
Procedural Tree Generation
Compressing 3D tree for faster rendering

Sebastian-Alexandru Manda

Supervisor(s): Prof. Dr. Elmar Eisemann, Dr. Petr Kellnhofer, Lucas Uzolas

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Sebastian-Alexandru Manda
Final project course: CSE3000 Research Project
Thesis committee: Prof. Dr. Elmar Eisemann, Dr. Petr Kellnhofer, Lucas Uzolas , Dr. Marcel Reinders

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Trees are essential components of both real and
digital environments. Therefore, it is important to
have 3D models of trees that are of high quality
and computationally efficient. One way to achieve
this is by compressing a high-quality model using
billboard rendering, which involves partitioning
the tree into multiple planes to produce a similar
result to the original. Our study explores the
compression of 3D models using an optimization
loop and adapting billboard rendering techniques.
We use computer vision primitives to render basic
models, which we then optimize by adjusting the
texture to resemble the original tree. The models
consist of multiple upright planes that are rotated
around the central vertical axis of the original
tree. We use different optimization functions,
such as L1 and L2 losses, to determine the best
approach. We can improve the initial models by
bounding the billboards and limiting their heights
and widths to that of the trees. Additionally, we
can use double-sided textures for the billboards
to allow more flexibility for optimizing different
species of trees. However, optimizing multiple tree
types performs differently for each species, leading
to improvements that only benefit certain trees
in specific scenarios. Using quantitative metrics,
we determined which models perform best and
how similar they are to the original after training.
We found that our compressed models generally
resemble the original while having only a fraction
of the original size.

1 Introduction
Rendering tree models quickly has been a topic for discussion
since 3D rendering appeared. This is due to the way 3D
models are created and rendered traditionally. All parts of
the model are represented by polygons, mainly triangles,
meaning that large volumes for models can be rendered
quicker by lowering the number of triangles that compose the
model. However, for trees, rendering the leaves becomes the
main issue, as they do not represent a full volume but rather a
lot of small triangles for each leaf of the tree. Seeing as trees
usually have thousands of leaves in their crown, it becomes
a thorough process to calculate and render them when taking
into consideration light layering, shading, specular refraction,
and many more for each of the leaves.

This is why many methods [1; 2; 3; 4] were devised
to try to lessen the process of rendering the trees along
with their leaves. The first and most direct approach is to
modify the process of rendering these models and try to save
computation power in that domain, however, due to the time
constraints of this project, this is not a feasible option. The
second approach is trying to compact or reduce the initial
model into something easier to render while keeping the
final result as similar as possible. This leads us to the main
question this research is trying to answer:

How to simplify a complex 3D tree into a more compact
representation for fast rendering?

To answer this question we have chosen to adapt the
methods of slicing and blending trees [1] and billboard
clouds [2] into an optimization loop-based algorithm.
Billboard clouds partition the model into many planes, also
called billboards, at different angles, sizes, and locations
to render the final tree as this removes the need to render
triangles for each leaf. The slicing and blending approach
renders cross-sections of the tree model and uses them for the
final model to allow depth and volume to be created through
layering without having to use the initial model data of the
leaves. Both approaches are, however, an approximation of
the original tree as they lack some of its content.

Although the method described so far has already been
implemented before, there are few to none that have
tried using differentiable rendering [5] for optimizing the
billboards that compose the compressed model of the tree.
Our approach will use the same concept of billboards, but
where the other implementations have applied a rendered
image of a slice or from a specific perspective of the tree as
the texture of billboards, we will use an optimization loop to
create the textures needed by the compressed model. We also
intend to find which optimization function is better for this
approach, L1 loss or L2 loss. With this in mind, we can split
the main question into the following sub-questions:

• How does the number of billboards affect the results?

• How do different species of trees affect the results?

• Is L2 loss better than L1 loss as the optimization
function?

• How does having different textures on the sides of the
billboards instead of a single texture on both sides affect
the results?

