
Instrumented
Sled for Skeleton
Bachelor Thesis
W.M. van Dijk
K.N. van derWerff

Focusing on powermanagement
and the sensors for localisation, velocity & temperature

Instrumented
Sled for
Skeleton

Bachelor Thesis
by

W.M. van Dijk
K.N. van der Werff

focusing on localisation, velocity, temperature & power management,
as part of the Bachelor Graduation Project,

at the Delft University of Technology.

Student number: Werner van Dijk, 4464346
Karen van der Werff, 4478657

Project duration: April 22 – July 5, 2019
Supervisors: Prof. dr. P. J. French

Dr. ir. A. Bossche

Abstract

There is only a very limited number of moments a skeleton athlete can train at a skeleton track. There-
fore, it is important to train as efficiently as possible. To do so, an instrumented skeleton sled is designed
that provides useful feedback. This instrumented sled is able to monitor the force exerted on the sled
by the athlete and link this to the position and speed. Also, the ice temperature of the track as well as
the G-forces acting on the sled are measured. This report covers the design and implementation of the
temperature sensor, the power system, the PCB and the system to determine the location and velocity of
the athlete which is necessary for the instrumented sled.

iii

Preface

This thesis has been written in context of the Bachelor Graduation Project of the TU Delft. The project
was commissioned by Akwasi Frimpong, a professional skeleton athlete that requested us to design a
product to can provide him with information about his performance while practising his sport.

We would like to express our gratitude to our supervisors prof. dr. Paddy French, dr. ir. André Boss-
che and Ing. Jeroen Bastemeijer for their guidance during the project. Furthermore, we would like to
thank Akwasi Frimpong for the topic and we wish him the best of luck on the Winter Olympics in Beijing
in 2022. Finally, we would like to thank our colleagues: Martijn Heller, William Hunter, Tijs Moree and
Jan de Jong, for an enjoyable and productive collaboration.

Werner van Dijk & Karen van der Werff
Delft, June 2019

v

Contents

1 Introduction 1
1.1 The goal of the project . 1
1.2 Problem definition . 1
1.3 State of the art skeleton instrumentation. 3
1.4 Subdivision of the system . 4
1.5 Structure of the thesis . 4

2 Program of Requirements 7
2.1 General requirements . 7
2.2 Specific requirements . 8

3 Measuring Ice Temperatures 9
3.1 Infrared sensors . 9

3.1.1 The principles of an IR sensor . 10
3.1.2 Sensors available on the market . 10

3.2 Implementation of the sensor . 10
3.2.1 Setting up the MLX . 10
3.2.2 Changing the emissivity . 11

4 Measuring Location and Velocity 13
4.1 Tracking sensors. 13
4.2 Sensor fusion . 14

4.2.1 The Kalman filter . 14
4.2.2 A motion model. 15
4.2.3 The model according to Kalman . 16
4.2.4 The Kalman algorithm . 17

4.3 Implementation . 17

5 PowerManagement and Battery System 19
5.1 Requirements of the battery. 19

5.1.1 Energy density . 19
5.1.2 Safety. 19
5.1.3 Capacity . 20

5.2 The implementation . 21
5.2.1 Undervoltage Protection . 21
5.2.2 Overcurrent Protection. 23
5.2.3 Voltage regulation . 23

6 PCBDesign and Prototype Implementation 25

7 Results andDiscussion 27
7.1 Temperature measurements. 27
7.2 Localisation system . 27

7.2.1 Inertial Measurement Unit . 27
7.2.2 GNSS receiver . 28
7.2.3 Sensor fusion - Q and R matrices . 29
7.2.4 Sensor fusion - Kalman filter . 30

7.3 Power management system . 31
7.4 PCB design and prototype implementation . 33

vii

viii Contents

8 Conclusion 35
8.1 Conclusions . 35
8.2 Recommendations and future work . 36

References 41
A IR sensor - setting emissivity 43
B GNSS receiver - SAM-M8Q 45

B.1 UBX-CFG-GNSS message structure . 45
B.2 UBX-CFG-GNSS message code . 46

C KF implementation 49
C.1 MATLAB code . 49
C.2 Results Kalman filter . 51

D Total circuit diagram 57

1
Introduction

Skeleton is a winter sport in which an athlete lies in a prone position (face down and head first) on a
small sled with two metal runners underneath, and goes down a winding track which is approximately
1800 meters long and covered in ice. An example of such a track can be seen in Fig. 1.1, which depicts a
computer mock-up of the track that will be used at the 2022 Winter Olympics in Beijing. The sport has a
high intensity: during a run, the athlete is subject to high G-forces and speeds which can exceed 130 km/h
[1]. The steering of the sled is done by pushing the shoulders or knees into the sled: “the sled contorts as
a response to the athlete’s steering control movements. When this happens, the left or right runner knife
is forced into the ice, creating an asymmetry in ice friction resulting in a steering moment. That is, when
the left runner is forced into the ice, the sled will turn left. Athletes thus use their shoulders and knees
to contort the sled; for a more dramatic steering movement, they ‘tap a toe’ onto the ice, creating a larger
steering moment” [2].

A run starts with the athlete sprinting from the starting point with the sled, the so-called push start,
a critical part of the run (this feature also appears in bobsled racing, but is absent from the similar sport
of luge). This can be seen schematically in Fig. 1.2: after about fifteen to thirty metres, the athlete
mounts the sled at full running speed and manoeuvres it around a series of (often) high-banking corners
in the desired path, to maximise his speed [2].

This project focuses on creating an instrumented skeleton sled. In the following sections, the goal of
the project will be laid out, followed by the problem definition and an elaboration on the structure of this
thesis.

1.1. The goal of the project
Akwasi Frimpong is a Dutch skeleton athlete of Ghanaian descent. His aim is to become the first athlete
of African descent to win a golden medal at the Winter Olympics in 2022. In order to have a realistic
chance of winning that medal, he must train harder, better and faster than his fellow skeleton colleagues.
One of the ways to speed up the learning curve, is through improved feedback. Knowledge on the effects
of certain movements will give valuable insights and pave the way to a more targeted training method.
Thus, the goal of this project is to make an instrumented sled that is able to track the movements and
present the data in a way that is useful for Akwasi. This way, he can practice skeleton in a smarter way
than his competitors - a smarter way with a smarter sled.

1.2. Problem definition
The current training methods in skeleton are not yet very advanced. At the moment, only video imagery
and visual feedback (such as photos) from the coach are used as feedback. Because of the high speeds
at which skeleton athletes can go down the track, the important details from the run can be very hard
to spot. Besides the previously mentioned means of feedback, there are no quantitative elements that
can be measured, except for the timing measured by the timing eyes on the track. The important thing
to know is how the athlete influences the sled during the run, especially in the curves. After all, this is

1

2 1. Introduction

Figure 1.1: A computer mock-up of the skeleton track to be used at the 2022 Beijing Winter Olympics [3]

Figure 1.2: An overview of the height profile at the beginning of a skeleton practice track, illustrating the push start [1]

the factor with the highest impact on the run time besides the push start [4]. The steering of the sled is
done by exerting forces on it using the shoulders and the knees. These movements of the shoulders and
knees are practically impossible to see on video. An example of this can be found in figure 1.3, a photo
that has genuinely been used for feedback. The solution to this problem is an instrumented sled which
can measure the forces applied by the athlete, coupling the measured forces to the location of the sled on
the track. The use of an instrumented sled would result in a significant increase in useful feedback that
Akwasi can use to improve his run time.

1.3. State of the art skeleton instrumentation 3

Figure 1.3: Example of a visual feedback method that is currently being used.

1.3. State of the art skeleton instrumentation
Despite the fact that the sport of skeleton is not very widely practised, a number of studies have been
done on the measurement of the forces, speeds and acceleration involved in the sport. These studies
were primarily performed in order to create a better understanding of the dynamics at play in the sport,
instead of having a goal of being used to actively improve athlete performance. Roberts [1] showed in
his work that from measurements of the acceleration of the sled in three axes, velocity and traversed
distance can be derived, which can provide useful information about the push start of the run. This is
valuable, as it has been shown that the (effectiveness of the) push start has a large impact on the even-
tual time taken to complete a run [5]. After the push start and later in the run, however, the noise on
these measurements becomes too large due to vibrations and other factors [1], making it impossible to
integrate this to obtain a meaningful speed and distance reading during the whole descent. Sawade et al.
[2] studied the factors influencing skeleton steering, showing a correlation between the applied steering
force by the athlete and measured accelerometer and gyroscope data.

The aforementioned studies examined a number of relevant parameters involved in a skeleton run by
attaching sensors to the sled and logging their output data. Although this is useful data, these studies
provide only a limited tangent to the solution to the problem put forth in section 1.2, as further processing
of the data and visualisation (to produce the graphs from which conclusions could be drawn) was done
after the fact. No special consideration was given to making the data easily and quickly available to
the athlete (and his coach) from which the measurements were sourced, relegating their results to the
status of reference work for an athlete instead of a product they can use themselves. The general idea of
combining computing, sensing and communication as is required for this project, however, isn’t new. This
way of integrating information processing into user objects without the user being actively aware of the
hardware behind it is known as “ubiquitous” or “pervasive” computing and has seen a rapid increase in
the past decade [6]. In sports in general, “these ubiquitous computing technologies are utilised to acquire,
analyse and present performance data without affecting the athletes during training and competitions”
[6].

Nevertheless, these technologies aren’t yet prevalent in the skeleton world; the closest similar system
was studied by Lee et al. for use on a bobsled. This involved fitting an elaborate system of sensors and
cameras on the sled, that together produced video imagery overlaid with sensor data, which was then
wirelessly transmitted to a monitor on a remote site in real time [7]. This is useful functionality, but it
isn’t practically usable in the skeleton case: the system is bulky, as can be seen in Fig. 1.4, requiring
(amongst other things) a relatively large and heavy control unit, which wouldn’t fit on a skeleton sled.

It can thus be concluded that although modern research into the topic of skeleton dynamics is avail-

4 1. Introduction

Figure 1.4: An example of an instrumented bobsled, as developed by Lee et al. [7].

able, none exists that cover the scope of the system required to provide skeleton run data accurately and
quickly in an (from the athlete’s point of view) easy-to-understand format.

1.4. Subdivision of the system
In order to realise the instrumented sled, the project has been divided into 3 subgroups, each with its own
responsibilities. This division can be seen in figure 1.5. The Data Group is responsible for the storage and
the visualisation of the data at the end of each run. Sensor Group A is responsible for the measurements
of the forces applied by the athlete, as well as the measurements with respect to the g-forces and the
orientation of the sled. Sensor Group B is responsible for the localisation of the sled, measuring the ice
temperature and designing the power management system. Furthermore, this subgroup focused on the
integration of the system, connecting all subsystems on a PCB. This thesis focuses on the work of Sensor
Group B.

1.5. Structure of the thesis
The thesis covers the choices made in the process of designing the subsystem for the instrumented sled,
as well as the results. First, the programme of requirements will be explained in chapter 2. After that,
chapters 3 to 6 will discuss each aspect of the subsystem more in depth. The design considerations as
well as the implementation for the temperature measurements, the localisation system, the power man-
agement system and the PCB design will be discussed respectively. Then, the results will be presented
and discussed in chapter 7. Lastly, a conclusion will be drawn in chapter 8, followed by recommendations
for future work.

1.5. Structure of the thesis 5

Figure 1.5: The division of tasks for the project, focusing on Sensor Group B.

2
Program of Requirements

As has been described in chapter 1, this project is about creating an instrumented skeleton sled to enable
the skeleton athlete to train faster and smarter. In order to achieve this, a couple of aspects must be
monitored, such as the location, the velocity and the applied force. These values must be stored and
visualised for the athlete and his coach. This system is subject to various requirements, which are listed
below. The final product will be tested against these requirements.

2.1. General requirements
General requirements are those requirements that are relevant for the entire system and that should be
met by every subgroup. They are listed as follows:

G.1 The product must be able to measure G-forces, rotation, force applied by the athlete, ice tempera-
ture of the track and must be able to determine the location of the skeleton sled.

G.2 The product must be able to work in a temperature range from -20 ◦C to 40 ◦C, since it will be used
in an environment with temperatures in this range.

G.3 The product must be able to withstand momentary accelerations of up to 5 g [4, p. 198].

G.4 The complete system should not weigh more than 1.5 kg, to prevent that the characteristics of the
skeleton sled are different from match conditions during training.

G.5 The dimensions of the product cannot exceed dimensions of 31.5 × 14.7 × 2 cm, since this is the size
of the available box inside the skeleton sled.

G.6 The update rate of the force sensors and localisation system should be such that data points are
at most 1 metre apart. Working with a maximum speed of 147 km/h [8], this gives a minimum
frequency of 41 Hz.

G.7 It should not be necessary to open the space inside the skeleton sled, where the circuitry will be
located, in between runs. Therefore the user must be able to start and stop the measurement from
the outside.

G.8 The product must be able to be easily installed or removed from the sled, without leaving any
(permanent) traces on the skeleton sled.

G.9 The product should influence neither the aerodynamic properties nor the mechanical properties,
apart from the weight, of the skeleton sled.

G.10 The product can not have any wired connections outside the skeleton sled and must be able to
operate for the time it takes to do 3 runs and the time in between runs.

G.11 The system must be robust, being able to handle the vibrations of the skeleton sled during a run.

G.12 The acquired data must be available within 5 minutes after each run for the athlete and its coach.

7

8 2. Program of Requirements

G.13 The product should be easy to use.

G.14 The total cost of making the prototype must fit in the budget of e250,-.

2.2. Specific requirements
There are several requirements that apply solely to the subsystems described in this thesis. For Sensor
Group B, the following requirements must be met:

S.1 The power system should have the capacity to last for at least three hours at temperatures down to
-20 °C, enabling the athlete to complete three consecutive runs.

S.2 The power system should have an undervoltage protection to prevent damage and capacity loss of
the battery.

S.3 The power system should have an overcurrent protection to prevent damage and increase the safety.

S.4 The battery should have a hard case to protect it from a direct hit or puncture, to prevent unsafe
use.

S.5 The battery should be rechargeable.

S.6 The system should be able to deliver voltages of 3 V, 3.3 V and 5 V.

