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Abstract. A detached eddy simulation modelling approach is presented for turbulent flow
computations, which is based on the transport equation for turbulent kinetic energy, k (and
thus termed k-DES model). The model coefficients in the RANS form are calibrated in
wall-attached flow computations, and the LES mode is calibrated in the simulation for de-
caying, homogeneous, isotropic turbulence. To combine the near-wall RANS mode with the
off-wall LES mode, the RANS-LES interface is accomplished by means of an adaptation
of turbulent length scales invoked in both the production term and the dissipation term of
the k-equation. Examples presented for the modelling validation include a fully developed
channel flow, a periodic hill flow and a three-dimensional axisymmetric hill flow. The
results are compared with available DNS, LES and experimental data, showing reasonable
agreement.

1 INTRODUCTION

Turbulence modelling, as one of the most significant ingredients in simulations of turbu-
lent flows, remains a bottleneck-type problem toward accurate and efficient predictions for
complex flows. Great effort has thus been carried on over decades in studies of improved
modelling approaches, ranging from classical Reynolds-Averaged Navier-Stokes (RANS)
approaches to subgrid-scale (SGS) models in large eddy simulation (LES). In particular,
over the recent years increasing attention has been paid to the development of hybrid
RANS-LES modelling methods. Benefiting the advantage inherent in LES for accurate
resolution of the energetic and large-scale turbulent structures arising in flow-detached
regions with massive separations, a hybrid RANS-LES method, on the other hand, aims
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at alleviating the dense near-wall grid resolution (as should otherwise be required in a
full-resolved LES) by using a RANS-type model in the near-wall layer. In the pioneering
work by Spalart et al [1, 2], such a modelling approach has been termed Detached Eddy
Simulation (DES) with its own specific modelling features, among others, the RANS-LES
interface is regulated to be located in the outer edge (or outside) of a wall boundary layer.
The DES model employs the Spalart-Allmaras (S-A) [3] one-equation model in both the
RANS and LES regions. The DES approach was further extended later by Strelets [4]
using Menter’s SST two-equation model [5]. Other types of hybrid RANS-LES modelling
methods have also been reported over the years, see e.g. in references [6–10].

For convenience of statement, the DES modelling is distinguished here from hybrid
RANS-LES approaches. A hybrid RANS-LES approach is a combination of unsteady
RANS (URANS) and LES by means of proper matching of the two, where the LES mode
(coupled with the RANS mode) may be located in any desired flow region to attain
improved flow resolution and/or numerical grid alleviation. With hybrid RANS-LES
modelling, in addition, the RANS mode may be of different type from the LES mode using
different turbulence transport equations for various turbulence quantities. For example,
a two-equation RANS model may be coupled with a one-equation or a zero equation SGS
model (e.g. the Smagorinsky SGS model), and vice versa, provided that the matching
between the two is realizable and realistic. The DES approach can be regarded as being a
special type of hybrid RANS-LES modelling, with RANS mode adopted only in the wall
layer coupled with an off-wall LES mode. Moreover, DES uses the same type of turbulence
tansport equation(s) for both the RANS and LES modes. The transition/switch from
the near-wall RANS region to the off-wall LES region is achieved by means of a natural
adaptation of turbulent scales inherent in the turbulence transport equation, which aims at
enriching, over the RANS-LES matching location/region, the RANS-modelled turbulence
in such a way that it is naturally compatible to, and matchable with, the LES-resolved
turbulence. With the S-A DES by Spalart et al. [1, 2], the RANS-LES interface is
accomplished through the eddy viscosity by an adaptation between the RANS length
scale and the SGS (in LES mode) length scale.

This work presents a DES modelling approach based on the transport equation for
turbulence kinetic energy, k, which is hereafter termed k-DES. The k-equation is a natural
choice in turbulence modelling, since its exact equation is analytically derivable and each
term has profound physical properties in the argumentation of modelling. In turning it
into a DES-type modelling equation, a methodology similar to the S-A DES model has
been adopted for the RANS-LES coupling, that is, through the adaptation of turbulence
length scales. In the following sections, we present first the k-DES modelling formulation
accompanied with some calibration work for the model coefficients. The model is then
applied to several turbulent flows with increasing complexities. The computed results are
compared with DNS, LES data and experimental measurements, where available.
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2 THE k-DES MODELLING

By applying Reynolds averaging or spatial filtering to the Navier-Stokes equations, the
resulting equation system for incompressible flows may be cast in an identical mathemat-
ical formulation with the inclusion of the turbulent stress tensor, τij , viz.