To this extent, Sections 2 and 3 will explain some of
the related work in this aspect and provide the background
necessary for the rest of the paper. Details of our
implementation will be found in Section 4. Section 5 will
provide a guide for installing and running the experiments
while Section 6 will describe the results our experiments have
offered. Section 7 discusses further work and general results
that answer our sub-questions, after which Section 7 provides
details about responsible research for the aforementioned
experimental setup. Finally, Section 8 will denote our
conclusion for this research.

2 Related Work
Compressing 3D models is universally useful as it allows
for faster transfers or processing models at lower qualities if
necessary. This is why many methods have been found for
this exact purpose.

Standard model compression
Standard compression is the simplest form of reducing both
storage and render time for a model. This is done by
reducing the number of vertices of a model while keeping its
overall shape. Smoother 3D models contain more vertices to

replicate shapes like spheres, but these can usually be reduced
to lower polygon structures instead. Draco [4] is one of
many tool libraries for compressing and decompressing as
described. They use a wide variety of tools and methods
for compression in C++ and JavaScript. Similarly, Shape-
Adaptive Wavelet Coding of Multi-Height Fields [6] is a
technique used for compressing 3D models or point clouds by
partitioning the surface of the model into many patches and
then encoding these patches into a compressed data type that
can accurately represent the initial surface of the partitioned
region of the model.

Model training
Training the model to resemble the original is another
approach that could be used as compression. Methods
such as NeRF (short for Neural Radiance Fields) [7] or
NvDiffRec [3] follow this approach. NvDiffRec is a library
that takes a 3D model and attempts to train a new model
with the same shape and texture as the original. This is
done over many iterations by adjusting the optimized model
based on the mean squared error between the original and
optimized model. After many of these iterations, a model
that resembles the original is formed. Each step in this
process can be considered a crude version of the original,
being less complex, yet trying to represent the same thing.
NeRF is a neural network trained to produce a single object
or scene. After training, it uses the neural network to produce
a rendered image faster than rendering the initial model. Both
NVDiffRec and NeRF use differential rendering, being the
inspiration for our adaptation of the last type of approach.

The main similarity in all methods or tools mentioned so
far is that they are optimized for models with continuous and
connected surfaces i.e. not many holes present throughout
the model. Trees, however, do not share these attributes.
They have many vertices that represent small bodies such
as leaves and branches, having a lot of space between them,
thus making the methods mentioned above not a very reliable
option for our task.

Billboard based rendering
This leads to the final approach, creating a billboard-based
model of the tree. Interactive Vegetation Rendering with
Slicing and Blending [1] is the method of slicing the vertices
of the tree into sections, then individually rendering each
section and using these images as the model of the tree. Doing
this on multiple angles around the vertical axis of the tree
gives the final model for this method. Realistic real-time
rendering of landscapes using billboard clouds [2] tries to
optimally partition the initial model into billboards.

Then, a texture with the content of the vertices within the
partition is applied to the billboards. Each of them could
represent a branch and its leaves or sections of the main crown
of the tree and its trunk, together forming the total model of
the tree. The methods explained in this paragraph have the
best outcomes when it comes to rendering models of trees
specifically since they were built with this purpose in mind,
unlike the aforementioned ones. However, these methods
may be further compressed.

3 Background
This research is heavily focused on adapting the different
approaches of billboard rendering and model training. As
such, the most relevant terms of computer graphics and
computer vision will be detailed in this section.

A 3D model is formed by many points in a 3D coordinate
space; these will be referred to as vertices from now on. To
create a surface, 3 vertices are connected creating a triangle
or a face. The faces are used to determine the shape of
the model. To apply a texture to a model, a UV map is
necessary as it maps the vertices to a location on a 2D texture.
Interpolating this over the many faces of the model places the
texture onto a model. All the attributes mentioned so far will
also be referenced as the model together.

NvDiffRast is a collection of computer vision primitives
that allow the creation of a very complex rendering pipeline
through the use of its modular methods. These methods split
the task of rendering a 3D object into multiple sub-steps such
as rasterization, interpolation, texture sampling, and anti-
aliasing.

