entire basis regression vector involving all inputs consists of
two steps. First, a univariate spline basis vector is constructed for this chosen input, and
a basis regression vector for the other remaining inputs is constructed using standard
MVSB. Then, the entire basis regression vector is constructed by synthesizing those
two basis vectors mentioned above using a tensor product operator. The TP-MVSB
modeling structure was extended, i.e., generalized, to allow for dealing with the case
where two or more dimensions are chosen to be treated specifically. In addition, the
generic expression was given for calculating the partial derivatives with regard to any
dimension of input.

Conclusions of the algorithm part of Chapter 8 Using a standard MVSB approach
yields high-order basis polynomials, which may not be expected for certain inputs,
during the construction of the basis regression vector. In contrast, these high-order
basis polynomials can be set to be excluded by the basis regression vector when using
a TP-MVSB approach. Compared to the standard MVSB, the TP-MVSB approach can
reduce the scale of the MVSB model without sacrificing the approximation accuracy.
As shown in one of the demonstration examples where the nondimensional pitch
moment coefficient was estimated, the TP-MVSB approach required one third less
B-coefficients than that needed by a standard MVSB method, but yielded a higher
approximation accuracy. The TP-MVSB approach was applied to simulated flight test
data sets generated using a high-fidelity nonlinear F-16 model. The simulation results
showed that TP-MVSB can achieve a comparative approximation accuracy to that of
standard MVSB when estimating the nondimensional moment coefficients of the F-16
aircraft.

Main findings of part one in Chapter 8:

The TP-MVSB modeling structure can treat different input dimensions differently, and
it helps to reduce computational load by removing some unnecessary basis polynomials
from the regression vector according to the a priori knowledge.

A consensus exists that kernel methods such as RBF neural networks have a high
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approximation power. Considering this merit of the kernel methods, they were inves-
tigated in this thesis to perform aerodynamic model identification. Parametric type
of kernel methods which uses a fixed number of kernels exists. One main challenge
of using a parametric type recursive kernel method is how to determine an optimal
subset of kernels in terms of kernel number, center position and bandwidth. This
issue commonly has to be addressed by solving a global optimization problem, which
is usually computationally time consuming.

Overview of Chapter 5 Two recursive model identification methods using kernels
namely WV-LSSVR and GPK-LSSVR were proposed by combining a recursive parametric
kernel method with an offline support vector machine namely improved recursive re-
duced least squares support vector regression (RR-LSSVR) (IRR-LSSVR). The IRR-LSSVR
method, an offline model identification method, has been proven to be capable of
choosing a lower number of more optimal support vectors than many other exist-
ing well-known support vector machines without sacrificing approximation accuracy.
Therefore, IRR-LSSVR was applied in this work to determine number of kernels, center
positions and bandwidths for the new recursive kernel methods, i.e., WV-LSSVR and
GPK-LSSVR. This kernel determination process was done through an offline analysis of
pre-collected modeling data sets. During a real-time application of the recursive kernel
method, the linear regression model defined among the kernel space is updated using
ordinary recursive least squares. The WV-LSSVR method uses ordinary Gaussian kernels,
and GPK-LSSVR uses Gaussian process kernels which introduce a linear and a constant
term in addition to an ordinary Gaussian kernel to enhance the local approximation
power of the overall kernel method.

Conclusions of Chapter 5 During the determination of the support vectors from pre-
collected data sets, the GPK-LSSVR and WV-LSSVR methods yielded the same com-
putational complexity as the IRR-LSSVR method. During the recursive identification
phase, the GPK-LSSVR method leads to a higher computational load than WV-LSSVR
because the number of unknown parameters in the former is two times larger than that
of the latter. The WV-LSSVR and GPK-LSSVR methods were validated using a set of 16
benchmark data sets, and they were compared with k −means cl uster i ng radial basis
function method (KMC-RBF) with a focus on approximation accuracy and computa-
tional efficiency. The comparison results showed that the GPK-LSSVR, WV-LSSVR and
IRR-LSSVR methods always had much higher approximation powers than the KMC-RBF
method with the change in the number of support vectors. Compared to WV-LSSVR,
the GPK-LSSVR method leads to a slightly higher approximation power at the price of
higher computational costs. Considering computational efficiency, although the GPK-
LSSVR method takes into account different data trends among different subdomains
using an extended kernel, the GPK-LSSVR method is not always to be preferred. The
choice between the WV-LSSVR and GPK-LSSVR methods should be performed based on
the characteristics of the model, i.e., the nonlinearity level of the system.
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Main findings of Chapter 5:

The IRR-LSSVR is an efficient algorithm that is capable of providing optimal kernel
parameters for an ordinary recursive parametric kernel method, and local kernel
extension helps to capture the local dynamics of a model.

9.4. ACCELERATION MEASUREMENTS-BASED RECONFIGURABLE

CONTROL
Model-based adaptive flight control has advantages, for example the useful system
dynamics which contribute to the system stability can be selected not to be counter-
acted when designing a controller. However, an online model derived for an adap-
tive controller might not be sufficiently accurate during high maneuvering flight or
structural aircraft failure [88], which will make the control performance of the flight
controller deteriorate or even make the controller unstable. As an alternative, accel-
eration measurements-based flight control law, which does not require real-time full
aerodynamic model information, and is therefore easier to certify, was investigated for
the research reported in this thesis. The second subquestion related to the main research
question was:

The Second Subquestion:

What are the benefits of using an acceleration measurements-based control approach,
i.e., the sensor-based backstepping, as an alternative to a model-based adaptive control
approach, when designing a reconfigurable flight controller to deal with aircraft failures
in a generic FTFC system?

In order to answer the second subquestion related to the main research question, the
following were developed.

1. A hybrid two-loop attitude (angular) controller was designed with the angular rate
controller designed using sensor-based backstepping (Chapter 6, Paper [139]).

2. A joint two-loop angular controller was designed with the angular rate controller
designed using sensor-based backstepping control law (Chapter 7, Papers [140,
143]).

3. The tensor-product multivariate simplex B-spline model structure was employed
to calculate the control derivatives to provide control effectiveness matrix for ac-
celeration measurements-based incremental body angular rate controller (Chap-
ter 8, Paper [142]).

An incremental type control approach, namely approximate dynamic inversion
based on singular perturbation theory and Tikhonov’s theorem, has been developed
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by Hovakimyan et al. [59] for a non-affine in control nonlinear system. The stability
of the closed-loop system, the controller of which is designed based on a Lyapunov
stability function, has been proved under realistic assumptions. In 2011, Falkena et al.
[45] reformulated this incremental control approach to allow for direct utilization of the
measurements of angular accelerometers. A two-loop attitude (angular) controller has
been designed for a Diamond-42 small fixed wing aircraft using the incremental control
law indicated as sensor based backstepping (SBB). However, this new control approach
has not yet been applied to a large civil transportation aircraft for the purpose of fault
tolerant control. In the work reported in this thesis, the SBB control approach was
extended to deal with benchmark structural failures occurring in a Boeing 747 aircraft.
Two two-loop angular controllers, namely a hybrid NDI/SBB controller and a joint SBB
controller, were developed for the RECOVER model. The two-loop hybrid NDI/SBB
controller was developed by combining an NDI based outer controller with an inner
controller designed using the SBB control law. The two-loop SBB angular controller is
an improved version of the two-loop hybrid NDI/SBB angular controller in the sense
that a Lyapunov function based multi-loop controller design technique, i.e., recursive
backstepping, was used. Both angular controllers were validated within a four-loop
autopilot using the RECOVER model. The four-loop autopilot consists of an altitude
control loop and a flight path angle control loop designed using proportional-integral-
derivative in addition to the aforementioned two-loop angular and body angular rate
control loop.

Overview of Chapter 6 The hybrid controller indicated as hybrid NDI/SBB angular
controller consists of two control loops namely an angular loop and a body angular
rate loop. The inner body angular rate controller was designed using the singular
perturbation theory based sensor based backstepping (SBB) control approach, and the
outer attitude controller was designed using the NDI control law. The commanded
control inputs by the outer angular loop were taken as reference commands for the inner
angular rate loop. In the controller design, the control allocation problem was simplified
by bounding a number of the control surfaces into a group. The controller was applied
to the RECOVER model of a Boeing 747 aircraft, and evaluated using rudder runaway
and EL AL flight 1862 benchmark fault scenarios developed by the GARTEUR FM-AG 16
group. The differential thrust control was introduced to replace the rudder deflection
control to counteract the undesirable yawing moment induced by the stuck rudder.

Conclusions of Chapter 6 Compared with the classic model-based adaptive nonlinear
dynamic inversion (ANDI) control approach or model-based adaptive backstepping
control law, the hybrid NDI/SBB angular control setup needs less online model infor-
mation. The numerical simulation results showed that the proposed hybrid NDI/SBB
angular controller can preserve the safety of the aircraft even when the aforementioned
failures occur, and can ensure a zero tracking error performance for the roll angle and
the pitch angle commands as long as the aircraft is still controllable with the remaining
valid control surfaces.
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Main findings of Chapter 6:

A hybrid NDI/SBB two-loop controller has the capability to accommodate sudden
model changes due to the mechanism of incremental approximation control in the body
angular rate control loop.

Overview of Chapter 7 A two-loop joint SBB angular controller was developed for the
RECOVER model, the heart of which is a Boeing 747 aircraft model. Unlike the hybrid
NDI/SBB angular controller, those two control loops in the joint SBB angular controller
were designed cooperatively using a recursive backstepping technique starting from the
angular loop. At each backstepping step, a Lyapunov’s stability function was used in de-
signing a controller to stabilize the system. Similar to other incremental type nonlinear
flight controllers, measurements of the body angular accelerations were required. In the
research reported in this thesis, the angular accelerations were numerically calculated
from the filtered body angular rates using a differentiator. However, in a real application,
the body angular accelerations can be directly obtained from the angular accelerometers
instead, which is currently under investigation by many research groups.

Conclusions of Chapter 7 The numerical simulation results showed that the double-
loop joint SBB angular controller can lead to zero tracking errors as long as the given
angular reference commands are within the safe flight envelope. That is, the new joint
SBB angular controller was shown to be able to stabilize asymptotically the angular
reference tracking system under both benchmark faults under consideration. Compared
with the hybrid SBB angular controller, the new joint SBB method leads to better
zero-hold performance in controlling sideslip angle when an aircraft is flying in the
nominal condition or under the engine separation scenario. Under the rudder runaway
fault scenario, the new controller presented in this thesis leads to equivalent control
performance of sideslip to that of the hybrid SBB angular controller mentioned above.

Main findings of Chapter 7:

A joint SBB two-loop angular controller results in better or at least equivalent
control performance compared to a hybrid NDI/SBB controller because a recursive
backstepping design strategy based on Lyapunov function is introduced.

