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We demonstrate the coupling between the fundamental and second flexural modes of a

microcantilever. A mechanical analogue of cavity-optomechanics is then employed, where the

mechanical cavity is formed by the second vibrational mode of the same cantilever, coupled to the

fundamental mode via the geometric nonlinearity. By exciting the cantilever at the sum and difference

frequencies between fundamental and second flexural modes, the motion of the fundamental mode of

the cantilever is damped and amplified. This concept makes it possible to enhance or suppress the

Q-factor over a wide range. VC 2011 American Institute of Physics. [doi:10.1063/1.3650714]

Cantilevers have numerous scientific and technological

applications and are used in various instruments. In sensing

applications, the sensitivity is related to the Q-factor, and

this has motivated researchers to increase the Q-factor of me-

chanical resonators, in particular, in dissipative environ-

ments. Among the techniques that have been employed are

applying residual stress,1 parametric pumping,2 and self-

oscillation by internal3 and external4 feedback mechanisms.

When increasing the Q-factor in these ways, energy is

pumped into the mechanical mode and the resonator heats

up. The opposite effect leads to cooling of the resonator and

attenuation of its motion.5 By pumping energy out of the me-

chanical resonator into a high quality-factor optical or micro-

wave cavity, several groups have shown reduction of the

effective temperature of the vibrational mode from room

temperature to millikelvin temperatures.6–14 Such cooling

schemes are now employed to bring down the mode temper-

ature to below an average phonon occupation number of one,

providing a promising route to study the quantum behavior

of a mechanical resonator.15–17

In analogy to cavity optomechanics, where an optical or

a microwave cavity is used to extract energy from the reso-

nator, we employ a mechanical cavity to damp the mechani-

cal mode. Here, the fundamental flexural mode of the

cantilever is the mode of interest, and the mechanical cavity

is formed by the second flexural mode of the same cantile-

ver, which is geometrically coupled to the fundamental

mode. In this paper, we demonstrate the presence of this cou-

pling by strongly driving the cantilever on resonance, while

monitoring its broadband frequency spectrum. Sidebands

appear in the spectrum, which are located at the sum and dif-

ference frequencies of fundamental and second modes of the

cantilever. Driving the cantilever at these sidebands results

in positive or negative additional damping, which is demon-

strated in this paper.

Cantilevers are fabricated from low pressure chemical

vapor deposited silicon nitride by electron beam lithography

and isotropic reactive ion etching in a O2/CHF3 plasma.18

The dimensions are length�width� height¼ 39 lm� 8

lm� 70 nm. An optical deflection technique, similar to the

one employed in atomic force microscopy, is used to detect

the cantilever motion. Figures 1(a) and 1(b) show the cantile-

ver and the setup. The cantilever is mounted on a piezo crys-

tal and placed in a vacuum chamber at a pressure of �10�5

mbar. Two spectrum analyzers are used to simultaneously

measure the thermal motion of the fundamental (i¼ 1) and

second (i¼ 2) flexural modes. Figure 1(b) shows the power

spectra without driving the piezo. The resonance frequencies

and Q-factors are determined by fitting Lorentzian functions

(solid lines), and we find f1¼ 63.2 kHz and f2¼ 385.4 kHz

and f3¼ 1.068 MHz (not shown). The ratios f2/f1¼ 6.1 and

f3/f1¼ 16.9 are close to the expected modal frequencies

a21¼ 6.3 and a31¼ 17.5 representing the spectrum of a ho-

mogeneous cantilevered Euler-Bernoulli beam. For the fun-

damental and second resonance modes, the corresponding

Q-factors are Q1¼ 5184 and Q2¼ 3922, respectively. The

frequency difference, f2� f1¼ 322 kHz, exceeds the band-

width of the modes, f1/Q1¼ 12 Hz and f2/Q2¼ 98 Hz, by

four orders of magnitude.