∂ui

∂t
+

∂

∂xj

(uiuj) = −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

− ∂τij

∂xj

(1)

Nonetheless, the turbulent stress term possesses substantially different physical rationale,
when experiencing different filtering processes (namely in time or in space). In RANS,
the Reynolds stresses, stemmed from the time-averaging process, represent the mean
effect of turbulence on mean flow motions. With the spatially filtered LES equation
system, the subgrid-scale (SGS) stress is involved in the representation of the energy
drain between the resolved large-scale turbulent structure and the SGS turbulence. For
both the RANS and SGS modelling, the focus is on the approximation of these stresses
in order to close the equation system, and to underlay the effect of modelled turbulence
(on mean flow motions in RANS and on resolved large-scale flow motions in LES). The
most commonly used modelling approach in engineering applications is based on the eddy-
viscosity concept, which assumes a linear alignment between the stress tensor and the flow
strain rate tensor Sij, namely,

τij = −2νeSij +
2

3
δijk (2)

where νe is the eddy viscosity, being generally expressed as the product of a turbulent
length scale, Lµ, and a velocity scale V. In the present modelling formulation, the turbu-

lent kinetic energy, k, is used to approximate the turbulent velocity scale via. V ∝
√

k,
of which the modelled transport equation takes the conventional form of
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(3)

where Lε is a turbulent length scale for the dissipation term, σk and Cε are model con-
stants. With a model constant, Ck, the turbulent eddy viscosity is then given by

νe = Ck

√
kLµ (4)

The two turbulence length scales, Lµ and Lε, may be justified in proportion to the wall
distance in the near-wall RANS region and to the filter width in the off-wall LES region.

Since we intend to use the same transport equation of k for both the RANS and LES
modes in the proposed DES approach, the k-equation should then function properly in the
context of RANS modelling of near-wall flows. It is known that, for a k-equation RANS
model, the length scales, Lµ and Lε, behave differently in the vicinity of a wall surface.
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This was demonstrated by Chen and Patel in their two-layer RANS model[11]. The Chen-
Patel near-wall k-equation model has shown promising performance when dealing with
near-wall turbulence in RANS computations. This model has been recently revisited by
Temmerman et al. in their hybrid RANS-LES modelling work [8]. With the RANS k-
equation, a similar routine as in Chen and Patel [11] is followed here to construct the two
turbulent length scales, which are formulated respectively as functions of another length
scale, d. The length scale, Lε, in the dissipation term of the k-equation reads

Lε =
Cε

C
3/4
µ

fεκd (5)

where Cµ = 0.09 and κ = 0.418 is the von Karman constant. The empirical function, fε,
in Eq. (5) takes the same form as in the Chen-Patel model, namely, fε = 1−exp(−Rd/A)

with A = 2κCεC
−3/4
µ , where Rd =

√
kd/ν.

The length scale, Lµ, is formulated as

Lµ =
C

1/4
µ

Ck
fµκd (6)

where fµ is another empirical function, which is used to damp the overshoot in the predic-
tion of near-wall turbulence intensities in order to accommodate viscous and wall-damping
effects. To attain a correct near-wall asymptotic property, the following damping function,
fµ, has been designed

fµ = tanh

(

−
√

Rd + Rd

95

)

(7)

For other model coefficients, we have used σk = 1.0, and for Cε appearing in the k-
equation (Eq. (3)) and Ck in the formulation of νe (Eq. (4)), a constant value has been
assigned for each with Cε = 1.8 and Ck = Cµ/Cε = 0.05, respectively. When used as a
RANS model in the wall layer, the local wall distance, dw, is employed for the length scale
d, namely d = dw. Note that, with the above-presented setting of the model coefficients,
the model in its RANS form complies with the local-equilibrium assumption for attached
turbulent boundary layer flows.

Figure 1 presents an example, where the k-equation is used as a RANS model in the
computation of a turbulent channel flow at a friction Reynolds number of Reτ = 395. As
compared with the DNS data [12], it is shown that the k-equation, used as a near-wall
RANS model, is able to produce satisfactory predictions for wall-attached flows.