S.7 The temperature sensor can measure temperatures as low as -20 °C.

S.8 The temperature sensor should be able to obtain the temperature without physically touching the
ice.

S.9 The temperature sensor must obtain readings with an accuracy of 1 °C.

S.10 The accuracy of the location measurements should be at least 1 metre.

S.11 The PCB should be able to connect all components in a reliable way.

3
Measuring Ice Temperatures

The skeleton sport knows three phases: the sprint phase, followed by the loading phase and finishing
off with the sliding phase. The interactions between the ice and the runners of the sled, mainly fric-
tion, have a large impact on the performance of the run. It has been estimated that about 40% of the
energy dissipated in the sliding phase is transmitted into the ice, and the effects of this energy transfer
are temperature-dependent [9]. Research has shown that changes in the ice temperature have a large
impact on the sliding velocity, even more so than the weight of the sled and roughness of the metal bars.
The relationship between the temperature and the velocity can be seen in figure 3.1 [10]. Therefore,
temperature is an important factor that is beneficial to include in the feedback system for Akwasi.

Figure 3.1: Relationship between the temperature of the ice and the velocity of the sled. [10]

3.1. Infrared sensors
There is a large variety of thermometers that can be found on the market. While they all have one thing
in common - correlating a physical, thermometric property to a temperature - not all of them are suitable
for this application. As the temperature measurement of the ice should be done without affecting the
athlete’s performance, it should also be done without physically touching the ice. A logical choice would
thus be one of the following non-contact sensors: fluoroptic sensors, interferometric sensors, fiber-optic
temperature sensors or infrared sensors [11].

While each sensor has their benefits and disadvantages [12] [13] [11], the infrared (IR) temperature
sensor seems to be the best option for this system. This is because IR sensors are able to operate in the
freezing cold environment of a skeleton track, indicating temperatures with high accuracy. Furthermore,
they are lightweight and can be found in small sizes, while still being sold at an affordable price.

9

10 3. Measuring Ice Temperatures

3.1.1. The principles of an IR sensor
One of the ways that heat transfer takes place, is through thermal radiation. This ’heat’ radiation is an
electromagnetic wave with a wavelength ranging from 1 up to 100 micrometers [14]. An object can radi-
ate and absorb electromagnetic waves. A blackbody is a theoretical, ideal body that absorbs all radiation
incident on it, while it can also emit radiation at all wavelengths. The spectrum of this radiation is deter-
mined solely by the temperature; the shape or material of the body have no influence. The characteristics
of this radiation can be described with a number of laws [15], of which Planck’s law is the overarching
one. However, this law is very abstract, so practical applications usually make use of the derived Stefan-
Boltzmann law [16].

The Stefan-Boltzmann law relates the absolute temperature T to the radiated energy per unit area
E, through a proportionality constant σ. While this theory has been devised for blackbodies, it can be
used for real, physical bodies as well. Physical bodies emit energy at a portion of the blackbody energy,
this portion being determined by the object’s emissivity [17]. Incorporating the emissivity, ε into the
Stefan-Boltzmann relation, the following equation is obtained:

E =σ ·ε ·T4 (3.1)

From equation 3.1, it follows that the emitted energy density of an object increases as the temperature
increases. Using this fact, the temperature of an object can be calculated when the energy density and
the emissivity of a material are known. The emissivity of a blackbody is 1, while real bodies have an
emissivity of less than 1 [16]. The emissivity of ice is between 0.97 (smooth) and 0.98 (rough) [18].

3.1.2. Sensors available on the market
Equation 3.1 is indispensable when calculating the temperature of an object and should be kept in mind
when choosing which sensor to use. The value for the emissivity used by the sensor must be adjustable
to increase the accuracy of the readings. Table 3.1 gives an overview of IR sensors that have been found
to be available and affordable, while being able to handle temperatures well below 0 °C. After consider-
ing these options, the MLX90614 has been chosen due to its high accuracy and resolution. It is able to
withstand temperatures even lower than -20 °C, fulfilling requirement G.2. Furthermore, it can mea-
sure temperatures in the right range, in a contactless manner with an accuracy of 0.5 °C, thus fulfilling
requirements S.7, S.8 and S.9 respectively.

Sensor Temperature range Supply voltage Resolution Max. error
TMP007 [19] -40 to 125 °C 2.2 - 5.5 V 0.03125 °C ±5 °C

MLX90614 [20] -70 to 380 °C 3.3 V or 5 V 0.02 °C ±0.5 °C
ZTP-135SR [21] -20 to 100 °C not listed not listed not listed
Phidget IR [22] -70 to 380 °C 4.8 - 5.3 V 0.02 °C ±4 °C

Table 3.1: An overview of possible IR sensors.

3.2. Implementation of the sensor
As stated above, the MLX90614 has been chosen. More specifically, the 3.3 V variant MLX90614ESF-BAA
has been used, as it complies with the maximum voltage rating of 3.6 V of the microcontroller (ESP32).
The following sections will elaborate on the implementation of this sensor. The MLX90614ESF-BAA will
be abbreviated to ’MLX’ in the rest of the text.

3.2.1. Setting up the MLX
Since the sensor already contains an amplifier, a 17-bit ADC and a DSP unit, no further circuitry needs
to be designed in order to obtain the sensor readings. In fact, only a power supply decoupling capacitor
is necessary in order to keep the noise low. A 100 nF capacitor must be placed in between Vdd and Vss,
which is shown in figure 3.2 [20]. Multiple sensors will be integrated through the ESP32, thus adding
extra pull-up resistors is not necessary here - the microcontroller contains internal pull-ups already.

The MLX will communicate with the ESP32 through SMBus, a two-wire bus derived from I2C. SMBus
can operate at frequencies up to 100kHz, however sampling at 50 Hz will be enough for this application.

3.2. Implementation of the sensor 11

Figure 3.2: Left: the MLX90614. Right: Schematic of the connections. [20]

Obtaining the sensor readings will be done using the Adafruit-MLX90614 library, a basic library that
outputs temperature in either degrees Celsius or Fahrenheit and that is compatible with the ESP32.

3.2.2. Changing the emissivity
While the factory setting of the MLX’s emissivity is set to 1, an emissivity of either 0.97 or 0.98 is nec-
essary for this application, as mentioned in section 3.1.1. Thus, some reprogramming had to take place.
Nevertheless, Sparkfun’s Change emissivity sketch proved to be incompatible with the ESP32, while
other ESP32-compatible MLX libraries did not include such functionality. Therefore, a custom code was
written using [23] while taking inspiration from the Sparkfun MLX90614 library.

The MLX stores the emissivity value in EEPROM at register addres 0x04. These values must be stored
in hexadecimal and are obtained using the following formula:

0x04d = 216 ·ε−1= 65536 ·ε−1 (3.2)

Using equation 3.2 for 0.97 yields 0x04d = 63568.92. Rounding it off and converting decimal to hexadec-
imal gives the value 0x04h = 0xF851. In a similar fashion for 0.98, 0x04d equals 64224.28. Rounding it
off and converting decimal to hexadecimal yields 0x04h = 0xFAE0. To set one of these values, the register
needs to be erased first by writing 0x0000 to it. Then, the new value 0xF851 or 0xFAE0 can be written.
Afterwards, the register value can be read by sending a repeated start, to ensure that the correct value
has been set.

Furthermore, a Packet Error Code (PEC) must be sent after each read or write to check if the correct
message has been received. This PEC is calculated through a 8-bit Cyclic Redundancy Check (CRC-8),
in which the message is XOR’d with the polynomial c(x) = x8 + x2 + x1 +1 [24]. A message on which the
CRC-8 is performed has the following structure:

[Slave Address (Read/Write), Command, LSB, MSB]

The default address of the sensor is 0x5A or 0b01011010. In write commands, the address is followed by
a ’1’, resulting in 0b010110101 or 0xB5 in the case of ’Slave Address Write’. Furthermore, the Command
is 0b00100100, [23] or 0x24. Lastly, the LSB and MSB are taken from the hexadecimal emissivity values.
Thus, the following PECs have been calculated:

• Erase 0x04: the message equals [0xB5,0x24,0x00,0x00], the PEC equals 0x3E.

• ε=== 0.97: the message equals [0xB5,0x24,0x51,0xF8], the PEC equals 0xC1.

• ε=== 0.98: the message equals [0xB5,0x24,0xE0,0xF A], the PEC equals 0x95.

These steps have been incorporated into the code for the ESP32 and can be found in appendix A. The
measured effects of changing the emissivity can be found in section 7.1.

4
Measuring Location and Velocity

Akwasi Frimpong mainly trains on the the skeleton track in Park City, Utah. This track is roughly 1.3
km long, with a total of 15 curves. These curves have varying dimensions, where radii of 25-30 metres
are quite common [25]. In order for the feedback to be useful, Akwasi and his coach need to be able to see
where on the track certain quantities have been measured. Especially in the curves, this information is
useful. Hence, requirement G.6 has been set to obtain enough data points, with requirement S.9 to obtain
enough accuracy. The measurements of the location and velocity will be done with two different devices:
a GNSS receiver and an Inertial Measurement Unit, which are described in section 4.1. The output of
these devices will be fused to create a more accurate system, as described in section 4.2

4.1. Tracking sensors
This section describes the Inertial Measurement Unit and the GNSS receiver:

Inertial Measurement Unit
The Inertial Measurement Unit (IMU) used in the sled system is a MPU-9250, as ordered from Sparkfun.
This is a 9-DoF unit, which contains an accelerometer, a magnetometer and a gyroscope. The consider-
ations made when choosing the sensor can be found in [26], as well as a more elaborate description of
its functionality. While Sensor Group A is home to the g-force measurements, this sensor has been in-
cluded in this thesis as well because of the sensor fusion as described in the next section. For obtaining
the measurements from the IMU, the Sparkfun library MPU9250-9-DoF-IMU-Breakout has been used.
Besides outputting the results of the accelerometer, magnetometer and gyroscope, this library also has
the functionality to compute the yaw, pitch and roll angles.

GNSS receiver
GNSS stands for Global Navigation Satellite System. GNSS receivers use satellites to determine the lat-
itude, longitude and altitude of their current position. By looking at the difference between time signals
received from different satellites, their position can be calculated. For the sled system, the update rate
of the GNSS receiver is important - it should be as high as possible. Furthermore, it should be able to
communicate with the ESP32, either through UART, SPI or I2C.

In table 4.1, different GNSS receivers are presented that could possibly be used in the sled system.
Each GNSS receiver can withstand temperatures as low as -40 °C. As can be seen, the SAM-M8Q from
Sparkfun has the highest possible update rate. The Time-To-First-Fix (TTFF) is a little high, yet it does
not pose a problem for this application. After all, the system can already be turned on in advance, allow-
ing the GNSS receiver to find its first (cold) fix. Besides that, in case of a hot start the TTFF is 1 second,
quick enough to obtain a fix before the athlete goes down the track. Thus, the SAM-M8Q has been found
to be the most suitable GNSS receiver for the sled system. In the rest of the text, the receiver will simply
be referred to as ’SAM’.

13

14 4. Measuring Location and Velocity

GPS Max. update rate TTFF Horizontal accuracy
SAM-M8Q [27] 18 Hz 26 - 30 s 2.5 m

Quectel L76-M33 [28] 10 Hz <15 s < 2.5 m
Adafruit Ultimate [29] 10 Hz 34 s <3 m

NEO-M8P [30] 10 Hz 26-29 s 2.5 m

Table 4.1: An overview of possible GNSS receivers.

The SAM is a 72-channel GNSS receiver, that can receive and track GPS, Galileo and GLONASS. By de-
fault, GPS and GLONASS are enabled simultaneously, increasing the coverage and reliability. However,
in this case the maximum update rate is 10 Hz. When only the GPS is enabled, the maximum update rate
reaches 18 Hz [27]. Since skeleton athletes can move at high speeds, the update rate should be as high
as possible. Thus, for this application GLONASS has been disabled. This has been done by programming
the GNSS receiver using the UBX protocol as specified in [31]. The structure and content of this message
can be found in appendix B.1, the implementation of the message in code can be found in appendix B.2.
This code only needs to be run once, as the configuration is stored even after power off. This is achieved
by the tiny battery that has been included on the break-out board, that maintains a back-up voltage
Vbckp. Further communication with the SAM has been done using the Sparkfun Ublox-Arduino-Library,
in which a large variety of functions have been programmed. Readings on latitude, longitude, altitude
are easily obtained.

4.2. Sensor fusion
Both the SAM and the IMU in section 4.1 have their benefits and disadvantages when using either sensor
to obtain information on location and velocity. While the GNSS receiver is able to provide absolute values
for the location, the update rate is relatively slow for the purpose of an instrumented sled. At speeds of
up to 140 km/h and a frequency of 18 Hz from the GNSS receiver [27], the distances between each data
point at maximum speed can be calculated as follows:

1
f
·v [m/s]= 1

18
· 140

3.6
= 2.16 m (4.1)

Noting that the accuracy of the SAM is 2.5 m [27] and taking into account the results of calculation 4.1,
distances between consecutive data points can be up to 4.6 metres apart. This is considerably more than
requirement G.6 dictates.

In contrast, the IMU has relatively high update rates. It can be configured to run at speeds in the
order of kHz [32]. This can be used to create a much more detailed map of the velocity and acceleration
at specific locations. Nevertheless, the IMU can only measure changes relative to a starting position.
Hence, it can be subject to a large amount of drift as time passes by.

Therefore, a system will be implemented that combines both sensors. In this way, the issue of drift
as well as that of low update rates can be countered. The data of the IMU can be corrected on a regular
basis with the GNSS receiver data, while running at a higher frequency than the 18 Hz of the SAM.

A popular method for fusing GNSS receiver and IMU data, is through the use of a Kalman filter, here-
after abbreviated to KF. Such a filter is widely used in navigation applications, from urban navigation
[33] to user tracking in augmented reality [34]. This filtering technique is able to take the measurement
errors from the GNSS receiver and the IMU into account, in order to provide an optimal estimate of the
state. This results in more accurate data obtained from the GNSS-IMU fusion. When comparing a KF to
an alternative filter such as a particle filter, it has a relatively low computational cost as well [35]. Thus,
a KF seems to be well-suited for the instrumented sled, where both computation time and memory space
are limited. The following subsections will elaborate on the theory behind such a filter.