FIG. 1. (Color online) (a) Scanning electron micrograph of the silicon

nitride cantilever. (b) Diagram of the measurement circuit showing photo-

diode (D), laser (L), piezo (P), and the spectrum analyzers (SAs) to measure

the fundamental (SA 1) and the second (SA 2) flexural modes. The thermal

noise spectra are shown at the fundamental (i¼ 1) and second (i¼ 2) flexural

modes of the cantilever.a)Electronic mail: w.j.venstra@tudelft.nl.
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To demonstrate the coupling between the fundamental

and second flexural modes of the cantilever, we drive the

cantilever on resonance, while measuring its broadband

spectrum. Figure 2(a) shows this spectrum as a function of

the drive strength. When the amplitude of the second mode

increases, mechanical sidebands become visible in the spec-

trum. These sidebands occur at f2 6 f1 and clearly indicate

the presence of mechanical coupling between the two modes.

Traces for weak and strong driving are extracted from (a) in

Fig. 2(b), to show the shape and relative amplitudes of the

sidebands. As the spacing between the sidebands is much

larger than the linewidth of the mode, we operate in the

resolved sideband regime.6

The mechanism that couples the vibrational modes in a

cantilever can be qualitatively understood as follows. A non-

zero amplitude of one flexural mode of the cantilever

changes the shape of the cantilever.19 This geometric change

has a small but measurable effect on the resonance frequency

of all the other vibrational modes. The effect of the cantile-

ver amplitude on its own resonance frequency was recently

analyzed in detail;20 for the first few modes, any nonzero am-

plitude stiffens the frequency response, and this gives rise to

frequency pulling. Recently, we also presented a detailed

study on the coupling mechanism between the vibrational

modes in clamped-clamped resonators.21 Here, the coupling

between the modes is fully described by the displacement-

induced tension. A similar analysis can be carried out for the

coupling between vibration modes of a cantilever beam. The

only difference is that in the inextensional cantilever, the

modes are coupled by the geometric nonlinearity, whereas

for the (extensional) clamped-clamped resonator, the modes

are coupled by the displacement-induced tension. For a can-

tilever, the modal amplitudes ui are calculated by solving the

(dimensionless) coupled equations,22
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Taking only the fundamental and the second modes into con-

sideration, Eq. (1) yields two coupled nonlinear differential

equations with constant coefficients, which can be solved

numerically.

The coupling between the vibrational modes can be

used to transfer energy by employing a process similar to

sideband cooling in cavity-optomechanics, where the cavity

is used extract energy from the mechanical mode. The me-

chanical resonator is embedded in an optical6–10 or micro-

wave cavity.11–13 In analogy to those experiments and given

the presence of the mechanical mode-coupling, the damping

of one mechanical mode by another mode of the same reso-

nator can be envisioned. Using the coupling mechanism

described in the previous section, any change in the position

of the mode under consideration (the fundamental flexural

mode in the experiments that follow) changes the stiffness of

the mode that acts as the cavity (the second flexural mode).

The energy change in the cavity mode is retarded by the cav-

ity relaxation time, equal to �Q2/f2 for our mechanical cav-

ity. Due to the delayed response of the cavity mode, a force

is exerted by the cavity mode on the fundamental mode. This

velocity-proportional force can either amplify or attenuate

the motion of the fundamental mode.23 In case of red-

detuned driving, the damping force on the fundamental

mode is increased. When the driving is blue-detuned, the

motion of both the cavity mode and the fundamental mode is

amplified. The schemes are illustrated in Fig. 3(a), where the

two Lorentzian shaped curves represent the two flexural

modes of the cantilever, and the driving frequencies corre-

sponding to blue and red detunings are indicated by the

arrows. The damping rate is maximized by driving at the

sum and difference frequencies and is increased by decreas-

ing the linewidth of the cavity mode.