To incorporate the k-equation in the k-DES modelling, the equation must be turned
from the near-wall RANS mode into an off-wall SGS-type model in the LES region, where
k is taken as the SGS turbulent kinetic energy. In the LES mode, instead of using the
wall distance, the length scale d appearing in Eqs (5) and (6) must be associated to an
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Figure 1: RANS-mode calibration: simulation of turbulent channel flow at Raτ = 395 in com-
prison with DNS data [12]. Note that the results have been normalized by the wall friction

velocity. a) Mean streamwise velocity, u+. b) Turbulent shear stress, u′v′
+
.

SGS turbulent length scale, ∆. As often plausibly argued in SGS modelling, the local-
equilibrium assumption is applicable for the unfiltered SGS turbulence (particularly in
off-wall regions), which consequently indicates that

d =
C

1/4
µ

κ
√

fµfε

√
k

|S| (8)

where |S| is the magnitude of the flow deformation.
One of the well-calibrated SGS k-equation models in LES is the Yoshizawa model [13],

which possesses the same form as Eq. (3) but with different model constants (Ck,Y = 0.07
and Cε,Y = 1.05). The length scale in the Yoshizawa SGS model takes identically the filter
width, namely, Lν = Lε = ∆l. Using the local-equilibrium assumption, the Yoshizawa
model renders

∆l =

√

Cε,Y

Ck,Y

√
k

|S| (9)

The determination of d in the present k-equation model should thus be made compa-
rable to ∆l as in the well-calibrated Yoshizawa model, when used as an SGS model in
LES. Nonetheless, in simulations of decaying, homogeneous, isotropic turbulence (DHIT),
it was found that the Yoshizawa SGS model under-estimates the dissipation for resolved
turbulence energy and that the prediction may be improved by setting Cε,Y = 0.6 [10].
Indeed, an eddy-viscosity based SGS model, which gives good simulations for DHIT, is
often too dissipative for flows affected by wall shears. The Smagorinsky SGS model is a
typical example as such, which requires a larger value for the model constant (i.e. the
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Smagorinsky constant) in DHIT simulations, while for wall-bounded flows the Smagorin-
sky constant has to be reduced to a smaller value to make the model less dissipative.

Note that the SGS type of the k-equation is used only in flow-detached and/or off-
wall LES regions for a DES modelling, where the SGS turbulence is expected to be more
isotropic with a well-resolved LES resolution. The k-equation in the form of its SGS
mode is thus also calibrated in the simulation of DHIT. Apart from the same set of model
contants and functions as for the RANS mode, the SGS k-equation has used the following
formulation for the SGS turbulence length scale, d,

d = Ckdes∆ and ∆ =
2δV 1/3∆max

(δV 1/3 + ∆max)
(10)

where Ckdes is a model constant and Ckdes = 0.62, being calibrated from the simulation
of DHIT, δV is the control volume of a local node and ∆max is the local maximum cell
size, ∆max = max(∆x, ∆y, ∆z).

The value of model constant, Ckdes, is calibrated from the simulation of DHIT based on
the experiment by Comte-Bellot and Corssin[14]. The initial field was generated using the
experimental data measured at t = 42 [15]. Figure 2 a) presents the LES-simulated energy
spectra at t = 98 and t = 171 using the present SGS k-equation model with d = Ckdes∆
and Cdes = 0.62. Also given in Figure 2 b) is the LES-resolved energy decaying with
the time. As seen, the present k-equation, being turned into an SGS model, is able to
produce reasonable predictions, as compared with the experimental data and with the
result computed using the Smagorinsky model.
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Figure 2: LES-mode calibration (with Ckdes = 0.62): simulation of decaying, homogeneous,
isotropic turbulence in comprison with the Smagorinsky model and experimental data. a) Com-
puted energy Spectra. b) Resolved turbulence energy decaying with time.

The transition/switch between the RANS mode and the LES mode based on the same
k-equation is attained through the length scale, d, which is computed by the following
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relation in the k-DES model,

d = min(dw, Ckdes∆) (11)

Apart from the model constant Ckdes and the determination of ∆ (with Eq. (10)), the
RANS-LES switching relation, Eq. (11), is the same as in the S-A DES model [1]. Note
that the length scale d is invoked in both the production and dissipation terms in the
k-equation, as shown in Eqs (5) and (6). In the wall layer with a thickness of dw, the
k-equation performs with its RANS form, and is adjusted to an SGS model away from
this layer. As demonstrated in Figure 1, the k-equation in its RANS form (i.e. d ≡ dw)
is able to appropriately model the attached wall layer from the viscous sublayer up to
the fully turbulent log-layer. When switched to the LES mode (i.e. d ≡ Ckdes∆), the
k-equation functions as an SGS model with Ckdes = 0.62, rendering appropriate SGS
modelling features similar to the Yoshizawa SGS k-equation model [13].