Overview of the control-related part of Chapter 8 How the control effectiveness matrix
influences the performance of the acceleration measurements-based incremental flight
controller was investigated. The TP-MVSB approach presented in Chapter 8 and the
immersion and invariance (I&I) estimator were used to estimate the effectiveness matrix
of the F-16 aircraft. Although the I&I technique initially is not aiming for high accuracy
but rather for improving system stability, it was used in this work to provide a reasonable,
consistent estimation of a single control effectiveness matrix with a focus on reflecting
the variations of the model parameters concerning the requirements for a controller. The
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control effectiveness matrices identified using both methods were applied to a regular
incremental backstepping controller to show how the estimation accuracy of the control
derivatives affect the performance of the incremental flight controller.

Conclusions of the control-related part of Chapter 8 The TP-MVSB method was able
to provide a reasonably accurate estimation of a control effectiveness matrix for a
nonlinear incremental backstepping controller. In comparison, TP-MVSB leads to a
better changing rate estimation than the I&I estimator when estimating the effectiveness
matrix. Simulation results showed that a slight difference on the control effectiveness
matrix made no difference to the attitude flight control performance as long as the
conducted flight task required moderate rather than high maneuvering. That is, for an
aircraft like F-16, the performance of an incremental controller is not susceptible to the
estimation accuracy of the control effectiveness matrix.

Main findings of part two in Chapter 8:

The TP-MVSB method leads to a reasonably accurate estimation of the control
effectiveness matrix, which can meet the need of an incremental backstepping flight
controller.

9.5. GENERAL CONCLUSIONS
Synthesizing the results obtained and given throughout the individual chapters, the
following general conclusions can be drawn.

Stability issue related to model-based adaptive control:
As is well known, a model-based, i.e., modular, adaptive control approach is hard to
certify concerning system stability because most of the modular approaches can only
guarantee input-to-state stability. The main reason why modular adaptive control
laws cannot guarantee closed-loop system stability is that a large amount of modular
adaptive control laws suffer from the weakness of the certainty equivalence principle.
To achieve closed-loop stability, the identified model in a modular adaptive control
system is required to be sufficiently accurate. The recursive identification methods
using multivariate simplex B-splines, reported in this thesis, can achieve highly accurate
aerodynamic model, and the model outputs are always bounded by the maximum B-
coefficient. These properties of the simplex B-splines make the aerodynamic model
easier to certify compared to other more complex modeling methods, e.g. radial basis
function neural networks.

Both model-based and acceleration measurements-based flight control methods
have advantages and drawbacks, the users should select the methods according to the
specific situation they are facing, e.g. concerning physical limitations of the onboard
computers or the availability of angular accelerometers.
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Modular adaptive control VS Angular Acceleration Measurements-based Control:

The joint sensor-based backstepping controller based on the singular perturbation
theory, presented in Chapter 7, is recommended if the measurements or an accurate
estimation of angular acceleration are obtainable, because this incremental type control
law has a low computational-load requirement for the onboard computer. A model-
based adaptive reconfigurable flight control law becomes the preferred option if the
onboard computer has adequate computational power, or, an accurate aerodynamic
model is also required for other components in the entire flight control system, e.g.,
fault detection and diagnosis unit and flight envelope protection unit. Model-based
control has the advantage of being able to design a flight controller which maintains
useful damping terms in the closed-loop system.

9.6. RECOMMENDATIONS
The work presented in this thesis gives rise to new questions and research directions,
some recommendations for further studies are presented below.

Three global model identification methods, namely SB-MVSB, RS-MVSB and GPK-
LSSVR, were validated using modeling data. The development of these three global
model identification methods is a good start towards model-based adaptive flight con-
trol and flight envelope protection. However, these methods should be incorporated into
a model-based adaptive flight control law or an online flight envelope protection scheme
to demonstrate further the benefits of using a real-time accurate global aerodynamic
model.

The number of simplices in a triangulation increases dramatically with the increase
in the pre-determined vertices in each dimension and input dimensions when us-
ing a simplex B-spline model identification method. To enhance the computational
efficiency, especially when the inputs are of high dimension, efficient optimization
algorithms concerning the data coverage for each simplex should be developed aimed
at constructing a triangulation with less simplices.

The directional derivatives of a function, e.g., the control derivatives, are hard to esti-
mate accurately or even not possible to estimate accurately under some circumstances.
In this thesis, only the output fitting errors are involved (evaluated) in the cost function.
In this case, the first order directional derivatives in terms of control surface deflections
cannot be guaranteed to track their corresponding actual values closely. However, if
we have some a pr i or i knowledge of the directional derivatives, e.g., the upper and
lower bounds, these differential constraints can be taken into account during fitting the
function outputs to enhance the estimation accuracy of the directional derivatives, see
de Visser et al. [37].

No fault detection & isolation (FDI) algorithm was studied for the work reported
in this thesis. When implementing the fault-tolerant flight controller in Chapters 6
and 7, the assumption was made that the type of failures and its timing were known.
Fault detection of structural failures, actuator failures and sensor failures need to be
investigated.
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How the sensor noise of angular accelerometers affects the control performance of
an acceleration measurements-based incremental controller should be further inves-
tigated before the sensor based backstepping control approach can be applied in real
flight. In addition, the influence of time delays occurring in actuators or engine systems
should be further investigated, especially during controller designs for real aircraft.
Further research into acceleration measurements based reconfigurable control should
include tests on the SIMONA simulator, realistic test-flights with UAVs and possibly the
research aircraft of TU Delft.

The sensor-based backstepping (SBB) controller should be tested on the SIMONA
simulator to get more feedback on its use from experienced pilots. Comments from
pilots can be used to help the controller designers to choose better controller gains or
time-scale parameters for the SBB controller.

Taking into account the estimation of a time-varying wind using a Kalman filter, how
the wind dynamics should be described or modeled in the time-derivative equations of
the aircraft kinematics should be investigated. For example, a turbulence model such
as the NASA Dryden model should be investigated with a focus on its suitability for the
aforementioned purpose.

With respect to online flight envelope protection (OFEP), constructing an offline
global aerodynamic model for each aircraft fault scenario should be investigated. A
regular online global model identification method can only update the model locally
given a limited number of incoming data points, therefore, the identified aerodynamic
model is more likely not valid for the entire flight envelope in a relatively short period
after any sudden structural or actuator failures happen. Nevertheless, OFEP requires
a global-valid aerodynamic model immediately after a failure occurs to an aircraft to
estimate the current safe flight envelope. This shortcoming of online global model
identification methods could possibly be circumvented by constructing an offline global
aerodynamic model for each fault scenario.

To avoid the curse-of-dimensionality problem associated with OFEP when using
a reachability analysis approach, i.e., evolution of the Hamilton-Jacobi PDEs, more
efficient mathematical tools such as the max-plus method [95], which is curse-of-
dimensionality-free, should be investigated.





A
KINEMATIC EQUATIONS FOR

KALMAN FILTERS

The kinematic equations of a fixed-wing aircraft and the corresponding augmented
expressions are given for applications of an extended Kalman filter in this section.

A.1. THE KINEMATIC EQUATIONS
The general set of nonlinear system equations describing the kinematics of the aircraft
is given as follows:

ẋ (t ) = f [x (t ) ,um (t ) ,Θ, t ]+G [x]w (t ) , x (t0) = x0 (A.1)

zm (t ) = h [x (t ) ,um (t ) ,Θ, t ]+v (t ) , t = ti , i = 1,2, ... (A.2)

where Eq. A.1 is known as the kinematic state equation with input noise vector w and
expression Eq. B.2 is called the observation equation with output noise vector v. The
nonlinear vector functions f and h may depend both implicitly (via x and um) and
explicitly on t and it will be assumed that both f and h are continuous and continuously
differentiable with respect to all elements of x and um . The system equation variables
are defined below.

x = [
xGS, yGS, zGS,uAS, vAS, wAS,φ,θ,ψ

]> (A.3)

um = u+λ+w = [
Ax , Ay , Az , p, q,r

]>+ [
λx ,λy ,λz ,λp ,λq ,λr

]>+w (A.4)

Θ=λ= [
λx ,λy ,λz ,λp ,λq ,λr

]> (A.5)

zm = [
xGPS, yGPS, zGPS,uGPS, vGPS, wGPS,φGPS,θGPS,ψGPS,VTAS,αADS,βADS

]> (A.6)

with the subscripts GS, AS, GPS and ADS the abbreviations of ‘ground speed’, ‘air speed’,
‘global positioning system’ and ‘air data system’. Because the measurements from an
inertial navigation system contain biases, 9 variables in zm applied here should be the
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measurements taken from a GPS system. Specifically, three antennas, i.e., receiver for
GPS signals, are needed in order to obtain φGPS, θGPS, and ψGPS.

The full expression of the kinematic equations, see Eq. A.1, can be written as follows,
where the aircraft is considered as a rigid body above a flat non-rotating earth:

ẋGS =
[
uAS cosθ+ (

vAS sinφ+wAS cosφ
)

sinθ
]

cosψ− (
vAS cosφ−wAS sinφ

)
sinψ+Uwind

(A.7)

ẏGS =
[
uAS cosθ+ (

vAS sinφ+wAS cosφ
)

sinθ
]

sinψ+ (
vgb cosφ−wgb sinφ

)
cosψ+Vwind

(A.8)

żGS =−uAS sinθ+ (
vAS sinφ+wAS cosφ

)
cosθ+Wwind (A.9)

u̇AS = Ax − g sinθ+ r vAS −qwAS (A.10)

v̇AS = Ay − g cosθ sinφ+pwAS − r uAS (A.11)

ẇAS = Az − g cosθcosφ+quAS −pvAS (A.12)

φ̇= p +q sinφ tanθ+ r cosφ tanθ (A.13)

θ̇ = q cosφ− r sinφ (A.14)

ψ̇= q
sinφ

cosθ
+ r

cosφ

cosθ
(A.15)

(A.16)

A.2. AUGMENTED KINEMATIC EQUATIONS FOR EXTENDED KALMAN

FILTER

During the application of the EKF, the aircraft state vector x from Eq. A.3 should be
augmented into xaug = [x,Θ]. The augmented state vector xaug contains 18 augmented
states.

xaug =
[
xGS, yGS, zGS,uAS, vAS, wAS,φ,θ,ψ,λx ,λy ,λz ,λp ,λq ,λr ,Uwind,Vwind,Wwind

]

(A.17)
with Uwind,Vwind,Wwind the wind speed with regard to the ground, and uAS, vAS, wAS

the airspeed body components. For simplicity reason, xaug will be written as x in the
remainder of this chapter.
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The set of continuous state equations f[x(t ),um(t ),θ] are given as follows:

f[x(t ),um(t ),θ] =



[
uAS cosθ+ (

vAS sinφ+wAS cosφ
)

sinθ
]

cosψ− (
vAS cosφ−wAS sinφ

)
sinψ+Uwind[

uAS cosθ+ (
vAS sinφ+wAS cosφ

)
sinθ

]
sinψ+ (

vAS cosφ−wAS sinφ
)

cosψ+Vwind

−uAS sinθ+ (
vAS sinφ+wAS cosφ

)
cosθ+Wwind(

Axm −λx
)− g sinθ+ (rm −λr ) vAS −

(
qm −λq

)
wAS(

Aym −λy
)− g cosθ sinφ+ (

pm −λp
)

wAS − (rm −λr )uAS(
Azm −λz

)− g cosθcosφ+ (
qm −λq

)
uAS −

(
pm −λp

)
vAS(

pm −λp
)+ (

qm −λq
)

sinφ tanθ+ (rm −λr )cosφ tanθ(
qm −λq

)
cosφ− (rm −λr )sinφ(

qm −λq
) sinφ

cosθ + (rm −λr ) cosφ
cosθ

09×1




(A.18)

