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Abstract

This work applies the theory of group equivariance to the
domain of video action recognition replacing standard 3D
convolutions with group convolutions which are equivariant
to temporal direction, and multiples of 90 degree spatial ro-
tations. We propose a temporal direction symmetry group
T2, and extend the standard planar rotations group to three
dimensions to form a 3D group which is equivariant to dis-
crete 90 degree spatial rotations. We analyse the efficacy
of using these 3D-G-CNNs as drop-in replacements in 3D
networks by evaluating on synthesized datasets containing
handwritten MNIST digits moving over a black background,
as well as popular action recognition datasets UCF-101
and HMDB-51, and comparing the results against the per-
formance of the standard 3D CNNs on the datasets.

1. Introduction
Convolutional Neural Networks(CNNs) are the de-facto

standard for most computer vision domains and achieve
state-of-the-art performance on tasks such as image classi-
fication, video action recognition, object detection, instance
segmentation etc. One of the major contributors to the suc-
cess of CNNs is the concept of translational equivariance,
which ensures that if the input data is translated, the cor-
responding activations of the network in all layers trans-
late in the same way. Cohen and Welling [1] generalise
the equivariance in CNNs to larger symmetry groups con-
sisting of planar rotations and reflections, allowing CNNs
to be equivariant to rotations and mirror reflections in im-
ages as well. Group equivariant convolutions have since
been extended to larger symmetry groups with 6-fold ro-
tational equivariance [2], Steerable filters [3, 4] and spatial
volumes [5, 6, 7], and have achieved improved performance

over standard CNNs in various computer vision tasks such
as image classification [1, 2, 3, 4], instance segmentation
[8, 9], siamese tracking [10], and classification on volumet-
ric medical data [5, 7].

In this paper, we apply the concept of Group equiv-
ariance to the field of video action recognition using 3D
CNNs and analyse whether replacing standard 3D convolu-
tions with 3D group equivariant convolutions consisting of
temporal reverse symmetry groups and spatial rotation sym-
metry group makes action recognition networks equivariant
to time-reversal and spatial rotations, assuming that for all
transformations, the label corresponding to the video is pre-
served. We evaluate and compare the equivariant CNNs to
the baseline 3D CNN architectures trained with and without
data augmentation, using a synthesised dataset consisting
of handwritten MNIST digits moving over a black back-
ground. We also evaluate the group equivariant CNNs on
small but popular action recognition datasets UCF-101[11],
and HMDB-51 [12] and compare them to the baseline 3D
architectures. Figure 1 shows an example of a group convo-
lution pipeline for video action recognition, taking a tempo-
ral direction equivariant group, and a shallow 2-layer CNN.

To summarise, the main contributions of the paper are as
follows:

• We propose a temporal direction equivariant convolu-
tion layer using the concepts of group equivariance,
which can be used in place of standard 3D convolu-
tions in video action recognition tasks to make 3D net-
works equivariant to time-reversed videos, without the
need for data augmentation.

• We extend the base 2D rotation equivariant group, in-
troduced by Cohen and Welling [1], to 3D, and create
a spatial rotation equivariant layer convolution layer
to make 3D networks equivariant to spatial rotations
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by multiples of 90 degrees in videos, without need for
data augmentation.

• We show that temporal direction and spatial rotation
equivariant 3D CNNs display improved performance
over the standard baseline 3D-CNN models for video
action recognition on UCF-101 and HMDB-51.

2. Related Work

2.1. Action recognition using 3D CNNs

3D CNNs perform convolution operations on not only
the spatial dimension but the temporal dimension as well,
thereby being able to learn representations of actions from
videos [13, 14, 15]. While some networks utilize optical
flow streams (besides the RGB stream) as an additional
input to learn the temporal representations in a video
[13, 16], recent publications have shown that 3D CNNs can
be quite robust in learning spatio-temporal representations
using only the RGB stream. Ji et al. [17] first introduced
the 3D CNN for human action recognition tasks, aiming
to capture temporal information from the stacked input
frames, thereby laying the groundwork for using 3D CNNs
for action recognition. Following on, Tran et al. [14] intro-
duced C3D, a deeper variant of the 3D CNN introduced by
Ji et al. [17], based on the VGG16 architecture. The C3D
model showed strong generalization capabilities despite not
being satisfactory on standard benchmarks. Carreira and
Zisserman [13] cemented the 3D CNN as a state-of-the-art
with the introduction of I3D, as well as a new large-scale
dataset called Kinetics. I3D was able to adapt image
classification architectures for use in 3D CNNs by inflating
a 2D model pre-trained on ImageNet [18] to 3D. An
I3D, pre-trained on Kinetics-400, achieved an accuracy of
95.6% on UCF-101 and 74.8% on HMDB51. Carreira and
Zisserman [13], also integrated a temporal stream based on
optical flow with the I3D network and showed significant
improvement in performance with 98.0% on UCF-101 and
80.9% on HMDB51.

Using the Kinetics dataset introduced in [13], Hara
et al. [15] replicated the successful history of deep 2D
CNNs pre-trained on ImageNet, for video action classifica-
tion. They extended the 2D ResNet architecture, replacing
the 2D convolution kernels with their 3D counterparts,
creating the 3D ResNet with various depts(18 to 200). They
showed that like 2D ResNets trained on ImageNet, 3D
Resnets pre-trained on Kinetics outperform complex 2D
networks on both the UCF-101 and the HMDB-51 datasets.
In our work, we use 3D CNNs as backbone architectures
to replace standard 3D convolution layers with 3D group
equivariant layers and evaluate them.

2.2. Temporal information in video classification

Temporal information plays an important role in the
sphere of video classification, particularly in Arrow of
Time(AoT) classification - determining whether a video is
playing in forward or reverse, and has found significant
utility in pre-training video understanding models. [19].
The importance of temporal information in action classifi-
cation has also been displayed by recent convolutional net-
works, which utilize optical flow as an input along with
the spatial frames(RGB) to better model the temporal fea-
tures in videos, and tend to show increased performance
[13, 16]. Although recent networks can achieve great per-
formance on benchmark datasets such as the UCF-101 [11],
HMDB-51 [12], or Kinetics [20], Sevilla-Lara et al. [21] ob-
served that many action classes in these video datasets could
be classified without explicitly requiring temporal informa-
tion. They addressed the problem by creating a novel video
recognition benchmark called Temporal Dataset, consist-
ing of human-annotated classes where understanding tem-
poral information was a requirement for successful classifi-
cation. In this paper, we do not utilize an explicit temporal
stream and use networks that learn action representations
using only RGB frames as inputs, but we apply the idea of
a dataset that requires good temporal understanding by cre-
ating a dataset whose class labels are not discernable from
a single frame.

2.3. Homogeneous action label transformations

Changing the temporal order of an action in a video clip
can often lead to a different action. However, as the RGB
frames of the video clip remain the same for both actions,
a network would be able to learn both action labels using
the same video clip. Price and Damen [22] applied video
transforms such as horizontal flipping, temporal reversal on
their video clips to identify homogeneous label transforms
- transformations that either modify or maintain the labels
of videos in each class within the dataset. They evaluate the
approach of discovering temporal order invariant classes 1.
Their approach, evaluated on the Jester dataset [23] and the
Something-something dataset [24], and showed that class
labels could be learnt from their equivariant pair classes.
For instance, zooming into something can be learnt from
zooming out of something. In our work, we consider only
Label preserving transforms - transformations on videos
that do not change the action or the label associated with
it.

1Classes which, when transformed, either preserve their label, pairs
of equivariant classes which exchange their labels, or labels novel to the
dataset [22].
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Figure 1: Overview of a group equivariant convolutional network pipeline shown using a shallow 2-layered G-CNN with a
temporal direction equivariant group T2. The blue boxes represent group actions, the yellow ones represent input and output
layers, and the red ones represent intermediate feature maps. Group convolutions occur in layers 1 and 2, with a group
pooling in the penultimate layer. The top input shows 3 frames of the original clip taken from the HMDB-51 dataset with
the label Brush Hair, and while the bottom input shows 3 frames of the reversed clip. The corresponding feature maps are
shown after the group convolution operations and consist of two symmetry groups. As an output of the network, we see that
the original clip and the reversed clip are classified correctly.

2.4. Group equivariant CNNs

2.4.1 Equivariance properties of CNNs

Equivariance property is a property of functions where the
result of two functions f and g operating on an input x pro-
duce the same result when f is operated first followed by
g or vice versa. Therefore, for an input x, the functions
f(g(x)) and g(f(x)) yield the same result. In the context of
neural networks and transformations, this would mean that
performing a transformation and then a convolution opera-
tion on a certain input image is the same as first performing
a convolution operation followed by a transformation of the
resultant state.

2.4.2 Group equivariance

Although, by their very nature, CNNs provide translational
equivariance, they are not equivariant or invariant to other
transformations such as rotations and reflections. Group
Equivariant Convolutional Networks [1] was proposed as a
solution to the problem. Besides translational equivariance,
G-CNNs show equivariance to rotations and reflections and
a higher degree of weight sharing than standard CNNs.
Weight sharing allows for learning a much larger set of
possible symmetries without increasing the number of

learnable parameters of the network, thereby making the
network more data and resource-efficient over standard
CNNs.

In a subsequent publication, the authors extended the
G-CNNs for three-dimensional inputs by introducing 3D
G-CNNs [5] consisting of octahedral and square prism
symmetry groups. The networks were trained and tested
with volumetric CT scan data and showed significant data
and resource efficiency, producing a similar performance to
networks trained with nearly ten times more data.

In our work, we use the concepts of group equivari-
ance to create two symmetry groups and augment our back-
bone architecture with 3D group convolutions and attempt
to make our network equivariant to translations and discrete
spatial rotations, as well as equivariant to reflections in the
temporal plane (such as time-reversed videos).