Nonetheless, it was found that in computations of flows with wall shears the k-DES
model is somewhat too dissipative in the LES region. As mentioned above, this has
encountered in calibrations for other SGS models based on eddy viscosity concept. Indeed,
a DHIT-calibrated model constant may induce too much energy dissipation when the same
model constant is applied to wall-bounded flows. Instead of re-calibrating the model
constant for shear flows to limit possible over-estimation of the dissipation, we introduce
an additional turbulent length scale, which has been appeared in Eq. (8), namely ls =√

k/|S|. As the local-equilibrium assumption is applied, this length scale is comparable to
the filtering length scale, and is equivalent to the Taylor microscale over the RANS-LES
interface where the velocity scale,

√
k, is a representative scale for both RANS-modelled

turbulence and SGS turbulence. The length scale, ls, is used to further regulate Lµ and
Lε in the k-DES model. As a consequence, the length scales, Lµ and Lε, are replaced,
respectively, with Lµ and Lε, viz.

Lµ = min

(

Lµ,
α
√

k

|S|

)

(12)

Lε = max

(

Lε,
β
√

k

|S|

)

As Lµ and Lε approach respectively the minimum and maximum values, Eq. (12)
suggests that αβ = Cε/Ck in order to comply with the local-equilibrium assumption. We
have set α = β = 6.0 in all the computations presented in the section below.

Thourough investigation has not yet been completed on the effect of the RANS-LES
switching location in connection to the near-wall meshing. Nonetheless, it is expected
that the present k-DES model should not impose strong restriction on the RANS-LES
interfacing location. As argued, the present k-equation as an SGS model is similar to the
well-calibrated Yoshizawa model. The model should thus be applicable in full resolved
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LES for wall-bounded flows. For the k-DES modelling, when combined with the near-wall
RANS mode, it seems plausible to comp up with a conjecture that the simulation may not
be so sensitive to the location of the RANS-LES interface, being placed in the outer edge
of the boundary layer or in the boundary layer. Certainly, this by no means implies that
the RANS-LES interface may penetrate to the buffer layer or below, where small-scale
but energetic streaky structures exist and should be modelled with the RANS mode for
the purpose of DES modelling.

As with other DES and hybrid RANS-LES models, one of the main purposes with the
present k-DES model is to alleviate the near-wall grid resolution in the wall-tangential
directions. The mesh spacing in the wall-normal direction should remain comparable
to that in LES or in low-Reynolds number RANS modelling to resolve large near-wall
gradients, for which the first node must be placed in the viscous sublayer with y+ ∼ 1.
Apart from the control volume of a local node, δV , the characteristic filter width, ∆, in
the LES mode is justified by the local maximum cell size in the wall-tangential direction
(see Eq. (10)). With a sufficiently refined mesh, it is obvious that the k-DES model
returns to its LES mode in the overall computational domain with d ≡ Ckdes∆.

The present work is intended to present the k-DES modelling approach as an alternative
DES model, and to examine its performance in turbulent flow computations. Compre-
hensive modelling validation and calibration will be carried on in simulations of both
turbulent incompressible and compressible flows. In the following section, we present the
results computed with the k-DES model for some test cases from an ongoing EU project
DESider (cf. http://cfd.me.umist.ac.uk/desider/).

3 RESULTS AND DISCUSSION

In this section, the k-DES model is examined in computations of three turbulent flows,
of which the results are compared with DNS, full-resolved LES and experimental data,
where available. We consider first a fully developed turbulent channel flow to examine
the performance of the k-DES model for wall-attached flows. The model is then applied
to a turbulent channel flow with hills periodically mounted on the channel bottom wall
with homogeneous transverse boundaries. In this case, the separation of the mean flow
on the backside of the hill is two-dimensional. In the last test case, a three-dimensional
hill flow is considered, where an axisymmetric hill is mounted on the bottom wall of a
duct (wind tunnel in experiment). The turbulent separation on the leeside of the hill is
three-dimensional. These test cases, with increasing complexities, should shed light on
different aspects of the present k-DES modelling approach.