4.2.1. The Kalman filter
A KF is an algorithm that consists of two steps [36]:

• Step 1: Prediction In this step, an estimate is produced of the state variable xk - the a-priori

4.2. Sensor fusion 15

estimate. This is done using the information from the previous state estimate, xk−1, as well as the
current sensor input, uk.

• Step 2: Update Using the a-priori estimate and the sensor measurement, the a-posteriori estimate
is calculated.

Figure 4.1: Visualisation of a Kalman filter [37]

This is visualised in figure 4.1. Here, the blue curve shows the probability distribution of the location of
the car using the a-priori estimate from the prediction phase. The orange curve shows the probability dis-
tribution of the measured location. Using these two distributions, the optimal state estimate is obtained.
As can be seen, it has a higher and a more narrow curve, implying that this is the most probable location
for the car to be located. Thus, through the fusion of the data, a more accurate output is obtained.

4.2.2. A motion model
First, we will take a look at an observer. An observer is a filter that approximates the state vector of a
real dynamical system, using measurements of the input and output of that system. Imagine the LTI
state-space model [38]:

x(k)= Ax(k−1)+Bu(k) (4.2a)

y(k)=Cx(k)+Du(k) (4.2b)

In the upper equation, x(k) is the state vector, A is the state transition matrix, B is the control matrix
and u(k) is the control vector. In the lower equation, y(k) is the measurement vector and C is the obser-
vation matrix [39]. D is the feedforward matrix, which incorporates the direct influence of the input on
the output. As the sled system will measure position and velocity indirectly, this matrix is considered to
be a null-matrix.

On the other hand, matrices A, B and C still need to be determined. These will be defined using the
following equations of motion:

p2 = p1 +v1 · t+
1
2
·a · t2 (4.3a)

v2 = v1 +a · t (4.3b)

In discrete form, these equations can be written as:

p(k)= p(k−1)+v(k−1) ·Ts+ 1
2
·a(k−1) ·Ts2 (4.4a)

v(k)= v(k−1)+a(k−1) ·Ts (4.4b)

16 4. Measuring Location and Velocity

Where Ts is the sampling period and k the sample number. These equations can be captured in matrix
form as follows:

px(k)
py(k)
pz(k)
vx(k)
vy(k)
vz(k)

=



1 0 0 Ts 0 0
0 1 0 0 Ts 0
0 0 1 0 0 Ts
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





px(k−1)
py(k−1)
pz(k−1)
vx(k−1)
vy(k−1)
vz(k−1)

+



Ts2

2 0 0
0 Ts2

2 0
0 0 Ts2

2
Ts 0 0
0 Ts 0
0 0 Ts


ax(k)

ay(k)
az(k)

 (4.5)

Here, the vector on the left-hand side of the equal sign is the state variable x(k). The vectors on the
right-had side of the equation denote the state variable x(k-1) and the acceleration a(k) respectively. In a
system where an IMU provides the input, a(k) can be seen as the control vector u(k). Furthermore, 6-by-6
matrix represents the state transition matrix A and the 6-by-3 matrix represents the control matrix B.
Consequently, equation 4.5 is an implementation of equation 4.2a. In a similar fashion, equation 4.2b can
be implemented for the motion equations as:

px(k)
py(k)
pz(k)

=
1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0




px(k)
py(k)
pz(k)
vx(k)
vy(k)
vz(k)

 (4.6)

Here, the vector on the left-hand side represents the measurement vector y(k). These measurements
can, for instance, be given by a GNSS receiver. The right-hand side resembles the observation matrix C
multiplied by the state vector x(k).

4.2.3. The model according to Kalman
The state-space equations for the Kalman filter look similar to that of the observer as discussed in section
4.2.2, except that a KF also takes the noise into account. More precisely, it models the process noise
w(k) and the measurement noise v(k). The process noise comes from mismatches between the modelled
motion equations and the reality. The measurement noise comes from the sensor inputs. Equations 4.2
then become [38]:

x(k+1)= Ax(k)+Bu(k)+w(k) (4.7a)

y(k)=Cx(k)+v(k) (4.7b)

Knowing w(k) and v(k) would enable one to obtain perfect values for a state x(k). However, the noise
parameters are unknown - and this is where the Kalman filter shows its added value. Both w(k) and v(k)
are assumed to have covariance matrix Q and R respectively. In mathematical form:

E[w(k)w(k)T]=Q, E[v(k)v(k)T]= R (4.8)

These matrices Q and R are known, as they can be obtained by looking at the standard deviations of
the components of state variable x(k) and measurement variable y(k) respectively. Assuming that the
variables are independent and uncorrelated, these matrices have the following structure:

Q =



σ2(xpx) 0 0 0 0 0
0 σ2(xpy) 0 0 0 0
0 0 σ2(xpz) 0 0 0
0 0 0 σ2(xvx) 0 0
0 0 0 0 σ2(xvy) 0
0 0 0 0 0 σ2(xvz)

 R =
σ2(ypx) 0 0

0 σ2(ypy) 0
0 0 σ2(ypz)



(4.9)
Both matrices Q and R are called the tuning parameters of the filter. While measuring the standard
deviation is a good starting point for the covariance matrices, they should be further adjusted to obtain
the best performance [39].

4.3. Implementation 17

4.2.4. The Kalman algorithm
Now that the theory behind the KF has been covered, the actual algorithm can be discussed. As men-
tioned in section 4.2.1, the algorithm can be subdivided into two phases: prediction and update. The
prediction phase is described by equations 4.10, the update phase is described by equations 4.11. Here,
the superscript ’-’ indicates an estimation made with the knowledge of the previous state, while the su-
perscript ’+’ indicates an estimation made with the knowledge of the current state [39]. These equations
will be executed in a loop for every sample in the dataset.

Predicted state estimate x̂−
k = Ax̂+

k−1 +Buk−1 (4.10a)

Predicted error covariance P−
k = AP+

k−1 AT +Q (4.10b)

Measurement residual ẽk = yk −Cx̂−
k (4.11a)

Meas. residual covariance Sk = R+CP−
k CT (4.11b)

Kalman gain Kk = P−
k CT S−1 (4.11c)

Updated state estimate x̂+
k = x̂−

k +Kk ẽ (4.11d)

Updated error covariance P+
k = (I −KkC)P−

k (4.11e)

4.3. Implementation
For the instrumented sled, the KF will be implemented according to equations 4.5 and 4.6. The IMU will
provide the 3D acceleration information as input u(k). The SAM will provide the 3D position information
y(k). The state vector x(k) will track the position and velocity in three dimensions each. The matrices A,
B and C will be according to the motion model. The tuning parameters Q and R will be obtained from
taking the measured standard deviation, squaring these to obtain the variance and adjusting these until
the KF performs best. The implementation of the KF is shown schematically in figure 4.2.

Figure 4.2: Schematic of the KF implementation.

There are various libraries to be found online that are able to implement a Kalman filter on the ESP32.
These functions often need only two values: the tuning parameters Q and R as described in section 4.2.3.
To obtain these tuning parameters, the KF has first been implemented in MATLAB, in which multiple
simulations have been done. The code can be found in appendix C.1. After initializing the necessary
variables, data is imported from a .txt file. The number of samples needs to be set for N, after which the
Kalman algorithm will run for N times. For each iteration, the data from the IMU and the GNSS receiver
are fused into one estimate x̂.

18 4. Measuring Location and Velocity

However, the IMU outputs its data in a body coordinate frame (x, y, z), while the GNSS receiver works
with latitude, longitude and altitude. These frames must be rearranged to be able to fuse the data.
The GNSS data can easily be transformed into the navigation coordinate frame, (N, E, D), by using the
MATLAB function ’geodetic2ned’. The IMU body frame must be rearranged to the navigation frame
through a rotation matrix [40]. Such a matrix has also been implemented in MATLAB. In Euler angles,
the rotation matrix R from the body frame (z,y,x) to the navigation frame (N,E,D) can be calculated as
Rn

b (θnb) = Rn
b (z,ψ) ·Rn

b (y,θ) ·Rn
b (x,φ). Here, ψ is the yaw, θ is the pitch and φ is the roll. The rotation is

then performed as follows: first a rotation of angle ψ around the z-axis, followed by an angle θ around
the y-axis, concluded by an angle φ around the x-axis. Rn

b can then be written as [41]:

Rn
b (θnb)=

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

 (4.12)

Where θ gives the attitude of the system in Euler angles: θ = [φ,θ,ψ]T . While a quaternion represen-
tation is generally more numerically stable [40] than euler angles, Akwasi will not experience angles of
more than 90 °on the track. Hence, the issue of gimbal lock, in which a degree of freedom is lost, will not
be encountered here. Therefore, the use of euler angles can be justified.

In chapter 7, the validation of this system will be discussed.

5
Power Management and Battery System

In this chapter, the battery system used to power the instrumented sled will be discussed. The choice for
a specific battery type will be addressed, as well as the required specifications and characteristics of the
battery. Furthermore, the implementation of the battery will be discussed, which includes a protection
circuit and other power electronics.

5.1. Requirements of the battery
The weight and the size of the battery are of utmost importance; the battery has to fit in a small space
inside the skeleton sled and should not increase the weight of the total instrumented sled significantly,
seeing that the characteristics of the skeleton sled should not be affected. Therefore, a characteristic that
is important for this project is the energy density of the battery. Furthermore, the battery needs to be
rechargeable and be able to supply energy for about 3 hours, even at low temperatures. As the battery
will be placed close to the athlete, it needs to be safe in operation as well. Lastly, a battery management
system is required to protect the battery and the connected system.

5.1.1. Energy density
As has been mentioned, the energy density is an important aspect, since a limit of 1.5 kg has been set
for the total system (requirement G.4). However, while an upper limit has been set, a lower weight
is beneficial in order to minimise the differences between the regular sled and the instrumented sled.
Furthermore, the battery should be rather flat, so that it fits inside the sled (requirement G.5). In figure
5.1, the densities of common rechargeable batteries are shown. Three battery types have been listed with
the highest densities:

• Li-Polymer batteries

• Cylindrical type Li-ion batteries

• Prismatic type Li-ion batteries

These batteries have a high volumetric energy density, as well as a high gravimetric energy density. More-
over, these batteries are rechargeable, which would satisfy requirement S.5. At the moment, batteries
with an even higher energy density are available on the market, yet these are either not yet stable (safe)
enough, not rechargeable, or simply too expensive. As Lithium-based batteries are widely used these
days, the price has become relatively low compared to their potential successors [42]. Therefore, these
three battery types would be suitable options for this project.

5.1.2. Safety
The safety and stability of the battery is another important aspect. G-forces of up to 5 g are no exception
and a skeleton sled will heavily vibrate during a run [4]. Spontaneous fires in Lithium-based batteries
have occurred before and should be taken seriously [44]. Li-Polymer batteries appear to be more safe
and may be better-suited to these conditions [45]. However, they should be well protected by a hard case,

19

20 5. Power Management and Battery System

Figure 5.1: Comparison of Energy Density in Battery Cells [43].

as a direct hit or puncture could set the battery on fire (requirement S.4). Lithium-based batteries are
also used in space applications where high g-forces are exerted on the batteries. This makes them suited
for the high g-forces that can be experienced during a run on the skeleton track as well. Furthermore,
Li-Polymer batteries are able to function in cold conditions as low as 20 °C below zero. However, it should
be taken into account that the usable capacity decreases with temperature and that the batteries should
be charged at temperatures above 0 °C, as will be discussed in section 5.1.3.
All things considered, a Li-Polymer battery will be used for this project.

5.1.3. Capacity
In order to determine what the minimum capacity of the battery should be, it has to be known how much
energy is used by the connected components and devices. In table 5.1, the electrical specifications of the
components that will be used for this project are given [27] [32] [46] [47] [48] [49]. For this project, the
battery should be able to power the system for at least 3 hours, allowing the athlete to complete his train-
ing programme (requirement S.1 and G.10). To be able to supply a high enough voltage to the subsystems,
a two-cell Li-Polymer battery will be used, with a nominal voltage of 7.4 V.

Table 5.1: Electrical specifications of the components

Device
Minimum
Voltage [V]

Maximum
Voltage [V]

Typical
Voltage [V]

Maximum Current
Consumption [mA]

Typical Current
Consumption [mA]

Typical
Power [mW]

Energy in 3
hours [mWh]

Esp32 1.8 3.6 3.3 240 100 330 990
GPS 2.7 3.6 3.0 67 32 96 288
IMU 2.4 3.6 2.5 3.7 3.7 9.3 27.8

Temperature sensor 2.6 3.6 3.0 2.0 1.0 3.0 9.0
Force sensors 3.0 5.0 3.3 15 10 33 99

ADC 2.7 5.5 3.3 0.4 0.3 1.0 3.0
Power electronics 6.3 15 7.4 18 17 126 377

From table 5.1, it can be calculated that the total dissipated energy in three hours will be 1766 mWh.
For this calculation, the typical current consumption is used. As a two-cell Li-Polymer battery with a
nominal voltage of 7.4 V will be used, 1766 mWh can be written as 239 mAh. It is recommended that the
Li-Polymer battery should not be discharged below 20% SOC, so in order to maintain the lifetime of the
battery, the required capacity is then 239/0.8= 29 mAh.

Since the instrumented sled will be used in cold conditions, an even higher capacity is needed - the
ambient temperature has a significant effect on the usable energy capacity of Lithium-based batteries

5.2. The implementation 21

[50][51]. As can be seen in figure 5.2, at -20 °C the voltage of a typical Li-ion battery drops with about 0.5
V compared to the voltage at 23 °C. Using equation 5.1, it can be estimated that this results in an energy
capacity decrease of about 25%, which is a typical energy decrease for Li-ion polymer batteries at these
temperatures [52]. Therefore the battery’s energy capacity should be at least 298/0.75= 318 mAh.

To meet this capacity with a good margin and to compensate for ageing, a two-cell Li-Polymer battery
with an energy capacity of 1800 mAh, or 13.3 Wh, will be used for this project. This allows the athlete to
complete a full training while having some capacity left.

Figure 5.2: Effect of temperature on voltage of Li-ion cell [51].