3. Methodology

3.1. T2 - The temporal direction equivariant group

The T2 group consists of the compositions of transla-
tions and mirror reflection along the spatial plane. The
group can be parameterized in terms of four integers:
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(a) T2 (b) P43D

Figure 2: Graphical representation of the defined 3D groups
and their effects on canonical 3× 3× 3 filters with 2 nodes
for the T2 group, and 4 nodes for the P43D group. Each
node corresponds to a symmetry transformation g ε G.

z, u, v, w, and is represented by the homogeneous matrix:

g(z, u, v, w) =


1 0 0 u
0 1 0 v
0 0 −1z w
0 0 0 1

 (1)

where z ε {0, 1} and (u, v, w) εZ3, and the operation on the
group is a matrix multiplication. The group TR operates on
spatio-temporal coordinates in Z3 by taking the product of
the group symmetry matrix g and the homogeneous 3D co-
ordinate vector representing a spatio-temporal voxel. Figure
2a provides a representation of the T2 group, with the iden-
tity cubic filter(left) and the transformed filter(right). We
notice that the cube is mirrored on the temporal axis un-
der the transformation while preserving the spatial orienta-
tions. We visualize the effect of the filter group on a stack
of frames in Figure 3, with the coordinates representing the
pixel positions in each frame in the video, and see that the
order of the frames is reversed along the temporal axis.

3.2. P43D - The spatial rotation equivariant group

The P43D group consists of the compositions of transla-
tions and 90-degree rotations on the spatial plane, about the
centre. It is a 3D extension of the p4 feature map introduced
by Cohen and Welling [1] and contains four elements, each
representing a rotation by 90 degrees and the identity el-
ement. The group can be parameterized in terms of four
integers: r, u, v, w, and is represented by the homogeneous
matrix:

g(r, u, v, w) =


cos(π2 ) −sin(π2 ) 0 u
sin(π2 ) cos(π2 ) 0 v

0 0 1 w
0 0 0 1

 (2)

where 0 ≤ r < 4 and (u, v, w) ε Z3, and the operation on
the group is a matrix multiplication. The group P43D oper-
ates on spatio-temporal voxel coordinates in Z3 by matrix
multiplication. We represent the P43D group in Figure 2b

Figure 3: The temporal direction equivariant group visual-
ized by transforming a stack of three frames. The stacked
frames on the left represent the identity element, which
upon being transformed by a mirror reflection on the tem-
poral axis, forms the element on the right, representing the
element of the group with the order of frames reversed. The
colour of the frames can easily help visualize this. In the
identity element, the green frame is nearest to the reader,
and the blue frame is farthest, whereas, in the reversed el-
ement, the green frame is the farthest while the blue frame
is the nearest. We can also see that the spatial orientations
in the transformed element do not differ from the identity
element.

as four pure 90 degree spatial rotations on a spatiotemporal
cube about its center, while leaving its temporal dimension
untransformed. This leads to four orientations of the cube
representing the identity, and three rotated versions repre-
senting 90, 180 and 270 degree spatial rotations respec-
tively. We see a stack of frames representation in Figure
4 where the spatial coordinates rotated, leaving the order of
the frames unchanged.

3.3. 3D Group-Equivariant Convolutions

We write the Group convolution operation as defined in
[1], as a composition of a translation t ε Z3, and a transfor-
mation sεG, whereG is the symmetry group. The transfor-
mation s leaves the origin invariant and is called the stabi-
lizer. In the case of the T2 group, the transformation s is a
mirror transform along the temporal axis. We can therefore
write the convolution operation using an input spatiotempo-
ral volume f , and the 3D filter ψ, as:

f ? ψ(ts) =
∑
h ε X

∑
k

fk(h)Lt[Lsψk(h)] (3)

where Lt represents translations performed on the feature
map, Ls represents the transformation on the feature map,
k represents the kth filter in the filter bank, X = Z3, or
the voxel space of the feature map in the first layer of the
network, and X = G in the subsequent layers.

To compute the result of the convolution operation, the
filter ψ is first transformed with Ls consisting of all trans-
formations in the group G, followed by convolution on the
input f .

4



Figure 4: The spatial rotation equivariant group visualized
by transforming a stack of three frames. The stack of frames
at the top represents the identity element, which is trans-
formed by four spatial rotations on the spatial domain form-
ing the three other elements, each differing from the previ-
ous by a 90-degree counter-clockwise rotation. The rota-
tions can be visualized by focusing on the darkened pixels
in the frames. With each 90-degree rotation, the position of
the pixel changes.

A detailed explanation of the group convolution process
can be found in the supplementary material.

3.3.1 Transformed feature maps

The filters at any layer of a group equivariant 3D CNN are
of the shape Kl ×Kl−1 × Sl−1 × n× n× n, where Kl is
the number of channels in the current layer, n represents
the translational extent of the filter, and Sl−1 represents
the number of transformations in the symmetry group G,
which are 1, 2 and 4 for the Z3, T2 and P43D groups re-
spectively. Performing a convolution operation with each
filter produces a set of 2 feature maps for the T2 groups and
4 feature maps for the P43D feature maps.

4. Experiments
4.1. Network architectures

We compare the P43D and T2 groups and standard 3D
Convolutions(Z3) on the datasets using two baseline archi-
tectures. The first baseline is a simple 3D-CNN, consisting
of a sequence of 3 non-strided 3× 3× 3 convolutional lay-
ers, and 1 non-strided 1×1×1 convolutional layers, with a
3D max pool layer after the first convolution, subsampling
using an average pooling after the second and third layers,

and an adaptive average pooling layer before the final fully-
connected layer. All the convolution layers are followed by
non-linear activations using Rectified Linear Unit(ReLU)
modules. The second baseline is a 3D Residual network
[15] with 18 layers. The network includes an initial 3D con-
volution layer followed by four stages consisting of 2 blocks
each before the final fully connected layer. Each block con-
sists of 2 convolutional layers with a kernel size of 3×3×3,
with ReLU activations after each convolution. Except for
the first block, the remaining three blocks also consist of a
downsampling layer with a single 1×1×1 convolution layer
using a stride of 2. The network also consists of a 3D max
pool after the first convolution and a 3D Adaptive average
pool before the final fully connected layer.

To construct the Group Equivariant 3D CNNs, we re-
place the standard 3D Convolution layers in both baseline
architectures with the respective G-CNN modules and re-
duce the number of filters in each layer by a factor of

√
H ,

whereH denotes the number of elements in the correspond-
ing symmetry group. For the T2 group, H = 2, while for
the P43D group,H = 4. We also add a global average pool-
ing over the group orientation channels before the fully con-
nected layer. We thereby obtain four 3D G-CNNs from our
two baseline architectures - the 4-layer T2CNN, the 4-layer
P43DCNN, the T2-3D ResNet-18 and the P43D-ResNet-
18. The description of the layers of the networks based on
the 4-layer CNN can be seen in Table 1. Table 2 shows
the size of resultant 3D feature maps from each layer in
the baseline Z3CNN, the T2CNN and the P43DCNN, along
with the orientation channels for the 3D G-CNNs.

4.2. Datasets

4.2.1 Moving MNIST

The moving MNIST digits dataset is created by moving
handwritten digits from the MNIST dataset [25], over a
black background. The task associated with the dataset is
to identify the digit in the video. The dataset is split into
training, validation, and testing sets of 6000, 1000 and 3000
videos.

4.2.2 Moving MNIST-Dir

We also create another dataset using the handwritten digits
of the MNIST dataset [25] moving over a black background
with class labels representing the directional plane of move-
ment of the digits within the square frame. The dataset con-
sists of 10000 videos distributed evenly across four classes
- Horizontal, Vertical, Diagonal Left and Diagonal Right.
The dataset consists of 5000 videos for training, 2000 for
validation and 3000 for testing.
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Z3CNN T2CNN P43DCNN
687K parameters 676K parameters 683K parametersName

Layer Cin, Cout Layer Cin, Cout, H Layer Cin, Cout, H
conv1 Conv3D (3, 64) T2ConvZ3 (3, 45, 2) P43DConvZ3 (3, 32, 4)
maxPool MaxPool3D (64, 64) MaxPool3D (45, 45, 2) MaxPool3D (32, 32, 4)
conv2 Conv3D (64, 128) T2ConvT2 (45, 90, 2) P43DConvP43D (32, 64, 4)
conv3 Conv3D (128, 128) T2ConvT2 (90, 90, 2) P43DConvP43D (64, 64, 4)
smoothing AveragePool3D (128, 128) AveragePool3D (90, 90, 2) AveragePool3D (64, 64, 4)
conv3 Conv3D (128, 128) T2ConvT2 (90, 90, 2) P43DConvP43D (64, 64, 4)
adaptiveAvg AdaptiveAvgPool3D - AdaptiveAvgPool3D - AdaptiveAvgPool3D -
fc Linear (128, N) Groupwise Avg Pool - Groupwise Avg Pool -

Linear (90, N) Linear (64, N)

Table 1: 4-Layer CNN architecture descriptions showing the baseline Z3 CNN architecture, and the representation of the
model with convolution layers replaced with the respective G-CNN layers. The resulting T2CNN and P43DCNN have 2 and
4 orientation channels, and have Kl ∗

√
H feature maps, where Kl is the number of feature maps at a given layer, and H

represents the number of elements in the symmetry group. N in the final layer(fc) represents the number of classes in the
dataset the network is trained on.

Feature map size (Sl, Dout, Hout,Wout)Name Filter size Stride Z3CNN T2CNN P43DCNN
conv1 3 x 3 x 3 1 (32, 32, 32) (2, 32, 32, 32) (4, 32, 32, 32)
maxPool 3 x 3 x 3 2 (16, 16, 16) (2, 16, 16, 16) (4, 16, 16, 16)
conv2 3 x 3 x 3 1 (16, 16, 16) (2, 16, 16, 16) (4, 16, 16, 16)
conv3 3 x 3 x 3 1 (16, 16, 16) (2, 16, 16, 16) (4, 16, 16, 16)
smoothing 2 x 2 x 2 2 (8, 8, 8) (2, 8, 8, 8) (4, 8, 8, 8)
conv3 1 x 1 x 1 1 (8, 8, 8) (2, 8, 8, 8) (4, 8, 8, 8)
adaptiveAvg - - (1, 1, 1) (2, 1, 1, 1) (4, 1, 1, 1)
groupPool - - N/A (1, 1, 1, 1) (1, 1, 1, 1)

Table 2: Feature map output sizes for the layers in the three versions of the 4-layer CNN. Sl represents the number of
symmetries generated, while Dout, Hout,Wout represent the output depth, height and width respectively.

4.3. Evaluating with transformed datasets

To test whether the networks are indeed equivariant to
group transformations, we evaluate the models over multi-
ple test runs using the untransformed dataset and a trans-
formed version of the dataset. The transformations which
we use during the process of evaluation are as follows:

• Temporal Reverse: The order of the frames of the
videos in the dataset are reversed. For example, if
an object is translated from left to right in the origi-
nal dataset, the object moves from left to right in the
transformed dataset. In the subsequent sections, the
test results on a reversed dataset are denoted by the
term treverse

• Spatial Rotations: The frames of the videos in the
dataset are rotated counter-clockwise by an angle spec-
ified during evaluation. As our symmetry consists
of three 90 degree rotations, our transformations on
the test are restricted to 90-degree rotations as well.