The linear operation matrix G[x(t )] becomes:

G[x(t )] =




03×6

−1 0 0 0 wAS −vAS

0 −1 0 −wAS 0 uAS

0 0 −1 vAS −uAS 0
0 0 0 −1 −sinφ tanθ −cosφ tanθ
0 0 0 0 −cosφ sinφ

0 0 0 0 − sinφ
cosθ − cosφ

cosθ
09×6




(A.19)
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The observation equation set becomes:

xGPS = xGS +νx

yGPS = yGS +νy

zGPS = zGS +νz

uGPS =
[
uAS cosθ+ (

vAS sinφ+wAS cosφ
)

sinθ
]

cosψ

− (
vAS cosφ−wAS sinφ

)
sinψ+Uwind +νu

vGPS =
[
uAS cosθ+ (

vAS sinφ+wAS cosφ
)

sinθ
]

sinψ

+ (
vAS cosφ−wAS sinφ

)
cosψ+Vwind +νv

wGPS =−uAS sinθ+ (
vAS sinφ+wAS cosφ

)
cosθ+Wwind +νw

φGPS =φ+νφ
θGPS = θ+νθ
ψGPS =ψ+νψ
VTAS =

√
u2

AS + v2
AS +w2

AS +νV

αADS = arctan

(
wAS

uAS

)
+να

βADS = arctan




vAS√
u2

AS +w2
AS


+νβ

(A.20)



B
NEW FORMULATION OF KINEMATIC

EQUATIONS FOR APPLYING AN

EXTENDED KALMAN FILTER

The classic formulation of the kinematic equations for applying an extended Kalman
filter, i.e. the kinematic equations shown in Appendix A, was derived under the
assumption that the wind speed was time-invariant. This work is aimed at generalizing
the formulation of a set of kinematic equations for applying an extended Kalman filter
(EKF) and attention is paid to estimate non-zero mean time-varying wind speeds. Due
to this reason, the body components of the ground velocity presents in the differential
equations of linear velocities.

B.1. NONLINEAR AIRCRAFT KINEMATICS MODEL

The general set of nonlinear system equations describing the kinematics of the aircraft
is given as follows:

ẋ (t ) = f [x (t ) ,um (t ) ,Θ, t ]+G [x]w (t ) , x (t0) = x0 (B.1)

zm (t ) = h [x (t ) ,um (t ) ,Θ, t ]+v (t ) , t = ti , i = 1,2, ... (B.2)

where Eq. B.1 is known as the kinematic state equation with input noise vector w and
expression Eq. B.2 is called the observation equation with output noise vector v. The
nonlinear vector functions f and h may depend both implicitly (via x and um) and
explicitly on t and it will be assumed that both f and h are continuous and continuously
differentiable with respect to all elements of x and um . The system equation variables
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are defined below.

x = [
xGS, yGS, zGS,ugb, vgb, wgb,φ,θ,ψ

]> (B.3)

um = u+λ+w = [
Ax , Ay , Az , p, q,r

]>+ [
λx ,λy ,λz ,λp ,λq ,λr

]>+w (B.4)

Θ=λ= [
λx ,λy ,λz ,λp ,λq ,λr

]> (B.5)

zm = [
xGPS, yGPS, zGPS,uGPS, vGPS, wGPS,φGPS,θGPS,ψGPS,VTAS,αADS,βADS

]> (B.6)

with the subscripts GS, AS, GPS and ADS the abbreviations of ‘ground speed’, ‘air speed’,
‘global positioning system’ and ‘air data system’. Because the measurements from an
inertial navigation system contain biases, 9 variables in zm are the measurements taken
from a GPS system. Specifically, three antenas, i.e., receiver for GPS signals, are needed
in order to obtain φGPS, θGPS, ψGPS.

The full expression of the nonlinear kinematic equations, see Eq. B.1, can be written
as follows, where the aircraft is condidered as a rigid body above a flat non-rotating earth:

ẋGS =
[
ugb cosθ+ (

vgb sinφ+wgb cosφ
)

sinθ
]

cosψ− (
vgb cosφ−wgb sinφ

)
sinψ (B.7)

ẏGS =
[
ugb cosθ+ (

vgb sinφ+wgb cosφ
)

sinθ
]

sinψ+ (
vgb cosφ−wgb sinφ

)
cosψ (B.8)

żGS =−ugb sinθ+ (
vgb sinφ+wgb cosφ

)
cosθ (B.9)

u̇gb = Ax − g sinθ+ r vgb −qwgb (B.10)

v̇gb = Ay − g cosθ sinφ+pwgb − r ugb (B.11)

ẇgb = Az − g cosθcosφ+qugb −pvgb (B.12)

φ̇= p +q sinφ tanθ+ r cosφ tanθ (B.13)

θ̇ = q cosφ− r sinφ (B.14)

ψ̇= q
sinφ

cosθ
+ r

cosφ

cosθ
(B.15)

(B.16)

B.2. AUGMENTED STATE EQUATIONS AND OBSERVATION EQUA-
TIONS

During the application of the EKF, the aircraft state vector x from Eq. B.3 should be
augmented into xaug = [x,Θ]. The augmented state vector x contains 18 augmented
states.

xaug =
[
xGS, yGS, zGS,ugb, vgb, wgb,φ,θ,ψ,λx ,λy ,λz ,λp ,λq ,λr ,Uwind,Vwind,Wwind

]

(B.17)
with Uwind,Vwind,Wwind the wind speed with regard to the ground, and ugb, vgb, wgb the
ground velocity body components. For simlicity reason, xaug will be written as x in the
remaindar of this chapter.

The state equations are similar to those included in chapter 4 of the dissertation of
Lombaerts except that the wind components should be removed. Similarly, the wind
components should be also removed from Eqs.(4.40-4.42). On the contrary, during the
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calculations of the true air speed VTAS, α and β, we have to correct the ground velocity
body components with wind or turbulence velocity components (converted to body)
when wind and turbulence present.

The transformation matrix from the earth to the body reference frame:

To 7→b =




cosθcosψ cosθ sinψ −sinθ(
sinφsinθcosψ
−cosφsinψ

) (
sinφsinθ sinψ
+cosφcosψ

)
sinφcosθ

(
cosφsinθcosψ
+sinφsinψ

) (
cosφsinθ sinψ
−sinφcosψ

)
cosφcosθ




(B.18)

The ground wind speeds are converted into the body wind speeds:




uwind

vwind

wwind


= To 7→b




Uwind

Vwind

Wwind


 (B.19)

The output VT AS is:

VTAS =
√(

ugb −uwind
)2 + (

vgb − vwind
)2 + (

wgb −wwind
)2 (B.20)

The output α becomes:

α= arctan

(
wgb −wwind

ugb −uwind

)
(B.21)

The output β is:

β= arctan




vgb − vwind√(
ugb −uwind

)2 + (
wgb −wwind

)2


 (B.22)

To summarize, the set of continuous state equations f[x(t ),um(t ),θ] are given as
follows:

f[x(t ),um(t ),θ] =



[
ugb cosθ+ (

vgb sinφ+wgb cosφ
)

sinθ
]

cosψ− (
vgb cosφ−wgb sinφ

)
sinψ[

ugb cosθ+ (
vgb sinφ+wgb cosφ

)
sinθ

]
sinψ+ (

vgb cosφ−wgb sinφ
)

cosψ
−ugb sinθ+ (

vgb sinφ+wgb cosφ
)

cosθ(
Axm −λx

)− g sinθ+ (rm −λr ) vgb −
(
qm −λq

)
wgb(

Aym −λy
)− g cosθ sinφ+ (

pm −λp
)

wgb − (rm −λr )ugb(
Azm −λz

)− g cosθcosφ+ (
qm −λq

)
ugb −

(
pm −λp

)
vgb(

pm −λp
)+ (

qm −λq
)

sinφ tanθ+ (rm −λr )cosφ tanθ(
qm −λq

)
cosφ− (rm −λr )sinφ(

qm −λq
) sinφ

cosθ + (rm −λr ) cosφ
cosθ

09×1




(B.23)

The linear operation matrix G[x(t )] becomes:
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G[x(t )] =




03×6

−1 0 0 0 wgb −vgb

0 −1 0 −wgb 0 ugb

0 0 −1 vgb −ugb 0
0 0 0 −1 −sinφ tanθ −cosφ tanθ
0 0 0 0 −cosφ sinφ

0 0 0 0 − sinφ
cosθ − cosφ

cosθ
09×6




(B.24)

The observation equation set becomes:

xGPS = xGS +νx (B.25)

yGPS = yGS +νy (B.26)

zGPS = zGS +νz (B.27)

uGPS =
[
ugb cosθ+ (

vgb sinφ+wgb cosφ
)

sinθ
]

cosψ

− (
vgb cosφ−wgb sinφ

)
sinψ+νu

(B.28)

vGPS =
[
ugb cosθ+ (

vgb sinφ+wgb cosφ
)

sinθ
]

sinψ

+ (
vgb cosφ−wgb sinφ

)
cosψ+νv

(B.29)

wGPS =−ugb sinθ+ (
vgb sinφ+wgb cosφ

)
cosθ+νw (B.30)

φGPS =φ+νφ (B.31)

θGPS = θ+νθ (B.32)

ψGPS =ψ+νψ (B.33)

VTAS =
√(

ugb −uwind
)2 + (

vgb − vwind
)2 + (

wgb −wwind
)2 +νV (B.34)

αADS = arctan

(
wgb −wwind

ugb −uwind

)
+να (B.35)

βADS = arctan




vgb − vwind√(
ugb −uwind

)2 + (
wgb −wwind

)2


+νβ (B.36)

with uwind, vwind and wwind calculated from Eq.Eq. B.19.

Remarks:
During the application of the EKF, the Jacobian matrix of VTAS,α,β with respect to[

ugb, vgb, wgb,φ,θ,ψ,Uwind,Vwind,Wwind
]

is a 3 by 9 matrix, which can be easily calcu-
lated using the Maple software. The matlab implementation codes are automatically
generated by the Maple software.

B.3. VALIDATION RESULTS USING THE FLIGHT TEST DATA OF

A CESSNA CITATION II
The two ’de3211’ and ’dr3211’ flight test data sets (i.e. each contains 12001 data points,
see the lecture notes of the course AE 4-394) of the Cessna Citation II laboratory fixed-
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wing aircraft are used to validate the newly formulated kinematic equations for applying
an extended Kalman Filter. The validation results are plotted in Figs.B.1(a)-B.2(b).
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Figure B.1: Aircraft state estimation results for states, sensor biases.

