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1
Introduction

1.1. Motivation

G enerative models belong to a branch of unsupervised learning techniques in
machine learning, for which the goal is to learn from training data in a cer-

tain domain (e.g., images, sentences, or sounds, etc.), and then to generate data
similar to them. From a statistical point of view, generative models take a training
set sampled from a data distribution, and learn to represent an estimate of the
probability distributions of the given data.

Traditional generative models provide a parametric specification of a probability
distribution function (pdf) and can then be trained by maximizing the log likeli-
hood. However, such models have limited ability to generative high dimensional
data, such as images. The limitation stems from the fact that high dimensionality
generally makes the computation intractable and that high dimensional space is al-
most empty with meaningful samples lying in some specific locations, which makes
the estimation of pdf very difficult.

Generative Adversarial Networks (GANs), first proposed by Ian Goodfellow in
2014[1], are a class of generative models that has achieved considerable success in
modeling high dimensional data such as images. A simple GAN is composed of two
parts: a generator and a discriminator. Both the generator and the discriminator
are artificial neural networks with a large number of learnable parameters. The
generator takes random noises as input and outputs samples that look like the true
data. The discriminator is an adversarial classifier that is trained to discriminate
between samples from the true data distribution and samples from the generator.
The discriminator is introduced in GANs to provide signals to the generator, based
on which we could optimize parameters of the generator to make its generated
samples more confusing for the discriminator. Therefore, these two networks are
in competition with each other in a way that the discriminator is trying to distinguish
real samples from fake ones produced by the generator, while the generator is trying
to create samples that make the discriminator think they are real. Thus, GANs do
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not make estimate of a pdf directly but learn to generate samples according to the
pdf, which makes modeling high dimensional data an easier task.

GANs have gained notable success in visual domains, such as realistic images
generation [2–4], semantic meaningful representation learning [5], and image-to-
image translation [6]. Figure 1.1 exemplifies the performance of GANs in generating
handwritten digits using the MNIST dataset[7] as the training dataset. The figure
on the left shows original handwritten digits from the true MNIST dataset, contain-
ing images of handwritten digits with different classes and with various thickness,
orientation and shape. GANs take samples from the training dataset and learn to
generate similar samples, shown in the figure on the right. The generated images
contain all possible digits and look realistic, but not exactly the same as the digits
in the training dataset.

Figure 1.1: An illustration of what GANs would generate. A well-trained GAN would be able to train on
examples (MNIST [7]) as shown on the left and then create similar examples from the same distribution
as shown on the right. Figure reproduced from [8].

While GANs achieve compelling results in visual domain, the drawback is that it is
hard to evaluate. The challenge mainly comes from the fact that GANs, unlike some
generative models that define an explicit pdf, directly generate samples according to
the input without defining a pdf. In low dimensional toy data, we may estimate the
density function 𝑝 (𝑥; 𝜃) by Parzen density estimation, but it is impractical for
high dimensional data such as images. Thus, classic measures, such as computing
log-likelihood on test data, is not applicable.

If we only have access to generated samples, what are the alternative ways
to evaluate GAN’s performance? One intuitive method is to visually inspect the
quality of generated samples. Images that contain meaningful objects and that
look realistic and detailed are considered as of high visual quality. For instance, the
generated images in figure 1.1 on the right-hand side contain meaningful digits and
look realistic with clear background, thus these images are of high visual quality.

Additionally, we are not only interested in generating a single high-quality image,
but also in generating different samples that could cover all variations in the training
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set, such as different objects with different shapes. These variations are also known
as different modes in one dataset.

However, mode collapse is a well-recognized problem in GANs [5, 8, 9], where
GANs only generate data with some modes in the training data. Figure 1.2 illustrate
mode collapse in 1d space. In this 1d space, the real data distribution is a mixture
of three Gaussian distributions that has three modes. Ideally, we would like GANs
to generate all three modes, as shown in figure 1.2(c), however, In figure 1.2(a)
and 1.2(b), GANs are only able to generate data from one or two modes and mode
collapse occurs.

(a) Mode collapse example:
generating only one mode

(b) Mode collapse example:
generating only two modes

(c) No mode collapse: generat-
ing all three modes

Figure 1.2: An example of mode collapse: the real data distribution has three modes(colored in blue).
1.2(a) shows the situation where GANs only generate data from one mode, and figure 1.2(b) shows the
situation where GANs only generate data from two modes. 1.2(c) shows the ideal case where all three
modes are generated.

To summarize, we would like to evaluate GANs from two aspects: the diversity
and the quality. The diversity evaluates GANs’ ability to generate diverse samples
capturing different modes in real data and the quality evaluates GANs’ ability to
generate realistic samples. Take the groundtruth MNIST samples and generated
samples in figure 1.1 as an example. For a well-trained GAN, we would like it to
generate not only digits that look realistic, but also images that cover all digits from
0 to 9.

A common method adopted by researchers to evaluate GANs, as briefly dis-
cussed before, is to inspect the visual quality of generated samples. However, this
manual work suffers from low scalability and high subjectivity. Meanwhile, uncon-
scious bias from subjective evaluation is inevitable, such as when researchers report
only their best results and lead to unfair comparisons for different GANs. Moreover,
a human observer could probably overlook mode collapse and fail to evaluate di-
versity. Although for simple dataset like the MNIST, it is not difficult for a human
observer to notice the missing digits by inspecting a sequence of samples, in more
realistic settings, where a GAN is trained on data with tens of thousands of modes,
a human observer would hardly detect the missing variation by manual inspection.

Since evaluating log likelihood is intractable for images and since manual in-
spection is not a reliable and scalable approach, we hereby propose a quantita-
tive evaluation approach for GANs using an artificial image dataset. The artificial
dataset, as shown in figure 3.1, contains images that have one or more artificial
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spheres in different locations. By introducing this artificial dataset, we limit the
evaluation of GANs to a specific dataset, and enables the quantitative evaluation
from both the diversity aspect and the quality aspect. The variation of images, or
different modes within this artificial dataset, is entirely represented by difference
locations of spheres, thus we are able to assess GANs’ ability to generate different
samples, which is the diversity, by examining the locations of generated spheres.
In the meantime, since we know the groundtruth shape of these spheres, we are
able to assess GANs’ ability to generate realistic samples, which is the quality, by
comparing the generated samples and the ground-truth images in a pixel-by-pixel
manner.

(a) Sharp sphere ex-
amples

(b) Gaussian sphere
examples

(c) Two-sphere exam-
ples

(d) Stack sphere ex-
amples

Figure 1.3: Illustration of our artificial image dataset: each sample image is located in × grids.

Objective evaluation of GANs’ performance is a challenging but important task.
It is essential for two reasons. First, as a variety of GANs are promoted for di-
verse training objectives and with modified training techniques, it helps researchers
compare different GANs fairly and objectively. Second, to make faster progresses
towards better algorithms and models, it is useful to find out which modifications
have significant influence on GANs’ performance.

In this work, we also discover two improved techniques for training GANs with
the help of our quantitative evaluation scheme. First, adding proper regularization
on networks improve and stabilize the performance. Second, we develop a Smooth-
to-Sharp training framework to improve the performance, in which training starts
with smooth images and progresses gradually to sharp ones.