4 Method
To answer our research question and sub-questions, we will
take inspiration from the model optimization approaches [3;
7] and the billboard compression approaches [1; 2]. As
the input, we will use an already existing 3D model of the
tree. This model will be rendered externally to create a set
of images that will be used as our ground truth. Starting
from either a preselected model or a default model, we will
randomly select angles at which to render our optimized
model. Loss is determined between the rendered image and
the ground truth for the same angle, which is later used to
optimize the texture that wraps the optimized model. Each
step of this process is further explained in the following
subsections.

4.1 Dataset
As detailed in section 3, NVDiffRast provides primitives
for creating our rendering environment. However, this
environment does not provide shading and needs to be added
manually. To circumvent this, we have decided that instead
of rendering the original tree models in the NVDiffRast
environment, we will do so externally and then use them as
our ground truth.

Blender [8] has been chosen for this purpose. Given a
model of a tree, we create a scene around it, placing the
camera at an appropriate position, adding ambient light, and
rendering an image from that perspective. After the render
is complete, we move the camera to the next position around
the tree and repeat until the desired number of data points
is collected. This process is automated and can return any
number of images around the tree at any desired angle interval
with any resolution. These images will form the training and
testing sets used for the optimization model. Each image is
taken at an angle θ from the initial viewing angle 0. This will
be useful in forcing the perspective of the ground truth onto
the optimized model.

We have chosen 3 tree types from the tree model generator
library of Friggog [9]. The species are Quaking Aspen,
Willow, and Acer, which can be seen in Figure 1 below. These
trees will be used in all the experiments in our evaluation.

Figure 1: Tree models used in experiments, externally rendered in
Blender.

4.2 Model and Initialization
As mentioned so far, instead of creating a model resembling
the original in shape, we have decided to use billboards as the
base for our textures. This means that we focus on optimizing
the texture on a starting model by rotating its vertices and then
rendering it from that new angle to compare it to the ground
truth. This means that we wish to create a simple starting
model that can resemble the original model from any angle
once a texture has been applied.

One of the simplest 3D shapes is a plane, referred to
as a billboard throughout this paper. However, a single
billboard can never represent a 3D object when viewing it
from different angles. By adding billboards rotated around
a vertical axis (y-axis), we can create a model that, once
textures are mapped on its surface, may resemble the original.
One such model can be seen in Figure 2.

Figure 2: Simplest model: 2 billboards at a 90◦ angle.

Billboards are 4 vertex planes in a 3D space. The space that
is rendered within NVDiffRec is a 2 units length cube with its
center and origin at (0, 0, 0), meaning that opposing corners
are found at (−1,−1,−1) and (1, 1, 1). For our research, we
will be limiting our models to be composed only of vertical
planes, i.e. planes that are rotated around the vertical axis (y-
axis). This will be the axis of rotation for any future rotation
angles.

To create our models, we define a list of billboards, each
facing a certain angle. The number of billboards used for

the models is arbitrary, starting from the minimum of 2
billboards at a 90◦ angle (a cross viewed from above) to 3
and 4 billboards uniformly spread apart.

At the beginning of the process, all desired planes are
created, rotated at their respective angle, and merged into a
whole. A texture for the size of the model is also defined.
This texture is optimized to create our final product.

4.3 Rendering Pipeline
Rendering the optimized model is the second most important
aspect of our implementation. The entire pipeline can be
seen in Figure 3, but we will further explain each step in this
subsection. All green steps in the figure represent primitive
functions provided by NVDiffRast [5].

Figure 3: Rendering pipeline. Green steps are primitives provided
b NVDiffRast, Gray steps are initial inputs (they do not change
throughout the optimization process), Red steps are optimized inputs
such as the texture of the model (these inputs change for every
step of optimization), Yellow steps are processes implemented we
implemented, and Blue steps are results (Light Blue is intermediary
and Dark Blue is final).