As shown in Figs. B.1-B.2, the fitting errors of all the states are almost bounded by a 1-
σ boundary which is calculated from the diagnal elements of the covariance matrix. All
the innovations related to the observations are located in a proper range. Simulation
results shown in Figs. B.1-B.2 have validated the correctness of the new kinematic
equations formulated for apply an extended Kalman filter. A conclusion can be drawn
that an extended Kalman filter based on the newly formulated kinematic expressions is
able to estimate non-zero mean time-invariant wind speeds.
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Figure B.2: Aircraft state estimation results for sensor biases, wind speeds, and reconstructed air data
measurements.

B.4. CONCLUSION
How aircraft states can be estimated when an aircraft is encountering a non-zero mean
time-varying wind, i.e. a turbulence, was investigated, and some preliminary results
were given. The classic formulation of the kinematic equations for an extended Kalman
filter (EKF) was derived under the assumption that the wind speed was time-invariant.
To deal with a non-zero mean time-varying wind, the description equations of the
kinematic equations were generalized for the application of an EKF by replacing the
chosen state variables by new variables defined in a different reference coordinate
system. Simulated flight test data generated using a Cessna Citation II model with
a time-invariant non-zero mean wind were used to validate the correctness of the
new formulation for using an EKF. In the designed demonstration exapble, only time-
invariant wind speed estimation was accounted for.
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The simulation results showed that an EKF using the new kinematic model descrip-
tion can achieve an unbiased and reasonable, accurate state estimation. However, how
the wind dynamics should be modeled, e.g. using the NASA Dryden wind turbulence
model, in the augmented expression of the kinematic equations still needs to be
investigated before the EKF can be really applied to deal with non-zero mean time-
varying wind.





C
A SPECIFIC AERODYNAMIC MODEL

STRUCTURE FOR RECOVER
MODEL USING POLYNOMIALS

For later use, the configurations of an Boeing 747-100/200 aircraft are given in Figure C.1.
When using a polynomial-based aerodynamic model identification method pre-

sented in [88, 89] in real-time applications, a predefined model structure for a Boeing
747 aircraft is chosen as follows. For more details, the reader is referred to [88].

CX =CX0 +CXαα+CXα2α
2 +CXq

qc̄

V
+CXδei r

∣∣δei r

∣∣+CXδei l

∣∣δei l

∣∣+CXδeor

∣∣δeor

∣∣

+CXδeol

∣∣δeol

∣∣+CXih

∣∣Xih

∣∣+CXδsp1
δsp1 + . . .+CXδsp12

δsp12 +CXδ f o
δ f o

+CXδ f i
δ f i +CXEPR1

EPR1 + . . .+CXEPR4
EPR4 +CXββ+CXp

pb

2V
+CXr

r b

2V

(C.1)

CZ =CZ0 +CZαα+CZq

qc̄

V
+CZδei r

δei r +CZδei l
δei l +CZδeor

δeor +CZδeol
δeol

+CZih
Zih +CZδsp1

δsp1 + . . .+CZδsp12
δsp12 +CZδ f o

δ f o +CZδ f i
δ f i

+CZEPR1
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EPR4 +CZββ+CZp

pb

2V
+CZr

r b

2V

(C.2)

Cm =Cm0 +Cmαα+Cmq

qc̄

V
+Cmδei r

δei r +Cmδei l
δei l +Cmδeor

δeor +Cmδeol
δeol

+Cmih
Zih +Cmδsp1

δsp1 + . . .+Cmδsp12
δsp12 +Cmδ f o

δ f o +Cmδ f i
δ f i

+CmEPR1
EPR1 + . . .+CmEPR4

EPR4 +Cmβ
β+Cmp

pb

2V
+Cmr

r b

2V

(C.3)
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Figure C.1: Boeing 747-100/200 control surface arrangements, body axes and moment definitions, from [132].
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r b

2V
+CYδai r
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D
PROPERTIES OF RECURSIVE

SEQUENTIAL MVSB AND PROOFS

Three theorems about the convergence and smoothness maintaining property of the
new algorithm will be formulated and proved. In this section, c is the discontinuous
global B-coefficient vector derived from Eq. 4.16 independently and c̃ is the parameter
vector derived by recursive sequential method as shown in Eq. 4.26.
Theorem 1: Convergence

Given the discontinuous global B-coefficient vector c = [
c>1 ,c>2 , ...,c>i , ...,c>n

]>
with ci

denoting the parameter vector of the i th module, there exists an unique converged value
c̃ f for the sequential estimation method that makes lim

k→+∞
c̃ = c̃ f with k the number of

training data points.
Proof:

Given c = [
c>1 ,c>2 , ...,c>i , ...,c>n

]>
with n the number of modules, a unique ci f exists for

lim
k→+∞

ci = ci f where ci denotes the local estimation vector, and it contains the estimated

parameters of module i . We can get a unique c f =
[

c>1 f ,c>2 f , ...,c>i f , ...,c>n f

]>
satisfying

lim
k→+∞

c = c f . According to Eq. 4.26, the smooth global B-coefficient vector c̃ is the

least-mean-square-error (LMSE) estimation of c, and this process is a linear operator.
Therefore, we can derive a unique c̃ f = fLMSE

(
c f

)
that makes lim

k→+∞
c̃ = c̃ f . ä

Remarks:
The first recursive step of this sequential estimation method deals with the identi-

fication problem on a small module. Nearly all the existing least squares based online
estimation methods can cope with it and assure that ci converges to ci f .
Theorem 2: Smoothness

The global continuity of the spline function derived from the recursive sequential
identification method is maintained after each smoothing step.
Proof:

In the calculation of the smooth global B-coefficient vector c̃ ∈ Rm×1, Eq. 4.26 holds
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for every time step. Apparently, c̃ is a linear combination of orthonormal vector bases{
η1,η2, ...ηn−1,ηn

}
. Because η1,η2, ...,ηn−1,ηn are columns of U2 as shown in Eq. 4.25,

they constitute bases of the kernel space [76] for the equality constraints matrix H.
Therefore, the constraint equations H · c̃ = 0 are fully satisfied at each time step. Because
of this, the global continuity character of the global spline function is maintained
through the smooth global B-coefficient vector c̃. ä

In the conventional method, the constrained least squares problem is transformed
into an unconstrained least squares problem at the first step by introducing Lagrangian
multipliers, resulting in a globally optimal solution in the least squares sense [37]. In
contrast, the kernel space projection based recursive sequential identification method
proposed in this paper can only achieve optimality during each single stage. This
property will be elaborated in the following theorem.

Theorem 3: Reduced approximation power
Given ĉ the B-coefficients estimated with the batch least squares method from [37],

and c̃ the B-coefficients estimated using RS-LS, it holds that
∣∣∣∣y−X · c̃

∣∣∣∣≥
∣∣∣∣y−X · ĉ

∣∣∣∣.
Proof:

The proof of this theorem is based on the loss of orthogonality of ε̃ = y−X · c̃ to the
hyperplane spanned by col X after the smoothing step of RS-LS. In the first step of RS-
LS, the rough B-coefficient vector c is estimated such ε = y−X ·c is orthogonal to col X,
i.e. ε ∈ ⊥col X. During the smoothing step, the rough global B-coefficient vector c
is projected into a linear subspace determined by the columns of U2 from Eq. 4.18. In
general, we have col U2 ∉ {col X,⊥col X} and therefore ε̃ ∉ ⊥col X, which proves the
theorem. ä



E
CALCULATE SIDESLIP ANGLE

RELATED NDI TERM

From the flight dynamics, the sideslip angle is defined as:

β= arcsin
( v

V

)
(E.1)

with

V =
√

u2 + v2 +w2 (E.2)

By taking the time derivatives of β, Eq. E.1 becomes:

β̇= v̇V − vV̇

V
p

V 2 − v2
= v̇p

V 2 − v2
− v̇V

V
p

V 2 − v2

= v̇p
u2 +w2

− v (uu̇ + v v̇ +w ẇ)
(
u2 + v2 +w2

)p
u2 +w2

(E.3)

From the flight dynamics, the following equations hold:




u̇
v̇
ẇ


= 1

m




X
Y
Z


−




qw − r v
r u −pw
pv −qu


+ g




sinθ
sinφsinθ
cosφcosθ


 (E.4)

Substituting Eq. E.4 into the first term of Eq. E.3 results in:

v̇p
u2 +w2

= 1p
u2 +w2

(
Y

m
− r u +pw + g sinφcosθ

)

= 1p
u2 +w2

(
Y

m
+ g sinφcosθ

)
+

[
wp

u2 +w2
0

−up
u2 +w2

]


p
q
r




(E.5)
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Using similar substitution, the second term of Eq. E.3 becomes:

v (uu̇ + v v̇ +w ẇ)

V 2
√

u2 +w2
= v

V 2
√

u2 +w2

{
u

[
X

m
− (

qw − r v
)− g sinθ

]

+v

[
Y

m
− (

r u −pw
)+ g sinφcosθ

]
+w

[
Z

m
− (

pv −qu
)+ g cosφcosθ

]} (E.6)

Eq. E.6 can be further simplified as:

v (uu̇ + v v̇ +w ẇ)

V 2
√

u2 +w2
= v

V 2
√

u2 +w2

[
u

(
X

m
− g sinθ
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(
Y

m
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)
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(
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qw − r v
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r u −pw
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pv −qu

)]

= v

V 2
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[
u

(
X

m
− g sinθ

)
+ v

(
Y

m
+ g sinφcosθ
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+w

(
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m
+ g cosφcosθ

)]

(E.7)

Combining Eq. E.5 with Eq. E.7 yields:

β̇= 1p
u2 +w2

(
Y

m
+ g sinφcosθ

)
+

[
wp

u2 +w2
0

−up
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]
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− v

V 2
p
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(
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m
− g sinθ

)
+ v
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Y
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)
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+
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(E.8)
with Ax , Ay and Az the specific forces.

It should be noted that the wind velocity is assumed to be either constant or with
slow changing rate.
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ADAPTIVE INCREMENTAL

BACKSTEPPING CONTROL DESIGN

USING IMMERSION AND

INVARIANCE

F.1. INTRODUCTION
Using immersion and invariance (I&I) technique in adaptive backstepping control law
can simplify the tuning process in determining the controller parameters. Similar
to tuning function based adaptive backstepping approaches, an I&I based adaptive
backstepping approach falls into the type of integrated adaptive control methods,
however, the controller-related parameters of the I&I based controller is made separated
from model-related parameters by using immersion and invariance. In this chapter,
a nonlinear incremental controller is designed for an F-16 aircraft with the control
effectiveness matrix estimated using an I&I estimator.

F.2. F-16 MOTION EQUATIONS AND PRELIMINARIES ON IN-
CREMENTAL BACKSTEPPING CONTROL

F.2.1. MOTION EQUATIONS AND AERODYNAMIC MODEL OF F-16
For completeness purpose, the motion equations of an F-16 aircraft are given in this
section. The same motion equations as those in [163] are used for the work presented in
this chapter, and the reader is referred to [163] if more details are needed.