1.2. Objectives

T he aim of our work is to quantitatively evaluate the performance of GANs and to
discover improved techniques for training GANs with the help of our developed

evaluation scheme.

1. To develop quantitative evaluation scheme for GANs’ performance. We would
like to evaluate GANs’ performance from two aspects: the diversity and the
quality.

2. To propose training techniques to improve GANs’ performance. We proposed
two techniques, adding proper regularization and the ”Smooth-to-Sharp” train-
ing framework.
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Our work fills current research gaps from four aspects. First, we invent an arti-
ficial image dataset that is easy to create and available for quantitative evaluation.
Second, we propose a quantitative approach to evaluate GANs based on both di-
versity and quality and use our Artificial image dataset to train different GANs and
to make quantitative comparisons. Third, we empirically analyze the benefits of
regularization on GANs and validate our idea by experimental results. Forth, we
develop a ”smooth-to-sharp” training method, which boosts GANs’ performance for
sharp images.

1.3. Outline

T he outline of this thesis report is as follows. Chapter 2 gives background knowl-
edge of GANs and summarizes related work of evaluating and improved training

of GANs from literature. Chapter 3 introduces the proposed toy dataset and quan-
titative evaluation scheme. Chapter 4 discusses two ways to improve the train-
ing of GANs: adding regularization and the ”Smooth-to-Sharp” training. Chapter
5 presents key experiments and their results. Finally, chapter 6 summarizes this
work, discusses the results and possible continuations of our research.





2
Related Work

2.1. Deep Learning

D eep Learning is a sub-field of machine learning, which uses multiple layers of
artificial neurons to learn representations [10]. It has gained notable success

in speech recognition, visual object recognition, and many other domains. The
basic building blocks for most deep learning approaches are artificial neurons with
trainable parameters, and these parameters are trained by the backpropagation
procedure [11].

Neural networks The most commonly used architecture in Deep Learning is
called deep neural networks. A neural network is composed of connected artificial
neurons. Figure 2.1 illustrates the idea of such a neuron.

Figure 2.1: An illustration of a single neuron with inputs, learnable weights and bias parameters.
After the affine transformation, a function , referred as activation functions, is applied.

Each neuron applies an affine transformation of the input x = [𝑥 , 𝑥 , ..., 𝑥 ] :

𝑢 =∑𝑤 𝑥 + 𝑏, (2.1)
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where 𝑤 is the weight corresponding to 𝑥 and 𝑏 is the bias term. A non-linear
activation function 𝑓 is applied after this affine transformation:

𝑜 = 𝑓(𝑢). (2.2)

Thus, we get the final output 𝑜 after the affine transformation and the non-linear
activation. By connecting multiple neurons in different layers, a neural network is
formed. Figure 2.2 exemplifies a three-layer neural network.

Figure 2.2: A three-layer neural network with two inputs, three hidden neurons and two outputs.

Optimization Neural networks are usually initialized with random weights and
biases, and these parameters need to be updated such that a defined scalar cost 𝐽
is minimized. This learning process is achieved by the gradient descent algorithm
using the gradient computed by backpropagation [11]. A specialized set of gradi-
ent descent techniques has been developed to optimize neural networks, including
Stochastic Gradient Descent (SGD) [12], RMSProp [13], Adam [14], and so forth.

Universal approximation theorem The universal approximation theorem states
that a neuron network with at least one hidden layer can approximate any contin-
uous function under mild assumptions, provided that the network is given enough
hidden units[15]. However, we are not guaranteed that the optimization algorithm
will be able to learn the arbitrary function, although the network is able to represent
the function.

2.2. Generative Models

G enerative models refer to any model that takes a training set sampled from
a distribution 𝑃 , and then learns to represent an estimate 𝑃 . Typi-

cal generative models are density models that explicitly provide an estimate of the
probability density function. A parametric Gaussian distribution 𝒩(𝜇, 𝜎 ) is an ex-
ample of the simplest generative model, which gives an explicit probability density
function as 𝜇 and 𝜎 are learned from training samples. More complicated density
models include the Parzen density [16], Boltzmann machines [17] and so forth.

However, such density models have a limited ability to model and generate
high dimensional data, such as images. First, most density models rely on a prior
specified parametric family, which makes assumptions of the estimated probability
distribution and limits the functional form of it. Furthermore, estimating the density
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is often computationally intractable since high dimensional space is almost empty,
with meaningful samples lying in some specific locations [18]. Lastly, if we are inter-
ested in generating new samples, the typical method is inverse transform sampling,
which involves computing the cumulative distribution function of the estimated dis-
tribution and inverting the computed function. However, this method is computa-
tionally intractable for high dimensional data. Other approximation methods, such
as the Markov Chain Monte Carlo (MCMC), are also inefficient in high-dimensional
spaces[19].

These difficulties motivate the development of “generative machines” [1]: mod-
els that do not explicitly represent the density function yet are able to generate
samples from the desired distribution. By avoiding defining the density explicitly,
the generative machines often have fewer restrictions and are more flexible to the
desired distribution, compared to the traditional density models. Moreover, the gen-
erative machines are capable of generating new samples directly, some of which
are even capable of generating a batch of samples in parallel. One important rep-
resentative of generative machines, with remarkable success achieved in recent
years, is the Generative Adversarial Networks (GANs).

2.3. Generative Adversarial Networks
Framework GANs are a class of generative machines with the capability to gen-
erate samples directly and are proposed by Goodfellow et al. [1] in 2014 as a
novel framework for training generative models. A simple GAN consists of two
components: a generator G and a discriminator D. Goodfellow and his colleagues
proposed an adversarial training process where these two components are simul-
taneously trained. G is trained to generate samples that look realistic, while D is
trained to distinguish the samples produced by G from those belonging to the real
dataset. The most commonly used architecture for both G and D are artificial neu-
ral networks. As stated by the universal approximation theorem, the advantage of
using artificial neural networks is that these networks are capable of modelling very
complex mappings, and that they can be optimized by backpropagation algorithm.

An example of a GAN is shown in figure 2.3, in which both G and D are neural
networks with one hidden layer. G is a generative function that takes random inputs
drawn from a prior distribution 𝑧 (i.e., uniform or normal distribution), which are
often referred as latent variables, and outputs generated samples 𝑥 ∼ 𝑝 :

𝑥 = 𝐺(𝑧), 𝑥 ∼ 𝑝 (2.3)

𝐷 is a discriminative function that maps samples 𝑥 from the true distribution
𝑝 or the generated distribution 𝑝 to a scalar 𝑜 to determine whether the
input samples are fake or real:

𝑜 = 𝐷(𝑥), 𝑥 ∼ 𝑝 𝑜𝑟 𝑥 ∼ 𝑝 (2.4)

Training GANs At first, GAN is initialized with random weights, so a random
latent variable input to 𝐺 would be output as a completely random image. Our
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(a) Generator (b) Discriminator

Figure 2.3: An example of the structure of the Generator and the Discriminator. Generator has 2D latent
variables and one hidden layer with three units. The discriminator takes real data or generated data as
input, and outputs a scalar indicating the input being real or fake.