The test results on the spatially rotated videos are rep-
resented by the terms r90, r180, and r270, where
the number value represents the degree of counter-
clockwise rotation applied on the dataset.

The base test set with no transformations applied to it
during evaluation is represented by the term original. We
visualise the effect of the transformations on videos using
the Moving MNIST dataset in Figure 5.

4.4. Evaluating equivariance to temporal direction
in videos in standard CNNs

We evaluate whether standard CNNs are equivariant to
temporal direction and spatial rotations in videos. We train
the 4-layer Z3CNN and a baseline 3D-ResNet-18 on the
videos of the Moving MNIST-Dir dataset. Training was
conducted for 50 epochs on the 4-layer Z3CNN with an ini-
tial learning rate of 0.1, with the learning rate being reduced
by a factor of 0.1 after 20 and 40 epochs. The 3D-ResNet-
18, with a comparatively greater number of learnable pa-
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Figure 5: Visualisation of applying transformations on the video frames of the handwritten digit 6 moving from left to right
over a black background. The term original represents the video with no transformations applied to it, treverse represents
the video with reversed order of frames, r90, r180 and r270 represent a counter clockwise spatial rotation of 90 degrees, 180
degrees and 270 degrees respectively. The yellow arrow represents the temporal direction of the video relative to the order of
video frames in original.

Top-1 Accuracy(%)Model Type original treverse
Z3CNN 4-layer CNN 100 24.6
Z3-ResNet-18 3D ResNet-18 100 24.13

Table 3: Best Top-1 accuracy obtained on the Moving
MNIST-Dir dataset for the standard 4-layer CNN and the
standard 3D-ResNet-18. The evaluation is done on the test
sets separately with reverse transformation(treverse) and
without transformation(original)

rameters, was trained for 100 epochs with an intial learning
rate of 0.1, reduced by a factor of 0.1 after 25, 50, and 75
epochs. We evaluate the best Top-1 accuracy on the origi-
nal test dataset and the reversed test dataset. Table 3 sum-
marises the results for the evaluation on the original and the
transformed test set for the baseline CNNs with the highest
obtained Top-1 accuracy reported.

We see that both the baseline 3D CNNs can classify the
direction of the digits for original, but in the case of tre-
verse, it fails, obtaining a Top-1 accuracy of 24.6% for the
4-layer Z3CNN and 24.13% for the Z3-ResNet-18.

We, therefore, see a significant difference between the
Top-1 accuracies on the original test dataset versus the re-
versed dataset and can say that temporal filters in standard
3D CNNs are not equivariant to the temporal direction in

videos and tend to learn strict temporal information.

4.5. Equivariance through data augmentation

To evaluate how data augmentation helps achieve equiv-
ariance to temporal direction in standard 3D CNNs, we
train the two baseline 3D CNNs on the Moving MNIST-
Dir dataset augmented with reversed videos. We train the
4-layer Z3CNN for 50 epochs, and the 3D-ResNet-18 for
100 epochs with a probability p = 0.3 of treverse during
training time. We evaluate the Top-1 Accuracy on the orig-
inal test set and a reversed test set. We use the same setup
for the Moving MNIST dataset, augmented with random 90,
180 and 270-degree rotations digits, and obtain the baseline
Top-1 accuracy for the original test dataset and test sets spa-
tially rotated by 90, 180 and 270 degrees. The comparison
of the baseline models trained with augmentation against
the baseline models trained without augmentations can be
found in Table 4 for augmentation with reversed videos dur-
ing training, and in Table 5 for augmentations with spatial
rotations.

We see that data augmentation with reversed videos sig-
nificantly improves the performance of the baseline models
on the Moving MNIST-Dir dataset(refer Table 4) while aug-
mentation with spatial rotations significantly improves the
performance of the baseline models on the Moving MNIST
digits dataset(refer Table 5).
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Model Type Top-1 Accuracy(%)
original treverse

Z3CNN(no aug)
4-layer CNN

100 23.58
Z3CNN(aug) 100 99.87
T2CNN(no aug) 100 99.93
Z3-ResNet-18(no aug)

3D ResNet-18
100 24.6

Z3-ResNet-18(aug) 100 99.63
T2-ResNet-18(no aug) 100 100

Table 4: Comparison of Top-1 accuracy obtained on Mov-
ing MNIST-Dir dataset by the models with T2 convolutions
against the baseline 3D CNN architectures containing stan-
dard 3D convolutions with and without augmentation with
reversed videos. aug refers to augmentation with reversed
videos applied during training, original refers to the un-
transformed test set, while treverse refers to the test set
with temporal reverse transformations applied on it. We
see that the models with T2 convolutions obtain significant
improvement in accuracy compared to the baseline stan-
dard 3D CNN models with no augmentations applied while
showing a small improvement in performance to the aug-
mented baseline models.

4.6. Equivariance of Temporal direction using Tem-
poral Equivariant 3D G-CNN

We analyse the benefit of replacing standard convo-
lutions on 3D-CNNs with temporal equivariant filters by
training the 4-layer T2CNN and the T2-3D ResNet-18 on
the Moving MNIST-Dir dataset without any augmentations
and evaluating the models on the test set for both origi-
nal and treverse. The 4-layer T2CNN was trained for 50
epochs, while the T2-3D ResNet-18 was trained for 100
epochs. We compare the obtained Top-1 accuracies for
both the untransformed and reversed test sets against the
results obtained from the standard 3D CNNs, trained with
and without augmentations. Table 4 summarises the results
of the T2-CNNs for the untransformed test set and the re-
versed test set and shows the comparison between the stan-
dard 3D-CNNs.

We see that for the non-transformed test sets, the T2-
CNNs achieve similar accuracy compared to the baseline
CNNs trained with and without augmentations. On test-
ing with reversed videos, we see a three-fold increase in
the accuracy for the T2-CNNs compared to the baseline
CNNs trained without data augmentation, with the 4-layer
T2CNN reporting a Top-1 accuracy of 99.87% against the
baseline CNN’s 23.58%, while the T2-ResNet-18 reports
a 100% Top-1 accuracy, against the baseline accuracy of
24.6% with standard convolutions. Compared to the base-
line CNNs trained with augmentations, the models with T2
convolutions show a marginal increase in accuracy.

4.7. Equivariance of Spatial rotations using rotation
equivariant 3D G-CNN

We also analyse the benefit of replacing standard con-
volutions with spatial rotation equivariant filters by train-
ing the 4-layer P43DCNN and the P43D-ResNet-18 on the
Moving MNIST digits dataset with no augmentations. We
then evaluate the models on the test set for original, r90,
r180 and r270. We train the 4-layer P43DCNN for 100
epochs and the P43D-ResNet-18 for 150 epochs and com-
pare the Top-1 accuracies for the original and the trans-
formed test sets with the baseline CNNs with and without
augmentation.

We see that for the non-transformed test sets, the mod-
els with P43D convolutions achieve marginally higher accu-
racy compared to the baseline models, with standard convo-
lutions trained with and without augmentations. On testing
with spatially rotated videos, we see a significant increase in
the accuracy for the models with P43D convolutions com-
pared to the baseline CNNs trained without data augmen-
tation while showing a marginal increase in accuracy on
videos rotated by 90 and 270 degrees and a marginal de-
crease in accuracy on videos rotated by 180 degrees.

4.8. Evaluating 3D-G-CNNs on HMDB-51 and
UCF-101

HMDB-51 [12] was the first widely used video action
recognition dataset. It consists of 6849 clips sourced from
movies, YouTube and Google videos. The clips are di-
vided into 51 action labels, with each label consisting of
at least 100 videos. UCF-101 [11] was an extension of the
existing UCF-50 dataset, and was introduced in 2012. It
is a larger dataset than the HMDB-51 consisting of 13,320
videos sourced from YouTube. The videos are labelled un-
der 101 action classes across a diverse set of actions, includ-
ing variations in camera motion, object appearance, view-
points, backgrounds and illuminations. Like HMDB-51, it
contains 3 train and test splits.

We evaluate the four group equivariant models and the
baseline CNNs on the first splits of the HMDB-51 and
UCF-101 datasets. We train the 4-layer CNNs with an ini-
tial learning rate of 0.3, reduced by 10% at 100, 150 and
200 epochs, and training continues till 250 epochs for the
HMDB-51. The 3D-ResNets were trained with an initial
learning rate of 0.1, reducing by % at 100, 200 and 250
epochs and trained until 300 epochs. For the UCF-101, all
networks were trained with an initial rate of 0.1, reducing
by 10% at 50, 100 and 150 epochs, and training till 200
epochs. The training with both datasets for all models was
done without any augmentations. Table 6 shows the top-1
accuracy results obtained on the UCF-101 and HMDB-51
using the first test split for the standard baseline CNNs and
the Group equivariant CNNs.

On the UCF-101 dataset using the 4-layer CNN archi-

8



Model Type Top-1 Accuracy(%)
original r90 r180 r270

Z3CNN(no aug)
4-layer CNN

99.67 8.33 25.17 9.82
Z3CNN(aug) 99.87 99.33 98.67 99.33
P43DCNN(no aug) 99.93 99.93 99.67 99.87
Z3-ResNet-18(no aug)

3D ResNet-18
99.59 8.47 23.66 8.81

Z3-ResNet-18(aug) 99.67 99.46 99.77 99.53
P43D-ResNet-18(no aug) 99.83 99.67 99.17 99.63

Table 5: Comparison of Top-1 accuracy obtained on Moving MNIST digits dataset by the models with P43D convolutions
against the baseline 3D CNN architectures containing standard 3D convolutions with and without augmentation with rota-
tions. aug refers to augmentations applied during training, original refers to the untransformed test set, while r90, r180 and
r270 represent test sets with 90 degree, 180 degree and 270 degree spatial rotation transformations applied on them. We see
that the models with P43D convolutions obtain significant improvement in accuracy compared to the baseline standard 3D
CNN models with no augmentations applied, while showing similar performance to the augmented baseline model.

