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Abstract—Respiratory Rate (RR) is a vital health indicator,
especially in infant monitoring, where early detection of ab-
normalities or variabilities in RR is crucial. Traditionally, the
respiratory rate is extracted using contact-based methods, which,
although reliable, can be quite intrusive and stressful for long-
term monitoring. This study explores the potential of real-time
remote RR monitoring on inexpensive hardware, by comparing
three motion-based methods of extracting RR from RGB-camera
feed: Pixel Intensity Changes (PIC), Optical Flow (OF), and
Eulerian Video Magnification (EVM). The three algorithms were
benchmarked using the public AIR-125 dataset, which features
videos of infants in various positions, with a focus on their
accuracy and computational intensity. The results show that the
PIC algorithm slightly outperformed the other two algorithms
in both accuracy and computational complexity. However, none
of the algorithms managed to replicate the performance of the
study which initially proposed the dataset as a benchmark.

Index Terms—Respiratory rate, Motion-based algorithms, In-
fant monitoring, RGB-Camera, Pixel Intensity Changes, Optical
Flow, Eulerian Video Magnification

I. INTRODUCTION

Vital signs such as heart rate, oxygen saturation, and
respiratory rate are important indicators of the health status
of a person [1]. Changes in the respiratory rate (RR) are
particularly indicative of life-threatening conditions [2], yet
RR remains a sign that is often neglected in medical and sports
environments [3], [4]. In cases like monitoring infants in the
NICU, it is of crucial importance to intervene rapidly when
abnormalities in breathing rate are detected to ensure optimal
health outcomes [5].

Traditionally, RR is measured in hospitals either manually
or with instruments such as capnographs, pulse oximeters
and ECG-based monitoring systems. Although reliable, these
require sensors attached to the skin, like nasal cannulas, chest
belts or adhesive electrodes. Such contact-based methods can
cause irritation and great discomfort, especially if applied for
longer times. When it comes to infants, their sensitive skin can
make this an even bigger problem. Furthermore, the presence
of these sensors might interfere with the natural movement
of babies, making them impractical in long-term monitoring
in clinical or home settings. For these reasons, the possibility
of measuring RR in a non-invasive, remote way has garnered
increased interest.

The many physiological markers associated with respiration
(chest movement, temperature changes in the air, blood irriga-
tion) allow for experiments in extracting RR using a wide
range of sensors. Methods involving simple RGB cameras
have been studied extensively, due to the reduced cost of the
needed equipment.

However, while methods of extracting RR from videos are
continuously being developed, they are often bench-marked
against datasets not available publicly, or on data collected in
clinical, restricted conditions. This makes it difficult to draw
a comprehensive comparison between the existing methods,
especially when it comes to practical use scenarios like home
monitoring.

The present paper aims to fill in that research gap and
compare the performance of three motion-based RR estimation
algorithms in the practical scenario of monitoring sleeping

infants. A strong emphasis is put on the real-life and real-
time aspects, meaning that the algorithms were tested on
unrestricted subjects, in different positions, and were designed
to output RR as quickly as possible. As such, this paper
represents not only a comparison between the algorithms,
but also a feasibility study. A brief overview of the types of
algorithms considered for this task is presented in the section
Background and Algorithm Selection.

To draw a conclusion about their performance, the pro-
posed methods have been evaluated based on the following
comparison criteria: accuracy and computational complexity.
Given the restrictive condition of running real-time, these
metrics have been chosen as an attempt to balance how fast an
algorithm can be, while also outputting relevant data. Accuracy
is measured in multiple ways: Root Mean Squared Error
(RMSE) of the extracted RR compared to the ground truth
RR, as well as the Pearson’s correlation coefficient (ρ). The
RMSE is mean to indicate how big the errors the algorithm
makes are, while ρ measures whether the changes in RR
are detected at the proper time. Mean Phase Coherence, an
additional metric for measuring the quality of the signal, was
also introduced to see how close the extracted respiratory
signal is to the ground truth signal. This was done as only
the working dataset only provided the respiratory signal, not
ground truth values for the RR throughout time. Furthermore,
computational complexity is measured in processing time per
frame, as well as the CPU load. These metrics are especially
relevant in the eventual deployment on embedded platforms, as
the algorithms would have to run on less powerful processors.
The results have been computed against the same pre-existing
public benchmark dataset, the AIR-125 dataset [6], consisting
of videos of sleeping infant subjects in different positions,
manually annotated with information about the respiratory
signal. Conditions such as differences in lighting or position
are also taken into account when discussing the performance
of the algorithms.