Let the controlled state vector be x1 = [
VT,α,β

]> and the second controlled state

vector x2 =
[
pS , qS ,rS

]> with the subscript ’S’ denoting the stability axes, then the outer
loop subsystem can be represented as:
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ẋ1 = f1 +F1 +B1x2 +B1T [T 0 0]> (F.1)

with

f1 =




g1

−pS tanβ+ 1
mVT cosβ

(−T sinα+mg3
)

1
mVT

(−T cosαsinβ+mg2
)




F1 =
1

m



−cosαcosβ sinβ sinαcosβ
− sinα

VT cosβ 0 cosα
VT cosβ

− cosαsinβ
VT

cosβ
VT

− sinαsinβ
VT







X̄
Ȳ
Z̄




B1 =



0 0 0
0 1 0
0 0 −1


 , B1T =




cosαcosβ
m 0 0
0 0 0
0 0 0




For the inner loop, the dynamics of the subsystem are:

ẋ2 = f2 +F2 +B2 [δa δe δr ]> (F.2)

with

f2 =−TB→S J−1 (ωB × JωB )

F2 = TB→S J−1




L0

M0

N0


 , B2 = TB→S J−1




Lδa Lδe Lδr

0 Mδe 0
Nδa Nδe Nδr


 (F.3)

where TB→S is the transformation matrix from body to stability axes.

F.2.2. COMPUTE THE INVERSION OF THE MOMENT OF INERTIA MATRIX
In the inversion matrix of the moment of inertia matrix J , the moment and product
moment of inertia terms, i.e.i1-i9, are defined as follows:

i1 =
(

Jy y − Jzz
)

Jzz − J 2
xz

τ
i4 =

Jxz

τ
i7 =

1

Jy y
(F.4a)

i2 =
(

Jxx − Jy y + Jzz
)

Jxz

τ
i5 =

Jzz − Jxx

Jy y
i8 =

(
Jxx − Jy y

)
Jxx + J 2

xz

τ
(F.4b)

i3 =
Jzz

τ
i6 =

Jxz

Jy y
i9 =

Jxx

τ
(F.4c)

where

τ= Jxx Jzz − J 2
xz (F.5)
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F.2.3. BASIC FORMULATION OF THE REGULAR INCREMENTAL BACKSTEP-
PING

Consider the second and final subsystem:

ẋ2 = f (x1,x2)+G (x1,x2)u (F.6)

Its first order approximation is:

ẋ2
∼= f (x0)+G (x0)u0 +

∂

∂x
[f (x)+G (x)u] | x=x0

u=u0
(x−x0)+ ∂

∂u
[G (x)u] | x=x0

u=u0
(u−u0) (F.7)

By definition, the current state rate ẋ2,0 satisfies:

ẋ2,0 = f (x0)+G (x0)u0 (F.8)

Applying the standard linear definitions:

A0 =
∂

∂x
[f (x)+G (x)u] | x=x0

u=u0
(F.9)

B0 =
∂

∂u
[G (x)u] | x=x0

u=u0
(F.10)

Then, the following formulation is derived:

ẋ2 = ẋ2,0 + A0 (x−x0)+B04u (F.11)

F.3. PRELIMINARIES ON IMMERSION AND INVARIANCE BASED

ESTIMATOR
According to [8, 136], the invariant manifold is defined by:

σ= θ̂i +βi (xi , x̂)−θi

ri
(F.12)

where ri are the scalar dynamic scaling parameters, and θi are unknown parameters.
In other words, we are using θ̂i +βi (xi , x̂) to approximate θi . The computational

complexity lies in three aspects. Firstly, we need to integrate the regressor vector ϕ in
each dimension with regard to xi :

βi (xi , x̂) = γi

∫ xi

0
ϕi

(
x̂1, ..., x̂i−1,χ, x̂i−1, ..., x̂n

)
dχ (F.13)

In other words, partial integration in multi-dimension is needed.

˙̂θi =−∂βi

∂xi

(
xi+1 +ϕi (x)>

(
θ̂i +βi (xi , x̄)

))−
n∑

j=1

∂βi

∂x̂ j

˙̂x j (F.14)

Secondly, it can be seen from Eq. F.14 that the partial derivative of βi with respect to x̂ j

is also needed. Thirdly, the partial derivative of ϕi (x) according to x̂ j is also required by
the control law. Considering the computational complexity from all these three aspects,
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it will be very complicated to design an I&I based adaptive controller if a complex
linear-in-the-parameter modeling approach such as splines is chosen to construct the
regressor vector ϕi .

F.4. EQUATIONS OF MOTION AND SIMPLIFIED RATE CONTROL

ALLOCATION

F.4.1. INCREMENTAL EXPRESSIONS OF THE MOTION EQUATIONS

Let ω = [
p, q, r

]> being the body angular rates, then the incremental form of the body
angular rate equations are as follows (the state changes are assumed to be minor during
one sampling time step):

ω̇= ω̇0 +B2,I&I ·4δ (F.15)

where

B2,i n =



i3Lδa + i4Nδa 0 i3Lδr + i4Nδr

0 i7Mδe 0
i4Lδa + i9Nδa 0 i4Lδr + i9Nδr


 (F.16)

with ω̇0 the current measurements of the angular accelerations, δ = [δa , δe , δr ]>, and
4 represents the incremental values over one sampling period. i3, i4, i7 and i9 are
the elements of J−1 (see Eq. F.3), which are defined in Appendix-B. Note that B2,i n is
the control effectiveness matrix defined in the body-fixed axes, which makes it slightly
different from B2 matrix shown in Eq. F.3.

In order to simplify the model estimation, the B2,i n matrix is further simplified by
eliminating the non-dominant coefficients (e.g.i4Nδa ):

B2,I&I =



i3Lδa 0 i3Lδr

0 i7Mδe 0
i9Nδa 0 i9Nδr


 (F.17)

This system shown by Eq. F.15 can be rewrien into a standard form to facilitate the design
procedure of the Immersion and Invariance (I&I) estimator:

ṗ = f4 +ϕ>
4 θ4 (F.18a)

q̇ = f5 +ϕ>
5 θ5 (F.18b)

ṙ = f6 +ϕ>
6 θ6 (F.18c)

with f4 = ṗb,0, f5 = q̇b,0 and f6 = ṙb,0 are the measurements of the angular accelerations.
If we suppose that each element of B2,I&I is a constant (i.e. the function of the
incremental inputs is a linear function), then:

ϕ4 = [i34δa , i34δr ]> (F.19a)

ϕ5 = i74δe (F.19b)

ϕ6 = [i94δa , i94δr ]> (F.19c)
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and

θ4 =
[
Lδa , Lδr

]> (F.20a)

θ5 = Mδe (F.20b)

θ6 =
[
Nδa , Nδr

]> (F.20c)

F.5. IMMERSION AND INVARIANCE ESTIMATE OF THE CON-
TROL EFFECTIVENESS MATRIX

F.5.1. DESIGN OF THE IMMERSION AND INVARIANCE ESTIMATOR
Lδa from Eq. F.17 can be expressed as follows:

Lδa = q̄Sb ·CLδa
(F.21)

with S the wing area, q̄ the dynamic pressure ratio and b the wing span. Therefore,
Eq. F.19 can be changed into:

ϕ4 =
[
i3q̄Sb ·4δa , i3q̄Sb ·4δr

]> (F.22a)

ϕ5 = i7q̄Sc̄ ·4δe (F.22b)

ϕ6 =
[
i9q̄Sb ·4δa , i9q̄Sb ·4δr

]> (F.22c)

Correspondingly, the unknown parameters shown in Eq. F.20 turn into:

θ4 =
[
CLδa

, CLδr

]> (F.23a)

θ5 =CMδe
(F.23b)

θ6 =
[
CNδa

, CNδr

]> (F.23c)

According to the I&I estimation theory, the estimator takes the following form:

β4 =
[
βCLδa

, βCLδr

]>
= [

γ4i3q̄Sb4δa p, γ4i3q̄Sb4δr p
]> (F.24)

In further:

CLδa
= ĈLδa

+βCLδa
(F.25)

Using Eq. F.24, the update law for βCLδa
takes the following form:

˙̂CLδa
=−γ4i3q̄Sb ·4δa · ṗ −γ4i3q̄Sb ·p ·4δ̇a (F.26)

The update laws for other 4 control derivatives,i.e. ˙̂CLδr
, ˙̂CMδe

, ˙̂CNδa
and ˙̂CNδr

, can be
derived in the same way.

˙̂CLδr
=−γ4i3q̄Sb ·4δr · ṗ −γ4i3q̄Sb ·p ·4δ̇r (F.27)
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˙̂CMδe
=−γ5i7q̄Sc̄ ·4δe · q̇ −γ5i7q̄Sc̄ ·q ·4δ̇e (F.28)

˙̂CNδa
=−γ6i9q̄Sb ·4δa · ṙ −γ6i9q̄Sb · r ·4δ̇a (F.29)

˙̂CNδa
=−γ6i9q̄Sb ·4δr · ṙ −γ6i9q̄Sb · r ·4δ̇r (F.30)

As can be seen from Eqs.F.26-F.30, time derivatives of control surface deflections and
time derivatives of body angular rates are needed. Thereafter, using Eq. F.25 and then
Eq. F.17, the control effectiveness matrix can be calculated.

F.5.2. GENERALIZED EXPRESSION OF ϕ AND β IN CASE OF USING COMPLEX

REGRESSORS

In this section, a generalized expression of the terms related to the regressor vector ϕ
when designing an I&I Estimator is given in case that model identification algorithm
with a more complex model structure is used to construct the regressor vector ϕ. If we
assume the elements in the control effectiveness matrix is time varying, and is related to
some states, then Eq. F.22 can be modified as follows:

ϕ4 = i3q̄Sb · [·4δa ·S1
(
β, p

)
, 4δr ·S2

(
β, p

)]> (F.31a)

ϕ5 = i7q̄Sc̄ ·4δe ·S3
(
α, q

)
(F.31b)

ϕ6 = i9q̄Sb · [·4δa ·S4
(
β, p

)
, 4δr ·S5

(
β, p

)]> (F.31c)

Integrating Eq.19a, Eq. F.24 becomes:

β4 =
[
βCLδa

, βCLδr

]>
= γ4i3q̄Sb ·

[
4δa ·S1

(
β, p

) |pint, 4δr ·S2
(
β, p

) |pint

]>
(F.32a)

β5 =βCMδa
= γ5i7q̄Sc̄ ·4δa ·S3

(
α, q

) |qint (F.32b)

β6 =
[
βCNδa

, βCNδr

]>
= γ6i9q̄Sb ·

[
4δa ·S4

(
β, p

) |pint, 4δr ·S5
(
β, p

) |pint

]>
(F.32c)

F.6. RESULTS AND ANALYSIS

F.6.1. TUNING GAINS

Table F.1: The control gains of the I&I based IBKS controller, kpVTAS
= 2.5

γ4 = 0.006 r ad/s kpφ = 5 kiφ = 0.5 kpp = 5
γ5 = 0.05 r ad/s kpα = 3.5 kiα = 0 kpq = 1.5
γ6 = 0.008 r ad/s kpβ = 2 kiβ = 0 kpr = 5

Controller gains are given in Table F.1.
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F.6.2. ANGULAR TRACKING PERFORMANCE
In this section, the regular incremental backstepping (reg-IBKS) control approach is
compared with the singular perturbation based IBKS (spt-IBKS). A tracking controller
for the true airspeed, angle of attack, sideslip angle, and roll rate in the stability axis is
designed for an F-16 aircraft and validated. In the regular IBKS controller, the control
effectiveness matrix is updated in real-time using the I&I estimator designed in section
F.5.2.The simulation results showing the reference command tracking performance of
the controller are plotted in Figs.F.1-fig:ii06. The commands for the roll angle and angle
of attack are given sequentially. As shown in these 6 figures, spt-IBKS nearly achieves
exactly the same command tracking performance as that achieved by a regular IBKS
controller.
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Figure F.1: Roll rate, IBKS.
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Figure F.2: Pitch rate, IBKS.
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Figure F.3: Yaw rate, IBKS.
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Figure F.4: True airspeed, IBKS.