In the results presented below, a fluctuating quantity of the resolved field is denoted
by φ′ = φ − 〈φ〉, and the symbol, 〈·〉, is used to denote the quantities obtained from
time-averaging and spatial-averaging over the homogeneous directions for the turbulent
channel flow and the periodical hill flow. For the 3D hill flow, this denotation indicates
only time averaging.

All the computations presented in this work has been carried out with an incompressible
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flow solver, which solves the incompressible Navier-Stokes equations using a pressure-
based scheme. The solver employs the second-order central differencing scheme for all
terms based on the finite volume method with structured grid. The second-order Crank-
Nicholson scheme is used for the temporal discretization. A Poisson equation is derived
for the pressure, which is solved using an efficient multigrid solver. The time-dependent,
discretized equation system is solved using an implicit, fractional step technique with
a non-staggered grid arrangement. Detailed information on the solver can be found in
Davidson and Peng [6].

3.1 Turbulent channel flow

As a typical test case, fully developed turbulent channel flows have often been used
in the calibration of turbulence models of various type. It should be noted that, for
DES model, as termed in the name (detached eddy simulation) by Spalart el al. [1], one
takes the merit of the LES mode when modelling flow-detached regions, where the flow
undergoes massive separation characterized by turbulence mixing and vortical motions.
Turbulence in such regions are more isotropic than in near-wall regions with wall shears.
To properly resolve large-scale structures in these regions, the mesh resolution must be
sufficiently fine. When applied to channel flows, the off-wall LES region is not detached
but rather affected by shears. The DES modelling in this case is viewed as a type of wall
model in LES, as highlighted by Nikitin et al. in their channel flow computations with
the S-A DES model [16].

We consider here the turbulent channel flow computed by Piomelli et al. with full-
resolved LES [17]. The Reynolds number, Reτ , based on the wall friction velocity and the
half channel height is about 2000. The computational domain has dimensions of 2π, 2 and
π in the streamwise (x), vertical (y) and spanwise (z) directions, respectively. The mesh
is uniformly distributed in the x and z directions, while being clustered near the wall in
the y direction. A mesh with 64 × 64 × 32 cells has been employed, giving y+

1 ≈ 1.13
and ∆x+ = ∆z+ ≈ 196. Apparently, the wall-parallel grid resolution, ∆x+ and ∆z+,
is much larger than a full LES resolution. By adding a pressure force in the streamwise
momentum equation, which ensures a correct Reτ , periodic boundary condition is imposed
on the streamwise boundaries, which is also used for the spanwise boundaries.

As shown in Figure 3, the model shows some typical features of a hybrid RANS-LES
modelling for wall-attached flows. Near the wall where the RANS mode is used, the mean
streamwise velocity is reasonably reproduced, as compared with the LES data. Note that
the RANS-LES interface occurs at a wall distance of about y+ ≃ 75. In the range of
y+ < 200, the time-averaged streamwise velocity is well reproduced, as compared with
the LES data. Away from this wall distance, it is over-estimated. This is due to the
mesh resolution in this region, which is too coarse in the wall-parallel direction to enable
accurate LES. Similar predictions for channel flows were observed in the work by Nikitin
et al. using the S-A DES model [16]. Nevertheless, the predicted total turbulent shear
stress (the modelled part plus the resolved part) agrees well with the LES data. As
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shown in Figure 3 b), a major part of the turbulent shear stress in the RANS region is
modelled, which decreases in the LES region but remains a relatively large contribution
to the total turbulent shear stress up to about y+ ≃ 310, after which the resolved part
becomes dominant. It should be noted that, in the distribution of the turbulent shear
stress, a small peak appears at about the RANS-LES interface. This has been brought
about by the modelled part due to the mesh used. At the interface, the RANS length scale
(in terms of the wall distance, dw) is switched to the SGS length scale (i.e. Ckdes∆). The
wall distance for each node changes (continuously) in accordance with the grid stretching
ratio in the wall-normal direction. The SGS length scale (justified in terms of local control
volume and maximum cell size) at the interface may not follow this ”continuous” mesh
stretching and has consequently induced a small peak. This can be easily removed by using
a well-designed mesh. As shown below, such a peak is not present in the computation for
other test cases.
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Figure 3: Simulation of channel flow at Reτ = 2000 in comparison with full-resolved LES data
[17]. a) Resolved streamwise velocity, 〈u〉+. b) Resolved turbulent shear stress, 〈u′v′〉+.