Architecture
Type Model Top-1 Accuracy(%)

UCF-101 HMDB-51

4-layer CNN
Z3CNN(baseline) 36.83 20.86
T2CNN 37.35 21.58
P43DCNN 37.03 21.99

3D ResNet-18
Z3-ResNet-18(baseline) 50.86 22.03
T2-ResNet-18 51.44 23.59
P43D-ResNet-18 51.38 23.56

Table 6: Top-1 accuracy of 3D-G-CNNs compared against
the baseline architectures on UCF-101 and HMDB-51. No
augmentations were applied during training. We see that in-
troducing group equivariant convolutions increases the ac-
curacy for both the 4-layer CNN type architecture and the
3D-ResNet type architecture over the standard baseline ar-
chitectures for UCF-101 and HMDB-51. Testing was per-
formed on the first test split for all the networks.

tecture, the T2CNN shows a 1.41% improvement in Top-
1 accuracy, while the P43DCNN shows an improvement
of 0.54% in Top-1 accuracy over the baseline score ob-
tained by the Z3CNN. For the 3D-ResNet type architec-
tures, the T2-ResNet-18 shows an improvement of 1.1%
and the P43D-ResNet-18 shows an improvement of 1.02%
in the Top-1 accuracy over the standard 3D-ResNet-18.

On the HMDB-51 dataset, using the 4-layer CNN ar-
chitecture, the T2CNN shows an improvement of % in the
Top-1 accuracy, while the P43DCNN shows an improve-
ment of 0.54% in Top-1 accuracy over the baseline score
obtained by the Z3CNN. For the 3D-ResNet type architec-
tures, the T2-ResNet-18 shows an improvement of 1.1%
and the P43D-ResNet-18 shows an improvement of 1.02%
in performance over the standard 3D-ResNet-18.

We also compare the Top-1 accuracy obtained by the
models on transformed versions of the UCF-101 and
HMDB-51 test datasets. The models with standard convo-
lutions replaced with T2 convolutions are tested with tre-

Model Type Top-1 Accuracy(%)
UCF-101 HMDB-51

Z3CNN 4-layer CNN 31.45 20.54
T2CNN 37.07 22.07
Z3-ResNet-18 3D ResNet-18 47.55 21.71
T2-ResNet-18 51.07 23.53

Table 7: Results of testing with UCF-101 and HMDB-51
test sets consisting of reversed videos. The treverse trans-
formation is applied during test time. Compared to the base-
line 3D CNNs with standard convolutions, the models with
T2 convolutions show increased Top-1 accuracy.

verse transformation applied to the test set, while the mod-
els with P43D convolutions are tested with r90, r180 and
r270 transformations applied to the test set. Each test was
carried out with a single spatial rotation applied during eval-
uation. The baseline models with standard 3D convolutions
are tested on all transformations, and we compare the re-
sults of the temporal reverse transformation in Table 7, and
the spatial rotations transformations in Table 8.

From the results, we observe that for the models with T2
convolution, there is an increase in the performance over
the baseline CNN with standard convolutions for reversed
videos on both datasets, and the P43DCNN achieves signif-
icantly improved performance on all spatially rotated videos
for both datasets as well.

5. Conclusion

We have discussed two symmetry groups for video ac-
tion recognition. We introduced the temporal direction
equivariant group T2 and extended the p4 group to 3D to
make the spatial rotation equivariant group P43D.

We also introduce the Moving MNIST-Dir dataset con-
sisting of handwritten MNIST digits moving over a black
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Model Type
Top-1 Accuracy(%)

UCF-101 HMDB-51
r90 r180 r270 r90 r180 r270

Z3CNN 4-layer CNN 8.71 12.65 8.36 8.71 12.65 8.36
P43DCNN 36.06 34.02 34.58 20.78 20.59 21.27
Z3-ResNet-18 3D ResNet-18 10.55 15.75 10.15 9.93 9.41 9.74
P43D-ResNet-18 21.07 26.65 22.2 16.99 16.54 17.32

Table 8: Results of testing with UCF-101 and HMDB-51 test sets consisting of videos transformed with spatial rotations. r90
corresponds to a spatial rotation of 90 degrees CCW, r180 corresponds to a spatial rotation of 180 degrees CCW and r270
corresponds to a spatial rotation of 270 CCW about the origin. All transformations are applied only during test time, with
individual tests carried out for each transformed test set. Compared to the baseline 3D CNNs with standard convolutions, the
models with P43D convolutions show increased Top-1 accuracy across all rotated orientations.

background distributed over four classes representing the
directional plane of movement.

Our results show that standard 3D CNNs are not equiv-
ariant to reversed videos and spatial rotations when trained
on unaugmented datasets. Replacing the standard convo-
lutions with the T2 group convolutions in 3D CNNs im-
proves the accuracy of the network to reversed videos, even
when trained without augmentations. We see a similar re-
sult when replacing standard convolutions with P43D group
convolutions on transformations that leave the label un-
changed.

We also see an increased accuracy for the group equivari-
ant CNNs on untransformed small video action recognition
datasets UCF-101 and HMDB-51, compared to the base-
line standard 3D CNNs suggesting that 3D G-convolutions
improve the performance of networks on datasets where ac-
tions are typically unidirectional, and objects are upright in
the frame. We also see improved performance on the UCF-
101 and HMDB-51 for rotated videos compared to the base-
line.

The main limitation of this paper is that it assumes label
preservation of videos on transformation. However, chang-
ing the temporal direction or spatially rotating frames in
videos often leads to the action portrayed in the frames be-
ing different from the label associated with it. For example,
reversing a video where the action is Placing an object on
a table leads to the action becoming Picking up an object
from the table. The network would classify the reversed
video with the first label in the current implementation.
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2
Basics of Deep Learning

Deep learning is a field under the umbrella of machine learning which relies on the use of structured
artificial neural networks [1] to learn representations from input data such as images, videos, audio,
or text. Unlike conventional machine learning algorithms, deep learning models automatically learn
which features are to be extracted from the input data for a particular task. The training process in
deep learning can be either supervised, semi-supervised or unsupervised. The most commonly used
training method is supervised, where networks learn from a labelled training dataset.

2.1. Feed-forward Networks
A feed-forward network, as the name suggests, is a type of artificial neural network in which information
flow is unidirectional - from the input data x, through successive intermediate computations to reach an
output y, without any feedback connections, cycles or loops [2]. Feed-forward networks approximate a
function y = f∗(x), mapping the input x to an output y. In the case of a classifier, the input x is mapped
to a class label y. A feed-forward network thereby defines a mapping y = f(x; θ) and learns the values
of the parameters in θ to find that result that is the best approximation of the function on a given training
set. Since the input layer and the output layer are connected through a number of intermediate layers,
these networks are also called Multi-layer Perceptrons.

Feed-forward networks perform computations by a composition of different functions, often repre-
sented as a Directed Acyclic Graph, which describes how the functions are composed together in the
form of a chain. The length of this chain determines the depth of the network. The last layer of the
network is called the output layer, while the layers in between are called hidden layers. Figure 2.1
shows a multi-layer perceptron with a depth of 3, consisting of an input layer, an output and one hidden
layer. Figure 2.2 represents another network with a depth of 5, consisting of three hidden layers.

Figure 2.1: A multi-layered perceptron with a depth of 3, represented as a directed acyclic graph. The learnable parameters
are represented by the vector W for the mapping between x and h, and the vector w for the mapping between h and y. Image

taken from [? ]
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Figure 2.2: A multi-layered perceptron with a depth of 5, consisting of 3 hidden layers. Image taken from [3]

2.1.1. Activation function
The output of anMLPwith a single hidden layer is denoted by the function f(x) = ωT g(x,WT )+b, where
b is called the bias term. If the function g, which computes the output of the hidden layer, is a linear
function, then f(x) would be a linear function as well, which limits the ability of the MLP to approximate
non-linear functions such as XOR. We overcome this limitation by adding a level of complexity to the
outputs of the hidden layers using non-linear activation functions. [4, 5, 6]

Formulti-class classification tasks, themost commonly used function is the Rectified Linear Unit(ReLU)
[4]. The ReLU function simply clips any negative outputs to 0. The function can be represented as:

g(x) =

{
0 for x ≤ 0

x for x > 0

This, however, leads to problems with negative inputs, as the function renders neurons inactive, thereby
affecting the optimisation process. The problem is addressed by a modified function called the Leaky
ReLU [6], which replaces the zero for negative inputs with a small coefficient. The Leaky ReLU function
can be represented as:

g(x) =

{
0.01x for x ≤ 0

x for x > 0

Figure 2.3 shows the plots of the ReLU and LeakyReLU activation functions with input in the range
[−10, 10] with a coefficient of 0.05 for negative inputs in LeakyReLU

2.2. Optimization
During backpropagation or the backward pass, optimisation usually involves minimising or maximising
a loss or cost function. In most classification tasks where the objective is to predict a label based on
an input, the cost function is a cross-entropy between the predicted output of the network and the true
label associated with the input.

In the case of multi-class classification consisting of N target classes, the label vector is encoded
as a one-hot vector.

t = (0, 0...., 1, 0, 0...0) (2.1)

where the nth entry is 1, representing the label associated with a particular input. A softmax func-
tion is used to map the output to an N -dimensional, non-negative output vector whose sum adds up to
1. Thus, the output vector represents a probability distribution over the N classes. The cross-entropy
loss function for multi-class classification is therefore defined as
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Figure 2.3: Plots of Rectified Linear Unit(ReLU) and Leaky ReLU. The plots are obtained using an input x ϵ [−10, 10] and a
coefficient of 0.05 for the LeakyReLU activation function.

LCE(y, t) =

N∑
n=1

tk log yk

= −tT (log y)

where y and t represent the predicted labels and the true labels, respectively

2.2.1. Stochastic Gradient Descent
Gradient descent is one of the most common optimization algorithms in the field of machine learning.
Gradient descent minimizes a function f(x)making small movements opposite to the sign of the deriva-
tive f ′(x). Let us consider a function f(x) = 1

2x
2, and its first-order derivative to be f ′(x) = x. The

function has a global minima at x = 0, when f ′(x) = 0. Figure 2.4 illustrates the function, its derivative
and its local minima. In the case of neural networks, the function is defined as y = f(x, θ) where x
represents the input and θ represents the weights. The gradient of the function is defined as a partial
derivative with respect to the weights

∇θf(x, θ) =
∂

∂θi
f(x, θ)

The weights are updated by gradient descent, taking a step of size ϵ can be written as

θ′ = θ − ϵ∇θf(x, θ)

In deep learning terminology, the step size ϵ is called the learning rate, and the gradient is approxi-
mated on the cost function over the training samples.