E = U2 · t
R

(5.1)

5.2. The implementation
To implement the battery in the system, a battery management system is necessary. This system should
be able to convert the battery voltage to the desired voltage of the connected subsystems. Also, the
battery management system should include an undervoltage protection to prevent an early wear-out of
the battery, as well as an overcurrent protection to protect the battery from high currents and to make
the overall system more safe [53]. The following subsections elaborate on these aspects.

5.2.1. Undervoltage Protection
Discharging a Lithium-based battery too deep directly results in a capacity loss of the battery [54]. Nat-
urally, this is an unwanted effect and therefore an undervoltage protection circuit is necessary. The
requirement of this circuit is that it should disconnect the battery when its voltage is too low (the voltage
corresponds to the state of charge), according to requirement S.2).

The first design made to fulfil the requirements is shown in figure 5.3. Here, R30 and R25 set the
voltage threshold at which the battery should be disconnected. When this voltage is reached, Q9 starts
conduction, activating Q10. R24 is added as pull-up resistor. When Q10 is conducting, Q15 starts con-
ducting as well, which activates Q17. Q17 is a transistor capable of conducting relatively high currents.
R26 is added to limit the base current of Q17. Then, the load can be connected to the emitter of Q17.
Although this system has been tested and turned out to work well, it consumed relatively much power.
Therefore, a new iteration of the design was made, to save energy and increase the usable capacity for
the total system.

For the second design, a dedicated battery protection IC, namely the R5460N212AF, has been used to pro-
tect the battery against undervoltage and overcurrent. This IC consumes a considerably lower amounts
of power [55]. The implementation of this IC is shown in figure 5.4. The IC is shown as U15. LMT2 is
a connector that is used to read the individual voltages of both cells in the battery pack. R32 and R31
are used to set the threshold at which the MOSFETS Q11 and Q12 are switched on or off. Capacitors

22 5. Power Management and Battery System

Figure 5.3: First power electronics design

are added to stabilise the system. For the MOSFETs, the NMOS WSF30100 has been used, because it is
able to withstand high currents and has a low RDS(ON) to minimise the voltage drop over the MOSFETs
[56]. Also, this MOSFET was chosen because it is surface-mount, to make the system as flat as possible.
Button K1 was added after the design was tested. In section 7.3 it is explained why.

When the protection IC detects a voltage per cell that is lower than the threshold set by R32 and R31, it
disconnects the battery by disabling the MOSFETs. The threshold voltage per cell is set at 3.0 V. This
prevents the system from discharging the battery to even lower voltages that could cause permanent
decrease of the battery’s stability and capacity, and eventually total failure.
Some batteries are already equipped with such a protection circuit, but the battery used in this project is
not. Furthermore, most batteries with a built-in protection IC have a threshold voltage of less then 3.0
V, sometimes even as low as 2.4 V per cell. At this voltage, the battery is already damaged. Therefore,
whether the battery has a protection IC or not, it is strongly recommended to use the protection circuit
as described.

Because it is desirable that the battery is disconnected before it reaches the absolute minimum threshold
of 3.0 V, a buzzer is added to warn the user of the system for low battery voltages. From a voltage of 3.6
V per cell and lower, the buzzer is enabled with an interval that decreases as the voltage decreases. A
voltage divider is used to divide the battery voltage to a level that is safe to measure by the ESP32.

Figure 5.4: Second power electronics design

5.2. The implementation 23

5.2.2. Overcurrent Protection
According to requirement S.3, an overcurrent protection system is necessary. This prevents large, dan-
gerous currents to flow through the system when a short circuit or other fault occurs. To implement an
overcurrent protection, a fuse could simply be added to the system. It is connected directly to the battery,
to ensure that the battery is disconnected when a short circuit occurs. To calculate the breaking capacity
of the fuse, all the maximum currents of the system are added, with a certain margin, giving the mini-
mum breaking current. This is shown in figure 5.3.

As discussed in section 5.2.1, the design of figure 5.3 has been changed - the new design is shown in
figure 5.4. The protection IC is also able to detect a short circuit, and disconnects the battery ground
when a short circuit occurs. The advantage of this IC over the fuse is that the new design results in a
lower voltage drop between the battery and the load.

5.2.3. Voltage regulation
According to requirement S.6, the system requires three voltages; 5 V, 3.3 V and 3 V. For this purpose,
voltage regulators will be used. Most components work reliably on 3.3 V, such as the GNSS receiver, IMU,
processor, temperature sensor, the ADC for the force sensor and the op-amps of the force sensor circuits.
The 3.3 V regulator input will be connected to the output of the 5 V regulator. As most components are
connected to the 3.3 V, it has to be made sure that this regulator is able to deliver enough current. As this
regulator is connected to the 5 V regulator, the 5 V regulator should be able to deliver at least as much
current. Therefore, a 5 V and 3.3 V regulator with a maximum current of 1.35 A is used to power these
components, which should be well enough according to table 5.1 [57]. The 5V regulator will also be used
for the force sensors and the battery warning buzzer. Furthermore, a 3 V regulator will be connected to
the 5 V regulator. The 3 V regulator will be used to supply a reference voltage to the force sensor circuit.
As this regulator only has to supply a reference voltage, a low maximum current suffices. Therefore, a
regulator with a maximum current of 200 mA is used [58].

As the 3 V and 3.3 V regulator inputs are connected to the 5 V regulators output, it has to made sure
that the Vdropout is below 2 V and 1.7 V respectively. Also, the 5 V regulator needs a low Vdropout, as it is
connected to the battery of which the voltage decreases when it is being discharged. Therefore, regulators
with a low Vdropout have been chosen [58] [57]. To make the final design as flat as possible, only surface-
mount regulators have been chosen. Lastly, capacitors are added to improve the transient response and
the stability of the power supply. This can all be seen in figure 5.4.

6
PCB Design and Prototype

Implementation

Eventually, all the subsystems of the project - the temperature sensor, force sensor, IMU, GNSS receiver,
visualisation, SD data logger, power electronics and ESP32 - must work together as one. To do so, a
limited number of pins of the ESP32 are available. Therefore, a pin-out scheme was made to organise
this. To save space as well as the number of available pins, mostly I2C and SPI have been used for
the data interfaces. These interfaces allow one to connect multiple devices to the same pins, as long as
the addresses of the devices are different. The circuit diagram of this total system is shown in appendix D.

Furthermore, according to requirement S.11, all subsystems must be connected in a robust and secure
way, while keeping in mind that most of it must fit in a box of 31.5×14.7×2 cm as described in require-
ment G.5. The battery, power electronics, force sensor circuit, IMU, data logger and ESP32 board must
all fit inside this box. To do so, a printed circuit board (PCB) is designed, to which all these systems can
be connected. Also, connection terminals for the GNSS receiver, temperature sensor and force sensors
can be found on this PCB. Naturally, the force sensors themselves will be on top of the skeleton sled, and
the temperature sensor at the bottom of the sled. The GNSS receiver will also be located on top of the
sled, to prevent any blocking of the GNSS signals through the carbon fibre of the sled. Lastly, a button
together with an indicator LED will be placed on top of the sled, allowing the athlete to start and stop
the measurements during his run and to indicate when it is measuring. This button and LED are also
connected with terminals to the PCB. The PCB design is shown in figure 6.1. All terminals are labelled,
making it easy to connect all sensors properly. To connect all components on the PCB, two layers are used
to rout all traces. The remaining area is filled with a copper plane, which is connected to the ground.
This is done to reduce the voltage drop caused by the impedance of the ground traces, as well as to reduce
electrical noise and cross-talk between traces.

25

26 6. PCB Design and Prototype Implementation

Figure 6.1: The final PCB design.

7
Results and Discussion

This chapter lays out the results of the tests that have been done to test the subsystem, followed by a
discussion of these results. Each aspect of the subsystem, as discussed in chapters 3 to 6, will be covered.

7.1. Temperature measurements
The temperature sensor was tested with the ESP32 and it worked. The temperature output of the sensor
was compared with the output of a commercially-available IR temperature measurement device and was
closely related. Also, the sensor was tested by measuring the temperature of ice, down to -15 °C. This test
resulted in plausible values. By changing the emissivity settings, the output could be tuned. However, it
was not possible to test the accuracy of the temperature sensor when measuring ice, because there was
no accurate reference available to compare it with. The temperature sensor was able to output data with
a frequency of 25 Hz.

7.2. Localisation system
The localisation system consists out of the IMU, the GNSS receiver and the KF. The following subsections
will elaborate on these individual aspects as well as the system as a whole.

7.2.1. Inertial Measurement Unit
Figure 7.1 shows the orientation of the axes of the IMU. In order to gain insight into the accuracy of the
acceleration and angle measurements, a set of measurements has been done. The IMU has been turned
around each axis at an amount of 45°and of 90°. These increments can clearly be seen in the results.

Figure 7.1: The orientation of the axes of the IMU.

Figure 7.2 shows the results of these measurements. First, the IMU was at rest on a table. This can be
seen clearly in the specific force on the z-axis, which fluctuates around 10 m/s2 and can be related to the
gravity. At the same time, the x and y-axis experience no force. After that, the roll angle is increased in
two steps, in which the positive y-axis is turned towards the positive z-axis. The force of gravity is then
reflected on the y-axis. Consequently, the IMU is again returned to its original position. After that, the
pitch angle is increased, due to which the positive x-axis is turned towards the positive z-axis. Again, the

27

28 7. Results and Discussion

reflection of gravity can be seen in the specific force. Lastly, the IMU has been turned around the z-axis
at 45°and 90°. Where these increments are clearly visible in the pitch and roll, they are hard to see for
the yaw. It can be noted that these yaw angle measurements are less accurate than the roll and pitch
measurements. Luckily, the roll and the pitch angles are more important for the instrumented sled as
these have an impact on the measured G-forces.

Figure 7.2: Plots of the specific force (upper row) and the angles (lower row) of the IMU.

7.2.2. GNSS receiver
As described in section 4.1 and appendix B, the SAM has been configured to receive only GPS. This has
been done to increase the update rate from 10 Hz to 18 Hz. First, a test round has been done by walking
on an outside path while GPS and GLONASS were configured. Even though the update rate has been
set to 18 Hz, the GNSS receiver was only able to output data at a frequency of 10.3 Hz. After that, all
satellite systems other than GPS have been disabled and the same outside path has been taken. Again,
the update rate was programmed to 18 Hz and the SAM was now able to reach update rates of 17.8 Hz.
Thus, the desired increase in update rate has been reached.

In figure 7.3, the results of the two measurements have been plotted. As can be seen, the GNSS re-
ceiver was able to follow the path quite accurately in both cases. However, the accuracy drops when the
number of enabled satellite systems drops. This makes sense, since a disable leads to a lower amount
of satellites and thus a lower amount of signals that can be used for the computation of the position.
While the accuracy of the GPS-only configuration is lower, still the decision was made to keep to this
configuration. This is because the update rate is much higher in this case (18 versus 10 Hz). Sampling
at 10 Hz and travelling at the maximum skeleton speed, 147 km/h, the data points will be 4.1 m apart.
Sampling at 18 Hz while travelling at the same speed, the distance between consecutive data points is al-
most halved to 2.3 m. While it is a trade-off, the GPS-only configuration seems to have a bigger advantage.

Despite the fact that the frequency has been set to 18 Hz, this frequency is not always constant. Some-
times, gaps in the data acquisition occur, lasting 1 or more seconds. Gaps as long as 4 seconds have been
encountered, which correspond to gaps of 160 m. This is an unacceptably large gap that must be fixed.
Since the gaps always occur in integer number of seconds, it is suspected that the problem does not lie
in a delay of data reception of the SAM, but in the timing of the communication when calling a function.
Unfortunately, the cause for these data black-outs has not yet been found. Hence, the Sparkfun Ublox
Arduino library needs to be inspected in even closer detail to see what could be the cause.

However, a possible solution has already been thought of, that will be worked out in more detail for
the protoype as well. This solution relates to the Q and R matrices of the KF. A timer should be im-
plemented, monitoring the frequency at which the data from the SAM is received. When this time gap

7.2. Localisation system 29

Figure 7.3: The same path with only GPS enabled (above) and GPS + GLONASS enabled (below).

is longer than a specific threshold, the previous values for latitude, longitude and altitude will be used,
after which the software goes on to obtain the IMU data. Meanwhile, the measurement noise covariance
matrix RGPS is set to a high(er) value, indicating that these measurements contain a lot of noise. In
contract, the process noise covariance matrix QIMU will be set to a low(er) value, indicating that these
measurements contain less noise. Then, the KF will produce the output estimate of the state variable x̂k
in such a way that the IMU measurements will be ’trusted’ more than the GPS measurements. This way,
the gaps are filled. Once the data black-out of the GNSS receiver is over, the Q and R matrices return to
their original values.

7.2.3. Sensor fusion - Q and R matrices
Now that it has been verified that the IMU and the GNSS receiver work, it is time to validate the fusion
of the data through a KF. The MATLAB code of the KF can be found in appendix C.1. For this imple-
mentation, the values for the noise covariance matrices Q and R must be given. As a starting point, the
standard deviation of the IMU and SAM outputs have been measured, as stated in section 4.3.

For the IMU, this has been done by positioning the sensor on a table. The outputs of the accelerome-
ter, magnetometer and gyroscope have been logged while the device was kept stationary. From a set of
2000 data points in each of the 9 dimensions, the standard deviation has been calculated. These values
can be found in the first three columns of table 7.1. By squaring these values, the variance has been
calculated. These values can be found in the last three columns of table 7.1.

IMU St. Dev. x St. Dev. y St. Dev. z Var[x] Var[y] Var[z]
Accelerometer 5,482663 3,373336 4,046577 30,05959 11,37939 16,37479
Magnetometer 7,965674 7,545086 7,464969 63,45196 56,92832 55,72576
Gyroscope 0,049399 0,057063 0,054607 0,00244 0,003256 0,002982

Table 7.1: Standard deviation σ and variance σ2 of the IMU.