The depth peeler is the first step of rendering. It is a
primitive function provided by NVDiffRec that, given the
vertices and faces of a model, allows us to rasterize each
depth layer of the model. Each depth layer is determined by
the number of surfaces on the model that need to be hit for a
certain pixel to be shown on the rasterized result. This means
that the first layer shows the first surface of the model for each
pixel hit. If no surfaces were hit for a pixel, it is empty. This
goes on for as many iterations as necessary, to reveal all depth

layers of the model for that angle. The purpose of the depth
layer is to create transparency within the rendered image of
the model. If the texture applied to the model is transparent,
the depth peeler reveals all layers of surfaces that may have
been hidden by only rasterizing the first surface.

Once we have the rasterized output for a certain depth layer
of the model, we use Interpolation along with the UV map
of the model to map each visible point on a surface of the
model to a coordinate in the texture image.

Using the interpolated image, we can begin with the
texture lookup step. It applies the color of the pixel on
the texture to the pixel in the final image. Because not all
pixels in a layer hit a surface, they can be empty. Each empty
pixel is given the color of the texture at coordinate (0, 0, 0).
Because this can be a random color depending on the texture,
we set all pixels in the background, i.e. all pixels that did not
hit a surface on the model, to (0, 0, 0, 0), thus removing the
background.

Once all depth layers have been individually rendered, we
use alpha blending to combine the pixels from each layer
into a single image. Besides the RGB values of the pixels in
the texture, they also have an alpha value. The alpha value
determines how much of that pixel is visible, allowing the
color of the pixel behind it to be seen as well, thus creating
transparency. Because the images we output in the data
collection step are saved with the PNG extension, we are
using straight blending for the alpha value. The resulting
image is the final render from the selected angle, which is
then compared to the ground truth.

This pipeline can be abstracted to a function f which takes
the model and the angle θ for the perspective of the camera
around the origin, resulting in the rendered image of the
optimized model: Iopt = f(model, θ).

4.4 Optimization Loop
We use Algorithm 1 for our optimization loop. Because we
render the ground truth model externally, we will be randomly
selecting an angle from the training set to train on. We first
use a rotation matrix to rotate the vertices to the angle we
are supposed to be viewing from, after which we use our
rendering pipeline f(model, θ) to get the final result. This
image is then compared to the ground truth with the same
perspective and loss is calculated. For the experiments within
this research, we calculate either L1 loss

l1loss = |f(model, θ)− Igt|
or L2 loss

l2loss =
1

p
∗
∑

(f(model, θ)− Igt)
2

where Igt is ground truth image and p is the total number of
pixels in one of the images. Only one of the loss functions is
used in the training of an experiment, never both. When they
are both showcased, two separate experiments have taken
place. The Adam [10] algorithm optimizer is used with an
initial learning rate of lr = 0.01 that increases during the
optimization process. The change in lr is defined as

lri = 0.1
lri−1

n

where n is the total number of iterations and i is the current
iteration.

Algorithm 1 Optimization Loop

1: for i = 0, 1, . . . , n do
2: Select an angle θ = [0, 360) from the training set
3: Render optimized model i opt = f(model, θ)
4: Fetch ground truth i gt for the selected θ
5: Calculate either l1loss or l2loss between i opt and

i gt then propagate backwards
6: end for

5 Implementation details
This study used a conda [11] environment as well as CUDA
12.3 [12] to execute all experiments. More information
on installation steps can be found in the Readme for the
repository of this research [13].

For the 3D models of the trees, we have used the blender
plugin Tree-gen [9]. From the different species it provides,
we have chosen the Quaking Aspen, the Willow, and the Acer
types. The ground truth datasets for each of these models
were rendered in Blender [8] at a resolution of 1024× 1024.
The datasets we created for the Quaking Aspen and Acer have
360 renders around the origin, while the Willow has 180 due
to its high vertex model. These images represent an angle
θ around the center of the trees that will be used to match
the perspective of our optimized model. Moreover, each tree
dataset is randomly split into a training set and a test set,
where the test set contains 1

4 of the total samples for that tree.
The test set is only used for evaluation, providing the metrics
of the experiments.

Our experiments use NVDiffRast [5] primitives to render
the optimized model. These images are also rendered at the
same resolution of 1024× 1024 as the ground truth datasets.
Each optimization session for the experiments is run for n =
10, 000 iterations.