Stochastic Gradient Descent(SGD) is an extension of the gradient descent algorithm, and is one
of the most widely used optimization algorithms in deep learning. The main difference between SGD
and gradient descent, lies in the fact that SGD views the gradient as an expectation, which can be
estimated using a mini batch of samples. On each optimization step, a mini batch B = {x(1), .....x(b)}
drawn i.i.d from the training set. The mini-batch size b is typically very small compared to the size of the
training set. and the gradient of the cost function is approximated using these small number of samples.
For a set of b′ samples, the SGD update formula can be written as

θ′ = θ − ϵ
1

b′

∑
b′

i=1∇θ(xi, yi, θ) (2.2)
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Figure 2.4: Gradient descent algorithm showing the global minimum of the function f(x) = 1
2
x2 [? ]

2.2.2. Learning rate decay
In deep learning, learning rate schedules aim to adjust the learning rate of the network during the
training process by reducing the learning rate value by a pre-defined factor according to a pre-defined
schedule. Altering the learning rate of an optimisation technique such as stochastic gradient descent
can improve performance while cutting down on the training time. Figure 2.5 depicts the two scenarios
of training a network - one with a constant learning rate and the other using learning rate decay. In the
figure 2.5a, a constant learning rate is used, and we see that the optimisation steps, represented by
the blue line, lead to a very noisy convergence, and in several iterations, deviates from the minimum.
In the figure 2.5b, the green line represents an optimisation process with learning rate decay. We see
that the optimisation starts with a higher learning rate value, and as it moves towards the minimum, the
learning rate gets smaller, and the oscillations about the minimum become closer and lead to faster
convergence.

Step Decay
Step decay is a learning rate schedule where the learning rate is reduced a factor every few epochs,
where the number of epochs can be considered as a hyperparameter. The learning rate is calculated
using step decay by the following equation:

LR1 = LR0 ∗ α⌊epoch/h⌋

where α represents the factor by which the learning rate is reduced, and h represents the number
of epochs when the learning rate is updated. A visual representation of the step learning rate decay is
shown in figure 2.6.

2.3. Convolutional Neural Networks
Convolutional neural networks, or CNNs, [9] is a type of deep learning network that is regarded as the
standard for performing computer vision tasks that deal with structured arrays of data - such as clas-
sifying images [10, 11], classifying actions in videos [12, 13, 14], detecting objects [15], segmentation
[16, 17], and even generating images and videos [18]. Convolutional networks are neural networks
which use the convolution operation in at least one of its layers. [2].
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(a) Optimization with a constant learning rate leading to a noisy
convergence.

(b) Optimization with a decayed learning rate (green) compared to
constant learning rate (blue)

Figure 2.5: Comparing optimizations with constant learning rate and decayed learning rate. Figure sourced from [7]

Figure 2.6: Learning rate reduction using step decay. Image sourced from [8]

A typical CNN consists of multiple convolutional layers with activation functions and pooling layers
in between. Figure 2.7 shows a CNN that classifies handwritten digits. The input to the pipeline is an
image containing a handwritten digit. The convolutional layers learn the features, and the classification
is done using fully connected layers; and finally, a softmax activation provides a vector of probabilities
with a size equal to the number of classes (10 in this case).

2.3.1. Convolution operation
Convolution is the base operation that is performedwithin CNNs and consists of threemain components
- the input, the kernel function, and the resultant feature map. In machine learning, the input is usually a
multidimensional array of data, such as an image or a video, and the kernel is a multidimensional array
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Figure 2.7: Convolutional neural network to classify handwritten digits. [9]

of weights that are updated and optimised by the learning algorithm. Interestingly, the dimensionality
for both the input, the output, and the kernel is the same for the convolution operation. Thus, for a
two-dimensional input I, the kernel K would also be two-dimensional, and the resultant feature map
S would also be two-dimensional. The convolution operation is represented by ∗ and is defined by the
equation 2.5

S(i, j) = (K ⋆ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.3)

It may be interesting to note from equation 2.5 that the kernel is flipped relative to the input, i.e.
when m and n increase, the index of the kernel increases, but the index of th input decreases. This
leads to convolutions being commutative, i.e.

(K ⋆ I)(i, j) = (I ⋆ K)(i, j) (2.4)

For most libraries implementing convolutions however, the commutative property does not hold
a very high importance, and convolution is instead implemented as a related function called cross-
correlation, which is the same as convolution but without the kernel being flipped relative to the image.

S(i, j) = (K ⋆ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.5)

Figure 2.8 shows the example of a 2D convolution without kernels being flipped. In the figure, the
2x2 kernel slides over a 4x3 image, and the weighted sum is calculated using the kernel weights and
the pixels from the area of the image under the kernel. The resultant feature map is of the size 3x2.

2.3.2. Feature detection using kernels
In convolution networks, kernels are referred to as filters, and a convolutional layer is characterised by
the size of the kernels, the number of filters and the stride. The weights or parameters associated with
a kernel act as feature detectors, and hence, during training and optimisation, learning the weights of
the kernels translates to learning the features of the input. To demonstrate how kernels detect features
from the input, we refer to figure 2.10, where two different kernels are used to detect features in two
images. In the first image, a round kernel is used to detect the round shape of the sunflowers. We
see that the feature is detected by looking at the highlighted portions on the resultant activation map.
The second image is a still from the popular game Where’s Waldo, and to detect the character within
the image, a kernel representing the shirt of the character is used, and the resultant activation map
highlights the location of the character.

2.3.3. Pooling
Pooling functions are the final step in a convolution pipeline and work by replacing the network’s output
at a particular location with an aggregated value using the nearby inputs. To take an example, a max
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Figure 2.8: Simple example of a 2D Convolution performed on an image of size 4x3 using a kernel of size 2x2 with a stride of
1. [2]

Figure 2.9: Convolution kernels being applied to images and the resultant activation maps highlighting the detected features.
[? ]

pooling [? ] operation would produce a value that is the maximum output within the neighbourhood
of the pooling kernel. Other commonly used pooling functions include average pooling, L2 norm and
weighted averages from the central pixel. Pooling is beneficial as it helps make the feature represen-
tation approximately invariant to small input translations. What this means is that even if the input is
translated by a small amount, the resultant values obtained from pooling does not change. Invariance
to translation is an advantageous property if the task is more concerned about the presence of a partic-
ular feature instead of its exact position. Figure ?? shows a set of max pooling detectors on two images
of the handwritten digits and the activated detector unit for the specific input with the most significant
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response.

Figure 2.10: Max pooling on two different images of the handwritten digit 5, showing activated detector units. [2]

Figure 2.11 presents the complete overview of a CNN layer pipeline consisting of 3 filters. We start
with the input image of a windmill and perform the convolution operation of the three kernels in the
convolution block. It is then followed by a non-linear activation(ReLU) in the non-linearity layer and
finally is pooled in the Spatial pooling layer to produce the output that is fed into the next convolutional
layer.

Figure 2.11: An overview of a convolution layer containing a convolution block with three filters, a ReLU non-linear activation
block and a spatial pooling block. [? ]



3
Action Recognition

Action recognition is one of the representative tasks in computer vision and is defined as identifying a
particular activity being performed in an image or video by a human subject. Despite the staggering suc-
cess of image classification using deep neural networks, the progress in learning video representations
has been significantly slower. This can be attributed to some challenges inherent in the task.

• Computational cost: There is a significant computational cost involved in action recognition
from videos, as the same 2D architecture, when inflated to 3D, results in a great increase in the
number of trainable parameters, which leads to longer training time and requires more resources.

• Capturing long-range context: While action recognition from an image is a case of pose and
object detection, action recognition in a video, the network should be able to hold the context of
consecutive video frames and use this state information to predict a task. Moreover, temporal
information needs to be robust to changes in camera position and background.

• Variety of options: There are multiple options available when designing deep learning network
architectures that aim to capture the spatio-temporal information, such as using RGB frames, or
using optical flow [19], or a combination of both. The choice is non-trivial and makes networks
expensive to evaluate.

3.1. Action recognition Datasets
3.1.1. HMDB-51
Introduced in 2011, HMDB-51 [20] was the first widely used video action recognition dataset. It consists
of 6849 clips sourced from movies, YouTube and Google videos. The clips are divided into 51 action
labels, with each label consisting of at least 100 videos.

3.1.2. UCF-101
UCF-101 [21] was an extension of the existing UCF-50 dataset, and was introduced in 2012. It is
a larger dataset compared to the HMDB-51 consisting of 13,320 videos sourced from YouTube. The
videos are labelled under 101 action classes across a diverse set of actions, including variations in cam-
era motion, object appearance, viewpoints, backgrounds and illuminations. Like HMDB-51, it contains
3 train and test splits.

3.1.3. Kinetics
Kinetics is currently the most widely accepted video action recognition benchmark. To put it simply, Ki-
netics is to action classification what ImageNet is to image classification. The Kinetics-400 dataset [13],
introduced in 2017, consists of nearly 280k videos split into 400 human action labels. More versions of
the Kinetics dataset were recently introduced containing even more data and labels, with Kinetics-600
consisting of 480k videos in 600 classes and the Kinetics-700 consisting of 650k videos in 700 classes.

21
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3.1.4. Moments in time
Moments in time [22] is one of the latest large-scale datasets for action recognition consisting of nearly
1 million videos distributed within 339 classes. Unlike other datasets that focus on human actions,
Moments in time consists of videos with animals, objects, natural phenomena, and videos involving
humans.

3.1.5. Something-Something
The Something-Something dataset [23] was first introduced in 2017 and consists of 174 action classes
that depict simple human actions performed with simple objects, which humans perform daily. The
latest version of the dataset consists of over 220k videos. This dataset is another popular benchmark
as it requires good temporal modelling as most of the actions in the dataset can not be inferred from
spatial features alone.

3.2. Common architectures for Action Recognition
Learning representations from videos requires networks to be able to extract both spatial as well as
temporal features from the provided input data. This challenge was addressed by either using stacked
RGB frames [12, 14, 24], or using a combination of RGB frames and optical flow input [13, 25]. This
section provides an overview of the different methods used to learn representations from videos.