goal is to train these initial random weights in order to make the generated image
samples look similar to the training data. In other words, we aim to match the
generated image data distribution to the true data distribution. 𝐺 gets trained by
receiving training signals from 𝐷 when we backpropagate through both 𝐷 and 𝐺
to learn to change the weights for 𝐺 in order to make generated images more
confusing for 𝐷. Therefore, these two networks are in competition with each other
in a way that D is trying to distinguish real samples from fake ones produced by G,
while G is trying to create samples that make D think they are real. In theory, 𝐺
could eventually reproduce the true data distribution and 𝐷 would be unable to find
a difference. More formally, 𝐷 and 𝐺 are jointly trained with the objective function
defined by the following minmax game:

minmax𝑉(𝐷, 𝐺) = 𝔼 ∼ [log𝐷(𝑥)] + 𝔼 ∼ [log(1 − 𝐷(𝐺(𝑧)))], (2.5)

Figure 2.4 gives a visualization of the training progress of GANs in 1D space.
The real data distribution is a Gaussian distribution, and the GAN is trained to
generate samples according to a similar distribution. At the beginning of the training
process (2.4(a)), 𝐺 generates samples that lie far away from the real samples. The
real samples follow a normal distribution and the generated samples are randomly
distributed. The learning signal provided by D guides 𝐺 to generate samples that
are gradually closer to the real samples, as shown in 2.4(b) 2.4(c). Finally, the
generated samples lie very similar to real samples, and 𝐷 cannot distinguish fake
from real (2.4(d)).

Optimality The loss functions for respective models are shown as:

ℒ = −𝔼 ∼ [log𝐷(𝑥)] − 𝔼 ∼ [log(1 − 𝐷(𝑥))] (2.6)

ℒ = 𝔼 ∼ [log(1 − 𝐷(𝑥))] (2.7)
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(a) Iteration 0 (b) Iteration 100

(c) Iteration 200 (d) Iteration 300

Figure 2.4: An example of the training progress in 1D space. The real data distribution is a Gaussian
distribution, and GANs are trained to generate samples according to a similar distribution. The red
line shows the output of the discriminator. It gives higher value to real samples and thus guides the
generator to generate samples move towards real samples.
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For a fixed generator 𝐺, the optimum discriminator 𝐷∗ given a sample 𝑥 is [1]:

𝐷∗(𝑥) = 𝑝 (𝑥)
𝑝 (𝑥) + 𝑝 (𝑥) (2.8)

The loss for a optimum discriminator would be: [20]:

ℒ ∗ = −2𝐷 (𝑃 ∥ 𝑃 ) + 2 log 2, (2.9)

where 𝐷 is the Jensen-Shannon divergence. The Jensen-Shannon divergence
is a symmetrical, non-negative measure of the divergence between two probability
distributions 𝑝 and 𝑞. It is zero if and only if 𝑝 = 𝑞. Thus, ℒ ∗ has a global minimum
of − log 4 if and only if 𝑝 = 𝑝 . At this optimum, the optimal discriminator
𝐷∗ cannot do better than randomly guessing and output 0.5 for any sample 𝑥 (see
Eq. 2.8).

2.4. Evaluating Generative Adversarial Networks

I n this section, we summarize current evaluation methods that are popularly ap-plied. We are interested in evaluating GANs from two aspects: the diversity and
the quality. From the diversity aspect, we evaluate GANs’ ability to generate diverse
samples capturing different modes in the real data; and from the quality aspect,
we evaluate GANs’ ability to generate realistic samples.

Visual Inspection GANs are generative machines that are able to generate sam-
ples directly, thus practitioners often evaluate GANs by visually inspecting generated
samples.

One straightforward way is to visualize a batch of samples generated by GANs,
and to evaluate their qualities by researchers themselves. This method is deployed
in many research works [1, 2, 8, 21, 22]. Figure 2.5 exemplifies this method.
In this work, the authors visualized 24 samples from four different GAN models
and compared their performance by visually inspecting the results. Although they
claimed the top-left model be the best, it was very subjective. It is generally very
hard to make a fair comparison based on visual inspection.

Another approach deployed by Salimans et al. [8] is to automate the human
evaluation process using the Amazon Mechanical Turk, a crowd-sourcing platform
on which researchers asked annotators to distinguish between generated images
and real images.

Unfortunately, these manual works suffer from low scalability and high sub-
jectivity. Unconscious bias from subjective evaluation is inevitable, such as when
researchers report only their best results, which lead to unfair comparisons for dif-
ferent GANs. Moreover, a human observer could probably overlook mode collapse
and fail to evaluate the diversity. Although for simple dataset like the MNIST, it is
easy for a human observer to notice the missing digits by inspecting a sequence
of samples, in more realistic settings, where a GAN is trained on data with tens of
thousands of modes, a human observer would hardly detect the missing variation
by manual inspection.
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Figure 2.5: An example of manual inspection method used by researchers (Figure from [21]). They
compared four different GANs by visualizing selected samples and by manually inspecting them.

LikelihoodMethod For generative models that define an explicit probability den-
sity function (pdf), the standard way to evaluate the performance is to compute
the log-likelihood on reserved test data. We first reserve 𝑚 samples as test data:
{𝑥 , 𝑥 , ..., 𝑥 }, and then estimate the probability density 𝑝 (𝑥):

𝐿𝐿 =∑ log(𝑝 (𝑥 )), (2.10)

GANs do not define an explicit pdf but generate samples according to the pdf.
When the pdf is not available, one common alternative is to use density estimators
such as Parzen window method. Let 𝑥 be a sample drawn from a distribution with
an unknown density 𝑝. Parzen window method estimates the following function 𝑝:

�̂� (𝑥) = 1
𝑛 ∑Φ (𝑥 − 𝑥 ), (2.11)

where Φ is a window function parameterized by the bandwidth ℎ.
Generated samples are used to fit such a density estimator. Then the log-

likelihood of the test data is evaluated under this estimator and is used as a proxy
for the true model’s log-likelihood. This method, first introduced by Breuleux et al.
[23], are widely used by researchers [1, 22, 24] to evaluate GANs. However, this
method of estimating the likelihood has high variance and does not perform well in
high dimensional spaces [1]. Theis et al. [18] also provided examples showing that
in high dimensional spaces the Parzen window estimation of the likelihood is biased
and is even unable to produce useful rankings when comparing different models.
Thus, the authors suggested that this method should be avoided for evaluating
generative models in high-dimensional spaces.



2

14 2. Related Work

Evaluation by A Well-trained Classifier A more indirect evaluation method is
to apply a well-trained classifier to the generated samples and calculate statistics
of its output or at a particular hidden layer.

One widely used metric taking this approach is the Inception Score [8]. The
inception Score (IS) uses a well-trained neural network and calculates a statistic of
the network’s outputs when applied to generated samples:

𝐼𝑆(𝐺) = exp(𝔼 ∼ [𝐷 (𝑝(𝑦|𝑥) ∥ 𝑝(𝑦)]), (2.12)

where 𝑥 ∼ 𝑝 states that 𝑥 is a sampled image from 𝑝 , 𝑝(𝑦|𝑥) is
the conditional class distribution, 𝑝(𝑦) = ∫𝑝(𝑦|𝑥)𝑝 (𝑥)𝑑𝑥 is the marginal class
distribution, and 𝐷 (𝑝 ∥ 𝑞) is the Kullback-Leibler (KL) divergence between the
distributions 𝑝 and 𝑞.

