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1 Introduction

The Netherlands is well known as a trading country with the port in Rotterdam
being Europe’s largest sea port. The ships that arrive and depart daily sail
through the north sea from and to all kinds of ports around the globe. For
such ships, decreasing travel time means earning more money. This results in a
heavy incentive to have a ship which sails through the waters with much more
ease than a ship which does not make use of the water flow.
The research institute MARIN, Maritime Research Institute Netherlands, spe-
cializes in creating cleaner, safer and smarter ships which make sustainable use of
the sea. At MARIN, the viscous-flow solver PARNASSOS is frequently used to
compute the flow of water around ships sailing in still water, without in-coming
waves. The ship-generated waves can be computed in order to determine how
the form of the ship improves or deters its own travel speed and comfort. With
this in mind, PARNASSOS can be used as an analysis tool in ship hull opti-
mization projects. Here follows an example of the water flow around a vessel in
PARNASSOS:

Figure 1: Top view of water flow

One of the aspects of PARNASSOS is the trade-off when choosing how many
grid points are necessary for a simulation. When more grid points are needed,
the calculation time for the water flow goes up. However, most of the times, a
lot of grid points are needed for a more detailed simulation of the water flow.
An example is the water flow for the ship above. Both images in Fig. 2 show
the wave pattern of the water surface created by the ship, where the blue line
comes from having fewer grid points and the red line comes from having more
grid points. The left image shows the waves that are closer to the ship and the
image on the right shows the waves that are further away from the ship.
It can be seen that having more grid points gives a significant difference in
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(a) Water surface close to ship (b) Water surface far from ship.

Figure 2: Wave pattern of the water surface created by the ship

computed wave patterns, especially when going further away from the ship. To
counter the fact that more grid points are needed for a more detailed simulation,
the program has to work faster in order to keep the time to get the water flow
in check. This paper will be about a way to try to improve the part of the
program that solves linear equations such that those actions take less time.

The next two main sections will discuss some of the important parts of how
PARNASSOS is set up. The first part are the equations behind the physics
of water flow. The second main part consists of the grids and how they are
chosen to be made, the boundary conditions of the model, the discretizations
of the physical equations to make them suitable for the solver and the solution
procedure of PARNASSOS.

After the foundation has been laid, the way to improve the solver can be ex-
plained in section 4. This section also includes the tests that are done to compare
the new options with the previous ones, with the previous options being imme-
diately put to the test.

Sections 5,6 and 7 will discuss the new options for the solver in PARNASSOS.

Finally, all results will be mentioned in a small summary at the end.
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2 Composition water flow model

2.1 Physics

In order to correctly model a natural phenomenon, one must know the physical
interactions that are significant and the equations that simulate those inter-
actions. For this reason, the next subsections will explain the equations that
model water flow and what choices are made to get them.

2.1.1 Navier-Stokes

It is at first assumed for the water flow that the water is an Newtonian fluid.
One of the equations in the Navier-Stokes equations is the continuity equation
for fluid flow:

∂ρ

∂t
+∇ · (ρu) = 0

where ρ is the fluid density, t is time and u is the flow velocity. The flow is
incompressible, which means ρ is constant in space and time. This results, when
ρ 6= 0, in the above equation simplifying to

∇ · u = 0.

After combining the above equation with other equations, the Navier Stokes
equations become

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p+ ν∇2u + f

where p is the pressure and f are the external forces. When the variables are
transformed to be dimensionless, two constants appear in the equations: The
Reynolds number appears in front of the ∇2u term and the Froude number
appears in front of the f term in the equations:

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇∗p∗ +

1

Re
∇∗2u∗ +

1

Fr2
f∗

The Reynolds number, Re, is a dimensionless number defined as

Re =
LVs

ν

where ν = µ
ρ is the dynamic viscosity of the fluid, L is the characteristic linear

dimension of the system and Vs is a characteristic velocity. L can, for example,
be the length of the ship from bow to stern and Vs can be the average speed of
the ship.
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The next assumption made for the water flow is that the flow is stationary,
which means that the velocity won’t change over time:

∂u

∂t
= 0⇔

∂u∗

∂t∗
= 0

Substituting the equality into the Navier-Stokes equations results in the follow-
ing equations:

(u∗ · ∇∗)u∗ = −∇∗p∗ +
1

Re
∇∗2u∗ +

1

Fr2
f∗

If the Reynolds number is large, turbulent flow comes more into play and the
equations are more difficult to solve in the regular ways of modeling water flow.
One of the approaches is using the Reynolds decomposition.

2.1.2 Reynolds decomposition

The Reynolds decomposition is a technique that splits the pressure p into a time
averaged component p̄ and a fluctuating component p′. The same is done for
each component of the velocity vector u.
For a stationary flow of an incompressible Newtonian fluid, we get the equations
1 (in Cartesian coordinates), where the Einstein summation convention applies
to repeated indices:

ūj
∂ūi

∂xj
= f̄i −

∂p̄

∂xi
+ µ

∂2ūi

∂xj∂xj
−

∂

∂xj

(
u′iu
′
j

)
where fi are external forces and µ is the fluid kinematic viscosity. These equa-
tions are called the Reynolds-Averaged Navier-Stokes (RANS) equations and
the term u′iu

′
j in these equations is usually difficult to model.

2.1.3 Eddy viscosity

The term u′iu
′
j is called the Reynolds-stress. One of the first ways to model this

term is with the concept of eddy viscosity2:

u′iu
′
j =

1

3
u′iu
′
iδij − νt

(
∂ūi

∂xj
+
∂ūj

∂xi

)
where νt is the eddy viscosity and δij is the Kronecker delta function:

δij =

{
1 if i = j

0 if i 6= j

1Equations are from section 2.1 of Giancarlo (2009)
2Equations are from section 3.1 of Giancarlo (2009)
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There are more possible ways to model this term, a few of which are in the paper
from Eça & Hoekstra (2000). Two of these are described in the next section.

2.1.4 Turbulence modeling: Menter turbulence model

In PARNASSOS, various turbulence models can be chosen. The variants are
described in the paper from Eça & Hoekstra (2000). The turbulence model that
is mostly used is the one-equation model from Menter. On occasion, the two
equation model k − ω SST is used. The equations for the following two models
are for the dimensionless case.

The one equation model of Menter is as follows:

It comes from the k − ε equation:

∂(ν̃t)

∂t
+

3∑
j=1

∂(uj ν̃t)

∂xj
= c1D1ν̃t

√
S +

3∑
j=1

∂

∂xj

[
(µ+ σν̃t)

∂ν̃t

∂xj

]
− c2E1e

The eddy-viscosity in the one-equation model of Menter is as follows:

νt = D2ν̃t

with the equations:

D1 =
νt + µ

ν̃t + µ

E1e = c3EBB tanh

(
Ek−ε

c3EBB

)

D2 = 1− exp

−( ν̃t

Aκµ

)2


Ek−ε = ν̃t
2

(
∇
√
S · ∇

√
S

S

)
EBB = ∇ν̃t · ∇ν̃t

where S is the strain rate squared and µ is the viscosity of the fluid.

The equation for γ is:

γ =
β

β∗
−
σκ2
√
β∗

The model constants are:

c1 = 0.144 , c2 = 1.862 , c3 = 7
κ = 0.41 , σ = 1 , A = 13
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2.1.5 Turbulence modeling: k − ω SST Turbulence model

In this section, we discuss the k − ω Shear Stress Transport (SST) turbulence
model. The eddy viscosity is defined as follows:

νt =
k

ω

where k is the turbulent kinetic energy and ω the specific rate of dissipation
of the eddies. The quantities k and ω are obtained from the solution of the
transport equations

∂k

∂t
+

3∑
j=1

∂(ujk)

∂xj
= νtS − β∗ωk +

3∑
j=1

∂

∂xj

[
(µ+ σkνt)

∂k

∂xj

]
and

∂ω

∂t
+

3∑
j=1

∂(ujω)

∂xj
= αS − βω2

+

3∑
j=1

∂

∂xj

[
(µ+ σωνt)

∂ω

∂xj

]
+ 2(1− F1)

σω2

ω

 3∑
j=1

∂k

∂xj

∂ω

∂xj


where S is the strain rate squared. The equation for γ is:

γ =
β

β∗
−
σωκ

2

√
β∗

The ω equation can be integrated up to the wall. The model constants, which
are the constants in the equations without number in subscript and are denoted
by φ, are obtained from

φ = F1φ1 + (1− F1)φ2

where the model constants for φ1 are:

σk1 = 0.5 , σω1 = 0.5
β∗ = 0.09 , β1 = 0.075
κ = 0.41 , α1 = 0.5532

and the model constants for φ2 are:

σk2 = 1 , σω2 = 0.826
β∗ = 0.09 , β2 = 0.0828
κ = 0.41 , α2 = 0.4404

The blending function F1 is given by

F1 = tanh(arg4)
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with

arg = min

[
max

( √
k

β∗ωd
,

500µ

d2ω

)
,

4σω2k

CDkωd2

]
and

CDkω = max

(
2σω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
where d is the distance to the closest surface.

2.1.6 Summary

In the RANS equations,

ūj
∂ūi

∂xj
= f̄i −

∂p̄

∂xi
+ µ

∂2ūi

∂xj∂xj
−

∂

∂xj

(
u′iu
′
j

)
, the difficult to model the Reynolds-stress u′iu

′
j will be modeled, see section 2.3.

The turbulence model in section 2.4 will be used to model the eddy viscosity
with the boundary conditions from section 2.2.2. Then with the continuity
equations,

∇ · u = 0,

the flow of water around an object can be modeled.
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2.2 Computational decisions

Now that the equations to model water flow are known, the next step is to choose
how to approximate the solution to the equations with the current boundary
conditions. In the following subsections, the grids, the solution procedure and
the discretizations will be explained.

2.2.1 Grids

There are two grids: the physical grid and the computational grid.

The directions in the physical grid are the mainstream direction of the flow of
water, ξ ,the direction which is perpendicular to the surface of the ship, η ,
and the last direction is the one perpendicular to both of the two defined first,
ζ. The physical grid is assumed to be body-fitted to the hull of the ship. The
following picture shows the physical grid on the starboard side of a ship, where
the grid of a constant ξ plane is shown for three different values of ξ.

Figure 3: The physical grid for a ship for certain constant planes ξ
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Because the ship is symmetric, only the starboard side of the grid needs to be
calculated.
The 3D computational grid has points with the coordinates i, j and k which
correspond respectively to the directions in the physical grid ξ, η and ζ.

p, νt
u

v

w

In each point on the grid, we have the following collocated unknowns: The
velocities in the directions i, j and k, which are respectively u, v and w, the
eddy viscosity in that point, νt, and the pressure in that point, p are considered
as unknowns.

2.2.2 Boundary conditions

To model the equations for a certain ship, boundary conditions are necessary.
An important constant to repeat for the next part is the length of the ship, L.
These boundary conditions are for the most part described in the paper of van
de Ploeg, Starke & Veldhuis (2013). To describe the boundary conditions, let
there be an (x, y, z)-co-ordinate system fixed to the ship with the direction of x
positive going towards the aft and the direction of z upward into the sky.