3.2.1. Video Representations using Long Short-Term Memory Networks
Ullah et al. [26] used LSTMs for representing videos but with the addition of Convolutional Neural
Network(CNN). This model analyzes frame by frame action videos. A CNN is used to extract deep
features out of every sixth video frame, and these features are then fed into an LSTM. The LSTM
processes the video in five frames, and the output for small chunks is combined for the final output. As
we can see from figure 3.2, if a video has K frames, it will be processed in K time steps, thus making
this representation suitable for long, complex videos. The results of this model on the UCF-101 dataset
is shown in figure 3.3.

3.2.2. Optical Flow
Horn and Schunck [27] defined optical flow as the distribution of apparent velocities of movement of
brightness patterns in an image. Optical flow can also be defined as the pattern of apparent motion
of the contents of a visual scene, such as objects, edges, and surfaces brought about by the relative
motion between the observed content and the observer. Due to this, optical flow provides crucial
information on the arrangement of observed objects in the spatial domain and the rate of change of
the arrangement. Beauchemin and Barron [28] describes optical flow as an approximation of image
motion as a projection of velocities of three-dimensional surface points onto the imaging plane of a
visual sensor. As the surface points progress through a temporal domain, these displacements or
instantaneous image velocities projected onto a two-dimensional plane allow motion estimation.

Figure 3.4a shows the image of the Rubik’s cube at a time instance t. At time t + δt, the image
changes to the figure 3.4b. Figure 3.4c shows the optical flow field denoted by the arrows, which show
the direction of the estimated movement of the surface points on the projected image.

3.2.3. Two-Stream CNNs
Simonyan and Zisserman [30] stated that videos could be naturally decomposed into spatial and tem-
poral components. The spatial portion of the video is represented by a set of individual frames and
carries information about the scenes and objects depicted in the video. The temporal portion conveys
the motion across the frames or the movement of the observer or objects over time. Therefore, two-
stream Networks similarly perform video recognition by splitting the architecture into the spatial and
temporal components and processing them in parallel using 2D or 3D Convolutional Networks. In [30],
each stream is implemented using a deep ConvNet, softmax scores of which are combined by late
fusion. Figure 3.5 describes the two-stream architecture used for video classification by Simonyan and
Zisserman [30].

Inflated 3D ConvNet(I3D) [13] modified the two-stream architecture further by replacing the 2D
spatial and temporal convolution networks with 3D Convolutions. The results from the two streams are
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Figure 3.1: Examples from popular video action datasets. At the top we have single frames from different classes from the
UCF-101 dataset, followed by single frames from classes in the HMDB-51 dataset, and the Kinetics dataset respectively, and at

the bottom we have consequtive frames from the Something-Something dataset for two classes.
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Figure 3.2: Video representation using CNN and LSTMs

averaged as the final step, and the predicted label is the output. I3D was able to adapt proven image
classification architectures to use in the 3D CNNs, and also initialize optical flow networks [? ] to inflate
ImageNet pre-trained 2D weights to 3D, subverting the need to train the models from scratch. With pre-
training on Kinetics-400, I3D achieved state-of-the-art performance on both UCF-101 and HMDB-51.
It also paved the way for a standardized benchmark for video action recognition, requiring subsequent
publications to report performance on Kinetics-400.

Spatial Stream Network
The spatial stream network operates on RGB frames performing action recognition and classification
from still images. Actions associated with objects can be recognized easily as they provide crucial
clues from the static images.

Motion Stream Network
The optical flow network operates on the temporal domain of the video. Unlike the input to the spatial
domain, the input to the Optical flow ConvNet is formed by stacking optical flow displacement fields
between several consecutive frames. The input thereby describes the motion between video frames,
which makes the recognition easier, as the network does not need to estimate motion implicitly [30].
Figure 3.6 shows the optical flow, where the (a) and (b) show two consecutive frames, (c) shows the
optical flow field of the action, (d) shows the horizontal component of the displacement vector, and (e)
shows the vertical component of the displacement vector.

Fusing the Streams
Figure 3.7 shows the various methods of fusing the two parallel streams in increasing order of perfor-
mance as well as the number of trainable parameters, from left to right. In Figure 3.7a we see the
spatial stream with a single RGB Frame, which is enough to recognize an action based on the scene
and objects, and the motion stream with the optical flow over time, which are merged and used to recog-
nize the output. Figure 3.7b shows a single RGB Frame again as the input to the Spatial ConvNet and
the motion from Optical flow frames as the input to the Optical flow ConvNet and also spread across
several feature maps. Finally, the feature maps are again fed into a 3D ConvNet whose output is the
action performed in the video. Finally, in Figure 3.7c we see Two Stream 3D Convolutional Networks
which process a number of RGB Frames as input to the Spatial 3D Conv Net, and the optical flow
frames depicting the motion in the Optical Flow 3D ConvNet, and the results are merged in the end
and used to predict the action labels.
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Figure 3.3: Predictions of LSTM video representation method for action recognition for sample clips. Wrong classifications are
marked in red.[26]

(a) Image at time = t (b) Image at time = t + δ t (c) Optical flow field

Figure 3.4: Depicting optical flow field of the image of the Rubik’s Cube between two temporal instances [29]

3.2.4. 3D Convolutional Networks
A 3D Convolution is an extension over the 2D spatial convolution, which has three-dimensional kernels
that convolve along the spatial and temporal dimensions. 3D Convolution Kernels are used to build
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Figure 3.5: Two-stream architecture for video classification [30]

Figure 3.6: Optical flow of actions performed in a video in temporal domain [30]

(a) Two-Stream Network (b) 3D-Fused Two-Stream Network (c) Two-Stream 3D Convolutional Network

Figure 3.7: Methods of fusing the parallel streams in Two-Stream Networks. Image sourced from [13]

3D-CNNs such as Res3D [12], C3D[14], and I3D[13]. These state-of-the-art video learning models use
multiple three-dimensional convolutional layers to learn robust video representations with high accuracy
but with a high overhead as well. A 3D CNN takes a spatio-temporal volume as the input, such as a
video and using the 3D Kernel convolves over the spatio-temporal domain. The motion information is
captured by convolving over the temporal dimension. [31]. Figure 3.8 shows how a 3D CNN captures
features along the spatio-temporal domain.

C3D
Tran et al. [14] proposed an effective approach for learning spatio-temporal features from videos by
using deep 3D Convolutional Networks built using three-dimensional kernels. Through the paper, the
authors show that 3D Convolutional Networks perform well as feature learning machines that can si-
multaneously model both spatial and temporal features(appearance and motion) and that 3D CNNs
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Figure 3.8: 3D convolutions describe the spatial relationships of objects in the 3D space [32]

are more suitable for spatio-temporal feature learning compared to 2D CNNs. The authors observed
that C3D starts by focusing on appearance in the first few frames and tracks the salient motion in the
subsequent frames. Figure 3.9 shows the deconvolution of two C3D conv5b feature maps with the
highest activations projected back to the image space.[14]

Figure 3.9: C3D captures appearance for the first few frames but thereafter only attends to salient motion [14]

3.2.5. 3D Residual Networks
3D ResNets [12] capitalized on the success of the 2D ResNet [10], and the ability of 3D CNNs to
directly extract both spatial and temporal features. 3D ResNets were created by extending the 2D
ResNet architecture and replacing the 2D convolutional filters with 3D kernels. 3D ResNets pretrained
on Kinetics outperformed complex 2D networks on both UCF-101 and HMDB-51 datasets, as well as
outperforming C3D.



4
Group Equivariant Convolutional

Networks
Convolutional neural networks are equivariant to translations in the input data. This implies that any
translations in the input data will also lead to translations in the output data. This plays a crucial role in
deep learning as it helps reduce the number of trainable parameters while making the networks robust
to translations in the input. The importance of learning equivariant representations in deep learning
led to the advent of convolutional layers that utilise group symmetries to make CNNs equivariant to
rotations and reflections. In this section, we shall discuss the concepts of equivariance and how it
plays a pivotal role in the field of deep learning, as well as take a deeper look into the approach of
group equivariance pioneered by Cohen and Welling [33], and how they are applied to convolutional
networks.

4.1. Equivariance vs Invariance in CNNs
Equivariance allows networks to detect features within the input object inspite of transformations applied
to it. To put it simply, a CNN does not require a feature to be at a fixed position in the input in order to
be able to detect it. For a network to be equivariant to a certain symmetry function, it needs to satisfy
the following conditions:

• The network should preserve the symmetries of the data - i.e. the outputs of the layers of the
network should be able to retain the symmetries of the input.

• For any function that changes symmetry, the result obtained from applying the symmetry to the
input first, followed by passing it through the network, should be the same as passing the input
through the network first, followed by the symmetry function.

Mathematically speaking, if we consider the function that a network learns to be f(x), the input to be
x, and the symmetry function to be g, the above statements can be summarised by the equation:

f(g(x)) = g(f(x)) (4.1)

Therefore, we can state that the function f is equivariant to the transformation represented by a sym-
metry function g, and if it holds for every symmetry function in a group of functions G, we can state that
the function f is equivariant to the G.

Translational equivariance is achieved inside CNNs by the property of weight sharing. Since the
same weights are shared across inputs, if a feature is present inside an input, it will be detected irre-
spective of its position This is extremely useful because it allows CNNs to perform classification and
object detection tasks successfully. Figure 4.1 shows an example depicting the benefit of translational
equivariance in CNNs, where multiple objects can be detected within the same input frame.

Translational invariance, on the other hand, makes the networks invariant to translations and is of-
ten confused with Translational equivariance. Translational invariance means that if the inputs undergo
some translations, the network would still be able to identify the class to which the input belongs. In

28



4.1. Equivariance vs Invariance in CNNs 29

Figure 4.1: Property of equivariance in translation seen in object detection task. In the figures, the network is able to detect
multiple instances of the animals inside a single frame

Convolutional neural networks, translational invariance is achieved through pooling operations. Pool-
ing is the final step in a convolutional layer pipeline. The output of the network is replaced with an
aggregate response such as the maximum or the average of the values in the region under the pooling
kernel. Since the output is replaced with an aggregated response, the output from the pooling layer is
not affected even if the input is translated.

Generalising, we can state that a network is invariant to a symmetry function, if,

• For any function that changes symmetry, the result obtained from applying the symmetry to the
input first, followed by passing it through the network, or, passing the input through the network
first, followed by the symmetry function is equal to the output of the network itself.