II. BACKGROUND AND ALGORITHM SELECTION

Remote vital sign extraction has been an active area of
research for a few decades. Early work mostly focused on
using Photophletysmography (PPG) to extract heart rate
remotely [7], [8]. This technique, which measured the level
of blood oxygenation using the subtle changes in skin colour,
was later successfully applied for calculating the respiratory
rate [9], [10]. There is, however, a variety of approaches that
have been explored for remotely measuring RR, leveraging
different types of sensors and underlying principles [11],
[12], [13]:

1) Thermography - Studies focused on thermography
have successfully measured RR by analysing the flow of
hot air in the nasal or mouth area [14], [15]. Although
effective, this method requires specialised sensors or
thermal cameras, which restricts its practical uses.

2) Acoustic Microphones - Microphones have been used
to determine RR by capturing respiratory sounds [16],
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[17], [18]. However, this technique is susceptible to
environmental noise, and therefore not suitable for all
settings.

3) Depth Cameras/Sensors - By using cameras fitted
with depth sensors, researchers were able to infer the
respiratory rate by measuring the vertical movements
of the chest [19], [20], [21], [22].

4) Vibrometry - Vibrometric methods utilise the subtle
vibrations caused by inhaling and exhaling to determine
the respiratory rate [23], [24], [25]. While accurate,
they require specialised sensors, which can be quite
costly.

5) RGB-Cameras - The prospect of using RGB cameras
for measuring respiratory rate has garnered increased
interest, as hardware is relatively affordable and widely-
accessible compared to other sensors. (A simple standard
definition (720p) camera can be purchased for under 100
USD by any user.) In literature, two main paradigms can
be observed when it comes to extracting RR this way:

• PPG-based algorithms - As mentioned above, these
take advantage of the subtle changes in the colour
of the skin caused by the blood flow associated with
respiration [9], [10]. However, given the very subtle
differences that they aim to detect, they are quite
sensitive to noise, and tend to not perform that well
in non-standardised conditions.

• Motion-based algorithms - These examine
movements in areas such as the chest or the
pit of the neck to measure respiratory rate [26],
[27], [28]. They are prevalent in literature, and they
are more robust to environmental changes than the
PPG-based methods. For this reason, they will be
the focus of this paper.

In the realm of motion-based RR extraction, an entire spec-
trum of algorithms has been developed, relying on different
computational techniques. In a review [12], Massaroni et
al. classified the algorithms in three main categories: Pixel
Intensity Changes, Optical Flow, and Motion Magnification.

Algorithms that focus on computing the changes in the pixel
intensities have been studied in-depth by [28], [29], as well as
[30], [31].

Optical Flow has been studied by [32] as well [33], and
[27].

Finally, the reportedly more robust, but more computation-
ally complex method of Eulerian Motion Magnification has
appeared in the works of [34], [26], [35], as well as [36].

Recent studies have built upon the foundation of these algo-
rithms and introduced deep-learning based methods of measur-
ing RR [37], [38], [39]. Although showing promise, methods
involving Convolutional Neural Networks have not yet been
shown to add improvements in performance significant enough
to justify the increased computational burden [38]. For this
reason, such methods are outside the scope of this research.

Instead, the main focus will be on lightweight implementations
of the motion-based algorithms, with an accent on trying
to balance computational efficiency and reliability, a crucial
aspect for real-time applications.

Although a wide range of variations of these main algo-
rithms have been proposed, direct comparisons - especially in
real-life contexts - remain limited. As such, this paper strives
to perform a comparative analysis of the methods of Pixel
Intensity Changes(PIC), Optical Flow(OF), and Eulerian Mo-
tion Magnification(EVM), and understand their applicability
in real-time, real-context respiratory rate measurement.

III. METHODOLOGY

The entirety of the project was realised in Python3 [40],
with the use of the OpenCV [41] library for processing
the video. Additionally, the SciPy [42] and Matplotlib [43]
libraries were used for processing the extracted signal, re-
spectively for plotting the graphs. The choice of Python as a
programming language was made because of its versatility and
for its extensive support regarding image processing libraries.
Furthermore, in the eventual deployment on embedded sys-
tems, the cross-platform compatibility of Python would ease
the process. Despite other languages such as C++ offering
better performance for CPU-intensive tasks, the performance
of optimised Python code was deemed sufficient for the scope
of this research.