F.6.3. IMMERSION AND INVARIANCE BASED ESTIMATION PERFORMANCE
In Section F.6.2, only the tracking performances of the controlled variables are given, the
time-varying histories of the control derivatives, i.e. elements in the control effectiveness
matrix, are given and analyzed in this section.

The estimation results of the control derivatives when using an I&I estimator are
plotted in Figs.F.8-F.12. According to these 5 figures, the changing trends of the control
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Figure F.5: Roll angle, IBKS.
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Figure F.6: Angle of attack, IBKS.
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Figure F.7: Sideslip angle, IBKS.
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Figure F.8: B11, IBKS.

derivatives related to ailerons and rudders are well reflected, but the estimation of the
elevator related control derivatives are not satisfied.

F.7. CONCLUSIONS
This chapter investigated how the immersion and invariance I&I technique can be
applied to provide an estimation of the control effectiveness matrix when designing
an incremental backstepping (IBKS) controller for an F-16 aircraft. The control per-
formance of a regular IBKS is compared with that of a singular perturbation based
incremental backstepping control law namely sensor based backstepping with a focus
on investigating how the accuracy of the control effectiveness matrix affect the control
performance of an incremental backstepping controller. Closed-loop simulation results
show that the IBKS is not sensitive to the parameter variations in the control effective-
ness matrix since the control performances of an IBKS controller do not have apparent
difference before and after including parameter adaption of the control derivatives. This
should be due to the fact that the chosen flight scenarios of an F-16 aircraft are located in
a moderate range of its flight envelopes. Further applications on re-entry vehicles which
has a larger parameter variations than aerial vehicles should be investigated.
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Figure F.9: B13, IBKS.
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Figure F.10: B22, IBKS.
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Figure F.11: B31, IBKS.
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G
PARAMETERS OF AN NDI

CONTROLLER FOR CLOSED-LOOP

DATA COLLECTION IN VALIDATING

TPS B-SPLINES

A regular polynomial basis based adaptive nonlinear dynamic inversion (NDI) controller
has been designed for the F-16 fighter aircraft. The natural frequency of the second order
command filters, see.[47]), and the controller gains are given in Table G.1. In Table G.1,
the subscript ’I ’ denotes integrator related terms, i.e. integration gains, ω represents the
natural frequency of the command filters. For more details of the adaptive NDI control
approach, the reader is referred to Lombaerts et al. [86][p.222-232].

Table G.1: The natural frequency of the command filters and control gains of the adaptive NDI controller

ωφ = 2.5 r ad/s ωp = 30 r ad/s kφ = 5 kφI = 0 kp = 10
ωα = 3 r ad/s ωq = 30 r ad/s kα = 8 kαI = 5 kq = 5
ωβ = 6 r ad/s ωr = 30 r ad/s kβ = 1 kβI

= 0.05 kr = 1.6

During the data collection of the second validation data set, i.e. the closed-loop data
set shown in Section 8.5.3, the step-type angular reference commands are given to the
closed-loop F-16 aircraft. The responses and changing history of the attitude angles
and the body angular rates are shown in Figure G.1. In this figure, ’cmd’ denotes the
given command, and ’poly’ represents the responses of the controlled system with the
controller designed using the polynomial basis based adaptive NDI controller.
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Figure G.1: Angular and angular rate changes of the F-16 aircraft armed with a polynomial based adaptive NDI
controller.



H
PRELIMINARIES ON SINGULAR

PERTURBATION THEORY AND

TIKHONOV ’S THEOREM

H.1. SINGULAR PERTURBATION THEORY, SPT

Singular Perturbation Theory [59, 67]:
A singularly perturbed, nonlinear system with the following system description is
considered:

ẋ = f (t , x,u,ε) , x (0) = ξ (ε) (H.1a)

εu̇ = g (t , x,u,ε) ,u (0) = η (ε) (H.1b)

where ξ and η depend smoothly on the small positive parameter ε Assume that f and g
are continuously differentiable in their arguments for (t , x,u,ε)∈ R+ ×Dx×Du × [0,ε0],
where Dx ∈ Rn , Du ∈ Rm are domains and ε0 > 0. In addition, it is assumed that
g (t , x,u,0) = 0 has k ≥ 1 isolated real roots u = hi (t , x), i ∈ {1, ...,k} for each (t , x) ∈
R+ ×Dx . The i -th model for a reduced (slow) system can be obtained by substituting
the roots into Eq. H.1 at ε= 0:

ẋ = f (t , x,h (t , x) ,0) , x (0) = ξ (0) (H.2)

In singular perturbation theory, the boundary layer (fast) system is given by:

d v

dτ
= g (t , x, v +h (t , x) ,0) , v (0) = η (0)−h (0,ξ0) (H.3)

where v (t , x) = u −h (t , x), the normal time-scale t , in Eq. H.1, is replaced by the new
time-scale τ= t

ε , η0 = η (0) and ξ0 = ξ (0), (t , x) ∈R+×Dx are treated as fixed parameters.
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H.2. TIKHONOV ’S THEOREM

Tikhonov’s Theorem [59, 67, 153]:
Consider the singularly perturbed system given in Eq. H.1, and let u = h (t , x) be an
isolated root of g (t , x,u,0). Assume that the following conditions hold for all (t , x,u,ε)∈
R+×Dx×Du×[0,ε0] for the domains Dx ∈Rn , Du ∈Rm , which contain the corresponding
origins.

(a) On any compact subset of Dx ×Dv the function f , g , their first partial derivatives
with respect to (x,u,ε), and the first partial derivative of g with respect to t are

continuous and bounded, h (t , x) and ∂g
∂u (t , x,u,0) have bounded first derivatives

with respect to their arguments, ∂ f
∂x (t , x,h (t , x) ,0) is Lipschitz in x uniformly in t ,

and the initial conditions for ξ and η are smooth functions of ε.

(b) The origin is an exponentially stable equilibrium point of the reduced system given
in Eq. H.2. There exists a Lyapunov function V : R+×Dx 7→R+ that satisfies:

W1 (x) ≤V (t , x) ≤W2 (x) (H.4a)

∂V (t , x)

∂t
+∂V (t , x)

∂x
f (t , x,h (t , x) ,0) ≤−W3 (x) (H.4b)

for all (t , x) ∈ R+ × Dx , where W1,W2, and W3 are continuous positive definite
functions on Dx . Let c be a nonnegative number such that {x ∈ Dx |W1 (x) ≤ c} is
a compact subset of Dx .

(c) The origin is an equilibrium point of the boundary layer system given in Eq. H.3,
which is exponentially stable uniformly in (t , x).

Let Rv ∈ Dv denote the region of attraction of the autonomous system:

d v

dτ
= g (0,ξ0, v +h (0,ξ0) ,0) (H.5)

and let Wv be a compact subset of Rv . Then for each compact set Wx ∈ {
x ∈ Dx |W2 (x) ≤ ρc,

0 < ρ < 1
}
, there exists a positive constant ε∗ such that for all t ≥ 0, ξ0 ∈Wx ,

(
η0 −h

(
0,η0

)) ∈
Wv and 0 < ε< ε∗ such that the system given by Eq. H.1 has a unique solution xε on R+

and
xε (t )−x00 (t ) =O (ε) (H.6)

holds uniformly for t ∈R+, where x00 (t ) denotes the solution of the reduced system given
in Eq. H.2.

H.3. APPROXIMATE DYNAMIC INVERSION, ADI
A controller called approximate dynamic inversion was developed by Hovakimyan et
al.[59] for a nonlinear non-affine in control system based on singular perturbation
theory and Tikhonov’s theorem. The system considered here is:

ẋ = f (t , x,u) (H.7)
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where x (0) = x0 for (x,u) and where Dx ⊂ Rn and Du ⊂ Rm are domains that contain
the corresponding origins. Here x denotes the state vector and u the input vector. The
function f is continuously differentiable in its arguments. Furthermore assume ∂ f /∂u
is bounded away from zero for (x,u) ∈ Ωx,u ⊂ Dx ×Du , where Ωx,u is a compact set of
possible initial conditions, i.e., there exists a b0 > 0 such that |∂ f /∂u| > b0

A reference signal yr is introduced for the state x, and the track error is defined as
e = x − yr . Then the error dynamics of the system can be written as [44]:

ė = f
(
t ,e + yr ,u

)− ẏr (H.8)

An approximate dynamic inversion controller for Eq. H.8 can be designed using the
following fast dynamic approximation:

εu̇ =−si g n

(
∂ f

∂u

)
f (t ,e,u) (H.9)

Remarks: If we use backstepping to design a controller for Eq. H.7, Eq. H.8 can have
the following formulation:

ė = f
(
t ,e + yr ,u

)− ẏr =−a ·e (H.10)

where a is a controller gain, and is a positive constant. Then the derived algebraic equa-
tion related to f

(
t ,e + yr ,u

)
can be solved further using a fast-approaching function

given by Eq. H.9.

Theorem of Approximate Dynamic Inversion [59]:
Assume that the following conditions hold for all (t ,e,u −h (t ,e) ,ε) ∈R+×De×Dv ×[0,ε0]
for some domains De ∈Rn and Dv ∈Rm , which contain the corresponding origins.

(a) On any compact subset of De ×Dv the function f and the first partial derivatives

with respect to (t ,e,u) are continuous and bounded, h (t ,e) and ∂ f
∂u (t ,e,u) have

bounded first derivatives with respect to their arguments, ∂ f
∂e (t ,e,h (t ,e)) is Lips-

chitz in e, uniformly in t .

(b) The origin is an exponentially stable equilibrium point of the reduced system

ė = f
(
t , yr ,h (t ,e)

)
(H.11)

The mapping e 7→ f
(
e + yr ,h (t ,e)

)
is continuously differentiable and Lipschitz in

e, uniformly in t .

(c) The mapping (t ,e, v) 7→ ∂ f
∂u (t ,e, v +h (t ,e)) is bounded from below by some posi-

tive number for all (t ,e) ∈R+×De .