The KL divergence measures how different two distributions are:

𝐷 (𝑝 ∥ 𝑞) = 𝔼 ∼ [log𝑝(𝑥) − log 𝑞(𝑥)]. (2.13)

One notable property of the KL divergence is that it is non-negative. The KL
divergence is 0 if and only if P and Q are the same. Since the KL divergence is
non-negative and measures the difference between these distributions, it is often
conceptualized as measuring a certain distance between these distributions.

The authors proposed the IS to combine two objectives into a metric:

1. The images generated should be contain meaningful objects, or the condi-
tional class label distribution 𝑝(𝑦|𝑥) should have low entropy.

2. The variability of samples should be high so the marginal ∫𝑝(𝑦|𝑥 = 𝐺(𝑧))𝑑𝑧
should have high entropy.

If both of these desirable qualities are satisfied by a GAN, then we expect a
large KL-divergence between 𝑝(𝑦) and 𝑝(𝑦|𝑥), resulting a large IS.

Another classification based method is the Frechet Inception distance (FID),
proposed by Heusel [25]. Instead of using the class label distribution, the FID
makes use of a certain layer of Inception Net to compare embeddings of the real
and the generated data. Although the FID does not perform a classification task
as the IS, it still needs a pre-trained classifier. Thus, we categorize the FID as a
classification based approach. The FID views the embedding layer as a continuous
multivariate Gaussian, and the mean and the covariance is estimated for both the
generated data and the real data. Then, the Frechet distance between these two
distributions is computed as:

𝐹𝐼𝐷(𝑥, 𝑔) = ||𝜇 − 𝜇 || + 𝑇𝑟(Σ + Σ − 2(Σ Σ ) ), (2.14)

where 𝜇 , 𝜇 are the means of embeddings from the true data distribution and the
generated distribution, and Σ , Σ are the covariances.

These two classification based approaches have at least three drawbacks. Firstly,
their evaluation largely relies on a well-trained classifier. GANs are unsupervised
learning frameworks that do not require labels but class labels for training data
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are required in order to train classifiers. Although we could evaluate GANs’ perfor-
mance of generating images using classifiers that are trained on a different image
dataset, for instance, the ImageNet [26], the mismatch of datasets would probably
introduce biases. Secondly, when evaluating the diversity of generated data, these
approaches only capture the variation of different classes but fail to capture the
variation of different shapes within one class. Thirdly, when evaluating the qual-
ity of generated data, these approaches assume that images classified with high
confidence are of high quality, but this assumption is not always true.

Evaluating on An Artificial Image Dataset In this thesis, we create an artifi-
cial image dataset to evaluate GANs. Currently available datasets for evaluation are
either too simple, for example, of a mixture of Gaussians in 1D or 2D space, or too
complex, for example, the ImageNet [26]. By introducing an artificial dataset, we
limit the evaluation of GANs to a specific dataset, and enable the quantitative eval-
uation from both the diversity aspect and the quality aspect. The artificial dataset
we propose has two properties. First, the variation of images within the dataset is
controllable and is easy to detect, and thus we are able to examine GANs’ ability
to generate diverse samples. Second, the content of images are relatively simple
and are easy to compare in image spaces. Therefore, we can evaluate GANs’ ability
to generate high quality samples by comparing these samples with ground-truth
images in a pixel-by-pixel manner.

To our best knowledge, only one published paper[27] discussed evaluating GANs
quantitatively using an artificial image dataset. The authors created a simple image
dataset: the manifold of convex polygons, as shown in Figure 2.6. They proposed
two evaluation aspects, which are the precision and the recall. The precision aspect
is similar to the quality in our evaluation metric, and the recall aspect is similar
to the diversity in our evaluation metric. However, their method requires solving
non-convex optimization problem and inverting the generator, and they have not
open-sourced their setups and implementations yet.

2.5. Improving Techniques for GANs
2.5.1. Alternative Training Objectives
𝑓−GAN Nowozin et al. [21] showed that GANs can be viewed as a general diver-
gence estimation principle. The authors extended the GAN framework to minimize
any divergence measure belonging to a class of divergences called f-divergence.

𝑓−divergence is a function measuring the difference between two probability
distributions. Given two probability distribution 𝑃 and 𝑄, with continuous density
functions 𝑝 and 𝑞 defined over a domain 𝜒, 𝑓−divergence is defined as:

𝐷 (𝑃||𝑄) = ∫ 𝑞(𝑥)𝑓 (𝑝(𝑥)𝑞(𝑥)) 𝑑𝑥, (2.15)

where 𝑓 is a convex function. For instance, the Kullbeck-Leibler divergence belongs
to this class of divergence. For a list of different 𝑓−divergences, see [21].
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Figure 2.6: Figure taken form [27]. The authors created an artificial dataset: the manifold of convex
polygons.

The authors also provided an alternative view of the training algorithm of GANs.
In this view, the discriminator tries to estimate a lower bound of a chosen divergence
measure, while the generator tries to minimize the estimated divergence.

The training objective of the original GAN [1] is to minimize the Jensen-Shannon
divergence. However, there are many different choices of f-divergences possible.
We can easily adapt the original GAN formulation to minimize other divergences.

Wassterstein GAN In [20], the authors analyzed why the traditional GAN is hard
to train. The reason lies in the divergence, Jensen-Shannon divergence used in the
original GAN [1] cannot accurately measure the distance between two distributions
when the overlapped part is negligible. Thus, in [28] the authors proposed to use
Wasserstein distance to measure the differences between the real distribution and
the fake one. The Wasserstein distance, also known as the Earth Mover distance
[29], of two distributions 𝑃 and 𝑄 is defined as:

𝑊(𝑃, 𝑄) = inf
∈
𝔼( , )∼ [∥ 𝑥 − 𝑦 ∥] , (2.16)

where Τ denotes the set of all joint distributions with marginal distributions 𝑃 and
𝑄.

Solving Eq.(2.16) is computationally intractable. However, it can be re-formulated
using the Kantorovich-Rubinstein duality [30] to

𝑊(𝑃, 𝑄) = sup
∥ ∥

𝔼 ∼ [𝑓(𝑥)] − 𝔼 ∼ [𝑓(𝑥)] . (2.17)

The supreme is over all 1-Lipschitz functions that satisfy: ∥ 𝑓(𝑥) − 𝑓(𝑦) ∥≤∥
𝑥 − 𝑦 ∥ .
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If we choose the Wasserstein distance as the divergence measure, the original
GAN formulation is rewritten as:

minmax𝑉(𝐷, 𝐺) ∈ = 𝔼 ∼ [𝐷(𝑥)] − 𝔼 ∼ [𝐷(𝐺(𝑧))], (2.18)

where the 1-Lipschitz constraint is enforced by weight-clipping [28] or by penalizing
the gradient norm of the discriminator [31].