In a similar fashion, the standard deviation of the SAM has been measured. This has been done by
positioning the receiver outside, where there were permanently at least 8 satellites in view. A 1000
measurements have been done for the latitude, longitude and altitude. The standard deviation and the
variance obtained from these measurements can be found in table 7.2. The R matrix follows directly from
table 7.2. However, the Q matrix requires some more thought. This matrix should contain the variances

30 7. Results and Discussion

GNSS receiver Latitude Longitude Altitude
Standard deviation 210,2243 374,0705 18904,79
Variance 44194,27 139928,7 3,57E+08

Table 7.2: Standard deviation σ and variance σ2 of the GNSS receiver.

Figure 7.4: Data obtained while walking down lat. 52’0. Kalman filter uses the 6x6 identity matrix for Q and the 3x3 identity
matrix for R.

of the position and velocity, as shown in equation 4.9. However, the variances have been measured for the
acceleration. Noting that the position and velocity are obtained from integrating the acceleration once or
twice, the assumption has been made that the variances of the position and velocity are equal to those of
the acceleration. Thus, the matrices have been determined as follows:

Q =



30.05959 0 0 0 0 0
0 11.37939 0 0 0 0
0 0 16.37479 0 0 0
0 0 0 30.05959 0 0
0 0 0 0 11.37939 0
0 0 0 0 0 16.37479

 (7.1)

R =
44194,27 0 0

0 139928,7 0
0 0 35700000

 (7.2)

7.2.4. Sensor fusion - Kalman filter
Now that the Q and R matrices have been determined, the KF can be run. A test has been done by
walking over the 52nd degree latitude that is marked on the campus. This line gives a clear reference
point for the measurements. Data was collected from the IMU and the GNSS receiver and subsequently
run through the Kalman Filter. In figure 7.4, the results can be seen for a KF where both the Q and R
are identity matrices. Here, the blue line shows the IMU input, the green line shows the GNSS receiver
input and the red line shows the position output as estimated by the KF. Figure 7.5 shows the results
when the same input data is used, yet the Q and R matrices as given in equations 7.1 and 7.2 are used.
A larger size of these figures can be found in appendix C.2, as well as two figures where the impact of
individually changing the Q or R matrix can be seen.

As can be seen in figure 7.5, a smooth estimate is calculated by the KF. Since the GNSS receiver is quite
accurate in the x and y directions, the estimate resembles the data from the SAM quite closely. Never-

7.3. Power management system 31

Figure 7.5: Data obtained while walking down lat. 52’0. Kalman filter uses the acceleration variances from table 7.1 for Q and the
variances from table 7.1 for R.

theless, since the receiver is quite inaccurate for the height (z-axis), the data from the IMU weighs more
heavily here.

While the Q and R matrices, as defined in equations 7.1 and 7.2 respectively, form a good basis for the
tuning of the KF, the values can be further adjusted to make the Kalman Filter even more accurate. In
order to do so, an accurate set of reference data is needed, so that calibration can be done. Furthermore,
such a reference set is a good way to validate the Kalman Filter. To obtain this reference data, a visit
has been paid to the amusement park of Duinrell, where the rollercoasters can reach high speeds and
forces of up to 5 g. Measurements have been done using the IMU and GNSS receiver, as well as using the
MATLAB Mobile app. However, upon checking this data, it became clear that the output of the IMU and
GNSS receiver was not usable for the purpose of tuning. The data had been logged at too low a frequency
and the height readings of the GNSS receiver had not been saved. Especially the angles measured by the
IMU exhibit a great amount of noise, but due to the low sampling frequency, only little to no filtering is
possible. An example of such noisy IMU data can be found in figure 7.6.

Thus, the final tuning and the true validation of the KF has not yet been possible. Nevertheless, the
estimated position (red line) as shown in figure 7.5 already shows that a smooth fusion of the data can
be achieved. A new set of reference data must be obtained, logged at a higher frequency. Furthermore, a
low-pass filter must be applied over this data. Then, the KF can be tuned even better.

7.3. Power management system
In this section, the results from the design of the power system, including the battery itself and the im-
plementation of the power system, will be discussed.

For this project, a battery with a high volumetric and a high gravimetric energy density is needed. The
battery that has been used, is a Li-polymer battery with dimensions of 105×35×15 mm, and a weight
of 91 grams. The nominal voltage of the battery is 7.4 V and the energy capacity is 13.32 Wh, or 1.8 Ah.
This means that the gravimetric energy density of the battery is 146 Wh/kg and the volumetric energy
density is 242 Wh/l. When looking at figure 5.1, the gravimetric energy density is good and as expected.
The volumetric energy density however seems rather low, but this does not pose a problem as there is
enough space for this battery in the skeleton sled.

Furthermore, the battery did not fail when exposed to high G-forces or low temperatures, which proves
that it is safe to use at the skeleton track - assuming that it is well-protected with a hard case. The

32 7. Results and Discussion

Figure 7.6: Noisy IMU data obtained from the Falcon, a rollercoaster in Duinrell.

exposure to G-forces was done by taking the prototype with a Li-Polymer battery in a rollercoaster, which
exposed the battery to forces of 5 g. The performance at low temperatures was tested by freezing the
battery to -15 °C and then discharging it while monitoring its voltage and current output.

Also, after powering the system with a fully-charged battery for more than 3 hours, the state of charge
of the battery was still 80%. However, it should be noted that this was at room temperature and that at
lower temperatures, this remaining state of charge will be lower.
As mentioned before, the battery used for this project was first cooled down to, and then tested, at -15 °C.
Also, the battery was tested at +22 °C for comparison. The results are shown in figure 7.7. This figure
shows that the voltage indeed drops at lower temperatures, similar to figure 5.2. The measurement was
done by connecting a 10Ω resistor to the fully-charged battery, and then discharging it to 7.1 V while
monitoring the current and voltage. The values obtained by this measurement are shown in table 7.3.
The begin and end voltage are measured at room temperature. As can be seen, at lower temperatures,
the usable capacity is indeed lower. The usable capacity at -15 °C decreased with 23% when compared to
the usable capacity at 22 °C, which is well in line with the estimation made in section 5.1.3. A surprising
fact is that, when measuring the end voltage of the battery without load at room temperature, the battery
that had reached -15 °C is 0.28 V higher than the battery that was +22 °C. This corresponds to a state of
charge of about 30%. This suggests that more capacity could have been used, but due to safety reasons as
well as to prevent damage to the battery, the battery should not be discharged to an even lower voltage.

Table 7.3: Results of the battery test

Temperature
[°C]

Used capacity
[Wh]

Begin
voltage [V]

End
voltage [V]

22 13.3 8.40 7.22
-15 10.3 8.40 7.50

The undervoltage protection circuit has been tested by connecting a power supply to the battery termi-
nals of the power circuit, as depicted in figure 5.4. The battery warning buzzer starts beeping at voltages
lower than 3.6 V per cell, with an interval that decreases as the voltage decreases. At 3.0 V per cell or
lower, the power input is completely disconnected. This behaviour is as it was designed and therefore it
works properly. One flaw of the undervoltage protection, is that when the power input is disconnected at
low voltages, it does not reconnect when the voltage is again increased to a safe level. It only reconnects
when a charger is connected after the protection circuit. This could be solved by using the R5460N212AE
protection IC instead of the R5460N212AF, which reconnects automatically when the input voltage is at

7.4. PCB design and prototype implementation 33

0 2000 4000 6000 8000 10000 12000

Used capacity [mWh]

6.5

7

7.5

8

8.5

9

V
o
lt
a
g
e
 [
V

]

Effect of temperature on capacity

22 °C

-15 °C

Figure 7.7: Effect of the temperature on the capacity of Li-Polymer battery [51]

a safe level again. However, this component could not be acquired and therefore this problem is solved
by using a reset button. This button bypasses the MOSFETS when pushed, to reset the protection IC
by simulating that a charger is connected, which is actually the battery itself, assuming that the battery
voltage is at a normal level.

The overcurrent protection could not be properly tested, because the risk of damaging any components
could not be afforded, as this would cause a delay in the project. However, as the overcurrent protection
is done by the same IC that proved to execute the undervoltage protection properly, it is likely that the
overcurrent protection works as well. Nevertheless, it is recommended that the overcurrent protection is
tested when more resources are available.

The 5 V, 3.3 V and 3.0 V regulators output a stable voltage of 5.06 V, 3.31 V, and 3.06 V respectively.
The output was monitored with an oscilloscope and it showed a small ripple. This could simply be noise,
yet it could also be due to the internal switching of the regulators. This noise is already suppressed by
electrolytic capacitors, but by using ceramic capacitors, which have a lower equivalent series resistance
and can filter higher frequencies, the noise could be suppressed even further. These capacitors were how-
ever not available in time, but could be added in the future to further improve the output of the voltage
regulators.

7.4. PCB design and prototype implementation
The final PCB design is 10×9 cm and with all components on it, it is 1.8 cm high, which allows for the
system to fit perfectly inside the skeleton sled. In order to let the PCB fit in even smaller spaces, smaller
and more SMD components could be used. Furthermore, instead of one 2-cell Lithium-ion polymer bat-
tery, two 1-cell batteries in series could be used, making the battery pack flatter. The PCB was tested
with all components on it and proved to behave correctly. All connections were good and no errors were
noticed. The design is depicted in figure 6.1. However, it is not yet proven that the data output of the
final prototype implementation is correct.

8
Conclusion

8.1. Conclusions
The goal of this project was to design an instrumented sled that can provide useful feedback for skeleton
athletes. To reach this goal, several parts have been designed: the temperature measurement system, the
localisation system using the IMU and GNSS receiver, the power management system and the integration
on a PCB.

Temperature measurements
The temperature sensor is able to measure the temperature of its surroundings and therefore satisfies
requirement G.1. Also, the sensor is able to measure the ice temperature without touching it, thus
satisfying requirement S.8. The accuracy could not be tested properly, however according to the data sheet
the accuracy should satisfy requirement S.9. Lastly, the sensor was able to measure ice temperatures
down to -15 °C, which makes it likely that the temperature sensor satisfies requirement S.7, which is
theoretically confirmed by its data sheet [46].

Localisation system
The localisation system fused the data obtained from an IMU and a GNSS receiver. This was done using
a Kalman Filter. While the GNSS receiver has a frequency of only 18 Hz, the frequency of the IMU can
be set to a much higher value - somewhere in the order of kHz. Thus, the localisation software can be
run at a higher frequency, with correction updates from the GNSS receiver coming in at a lower rate of
18 Hz. This system has not been implemented yet, but sure is a feasible implementation (requirement
G.6). Furthermore, a requirement has been set on the accuracy of the location measurements - these
should be at least 1 metre (requirement S.10). Unfortunately, no useful reference data has been obtained
in Duinrell and thus no real conclusion can be drawn here. However, new reference data will be obtained
such that this specification can be validated. In case the requirement is not met, the KF will be tuned
further to improve the accuracy. Lastly, the data has to be available within 5 minutes after each run for
the athlete and the coach to use (requirement G.12). This specification has been met for the MATLAB
implementation of the KF - all position simulations were finished in less than 0.4 seconds in MATLAB.
Looking ahead to the implementation of the KF on the ESP32 microcontroller, the time slot of 5 minutes
seems feasible as well.

Power management system
The chosen Li-Polymer battery used for this project was able to fulfil its requirements. First of all, it was
able to fit in the space of the skeleton sled, as the dimensions are within the limits of requirement G.5.
Furthermore, the high gravimetric energy density resulted in a weight that was relatively low and also
well within the limits set by requirement G.4. Also, the battery is rechargeable and is able to supply the
system with electrical energy for more than 3 hours, which satisfies requirement S.5 and S.1 respectively.
Requirement G.3 is satisfied, as the tested Li-Polymer battery was able to survive G-forces of 5 g. As
the battery is just 15 mm thick, there was enough room left to protect the battery with a hard case,
which satisfies requirement S.4. To implement the battery, according to requirement S.2 and S.3, an

35

36 8. Conclusion

undervoltage and overcurrent protection was necessary. This was successfully done by using a battery
protection IC. The appropriate voltage needed for the different components of the system, as described by
requirement S.6, were successfully made available by using the power electronics as described in section
5.2.3. Overall, by using the power system as described in chapter 5, requirement G.10 is satisfied.

Integration on PCB
The PCB proved to fulfil its requirements as described by requirement G.5, G.11 and S.11. Therefore, it
is suited to be used as final product and to be put inside the skeleton sled.

General requirements
All quantities stated in requirement G.1 can be measured individually as described in chapter 7 and by
the other subgroups[26] [59]. However, due to a still unknown error in the GNSS receiver implementa-
tion, the sample time sometimes gets delayed to several seconds, as explained in section 7.2. Because of
this, the sample rate is not always high enough to satisfy requirement G.6.
Since the means to measure the temperature of the environment in which the product will be used and
the vibrations on the track due to irregularities in the surface of the ice are not available, it can not be
checked whether requirements G.2 and G.11 are met. However, as mentioned in chapter 7, a prototype
of the system was tested during several roller coaster rides. The prototype was not yet mounted on the
dedicated PCB that was designed, as the PCB had not yet been delivered at that time. Since the final
product will be mounted on the PCB, it will be even more robust.

The product must be easily removed and installed on the sled, as dictated by requirement G.8. The
inside of the sled is fairly easily accessible, therefore the product can be easily removed or installed. As
the force transducers are attached to the sled using double-sided tape, they could leave some easy-to-
remove traces on the sled. The measurements, however, should be started without accessing the circuitry
inside the sled, as stated in requirement G.7. Just like the force transducers and the GNSS receiver, a
momentary switch is mounted on the outside of the sled. This momentary switch sends a signal to the
ESP32 to start the measurements.

The dimensional requirements listed in G.5 and G.4 have been met. The dimensions of the part of the
product that should fit inside the sled are 11.5 × 12.5 × 1.8 cm and the weight of the total system is 261
grams. The product, however, does have a minimal influence on the aerodynamics of the sled due to parts
of the system being mounted on the outside of the sled, such as the GNSS receiver and the switch for
starting the run G.9.

As discussed in chapter 7, the system has been tested at G-forces of up to approximately 5 g. The system
was able to acquire data in these conditions, however, due to an error in the code, the measured data
turned out to be of doubtful use. This means that it can not be said whether requirement G.3 is met. As
described by subgroup C, the processed information is sent to a mobile device via Wi-Fi [59], meaning that
no external devices have to be connected to the product in order to use it, in accordance with requirement
G.10.