Then the origin of the boundary layer system

d v

dτ
=−si g n

(
∂ f

∂u

)
f (t ,e, v +h (t ,e)) (H.12)
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is exponentially stable. Moreover, let Ωv be a compact subset of Rv , where Rv ⊂ Dv

denotes the region of attraction of the following autonomous system

d v

dτ
=−si g n

(
∂ f

∂u

)
f (0,e0, v +h (0,e0)) (H.13)

Then for each compact subset Ωe ⊂ De , there exists a positive constant ε∗ such that for
all t ≥ 0, e0 ∈Ωe , u0 −h (0,e0) ∈Ωv , and 0 < ε< ε∗. The nonlinear system, Eq. H.7, has a
unique solution xε on R+ and xε (t ) = yr (t )+O (ε) holds uniformly for t ∈ [t ,+∞).

H.4. RELATIONS BETWEEN ADI, SPT AND TIKHONOV ’S THE-
OREM

Firstly, the ADI controller developed by Hovakimyan et al. [59], see Eqs. H.8-H.9,
introduced new system dynamics due to the dynamic approximation control algorithm
given by Eq. H.9. The dynamics introduced by the controller approximation process
are viewed as fast dynamics if the controlled plant is viewed as a singularly perturbed
system.

Secondly, Hovakimyan et al. [59] chose a fast-approaching function Eq. H.9, which
takes the form of Eq. H.5, such that Tikhonov’s theorem given in Section H.2 can be
applied to derive a controller to stabilize the overall controlled system.

Thirdly, to use Tikhonov’s theorem to design a stable controller for a non-affine in
control nonlinear system, the fast approximation function given by Eq. H.9 is not the
only option for Eq. H.5. Furthermore, the si g n (·) function in Eq. H.9 may sacrifice the
optimality of the controller. It is more likely that the final controller could be made more

optimal without sacrificing the stability property if the function si g n
(
∂ f
∂u

)
in Eq. H.9

is replaced by the Jacobian matrix ∂ f
∂u or the entire fast-approaching function given by

Eq. H.9 is replaced by the other proper functions.
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SAMENVATTING

Model- en sensorgebaseerde niet-lineaire adaptieve
vliegtuigbesturing met online system identificatie

Li Guo Sun

Er is een consensus dat veel accidenten waarbij verlies van controle (LOC) optreedt,
veroorzaakt door ernstige schade aan het vliegtuig of door het falen van een component,
vermeden zouden kunnen worden omdat de vluchtperformantie hersteld kan worden
door de overblijvende regelmogelijkheden te gebruiken. Dit niettegenstaande dat de
veilige manoeuvreerbaarheid van het vliegtuig na het accident onoverkomelijk gere-
duceerd zal zijn. Onconventionele regelstrategieën, gebaseerd op moderne regeltech-
nieken en een uitgebreide rekenkracht, zijn essentieel om het meeste te halen uit de
gereduceerde, overblijvende regelmogelijkheden na een defect en om de vliegperfor-
mantie te herstellen of een veilige landing uit te kunnen voeren. Één zo’n onconven-
tionele regeltechniek is het actieve fout-tolerante vliegtuigregelsysteem (FTFC), ontwor-
pen om veranderingen in de vliegtuigdynamica ten gevolge van structurele, actuator
of sensor fouten te ontdekken en om via een adaptief reconfiguratiemechanisme zich
aan te passen aan de schade of fout. De actieve FTFC kan overweg met onvoorziene en
meerdere simultane defecten.

De gehele systeemarchitectuur van een actieve FTFC zou in een ideaal geval moeten
bestaan uit een Fout Detectie en Diagnose (FDD) module, een onderdeel voor de recon-
structie van de toestand van het systeem, een component met een reconfigureerbare
regelaar, een controle toewijzingseenheid en een component voor de beveiliging van
het vliegdomein. FTFC systemen kunnen normaal gezien ingedeeld worden in twee
verschillende types: modelgebaseerde systemen en modelvrije systemen, afhankelijk
van het feit of één van de componenten een aerodynamisch model van het vlieg-
tuig gebruikt of niet. Één van de onderdelen van een modelgebaseerde FTFC is de
aerodynamisch model identificatie (AMI) module, die een nauwkeurig vliegtuigmodel
beschikbaar stelt aan een indirect adaptieve niet-lineaire regelaar in het onderdeel
met de reconfigureerbare regelaar, aan een dynamisch algoritme voor de definiëring
van het vliegdomein, of aan een FDD module. Een AMI methode met een fysische,
interpreteerbare modelstructuur kan structurele defecten of een defect van één van de
stuurvlakken detecteren en zelfs kwantificeren door veranderingen in de stabiliteits- en
regelafgeleiden te observeren.

Er bestaan veel mogelijke regelstrategieën die over reconfiguratie mogelijkheden
beschikken. Deze reconfigureerbare regelstrategieën zijn gebaseerd op een wijd scala
van reconfiguratiemechanismen zoals switching, model following, matching en adap-
tieve compensatie. Één van deze methodes is niet-lineaire adaptieve regelaars, die
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reconfiguratie behalen door middel van compensatie. Deze methode trekt steeds
meer aandacht in het specifieke onderzoeksgebied dat zich toelegt op de besturing
van luchtvaart- en ruimtevaarttuigen. Niet-lineaire adaptieve regelmethodes kunnen
onderverdeeld worden in directe adaptieve regelaars en indirecte adaptieve regelaars,
waarbij het verschil erin bestaat dat de laatste een online systeemmodel gebruikt. Indi-
recte adaptieve regelaars worden ook modelgebaseerde of modulaire adaptieve regelaars
genoemd, en hebben verschillende voordelen ten opzichte van de directe adaptieve
regelaars en andere modelvrije regelstrategieën. Één van deze voordelen is dat een
modulaire regelstrategie potentieel meer efficiënt is en minder stuuracties nodig heeft.
Zo’n efficiënte controletechniek kan gecreëerd worden door nuttige dempingtermen
van een geïdentificeerd model te behouden in de closed-loop. Dit wordt toegeschreven
aan de goede eigenschappen van vele ontwerptechnieken voor regelmethodes zoals
backstepping, zodat er kan gekozen worden om de dynamica van het originele systeem te
compenseren of te behouden tijdens het ontwerpproces. Modulaire adaptieve besturing
heeft ook een inherent nadeel, enkel de input-to-state stabiliteit kan gegarandeerd
worden, i.e., modulaire adaptieve besturing kan niet de stabiliteit van het gehele closed-
loop systeem garanderen omdat het stabiliteitsbewijs gebaseerd is op het certainty
equivalence principe. De zwakheid van het certainty equivalence principe, i.e., een
convergentieprobleem van de modelparameters, kan gecompenseerd worden door de
modelnauwkeurigheid of betrouwbaarheid te verbeteren. Om dit te bereiken is het
essentieel om geavanceerde, krachtige identificatiemethodes te ontwikkelen voor het
identificeren van aerodynamische modellen die capabel zijn om veranderingen in de
vliegdynamica te ontdekken, zowel tijdens sterke manoeuvres als tijdens een post-faling
conditie.

De beveiliging van het vliegdomein is een noodzakelijke techniek dat ontwerpers
van regelaars zouden moeten toepassen om LOC incidenten te vermijden, daarbij
rekening houdend met sterke manoeuvres en/of zwaar verstoorde vliegcondities door
de aanhoudende storing. Een component voor de beveiling van het vliegdomein zou
een piloot moeten voorzien van een indicatie voor het veilige vliegdomein en limieten
zetten op de referentiesignalen voor de interne regelaar zodat de stuurdoelen bereikt
kunnen worden.

Een aerodynamisch vliegtuigmodel dat geldig is over het gehele vliegdomein speelt
een cruciale rol in een modulaire adaptieve regeltechniek en vliegdomeinbeveiliging.
Een globaal geldig model is nodig voor een modulaire adaptieve regeltechniek zodat
de ontworpen regelaar optimaal kan functioneren over het gehele operationele bereik
van het vliegtuig. Eenmaal geschat kan het globale model van een modelgebaseerde
adaptieve regeltechniek opgeslagen worden voor later gebruik, wanneer dezelfde vlucht-
conditie opnieuw wordt tegengekomen. Essentieel voor een modelgebaseerde regel-
techniek is een nauwkeurig aerodynamisch vliegtuigmodel, dat bovendien ook nodig is
voor de vliegdomeinbeveiliging. Het spreekt voor zich dat het geschatte aerodynamisch
model geldig moet zijn over het gehele vliegdomein voor een specifieke configuratie
zodat een evolutiealgoritme de grenzen van het veilige vliegdomein kan schatten voor
de geldende vliegcondities. Echter, er zijn maar enkele modelidentificatiemethodes
die in staat zijn om een globaal geldig aerodynamisch model te schatten, en elke
mogelijke methode heeft verschillende tekortkomingen of limitaties die het toepassen
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van deze methodes voor het schatten van een vliegtuigmodel bemoeilijken. Bijvoor-
beeld, neurale netwerken resulteren gebruikelijk in een niet-transparante modelstruc-
tuur die moeilijk te interpreteren is door gebruik te maken van de fysische kennis van
het systeem en bovendien kunnen er convergentieproblemen optreden. De meeste
kernfunctiemethodes behoren tot de categorie van niet-parametrische methodes, die
van nature even veel kernfuncties nodig hebben als er data punten zijn. Men moet er
rekening met houden dat enkel modelidentificatiemethods van het equation-error type
onderzocht zijn geweest in dit werk, aangezien de aanname werd gemaakt dat voldoende
nauwkeurige schattingen van de vliegtuigtoestand beschikbaar waren.

Een alternatieve methode voor de modulaire adaptieve reconfigureerbare regel-
techniek is de incrementele niet-lineaire besturing gebaseerd op de acceleratiemetin-
gen (AMINC). Een nauwkeurige schatting van het vliegtuigmodel tijdens sterke ma-
noeuvres of tijdens een transitiemoment na het falen van het vliegtuig is moeilijk te
behalen. Incrementele regeltechnieken zoals incrementele niet-lineaire dynamische
inversie (INDI), incrementele backstepping (IBKS) en sensor-gebaseerde backstepping
(SBB) zijn geschikt voor reconfigureerbare ontwerpen voor vliegregelaars in die zin dat
deze technieken geen volledig vliegtuigmodel nodig hebben.

De hoofdonderzoeksvraag voor dit werk is: op welke manier kan een geavanceerd
faut-tolerant regelsysteem ontworpen worden zodat de overlevingskansen van een
vliegtuig verhoogd kunnen worden? Deze vraag leidde tot twee subvragen:

• Hoe kunnen de kandidaatmethodes voor functieapproximatie, i.e., multivariate
simplex B-splines en kernfunctie methodes, verbeterd worden op vlak van be-
naderingsnauwkeurigheid en rekenkundige efficiëntie, zodat tegemoetgekomen
kan worden aan de voorwaarden voor modelgebaseerde adaptieve besturing en
online vliegdomeinbeveiliging?

• Wat zijn de voordelen van gebruik te maken van een regeltechniek gebaseerd op
versnellingsmetingen, i.e., de sensor-gebaseerde backstepping, als een alternatief
voor een modelgebaseerde adaptieve besturingsmethode, wanneer een reconfig-
ureerbare regelaar dient ontworpen te worden die kan omgaan met schade?