The undisturbed water surface is located at z = 0. If the ship’s generated waves
are not taken into account at z = 0, symmetry conditions are imposed. Oth-
erwise, free-surface boundary conditions, as described in the paper of van de
Ploeg, Starke & Veldhuis (2013), are imposed.

On the hull of the ship, there are Dirichlet conditions for the velocity compo-
nents. This follows from the assumption that there is no slip on the hull and
that there is no water flowing through the hull.

The inflow boundary is located 0.5L in front of the bow and the outflow bound-
ary at 1.5L behind the transom. Only the starboard side needs to be taken into
account, because of symmetry conditions on the boat itself.
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The lateral outer boundary has the form of a quarter of a cylinder with axis
y = 0, z = 0 and radius 1.0L. At this boundary, tangential velocities and
pressure found from a potential-flow computation are imposed. Since that com-
putation already gives for much of the wave pattern good results, these boundary
conditions hardly cause any wave reflection, although they are of the Dirichlet
type.

The starting conditions are taken as follows: If a one-equation turbulence model
is used, then the eddy viscosity on the hull of the ship and on the elliptical
boundary is zero. On the other boundaries, similar kind of starting conditions
are used in the turbulence models as for mass and momentum equations. For
example: everywhere the velocity of the water equal to the average speed of the
ship, Vs.

2.2.3 Discretization

To get a good discrete version of the continuous equations, the following choices
were made:

• For the numerical evaluation of the grid metric terms, second-order central
difference schemes are used

• In the continuity equation, a second-order three-point backward scheme
is used for the mainstream derivative and a third-order four-point scheme
with a fixed bias in normal and girthwise direction.

• For the derivatives of the velocities that occur in the convective terms,
a second-order upwind scheme is used in the streamwise direction and a
third-order upwind scheme for the normal and girth-wise direction.

• The direction of the discretization of the pressure gradient, in the mo-
mentum conservation equations, is taken in the opposite direction of the
direction of the discretization of the pressure gradients, in the continuity
equation. This prevents the even-odd decoupling of the pressure.

• All second derivatives in the diffusive terms are discretized by second-order
central-difference schemes.

2.2.4 Solution procedure

PARNASSOS uses a marching solution scheme with the planes being roughly
perpendicular to the mainstream direction of the flow; This means that the pro-
gram will work with constant planes, which is the set of points in the physical
grid for which ξ is constant, in the direction of the flow of the water. Once
updating variables in downstream direction and once updating variables in up-
stream direction will be called a global iteration step.

In short, the one global iteration step goes as follows:

13



1. Bow to stern; update per constant plane:

• First eddy viscosity in each point of the calculation grid

• Then the velocities and the pressure in each point of the calculation
grid

2. Stern to bow; update per constant plane: the pressure in each point of
the calculation

One global iteration step will be explained in more detail:
First in each plane, the eddy viscosity will be approximated in every point using
the velocity and pressure calculated previously, after which a linear equation is
solved to update the velocity and pressure in every point. To be more specific
about the calculation, the details are given below.

Let the number of grid nodes in the stream, normal and girthwise direction
respectively be NX, NY and NZ. The turbulence model equations are treated
as uncoupled from the other equations. The complete discretization can be
written as

F (uijk, vijk, wijk, pijk, (νt)ijk) = 0 (1)

where F is a vector-valued function with 5 × NX × NY × NZ components.
When n is the number of global iterations steps, then the calculations of the
components in the next global iteration goes as follows:

1. Compute the eddy viscosity (νt)
n
ijk approximately from

F (un−1ijk , v
n−1
ijk , wn−1ijk , p

n−1
ijk , (νt)

n
ijk) = 0

If a one- or two-equation turbulence model is used, the transport equa-
tion(s) are still solved using a plane-by-plane strategy

2. Linearize the RANS-equations, using (νt)
n
ijk, and compute unijk, vnijk, wnijk

and pnijk by solving the resulting linear system.

This calculation will be repeated in every plane from the inflow boundary to
the outflow boundary. Next, the method is going through the planes from the
stern of the ship to the bow updating the pressure in each point of the plane.

It is possible to solve the variables of multiple planes simultaneously in each
global iteration, as described in the paper from van der Ploeg, Eça & Hoekstra
(2000) in section 3.1. Let the amount of consecutive grid-planes be g. The re-
sulting coefficient matrix will be g times larger than with only taking one plane
each time and contains terms that describe the coupling between all g planes.

Another possibility is to take less grid points in the girthwise direction. The
reduction of the amount of grid points results in the ability of faster finding an
approximation of the flow around the ship. This approximation can afterwards
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be improved when it is used as a starting point with the grid points in the
girthwise direction again being NZ.
The value for the reduced amount of grid points in the girthwise direction is
named ubk.

2.2.5 Linear system solver and preconditioning

The linear system that is going to be described is the one from step 2 in the
global iteration from the previous subsection, which comes from the RANS-
equations. The matrix, that contains the coefficients which account for the
coupling between the separate ξ = constant planes, is denoted as A. Let the
entries of A be grouped in blocks so that all elements multiplying the variables
in a ξ = constant plane form a block. Such a block is of size 4 × NY × ubk
and will be represented by one entry Ai,l, in which i an l are row and column
indices.
A has the following penta-diagonal structure following the choices for the dis-
cretization of the equations:

A =



D1 E1 F1 0 0 0 · · ·
C2 D2 E2 F2 0 0 · · ·
B3 C3 D3 E3 F3 0 · · ·
0 B4 C4 D4 E4 F4 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

0 · · · 0 0 Bg Cg Dg


As an example, lets assume you take only two constant planes (g = 2). The
matrix A will be

A =

[
D1 E1

C2 D2

]
The block D1 contains all the numbers that represent the connections between
the points in plane 1 after discretization. Same for D2 with plane 2. The block
E1 and C2 contain the numbers that represent the connections between the
points in plane 1 and the points in plane 2.

The linear system is solved with a preconditioned version of GMRES(m), which
will be explained in subsection 3.1.
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3 Analysis of iterative solver PARNASSOS

The previous section ended with creating a sub-problem in order to get the
simulation for the water flow, which is that the linearized equations need to
be solved. In order to better explain how PARNASSOS solves this problem, a
more rigorous explanation of an integral part of PARNASSOS is needed: the
solve routine preconditioned GMRES(m), which is a more specific version of
GMRES. Therefore, the following subjects will be discussed:

• What GMRES and preconditioning is

• How the data that is generated in another part of PARNASSOS is struc-
tured and what its origins are from physics

• How GMRES is coded to minimize amount of calculations needed

3.1 GMRES and Preconditioning

Given an n×n matrix A and n× 1 vector b, finding an n× 1 vector x such that
Ax = b is a well known and well researched problem. There are mainly two ways
to categorize algorithms which solve such problems: iterative or direct. Direct
methods give an exact solution for the problem and iterative methods give an
approximate solution for the problem. The problem with direct methods is that
when the matrix becomes large, it is much slower to solve the problem with
a direct method than an iterative method. Combined with the argument that
for most problems approximate solutions are good enough for large problems,
the mainly used methods are iterative methods. One of those methods is called
GMRES.
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3.1.1 GMRES: basic algorithm

For the linear problem Ax = b, where A is non-singular, The Krylov subspace
Km is defined for a vector x0 ∈ Rn in the following way, where r0 = b−Ax0:

Km(A, x0) = span(r0, Ar0, . . . , A
m−1r0)

Any vector x in x0 +Km(A, x0) can be written as

x = x0 + Vmy

where y is an m-vector and Vm is an n×m matrix of orthonormal vectors which
form a basis of Km(A, x0). To get the solution for Ax = b, find a vector y that
minimizes

||b−Ax||2 = ||b−A(x0 + Vmy)||2
When you have the Hessenberg matrix H̄m for which holds: AVm = Vm+1H̄m,
the problem can be reformulated as finding the ym which minimizes

||βe1 − H̄mym||2
where β = ||b − Ax0||2. With the vector ym the approximate solution xm =
x0 + Vmym can be calculated. The algorithm for this basic version of GMRES
is given in algorithm 1.

Algorithm 1 Basic GMRES

1: Compute r0 = b−Ax0, β := ||r0||2, and v1 := r0/β
2: for j = 1, . . . ,m do
3: Compute wj := Avj
4: for i = 1, . . . , j do
5: hij := (wj , vi)
6: wj := wj − hijvi
7: hj+1,j = ||wj ||2.If hj+1,j = 0 set m := j and go to 9
8: vj+1 = wj/hj+1,j

9: Define the (m+ 1)×m Hessenberg matrix H = {hij}1≤i≤m+1,1≤j≤m
10: Compute the minimizer of ||βe1 − H̄mym||2, ym, and xm = x0 + Vmym.

Subsection 3.1.1 is mainly based on chapter 6.5 on page 172 from Iterative Methods for
Sparse Linear Systems (Saad, 2003)
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3.1.2 GMRES(m): Restarting GMRES

When m becomes large, the amount of memory used and the computations
become large. On way of solving this problem is by ’restarting’ the algorithm
after a certain amount of steps. After applying algorithm 1 with the starting
vector x0 and fixed m, the vector xm is a better approximation for the solution of
Ax = b than x0. Therefore, instead of taking x0 as starting vector, the restarted
version takes xm as the new starting vector. This restarting of GMRES is done
until xm is sufficiently close to the true solution.

3.1.3 Properties of GMRES

Memory: Lets assume that there are maximal p elements in every row of A. At
the end of step m in the algorithm, the following elements are in the memory:

• The elements in the matrix A: np elements

• The elements in the (m+1)×m Hessenberg matrix: (m2 +m)/2 elements

• The elements in the vectors vj and wj : 2(m+ 1)n elements

• The starting values r0 and β: n+ 1 elements

Complexity of calculations: The complexity of the calculations is as follows:

• Letting j go from 1 to m:

– calculating the vector wj by multiplying the n×n matrix A with the
n× 1 vector vj : 2np flops

– Letting i go from 1 to j:

∗ inner product between wj and vi to get hij : 2n flops

∗ updating the vector wj : 2n flops

– subtotal loop over i: 4jn flops

– Taking the 2-norm of wj : 2n flops

– calculating vj+1: n flops

• subtotal loop over j: 2mnp+ 2(m2 +m)n+ 3mn flops

• Computing the minimizer ym: (m+ 1)m flops

• Computing xm: mn+ n flops
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Convergence: There is a corollary known for the convergence of GMRES when
the matrix A is diagonalizable 3.

Theorem 1. Let Pm be all polynomials of degree less than m and let σ =
{λ1, . . . , λn} be the eigenvalues of A. Suppose A is diagonalizable so that A =
XΛX−1, where Λ = diag(σ) and the columns of X are the eigenvectors of A,
and let

ε(m) = min
p∈Pm:p(0)=1

max
λi∈σ

|p(λi)|

Then the residual norm of the m-th iterate satisfies:

||rm||2 ≤ κ2(X)ε(m)||r0||2
where κ2(X) = ||X||2||X−1||2. If furthermore all eigenvalues of A are enclosed
in the complex plane in a circle centered at C ∈ R with C > 0 and having radius
R with C > R, then

ε(m) ≤

(
R

C

)m
Here is a figure of the complex plane of what is meant with the extra condition
to assure the final inequality:

R
C

Re(z)

Im(z)

0
λi

When A is close to being the identity matrix, C ≈ 1 and R ≈ 0. This means
that the convergence of GMRES is very fast. To change the the linear prob-
lem Ax = b in a way that helps with the convergence of GMRES, the idea of
preconditioning is well known to work.