The effect of sideband excitation on the damping of the

cantilever is demonstrated by measuring the thermal noise

spectra of the fundamental and second flexural resonance

modes, while driving the piezo sinusoidally at their sum and

difference frequencies. Figure 3(b) shows the spectrum with-

out driving (indicated by the black open circles). When the

cantilever is driven at the blue-detuned sideband, its ampli-

tude increases as shown by the blue curve. The blue and red

curves in the power spectral density plots of Fig. 3(b) corre-

spond to driving at the blue and red-detuned sidebands of the

cavity mode shown in Fig. 3(a). By fitting Lorentzian func-

tions to the data, we obtain the temperature and the Q-factors

of the fundamental mode while driving the sidebands. When

the cantilever is driven at the red sideband, the Q-factor of

the fundamental mode decreases from 4599 to 1421. No

changes in the temperature of the mode are observed, which

indicates that the energy extracted via the modal interactions

FIG. 2. (Color online) (a) Noise spectrum while driving the second flexural

at increasing amplitudes. At strong driving, sidebands emerge in the spectra

at the sum and difference frequencies of the fundamental and second flexural

modes. Color scale represents the power spectral density. (b) The cross-

sections of panel (a) at weak (bottom) and strong (top) driving show the

shape and intensity of the sidebands.
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leaks back into the mode via other transport mechanisms,

which are absent in opto-mechanical cooling schemes. When

driving at the blue sideband, the Q-factor increases to 5849.

For the cavity mode, by red-detuned driving, the Q-factor

decreases from 2776 to 2108, while for blue-detuned driving,

it increases to 3185. Here, we do observe a change in tem-

perature, by a factor of 3.6 for the red and 6.3 for the blue-

detuned driving.

By increasing the drive strength at the red-detuned side-

band, the amplitude of the cantilever motion is further attenu-

ated, as is shown in Fig. 3(c). Here, the Q-factor of the

fundamental mode is shown as a function of the applied driv-

ing power at f2� f1. A 20-fold reduction of the Q-factor is

achieved compared to the Q-factor without driving the side-

band. This clearly demonstrates that driving at the mechanical

sidebands can be used to modify the damping characteristics

of a micromechanical resonator to great extent. This scheme

can be used to modify the Q-factor in cantilever-based instru-

mentation, where we note that the changes in damping

obtained in these experiments are of the same order as the vis-

cous damping in air, so that stronger excitation is needed to

obtain a significant change in the damping.

In conclusion, we demonstrate the coupling between the

flexural modes of a microcantilever. This coupling is marked

by mechanical sidebands in the frequency spectrum, which

are located at the sum and difference frequencies. Driving

the cantilever at these mechanical sidebands results in addi-

tional damping of the resonator, which can be either negative

or positive in sign. This is demonstrated for the fundamental

and the second flexural modes. Furthermore, using a second

mode of the same resonator as a cavity provides a means to

cooling experiments based on modal interactions. In present

sideband-cooling experiments, coupling a mechanical reso-

nator to an optical or microwave cavity can pose significant

experimental challenges. The coupling described in this

work is present by nature, and its strength can be tuned by

engineering stress and geometry. More explicitly, in carbon

nanotube resonators with extremely high Q-factors24 at low

temperatures, coupling between the vibrational modes as

described in Ref. 21 may provide a route to cool mechanical

modes to the quantum ground state.
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FIG. 3. (Color online) (a) Damping and amplification of the fundamental

mode by pumping the sidebands of the second flexural mode. The sum and

difference frequencies are indicated by the arrows. By exciting the cantilever

on the red sideband, the fundamental mode is suppressed, and its motion is

amplified by exciting on the blue sideband. (b) Noise spectra of the funda-

mental mode (left) and the cavity mode (right). The black curves represent

the thermal noise spectra without excitation. The red curves are obtained by

pumping the red sideband, resulting in positive damping of the cantilever.

The blue curves are measured while pumping the blue sideband, which

results in negative damping (amplification). (c) The Q-factor of the funda-

mental mode as a function of pump power on the red sideband (closed dots).

For each power, a control experiment is carried out without excitation, indi-

cated by the open circles.
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