In het geval van reconfigureerbare besturing zou het geïdentificeerde model de
regelaar in de mogelijkheid moeten stellen om actieve reconfiguratie te behalen en
de besturingsperformantie te herstellen. Om deze vragen te beantwoorden zijn vier
verschillende globale identificatiemethodes en twee verschillende niet-lineaire incre-
mentele adaptieve regelaars ontworpen.

Twee modelidentificatiemethodes maken gebruik van een parametrische model-
structuur, zijnde standaard multivariate simplex B-splines. De focus tijdens het on-
derzoeksproces voor deze methods lag voornamelijk op hoe een snelle parameteri-
dentificatie bereikt kan worden. In de derde identificatiemethode werd een nieuwe
modelstructuur, genaamd tensor-product simplex B-splines, uitgebreid van een ééndi-
mensionale toepassing naar een multidimensionale toepassing, waarbij de focus lag op
het demonstreren van het voordeel van deze nieuwe samengestelde modelstructuur in
termen van de flexibiliteit bij de selectie van de modelstructuur, de rekenefficiëntie en
de benaderingsnauwkeurigheid. De vierde methode maakt gebruik van een kernfunctie
modelstructuur die ook parametrisch is. De nieuwe recursieve kernfunctiemethode is
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ontwikkeld door een klassieke recursieve kernfunctiemethode te combineren met een
nieuwe support vector regressie methode.

Een modelidentificatiemethode die gebruik maakt van standaard multivariabele
simplex B-splines heeft veel voordelen, zoals het voorkomen van over-fitting dat voorkomt
bij gewone polynome methodes die gebruik maken van een triangulatietechniek. Het
benaderingsvermogen van een methode gebaseerd op simplex B-splines is gedefiniëerd
door de per-simplex polynoomorde en de orde van de continuïteit, en kan verhoogd
worden door het laten toenemen van het aantal subdomeinen in de triangulatie. Deze
benaderingsmethode gebaseerd op simplex B-splines garandeert dat de output be-
grensd is door de maximum en minimum B-coëfficiënten, wat de certificatie voor
toekomstige toepassingen faciliteert. De lineaire regressieve formulatie van de methode
gebaseerd op B-splines laat toe om de meeste recursieve parameterschattingsmethodes
toe te passen. Bovendien heeft de op de simplex B-spline gebaseerde methode een
sparse eigenschap, die de rekenkundige efficiëntie kan verhogen door gebruik te maken
van gedistribueerde berekeningen of andere moderne rekenkundige technieken. Echter,
in het geval dat de functiedimensie 4 of meer is, kan de toepassing van een simplex B-
spline methode leiden tot een snelle toename aan het aantal onbekenden, wat opnieuw
resulteert in een hoge rekenkundige last, gerelateerd aan de vereisten voor continuïteit
en het bijwerken van de covariantiematrix.

Om de rekenkundige efficiëntie van de modelidentificatiemethodes die gebruik
maken van simplex B-splines te verhogen, zijn er twee recursieve lineaire-regressie mod-
elidentificatiemethodes ontwikkeld in dit proefschrift: een op substitutie gebaseerde
multivariabele simplex B-spline methode (SB-MVSB) en een recursieve sequentiële
multivariabele simplex B-spline (RS-MVSB) methode. In de SB-MVSB methode is een
efficiënte, recursieve solver ontwikkeld voor een gelimiteerd lineair regressieprobleem
wanneer simplex B-splines gebruikt worden. Het gelimiteerde lineaire regressieprob-
leem wordt omgezet in een ongelimiteerd lineair regressieprobleem door gebruik te
maken van een algemene oplossing voor equality constraints. Er werd aangetoond dat
deze transformatie de schaal van het identificatieprobleem in termen van het aantal
onbekenden kan reduceren, en dus op deze manier de benodige rekenkundige kracht
voor de modelidentificatiemethode kan reduceren.

De RS-MVSB methode bestaat uit twee opeenvolgende procedures, uitgevoerd bij
elke stap in het algoritme. De eerste procedure vernieuwt een lokaal model in plaats
van een globaal model. De noodzakelijkheid van het vernieuwen van de complete
covariantiematrix wordt vermeden door enkel één lokaal model te vernieuwen, en op
deze manier wordt de rekenkundige efficiëntie van deze methode sterk verbeterd. De
tweede procedure garandeert een continue transitie tussen dit lokaal model en de
omringende lokale modellen.

De rekenkundige complexiteit van de SB-MVSB en de RS-MVSB methodes werd
gepresenteerd vanuit een mathematisch oogpunt. Daarna werden ze gevalideerd d.m.v.
gesimuleerde testdata gegenereerd met een F-16 model met een hoge waarheids-
getrouwheid. De simulatieresultaten demonsteerden dat beide methodes een veel
hogere benaderingsnauwkeurigheid kunnen bereiken dan gewone methodes gebaseerd
op polynomen, en dat beide vele malen sneller, e.g., 10, kunnen zijn dan equality
constraint recursive least squares gebaseerde MVSB (ECRLS-MVSB) methodes. Deze



231

tweede eigenschap maakt het onboard gebruik van deze methodes mogelijk.

Tensor product simplex (TPS) B-splines hebben een samengestelde structuur die
meer flexibiliteit voorziet dan een standaard simplex B-spline model tijdens het se-
lecteren van de modelstructuur. Door gebruik te maken van TPS B-splines kunnen
inputs van verschillende dimensies op verschillende manieren behandeld worden,
afhankelijk van hun karakteristieken gekend van a priori kennis. In dit proefschrift
werd het concept van TPS B-splines uitgebreid van ééndimensionele toepassingen
naar een meer algemeen concept voor multidimensionele toepassingen. Door het
verminderen van het aantal basispolynomen in de regressievector hebben TPS B-splines
het potentieel om minder rekenkundige kracht nodig te hebben in vergelijking met
standaard B-splines. De TPS B-spline methode werd gevalideerd met behulp van een
dataset gegenereerd met een F-16 model met een hoge waarheidsgetrouwheid. De sim-
ulatieresultaten toonden aan dat TPS B-splines een hogere benaderingsnauwkeurigheid
kunnen bereiken met minder B-coëfficienten dan standaard B-splines.

Voor de toepassing van aerodynamische modelidentificatie werden er twee geli-
jkaardige recursieve parametrische kernfunctie methodes ontwikkeld, genaamd “weight
varying least squares support vector regression (WV-LSSVR)” en “Gaussian process
kernel based LSSVR (GPK-LSSVR)”. De focus van dit werk was het verbeteren van de
benaderingsnauwkeurigheid van een recursieve kernfunctie methode door het kiezen
van een optimale set van kernfuncties voor het kernfunctieschema. Een offline methode,
genaamd “improved recursive reduced LSSVR (IRR-LSSVR)”, werd toegepast om de
optimale kernfuncties voor een klassieke recursieve kernfunctiemethode te bepalen.
De nieuwe kernfunctiemethode werd gevalideerd op een serie van publiek beschikbare
referentiedata die bekend is bij onderzoekers in het domein van patroonherkenning.
GPK-LSSVR heeft een hogere benaderingsnauwkeurigheid dan WV-LSSVR, en beide
demonstreerden een betere benaderingsnauwkeurigheid dan klassieke recursieve kern-
functiemethodes gebaseerd op “k-means clustering”.

Met het doel om een reconfigureerbare regelaar te voorzien van een krachtige, on-
conventionele regeltechniek die zich kan aanpassen aan het plotse structurele of actua-
tor falen, werd een nieuw type incrementele regelaar gebaseerd op versnellingsmetingen
onderzocht. De geprefereerde, modelvrije, incrementele regeltechniek in dit proefschrift
was de SBB techniek, die initieel ontwikkeld werd voor regelaars voor niet-lineaire,
nonaffine-in-control systemen. De SBB techniek heeft accurate prestaties voor het
volgen van een referentiesignaal door middel van benaderende dynamische inversie. De
SBB techniek werd uitgebreid om te kunnen omgaan met plotse veranderingen in het
vliegtuimodel door het structureel falen of door actuator fouten. Een hybride, dubbele
lus, hoekregelaar en een verbonden dubbele lus hoekregelaar werden ontworpen voor
het RECOVER model. In de hybride, dubbele lus hoekregelaar werd de hoekregellus
ontworpen door middel van een niet-lineaire dynamische inversie regelwet, en de
hoeksnelheidregelaar door middel van de SBB techniek. In de verbonden, dubbele
lus hoekregelaar werd de gehele regelaar ontworpen via de backstepping techniek,
waarbij elke lus recursief gestabiliseerd werd. Beide hoekregelaars werden gevalideerd
door gebruik te maken van het RECOVER model, met de focus op situaties waarbij
de vliegperformantie verstoord word door het structureel falen of falen van compo-
nenten. Twee referentiele foutscenarios werden geselecteerd: een runaway van het
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richtingsroer en het scenario van El Al vlucht 1862 met de afscheuring van twee motoren.
De simulatieresultaten toonden aan dat beide regeltechnieken in staat zijn om de
veiligheid na het falen van het vliegtuig te garanderen en bovendien capabel zijn om
het referentiesignaal te volgen. In vergelijking met de hybride NDI/SBB hoekregelaar
had de verbonden SBB hoekregelaar een betere performantie bij het volgen van het
referentiesignaal voor de zijwaartse slipbeweging, in het bijzonder in het scenario
waarbij de motoren verloren werden.

Een SBB regelaar omvat een tijdschaal parameter, andere incrementele regeltech-
nieken zoals incrementele NDI (INDI) en incrementele backstepping (IBKS) maken
gebruik van een regeldoeltreffendheidsmatrix. Voordat onderzocht kan worden hoe
deze parameters de performantie van een incrementele regelaar beïnvloeden, moeten
de parametervariaties van de regeldoeltreffendheidsmatrix geschat en geanalyseerd
worden. De TPS B-spline methode en een immersie en invariante (I&I) methode werden
gekozen om de regeldoeltreffendheidsmatrix voor een F-16 vliegtuig te schatten. Hoewel
de I&I methode initieel niet gericht was op hoge modelaccuraatheid, werd er in dit
proefschrift aangenomen dat de methode variabele trends van de regelafgeleiden kon
schatten. De simulatieresultaten toonden aan dat TPS B-splines de veranderingen van
de regelafgeleiden beter kon vastleggen in termen van consistentie dan de I&I methode.
In het geval van de F-16 is het niet duidelijk dat de regeldoeltreffendheidsmatrix de per-
formantie van incrementele regelaars beïnvloed tijdens een gematigd vliegmanoeuvre
in termen van de aanvlieghoek en snelheid.

Verder onderzoek op het onderwerp van modulaire, adaptieve, reconfigureerbare
regelaars is nodig. Een voorbeeld is het inbrengen van de SB-MVSB of de WV-LSSVR
methodes in regeltechnieken om te controleren in hoever deze methodes gepast zijn
voor modulaire, adaptieve regelaars in termen van benaderingsnauwkeurigheid en
onboard rekenkundige efficiëntie. Verder onderzoek naar reconfigureerbare regel-
technieken gebaseerd op versnellingsmetingen zou ook gebruik moeten maken van
evaluaties met de SIMONA onderzoekssimulator, realistische testvluchten met UAV’s en
onderzoeksvliegtuigen.
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