3Vuik and Lahaye (2017), Scientific Computing (wi4201), Lecture notes TU Delft, Theorem
7.3.1 on page 122
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3.1.4 Preconditioning

Let M be an invertible matrix. There are two types of preconditioning tech-
niques: left and right. Left preconditioning is multiplying both sides of the
original linear problem Ax = b by the matrix M on the left:

M−1Ax = M−1b

Because M is invertible, both equations have the same solutions for x. On the
other hand, when the matrix M is invertible, there exists a unique vector y such
that y = Mx:

AM−1y = b, y = Mx

This is right preconditioning of the original linear problem Ax = b.
The matrix AM−1 or M−1A can have better properties than the matrix A; for
example, M can be made such that the eigenvalues of M−1A are all almost equal
to 1 such that GMRES has better convergence with the equation M−1Ax =
M−1b than with the equation Ax = b. One of the properties that M−1 should
have is that it must be inexpensive to multiply with a vector.

3.1.5 Right- and left preconditioned GMRES

This version of the GMRES algorithm is used for solving the right precondi-
tioned system:

AM−1y = b, x = M−1y

Algorithm 2 Right preconditioned GMRES

1: Compute r0 = b−Ax0, β := ||r0||2, and v1 := r0/β
2: for j = 1, . . . ,m do
3: Compute wj := AM−1vj
4: for i = 1, . . . , j do
5: hij := (wj , vi)
6: wj := wj − hijvi
7: hj+1,j = ||wj ||2.If hj+1,j = 0 set m := j and go to 9
8: vj+1 = wj/hj+1,j

9: Define the (m+ 1)×m Hessenberg matrix H = {hij}1≤i≤m+1,1≤j≤m
10: Compute the minimizer of ||βe1 − H̄mym||2, ym, and for m xm = x0 +

M−1Vmym.

The following version of the GMRES algorithm is for solving the left precondi-
tioned system:

M−1Ax = M−1b
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Algorithm 3 Left preconditioned GMRES

1: Compute r0 = M−1(b−Ax0), β := ||r0||2, and v1 := r0/β
2: for j = 1, . . . ,m do
3: Compute wj := M−1Avj
4: for i = 1, . . . , j do
5: hij := (wj , vi)
6: wj := wj − hijvi
7: hj+1,j = ||wj ||2.If hj+1,j = 0 set m := j and go to 9
8: vj+1 = wj/hj+1,j

9: Define the (m+ 1)×m Hessenberg matrix H = {hij}1≤i≤m+1,1≤j≤m
10: Compute the minimizer of ||βe1 − H̄mym||2, ym, and for m xm = x0 +

Vmym.

3.1.6 Original choice preconditioning PARNASSOS

Let the matrix A be as defined in chapter 2.2.5:

A =



D1 E1 F1 0 0 0 · · ·
C2 D2 E2 F2 0 0 · · ·
B3 C3 D3 E3 F3 0 · · ·
0 B4 C4 D4 E4 F4 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

0 · · · 0 0 Bg Cg Dg


The matrix M is constructed such that it has the block structure

M =



M1 0 0 0 0 0 · · ·
C2 M2 0 0 0 0 · · ·
B3 C3 M3 0 0 0 · · ·
0 B4 C4 M4 0 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

0 · · · 0 0 Bg Cg Mg


which will be an approximation of the lower triangular part of the original
matrix A: 

D1 0 0 0 0 0 · · ·
C2 D2 0 0 0 0 · · ·
B3 C3 D3 0 0 0 · · ·
0 B4 C4 D4 0 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

0 · · · 0 0 Bg Cg Dg


For each i, the approximation Mi is created by first making an incomplete LU
decomposition of Di, which makes Mi of the form Mi = LiUi. The incomplete
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decomposition is constructed on a 4 × 4 block-level, where every ’entry’ in Li
and Ui is a 4× 4 block.
The desired requirements are that both the construction and the triangular
solves using the matrices Li and Ui should not cost too many floating-point
operations and can be implemented in an efficient way.

Let the entries of Di be grouped in square blocks of size 4 such that all elements
multiplying the velocity components and pressure in a grid point form a block.
Such a block will be represented by one entry. The matrix Di has a block
sparsity pattern that corresponds to the following 9-point discretization stencil:

· · · · ·
· CNW CN CNE ·
· CW CP CE ·
· CSW CS CSE ·
· · · · ·

The coefficients in CNW , CNE , CSW and CSE are relatively small, and therefore,
those blocks are neglected during the incomplete LU decomposition. Further-
more, when fill-in blocks are neglected, this all results in the matrix Li + Ui
having the block sparsity patter that corresponds to the following 5-point sten-
cil:

· · · · ·
· · UN · ·
· LW UP UE ·
· · LS · ·
· · · · ·

where the diagonal of the matrix L consists of only identity matrices. However,
some of the fill-in blocks are not neglected when the option 7blockdiag is chosen
for the preconditioner in PARNASSOS. This option is mentioned in section 4.2.3
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3.2 Data generation and storage

In order to optimize the way to solve the discretized physical equations, one
must first know the matrix that comes out of the discrete equations. After this
is known, the best way to solve this linear equation can be chosen.
When looking back at the generated matrix A from section 2.2.5, note that the
block elements Bi, Ci, Di, Ei and Fi are blocks of size 4×NY × ubk.

A =



D1 E1 F1 0 0 0 · · ·
C2 D2 E2 F2 0 0 · · ·
B3 C3 D3 E3 F3 0 · · ·
0 B4 C4 D4 E4 F4 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

0 · · · 0 0 Bg Cg Dg


From the way PARNASSOS discretizes the physical equations, the blocksBi, Ci, Ei
and Fi are block diagonal matrices where the blocks on the main diagonal are
of size 4× 4. The Di blocks can be filled in by the following stencil: T

PP Q R
S

 , with as positive directions :

 k
+ j


All the elements in the following matrix are 4 × 4 block matrices. In every
4× 4 block matrix, including the 4× 4 block matrices on the main diagonals of
Bi, Ci, Ei and Fi, the coefficients are from the following equations:

• row 1. momentum equation in main stream direction (ξ, i-coordinate)

• row 2. continuity equation

• row 3. momentum equation in girthwise direction (ζ, k-coordinate)

• row 4. momentum equation in wall-normal direction (η, j-coordinate)

and the unknowns are as follows:

• First column of 4× 4 block multiplies U1 (velocity in x-direction).

• Second column of 4× 4 block multiplies U2 (velocity in y-direction).

• Third column of 4× 4 block multiplies U3 (velocity in z-direction).

• Fourth column of 4× 4 block multiplies P (pressure).

The blocks will be noted as Qj,k, PPj,k, Rj,k, Sj,k and Tj,k in the text and in the
following matrix as Q, PP , R, S and T with the coefficients left of the matrix in
the form (j, k). The actual matrix DL1 is a 4×NY × ubk block matrix, where
j goes from 1 to NY and k goes from 1 to ubk. The following example of the
structure, NY = 4 and ubk = 3
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(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

(4, 1)

(4, 2)

(4, 3)

T

T

T

T

T

T

T

T

R

R

R

R

R

R

R

R

R

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

PP

PP

PP

PP

PP

PP

PP

PP

PP

S

S

S

S

S

S

S

S

Currently, the coefficients of the matrix A are stored per 4 × 4 blocks, where
they are organized by four indices:

1. The nonzero block diagonal the 4 × 4 block belongs to, for example the
block diagonal with only S

2. The plane the variables originate from, which is noted with the index L1
in DL1 or BL1

3. The index j, which corresponds to the direction that is perpendicular to
the surface of the ship, η

4. The index k, which corresponds to the direction that is perpendicular to
η and the mainstream direction of the flow of water
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3.3 Overview solver

In PARNASSOS, the file where the GMRES(m) is coded into is called preclin-
sol.f. The input of this file contains the following:

• The matrix A of size 4 ·g ·NY ·ubk subdivided in 4×4 blocks as described
in the previous subsection

• The size of the matrix A, 4 · g ·NY ·ubk, that has already been calculated

• The previous approximation to the solution of the linear equation

• The right-hand side of the linear equation that needs to be solved

• Some work memory for the subroutines in the file

Finally, other variables are imported from other files in PARNASSOS that are
read and stored by other parts of PARNASSOS that are needed for the calcula-
tions. Examples of these are the tolerance threshold for GMRES and at which
iteration GMRES needs to be restarted, as stated in section 3.1.2.

The use of a matrix M as the preconditioner can be broken up into two parts.
The first part is preparing the matrix M for repeated use by transforming the
matrix M into a form that will be less computationally expensive than before
the transformation. The other part is the repeated use of the new form of the
matrix M .
The code in preclinsol.f is structured as follows to solve the linear equation
Ax = b:

1. The preconditioner M , that is based on the matrix A, is calculated

2. The preconditioned version of the rhs, M−1b, is calculated if the left pre-
conditioned version of GMRES is chosen

3. The repeated version of GMRES, GMRES(m), is applied with chosen
parameters

4. The preconditioned solution, x, is calculated if the right preconditioned
version of GMRES is chosen
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4 Main goal of the research

As mentioned in the intro, the main goal of this research is to make the solver
faster. One of the ways to do this is to increase the convergence of GMRES by
using a different preconditioner as the one mentioned before in section 3.1.6. If
the full matrix that is used in GMRES is noted as the following:

A =



D1 E1 F1 0 0 0 · · ·
C2 D2 E2 F2 0 0 · · ·
B3 C3 D3 E3 F3 0 · · ·
0 B4 C4 D4 E4 F4 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

0 · · · 0 0 Bg Cg Dg


, then the current objective is to get the following matrix M as preconditioner

M =



D1 0 0 0 0 0 · · ·
C2 D2 0 0 0 0 · · ·
B3 C3 D3 0 0 0 · · ·
0 B4 C4 D4 0 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

0 · · · 0 0 Bg Cg Dg


The main difference between this preconditioner M and the one in section 3.1.6
is that in this case on the main diagonal the matrices are not altered. This may
bring M−1A closer to being the identity matrix than the matrix M in section
3.1.6, which will help with the convergence of GMRES. The downside is that
to solve M−1A in an efficient way, linear equations of the form DL1x = y have
to be solved. This means that direct solvers need to be implemented. The first
main section will explore the LU decomposition as an direct solver for the linear
equation DL1x = y. The second main section will let M go back to the form in
section 3.1.6, where the blocks Di are replaced with matrices Mi and explore an
alteration to the LU decomposition, namely the ILU(N) decomposition that
is more general than the ILU already used. The final main section describes
a different option for a direct solver which is specifically made for the type of
matrices that are similar to DL1.

In order to compare and determine which option as preconditioner is superior,
the next section will describe the test that is done to all options.