The algorithms were implemented and tested on the same
machine, an upper mid-range laptop, described in more detail
in the Results section.

For the experiment, a comparison pipeline was set up, which
can be visualised in fig. 1. A more in-depth description of each
algorithm can be found in their respective subsections. Pre-
processing and RR calculation from the signal are the same
for all three algorithms, so the algorithms are only assessed
on the quality of the motion signal they extract.

Since the RR estimation is meant to be done in real-
time, a sliding window was introduced. 10 initial seconds
for calibration are allowed, time in which only the movement
signal is recorded, with no calculations regarding the RR. A
window smaller than 10 seconds would not be sufficient to
detect enough inhaling-exhaling cycles for the calculation to be
relevant. Introducing the calibration period does cause a slight
delay in outputting the first reading, but it is short enough that
it should not affect practical use. After calibration, the signal is
processed to obtain the RR. The estimation is updated every 1
second, and is based on the last 10 seconds of the video feed.

A. ROI Selection

The first step in the processing pipeline after extracting
the video feed is choosing the area of the image to focus
on. Picking a suitable Region of Interest (ROI) is crucial
to the accuracy, as certain areas of the body, such as the
face or the chest, visibly change when inhaling and exhaling.
Furthermore, restricting the area of calculations can greatly
improve performance. In this study, all algorithms use the chest
and abdomen area as a ROI, since babies have been shown to
be particularly abdominal breathers [44].
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Fig. 1: Workflow for comparing the three algorithms

For this experiment, the ROI was selected manually before
running the algorithms. Automatic selection and tracking of
the ROI were considered, but were ultimately deemed unre-
alistic in the given time frame, considering how varied the
positions of the subjects would be in a real-life context. The
ROI selection screen can be seen in fig. 2.

B. Pixel Intensity Changes

The Pixel Intensity Changes algorithm quantifies the differ-
ences in individual pixels across the video sequence. The code
used in this research is based on studies by Massaroni et al.
[28], with slight changes when it comes to filtering out the
noise.

The first step in processing is splitting the video frame into
its red, green, and blue components. Each of the channels is
analysed individually in order to obtain the intensity of the
pixels for each line. The formula used is:

Iline =

∑N
j=1(Rj +Gj +Bj)

N

where Iline represents the intensity of a row of pixels in the
frame, N represents the number of pixels in the frame, and

Fig. 2: ROI Selection on a video of Subject 5, shown at the start of
any algorithm. The blue rectangle represents the ROI selected by the
user. The video was taken from the AIR-125 dataset.

Rj , Gj and Bj represent the intensity of the jth pixel of the
row in the red, green, and blue channels.

An array for the Iline values is stored for each frame. In
order to produce the motion signal, the standard deviation
of the rows’ intensities is calculated across the 10-second
window. The top 5% rows with the highest standard deviation
are chosen, as these are the most likely to contain data
regarding movement. The means of these rows’ intensities
represent the motion signal.

Given that this algorithm analyses pixel intensities, it is
prone to noise caused by sudden movements or glitches in
the video. To combat this, an extra mechanism has been
introduced, which drops the frames where too much sudden
movement is detected. This is done by keeping an array of
the absolute motion differences between frames. A motion
threshold is calculated with formula T = µd + k · σd, where
d is the array of differences, and k is a constant with the
value of 3, determined experimentally. Any frame that has an
absolute difference compared to the previous frame above T
is dropped.

C. Optical Flow
Optical flow is a method of quantifying movement in a video

by analysing the displacement of pixels across multiple frames
[45]. It was first introduced as a concept by James J. Gibson in
1950 [46], but only adopted in computer vision decades later,
in works such as the one of Horn and Schunck [47].

The method used for calculating the optical flow in this
research is the Farneback method [48], available in the
OpenCV library. This has been chosen because, as opposed to
frameworks like the Lucas-Kanade method [49], [50], which
focuses on certain feature points, it tracks displacement across
the entire image. Since the selected ROI, the chest area, does
not present any distinctive points to track, this method seemed
favourable. However, calculating the displacement using this
dense flow method increases the computational cost. Deep-
learning based optical flow frameworks like FlowNet [51] and
PWC-Net [52] were not considered, also for the reason of high
computational intensity.