2.5.2. Regularization
GANs are generally considered to be hard to train. Meanwhile, mode collapse is a
common failure pattern. These issues have been addressed in several recent papers
[8, 9, 32] proposing training techniques to stabilize GAN’s training and encourage
its samples’ diversity, many of which can be categorized as regularization strategies.

Regularization on Parameters Many regularization methods aim at limiting the
capacity of models, by adding a parameter penalty Ω(𝜃) to the objective function
𝐽. We denoted the regularized objective function by ̃𝐽:

̃𝐽(𝜃) = 𝐽(𝜃) + 𝛼Ω(𝜃), (2.19)

where 𝛼 is a non-negative hyperparameter that controls the relative weight of the
penalty term, Ω.

One common choice of parameter penalty is the L2-Regularization, commonly
known as weight decay. This strategy adds a regularization term

Ω(𝜃) = 1
2 ∥ 𝜃 ∥ (2.20)

to the objective function.
The 1-Lipschitz constraint (2.18) in Wasserstein GAN can be viewed as a regu-

larization on the discriminant function. In [28], this constraint is implemented via
weight clipping. That is, simply clipping all weight values that are outside of some
allowed range. Recently, [31] proposed a gradient penalty regularization method,
which enforces the 1-Lipschitz constraint by penalizing the gradient norm of the
discriminator.

Adding Noise and Data Augmentation Some work suggested to add contin-
uous noise to the inputs of the discriminator[20, 33]. Adding noise can be seen as
a process of constructing new inputs, and thus it is considered as a form of data
augmentation. Data augmentation is an effective way to improve the robustness
of a model and to make it generalize better. For GANs, adding noise to the inputs
of the discriminator encourages a smooth and robust discriminator and helps ease
the problem of instability.
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Quantitative Evaluation on

Artificial Datasets

3.1. Artificial Datasets

I n this thesis, we create an artificial image dataset to evaluate GANs. Currentlyavailable datasets for evaluation are either too simple, for example, a mixture of
Gaussians in 1D or 2D space, or too complex, for example, the ImageNet [26].

By introducing an artificial dataset, we limit the evaluation of GANs to a specific
dataset, and enable the quantitative evaluation from both the diversity aspect and
the quality aspect. The artificial dataset we propose has two properties. First, the
variation of images within the dataset is controllable and is easy to detect, and thus
we are able to examine GANs’ ability to generate diverse samples. Second, the
content of images are relatively simple and are easy to compare in image spaces.
Therefore, we can evaluate GANs’ ability to generate high quality samples by com-
paring these samples with ground-truth images in a pixel-by-pixel manner.

Our artificial image dataset consists of three datasets of images with one or two
spheres in an arbitrary location.

The Sharp-sphere Dataset The simplest dataset is a series of single-channel
binary images of one sphere, which only have two possible values 0 and 1 for each
pixel, as presented in Figure 3.1(a). The radius of the sphere is fixed, but the center
of the sphere is uniformly distributed over all possible locations.

If we let the center of the sphere be 𝑐(𝑐 , 𝑐 ), and the pixel value be 𝐼 , , then
𝐼 , is determined by its distance to the center:

𝐼 , = {
1 (𝑥 − 𝑐 ) + (𝑦 − 𝑐 ) ≤ 𝑟
0 (𝑥 − 𝑐 ) + (𝑦 − 𝑐 ) > 𝑟 , (3.1)

where 𝑟 is the radius of the sphere.
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The Smooth-sphere Dataset By applying the Gaussian blur, we create the
smooth-sphere dataset, which is the gray-scale smooth version of images in the
sharp-sphere dataset, as presented in figure 3.1(b). If we let the center of the
sphere be 𝑐(𝑐 , 𝑐 ), and the pixel value be 𝐼 , , then 𝐼 , is determined by its dis-
tance to the center:

𝐼 , = exp(−((𝑥 − 𝑐 ) + (𝑦 − 𝑐 ) )2𝜎 ) , (3.2)

where 𝜎 controls the radius size.

The Two-sphere Dataset To increase the complexity of our artificial images,
we further create the two-sphere dataset by putting two non-overlapping spheres
in one image, as shown in figure 3.1(c).

(a) Four sample images from the
sharp-sphere dataset

(b) Four sample images from the
smooth-sphere dataset

(c) Four sample images from the
two-sphere dataset

Figure 3.1: Samples from our artificial image dataset.

3.2. Evaluating The Diversity

T he variation of images in our artificial dataset is solely represented by the dif-
ferent locations of the centers of spheres. Thus, we can evaluate GAN’s ability

to generate diverse samples by comparing the distributions of center locations of
real samples and generated samples.

Detecting center locations One advantage of our artificial datasets is that we
can detect the variations: the center locations of the generated images easily. The
main technique used here is the convolution template matching [34].

One-sphere For one-sphere images, let 𝑐 = [𝑐 , 𝑐 ] be the center of a sphere
then the location of the center 𝑐 of real data follows a uniform distribution 𝑞 in
2D space. Similarly, the location of the center �̂� of generated samples follows
an unknown distribution 𝑞 in 2D space. The location �̂� can be easily detected
by convolving with a template filter which has the ground-truth shape, and the
location with maximum convolution intensity would be the center. This operation is
illustrated in figure 3.2.
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Figure 3.2: An illustration of using convolution operation to detect center location.

Two-sphere For two-sphere images, let 𝑐( ) = [𝑐( ), 𝑐( )] be the center of one
sphere, and 𝑐( ) = [𝑐( ), 𝑐( )] be the center of the other sphere, then [𝑐( ), 𝑐( )] of
real data follows a fixed distribution 𝑞 in 4D space. Similarly, [ ̂𝑐( ), ̂𝑐( )] of generated
samples follows an unknown distribution 𝑞 in 4D space. To detect 𝑐( ) and 𝑐( ), we
can also apply a convolution operation to the image and find out the two locations
with maximum convolution intensity, as shown in figure 3.3. However, for gener-
ated images tat may not have perfect shapes, it is highly likely that our algorithm
finds multiple detections of the same sphere. We use a technique called non-max
suppression to make sure that our algorithm detects each sphere only once. Non-
max suppression means that we are going to output a single local maximum value
of intensity, but suppress the close-by ones that are non-maximal.

Figure 3.3: An illustration of using convolution operation to detect center locations for two-sphere
dataset.

Estimating center location distribution After detecting the center locations,
we can estimate the 𝑝𝑑𝑓 of the distribution of these locations (𝑞) using Parzen
window estimates method. We need to decide the number of samples drawing to
estimate the distribution.

Approximating the KL Divergence We compare the difference between 𝑝 and
𝑞 to measure the diversity of generated samples. One common approach to mea-
sure differences between 𝑝 and 𝑞 is the KL-divergence. In theory, we could choose



3

22 3. Quantitative Evaluation on Artificial Datasets

either 𝐷 (𝑝 ∥ 𝑞) or 𝐷 (𝑞 ∥ 𝑝). In order to avoid numerical instability caused by
computing log 0, we choose to compute 𝐷 (𝑞 ∥ 𝑝). To compute the KL divergence
𝐷 (𝑞 ∥ 𝑝), we need to know the 𝑝𝑑𝑓 of 𝑝 and of 𝑞 explicitly. However, the 𝑝𝑑𝑓 of
distribution 𝑞, which is the distribution of the locations of the center for generated
images, is not available directly. Thus, we use the Parzen window method to obtain
an estimate.