3.2 Periodic hill flow

The k-DES model is further examined in the simulation for a turbulent channel flow
with hills periodically mounted on the bottom wall. A periodic segment is taken in the
computation with Lx ×Ly ×  Lz = 9h×3.036h×4.5h, where h = 0.028 is the height of the
hill. The Reynolds number based on the bulk velocity above the hill crest, Ub, and the
hill height is Re = 10595. The mesh used in the present computation has 112 × 64 × 48
cells. The computed results are compared with the LES data by Temmerman et al. [18],
in which a 196 × 128 × 186 mesh was employed to resolve the wall turbulence.

Figure 4 a) illustrates the mean flow streamlines simulated with the k-DES model. For
comparison, the streamlines obtained with the S-A DES is also plotted in Fig. 4 b). As
seen, both models are able to reproduce reasonably well the separation bubble arising on
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the leeside of the hill shortly after the hill top and being reattached downstream after
the foot of the hill. The LES claims that the separation starts at xs = 0.22h with a
downstream extension to xr = 4.72h.

a) 0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

b)

Figure 4: Simulation of periodic hill flow. Illustration of mean flow streamlines. LES produces
separation point at xs = 0.22h and re-attachment location at xr = 4.72h [18]. a) k-DES model
with xs = 0.22 and xr = 4.65. b) S-A DES model with xs = 0.20 and xr = 4.84.

In Figure 5, the distribution of velocity computed with the k-DES is compared with
the LES data, extracted from four locations covering the leeside separation bubble. The
comparison is made respectively for the streamwise velocity in Figure 5 a) and for the
vertical velocity in Figure 5 b). As compared with the LES data, the k-DES results are
similar to those obtained with the S-A DES model. For the mean vertical velocity, 〈v〉,
the prediction with the k-DES model is slightly better than with the S-A DES model.
Corresponding to the good prediction of the separation bubble, both models have rea-
sonably produced the backflow in the separation region, as shown in Figure 5 a) for the
streamwise velocity profiles at locations x/h = 1.0 and x/h = 2.0. The vertical velocity
is however under-estimated at x/h = 1.0 and over-predicted at x/h = 2.0 in comparison
with the LES data.
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Figure 5: Simulation of periodic hill flow. Vertical profiles for the mean velocities plotted at
stations x/h = 0, 1.0, 2.0 and 5.0 (from left to right), respectively. a) Mean streamwise velocity.
b) Mean vertical velocity.
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The prediction for the turbulence statistics is presented in Figure 6, where the vertical
profiles for the turbulent kinetic energy and turbulent shear stress are plotted. The total
turbulent kinetic energy and the total turbulent shear stress are taken in the comparison
with the LES data, as shown in Figures 6 a) and b), respectively. They have been com-
puted as the sum of the resolved part and the modelled part. To clarify the contribution
of the modelled part, Figures 6 c) and d) have plotted, respectively, the vertical distribu-
tions for the modelled turbulence kinetic energy, kmod, and the modelled turbulent sheart
stress, 〈τ12〉. These figures uses the same scale as in Figures 6 a) and b) for comparison.
Note that the S-A DES does not invoke a model for the turbulence kinetic energy, of
which the modelled contribution is thus zero, as shown in Figure 6 c). While both models
render negligible contributions due to the modelled turbulent shear stress, the modelled
turbulent kinetic energy with the k-DES model is marginally sensible in the shear layer
above the separation bubble and in the near-wall region. In general, the DES results are
shown to be in reasonable agreement with the LES data. Nevertheless, the total turbulent
kinetic energy and the total turbulent shear stress (and thus their resolved counterparts)
have been under-estimated by both DES models in the shear layer above the bubble at
location x = h, whereas these quantities are somewhat over-predicted at the downstream
station x = 5h after the reattachment of the separation bubble.