6 Evaluation
In this section we describe the experiments that took place,
the results they have provided, and how that created a
direction for the optimizations added along the way. After
training ends for each of the experiments, we render the
angles sampled for the test set of the ground truth. The
test set contains 1

4 of all samples and was not used during
the training of the model. All renders are evaluated with 4
metrics, different from the L1 and L2 pixel losses used in
the training, and then averaged for the entire test set for the
outcomes. These results can be found in Appendix A and are
defined as:

• Root Mean Squared Error (RMSE) measures the
magnitude of change per pixel between the two images.

• Structural Similarity Index Metric (SSIM) calculates the
difference or loss in quality between the two images.

• Peak signal-to-noise ratio (PSNR) also calculates the
quality difference between the two pixels, however, this
difference is represented in decibels.

• Signal to Reconstruction Error (SRE) mostly measures
the difference in brightness or signal power for each
pixel of the images. It is also represented in decibels.

6.1 Base models and billboard count
Our first experiment uses the same model as the one described
in section 4.2 and in Figure 2. It is the lowest vertex count
model that a 3D model can be reduced to. However, in our
study, we intended to find out what the impact of more than
2 billboards is on the results. As such, we have also been
performing our experiments with models of 3 and 4 evenly
spaced billboards, 60◦ and 45◦ respectively. These models
can be seen in Figure 4. This experiment was performed using
L2 as the loss function.

Figure 4: Additional experiment models with 3 billboards and 60◦

between them on the left, and 4 billboards and 45◦ on the right.

Figure 5: Rendered results with different numbers of billboards for
each tree species.

Results
Figure 5 shows the change of the models when adding
more billboards. We can observe that the optimized models
become clearer the more billboards the models have. Because
all billboards have the same texture on both sides, more
billboards allow the model to have textures more closely

related to the perspective it is viewed from. This provides
an advantage over fewer billboards for the model and can be
seen in the numerical results as well, where all metrics show
better results.

This is not the case, however, for all trees. While the
Quaking Aspen’s and Willow’s results are better with more
billboards, the Acer has its best results in the 3 billboard
model, signaling that for some types of trees, with less
symmetry and sparser leaves and branches, a higher number
of billboards is not directly beneficial.

6.2 L1 versus L2
As seen in the results of the previous experiment, optimizing
with L2 leads to blurry, out-of-focus images of the tree. While
these images do resemble the original, even by looking from
afar they can be clearly distinguished from the original. For
this purpose, we have also taken into consideration L1 as a
possible loss function.

Results
The difference between using L1 and using L2 is simple. As
Figure 6 shows, where models optimized using L2 are blurry,
the models that use L1 are much clearer, having sharper
edges and a clean background. Although it gives great visual
improvements, it is not without its drawbacks. Firstly, the
model is much darker than the original. Secondly, most of
the empty gaps between the leaves and branches of all models
are lost. While this happens in L2 models as well, it is not
as pronounced. Finally, in contrast to the clearness of the
renders from a viewer’s perspective, the results show that the
L1 models underperform on all metrics for this experiment.

Because results are mixed when it comes to which loss
function is better, we have rendered the experiments that
follow with an L1 variant as well. This has shown
improvements for further experiments.

Figure 6: Rendered results of 4 billboard models of all species for
L1 and L2 losses.

6.3 Bounded billboards
One disadvantage of L2 is the blurred edge of the model.
A solution could be to only make the billboards that make
the model as large as necessary for that perspective of the
model. When initializing the model, instead of defaulting to
cover the entire viewport with each billboard, we can take
the ground truth for that angle and find the boundaries of all
nontransparent pixels (alpha values of the pixels are above 0).
These boundaries can then be translated to 3D coordinates
for the boundaries of the billboard and also for the UV map
of the available optimized texture, only allocating enough to
use on the smaller billboard. This means that a bounded
billboard can only be as large as the original model is from
the perspective perpendicular to the billboard. It also has the
added advantage of reducing the size of the textures for the
model, improving processing times.