In summary, we first draw a certain number of samples from 𝑞 and estimate
its 𝑝𝑑𝑓 by the Parzen window estimates method, and then we approximate the
KL divergence by discretization and summation over finite sets. We need to take
care of two parameters here: the number of samples and the size of discretization
intervals.

We choose these two parameters empirically. Without loss of generality, we
use the smooth-sphere dataset to analyze these two parameters. We compute
𝐷 (𝑞 ∥ 𝑝), where p and q are both ground-truth distribution of the location of the
center, but the 𝑝𝑑𝑓 of q is estimated by Parzen window estimates from samples and
the 𝑝𝑑𝑓 of p is given explicitly: 𝑝(𝑐) = , where 𝑚 is the length of feasible area.
Figure 3.4 shows the estimated KL divergence against the number of samples, for
different discretization interval sizes: 1, 0.5, 0.1,0.05. Ideally, the KL divergence of
all these curves should be 0, since 𝑝 and 𝑞 are the same distribution. We find that
the larger the number of samples, the closer the KL divergence to 0, and that the
smaller the discretization interval, the closer the curve to 0.

Although larger sample number and smaller interval size helps to make better
estimation, they also increase computation cost. Hence, we take sample size as
10,000 and interval size as 0.1 in our analysis.

Figure 3.4: Empirical analysis of two parameters: the number of samples, and the size of interval. We
find that the larger the number of samples, the closer the KL divergence to 0, and that the smaller the
discretization interval, the closer the curve to 0.
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3.3. Evaluating The Quality
Since we know the ground-truth shape of these spheres, we are able to assess
GANs’ ability to generate realistic samples, which is the quality aspect of our eval-
uation metrics, by comparing the generated samples and the ground-truth images
in a pixel-by-pixel manner. Let the pixel coordinate be 𝑥, 𝑦, the pixel value of a
ground-truth image be 𝐼 , , and the pixel value of a generated sample be ̂𝐼 , , the
Root Mean Square Error (RMSE) of these two images is computed as:

RMSE =√
∑ ∑ (𝐼(𝑥, 𝑦) − ̂𝐼(𝑥, 𝑦))

𝑚𝑛 , (3.3)

where 𝑚 is the height of the image and 𝑛 is the width of the image.
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Technique for improving the

performance of GANs

I n this work, we also discover two training techniques that improve the perfor-mance of GANs with the help of our quantitative evaluation scheme. First, adding
proper regularization on networks improves and stabilizes the performance. Sec-
ond, we develop a Smooth-to-Sharp training framework to improve the perfor-
mance, in which training starts with smooth images and progresses gradually to
sharp ones.

4.1. Adding Regularization
In this section, we discuss the benefits of adding regularization terms to GANs.
First, we take a close look at the optimal discriminator assumption, and discuss
whether an optimal discriminator is needed. After that, we present the necessity
for adding a proper regularization term and we exemplify the process by adding
L2-regularization on both the discriminator and generator.

Optimal Discriminator Assumption In Chapter 2, we derived that in the orig-
inal GAN [1], if the discriminator is optimized by training, updating the generator
is equivalent to minimizing the following Jensen-Shannon divergence: the optimal
discriminator loss ℒ ∗ represents the Jensen-Shannon divergence of real data dis-
tribution 𝑝 and 𝑝 :

ℒ ∗ = −2𝐷 (𝑝 ∥ 𝑝 ) + 2 log 2. (4.1)

This result is based on the assumption that the discriminator 𝐷 is constantly
optimal. But how strong does this optimality assumption hold in practice? One
intuitive method is to compare this optimal discriminator loss ℒ ∗ with the real loss
̂𝐿 observed in training.
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We first examine the optimality assumption using a 1D toy example, where the
real data distribution is a single Gaussian in 1D and GANs are trained to generate
samples according to a similar distribution, as shown in Figure 4.1. The red line
shows the output of the discriminator. Higher probability is given to real samples
and thus the generator is guided by the discriminator to generate samples closer
to real samples. Figure 4.2 illustrates the discriminator losses. The green curve
is the actual discriminator loss, and the red curve shows the optimal discriminator
loss 𝐿 ∗ obtained from estimating JS Divergence. The zigzag pattern of the red
curve after some iterations is caused by the fact that the generated samples are
bouncing around the real samples. When comparing the optimal discriminator loss
𝐿 ∗ (the red curve) with the actual discriminator loss ̂𝐿 (the green curve), we spot
a large gap between the two colored curves, suggesting that the discriminator is
not optimal, which does not satisfy the optimal discriminator assumption.

Figure 4.1: a 1D toy example: the real data distribution is a single Gaussian in 1D and GANs are trained
to generate samples according to a similar distribution. The red line shows output of the discriminator,
which gives higher value to real samples and thus guides the generator to generate samples closer to
real samples.

Furthermore, we find another evidence suggesting the optimal assumption not
hold. We examine the optimality assumption by training our discriminator using the
same 1D toy example with the generator being frozen. Since the generated data
and the real data can be completely separated, the optimal discriminator loss is 0.
However, the actual discriminator loss curve, as presented in figure 4.3, shows that
it takes more than 2000 iterations to decrease 𝐿 to below 0.01. It again provides
evidence that the optimal discriminator assumption is not always guaranteed in
practice.

Reasons for the optimal discriminator assumption being violated in some cir-
cumstances may be the limited computational power of any neural network and
the fact that 𝐷 is not trained until convergence.

Do we need an optimal discriminator? But do we really need an optimal dis-
criminator? An almost optimal discriminator is shown in figure 4.4. We obtained it
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Figure 4.2: Comparison between the actual discriminator loss ̂ (the green curve) and the optimal
discriminator loss ∗ (the red curve). There is a large gap between the two losses. The zigzag pattern
of the red curve after some iterations is caused by the fact that the generated samples are bouncing
around the real samples.

Figure 4.3: The actual discriminator loss curve when the generated data and the real data is separable.
The generator is frozen and only the discriminator is updated.
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by freezing the generator and updating the discriminator for some iterations. The
red curve shows the output of the discriminator. The generator receives updating
gradients from the discriminator. This optimal discriminator, however, cannot pro-
vide gradients to the discriminator for updating since the slope of the red curve is
nearly all zero for generated data). This issue is also known as vanishing gradient
that usually causes training failure [31].

Figure 4.4: This is an almost optimal discriminator example for 1D case. The red curve shows the output
of the discriminator.

To conclude, an optimal discriminator is not what we want here, although we do
not want a bad discriminator neither. What we want is a discriminator with a smooth
discriminant function that could provide proper gradient as learning signals to the
generator. Hence, as many researchers claimed, when selecting a discriminator
in real practice, we need to balance the discriminator to avoid it being too good,
which leads to vanishing gradient problem, or too bad, which leads to failure in
discriminating.

L2-Regularization One common method to impose a penalty on the complexity
of a model is to add L2-regularization. This strategy adds a regularization term
Ω(𝜃) = ∥ 𝜃 ∥ to the original objective function (2.6)(2.7).