3.3 Three-dimensional axisymmetric hill flow

The flow over an axisymmetric 3D hill is characterized by 3D separation on the leeside
of the hill, for which the experimental measurement was conducted by Simpson et al.
[19]. This case was chosen as a test case at the 11th ERCOFTAC Workshop on Refined
Turbulence Modelling (Gothenburg, Sweden, 7-8 April 2005). It was shown from the
workshop that RANS models in general give rise of largely erroneous predictions of the
flow, particularly, in the region over the leeside of the 3D hill and downstream thereafter.
LES and hybrid RANS-LES models have shown generally improved predictions in repro-
ducing the mean flow properties and turbulence statistics. The results presented at the
ERCOFTAC workshop indicate that this flow is a rather challenging type for modelling
the 3D turbulent separation and for simulating downstream flow properties. There have
been some recent computations for this flow using LES and hybrid RANS-LES modelling
approaches, see e.g. in references [20–22].

In this test case, the Reynolds number based on the height of the hill, h, and a nominal
freestream velocity, Uc, is Reh = 1.3 × 105. The computational domain (Figure 7 a)) has
dimensions of Lx×Ly×Lz = (−x0 +8.2)h×3.205h×11.67h. The inflow section is located
at x0 = −4.11h upstream from the center of the hill, where the origin of the coordinate
system is set. The computation uses a mesh with 128 × 80 × 96 cells in the x, y and z
directions, respectively. To highlight the flow feature, in Figure 7 b) the time-averaged
surface friction pattern is illustrated, which has been computed with the present k-DES
model. It is detected that the modelled separation on the leeside of the hill occurs at
about x/h = 0.52, and being reattached at about x/h = 2.21 (shortly after the foot of
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Figure 6: Simulation of periodic hill flow. Vertical profiles for time-averaged turbulence statistics,
plotted at the same locations and using the same legend as in Figure 5. a) Total turbulent
kinetic energy, ktot = kres + kmod. b) Total turbulent shear stress, 〈u′v′〉tot = 〈u′v′〉res + 〈τ12〉.
c) Modelled turbulent kinetic energy, kmod. d) Modelled turbulent shear stress, 〈τ12〉.

the hill). Downstream of the separation bubble, the flow is fully recovered on the lower
bottom wall at about x/h = 4.0, as disclosed in the prediction by the k-DES model.

In the computation, the mean flow profile measured experimentally at x = 0 with the
hill removed is prescribed on the inflow section at x = −4.11h. The turbulent inflow
condition is approximated using the flow properties at the outflow section by a recycling
and re-scaling method, which was described in details in Peng [23]. On the top and bottom
boundaries no-slip wall conditions are imposed and symmetric conditions on the spanwise
side boundaries. The time step used in the computation is ∆t ≃ 0.017h/Uc. Before
the statistic analysis is carried out, the running with a time period of about 72Lx/Uc is
discarded, after which the time-averaging starts and is carried on for a period of more
than 260h/Uc.

Figure 8 presents some vertical profiles for the mean velocities and turbulence statis-
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Figure 7: Three-dimensional axisymmetric hill flow. a) Sketch of the computational domain and
geometry. b) Illustration of time-averaged surface friction pattern over the hill, simulated with
the k-DES model.

tics. They are taken from a downstream (of the hill) section at x/h = 3.69, where
the experimental measurement was conducted at different z/h-stations over the spanwise
z-direction. The vertical distributions measured at four stations have been used for com-
parison, taken respectively at z/h = 0, z/h = −0.33, z/h = −0.65 and z/h = −1.30. As
shown, the mean streamwise velocity is predicted better at the mid-section (z = 0) than
at the side stations, where this velocity is more sensibly over-predicted in the boundary
layer. The predicted spanwise velocity agrees reasonably well with the measured data, in
particular at station z/h = −1.30. For the turbulence statistics, as indicated in Figure 8
c), the model pronounces a sensible deficit for the resolved turbulent kinetic energy in the
outer part of the boundary layer at stations z/h = 0, z/h = −0.33 and z/h = −0.65, in
comparison with the measured data. This suggest that the resolved turbulent fluctuations
are under-estimated in the shear layer, partly due to the grid resolution in this region,
where under-predictions occur also in the resolved turbulent shear stress, as shown in
Figure 8 d). Nevertheless, the turbulent shear stress has been reasonably resolved in the
near-wall region. The addition of the modelled part to the turbulent kinetic energy and
to the turbulent shear stress may help to some extent improve the comparison with the
measured data in the outer shear layer of the boundary layer. The modelled contribution
is however not retrieved in the present analysis. It is noted here that the turbulent kinetic
energy and turbulent shear stress are also marginally under-predicted in the shear layer
for the periodic hill flow (see Figures 6 a) and b) at station x/h = 1.0). This may suggest
that the LES mode has rendered too much energy dissipation from the resolved scales to
the modelled SGS turbulence. Note that the energy flux from the resolved to unfiltered
structures is related to the grid resolution. With a too coarse mesh in a region where the
flow undergoes large flow deformation (e.g. in the shear layer), the resolved turbulence
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energy may become over-dissipated, and leading to inaccurate predictions. It is antic-
ipated that a refined grid resolution in the shear layer should improve the predictions.
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Figure 8: Simulation of 3D axi-symmetric hill flow. Vertical profiles at section x/h = 3.69,
plotted respectively at locations z/h = 0, z/h = −0.33, z/h = −0.65 and z/h = −1.30 (from
left to right) in comparison with experimental data. a) Time-averaged streamwise velocity. b)
Time-averaged spanwise velocity. c) Resolved turbulent kinetic energy. d) Resolved turbulent
shear stress.