The magnitude of the motion is calculated both on the
horizontal and vertical vectors of movement, as the positions
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of the infants in the videos vary. The formula for calculating
the motion magnitude is therefore M =

√
f2
x + f2

y , where fx
is the horizontal motion vector and fy is the vertical motion
vector. These changes in movement intensity represent the
outputted signal.

D. Eulerian Video Magnification

Eulerian Video Magnification is a method of enhancing
particular movements in a video, which was introduced in
2012 by Wu et al. [53]. It is suitable for the task of detecting
respiratory movements as it can be focused precisely on the
frequencies at which respiration occurs.

In the tested version of the algorithm, the video is first
converted to greyscale, to reduce the complexity. After this,
the video is decomposed into Gaussian pyramids, a series
of images where each image is a progressively downscaled
version of the original frame. For this experiment, the number
of pyramid levels was 3. This allows the algorithm to focus
on different levels of spatial details, as the motion at different
scales could have different frequencies. Each of the levels of
the pyramids goes through a Butterworth bandpass filter of
level 3 between 0.3-0.8 Hz. The motion is then amplified by
adding back the filtered signal to the original frame, multiplied
by a constant α, which has been chosen as 100 experimentally.
This makes the motion in the video more noticeable.

Following this process, the respiratory movement has been
enhanced, making it easier to extract the signal. This extraction
is performed using the frame differences method. This is a
basic video processing method, which analyses the pixel-wise
differences between two consecutive frames, and then appends
that value to the motion signal.

E. Post-Processing

The three algorithms all produce the same output: a signal
representing the intensity of the movement of the ROI at
a certain time. In order to extract the respiratory rate in
Breaths Per Minute (BPM), there are a few steps left in post-
processing. First, to remove the noise caused by unwanted
movements, a Butterworth bandpass filter of order 8 between
0.3 and 0.8 Hz is applied to the signal. These frequencies
correspond to 18-48 BPM, in the range of normal breathing
for an infant [54].

Additional to the bandpass filter, the PIC algorithm has two
more filters in place, as the algorithm was quite noisy. First,
after the bandpass filter, the signal is normalised by subtracting
the mean and dividing by the standard deviation. Then, an
exponential moving average filter with α = 0.4 is applied to
the window. This reduces the number of small peaks caused
by unwanted movement or problems with the video.

After the filtering, a Fast Fourier Transform is applied to
the resulting signal, to determine the dominant frequency in
Hertz (Hz), f . The respiratory rate is then calculated with the
formula RR = f × 60.

IV. ETHICAL CONSIDERATIONS

When performing studies in such a sensitive field as
healthcare, paying attention to the ethical aspects is crucial.

Throughout this project, the principles of Honesty, Scrupu-
lousness, Transparency, Independence, and Responsibility, ex-
tracted from The Netherlands Code of Conduct for Research
Integrity 2018 [55], were used as guidelines. In the following
subsections, two of the most important ethical considerations
of this project are detailed.

A. Reproducibility

Multiple steps have been taken to ensure transparency and
reproducibility of the results. Firstly, the algorithms that have
been studied were developed based on peer-reviewed papers,
cited in the bibliography. Secondly, the program code used for
the experiments is open-source and available in its entirety on
GitHub [56]. All functions that were not implemented by the
author are part of open libraries. Lastly, the dataset that the
results are based on is publicly available. Therefore, a third
party should easily be able to reproduce the results of this
study.

B. Data Sensitivity

Health indicators such as respiratory rate are considered
sensitive personal data under the regulatory framework of the
European Commission [57]. Their collection, processing, and
storage are subject to strict legal and ethical requirements
to ensure privacy and security. This becomes even more
imperative when it comes to data collected from vulnerable
subjects such as infants, as they are unable to provide informed
consent. To address these concerns, several precautions have
been taken. First of all, the working dataset was acquired
from an open scientific source, having been previously used
in performing research [6]. The dataset was published with
the intention of a public benchmark, and contains videos
collected by the Northeastern University clinical team, under
the ethical approval of their Institutional Review Board. A
Data Management Plan regarding the chosen dataset has also
been sent for approval to the Data Stewards of TU Delft. At
the time of writing, the approval was still pending. In the
dataset, videos of three of the subjects had been collected from
YouTube. However, due to uncertainties regarding the source
and consent of these videos, they have been discarded from
the present study.