To learn a smooth discriminant function 𝐷, we can add a proper L2-regularization
term to the objective function of 𝐷 (2.6). Experimental results also show that
both the quality and the diversity are improved if a proper L2-regularization term is
added. Additionally, we find that by adding L2-regularization on the generator 𝐺,
the performance of GAN is improved as well. These experiments are discussed in
detail in the next chapter.

4.2. Smooth-to-sharp Training
Smooth or sharp? In our artificial dataset, we create two slightly different sets
of images. One is of a sharp sphere, in which values of all pixels inside the sphere



4.2. Smooth-to-sharp Training

4

29

are set to 1 and all other pixels are set to 0. The other is of a smooth sphere with
smooth transitions in the boundary where pixels near the center of the sphere have
higher values than pixels far from the center.

In our experiments, we find that a GAN obtains much better performance when
trained with the smooth images, comparing to that with the sharp ones. Real world
images are considered as sharp ones, as they have many sharp edges. Observing
that GAN models learn better in the smooth setting, we train a GAN model with
smooth images first and progress gradually to sharp ones to exploit if such training
algorithm improves the performance of GANs.

Artificial datasets

Normalized Tunable Sigmoid function For our artificial datasets, we can
control the smoothness of images by the Normalized Tunable Sigmoid Function:

𝑓(𝑥) = (2𝑥 − 1) − 𝑘(2𝑥 − 1)
2(𝑘 − 2𝑘|2𝑥 − 1| + 1) + 0.5, (4.2)

where 𝑘 ∈ [−1, 0] is the smoothness parameter that controls the smoothness of an
image. An illustration of this function is shown in Figure 4.5. When 𝑘 = 0, it is just
an identity function 𝑓(𝑥) = 𝑥 that does not change the input. When 𝑘 approaches
−1, the output approaches 0 when the input is less than 0.5 and approaches 1
when the input is greater than 0.5.
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Figure 4.5: Normalized Tunable Sigmoid Function
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Visualization We can apply the Normalized Tunable Sigmoid Function (4.2) to
the smooth images, and we can obtain images with different smoothness strength.
As shown in figure 4.6, the smaller the 𝑘, the sharper the image. When 𝑘 ap-
proaches -1, we can obtain sharp images that are almost the same as the binary
images in our Sharp-sphere dataset.

k = -0.990000 k = -0.900000 k = -0.800000

k = -0.700000 k = -0.500000 k = 0.000000

Figure 4.6: circle images with different smoothness strength

Real-world image dataset For real world image dataset, we could smooth the
image by Gaussian smoothing technique. Mathematically, we could convolve the
image with a Gaussian function in two-dimension. The equation of a Gaussian
function 𝐺(𝑥, 𝑦) is:

𝐺(𝑥, 𝑦) = 1
2𝜋𝜎 𝑒 , (4.3)

where x is the distance in horizontal axis and y in vertical axis, and 𝜎 is the standard
deviation of the Gaussian distribution which controls the smoothness power. Figure
4.7 shows an example of applying Gaussian smoothing to an image with different
𝜎.

Algorithm The general idea of our Smooth-To-Sharp (STS) training algorithm is
that we would like to start training with smooth images, and then with sharper
ones, until the end we train GANs with our target image dataset: the sharp ones.
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Figure 4.7: images (digit 5) with different smooth strength





5
Experiments

5.1. Exp 1: 1D Examples

w e first present an example of a GAN trained on a 1D Gaussian distribution. We
present and visualize the training outcomes in different training stages. We also

present the quantitative evaluation of the performance of GANs when regularization
terms are added during the trainings.

Setups The 1D training samples follow a Gaussian Distribution: 𝒩(−0.6, 1). Ta-
ble 5.1 and 5.2 show the architecture of the GAN model used and the hyperpa-
rameters. A simple GAN model is used here: the discriminator and the generator
each has one hidden layer with 16 units and the random inputs is a 1D uniform
distribution.

Table 5.1: The structure of GAN used in this experiment. . Fully connected layer with 16
units and Relu non-linearity.

Model Generator Discriminator

1d-GAN . → . → . . → . → .

Table 5.2: List of hyperparameters and their values for training 1d-GAN.

Hyperparameter Value Description
Dimensions of latent space 1 Number of random inputs to the generator
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the discriminator.
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the generator.
L2-Regularization( ) , 1 × 10 5 , 1 × 10 3 , 1 × 10 2 The strength of L2 penalty on the discriminator.
L2-Regularization( ) , 1 × 10 5 , 1 × 10 3 , 1 × 10 2 The strength of L2 penalty on the generator.
Optimizer RMSProp The optimizer used for updating the generator and the discriminator.
Training steps 5,000 Total number of updates during training.
Batch size 64 Number of samples in each mini-batch fed to the network.
Number of repeats 20 Number of times of repeating an experiment.
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Results We first visualize training results in different training steps. We use sam-
ples from the aforementioned 1D distribution as real data, on which we train GANs
to generate data that follow a similar distribution. Figure 5.1 demonstrates the den-
sity estimates of the generated data (purple curve) and the real data (blue curve)
and visualize the output of the discriminator (red line). The output represents the
predicted probability that these samples come from the real data distribution. The
output value is around 0.5 in figure 5.1, suggesting that the discriminator is not
optimal, as we have discussed in Chapter 4. However, samples from the real distri-
bution (the blue curve) have slightly higher output value of the discriminator than
samples from generated distribution (the purple curve). As the generator is updated
to generate samples with higher output value of the discriminator, the generated
samples would be ”guided” to move close to real samples.

Another observation of the result is that as the number of iterations grows from
0 to 1500, the estimated density of the generated data become closer and closer
to that of the real data, which illustrates that the actually training progresses in a
step-by-step manner, in other words, the performance of GANs improves with the
number of iterations.

(a) Iteration 0 (b) Iteration 500 (c) Iteration 1000 (d) Iteration 1500

Figure 5.1: Visualization of training results in different training steps. The real data distribution is a single
Gaussian in 1D space (blue curve) and GANs are trained to generate samples (purple curve) according
to a similar distribution. The red line shows the output of the discriminator.

We further conduct an experiment to explore the relationship between sam-
ple qualities and the L2-Regularization strength 𝜆. We analyze the relationship
quantitatively by estimating the KL divergence between the generated data distri-
bution and the real data distribution. The results are shown in figure 5.2. When
we add a weak regularization (𝜆 = 1 × 10 5) to the network, comparing to when
no regularizaiton is added, the KL divergence decreases but its variance does not
change obviously. When we slightly increase the strength of the added regular-
ization (𝜆 = 1 × 10 4), the value of KL divergence continue to decrease while the
variance decreases remarkably. When we further increase the strength of the regu-
larization (or 𝜆 = 1 × 10 3), although the value of KL divergence still decreases, the
variance of it starts to increase. Eventually, when a very strong L2-Regularization
(𝜆 = 1 × 10 2) is added, both the value and the variance of KL divergence increase
considerably, and become even larger than those of the network with no regular-
ization.
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Figure 5.2: Boxplot of the relationship between the L2-Regularization strength and the KL divergence
of the real data distribution and the generated distribution.