All that is needed to use the product, is a push on the button to start the measurements and a push
after the run, as well as a mobile device to read the data, satisfying requirement G.13. According to
requirement G.12, the acquired data should be available to the athlete and the coach within 5 minutes.
As described in the thesis of subgroup C [59], the time it takes to process the data and present it on the
web page takes less than 20 seconds.
The final general requirement, G.14, states that the total costs of making the prototype should be within
the budget of e250,-. This requirement was not met, the overall costs of the prototype are approximately
e400,-.

8.2. Recommendations and future work
To make sure that the temperature sensor is accurate, it is recommended that it is tested on ice, while
comparing the output to a reference of which it is known to be accurate.

8.2. Recommendations and future work 37

For the location system, a high-quality set of reference data must be obtained. Using this data, the
Kalman Filter should be validated and tuned to meet the specifications S.10 and G.6. Then, a good
Kalman filter library should be found that is compatible with the ESP32, into which the Q and R matrix
can be loaded. Furthermore, it is recommended to add a low-pass filter, as it would improve the accuracy
by removing much of the noise caused by vibrations. Also, finding a GNSS receiver with an even higher
update rate could improve the accuracy of the system.

Furthermore, to get rid of the need to have a reset button for the battery protection IC, it is recom-
mended to use the R5460N212AE IC instead of the R5460N212AF.

To meet requirement G.14, cheaper components can be used. Also, due to the fact that this was still
the research phase, the product became more expensive than necessary, as for instance different pres-
sure sensors have been ordered. The product could be implemented cheaper once it is know what exactly
is needed. Lastly, by scaling up the production, the price could be further reduced.

References

[1] I. Roberts, “Skeleton Bobsleigh Mechanics: Athlete-Sled Interaction”, PhD dissertation, Univ. Ed-
inburgh, Edinburgh, United Kingdom, 2013.

[2] C. Sawade, S. Turnock, A. Forrester, and M. Toward, “Assessment of an Empirical Bob-Skeleton
Steering Model”, Procedia Engineering, vol. 72, pp. 447–452, 2014, The Engineering of Sport 10,
ISSN: 1877-7058. DOI: https://doi.org/10.1016/j.proeng.2014.06.078. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877705814005943.

[3] S. Xiaochen. (Jun. 1, 2018). Plans Unveiled for Building All 2022 Olympic Venues, [Online]. Avail-
able: http://www.chinadaily.com.cn/a/201806/01/WS5b1081d9a31001b82571d8c3.html
(visited on 06/21/2019).

[4] F. Braghin, F. Cheli, S. Maldifassi, S. Melzi, and E. Sabbioni, The Engineering Approach to Winter
Sports. Springer, 2016, ISBN: 978-1-4939-3019-7.

[5] F. M. Impellizzeri, A. La Torre, G. Merati, E. Rampinini, and C. Zanoletti, “Relationship Between
Push Phase and Final Race Time in Skeleton Performance”, J. Strength Cond. Res., vol. 20, no. 3,
pp. 579–583, 2006.

[6] A. Baca, P. Dabnichki, M. Heller, and P. Kornfeind, “Ubiquitous Computing in Sports: A Review and
Analysis”, J. Sports Sciences, vol. 27, no. 12, pp. 1335–1346, Oct. 2009. DOI: 10.1080/02640410903277427.

[7] S. Lee, T. Kim, S. Lee, S. Kil, and S. Hong, “Development of Force Measurement System of Bobsled
for Practice of Push-off Phase”, Proc. IMechE Part P: J. Sports Engineering and Technology, vol. 229,
no. 3, pp. 192–198, 2015. DOI: 10.1177/1754337114565383.

[8] I. J. M. Roberts, “Skeleton bobsleigh mechanics: Athlete-sled interaction”, PhD thesis, The Univer-
sity of Edinburgh, Jul. 2013.

[9] A. Seymour-Pierce, B. Lishman, and P. Sammonds, “Recrystallization and damage of ice in winter
sports”, Royal Society Publishing, vol. Microdynamics of ice, 2017. DOI: https://doi.org/10.
1098/rsta.2015.0353.

[10] E. Jansons, J. Lungevics, K. Stiprais, L. Pluduma, and K. A. Gross, “Measurement of sliding ve-
locity on ice, as a function of temperature, runner load and roughness, in a skeleton push-start
facility”, Cold Regions Science and Technology, vol. 151, pp. 260–266, 2018. DOI: https://doi.
org/10.1016/j.coldregions.2018.03.015.

[11] J. Fraden, Handbook of Modern Sensors. Springer, 2016, ISBN: 978-3-319-19302-1.

[12] G. Alvarez-Botero, F. E. Baron, C. C. Cano, O. Sosa, and M. Varon, “Optical sensing using fiber
bragg gratings: Fundamentals and applications”, IEEE Instrumentation Measurement Magazine,
vol. 20, no. 2, pp. 33–38, Apr. 2017, ISSN: 1094-6969. DOI: 10.1109/MIM.2017.7919131.

[13] B. G. Liptak, Instrument Engineers’ Hanbook, Volume One: Process Measurement and Analysis.
CRC Press, 2003, ISBN: 9781420064025.

[14] G. S. Ranganath, “Black-body radiation”, Resonance, vol. 13, no. 2, pp. 115–133, 2008.

[15] T. P. Merritt and F. F. Hall, “Blackbody radiation”, Proceedings of the IRE (IEEE), vol. 47, no. 9,
pp. 1435–1441, 1959. DOI: 10.1109/JRPROC.1959.287032.

[16] B. Ning and Y. Wu, “Research on non-contact infrared temperature measurement”, 2010 Interna-
tional Conference on Computational Intelligence and Software Engineering, 2010. DOI: 10.1109/
CISE.2010.5677034.

[17] H.-Y. Chen and C. Chen, “Determining the emissivity and temperature of building materials by
infrared thermometer”, Construction and Building Materials, vol. 126, pp. 130–137, 2016.

[18] Ir thermometers & emissivity, Bacto Laboratories Pty Ltd, 2005.

[19] Tmp007 infrared thermopile sensor with integrated math engine, Texas Instruments, Apr. 2014.

39

https://doi.org/https://doi.org/10.1016/j.proeng.2014.06.078
http://www.sciencedirect.com/science/article/pii/S1877705814005943
http://www.chinadaily.com.cn/a/201806/01/WS5b1081d9a31001b82571d8c3.html
https://doi.org/10.1080/02640410903277427
https://doi.org/10.1177/1754337114565383
https://doi.org/https://doi.org/10.1098/rsta.2015.0353
https://doi.org/https://doi.org/10.1098/rsta.2015.0353
https://doi.org/https://doi.org/10.1016/j.coldregions.2018.03.015
https://doi.org/https://doi.org/10.1016/j.coldregions.2018.03.015
https://doi.org/10.1109/MIM.2017.7919131
https://doi.org/10.1109/JRPROC.1959.287032
https://doi.org/10.1109/CISE.2010.5677034
https://doi.org/10.1109/CISE.2010.5677034

40 References

[20] Mlx90614 family, single and dual zone infra red thermometer in to-39, 11th ed., Melexis, Jul. 2017.

[21] Thermopile ir sensor, Thermometrics - Amphenol Sensors, 2014.

[22] Phidgets. (). Phidgettemperaturesensor ir, [Online]. Available: https://www.phidgets.com/
?tier=3&catid=14&pcid=12&prodid=1041. (accessed: 02.05.2019).

[23] Mlx90614 changing emissivity, how to . . . (example included), including unlocking cell 0x0f, 2nd ed.,
Melexis, Jul. 2013.

[24] Application note, smbus communication with mlx90614, 4th ed., Melexis, Jan. 2008.

[25] J. S. D Baranowski H van Boerum, Plan and track technical data, bobsled/luge track & buildings
bid package 2, Park City skeleton track, 2001.

[26] M. J. Heller and A. J. de Jong, “Instrumented Skeleton Sled: Focusing on Force and Orientation
Sensing”, BSc Thesis, Delft University of Technology, 2019.

[27] Sam-m8q data sheet, u-blox AG, 2017.

[28] Quectel l76 compact gnss module, Quectel Wireless Solutions Co., 2014.

[29] Fgpmmopa6h gps standalone module data sheet, GlobalTop Technology Inc., 2011.

[30] Neo-m8p u-blox m8 high precision gnss modules, u-blox, 2017.

[31] Sam-m8q receiver description including protocol specification, UBX-13003221, u-blox AG, May
2017.

[32] Mpu-9250 product specification, 1.0, InvenSense, Jan. 2014.

[33] M. M. Atia and S. L. Waslander, “Map-aided adaptive gnss/imu sensor fusion scheme for robust
urban navigation”, Measurement, vol. 131, pp. 615–627, 2019, ISSN: 0263-2241. DOI: https://doi.
org/10.1016/j.measurement.2018.08.050. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0263224118307899.

[34] E. Bostanci, “Motion model transitions in gps-imu sensor fusion for user tracking in augmented
reality”, Dec. 2015.

[35] M. d. T. Peral, F. G. Bravo, and A. MartinhoVale, “State variables estimation using particle filter:
Experimental comparison with kalman filter”, in 2007 IEEE International Symposium on Intelli-
gent Signal Processing, Oct. 2007, pp. 1–6.

[36] MATLAB, Understanding kalman filters, part 4: An optimal state estimator algorithm, May 2017.
[Online]. Available: https://nl.mathworks.com/videos/understanding-kalman-filters-
part-4-optimal-state-estimator-algorithm--1493129749201.html.

[37] ——, Understanding kalman filters, part 3: An optimal state estimator, May 2017. [Online]. Avail-
able: https : / / nl . mathworks . com / videos / understanding - kalman - filters - part - 3 -
optimal-state-estimator--1490710645421.html.

[38] V. V. M. Verhaegen, Filtering and System Identification, a least squares approach. Cambridge, 2007,
ISBN: 9781107405028.

[39] Y. Kim and H. Bang, “Introduction to kalman filter and its applications”, in. Nov. 2018. DOI: 10.
5772/intechopen.80600.

[40] I. Skog, Sensor fusion gps+imu, module 1 - sensing and perception, KTH Royal Institute of Tech-
nology, Stockholm, 2016.

[41] M. Kok, J. D. Hol, and T. B. Schön, Using Inertial Sensors for Position and Orientation Estimation.
now, 2017, ISBN: 1680833561. [Online]. Available: https://ieeexplore.ieee.org/document/
8187588.

[42] D. Deng, “Li-ion batteries: Basics, progress, and challenges”, Energy Science & Engineering, vol. 3,
no. 5, pp. 385–418, 2015. DOI: 10.1002/ese3.95.

[43] V. Beggi and L. Loisel, “Microgrid in usth campus : Architecture and power management strate-
gies”, Master’s thesis, Ecole Centrale de Marseille, 2018.

[44] F. Lambert, “Tesla model s battery caught on fire ‘without accident’, says owner – tesla is inves-
tigating”, Electrek, Jun. 2018. [Online]. Available: https://electrek.co/2018/06/16/tesla-
model-s-battery-fire-investigating/.

https://www.phidgets.com/?tier=3&catid=14&pcid=12&prodid=1041
https://www.phidgets.com/?tier=3&catid=14&pcid=12&prodid=1041
https://doi.org/https://doi.org/10.1016/j.measurement.2018.08.050
https://doi.org/https://doi.org/10.1016/j.measurement.2018.08.050
http://www.sciencedirect.com/science/article/pii/S0263224118307899
http://www.sciencedirect.com/science/article/pii/S0263224118307899
https://nl.mathworks.com/videos/understanding-kalman-filters-part-4-optimal-state-estimator-algorithm--1493129749201.html
https://nl.mathworks.com/videos/understanding-kalman-filters-part-4-optimal-state-estimator-algorithm--1493129749201.html
https://nl.mathworks.com/videos/understanding-kalman-filters-part-3-optimal-state-estimator--1490710645421.html
https://nl.mathworks.com/videos/understanding-kalman-filters-part-3-optimal-state-estimator--1490710645421.html
https://doi.org/10.5772/intechopen.80600
https://doi.org/10.5772/intechopen.80600
https://ieeexplore.ieee.org/document/8187588
https://ieeexplore.ieee.org/document/8187588
https://doi.org/10.1002/ese3.95
https://electrek.co/2018/06/16/tesla-model-s-battery-fire-investigating/
https://electrek.co/2018/06/16/tesla-model-s-battery-fire-investigating/

References 41

[45] T. RAVPower, Lithium ion vs. lithium polymer batteries – which is better?, Aug. 2017. [Online].
Available: http://blog.ravpower.com/2017/06/lithium- ion- vs- lithium- polymer-
batteries/.

[46] Mlx90614 data sheet, 5th ed., Melexis, Mar. 2009.

[47] ESP32 series, ESP32, Version 3, Espressif Systems, 2019.

[48] lady Ada and D. Nosonowitz, Adafruit huzzah32 - esp32 feather, Adafruit, 2019.

[49] Mcp3204/3208: 2.7v 4-channel/8-channel 12-bit a/d converters with spi serial interface, English,
version 1 Revision E, Microchip Technology Inc., 2008, 29 pp.

[50] J. D. Dogger, B. Roossien, and F. D. J. Nieuwenhout, “Characterization of li-ion batteries for intelli-
gent management of distributed grid-connected storage”, IEEE Transactions on Energy Conversion,
vol. 26, no. 1, pp. 256–263, 2011. DOI: 10.1109/TEC.2009.2032579.

[51] O. Erdinc, B. Vural, and M. Uzunoglu, “A dynamic lithium-ion battery model considering the effects
of temperature and capacity fading”, in 2009 International Conference on Clean Electrical Power,
Jun. 2009, pp. 383–386. DOI: 10.1109/ICCEP.2009.5212025.

[52] B. G. Kim, F. P. Tredeau, and Z. M. Salameh, “Performance evaluation of lithium polymer batteries
for use in electric vehicles”, in 2008 IEEE Vehicle Power and Propulsion Conference, Sep. 2008,
pp. 1–5. DOI: 10.1109/VPPC.2008.4677513.