4.1 Tests

To compare the different options as preconditioner in PARNASSOS, they are
separated into different batches first. The batches are as follows:

1. The original options for preconditioner of PARNASSOS; done in the orig-
inal file, the one least modified to still work and without LAPACK
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2. The LU decomposition as direct solver for preconditioner for the blocks
on the main diagonal

3. The ILU(N) decomposition with multiple N values

In each of the batch, the options are compared with each other and the best
option(s) are taken from the batch and compared with the others who were the
best. What it means to be the best is a combination of how long one global
iteration step takes with the preconditioner and the convergence of one global
iteration step. The decisions will be discussed in the section after each test.

One of the decisions that can be said beforehand is that the amount of planes
doesn’t matter when comparing different preconditioners as long as the amount
of planes is constant during the comparison. The amount of planes, g, can be
taken larger to increase the global iteration speed of PARNASSOS with the cost
of larger linear equations to solve in GMRES due to an increased amount of cou-
plings between ξ constant planes. Changing only the preconditioners influences
the convergence speed of the GMRES that solves those linear equations, not
other parts of PARNASSOS. The only reason that the test is done for multiple
values of g is to see of the difference in convergence speed between different
preconditioners is consistent over multiple values of g.

The residual comes out of the values that are computed in the current iteration
filled in into the function F in 1. closer to 0 means converged more.

The starting values for the tests are mentioned in the appendix in section 12.1.

The starting values for the model comes from an actual ship form, not just some
arbitrary block, after 300 global iteration steps have been done with 7blockdiag
as preconditioner.

Without abbreviations, the tables get unnecessarily large. Therefore, the fol-
lowing abbreviations have been used in the tables that contain the results:

• ttotsol: time triangular solves (applying preconditioner)

• timeprec: time construction of L and U (creating preconditioner)

• ttotmv: time for matrix-vector multiplications

• timegm: total time linear solvers

• ttotddotp: total time inner products

• tcoeff: time for construction Jacobean

• tturb: time for turbulence model

• exectm: total execution time
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• nummatvec: total number of matvecs

• nnewton: total number of newton iterations

4.2 Test original options preconditioner PARNASSOS

4.2.1 Test: 1blockdiag

The next tests are done with the option 1blockdiag as preconditioner in PAR-
NASSOS. The option 1blockdiag is choosing block jacobi as preconditioner,
which is well parallelizable, but does not have a good iterative convergence.

amount of planes (g) 2 3 4 5

ttotsol 0.00 0.00 0.00 0.00
timeprec 1.97 1.94 1.98 2.00
ttotmv 176.41 231.13 258.52 310.28

timegm 401.58 487.57 555.06 638.97
ttotddotp 142.83 160.69 180.58 200.35

tcoeff 14.84 14.83 14.41 14.60
tturb 8.71 8.73 8.72 8.95

exectm 430.14 515.97 582.98 667.29

nummatvec 81955 60486 46661 43312
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.423 · 10−3 6.812 · 10−3 7.821 · 10−3 9.045 · 10−3

continuity 2.968 · 10−3 3.866 · 10−3 3.758 · 10−3 5.557 · 10−3

ζ-momentum 1.898 · 10−3 2.023 · 10−3 2.722 · 10−3 2.596 · 10−3

η-momentum 1.428 · 10−3 1.551 · 10−3 1.993 · 10−3 2.001 · 10−3

Table 1: Results for tests with 1blockdiag with total amount of planes varying
from 2 to 5

4.2.2 Test: 3blockdiag

The next tests are done with the option 3blockdiag as preconditioner in PAR-
NASSOS. The option 3blockdiag is having a block-tridiagonal preconditioner
which corresponds to the Succesive Line Overrelaxation method SLOR. The
Succesive Overrelaxation method is explained in more detail in section 5.3.3 of
C. Vuik and D.J.P. Lahaye (2017). This option is moderately parallelizable and
has moderate iterative convergence.
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amount of planes (g) 2 3 4 5

ttotsol 12.84 23.12 30.93 38.25
timeprec 2.08 2.18 2.18 2.17
ttotmv 29.34 44.01 56.02 67.08

timegm 74.33 112.73 144.08 175.00
ttotddotp 19.06 27.16 34.02 40.65

tcoeff 14.69 14.43 14.55 14.33
tturb 8.56 8.67 8.84 8.89

exectm 102.55 140.64 173.12 202.89

nummatvec 13963 11742 10403 9592
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.474 · 10−3 6.896 · 10−3 7.921 · 10−3 9.125 · 10−3

continuity 2.968 · 10−3 3.924 · 10−3 3.827 · 10−3 5.632 · 10−3

ζ-momentum 2.122 · 10−3 2.173 · 10−3 2.996 · 10−3 2.771 · 10−3

η-momentum 1.428 · 10−3 1.549 · 10−3 1.997 · 10−3 2.004 · 10−3

Table 2: Results for tests with 3blockdiag with total amount of planes varying
from 2 to 5

4.2.3 Test: 7blockdiag

The next tests are done with the option 7blockdiag as preconditioner in PAR-
NASSOS. The option 7blockdiag is an optimized version of ILU(1) as described
at the end of section 6.1.This option is not parallelizable, but has a good iterative
convergence.
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amount of planes (g) 2 3 4 5

ttotsol 8.07 11.21 12.64 16.00
timeprec 3.22 3.35 3.36 3.38
ttotmv 7.63 10.85 12.39 15.90

timegm 22.03 30.30 33.84 43.13
ttotddotp 1.87 3.00 3.24 4.80

tcoeff 14.75 14.75 14.42 14.38
tturb 8.62 8.69 8.75 8.90

exectm 50.37 58.63 61.74 71.23

nummatvec 3588 2944 2333 2304
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.465 · 10−3 6.880 · 10−3 7.873 · 10−3 9.093 · 10−3

continuity 2.968 · 10−3 3.915 · 10−3 3.792 · 10−3 5.614 · 10−3

ζ-momentum 2.123 · 10−3 2.173 · 10−3 2.999 · 10−3 2.775 · 10−3

η-momentum 1.428 · 10−3 1.549 · 10−3 1.997 · 10−3 2.002 · 10−3

Table 3: Results for tests with 7blockdiag with total amount of planes varying
from 2 to 5

4.3 Results

When comparing the three options above for a constant g, the maximum resid-
ual of the equations are relatively very close to each other. This is not the case
for the total execution time: 1blockdiag as preconditioner takes for a chosen g
around 3.5× more time to complete a global iteration step when compared to
3blockdiag. When compared to 7blockdiag, 7blockdiag is around 2× faster than
3blockdiag for g = 2 and for g = 5 that ratio is almost up to 2.9. Therefore, the
best choice for preconditioner for this batch is 7blockdiag.

The option 1blockdiag has less elements from the full LU decomposition than
3blockdiag, which in turn has less elements from the full LU decomposition
than 7blockdiag. They also have relatively decreasing amount of total execution
time and decreasing value of nummatvec, which shows a decreasing amount of
repeated GMRES use. Therefore, from these results, the best option to first
take a look at is implementing the full LU decomposition in the options for
preconditioners.
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5 Complete LU decomposition of the main di-
agonal blocks

5.1 Theory

Finding an LU decomposition of the matrix A is defined as finding an upper
triangular matrix U and a lower triangular matrix L such that A = LU . For a
unique decomposition, the entries on the diagonal of the matrix U or the matrix
L have to be all equal to one.

L =


1 0 · · · 0
l2,1 1 · · · 0
...

...
. . .

...
ln,1 ln,2 · · · 1

 , U =


u1,1 u1,2 · · · u1,n

0 u2,2 · · · u2,n
...

...
. . .

...
0 0 · · · un,n


It is not always possible to get an LU decomposition. To always get an LU
decomposition when having a square matrix A, need to permute the rows of A.
This is called LU factorization with partial pivoting. Having the LU decom-
position of a matrix A is great for exactly calculating the solution of the linear
equation. By first calculating the solution y of the equation

Ly = b

and afterwards calculating the solution x of the equation

Ux = y

the solution x is more easily calculated than immediately trying to find the so-
lution for the original linear equation.

The algorithm for calculating the LU factorization of a matrix A without pivot-
ing, where the lower triagnular part of A becomes the matrix L and the upper
triangular part becomes U is the following:

Algorithm 4 Calculate LU decomposition

1: for k = 1, . . . , n− 1 do
2: if A(k,k) = 0 then
3: quit algorithm (breakdown due to pivot)
4: else
5: for i = k + 1, . . . , n do
6: L(i, k) = A(i, k)/A(k, k)
7: A(i, k) = L(i, k)
8: for j = k + 1, . . . , n do
9: A(i, j) = A(i, j)− L(i, k)A(k, j)

One of the things to keep in mind with getting an LU decomposition is that
when not all elements of A are nonzero, that the places where nonzero elements
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can appear in L and U do not overlap with the placing of nonzero elements in
the original matrix A. This is called fill-in. To say that an matrix A has a small
amount of nonzero elements in comparison to its dimensions is normally stated
as A being sparse.
An example of this fill-in is when A is created from a 5-point stencil with the
original grid being 5 × 2. The matrix has at the following places elements not
equal to zero:

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

The matrix L will have the following places which can have elements not equal
to zero:

∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

and U has the following places which can have elements not equal to zero:

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗
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5.2 Implementation

One of the ways to implement the LU decomposition into the code of preclinsol.f
is by using the library LAPACK 4, which is a library containing direct solvers.
From the way the matrices DL1 are structured, it can be surmised that the
best way to store the matrices DL1 is in band matrix form. For example, the
following matrix Z with one superdiagonal and two subdiagonals,

Z =


z11 z12 0 0 0 0
z21 z22 z23 0 0 0
z31 z32 z33 z34 0 0
0 z42 z43 z44 z45 0
0 0 z53 z54 z55 z56
0 0 0 z64 z65 z66


transforms into

Z ′ =


∗ z12 z23 z34 z45 z56
z11 z22 z33 z44 z55 z66
z21 z32 z43 z54 z65 ∗
z31 z42 z53 z64 ∗ ∗


The code that transforms the current way the variables are stored into the band
form to use in LAPACK will be in the appendix in section 12.2.

The function from LAPACK that performs the LU decomposition on a band ma-
trix is called DGBTRF. The abbreviation DGBTRF stands for Double precision
General Band matrix Triangular matrix Factorization. The function DGBTRF
computes an LU factorization of a real valued m-by-n band matrix using partial
pivoting with row interchanges.

The function from LAPACK which applies the LU decomposition to solve the
linear system is called DGBTRS. The abbreviation DGBTRS stands for Double
precision General Band matrix Triangular matrix Solver. DGBTRS solves a
system of linear equations with a general band matrix using the LU factorization
computed by DGBTRF.
The following instructions are applied to all matrices DL1, which is only done
once whenever the full matrix A is changed:

1. The matrix DL1 is transformed in its band matrix form and stored in a
variable called MB.

2. The function DGBTRF is applied to the band version of the matrix DL1 in
MB. The function returns the transformed version of the matrix D′L1, that
contains the LU factorization of DL1, and a vector ipiv which contains the
permutations made.

4http://www.netlib.org/lapack/explore-html/
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3. The band version of matrix DL1 is automatically replaced by the matrix
D′L1 by the function DGBTRF. The vector ipiv is stored in a separate
vector called IPIV.