Secondly, besides the videos and the ground truth values of
the respiration, the dataset does not feature any information
regarding the identity of the subjects. As an additional mea-
sure, the faces of the subjects used as examples in this paper
have been censored, to further protect their anonymity.

Lastly, all aggregated data derived from the dataset was
stored and processed in a secure environment, and will not
be shared further than the scope of this study.

V. RESULTS

The results of the study were obtained by comparing the
three algorithms against the AIR-125 dataset, based on their
accuracy and computational complexity. The dataset originally
consisted of 125 videos of 8 subjects, but due to afore-
mentioned ethical concerns, only the videos from the first 5
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subjects were used, resulting in a working dataset of 99 videos.
The resolution of the videos was fixed at 1280 × 720 pixels,
while the refresh rate was either 10 or 15 fps. Each algorithm
was run once on each of the videos.

For measuring accuracy, RMSE and Pearson’s correlation
coefficient (ρ) were used, both comparing the extracted RR
to the one of the ground truth files. However, it is worth
mentioning that the ground truth RR also had to be computed,
as the dataset only contained the respiratory impulse as a sig-
nal. Given this circumstance, Mean Phase Coherence (R) was
introduced as an additional metric to compare the extracted
signal after filtering to the ground truth respiratory impulse.
This was inspired by phase coherence, which has been used to
measure the synchronization rate between oscillating signals
[58]. Given that the amplitude of the signals is not relevant,
but their oscillation rate is, this seemed like a suitable way to
measure their correlation. The metric is computed by averag-
ing the phase coherence between the two signals calculated
every 10 seconds, when the sliding window changes entirely.
The Mean Phase Coherence can be described by the following
formula:

R =

∣∣∣∣∣ 1T
T∑

t=1

ej∆ϕ(t)

∣∣∣∣∣ ,
where: T is the total number of time samples, ∆ϕ(t) =
ϕx(t)−ϕy(t) is the phase difference between the two signals
at time t, and ej∆ϕ(t) represents a unit vector on the complex
plane for the phase difference. The value of R can be between
0 and 1, with 0 meaning that the signals are not correlated at
all, and 1 meaning that they are perfectly synchronised.

As for measuring computational intensity, the chosen met-
rics were CPU Load and processing time per frame.

A. Accuracy

The results of the three algorithms are comparable in terms
of accuracy, with PIC having a slight advantage over the
others. Table I represents the overall performance of the three
algorithms, as well as the performance of the AirFlowNet
method, which was introduced in the same paper as AIR-
125 [6], and the performance of another motion-based method
tested on the dataset [59]. The results show that all of the
algorithms were significantly outperformed by the AirFlowNet
method. The method proposed by Guo et al., while still
outperforming the algorithms of this paper, also obtained much
lower scores than AirFlowNet. It is worth mentioning that both
of these methods are based on convolutional neural networks,
and were both trained and tested on the AIR-125 dataset.

TABLE I: RMSE, Pearson’s Correlation Coefficient, and Mean Phase
Coherence for the algorithms

Method RMSE ρ R
PIC 7.78 0.13 0.40
OF 7.90 0.01 0.37

EVM 7.59 0.02 0.39
Guo et al. [59] 6.74 0.32 -
AirFlowNet. [6] 5.40 0.72 -

Although the ρ values for all algorithms are small, the
higher R values indicate that they are able to extract a motion

signal at least similar to the ground truth. In fig. 3, fig. 4, and
fig. 5 the respiratory signal extracted by each of the algorithms
on the same subject in the same window, can be seen.

Fig. 3: Motion Signal extracted using PIC - Subject 5, Video 4

Fig. 4: Motion signal extracted using OF - Subject 5, Video 4

Fig. 5: Motion signal extracted using EVM - Subject 5, Video 4

In table II and table III, the performance of the algorithms
can be seen in different conditions. From the first table, it
can be observed that videos with the subject laying on their
back produced better results than those with them laying on
their stomach or the side. Seeing that this position allows for
a better view of the entirety of the thoracic and abdominal
area, the results are not surprising. As for the colour of the
video, in the case of OF and EVM, the results are inconclusive.
However, for PIC, the coloured videos produced better results
as opposed to the greyscale ones. Again, this is unsuprising,
considering that the first two algorithms convert the video
to black-and-white before processing, while PIC analyses the
pixel intensities on the RGB channels individually.