[53] “Ieee standard for rechargeable batteries for multi-cell mobile computing devices”, IEEE Std 1625-
2008 (Revision of IEEE Std 1625-2004), pp. c1–79, Oct. 2008. DOI: 10.1109/IEEESTD.2008.
4657368.

[54] H. Maleki and J. N. Howard, “Effects of overdischarge on performance and thermal stability of
a li-ion cell”, Journal of Power Sources, vol. 160, no. 2, pp. 1395–1402, 2006, Special issue in-
cluding selected papers presented at the International Workshop on Molten Carbonate Fuel Cells
and Related Science and Technology 2005 together with regular papers, ISSN: 0378-7753. DOI:
https://doi.org/10.1016/j.jpowsour.2006.03.043. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0378775306004277.

[55] R5460x2xx series data sheet, RICOH.

[56] Wsf30100 data sheet, WINSOK Semiconductor, Dec. 2014.

[57] Az1117c data sheet, 3.2, Diodes Incorporated, Oct. 2014.

[58] Xc62fj data sheet, TOREX SEMICONDUCTOR LTD.

[59] A. W. G. Hunter and T. Moree, “Instrumented Skeleton Sled: Focusing on the Data Processing and
the User Interface”, BSc Thesis, Delft University of Technology, 2019.

http://blog.ravpower.com/2017/06/lithium-ion-vs-lithium-polymer-batteries/
http://blog.ravpower.com/2017/06/lithium-ion-vs-lithium-polymer-batteries/
https://doi.org/10.1109/TEC.2009.2032579
https://doi.org/10.1109/ICCEP.2009.5212025
https://doi.org/10.1109/VPPC.2008.4677513
https://doi.org/10.1109/IEEESTD.2008.4657368
https://doi.org/10.1109/IEEESTD.2008.4657368
https://doi.org/https://doi.org/10.1016/j.jpowsour.2006.03.043
http://www.sciencedirect.com/science/article/pii/S0378775306004277
http://www.sciencedirect.com/science/article/pii/S0378775306004277

A
IR sensor - setting emissivity

1 / / / / / / / Bachelor Graduation Project − Instrumented Sled for Skeleton
2 / / / / / / / Code for the implementation of the IR sensor , MLX90614
3 / / / / / / / This f i l e can be used to change the emissivity o f the sensor ;
4 / / / / / / / This ca l ibra t i on needs to be done once before using the sensor
5 / / / / / / / After the set t ing i s complete , please turn the sensor o f f once
6 / / / / / / / After restart ing , the device i s ready to be used with proper ca l ibrat i on
7 / / / / / / / Program can d i f f e r e n t i a t e between rough and smooth ice ,
8 / / / / / / / requests input from keyboard
9 / / / / / / / Implementation i s large ly inspired by the Sparkfun MLX90614 l ibrary

10

11

12 / / Include the necessary l i b r a r i e s
13 #include <Wire . h> / / I2C l ibrary
14 #include <Adafruit_MLX90614 . h> / / Library to read temperature from MLX
15 #include <Streaming . h> / / Library for easy printing
16

17 / / Declare global variables
18 const uint8_t deviceAddress = 0x5A ; / / Default address of the sensor
19 const uint8_t clearPEC = 0x3E ; / / PEC used to c lear the 0x04 memory c e l l
20 const int command = 0b00100100 ; / / Opcode : command 001 to access EEPROM,
21 / / 00100 to address mem c e l l 0x04
22 / / Create ob jec t from class
23 Adafruit_MLX90614 mlx = Adafruit_MLX90614 (deviceAddress) ;
24

25

26 void setup () {
27 Serial . begin (9600) ; / / Set baud rate (b i t s / sec)
28 mlx . begin () ; / / Prepare communication with MLX
29 Serial << "Communication with MLX90614 started " << endl ;
30

31 Serial << " Is the structure of the i ce smooth or rough? Please enter r for rough or
32 s for smooth " << endl ;
33 }
34

35

36 void loop () {
37 uint8_t LB = 0 , HB = 0; / / Variables for High and Low Data Bytes
38 uint8_t newPEC; / / Variable for the PEC for writing
39 char iceConsistency ; / / Stores user ’ s choice : smooth / rough
40

41 i f (Serial . avai lable () > 0) / / Read i f there i s data avai lable
42 { iceConsistency = Serial . read () ; / / Store the user ’ s input
43

44 i f (iceConsistency == ’ s ’) / / User chose smooth i ce
45 / / Send ; LB_smooth , HB_smooth , PEC_smooth (LB and HB come from 0xF851)
46 { execute (0x51 , 0xF8 , 0xC1) ; }
47

48 e lse i f (iceConsistency == ’ r ’) / / User chose rough i ce
49 / / Send ; LB_rough , HB_rough , PEC_rough (LB and HB come from 0xFAE0)
50 { execute (0xE0 , 0xFA, 0x95) ; }

43

44 A. IR sensor - setting emissivity

51 }
52

53 return ;
54 }
55

56

57 void execute (uint8_t LB, uint8_t HB, uint8_t PEC)
58 {
59 / / In order to upload a new value , the EEPROM c e l l needs to be erased f i r s t
60 clearAddress (deviceAddress) ;
61

62 / / Set the new value
63 setNewValue (deviceAddress , LB, HB, PEC) ;
64

65 / / Check i f the new value has been set co r re c t l y
66 checkSetValue (deviceAddress) ;
67

68 Serial << " Emissivity set t ing MLX90614 complete " << endl ;
69 }
70

71

72 / / Address needs to be cleared before i t can be altered . Steps come from manual .
73 void clearAddress (char devAddress) {
74 Wire . beginTransmission (devAddress) ; / / 1 . Send START bi t 2 . Send Slave Address
75 Wire . write (command) ; / / 3 . Send Command
76 Wire . write (0) ; / / 4 . Send Low data 0x00
77 Wire . write (0) ; / / 5 . Send High data 0x00
78 Wire . write (clearPEC) ; / / 6 . Send PEC
79 Wire . endTransmission (deviceAddress) ; / / 7 . Send STOP bi t
80

81 delay (5) ; / / 8 . Wait 5ms
82 Serial << " Clearing EEPROM c e l l complete " << endl ;
83 return ;
84 }
85

86

87 / / Set the new value in 0x04 . Steps come from manual .
88 void setNewValue (uint16_t devAddress , char LB, char HB, char PEC) {
89 Wire . beginTransmission (devAddress) ; / / 1 . Send START bi t 2 . Send Slave Address
90 Wire . write (command) ; / / 3 . Send Command
91 Wire . write (LB) ; / / 4 . Send Low Byte
92 Wire . write (HB) ; / / 5 . Send High Byte
93 Wire . write (PEC) ; / / 6 . Send PEC
94 Wire . endTransmission (devAddress) ; / / 7 . Send STOP bi t
95

96 delay (5) ; / / 8 . Wait 5ms
97 Serial << " Emissivity set t ing MLX90614 complete − await check " << endl ;
98 return ;
99 }

100

101

102 / / Read the contents of 0x04 to doublecheck . Steps come from manual .
103 void checkSetValue (int devAddress) {
104 / / Variables to store the checked bytes (Data Byte Low and Data Byte High)
105 uint16_t DBL = 0 , DBH = 0 , CRC = 0;
106

107 Wire . beginTransmission (devAddress) ; / / 1 . Send START bi t 2 . Send Slave Address
108 Wire . write (command) ; / / 3 . Send Command
109 Wire . endTransmission (fa l se) ; / / 4 . Send Repeated START_bit
110 Wire . requestFrom (devAddress , 3) ; / / 5 . Send Slave Address + Rd\−Wr bi t **
111 DBL = Wire . read () ; / / 6 . Read Data Byte Low (master must ACK)
112 DBH = Wire . read () ; / / 7 . Read Data Byte High (master must ACK)
113 CRC = Wire . read () ; / / 8 . Read PEC (master can send ACK or NACK)
114 Wire . endTransmission (devAddress) ; / / 9 . Send STOP bi t
115

116 delay (5) ; / / 10. Wait 5ms
117 Serial << "Check complete − th is has been set : " << DBL << " and " << DBH << endl ;
118 Serial << " Please turn the device o f f and on for the procedure to take e f f e c t " << endl ;
119 return ;
120 }

B
GNSS receiver - SAM-M8Q

B.1. UBX-CFG-GNSS message structure
The UBX message UBX-CFG-GNSS must be sent to enable GPS and disable the other systems. The
message has the following structure:

Header Class ID Length (bytes) Payload Checksum
0xB5 0x62 0x06 0x3E 4 + 8*numConfigBlocks Actual message CK_A CK_B

Table B.1: Structure of the UBX-CFG-GNSS message.

The payload contains the actual message: the information on the configuration of the different satellite
systems. This payload is structured as follows:

msgVer numTrk
ChHw

numTrk
ChUse

numConfig
Blocks gnssId res

TrkCh
max
TrkCh Reserved Flags

Byte 0 Byte 1 Byte 2 Byte 3 4+8*N 5+8*N 6+8*N 7+8*N 8+8*N

Table B.2: Structure of the payload.

Here, msgVer and numTrkChHw describe the message version and the number of available tracking
channels in the hardware respectively. After that, numTrkChUse sets the number of channels that will be
used, followed by numConfigBlocks that sets the number of configuration blocks. In this application, the
number of configuration blocks is 4. Namely, 1 block for enabling GPS and 3 blocks for disabling BeiDou,
QZSS and GLONASS respectively. Then, gnssId up to flags describe the settings for each satellite system.
For GPS, the gnssId is 0 while BeiDou has gnssId 3, QZSS 5 and GLONASS 6. The number of channels
for GPS is set to 32, while the number for the other systems is set to 0. After that, the flag is set to 1 for
GPS, and 0 for the other systems. The payload then looks as follows:

Payload msgVer numTrkChHw numTrkChUse numConfigBlocks
0x00 0x32 0x32 0x04

GNSS gnssId resTrkCh maxTrkCh Reserved Flags
GPS 0x00 0x16 0x32 0x00 0x01
BeiDou 0x03 0x00 0x00 0x00 0x00
QZSS 0x05 0x00 0x00 0x00 0x00
GLONASS 0x06 0x00 0x00 0x00 0x00

Table B.3: Contents of the payload.

45

46 B. GNSS receiver - SAM-M8Q

B.2. UBX-CFG-GNSS message code
1 / / / / / / / Bachelor Graduation Project − Instrumented Sled for Skeleton
2 / / / / / / / Code for the implementation of the GNSS rece iver − SAM−M8Q
3 / / / / / / / This f i l e can be used to enable GPS and disable a l l other systems ;
4 / / / / / / / This needs to be done once before using the receiver ,
5 / / / / / / / Such that the maximum update rate can be increased to 18 Hz
6 / / / / / / / Code makes use of the Sparkfun Ublox l ibrary to work with the UBX struct
7

8 / / Include the necessary l i b r a r i e s
9 #include <Wire . h>

10 #include " SparkFun_Ublox_Arduino_Library . h"
11 #include <Streaming . h>
12

13 / / Create ob jec t from class
14 ubxPacket packetCfg ;
15 SFE_UBLOX_GPS myGPS;
16

17 void setup () {
18 Serial . begin (9600) ; / / Set baud rate (b i t s / sec)
19 while (! Serial) ; / / Wait for terminal to open
20 Wire . begin () ; / / Prepare communication with ublox
21

22 i f (myGPS. begin () == fa l se) / / Connect to the Ublox module using Wire port
23 {
24 Serial . pr int ln (F(" Ublox GPS not detected at default I2C address . Please check wiring . Freezing . "

)) ;
25 while (1) ;
26 }
27

28 myGPS. setI2COutput (COM_TYPE_UBX) ; / / Set the I2C port to output UBX only
29

30 enableGPS () ; / / Enable only GPS, turn GLONASS o f f
31 Serial << " Glonass o f f " << endl ;
32

33 myGPS. saveConfiguration () ; / / Save the current set t ings to f lash and BBR
34 Serial << " Config saved " << endl ;
35 }
36

37 void loop () {
38 Serial << " check " << endl ;
39 }
40

41 boolean enableGPS ()
42 {
43 packetCfg . c l s = 0x06 ; / / Class for UBX−CFG−GNSS
44 packetCfg . id = 0x3E ; / / ID for UBX−CFG−GNSS
45 packetCfg . len = 36; / / Message length (bytes) f or UBX−CFG−GNSS
46 packetCfg . startingSpot = 0;
47

48 i f (myGPS.sendCommand(packetCfg , 250) == fa l se) / / This wi l l load the packetCfg . payload array with
current set t ings of the given reg i s ter

49 return (fa l se) ; / / I f command send f a i l s then ba i l
50

51 / / packetCfg . payload i s now loaded with current bytes . Change only the ones we need to
52 packetCfg . payload [0] = 0x00 ; / / Message version , 0 here
53 packetCfg . payload [1] = 32; / / numTrkChHw
54 packetCfg . payload [2] = 32; / / numTrkChUse, use 32 channels
55 packetCfg . payload [3] = 4 ; / / No . o f ConfigBlocks , 4 conf igurat ions wi l l fo l low
56

57 packetCfg . payload [4] = 0x00 ; / / Enable GPS, gnssId 0
58 packetCfg . payload [5] = 16; / / resTrkCh (minimum number of reserverd tracking channels)
59 packetCfg . payload [6] = 32; / / mxTrkCh (maximum number of TrkCh)
60 packetCfg . payload [7] = 0 ; / / Reserved
61 packetCfg . payload [8] = 0x01 ; / / Flag , 1 to enable GPS L1C/A
62 packetCfg . payload [9] = 0x00 ;
63 packetCfg . payload [10] = 0x00 ;
64 packetCfg . payload [11] = 0x00 ; / / End of repeated block
65

66 packetCfg . payload [12] = 0x03 ; / / Disable BeiDou , gnssId 3
67 packetCfg . payload [13] = 0; / / resTrkCh , reserve 0 channels

B.2. UBX-CFG-GNSS message code 47

68 packetCfg . payload [14] = 0; / / mxTrkCh (maximum number of TrkCh)
69 packetCfg . payload [15] = 0; / / Reserved
70 packetCfg . payload [16] = 0x00 ; / / Flag , 0 to disable
71 packetCfg . payload [17] = 0x00 ;
72 packetCfg . payload [18] = 0x00 ;
73 packetCfg . payload [19] = 0x00 ; / / End of repeated block
74