When the equation DL1x = b needs to be solved for x, one only needs to apply
the function DGBTRS to D′L1, with the corresponding permutation vector ipiv,
and the vector b to get the vector x.
To check if the functions DGBTRF and DGBTRS are correctly implemented on
the matrices DL1 and to check how precise the solutions from those functions
are when used on DL1, the following test is performed for each fixed L1 between
1 and g with the matrices DL1 created from a given model:

1. Create the following 4 ·NY · ubk × 1 vector v: v(k) = k

2. Multiply v with the matrix DL1 to create v2: v2 = DL1 · v

3. Solve the equation DL1 · x = v2 by using DGBTRF and DGBTRS

The expected outcome should be ||x − v||2 being of the order of the machine
precision. This is not the case. After a few tries checking what went wrong
in the code, two major problems occurred: one programming mistake, that
is ultimately fixed, and the problem that the matrices DL1 all have condition
numbers of the order 1023. This means the linear problem DL1x = b is ill con-
ditioned and must be transformed into a linear problem that is well-conditioned.

5.3 Scaling the main diagonal blocks of A

To solve this problem of the matrices DL1 being ill-conditioned, the matrix Q
containing only the 4 × 4 blocks Qj,k on its diagonal to scale the matrix A.
This will be called the diagonal block scaling of the matrix A. The entire linear
system becomes Q−1Ax = Q−1b, which results in each of the linear equations
to solve with DL1 becoming Q−1DL1x = Q−1b′. Each Qj,k block is inverted
using Cramer’s rule, which is doable for 4 × 4 block matrices. This results in
the condition numbers of the matrices DL1 becoming of the order 105, which
means the linear problems Q−1DL1x = Q−1b are well-conditioned. After doing
the test at the previous section for L1 between 1 and 4 with the diagonally
scaled matrix A, the resulting vectors all have absolute errors of order 10−9 and
relative errors of order 10−13.

The previous test was in order to test if the functions DGBTRF and DGBTRS
solved the linear equations DL1x = b. The following test that is done determines
if the entire matrix M , as stated in the beginning of section 4, is correctly
implemented in the code:

1. Create the following 4 ·NY · ubk · g × 1 vector v: v(k) = k.

2. Multiply v with the matrix M to create v2: v2 = M · V .
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3. Apply the diagonal block scaling to both matrix M and vector v2.

4. Solve the equation (Q−1M)x = Q−1v2 by using forward substitution with
blocks of size 4 ·NY · ubk.

• When solving the equations for the 4 ·NY · ubk square blocks on the
diagonal, use DGBTRF and DGBTRS.

The expected outcome should be ||x − v||2 being of the order of the machine
precision.

After doing the test as laid out above, vector x and vector v are partitioned
into g parts of 4 · NY · ubk consecutive elements, which are related to planes.
When comparing each of the parts of x and v, which relate to the same plane,
the absolute error and relative error is calculated and the maximum of those
numbers is taken. The maximum of absolute errors for each plane is between
3.3 · 10−9 and 4.5 · 10−8, for which the maximum of absolute errors increases for
each plane, and the maximum of relative errors is around 4 · 10−13 or around
6 · 10−13.

5.4 Reordering rows and columns to reduce bandwidth

The upper and lower bandwidth of the matrices DL1 are 4 · (NY + 1)− 1. We
try to switch the coordinates of the 4× 4 blocks from (j, k) to (k, j) in order to
reduce the bandwidth in the block matrices Dk when NY > ubk. The upper
and lower bandwidth of the DL1 matrices becomes 4 ∗ (ubk+ 1)− 1. From here
on out, the bandwidth of the matrix will be called NY when the original form
of DL1 is mentioned and the bandwidth of the matrix will be called ubk when
the coordinates in the matrices DL1 are switched.
If Z is the permutation matrix that switches (j, k) around with (k, j), then
ZT = Z−1. Because Z only switches distinct pairs of rows, the permutation
matrix can be written as the product of disjoint transpositions, from which fol-
lows that Z has the property Z−1 = Z. The equation Dkx = y can become:
ZDkZu = Zy with u = Zx.

The condition numbers of the matrices DL1 with bandwidth ubk, are between
1.4 · 105 and 1.7 · 105. The order of the condition numbers are reasonable.
After doing the test from previous chapter on the entire matrix M , with the
matrices DL1 having bandwidth ubk when solving the equation for the square
blocks on the diagonal, the maximum absolute error is between 5.4 · 10−7 and
8.4 · 10−6, for which the absolute maximum error increases for each plane, and
the maximum relative error is between 8.2 · 10−11 and 1.3 · 10−10.

Even though the relative error is of a relatively larger order when the band-
width is ubk instead of NY , this is not a big problem. The relative error with
bandwidth ubk is small enough and the matrix is only being used as a precondi-
tioner. The CPU operator time drastically decreases with bandwidth NZ, thus
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even though the relative error is a bit larger than with bandwidth NY, the direct
solver is better when using the version with bandwidth ubk.

5.5 Tests

The next tests are done with the LU used as component in the preconditioner
M in PARNASSOS to allow for whole blocks on the main diagonal of M . This
version is called block fulli in a new version of the file preclinsol.f

amount of planes (g) 2 3 4 5

ttotsol 186.13 185.88 203.15 248.36
timeprec 544.17 539.99 537.93 537.84
ttotmv 4.73 5.43 6.41 8.03

timegm 756.58 752.52 769.09 816.32
ttotddotp 0.89 0.94 1.09 1.48

tcoeff 14.87 15.18 14.74 14.68
tturb 8.84 8.95 9.19 9.57

exectm 786.56 781.82 798.34 846.05

nummatvec 2160 1441 1178 1147
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.473 · 10−3 6.881 · 10−3 7.887 · 10−3 9.101 · 10−3

continuity 2.968 · 10−3 3.916 · 10−3 3.803 · 10−3 5.608 · 10−3

ζ-momentum 2.122 · 10−3 2.172 · 10−3 2.998 · 10−3 2.776 · 10−3

η-momentum 1.427 · 10−3 1.549 · 10−3 1.997 · 10−3 2.004 · 10−3

Table 4: Results for tests with block fulli with total amount of planes varying
from 2 to 5

Because this is the only option in this batch, this is the best one. Therefore,
the comparison will only be made with the other best options from the other
batches.
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6 ILU(N) decomposition

Because the fill in of the LU decomposition of a sparse matrix A can create an
enormous memory requirement and more nonzero elements to work with, a ver-
sion of LU decomposition was created named ILU(N). The main idea behind
ILU(N) is wanting to find an LU decomposition of the form LU = A + R, in
which the elements of the residual matrix R are small.

6.1 Theory

ILU(0) has the requirement that the matrices L and U in LU = A+R have only
nonzero elements where there are nonzero elements in the matrix A. When going
back to the example of an matrix A which is created from a 5-point stencil with
the original grid being 5 × 2. The matrix has at the following places elements
not equal to zero:

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

The matrix L of the ILU(0) decomposition will have the following places which
can have elements not equal to zero:

∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

and U has the following places which can have elements not equal to zero:
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∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗

Because the amount of fill in is zero, the matrices L and U together have the
same memory requirements as the matrix A. This means the amount of nonzero
elements in the calculations is much smaller than with an LU decomposition.
However, the ILU(0) decomposition is in most cases not a great approximation
of the matrix A. Therefore a trade-off can be made with the amount of fill in
and how accurate the ILU(N) decomposition is to the actual LU decomposition
of the matrix A.

The other ILU(N) are defined recursively from ILU(0). Define LN and UN as
the upper and lower triangular matrices from the ILU(N) decomposition of the
matrix A and let AN = LNUN for all N

To get L1 and U1 for ILU(1), allow for nonzero elements in de L1 and U1 to be
in the same places as the nonzero elements of A0. Then with those restrictions
for the fill in in mind, minimize the elements of R1 in R1 = L1U1 − A. In the
example given before, the matrix A0 = L0U0 have the nonzero elements at the
following places:

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

L1 and U1 have nonzero elements only on the spots where A0 has nonzero
elements. Therefore the nonzero elements of L1 are in the places:
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∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

and U1 has the following places which can have elements not equal to zero:

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗

The rest of the restrictions for LN and UN are of the same form: LN and UN
can only have nonzero elements on the places where AN−1 = LN−1UN−1 has
nonzero elements.

For band matrices formed by a 5-point stencil, the places of the matrix UN from
ILU(N) where nonzero elements can occur is the transpose of the places of the
matrix LN where nonzero matrices can occur. The following picture shows at
what order the fill in occurs in LN if the iterative process is followed, where the
numbers note when the element is possibly nonzero at.
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0
0 0

0 0
0 0

0 0
0 0

0 0
0 1 2 3 4 5 6 0

0 1 2 3 4 5 0 0
0 1 2 3 4 3 0 0

0 1 2 3 4 3 0 0
0 1 2 5 4 3 0 0

0 1 6 5 4 3 0 0
0 7 6 5 4 3 0 0

This figure shows that at first, the fill-in comes inwards with diagonal lines from
the outer diagonal. However, at and after N = 3, the fill in also comes with
diagonal lines outwards from the main diagonal. In order to keep things simple,
it is possible for a certain N that the allowed fill-in is at most N extra diagonals
from the outer diagonal inwards and at most N − 2 extra diagonals from the
inner diagonals outward.

In the current version of ILU(N), the condition for the allowed fill-in at a
certain N is even simpler: N extra diagonals from the outer diagonal inwards
and at most N extra diagonals from the inner diagonals outward.

6.2 Tests

The next tests are done with the ILU used as component in the preconditioner
M in PARNASSOS for N ranging from 0 to 3.