To represent this mathematically, let us again consider the function that a network learns to be f(x),
the input to be x, and the symmetry function to be g. The equation then becomes:

f(g(x)) = g(f(x)) = f(x) (4.2)

The property of invariance proves to be extremely useful when the exact position of features within
an input is not needed to determine which class the input belongs to. Figure 4.2 depicts an example of
translational invariance in feature representations with the handwritten digit 2.

Figure 4.2: Translational invariance shown on the handwritten digit 2 along with its representation. Pooling the representation
would not change the represented output, and the network would be able to classify the input correctly as the digit 2. 1

So far, we have talked about equivariance in convolutional neural networks and provided a general
idea of how it can be extended to more symmetry transformations. The following sections deal with
how this idea evolves into the concept of Group Equivariant networks. To begin with, we shall briefly
discuss the concepts of symmetry and group theory with respect to neural networks.
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4.2. Symmetry
Symmetry in neural networks is perhaps best understood with respect to the task being performed by
the network. In the case of image or action classification, we are concerned with predicting the correct
class of the image or action. Therefore, a symmetry would be a transformation that preserves the label
associated with the image or action. Let us consider that x is an input in a set of possible inputs I to a
network, y is a function that maps the input x to a class label which serves as the ground truth for the
network to learn. Therefore, based on our previous description, a function g is said to be in symmetry
with the function y if,

y(g(x)) = y(x), for all xϵI (4.3)

The set of symmetries gϵG for which the above condition holds is called a group. However, before we
dive into the details of how these groups relate to Group Equivariant convolutions, let us take a look at
the general definitions of groups.

4.3. Groups
A group is defined as a set of elements and a binary operation which acts on the elements within that
set. Let us consider a set G and a binary operation ∗. The group is, therefore, the set G on which the
operation ∗ is performed and satisfies the following conditions:

• Identity: There exists an element a ϵ G such that, for every element b ϵ G, a ∗ b = b ∗ a = a

• Associativity: For all a, b and c ϵ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)
• Closure: For all a, b ϵ G, a ∗ b ϵ G
• Inverse: For each element a ϵ G, there exists an element b ϵ G such that a ∗ b = b ∗ a = e

4.3.1. 2D Groups
Z2
Cohen and Welling, in their paper, considered a number of symmetry groups for two-dimensional
spaces, i.e. for image classification tasks. The 2D groups are defined in terms of functions on the
pixel spaces. Z2 represents the pixel space of an image, where a pixel in the space is identified by the
coordinates (u, v) ϵ Z2. We represent the group Z2 in the homogenous coordinate system as follows:uv

1

 (4.4)

It may be interesting to note that the above representations still consider only a single pixel in
the respective space, but its usefulness lies in the fact that it allows the translation operation to be
represented as matrices.

A translation group is defined as a group of all possible translations on the pixel space. A translation
d ϵD is a function which operates on Z2, and can be represented, in Z2 space as:

d(t) = t+ (u, v) (4.5)

where (u, v) represents the pixel coordinates in the Z2 space.
We can assume that in a pixel space, a translation operation performed on a pixel coordinate results

in another pixel coordinate within that space. To put simply, if a translation d is applied to a pixel
coordinate (u, v) ϵ Z2, then the resultant pixel coordinates (u1, v1) ϵ Z2.

Due to this association between the translation group D and the pixel space Z2, Cohen and Welling
treat Z2 as D in two-dimensional space.

p4
The p4 group is composed of all translations and rotations by 90 degrees about any center of rotation
in a two dimensional grid space. To conveniently parameterise the group, we consider three integer
variables r, uandv, where r represents the number of times a grid is rotated by a factor of 90 degrees,
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and (u, v) represent the translational component in Z2. We represent the group using these three
parameters as follows:

g(r, u, v) =

cos( rπ2 ) −sin( rπ2 ) u
sin( rπ2 ) cos( rπ2 ) v

0 0 1

 (4.6)

where 0 ≤ r < 4 , (u, v) ϵ Z2.
The group operation is represented by a matrix multiplication and operates on the points in the

two-dimensional pixel space Z2, by taking the product of the matrix g(r, u, v) and the homogeneous
coordinate vector x(u1, v1) and is represented as:

gx =

cos( rπ2 ) −sin( rπ2 ) u
sin( rπ2 ) cos( rπ2 ) v

0 0 1

u1v1
1

 (4.7)

Figure 4.3 graphically represents the p4 group with all its rotations. The red arrows symbolise a
clockwise rotation of 90 degrees, as seen in the image of the cactus.

Figure 4.3: Graphical representation of the p4 rotations group depicting the identity object and its rotations by 90 degrees.
Image sourced from [34]

p4m
The p4m group extends the p4 group by adding another parameter representing mirror reflections and
is thereby composed of translations, rotations by 90 degrees and mirror reflections of the identity object.
The p4m group is thus parameterized by four integer variables m, r, u and v, where m represents the
mirror reflection, r represents the number of rotations by 90 degree, and (u, v) ϵZ2 represents the pixel
coordinates. The group is represented by the four parameters as:

g(m, r, u, v) =

(−1)mcos( rπ2 ) −(−1)msin( rπ2 ) u
sin( rπ2 ) cos( rπ2 ) v

0 0 1

 (4.8)

where m ϵ 0, 1, 0 ≤ r < 4 , (u, v) ϵ Z2.
Figure 4.4 graphically represents the p4m group with its rotations and reflections. The red arrows

symbolise a clockwise rotation of 90 degrees, and the blue lines represent the mirror reflections.

4.3.2. Functions on groups
Let us consider a symmetry transformation g, a symmetry group G, and a feature map f . In order to
get a transformed version of f , it seems intuitive to write g(f). However, it is important to note that the
transformation g is defined to operate with pixels, and f is not a pixel. Therefore, a new function Lg

is defined by Cohen and Welling to represent the same transformation, which can operate on feature
maps. Lg is defined therefore defined mathematically as:

Lgf(x) = f ◦ g−1(x) = f(g−1x) (4.9)
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Figure 4.4: Graphical representation of the p4m group depicting the identity object, its rotations by 90 degrees and the mirror
reflections. Image sourced from [34]

This means that in order to get the value of the transformed feature map Lgf at the point defined by
x, a lookup is done in the original feature map f , at the point g−1x, providing the unique result which
gets mapped to x by g. It may be interesting to note that the term g−1 has been used in the definition
instead of g. A fairly intuitive explanation for this would be considering the transformation from a different
perspective. If the transformation g represents the feature map being transformed over a field of pixels,
then g−1 represents the pixels being transformed under the feature map. Thus, transforming a feature
map by the symmetry operation g is the same as transforming the pixels by g−1. For example, if g
represents a pure translation, then g−1 represents a translation in the opposite direction.

The inverse of the transformation ensures that the function shifts in the positive direction if a positive
translation is used, and allows the transformed feature maps to maintain homomorphism, i,e,

LgLh = Lgh (4.10)

even for non-commutative transformations g and h, i.e. gh ̸= hg.

4.4. Group Equivariant Networks
At every layer l, a convolutional network takes a stack of feature maps f : Z2 −→ RKl , as input
and performs a convolution operation with a set of Kl+1 filters ψi ;Z2 −→ RKl . We represent the
convolution operation as: [

f ⋆ ψi
]
(x) =

∑
y ϵ Z2

f(x+ y)ψ(y) (4.11)

where both ψ and f have K channels.

4.4.1. Translational Equivariance with Groups
To recap, for the network to be equivariant, for any symmetry operation g, transforming the image f by
g followed by convolution with ψ would give the same result as first performing the convolution of f with
ψ, followed by the transformation g. In order to simplify, let us consider the number of channels K = 1,
and the transformation g to be a pure translation. Thus, we aim to prove that:

[Lgf ] ⋆ ψ = Lg [f ⋆ ψ] (4.12)

Taking the left side of equation 4.12, we write [Lgf ] ⋆ ψ as:

((Lgf) ⋆ ψ)(x) = ((f ◦ g−1) ⋆ ψ)(x)

=
∑
y ϵ Z2

f(g−1(x+ y))ψ(y)

=
∑
y ϵ Z2

f(x+ y − g)ψ(y) (4.13)
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We do the same for the right side of equation 4.12, as follows:

(Lg(f ⋆ ψ))(x) = (f ⋆ ψ)(x− g)

=
∑
y ϵ Z2

f((x− g) + y)ψ(y)

=
∑
y ϵ Z2

f(x+ y − g)ψ(y) (4.14)

From equations 4.13 and 4.14, we see that both the expressions are indeed equal, and is consistent
with our definition of equivariance in equation 4.1.

4.4.2. Group Equivariant Convolutions
At this point, we have considered the equivariant convolutions for pure translations. The concept of
equivariance, however, generalises with different symmetry groups such as the p4 and p4m groups.
Let us revisit the mathematical representation of convolution defined in equation 4.11, and represent it
as a convolution on a group:

(f ⋆ ψ)(g) =
∑
y ϵ Z2

f(g(y))ψ(y) (4.15)

where g ϵG and the function f ⋆ψ operates on the group G, instead of pixels. Therefore, equation 4.15
represents mathematically, the Group convolution for the first layer.

4.4.3. Deeper G-Convolutions
Previously, we defined the group convolution for the first layer of the network, but to build a deeper
network of G-convolutions, we need to repeatedly convolve the result of the previous layers with more
filters. Fortunately, that can be achieved by introducing a simple modification of our first G-convolution.
Since f and ψ are defined on the groupG after the first layer, the updated G-Convolution representation
becomes:

(f ⋆ ψ)(g) =
∑
h ϵ G

f(gh)ψ(h) (4.16)

where g, h ϵ G, and gh represents the composition g ∗ h.
We can show that this definition of G-Convolution is also equivariant with respect to the group G.

Let us consider a transformation u ϵ G, such that

(Luf) ⋆ ψ = Lu(f ⋆ ψ)

As previously done for the translations, we expand both sides of the equation as follows:

(Luf) ⋆ ψ(g) = ((f ◦ u−1) ⋆ ψ)(g)

=
∑
h ϵ G

f(u−1gh)ψ(h) (4.17)

Lu(f ⋆ ψ) = (f ⋆ ψ)(u−1g)

=
∑
h ϵ G

f(u−1gh)ψ(h) (4.18)

We see again from equations 4.17 and 4.18 that the two expanded forms are the same, and hence the
deeper G-convolutions also preserve equivariance.