Results
The main advantages of this method are removing some of
the clutter and the blurred edges, and reducing the areas that
can be covered by textures, areas that should not contain
much color at first thought. However, its results are again
mixed. First, it only shows improvements in metrics for L2
models. This is because L1 models naturally do not have the
blurred effect of L2. Furthermore, it has advantages only on
very symmetrical tree species such as the Quaking Aspen.
The Willow and Acer models are highly disadvantaged, due
to parts of their models sometimes getting cut off for some
perspectives around the model, also reducing the results of
metrics for both L1 and L2 models. Figure 7 shows exactly
that.

On the other hand, having bounded billboards can turn into
an advantage for all models. Optimizing the placement of the
billboards before training, to reduce the possibility for parts
of the tree to be cut off due to perspective warps, could best
utilize tighter billboards.

Figure 7: Rendered results of 4 bounded billboard models of all
tree species and loss function.

6.4 Two-sided billboards
So far, all billboards were one-sided, meaning that the same
texture could be seen on both sides. This can lead to some
issues when taking into consideration trees with high-density
crowns for which viewing the tree from opposite perspectives
may give very different results. Figure 8 shows how even
lighting can change between the opposite angles around
the tree and how it can affect a model with a single-sided
billboard.

Figure 8: Top view showcasing the different perspectives on the
same billboard.

As such, when generating the model, we can simulate two-
sided billboards, i.e. the texture on each side is different, by
rendering two separate billboards at opposing angles and then
indenting them a very small distance in the direction of their
normal, thus, when rendering, they will not occupy the same
space and create artifacts.

Figure 9: Rendered results of 4 double-sided unbounded billboards
for each tree species and loss function.

Results
Figures 9 and 10 showcase the results of these double-
sided billboards and bounded double-sided billboards. Metric
results for the unbounded double-sided billboards show
overall improvements over their single-sided counterparts,
however, it greatly depends on the species of the tree and the

number of billboards in the model. For example, most of
Quaking Aspen’s results show either a lack of improvement
or noticeable improvement for both L1 and L2, but the
Aspen model has much worse results for the 2 billboards
model when optimizing using L1. This shows that different
approaches should be taken for each species of tree, as no one
method can provide the best results for all.

Figure 10: Rendered results of 4 double-sided bounded billboards
for each tree species and loss function.

Similar to the results from the previous experiment,
bounded billboards offer only slight improvements to
symmetric tree species and an overall decrease in the metrics
for the other species. This reinforces the idea that separate
methods should be devised for each type of tree.

Although having double-sided billboards creates a net
improvement in the metrics, disregarding the bias of this
method for different tree species, it also comes with some
negatives. One such disadvantage is the increased processing
time. Because each billboard now has 2 sides, it means that
there are double the number of vertices in the model and
double the size of the texture to hold it all. Since we are
also using a depth peeler to render each optimization step, we
now need to render twice as many depth layers as well, as our
rasterizer can hit both sides of the billboard before reaching
another behind, effectively doubling our render time.

7 Discussion
This section will discuss the results and limitations of
our experiments and how to improve them in the future.
Moreover, the results subsection will shortly discuss the
findings that relate to our proposed sub-questions.

7.1 Limitations and Future work
As mentioned multiple times throughout this paper, there are
self-imposed and time limitations for this research. Both
types come from the short duration of this research and help
limit how much a topic is discussed or explored to still keep
the goal of the paper concise.

The first of such limitations is the fact that we only
optimize along the y-axis of the model. Implementing,
testing, and optimizing for multiple axes would take too long
for the span of this project and, taking into consideration that
trees are less complex in other dimensions, could provide
lower-than-expected improvements.

We have also limited our research to at most 4 billboards
per tree. Rendering and optimizing each model takes some
time and factoring in double-sided billboards doubles said
time. Moreover, 4 billboards leave only 45◦ between each
billboard, enough space for all the billboards to be seen from
at least one angle during training.

Another limitation our methods display is the shading of
the model. Currently, the models are shaded and rendered
externally, thus providing the ground truth images used for
optimization. In practice, however, our models would be
used in different environments where the shape of our models
would not allow for the same shading results. This limits the
usability of the models after being compressed as they will
not respond to shading perfectly given a different scenario
than the one chosen while initially rendering the ground
truths. This can be averted by compressing trees with the
desired shading from the beginning.