40



amount of planes (g) 2 3 4 5

ttotsol 7.17 10.98 12.79 16.67
timeprec 3.84 3.99 4.02 4.03
ttotmv 9.82 14.57 16.26 21.25

timegm 25.85 37.51 42.03 55.52
ttotddotp 3.10 4.90 5.38 8.12

tcoeff 15.08 14.60 14.84 14.45
tturb 8.62 8.73 8.75 8.92

exectm 56.11 65.84 70.73 83.75

nummatvec 4659 3921 3028 3089
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.457 · 10−3 6.885 · 10−3 7.813 · 10−3 9.114 · 10−3

continuity 2.968 · 10−3 3.925 · 10−3 3.744 · 10−3 5.655 · 10−3

ζ-momentum 2.122 · 10−3 2.172 · 10−3 2.998 · 10−3 2.782 · 10−3

η-momentum 1.427 · 10−3 1.550 · 10−3 1.995 · 10−3 2.005 · 10−3

Table 5: Results for tests with ILU(0) with total amount of planes varying from
2 to 5

amount of planes (g) 2 3 4 5

ttotsol 10.87 13.56 15.18 19.48
timeprec 7.63 7.55 7.54 7.57
ttotmv 7.56 11.08 12.59 16.20

timegm 29.46 37.19 41.30 52.37
ttotddotp 2.02 2.98 3.49 5.26

tcoeff 15.07 14.55 14.56 14.63
tturb 8.72 8.69 8.90 8.89

exectm 58.52 65.38 69.74 80.88

nummatvec 3588 2944 2333 2304
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.465 · 10−3 6.880 · 10−3 7.873 · 10−3 9.093 · 10−3

continuity 2.968 · 10−3 3.915 · 10−3 3.792 · 10−3 5.614 · 10−3

ζ-momentum 2.123 · 10−3 2.173 · 10−3 2.999 · 10−3 2.775 · 10−3

η-momentum 1.428 · 10−3 1.549 · 10−3 1.997 · 10−3 2.002 · 10−3

Table 6: Results for tests with ILU(1) with total amount of planes varying from
2 to 5
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amount of planes (g) 2 3 4 5

ttotsol 15.62 21.43 23.50 30.07
timeprec 10.92 11.40 11.40 11.30
ttotmv 8.24 12.10 13.98 18.50

timegm 38.75 51.70 56.16 70.51
ttotddotp 2.38 3.96 4.26 6.31

tcoeff 14.77 14.77 14.75 14.59
tturb 8.62 8.74 8.81 8.89

exectm 67.30 80.15 84.94 99.10

nummatvec 3913 3273 2600 2622
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.465 · 10−3 6.883 · 10−3 7.870 · 10−3 9.092 · 10−3

continuity 2.968 · 10−3 3.920 · 10−3 3.792 · 10−3 5.614 · 10−3

ζ-momentum 2.124 · 10−3 2.172 · 10−3 2.999 · 10−3 2.776 · 10−3

η-momentum 1.427 · 10−3 1.548 · 10−3 1.999 · 10−3 2.001 · 10−3

Table 7: Results for tests with ILU(2) with total amount of planes varying from
2 to 5

amount of planes (g) 2 3 4 5

ttotsol 21.41 27.24 30.06 37.85
timeprec 17.97 18.84 19.45 19.12
ttotmv 8.87 12.50 14.25 18.48

timegm 52.44 64.85 70.92 86.17
ttotddotp 2.54 3.84 4.28 6.58

tcoeff 15.22 14.95 14.72 14.58
tturb 9.02 8.85 8.90 9.00

exectm 82.08 93.73 99.75 114.91

nummatvec 3930 3306 2592 2636
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.467 · 10−3 6.882 · 10−3 7.869 · 10−3 9.093 · 10−3

continuity 2.968 · 10−3 3.919 · 10−3 3.791 · 10−3 5.618 · 10−3

ζ-momentum 2.124 · 10−3 2.172 · 10−3 3.000 · 10−3 2.775 · 10−3

η-momentum 1.427 · 10−3 1.548 · 10−3 1.996 · 10−3 2.005 · 10−3

Table 8: Results for tests with ILU(3) with total amount of planes varying from
2 to 5
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6.3 Results

Comparing ILU(0) with ILU(1), the latter has used a fewer amount of matrix
vector multiplications with the original matrix on which M is based for every
constant amount of planes than the former. This means that with ILU(1), the
preconditioner GMRES converges more quickly than with ILU(0). due to the
increased amount of matrix vector multiplications, ILU(0) spends much more
time on those kinds of operations than ILU(1). However, ILU(0) has fewer
nonzero elements, which results in a reduced amount of time spend on solving
the linear equation Mx = b and creating the preconditioner than ILU(1). As
a result, the total execution time for one global iteration step with ILU(0) or
ILU(1) is comparable.

When comparing ILU(1) with ILU(2) and ILU(3) for a constant amount of
planes, the increasing amount of elements used seems not to outweigh a poten-
tial for becoming a better preconditioner. In fact, for all given g, increasing
N will increase the amount of matrix vector multiplications, which means that
GMRES with ILU(2) as preconditioner converges slower than with ILU(1) and
ILU(3) converges as good as ILU(2) for the value nummatvec is almost the
same. The increased total execution time seems to come from the fact that they
let GMRES converge less and there are more nonzero elements.

Therefore, ILU(2) and ILU(3) are worse as a preconditioner for GMRES than
ILU(0) and ILU(1). As for the difference between ILU(0) and ILU(1), ILU(0)
seems to be slightly better for g = 2, 3 and 4, while being a bit worse at g = 5.
Therefore, both will be further compared at the end.
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7 Experiment with other direct solver

In this section, a different direct solver is explored. This direct solver is specifi-
cally made for matrices with a 5-point stencil on a rectangular grid.

7.1 Setup idea

The matrix that is considered is the matrix M as stated in section 4, specifically
the matrices DL1 which structure of the nonzero elements are explained in 3.2.
Because M is going to be used as a preconditioner for A, slightly changing the
elements in DL1 should not matter that much.

The reason that this is stated is that the block matrices containing Tj,k are not
invertible, which is necessary to create the form necessary for the direct solver.
However, if ε times the 4 × 4 identity matrix is added or subtracted to each
of the Tj,k blocks, they become invertible if −ε is not an eigenvalue of an Tj,k
block. After row scaling the matrix DL1 with matrices Tj,k + εI, the matrix
DL1 has the following form:

A1 I
B2 A2 I

. . .
. . .

. . .

Bubk−1 Aubk−1 I
Bubk Aubk


where Ai are tridiagonal matrices and Bi are block diagonal matrices. This
form is the one necessary in order to use the following direct solver to take the
inverse of the slightly altered matrix M and multiply it with matrix A.

One remark about ε that has to be made is that there is a trade-off that happens.
On one hand, ε wants to be taken small such that the altered matrices DL1 are
still very close to being the original matrices DL1. This will help with the
convergence of GMRES. On the other hand, ε can be taken larger such that
taking the inverse of the matrices Tj,k + εI have smaller elements which helps
with reducing round-off errors.
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7.2 Explanation algorithm

Let the block-tridiagonal linear equation Mx = y be of the form

A1 I
B2 A2 I

B3 A3 I
. . .

. . .
. . .

Bm−1 Am−1 I
Bm Am





x1
x2
x3
...

xm−1
xm


=



y1
y2
y3
...

ym−1
ym


.
The idea for the direct solver is to solve this equation in the following way:

First some Gaussian elimination steps: by multiplying the first equation to the
left by A2 and subtracting it from the second row, the linear equation becomes:



A1 I
B2 −A2A1 O I

B3 A3 I
. . .

. . .
. . .

Bm−1 Am−1 I
Bm Am





x1
x2
x3
...

xm−1
xm


=



y1
y2 −A2y1

y3
...

ym−1
ym


.
Now the second row only has a nonzero block element in the first column and
the identity in the third column. To shorten the notation, let G2 = B2 −A2A1

and v2 = y2 −A2y1. Then for consistency, note G1 = A1 and v1 = y1.

Next is multiplying the first row by B3, multiplying the second row by A3 and
subtracting both from the third row. The equation becomes:



G1 I
G2 I
G3 I

. . .
. . .

. . .

Bm−1 Am−1 I
Bm Am





x1
x2
x3
...

xm−1
xm


=



v1
v2

y3 −A3v2 −B3v1
...

ym−1
ym


.
This process is repeated until the last row is reached. The recurrence relation
for Gk and vk for k ≥ 3 are:

Gk = −AkGk−1 −BkGk−2
vk = yk −Akvk−1 −Bkvk−2
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The final linear system is:

G1 I
G2 I
G3 I
...

. . .
. . .

. . .

Gm−1 I
Gm





x1
x2
x3
...

xm−1
xm


=



v1
v2
v3
...

vm−1
vm


.
The final block row gives a linear equation with only x1:

Gmx1 = vm

Solving this equation gives x1.

One way to calculate xk without the use of vk and Gk with k < m after calcu-
lating x1 is by returning to the original form:

A1 I
B2 A2 I

B3 A3 I
. . .

. . .
. . .

Bm−1 Am−1 I
Bm Am





x1
x2
x3
...

xm−1
xm


=



y1
y2
y3
...

ym−1
ym


.
The first equation goes as follows:

A1x1 + x2 = y1

By using the fact that x1 is known, x2 can be calculated:

x2 = y1 −A1x1

From the second row:

B2x1 +A2x2 + x3 = y2

By using the fact that x1 and x2 are known, x3 can be calculated:

x3 = y2 −A2x2 −B2x1

In this way, the other vectors xk can be calculated recursively by using the two
previous solutions xk−1 and xk−2:

xk = yk−1 −Ak−1xk−1 −Bk−1xk−2
When the linear equation Mx = y needs to be solved for different y, the matrix
Gm only needs to be calculated once. Then only the recursion steps need to be

46



taken with the vector y to get the vector vm in order to get the full equation
Gmx1 = vm. The rest of the calculations can be done by using the coefficients
from the matrix M .

7.3 Theory

In the following sections, the starting matrix M is of the form:
A1 I
B2 A2 I

. . .
. . .

. . .

Bm−1 Am−1 I
Bm Am


Where the n× n matrices Ai are tridiagonal block matrices and the n× n ma-
trices Bi are diagonal block matrices. The blocks are of size 4× 4.

Next up, the n× n matrices Gi that are mentioned in the previous section are
made in the following way: G1 = A1, G2 = B2 − A2A1 and Gj = −AjGj−1 −
BjGj−2, ∀j = 2, . . . ,m.

In the following sections, the steps are explained in order to arrive at the com-
putational complexity of the algorithm.

7.3.1 Form Gj matrices

To calculate the complexity, the maximal size of the block matrices Gj have
to be known which will come from some theory about band matrices. First
multiplication of band matrices:

Proposition 1. Let C1 be a block band matrix with upper bandwidth k1 and
lower bandwidth l1 and C2 be a block band matrix with upper bandwidth k2
and lower bandwidth l2. Then C1C2 is a block band matrix with at most upper
bandwidth k1 + k2 and lower bandwidth l1 + l2.

Proof. To get an element (C1C2)i,j , row i of C1 is multiplied with column j of
C2. Row i of C1 has nonzero elements from index max(1, i−l1) to min(n, i+k1).
Column j of C2 has nonzero elements from index max(1, j−k2) to min(n, j+l2).
Multiplying row i of C1 with column j of C2 has a chance to become nonzero
if two elements are nonzero at the same index, but must be zero if there are no
two elements that are nonzero at the same index.
Overlap of the nonzero part of the row and column happens when i+k1 ≤ j−k2
and j + l2 ≥ i− l1 ⇔ j ≤ i+ k1 + k2 and j ≥ i− l1 − l2
Overlap of the nonzero part of the row and column never happens when i+k1 <
j − k2 or j + l2 < i− l1 ⇔ j < i− l1 − l2 or j > i+ k1 + k2
Therefore C1C2 is a block band matrix with at most upper bandwidth k1 + k2
and lower bandwidth l1 + l2.
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Proposition 2. With the assumptions made about Ai and Bi at the end of
section 7.2, the matrices Gj are block band matrices with bandwidth at most j.

Proof. Begin case j = 1: G1 = A1 with A1 being a block band matrix with
bandwidth 1.
Begin case j = 2: B2 has bandwidth 0. A1 and A2 have bandwidth 1, therefore
A1A2 has at most bandwidth 1 + 1 = 2. G2 = −B2 − A1A2 thus G2 has at
most bandwidth max(0, 2) = 2. Induction hypothesis: Gj−1 and Gj−2 are block
band matrices with at most bandwidth j − 1 and j − 2 respectively.
Bj has bandwidth 0 and by IH Gj−2 has at most bandwidth j − 2, therefore
BjGj−2 has at most bandwidth j − 2.
Aj has bandwidth 1 and by IH Gj−1 has at most bandwidth j − 1, therefore
AjGj−1 has at most bandwidth 1 + j − 1 = j.
Gj = −AjGj−1−BjGj−2 thus Gj has at most bandwidth max(j, j−2) = j.