7

TABLE II: Comparison of metrics by position

Position Algorithm RMSE ρ R

Back
PIC 0.12 7.02 0.42
OF 0.08 5.32 0.43
EVM 0.03 5.73 0.43

Stomach
PIC 0.13 7.32 0.40
OF -0.03 6.58 0.36
EVM 0.05 6.86 0.36

Side
PIC 0.13 8.35 0.39
OF 0.01 9.68 0.35
EVM 0.00 8.76 0.38

TABLE III: Comparison of metrics by video colour

Position Algorithm RMSE ρ R

Coloured
PIC 0.18 7.64 0.45
OF -0.03 7.58 0.43
EVM -0.04 7.54 0.44

Greyscale
PIC 0.11 7.83 0.38
OF 0.03 8.00 0.35
EVM 0.03 7.62 0.36

B. Computational Complexity and Number Crunching

The experiment was run on a machine equipped with an 8-
core Intel(R) Core(TM) i7-10870H CPU running at 2.20GHz,
with 32 GB of RAM. This is an upper-mid range laptop
processor, so it is expected that the algorithms would perform
poorer on an embedded platform. Examples of the compu-
tational intensities for each of the algorithms, compared on
the same video, can be seen in fig. 6, fig. 7, and fig. 8.
The CPU load percentage represents the mean load over the
8 processors, to get an estimate of how much of the total
available power is being used. In the graphs for the frame
processing times, the threshold is calculated with the formula
1

fps second, representing the maximum time a frame can be
processed to maintain real-time estimation.

Fig. 6: Computational Complexity for PIC - Subject 1, Video 4

On average, the Pixel Intensity Changes algorithm was
the fastest, while the Eulerian Video Magnification algorithm
was the slowest. An overview of the frame processing times
depending on the FPS of the video can be seen in fig. 9. While
in the case of PIC and OF this time remains almost constant,

Fig. 7: Computational Complexity for OF - Subject 1, Video 4

Fig. 8: Computational Complexity for EVM - Subject 1, Video 4

the processing time for EVM spikes occasionally. This is due
to the fact that EVM processes the frames in chunks, rather
than consecutively.

Fig. 9: Average Frame Processing Times for the algorithms. The black
line represents the delay threshold.

When it comes to the average CPU load throughout pro-
cessing, PIC required the most processing power. However,
the value is still quite small, and considering that the PIC
algorithm runs much faster than the other two, it can be
said that the overall CPU Load is comparable for all three
algorithms.
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TABLE IV: Average CPU Load for the algorithms throughout video
processing

PIC OF EVM
Average CPU Load 6.42 % 2.79 % 2.37 %

VI. DISCUSSION

A. Accuracy

The results show that PIC performed slightly better than the
other two algorithms, yet still considerably below an optimal
performance. While the R values of the algorithms suggest
they are able to extract a motion signal slightly correlated to
the real respiratory signal, the low ρ values indicate that all
of the algorithms fail at properly calculating the RR from this
motion signal. One of the reasons could be that the window
size and the time between updates are quite short, causing the
RR to oscillate quite a lot between readings. Nonetheless, the
main reason remains the fact that the algorithms are not able
to fully remove noise, causing the Fourier Transform to detect
unwanted dominant frequencies when calculating the RR.

Considering the poor results of other methods on the same
dataset, though, there is also the possibility that the data
was too difficult to work with in the first place. The many
different positions of the subjects in the dataset, as well as
the varying lighting conditions represent a tough challenge
for RR extracting methods, even for machine learning-based
ones trained and tested on the dataset, like the Guo et al.
method. This indicates that there remains research to be done
before deploying remote RGB-camera based methods for RR
extraction in such unrestricted scenarios.

B. Real-Time performance

From the experimental results, it can be seen that the
Pixel Intensity Changes algorithm has the fastest performance,
while the Eulerian Video Magnification algorithm performs
the slowest. This was to be expected, given the individual
complexities of each of the algorithms. However, for a real-
life, real-time implementation, these running times need to
be compared to an established standard. In this paper, the
concept of “real-time” was defined based on the 10-second
sliding windows - for an algorithm to run in real-time, it
needed to be able to process a 10 second video every 1 second.
From this standpoint, only the Pixel Intensity Changes and the
Optical Flow performed well enough at both 10 fps and 15 fps.
EVM was not much slower, also managing to stay under the
threshold for videos running at 10 fps. Given that the frame
processing time metric was taken as an average over all of the
runs, there were also instances where OF and EVM exceeded
the delay threshold, even at 10 fps. This happened in cases
where the selected ROI was larger, as there were more pixels
to be processed.