Having a general model for all trees and tree species
instead of finding an optimal result before or during the
optimization loop is another limitation. This also stems from
the time restriction for the research. Focusing on optimizing
the texture became the primary goal for the paper and creating
more complex models could increase both training time and
create issues when it comes to a higher number of billboards,
slightly going against the purpose of compression. However,
the creation of billboards for any angle with any size has
already been implemented for this project. This can be taken
further by either finding the best angles to place billboards
at before optimization of the model or by allowing the
optimizer to decide where to place new billboards throughout
the training and starting from a more crude initial model such
as a single billboard.

7.2 Results
When it comes to the effects of the number of billboards
in a model, starting from the most basic 2-billboard model,
we can already see promising results, however, some
improvements are to be made. The first aspect we change
about this basic model is the number of billboards that make
up the model. Increasing their number has a great initial
impact on the models, but not for all species of trees. Trees
with sparse leaves and branches benefit the least from a higher
number of billboards.

Moreover, the different species of trees have a major
impact on both the visual results and the quantitative metrics.
This can be attributed to the number of dimensions the tree
expands in. For example, the Quaking Aspen is mostly
symmetrical in shape, thus more billboards allow more of
its crown to be visible from more perspectives. On the
other hand, for Acer, its low branch count means there are
fewer optimal positions a billboard can occupy, thus with
our general models, the billboards cover mostly the space
between branches instead of aligning with the branches, thus

giving the observed lower metric scores.
Another question we intended to answer is about the best

learning function to use. For this, we have experimented with
L1 and L2 losses. L2 loss provides better results in terms of
metrics but the final models have a blurry appearance. On the
other hand, L1 has worse metric scores in comparison and
produces darker images but the final models are sharper and
clearer. Both functions show advantages and disadvantages
for different scenarios and species of tree.

Additionally, the results of single and double-sided
billboards were majorly dependent on the type of tree the
experiment was performed on. Some types of trees have very
thick crowns, similar to the Quaking Aspen. For this type of
tree, the best results came from double-sided billboards as the
model no longer needs to have the same texture for opposing
perspectives, allowing for both better visual results and metric
scores, while for trees such as the Acer tree, single-sided
billboards tend to give better results.

Finally, the objective of this research is to compress models
of trees. To this extent, Table 1 shows the number of vertices
our models have compared to the original. Our methods have
been able to compress all of the chosen models down to at
least 0.028% of the original, allowing for much faster renders
with ours than the original. The trade-off, however, is some
of the quality of the models, as they can become blurry or
darker depending on the used loss function.

Acer Willow Quaking Aspen
Original 113,155 10,525,153 700,869

2 Single-sided 8 0.0071% 8 0.000076% 8 0.00114%
3 Single-sided 12 0.0106% 12 0.000114% 12 0.00171%
4 Single-sided 16 0.0141% 16 0.000152% 16 0.00228%
2 Double-sided 16 0.0141% 16 0.000152% 16 0.00228%
3 Double-sided 24 0.0212% 24 0.000228% 24 0.00342%
4 Double-sided 32 0.0283% 32 0.000304% 32 0.00457%

Table 1: Table contains the vertex count for each original tree
model. Each subsequent row below the original shows the vertex

count of that model that was used to optimize said tree and the ratio
between the original and compressed vertex count. These models

can be separated by the number and type of billboards that compose
them.

8 Responsible Research
The research done in this paper follows responsible research
guidelines. The tree models used for creating the datasets
originate from the public Blender plugin tree-gen (on
GitHub) [9]. These models are free to use for non-
commercial purposes as per the GPL-3.0 License the plugin
is under. This research also adheres to the NVIDIA license
of NVDiffRast [5]. The primitive methods provided by the
library are only used for research, thus it is ethical and fully
reproducible.

9 Conclusion
Our goal was to find a method for compressing a 3D model
of a tree into a more efficient format. We decided to approach
this problem by first creating a model composed of billboards.
Then we optimize the texture that is applied to it by rendering

it and comparing it to the original tree model we are trying to
compress.