7.3.2 Computational complexity band matrix multiplications

Now that it is known that each of the matrices Gj are block band matrices with
bandwidth at most its index, some theory is needed for matrix multiplication
with Gj . Specifically, as seen in the recurrence relation to get Gj from Gj−1
and Gj−2, the computational complexity of multiplying a tridiagonal matrix Aj
with the band matrix Gj−1 is needed.

Let C in the next two algorithms be an tridiagonal block matrix with blocks of
size 4× 4 and D be an n× n block band matrix with bandwidth k with blocks
of size 4 × 4. Then an algorithm to calculate W = CD goes as follows, where
the indices correspond to the row and column index in the matrix:

Algorithm 5 Calculate tridiagonal matrix multiplication W = CD

1: Define the n× n band matrix W := 0
2: for i = 1, . . . , n do
3: for l = max(1, i− 1), . . . ,min(n, i+ 1) do
4: for j = max(1, l − k), . . . ,min(n, l + k) do
5: Compute Wi,j := Wi,j + Ci,l ·Dl,j

Multiplying two 4× 4 matrices with each other have computational complexity
2 · 43. Therefore, the computational complexity of this algorithm is 2 · 43 · 3 ·
(2k + 1) · n.

Now for block matrix vector multiplication with a n×n tridiagonal block matrix
C with blocks of size 4× 4 and a n× 1 block vector v with sections of size 4.
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Algorithm 6 Calculate tridiagonal matrix vector multiplication w = Cv

1: Define the n× 1 vector w := 0
2: for i = 1, . . . , n do
3: for j = max(1, i− 1), . . . ,min(n, i+ 1) do
4: Compute wi := wi + Ci,j · vj

Multiplying a 4 × 4 matrix with a 4 × 1 vector has computational complexity
2 · 42. Thus, the computational complexity of this algorithm is 2 · 42 · 3 · n.

Finally, it is necessary to know the computational complexity of the n × n
diagonal block matrix C multiplication with a n× n block band matrix D with
bandwidth k and block size 4× 4.

Algorithm 7 Calculate diagonal block matrix multiplication W = CD

1: Define the n× n band matrix W := 0
2: for i = 1, . . . , n do
3: for j = max(1, i− k), . . . ,min(n, i+ k) do
4: Compute Wi,j := Wi,j + Ci,l ·Dl,j

The computational complexity of this algorithm is 2 · 43 · (2k + 1) · n.

7.3.3 Computational complexity direct solver

The following comes from Scientific Computing (wi4201) lecture notes (Vuik
and Lahaye (2017)), section 7.3.1 between theorem 4.9.1 and example 4.9.2:
Let C be an n× n band matrix with upper bandwidth k and lower bandwidth
l. Then the factorization stage to get an LU decomposition without pivoting
requires 2kln flops. The forward and backward triangular solve costs 2nl and
2nk flops, respectively.

Thus for an n × n band matrix with bandwidth k, the LU decomposition re-
quires 2k2n flops and the forward and backward triangular solve both cost 2nk
flops.

The previous fact was for normal band matrices. For a block band matrix with
blocks of size 4 × 4 holds that the element multiplication takes 43 flops and
adding two 4× 4 matrices takes 42 flops. Therefore, when taking that into ac-
count, the LU decomposition of an n × n block band matrix with bandwidth
k and block size 4 × 4 requires at most 43 · 2k2n flops and the forward and
backward triangular solve both cost at most 43 · 2nk flops.

Now that all the necessary computational complexities have been calculated,
the final two algorithms can be given. The first algorithm calculates Gm and
calculates its LU decomposition. The second algorithm solves the equation
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Mx = y with the calculated matrix Gm. As stated in section 7.2, The matrices
Gj are created by the following recurrence relation:

Gj = −AjGj−1 −BjGj−2

with G1 = A1 and G2 = B2 −A2A1.

Algorithm 8 Preparation to get Gm

1: Define Z1 := A1

2: Compute Z2 := B2 −A2A1

3: Compute Z3 := −A3Z2 −B3Z1

4: for j = 4, . . . ,m do
5: Let Z1 become Z2

6: Let Z2 become Z3

7: Compute Z3 := −AjZ2 −BjZ1

The output of the algorithm is the matrix Gm. Memory requirements for the
algorithm are:

• The n× n tridiagonal block matrices A1 through Am

• The n× n diagonal block matrices B1 through Bm

• The n× n band matrices Z1, Z2 and Z3

Complexity of calculations: The complexity of the calculations is as follows:

• Computing −A2A1 and adding B2: 2 · 43 · 3 · n+ 2 · 43 · n flops

• calculating −A3Z2: 2 · 43 · 5 · n flops

• calculating −B3Z1: 2 · 43 · 3 · n flops

• Letting j go from 4 to m:

– calculating −AjZ2: 2 · 43 · (2(j − 1)− 1) · n flops

– calculating −BjZ1: 2 · 43 · (2(j − 2)− 1) · n flops

– adding previous two to each other can be done at the same time as
calculating −BjZ1

Calculate order of total amount of flops:

2 · 43 ·
(

3n+ n+ 5n+ 3n+
∑m
j=4 ((2(j − 1) + 1 + 2(j − 2) + 1) · n)

)
= 2 · 43 · n ·

(∑m−1
j=1 (2j + 1 + 2(j − 1) + 1)

)
= n ·

∑m−1
j=1 (4j)

= 2 · 43 · 4n ·
m(m− 1)

2
= 43 · 22(m2 −m)n = 44(m2 −m)n
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Therefore, the algorithm to get Gm has a computational complexity of the order
44(m2 −m)n.

To get the LU decomposition of Gm, at most 43 · 2m2n flops are needed for Gm
is a block band matrix with bandwidth m.

Now follows the final algorithm to solve the equation Mx = y when the LU
decomposition of Gm has been calculated.

Algorithm 9 Solving the linear equation

1: Define v1 := y1
2: Compute v2 := y2 −A2v1
3: Compute v3 := y3 −A3v2 −B3v1
4: for j = 4, . . . , k do
5: Let v1 become v2
6: Let v2 become v3
7: Compute v3 := yj −Ajv2 −Bjv1
8: Compute x1 := G−1m v3
9: Compute x2 := y1 −A1x1

10: for j = 3, . . . ,m do
11: Compute xj := yj−1 −Aj−1xj−1 −Bj−1xj−2

The output of the algorithm is the block vector x. Memory requirements for
the algorithm are:

• The block matrices A1 through Am

• The block matrices B1 through Bm

• The LU decomposition of the block matrix Gm

• The n× 1 size block vector y

• The n size block vectors v1, v2 and v3

Complexity of calculations: The complexity of the calculations is as follows:

• Computing −A2v1 and adding y2: 2 · 42 · 3 · n+ 2 · 42 · n flops

• calculating −A3v2: 2 · 42 · 3 · n flops

• calculating −B3v1: 2 · 42 · n flops

• adding previous two to each other to y3: 2 · 42 · n flops

• Letting j go from 4 to m:

– calculating −Ajv2: 2 · 42 · 3 · n flops

– calculating −Bjv1: 2 · 42 · n flops

51



– adding previous two to each other to y3: 2 · 42 · n flops

• Computing G−1m by using LU decomposition: 43 · 2mn flops

• Computing −A1x1 and adding to y1: 2 · 42 · 3 · n+ 2 · 42 · n flops

• Letting j go from 3 to m:

– calculating −Aj−1xj−1: 2 · 42 · 3 · n flops

– calculating −Bj−1xj−2: 2 · 42 · n flops

– adding previous two to each other to yj−1: 2 · 42 · n flops

Calculate order of total amount of flops:

2 · 42 ·
(

4n+ 5n+
∑m
j=4(3n+ n+ n) + 4mn+ 3n+ n+

∑m
j=3(3n+ n+ n)

)
= 2 · 42 ·

(
4n+

∑m
j=3(5n) + 4mn+ 4n+

∑m
j=3(5n)

)
= 2 · 42 · (4n+ 5(m− 2)n+ 4mn+ 4n+ 5(m− 2)n)

= 2 · 42 · (14mn− 12n) = 43 · (7mn− 6n)

Therefore, the algorithm to solve Mx = y when having the LU decomposition
of Gm has a computational complexity of the order 43 · (7mn− 6n).

The LU decomposition of the mn×mn block matrix M with bandwidth m and
block size 4×4 takes 43 ·2(m)2 ·mn = 43 ·2m3n and the forwards and backwards
solve costs 42 · 2m2n flops. This means that the new solver is an order m faster
in both ways than applying the LU decomposition directly to the matrix M .

7.4 Practice

However, in practice, problems appear when phenomena occur that are not
worked out in theory before. One of these ideas is computer precision. In the-
ory, every calculation can be done with infinite precision. In Practice, computers
have finite precision.

The example that will be given have the same places nonzeros as in the matrices
DL1. The matrices are as follows when compared to the structure of the matrix
DL1 seen in 3.2:

• On the places with S are 4× 4 identity matrices multiplied by 3

• On the places with PP are 4× 4 identity matrices multiplied by 2

• On the places with Q are 4× 4 identity matrices multiplied by −10

• On the places with R are 4× 4 identity matrices multiplied by 2
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• On the places with T are 4× 4 identity matrices

This matrix is diagonally dominant, which means that it has an inverse. And
the places where there are T are identity matrices, thus the solver can be applied
to ithe matrix.

For the test, let v be the vector where the element is the same as the index.
The algorithm will try to solve DL1x = b with DL1 the matrix as mentioned
above and b the matrix DL1 multiplied with the vector v. The resulting vector
x should be such that ||x− v||2 being of the order of the machine precision.

The code is written in MATLAB.

For NY = 30 and ubk = 10, the error ||x − v||2 is 7.7268 · 10−4. However,
when NY = 121 and ubk = 85, which is in the later cases of the PARNASSOS
program, ||x − v||2 is equal to 1.9839 · 1082. When NY = 121 and ubk = 10,
||x − v||2 is equal to 0.0120. Lastly, with NY = 30 and ubk = 85, ||x − v||2 is
equal to 3.1858 · 1082

From these tests, it can be seen that the greatest influence in the precision of
the program is how large ubk is. The condition number of Gubk is not easily
controlled in size, which means that the equation Gmx1 = vm is ill-conditioned.