In Figure 9, the mean velocity field plotted over the leeside of the hill is highlighted
in comparison with the experimental measurement on section z = 0. The dotted line
indicates the location where the streamwise velocity is zero. As shown, the model produces
the streamwise extension of the separation bubble that is similar to the measured velocity
field, while the predicted ”thickness” of this bubble seems somewhat larger than the
measured schematic, for which the predicted backflow in the bubble may be relatively
extensive. The k-DES prediction indicates that the flow reattaches at about xr = 2.21h,
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which similar to the experimental observation [19].
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Figure 9: Simulation of 3D axi-symmetric hill flow. Illustration of the separation bubble on the
leeside of the hill on the z = 0 plane. The dotted line in both figures indicates zero values
of streamwise velocities. a) Measured velocity field [19]. b) Computed velocity field with the
k-DES model, which discloses the separation point at xs = 0.52h and reattachment location at
xr = 2.21h.

4 CONCLUSIONS

A DES modelling approach, the k-DES model, is presented for turbulent flow compu-
tations, which is based on the transport equation for turbulence kinetic energy, k. The
RANS form combined in the k-DES model incorporates correct asymptotic properties
when integrated to the wall surface. It is shown that the RANS mode is able to produce
satisfactory predictions for wall-attached flow. The k-equation is switched from the near-
wall RANS mode to an SGS model in the LES region and solving for the SGS turbulence
kinetic energy. The LES mode is calibrated in the simulation for decaying, homogeneous,
isotropic turbulence, showing reasonable performance in reproducing the energy spectra
and the turbulence energy decaying with time, as compared with experimental data and
with the Smagorinsky SGS model.

Similar to the S-A DES model, the RANS-LES interface with the k-DES model is ac-
complished by means of the adaptation between the RANS length scale from the near-wall
region and the SGS length scale from the off-wall LES region. In the computation of three
turbulent flows with increasing complexities, the k-DES model has shown encouraging per-
formance. The mean flow is reasonably predicted, as compared with available DNS, LES
and experimental data. The flow separation (for both the 2D and 3D cases considered)
has been reproduced reasonably well. The results obtained with the model are similar to
(or even better than) the predictions computed with other hybrid RANS-LES methods.
For the resolved turbulence statistics in the cases with flow separation, some discrepancies
between the k-DES prediction and the LES (or measured) data are observed in the region
where the free shear layer arises (above the bubble). This is, to a large extent, attributed
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to the grid resolution used in the present computations, which is relatively coarse and has
consequently made the dissipation over-estimated for the resolved turbulence energy.

The k-DES model is built on the basis of the transport equation for the turbulent
kinetic energy, of which its modelling has probably the least controversies as compared
with other scale-determining turbulence transport equations in the context of both RANS
and SGS modelling. In addition, the exact k-equation is theoretically derivable so that
the modelled terms can be traced back to their exact counterparts in a prior test with
DNS and/or experimental data. Moreover, apart from the correct near-wall asymptotic
property for the RANS modelling, for the LES mode the SGS modelling argumentation is
similar to other well-calibrated SGS models. In the future work, comprehensive analysis
on the k-DES model will be carried out on issues such as the effect of grid resolution and
near-wall meshing, as well as the effect of the location for the RANS-LES interface.
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