We found that different species perform best in different
settings and, from our experiments, not one type of process
could be optimally used for all of them. However, one can
adapt our approach depending on what type of tree needs
to be compressed. Although our results are not perfect
replicas of the original, being somewhat blurry if using L2
loss and losing some of the quality of the original they largely
resemble the original. Similarly, L1 loss creates a sharper but
darker version of the results of L2 loss.

Moreover, the experiments performed create the fewest
vertex models possible, having a fraction in size compared
to the original models. Our results have at most 32 vertex
models, while the original models have up to 10, 525, 153
vertices, reducing the complexity of the model to at least
0.028% of the original.

Finally, this study shows that the methods we have used
are possible compression methods and, with improvements,
can provide greater results than the models proposed by the
billboard rendering and model optimizing approaches that
inspired it.

References
[1] A. Jakulin, “Interactive Vegetation Rendering with

Slicing and Blending,” in Eurographics 2000 - Short
Presentations, Eurographics Association, 2000.

[2] S. Behrendt, C. Colditz, O. Franzke, J. Kopf,
and O. Deussen, “Realistic real-time rendering of
landscapes using billboard clouds,” Computer Graphics
Forum, vol. 24, no. 3, p. 507–516, 2005.

[3] J. Munkberg, J. Hasselgren, T. Shen, J. Gao, W. Chen,
A. Evans, T. Müller, and S. Fidler, “Extracting
Triangular 3D Models, Materials, and Lighting From
Images,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 8280–8290, June 2022.

[4] Google, “Google/draco: Draco is a library for
compressing and decompressing 3d geometric meshes
and point clouds. it is intended to improve the storage
and transmission of 3d graphics..”

[5] S. Laine, J. Hellsten, T. Karras, Y. Seol, J. Lehtinen,
and T. Aila, “Modular primitives for high-performance
differentiable rendering,” ACM Transactions on
Graphics, vol. 39, no. 6, 2020.

[6] T. Ochotta and D. Saupe, “Compression of point-based
3d models by shape-adaptive wavelet coding of multi-
height fields,” in Symposium on Point-Based Graphics
2004 (M. Alexa, ed.), (Aire-la-Ville), pp. 103–112,
Eurographics Association, 2004.

[7] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: Representing
scenes as neural radiance fields for view synthesis,” in
ECCV, 2020.

[8] B. Foundation, “Home of the blender project - free and
open 3d creation software.” Available at https://www.
blender.org/.

https://www.blender.org/
https://www.blender.org/

[9] Friggog, “Friggog/tree-gen: Procedural generation of
tree models in blender.” Available at https://github.com/
friggog/tree-gen.

[10] PyTorch, “Pytorch 2.1 adam optimizer.” Available at
https://pytorch.org/docs/stable/generated/torch.optim.
Adam.html.

[11] “Conda documentation.” Available at https://docs.
conda.io/en/latest/.

[12] NVIDIA, “Cuda toolkit 12.3.” Available at https://
developer.nvidia.com/cuda-downloads.

[13] S. Manda, “Sebastianmanda/tree-compression.”
Available at https://github.com/SebastianManda/
tree-compression.

https://github.com/friggog/tree-gen
https://github.com/friggog/tree-gen
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://github.com/SebastianManda/tree-compression
https://github.com/SebastianManda/tree-compression

Appendix

Figure 11: Experiment metrics. Cells with orange background denote the highest value between the number of billboards for their metric
within a tree type. light blue cells in the Averages column denote the highest average values for their metric.

	Introduction
	Related Work
	Standard model compression
	Model training
	Billboard based rendering

	Background
	Method
	Dataset
	Model and Initialization
	Rendering Pipeline
	Optimization Loop

	Implementation details
	Evaluation
	Base models and billboard count
	Results

	L1 versus L2
	Results

	Bounded billboards
	Results

	Two-sided billboards
	Results

	Discussion
	Limitations and Future work
	Results

	Responsible Research
	Conclusion