This means that this problem must be solved if it occurs before this solver is
potentially feasible.
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8 Final comparison

The best options from all the batches are going to be repeated here again:
The option 7blockdiag, the one with the LU decomposition and the ones with
ILU(0) and ILU(1)

amount of planes (g) 2 3 4 5

ttotsol 8.07 11.21 12.64 16.00
timeprec 3.22 3.35 3.36 3.38
ttotmv 7.63 10.85 12.39 15.90

timegm 22.03 30.30 33.84 43.13
ttotddotp 1.87 3.00 3.24 4.80

tcoeff 14.75 14.75 14.42 14.38
tturb 8.62 8.69 8.75 8.90

exectm 50.37 58.63 61.74 71.23

nummatvec 3588 2944 2333 2304
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.465 · 10−3 6.880 · 10−3 7.873 · 10−3 9.093 · 10−3

continuity 2.968 · 10−3 3.915 · 10−3 3.792 · 10−3 5.614 · 10−3

ζ-momentum 2.123 · 10−3 2.173 · 10−3 2.999 · 10−3 2.775 · 10−3

η-momentum 1.428 · 10−3 1.549 · 10−3 1.997 · 10−3 2.002 · 10−3

Table 9: Results for tests with 7blockdiag with total amount of planes varying
from 2 to 5
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amount of planes (g) 2 3 4 5

ttotsol 186.13 185.88 203.15 248.36
timeprec 544.17 539.99 537.93 537.84
ttotmv 4.73 5.43 6.41 8.03

timegm 756.58 752.52 769.09 816.32
ttotddotp 0.89 0.94 1.09 1.48

tcoeff 14.87 15.18 14.74 14.68
tturb 8.84 8.95 9.19 9.57

exectm 786.56 781.82 798.34 846.05

nummatvec 2160 1441 1178 1147
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.473 · 10−3 6.881 · 10−3 7.887 · 10−3 9.101 · 10−3

continuity 2.968 · 10−3 3.916 · 10−3 3.803 · 10−3 5.608 · 10−3

ζ-momentum 2.122 · 10−3 2.172 · 10−3 2.998 · 10−3 2.776 · 10−3

η-momentum 1.427 · 10−3 1.549 · 10−3 1.997 · 10−3 2.004 · 10−3

Table 10: Results for tests with block fulli with total amount of planes varying
from 2 to 5

amount of planes (g) 2 3 4 5

ttotsol 7.17 10.98 12.79 16.67
timeprec 3.84 3.99 4.02 4.03
ttotmv 9.82 14.57 16.26 21.25

timegm 25.85 37.51 42.03 55.52
ttotddotp 3.10 4.90 5.38 8.12

tcoeff 15.08 14.60 14.84 14.45
tturb 8.62 8.73 8.75 8.92

exectm 56.11 65.84 70.73 83.75

nummatvec 4659 3921 3028 3089
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.457 · 10−3 6.885 · 10−3 7.813 · 10−3 9.114 · 10−3

continuity 2.968 · 10−3 3.925 · 10−3 3.744 · 10−3 5.655 · 10−3

ζ-momentum 2.122 · 10−3 2.172 · 10−3 2.998 · 10−3 2.782 · 10−3

η-momentum 1.427 · 10−3 1.550 · 10−3 1.995 · 10−3 2.005 · 10−3

Table 11: Results for tests with ILU(0) with total amount of planes varying
from 2 to 5
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amount of planes (g) 2 3 4 5

ttotsol 10.87 13.56 15.18 19.48
timeprec 7.63 7.55 7.54 7.57
ttotmv 7.56 11.08 12.59 16.20

timegm 29.46 37.19 41.30 52.37
ttotddotp 2.02 2.98 3.49 5.26

tcoeff 15.07 14.55 14.56 14.63
tturb 8.72 8.69 8.90 8.89

exectm 58.52 65.38 69.74 80.88

nummatvec 3588 2944 2333 2304
nnewton 360 240 180 144

maximum residual of equations

ξ-momentum 5.465 · 10−3 6.880 · 10−3 7.873 · 10−3 9.093 · 10−3

continuity 2.968 · 10−3 3.915 · 10−3 3.792 · 10−3 5.614 · 10−3

ζ-momentum 2.123 · 10−3 2.173 · 10−3 2.999 · 10−3 2.775 · 10−3

η-momentum 1.428 · 10−3 1.549 · 10−3 1.997 · 10−3 2.002 · 10−3

Table 12: Results for tests with ILU(1) with total amount of planes varying
from 2 to 5

The first similarity that appears is the amount of matrix vector multiplications,
nummatvecs, in ILU(1) is the same as in the option with 7blockdiag. This
is because the options are in theory the same. However, ILU(1) comes from
the implementation of the more general case ILU(N) and 7blockdiag is truly
focused on making the ILU(1) is good as possible.

When comparing the values for nummatvec of 7blockdiag and the preconditioner
with the LU decomposition, The value from the latter is around half that of
the former. This means that for the convergence of GMRES, the precondi-
tioner with the LU decomposition is much better than the option 7blockdiag.
However, the amount of fill in that is created in the process of an LU decom-
position gives a heavy burden in the time it takes to make calculations with
the preconditioner, as shown by the huge amount of time it takes to create the
preconditioner, timeprec, and the amount of time the program takes to solve
the equation with the preconditioner, ttotsol. Therefore, the option 7blockdiag
far outperforms the option with the LU decomposition due to the huge burden
of the fill in when compared to the increase in the convergence of GMRES.

When the new options are compared with the older option of 7blockdiag, the to-
tal execution time of one global iteration step has unfortunately not improved.
The best performing preconditioner of these four is thus still 7blockdiag, fol-
lowed by ILU(0) or ILU(1) and as last the preconditioner that used the LU
decomposition.
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The final graphs will contain the results of a test done for 500 global iteration
steps from a blank start to finish of the best options for g = 5 with the same
starting conditions as mentioned in section 12.1: 7blockdiag is displayed in fig-
ure 4 and ILU(1) is displayed in figure 5. dp stands for the maximal absolute
change in pressure before and after the global iteration. Same for du, dv and
dw as change in velocity in the direction stated in section 2.2.1.

The spikes at 100, 200 and 300 global iterations can be explained by the fact
that on those occasions, the computations went from a course grid to a more
smoother grid. This results in enormous errors on the new nodes which are
quickly sorted out.

Both figures are identical until global iteration 300, which makes sense due to
the fact that 7blockdiag is a specialized version of ILU(1). After which they
slightly deviate from each other. This deviation most likely occurred due to the
fact that while testing, an error occured at iteration 320 with ILU(1). However,
the starting conditions were saved and the test could be restarted at 320. This
deviation still doesn not change the fact that the same convergence pattern can
be seen in both figures after global iteration 330.

Figure 4: 500 global iterations with 7blockdiag
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Figure 5: 500 global iterations with ILU(1)
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9 Summary

This report tries to improve the preconditioner used in GMRES to decrease the
execution time of PARNASSOS. To this end, a direct solver called the LU fac-
torization is introduced to try and expand the possibilities for preconditioners
in GMRES. This option has been tested against the older options for precon-
ditioners of PARNASSOS, one of which is called 7blockdiag, in order to see if
the new method improved the convergence of GMRES while keeping the extra
time to create the preconditioner to a minimum. This, unfortunately, did not
turn out to be a success.

The next option tried to reduce the amount of extra nonzero elements in com-
parison with the LU decomposition when creating the preconditioner by using
ILU(N). This option turns out to be much better than the LU decomposition.
However, the option 7blockdiag is a specialized version of ILU(1), therefore it is
no shock to find that ILU(1) is a worse option for preconditioner than 7block-
diag.

In the final option, a direct solver is created to solve linear equations with ma-
trices that are similar to the matrices of interest on the main block diagonal.
Although from the theory it can be concluded that the computational complex-
ity of the new direct solver is lower than with the LU decomposition, one of
the problems that the algorithm faces in practice is that a linear equation that
needs to be solved in the algorithm could become ill conditioned when the full
matrix becomes too large. Therefore, the solver can not yet be used in practice.

The conclusion from this report is that no preconditioner has been found that
is better than the older options for a preconditioner in PARNASSOS
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10 Propositions for future endeavors

This section will mention four ideas that can be explored in the future to ulti-
mately achieve the original goal of this research: to create a better option for a
preconditioner in PARNASSOS.

• The preconditioner option that used the LU decomposition was much bet-
ter as a preconditioner for GMRES than the option 7blockdiag. Unfortu-
nately, the amount of time that it took to perform the LU decomposition
was much larger than the amount of time it spared with less GMRES it-
erations. Therefore, it is possible that a GPU implementation of the LU
decomposition can improve the option as a new preconditioner.

• The new solver was in theory faster than the LU decomposition for large
matrices, but in practice it couldn’t solve for large matrices due to the
equation Gmx1 = vm becoming ill-conditioner. Therefore, a possibility is
to try and solve for this problem while still keeping the improved compu-
tational complexity.

• As mentioned in section 6.3, ILU(2) is a worse preconditioner than ILU(1)
and ILU(3) is a worse preconditioner than ILU(3). This flies in the face
of the whole idea of ILU(N), namely allow for more fill in to get a better
preconditioner. On of the possible reasons is that this version of ILU(N)
is a too simplified version of what is described in section 6.1. Therefore,
it is possible that with the new condition for ILU(N) as allowing at most
N − 2 extra diagonals from the inner diagonals outward, that this version
of ILU(N) will lead to a better preconditioner when used.

• The file which contained the code for ILU(N) may still have some hidden
errors within them, thus an option is to go through the code one more
time.
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12 Appendices

12.1 Appendix A: Starting values tests

The nosd m 111.ini file, which is one of the files that contain the starting values
for the model, has a section called general. The following values are the ones
used for the tests:

• MAXSWEEP: 2000

• IstepSweep: 99

• EpsGlobal : 5 · 10−6

• Tolgmr: 2 · 10−3

• maxlingmr: 40

• minlingmr: 5 (only exception 1 with LU when g = 1)

• ISTEPSweep: 49

• start undist: 1

• begincomp: 0

• endcomp: 0
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12.2 Appendix B: Conversion into band matrix

The following code is to insert a matrix DL1 for a certain constant L1 in its
band form of LAPACK, which is stored in the matrix MB:

MB( : , : , L1)=0. d0
DO k=1,ubk
DO j =1,NY
DO column=1,N

columnQ = N∗NY∗(k−1)+N∗( j−1) + column
MB( diagQ+1−column : diagQ+N−column , columnQ , L1)

& = Q( 1 :N, column , j , k , L1)
IF ( k .GT. 1 ) THEN

MB( diagS+1−column : diagS+N−column , columnQ−N∗NY, L1)
& = S ( 1 :N, column , j , k , L1)

ENDIF
IF ( j .GT. 1 ) THEN

MB( diagPP+1−column : diagPP+N−column , columnQ−N, L1)
& = PP( 1 :N, column , j , k , L1)

ENDIF
IF ( k .LT. ubk ) THEN

MB( diagT+1−column : diagT+N−column , columnQ+N∗NY, L1)
& = T( 1 :N, column , j , k , L1)

ENDIF
IF ( j .LT.NY) THEN

MB( diagR+1−column : diagR+N−column , columnQ+N, L1)
& = R( 1 :N, column , j , k , L1)

END IF
ENDDO
ENDDO
ENDDO

With the constants

bw = N∗(NY+1)−1
diagQ = 2∗bw+1
diagS = diagQ+N∗NY
diagPP = diagQ+N
diagR = diagQ−N
diagT = diagQ−N∗NY

Where bw is the bandwidth of each of the matrices DL1.
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