75 packetCfg . payload [20] = 0x05 ; / / Disable QZSS, gnssId 5
76 packetCfg . payload [21] = 0; / / resTrkCh , reserve 0 channels
77 packetCfg . payload [22] = 0; / / mxTrkCh (maximum number of TrkCh)
78 packetCfg . payload [23] = 0; / / Reserved
79 packetCfg . payload [24] = 0x00 ; / / Flag , 0 to disable
80 packetCfg . payload [25] = 0x00 ;
81 packetCfg . payload [26] = 0x00 ;
82 packetCfg . payload [27] = 0x00 ; / / End of repeated block
83

84 packetCfg . payload [28] = 0x06 ; / / Disable GLONASS, gnssId 6
85 packetCfg . payload [29] = 0; / / resTrkCh , reserve 0 channels
86 packetCfg . payload [30] = 0; / / mxTrkCh (maximum number of TrkCh)
87 packetCfg . payload [31] = 0; / / Reserved
88 packetCfg . payload [32] = 0x00 ; / / Flag , 0 to disable
89 packetCfg . payload [33] = 0x00 ;
90 packetCfg . payload [34] = 0x00 ;
91 packetCfg . payload [35] = 0x00 ; / / End of repeated block
92

93 return (myGPS.sendCommand(packetCfg , 250)) ;
94 }

C
KF implementation

C.1. MATLAB code
%% I n i t i a l i z a t i o n
Ts = 1 /18 ; % Sampling period (18 Hz)
N = 576; % Number of samples , should be adjusted manually
i = 1 ; % Variable for loop

% 6xN:
xhat_k_k = ones (6 ,N) ; % State vec tor
xhat_kPlus_k = ones (6 ,N) ; % Estimation s ta t e vec tor
xhat_kPlus_kPlus = ones (6 ,N) ; % Updated estimation s ta t e vec tor

% F = 6x6 : State t rans i t i on matrix
F = eye (6) ;
F(1 ,4) = Ts ;
F(2 ,5) = Ts ;
F(3 ,6) = Ts ;

% G = 6x3 : Control matrix
a = (Ts ^ 2) / 2 ;
G = [a 0 0; 0 a 0; 0 0 a ; Ts 0 0; 0 Ts 0; 0 0 Ts] ;

% H = 3x6 : Observation matrix
H = eye (3 , 6) ;

% u = 3xN: IMU input
euler = ones (3 ,N) ; % [yaw ; pitch ; r o l l] , angles from IMU
s = zeros (3 ,N) ; % [s_x ; s_y ; s_z] , s p e c i f i c f o r c e from IMU
u = zeros (3 ,N) ; % [a_x ; a_y ; a_z] , acce l e ra t ion a f t e r R_n_b and − g
g = [0 ; 0 ; 1] ; % Gravitation vector , points down the z−axis
IMU = zeros (3 ,N) ; % Will s t o r e pos i t ion from IMU (u)
sIMU = zeros (3 ,N) ; % Will s t o r e pos i t ion from IMU (s)

% z = 3xN: GNSS input
z_geodetic = ones (3 ,N) ; % [la t ; long ; height]
z = zeros (3 ,N) ; % [p_x ; p_y ; p_z] in NED

% Navigation vec tors
xNorth = zeros (1 ,N) ; % Used for NED conversions
yEast = zeros (1 ,N) ;

49

50 C. KF implementation

zDown = zeros (1 ,N) ;

% Reference e l l i p s o i d for the conversion from Geodetic to NED
WGS = referenceEl l ipso id (’ wgs84 ’ , ’m ’) ;

% e = 3xN: error
e = ones (3 ,N) ; % Error vec tor

% 6x6 :
Q = eye (6) ; % Process noise (IMU)
I = eye (6) ; % 6x6 i d e n t i t y matrix
P_k_k = eye (6) ; % Error covariance
P_kPlus_k = eye (6) ; % Estimation error covariance
P_kPlus_kPlus = eye (6) ; % Updated estimation error covariance
P_archive = ones (6 ,6 ,N) ; % To s tor e error covariance matrices

% 3x3 matrices :
S = eye (3) ; % Innovation covariance
K = eye (3) ; % Kalman gain
R = eye (3) ; % Observation noise (GNSS)
R_n_b_archive = ones (3 ,3 ,N) ; % To s tor e ro tat ion matrices

%% Data importeren
A = dlmread (’ 52 _lat_testrun ’) ; % Load data

s (1 , :) = ((A(: , 5)) . ’) . / 1 0 0 0 ; % Import IMU data to vec tor s
s (2 , :) = ((A(: , 6)) . ’) . / 1 0 0 0 ; % Divide by 1000 to convert from mm/s to m/s
s (3 , :) = ((A(: , 7)) . ’) . / 1 0 0 0 ;

euler (1 , :) = (A (: , 1 4)) . ’ ; % Import yaw , pitch , r o l l to vec tor euler
euler (2 , :) = (A (: , 1 5)) . ’ ;
euler (3 , :) = (A (: , 1 6)) . ’ ;

z_geodetic (1 , :) = ((A(: , 2)) . ’) . / 1 0 0 0 0 0 0 0 ; % Import raw data (lat , long , height)
z_geodetic (2 , :) = ((A(: , 3)) . ’) . / 1 0 0 0 0 0 0 0 ;
z_geodetic (3 , :) = ((A(: , 4)) . ’) . / 1 0 0 0 ;

zN1 = z_geodetic (1 , 1) ; % Define begin pos i t ion for r e f e r ence pos i t ion
zE1 = z_geodetic (2 , 1) ;
zD1 = z_geodetic (3 , 1) ;

%% Kalman algorithm
for i = 1

xhat_k_k (: , 1) = zeros (6 , 1) ; % Define f i r s t s ta t e as a l l zeros
i = i + 1 ;

end

for i = 2 :N % Loop through a l l samples

% Calculate values ro tat ion matrix , to transform body to navigation frame
R_yaw = [cos (euler (1 , i)) sin (euler (1 , i)) 0 ;
−sin (euler (1 , i)) cos (euler (1 , i)) 0 ; 0 0 1] ;

R_pitch = [cos (euler (2 , i)) 0 −sin (euler (2 , i)) ;

C.2. Results Kalman filter 51

0 1 0; sin (euler (2 , i)) 0 cos (euler (2 , i))] ;

R_rol l = [1 0 0; 0 cos (euler (3 , i)) sin (euler (3 , i)) ;
0 −sin (euler (3 , i)) cos (euler (3 , i))] ;

R_n_b = R_yaw * R_pitch * R_rol l ; % Calculate ro tat ion matrix
R_n_b_archive (: , : , i) = R_n_b ; % Save the ro ta t ions

% Convert IMU output to the r ight frame (body to NED) and compensate for gravi ty
u (: , i) = (R_n_b * s (: , i) . / 9 . 81) − g ;

% Convert GNSS output to the r ight coordinate frame (la t/long to NED)
[xNorth (i) , yEast (i) , zDown(i)] = geodetic2ned (z_geodetic (1 , i) , z_geodetic (2 , i) ,
z_geodetic (3 , i) , zN1 , zE1 , zD1 , WGS) ;
z (: , i) = ([xNorth (i) , yEast (i) , zDown(i)]) . ’ ;

% Predict xhat and P
xhat_kPlus_k (: , i) = F * xhat_k_k (: , i −1) + G * u (: , i) ;
P_kPlus_k = F * P_k_k * F . ’ + Q;

% Update e , S and K
e = z (: , i −1) − H * xhat_kPlus_k (: , i) ;
S = H * P_kPlus_k * H. ’ + R;
K = P_kPlus_k * H. ’ * inv (S) ;

xhat_kPlus_kPlus (: , i) = xhat_kPlus_k (: , i) + K * e ;
P_kPlus_kPlus = (I − K * H) * P_kPlus_k ;

% Feedback xhat and P for next i t e r a t i o n
xhat_k_k (: , i) = xhat_kPlus_kPlus (: , i) ;
P_archive (: , : , i) = P_k_k ;
P_k_k = P_kPlus_kPlus ;

% Increment i
i = i +1;

end

C.2. Results Kalman filter

52 C. KF implementation

Figure C.1: Data obtained while walking down latitude degree 52. The Kalman filter uses the 6x6 identity matrix for Q and the
3x3 identity matrix for R.

C.2. Results Kalman filter 53

Figure C.2: Data obtained while walking down latitude degree 52. The Kalman filter uses equation 7.1 for Q and the 3x3 identity
matrix for R.

54 C. KF implementation

Figure C.3: Data obtained while walking down latitude degree 52. The Kalman filter uses the 6x6 identity matrix for Q and
equation 7.2 for R.

C.2. Results Kalman filter 55

Figure C.4: Data obtained while walking down latitude degree 52. The Kalman filter uses equation 7.1 for Q and equation 7.2 for
for R.

D
Total circuit diagram

57

58 D. Total circuit diagram

A A

B B

C C

D D

E E

1

1

2

2

3

3

4

4

5

5

TITLE:
Total instrumented sled system REV: 4.0

Date: 2019-6-14

Sheet: 1/1

Drawn By: W.M. van Dijk

Company: TU Delft

Adafruit Huzzah32
U1

RST1

3V2

NC3

GND4

A05

A16

A27

A38

A49

A510

SCK11

M012

M113

RX14

TX15

2116 SDA 17
SCL 18
14 19
32 20
15 21
33 22
27 23
12 24
13 25

USB 26
EN 27

BAT 28

Huzzah32

Sparkfun_MPU_9250_IMU
U2

SCL1

SDA2

VCC3

GND4

INT5

SparkFun microSD Transflash Breakout
U7

C
D

1

D
O

2

G
N

D
3

S
C

K
4

V
C

C
5

D
I

6

C
S

7

M
ic

ro
S
D

MLX90614 Temp. sensor

U8
SCL1
SDO/PWM2

V
D
D

3
V
S
S

4

4.7k
R2

4.7k
R3

100nf
C1

150
R4

45k
R5

Terminal
CN1

3.31

GND2

Terminal
CN2

SDA1

SCL2

GPS Terminal
CN3

S
D

A
1

S
C

L
2

GPS Terminal
CN4

3
.3

V
1

G
N

D
2

Screw Terminal
J2

123

2.2M
R27

1M
R28

Power on LED
LED1

GND

AMS1117-3.3_C165482
U11

In3 Out 2

G
N

D
1

TAB 4

GND

R5460N212AE
U15

DOUT 1COUT 2V- 3VC4

VDD5

VSS6

JST-XH
LMT2

V 1

G 2

S 3 330
R31

330
R32

0.1u
C8

0.1u
C9

1k
R33

WSF30100
Q11

2

1

3

WSF30100
Q12

2

1

3

0.01u

C10

GND

Low battery warning
BUZZER1

12

2N3904
Q13

1k
R34

GND

150
R35

XT60PW-M
CN5

-
1

+
2

AZ1117CH-5.0TRG1
U12

A
D

J/
G

N
D

1

O
U

T
2

IN
3

XC62FJ3002PR-G

U17
VSS1 VIN2 VOUT3

GND

1uF
C11

22uF
C12

22uF
C13

10uF
C14

MCP6024-EP
U18.1

14
13

12

1
1

4

MCP6024-EP
U3.2

8
10

9

1
1

4

MCP6024-EP
U4.3

7
5

6

1
1

4

MCP6024-EP
U5.4

2

3
1

1
1

4

GNDGNDGNDGND

Sensor1
CN6

11
22

*

Sensor2
CN7

11
22

*
33k
R37

33k
R38

MCP6024-EP
U6.1

14
13

12

1
1

4

MCP6024-EP
U9.2

8
10

9

1
1

4

MCP6024-EP
U10.3

7
5

6

1
1

4

MCP6024-EP
U13.4

2

3
1

1
1

4

GNDGNDGNDGND

Sensor3
CN8

11
22

*

Sensor4
CN9

11
22

*
33k
R1

33k
R6

MCP6024-EP
U14.1

14
13

12

1
1

4

MCP6024-EP
U16.2

8
10

9

1
1

4

MCP6024-EP
U19.3

7
5

6

1
1

4

MCP6024-EP
U20.4

2

3
1

1
1

4

GND GND GND GND

Sensor5
CN11

1 1
2 2

*
33k
R8

SS21-BBIWA2-R
SW2

2 4

1 3

MCP3208-BIP
U21

C
H

2
3

C
H

3
4

D
G

N
D

9

C
S
S
H

D
N

1
0

C
LK

1
3

V
R

E
F

1
5

D
IN

1
1

C
H

0
1

C
H

1
2

D
O

U
T

1
2

A
G

N
D

1
4

V
D

D
1

6

C
H

6
7

C
H

7
8

C
H

4
5

C
H

5
6

GND

Select voltage
P1

3

1
2

GND

Reset
K1

Figure D.1: Circuit diagram of total system

	Introduction
	The goal of the project
	Problem definition
	State of the art skeleton instrumentation
	Subdivision of the system
	Structure of the thesis

	Program of Requirements
	General requirements
	Specific requirements

	Measuring Ice Temperatures
	Infrared sensors
	The principles of an IR sensor
	Sensors available on the market

	Implementation of the sensor
	Setting up the MLX
	Changing the emissivity

	Measuring Location and Velocity
	Tracking sensors
	Sensor fusion
	The Kalman filter
	A motion model
	The model according to Kalman
	The Kalman algorithm

	Implementation

	Power Management and Battery System
	Requirements of the battery
	Energy density
	Safety
	Capacity

	The implementation
	Undervoltage Protection
	Overcurrent Protection
	Voltage regulation

	PCB Design and Prototype Implementation
	Results and Discussion
	Temperature measurements
	Localisation system
	Inertial Measurement Unit
	GNSS receiver
	Sensor fusion - Q and R matrices
	Sensor fusion - Kalman filter

	Power management system
	PCB design and prototype implementation

	Conclusion
	Conclusions
	Recommendations and future work

	References
	IR sensor - setting emissivity
	GNSS receiver - SAM-M8Q
	UBX-CFG-GNSS message structure
	UBX-CFG-GNSS message code

	KF implementation
	MATLAB code
	Results Kalman filter

	Total circuit diagram