4.4.4. Implementation
The implementation of Group convolutions consists of indexing and inner products and can be broken
down into two main steps - filter transformation and fast planar convolutions [35, 36, 37]. Cohen and
Welling introduce the term split for the symmetry group if a transformation g ϵ G can be decomposed
into translations t ϵ Z2, and a transformation s which leaves the origin of transformation invariant. For
instance, for the group p4, the transformation g = ts can be decomposed into a translation t and a
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rotation about the origin s, while p4m can be decomposed similarly into translations, rotations and
mirror reflections. Using the relation defined in equation 4.10, we may update the representation of the
G-convolution as:

f ⋆ ψ(ts) =
∑
h ϵ X

∑
k

fk(h)Lt[Lsψk(h)] (4.19)

where kϵK represents the filter, Lt is a translation performed on the image or featuremap, Ls represents
the transformation(here rotation for the p4 group) on the image or feature map, and X = Z2 for the
first convolution layer, and X = G for deeper layers.

To compute the p4 convolution f ⋆ ψ, first the filter transformation Lsψ is computed for all four
rotations, and then a fast planar convolution is computed on f and the filter bank.

Filter transformation
At a layer l, the array or tensor that stores the filters is of the shape

Kl ×Kl−1 × Sl−1 × ∗n (4.20)

where Kl is the number of output channels of the layer l, Kl−1 is the number of input channels to the
current layer, Sl−1 is the number of input transformations in G from the previous layer, known as the
input stabilizer size, and ∗n represents the filter kernel size. For the group p4, operating on 2D input,
i.e. images, ∗n is two dimensional, i.e. n× n, S1 = 1, and Sl where l > 1 is 4. Similarly for p4m, Sl is
8 for l > 1, while the other values remain the same.

Transformation of a filter with Ls leads to a permutation of the entries in the scalar filter channels in
the filter bank F , producing an augmented filter F+ with the shape:

Kl × Sl ×Kl−1 × Sl−1 × ∗n (4.21)

where Sl is the number of output filter transformations in G, and is also known as the output stabilizer
size, and the rest of the terms have the same definition as before.

Planar convolutions
The next step in the Group convolution process is the planar convolution with the augmented filter F+.
For Sl−1 > 1, i.e. for layers beyond the first convolutional layer, the sum over the space X defined in
equation 4.19 sums over the stabilizer. Cohen and Welling state that this summation may be folded
into a sum over the feature channels by reshaping the augmented filter bank F+ fromKl×Sl×Kl−1×
Sl−1 × ∗n to KlSl × Kl−1Sl−1 × ∗n thereby allowing it to be interpreted as a traditional convolution
filter bank withKlSl output channels andKl−1Sl−1 input channels, and can be used to perform planar
convolutions.

We have now discussed the pipeline of the group convolution, and it is nice to observe the group
convolution process visually. Figure 4.5 shows the input and feature maps of a 2 layer group equivariant
convolutional network with the transformation group p4. Both the identity input(the upright cactus) and
the rotated input are provided to the network to visualise the represented feature maps better.

4.5. Three Dimensional Group Convolutions
Cohen and Winkels [38] developed Group Equivariant Convolutional networks for three-dimensional
signals such as volumetric data, with the symmetry transformation groups consisting of translations,
rotations and reflections in 3D space. The application of group equivariant convolutions in 3D space is
interesting because the rotational and reflection groups in three dimensions are not commutative and
lead to highly intricate structures.

To begin with, let us see how the volume space is represented in three dimensions. Just like in the
case of two dimensional spaces, the 3D groups are defined in terms of functions on the voxel spaces 2.
The voxel space of volume data, such as CT scans with spatial volume or videos with spatio-temporal
volume, is represented as Z3 in the group terminology. As it is a point in three-dimensional space,
a voxel is thus identified by the coordinates (u, v, w) ϵ Z3. Z3 is represented in the homogeneous

2Short for volume pixel. It represents a single sample, or data point, on a three-dimensional grid.
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Figure 4.5: Representing the GConv pipeline and feature maps for a 2-layer CNN, using the image of a cactus in its identity
form and rotated form. The generated feature map activations at each layer is shown for both layers. Image sourced from [34]

coordinate system as: 
u
v
w
1

 (4.22)

Intuitively, the translation group for Z3. is a group of functions which operate on the volume space,
and can be represented, as:

d(t) = t+ (u, v, w) (4.23)

where (u, v, w) represents the pixel coordinates in the Z3 space. We make a similar assumption as in
the case of the two dimensional space that a translation operation performed on a volume coordinate
results in another volume coordinate within that space, i.e. if a translation d3 is applied to a pixel
coordinate (u, v, w) ϵ Z3, then the resultant pixel coordinates (u1, v1, w1) ϵ Z3. Thus, we similarly
consider the Z3 group to represent translations in three-dimensional space.

4.5.1. 3D Implementation
We have seen that in the simplest form of Group convolution, the group H is defined as a set of 2D
planar rotations, and the group G includes H and translations in 2D space. Thus, four orientations per
feature map undergo cyclic permutation on rotation. The complexity of 3D space lies in the fact that
the filters are not squares but cubes or cuboids and lead to very intricate symmetry groups. Cohen
and Winkels consider rotations and reflections in the 3D space and define four symmetry groups of
interest - the orientation-preserving and non-orientation-preserving symmetries of a cuboid: D4 and
D4h, and the orientation-preserving and non-orientation preserving symmetries of a cube: O and Oh.
Figure 4.6 represents graphically the D4 and D4h, with each node representing a transformation on a
k× k× k filter. The figures consist of arrows and lines connecting the nodes representing the rotations
and mirror reflections on the different axes.
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(a) Graphical representation of the D4 group.

(b) Graphical representation of the D4h group.

Figure 4.6: Graphical representations of the groups D4 and D4h using Cayley diagrams. Each node is a transformation of the
group h ϵ H, and is represented by the orientations of a 3X3X3 filter. Images sourced from [? ]
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A
RNNs and LSTMs

A.1. A Brief Recap about Recurrent Neural Networks
The limitation of Vanilla neural networks is that it has a fixed-sized input and a fixed-sized output. Re-
current Neural Networks or RNNs are a particular type of neural networks that allow you to model
sequences of vectors that appear in the input or output of an image. RNNs maintain a given state over
time as described below.
For a sequence Xt, for t = 1, 2, 3, ..., T, the activation at the current step is given by,

Ht = ϕ(XtWhx + Ht−1Whh + bh) (A.1)

and the output is given by
Ot = HtWhq + bq . (A.2)

We define the components of equations A.1 and A.2 as follows:

• Ht: activation at current time step t,
• ϕ: non-linearity,
• Xt: input at time t,
• Ht−1: activation at time step t-1,
• Whx, Whh, Whq: learned weights,
• bh, bq: learned bias terms,
• Ot: output.

The same parameters are shared at each time step. This process is visualized in figure A.1 for better
understanding.

There are five types of RNNs as can be seen in figure A.2. The one-to-one network is the standard,
or ”vanilla” neural network which takes in a fixed-sized input and produces a fixed-sized output, and is
used in image classification. The one-to-many network takes a fixed-sized input and gives a sequential
output, and an application of this network is for image captioning, where the input is an image and
the output is a sequence of words. The many-to-one network takes a sequential input and gives a
fixed-sized output, applied in classifying an action where the input is multiple video frames and the
output is an action. There are two types of many-to-many networks. The first one is a sequential input
and sequential output network, which can, for instance, be used in translation where an RNN is fed a
sentence in English and it outputs the sentence in Spanish. The second type of many-to-many network
is when the input and output are synced and sequential, which can be used in video classification to
label each frame of the video.

A.2. A Brief Recap about Long Short-Term Memory Networks
One of the unique advantages of RNNs over vanilla neural networks is its ability to hold state infor-
mation. As a result of this, we are able to gain context from previous tasks to the current tasks. For
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Figure A.1: Inside a Recurrent Neural Network

Figure A.2: Types of RNNs - Each rectangle is a vector and arrows represent functions. Input vectors are in red, output
vectors are in blue and green vectors hold the RNN’s state.[39]

instance, a RNN can classify an action based on a series of video frames, as it holds context over all
the given video frames to predict an action. But RNNs cannot hold memory for long. In the context
of a text completion task, if the RNN is given a short sentence like ”The sky is ...” and was asked to
complete it, it would return ”blue”. Instead, if it was given a long sentence like ”I grew up in Spain, and
moved to the Netherlands a week ago. I speak fluent ...” and was asked to complete it, the RNN would
return ”Dutch” in this context as the most recent contributing information was ”the Netherlands”. To
solve these kinds of tasks, RNNs need to store memory over a long term to provide more context to
tasks. This is where Long Short-Term Memory networks[41], or LSTMs, come into play.

LSTMs are a variant of RNNs that are capable of learning long-term dependencies. The core of the
LSTM is the cell state, called Memory in figure A.3. The information flows directly from timestamp t-1 to
t, with minor linear modifications. The LSTM has the ability to control the information passing through
the cell state with the help of gates. A LSTM has three gates: a forget gate, an input gate, and an
output gate. Let us look at these three gates in detail.

The forget gate - The forget gate determines what information we will be removing from the cell state.
This is done with a sigmoid layer which outputs a number between 0 and 1. A 0 represents that all the
information in the cell state is thrown away, while a 1 represents that the information in the cell state
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remains intact.

The input gate - Next, we determine what new information we are going to add to the cell state. The
”input gate layer” decides what values are to be updated, while the tanh layer creates a vector of new
candidate values, C̃t that could be added to the cell state.

The output gate - The output gate outputs a filtered version of the cell state. The cell state is run
through a sigmoid layer that decides what parts of information from the cell state we are going to out-
put. Then we put the cell state through a tanh layer and multiply it by the output of the sigmoid gate.

The advantage of cell state is that during backpropagation there is a better flow of gradients as
it does not go through all the gates inside the cell. This also solves the gradient vanishing problem
common in RNNs. The gradient vanishing problems is when the gradients are small in magnitude,
and when they are carried over a long sequence, due to the multiple multiplications, the gradients
will approximate to 0, causing them to ”vanish”. The vanishing gradients problem is a hurdle in training
RNNs, but in LSTMs, due to the direct flow of cell state from one cell to the next, the vanishing gradients
problem is solved.

Figure A.3: Inside a LSTM network [40]
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Task Division

Table B.1: Distribution of the workload

Task Student Name(s)

Summary
Chapter 1 Introduction
Chapter 2
Chapter 3
Chapter *
Chapter * Conclusion

Editors
CAD and Figures
Document Design and Layout
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