This model of real-time computation is however, quite
restrictive, and an implementation where the RR is calculated
every 10 seconds could also be considered real-time, as it
would still allow for sufficient time to detect an abnormal
breathing rate. In such a context, all algorithms could con-
ceivably be modified to allow for real-time performance.

The machine that the experiment was run on is also of note.
By using an upper mid-range laptop processor, it is expected
that the results would be much more favourable than by using
an embedded processor. In the case of the PIC algorithm, the
processing time margin is large enough that porting the code to
an embedded system should still allow for good performance.
For the other two algorithms, more experiments are needed.

C. Limitations

In the process of this study, there were certain factors which
affected the methods used, and subsequently the results.

Firstly, the selection of the algorithms to compare was a
lengthy one, due to the vast amount of research done in this
field in recent years. For each of the three methods presented
in this study, there are variations in the parameters and filtering
methods used. For the current comparison, the algorithms were
applied based on well-established implementation mentioned
in previous research. Therefore, other, newly-developed imple-
mentations may perform better than the presented methods.

Secondly, the datasets available for health-related research
are scarce, even more so when it comes to infant subjects.
The chosen dataset was deemed the most compatible, given
that it has been used in similar research, yet it only featured a
small number of subjects, which could have an impact on the
reproducibility of the results on other datasets. The quality
of the videos also varied throughout the dataset, with some
of the samples featuring periodic glitches - this significantly
affected some of the calculations. Furthermore, the dataset
was only annotated with the respiratory impulse, not the
calculated respiratory rate. This meant that extra calculations
had to be done to determine the ground truth values, which
introduced a level of uncertainty in the results. Given the strict
time constraints, collecting new data for this research was
impossible.

Lastly, the ROI had to be selected manually. This meant that
the results for the same video could differ slightly, based on
the selected area. In future research, this could be addressed by
implementing automatic ROI detection, for example by using
machine learning.

VII. CONCLUSION AND FUTURE WORK

The poor results obtained by all three of the algorithms
suggest that classical video-based RR extraction methods are
not ready for deployment in real-life scenarios, where move-
ment and lighting conditions may vary greatly. These findings
highlight the need for further refinement and optimisation to
improve robustness and reliability in diverse settings.

Having achieved better results in both accuracy and com-
plexity than the other two, the PIC algorithm shows more
promise. Before such a method of extracting RR is imple-
mented in real-life scenarios, though, there remain many steps
to be taken for improving its performance. Signal filtering
needs to be further refined to ensure that the extracted signal
is as close as possible to the real respiratory motion. For
this, more experimental work is needed, to investigate what
filter chain yields the best results. Another step that could be
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taken in improving accuracy is a more sophisticated method
of detecting unwanted movement.

Another aspect which remains to be studied is the optimal
window size for performing the calculations. The results of this
study suggest that the 10 seconds sliding window might have
been too short of an interval to smoothly detect RR. Updating
the calculated value less often than once every second could
also cause less fluctuation in the RR estimations, bringing the
results closer to the real-life value.

Implementing an automatic way of selecting the ROI would
have a significant impact on reliability, seeing that currently
the manually selected ROI can vary. Tracking the ROI would
also represent an important step, which would enable focus on
the same area even in the case of movement. For tasks like
this, neural network based methods such as YOLOv3 [60] have
shown promise, although they introduce great computational
requirements.

As for the computational complexity, multiple optimisations
could be made to ensure that the algorithms run on an
embedded platform as well. Firstly, downscaling the videos
to 480p would reduce the number of pixels by 55.5 %,
which would significantly improve the performance, while
still remaining clear enough to detect the movement changes.
Secondly, a programming language with better memory man-
agement capacities, such as C++, could be used. Lastly, other
techniques such as GPU acceleration or multithreading could
be implemented, depending on the hardware capabilities. This
would allow for more video frames to be processed in parallel,
reducing the needed computation time.

In conclusion, while all three of the algorithms performed
sub-optimally, the PIC algorithm does hold potential for im-
provement in real-time, real-life applications. Filtering meth-
ods, as well as other optimisations remain to be studied for
the future development of such algorithms. These efforts could
bring video-based RR extraction closer to practical real-world
application.
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