Discussion

1. Training results from this simple 1D example shows that a GAN is able to learn
from training samples and to generate samples that follow the learned density
function. The visualization of training results in different training steps in
figure 5.1 illustrates that the training progresses in a step-by-step manner, in
other words, the performance of GANs improve with the number of iterations.

2. Our experiment on the same 1D example further provides evidence supporting
that adding a proper L2-Regularization to GAN models is helpful. As shown
in figure 5.2, by adding a proper L2-Regularization (e.g., 𝜆 = 1 × 10 4), the
performance of GAN can be largely boosted, as the value of KL divergence
becomes much smaller comparing with the case when no regularization is
added. It can also be inferred that the added regularization stabilizes the
training, as the variance of the KL divergence drops.

5.2. Exp 2: Evaluation of Adding Regularization
In this section, we present the quantitative evaluation of the performance of GANs
on our proposed artificial image datasets, and further present the evaluation of
performance when L2-Regularization is added.

Setups The training datasets used in this experiment are the sharp-sphere dataset
and the smooth-sphere dataset, as we described in chapter 3. Details of the
datasets are described in table 5.3.

Table 5.4 and 5.5 show the architecture of the GAN models used in this ex-
periment and hyperparameters of the models. A simple GAN model is used here:
the discriminator and the generator each has one hidden layer with 64 units. The
generator receives a uniform random inputs of two dimensions.
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Table 5.3: The training datasets used in this experiment are listed below.

Training dataset Description

Sharp-sphere Dataset 400 binary images samples, image size: ∗ , radius = .
Smooth-sphere Dataset 400 smooth images samples, image size: ∗ , radius = .

Table 5.4: The structure of GAN used in this experiment. . Fully connected layer with 16
units and Relu non-linearity

Model Generator Discriminator

One-sphere GAN . → . → . . → . → .

Table 5.5: List of hyperparameters of GANs in this experiment and their values for training one-sphere
samples.

Hyperparameter Value Description
Dimensions of latent space 2 Number of random inputs to the generator
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the discriminator.
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the generator.
L2-Regularization( ) ∼ 1 × 10 2 The strength of L2 penalty on the discriminator.
L2-Regularization( ) ∼ 1 × 10 2 The strength of L2 penalty on the generator.
Optimizer RMSProp [13] The optimizer used for updating the generator and the discriminator.
Training steps 10,000 Total number of updates during training.
Batch size 128 Number of samples in each mini-batch fed to the network.

Results

Visualization of learned weights In chapter 4, we discussed the benefits
of adding a proper regularization term. For the discriminator, we would like to learn
a smooth discriminant function, and thus L2-Regularization is added. The visualiza-
tion of learned weights of the generator provide a support for adding regularization
to the generator as well.

In figure 5.3, we visualize the learned weights of 64 hidden units in the generator
under different regularization strength (𝜆 = 0 or 𝜆 = 1 × 10 5). When no regular-
ization is added to the generator (𝜆 = 0), the weights of some units are merely
random noise, as noted with red rectangle in figure 5.3(a), which suggests that
some of the units are not utilized. When L2-Regularization is added, the weights
of all units are not random, indicating that all units are utilized to learn certain
patterns, as shown in figure 5.3(b).

Quantitative evaluation We also evaluate the benefits of adding L2-Regularization
quantitatively from two aspects: the quality and the diversity. To evaluate the qual-
ity of sample generation, we compute the Root Mean Square Error (RMSE) with
respect to the ground-truth image. To evaluate the diversity, we estimate the KL
divergence between the distribution of locations of the center of the real samples
and that of the generated samples. A lower KL divergence indicates higher sim-
ilarity between two distributions of center locations, and thus better diversity of
generate samples, while a higher KL divergence indicates lower similarity in center
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(a) G: (b) G: 1 × 10 5

Figure 5.3: Visualization of the learned weights of the generator under different L2-Regularization term.
When , the weights of some units are merely random noises. When 1 × 10 5 the weights of
all units are not random.

locations and poorer sample diversity.
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Figure 5.4: Evaluation on the diversity (the KL divergence) and the quality(RMSE) under different L2
Regularization strengths in the Sharp-sphere dataset. The boxplots visualize the results of 20 random
repetitions.

Figure 5.4 demonstrates the change in the quality and the diversity of sam-
ples generated with different strengths of added regularization in the Sharp-sphere
dataset. Comparing to cases with no regularization (𝜆 = 0), if we add a mod-
erate regularization (𝜆 = 1 × 10 5), both the value and the variance of KLD and
RMSE decrease, suggesting that the quality and the diversity of generated sam-
ples get improved and GANs become more stable. This is consistent with what
we discussed in Chapter 4, that adding a proper regularization eases the vanish-
ing gradient problem and thus improves the performance. However, if 𝜆 gets too
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large (when 𝜆 ≥ 3 × 10 3 ), the value and the variance of KLD and RMSE would
increase back again, suggesting that quality and the diversity of generated sam-
ples get worse. This is reasonable since too strong regularization would result in
limited modeling power of both the generator and the discriminator and affect the
performance negatively.
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Figure 5.5: Evaluation on the diversity (the KL divergence) and the quality(RMSE) under different L2
Regularization strengths in the Smooth-sphere dataset. The boxplots visualize the results of 20 random
repetitions.

For another dataset (Smooth-spheres), there is a similar trend of the change
in the quality and the diversity of samples generated with different regularization
strengths, as demonstrated in figure 5.5. When a moderate regularization (𝜆 =
1 × 10 5) is added, both the quality and the diversity of generated samples get
improved and models are more stable comparing to cases with no regularization
(𝜆 = 0). However, if 𝜆 gets too large (when 𝜆 ≥ 3 × 10 3 ), both the quality and
the diversity of generated samples get worse.

Table 5.6 presents the mean and standard deviation of the RMSE and the KL
divergence of our GANs with different regularization strengths in the Sharp-sphere
and the Smooth-sphere datasets, respectively. RMSE and KL divergence with the
minimal value and variance are in bold, which represent the observed best per-
formance of our GANs in the current experience. In the Sharp-sphere dataset,
GANs achieve optimal performance with a regularization strengths of 𝜆 = 1 × 10 4

(RMSE: 0.0849 ± 0.0026, KLD: 1.0511 ± 0.0905). In the Smooth-sphere dataset,
GANs achieve the optimal RMSE and KL divergence with regularization strengths
of 𝜆 = 1 × 10 3 and 𝜆 = 1 × 10 4, respectively (RMSE: 0.0568 ± 0.0032, KLD:
0.0521 ± 0.0150). The quantitative comparison shows that by adding a moderate
regularization, both the diversity and the quality are largely boosted for these two
artificial datasets.

Discussions

1. Our results support the necessity of adding a proper L2-Regularization to im-
prove of the performance of GANs. As shown in figure 5.3, adding regular-
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Table 5.6: A summary of evaluation on the quality and the diversity using the Smooth-sphere dataset and
the Sharp-sphere dataset, respectively. The mean and standard deviation of 20 repeats are displayed.

Sharp-sphere Dataset Smooth-sphere Dataset

KL Divergence RMSE KL Divergence RMSE
0 . ± . . ± . . ± . . ± .
1 × 10 5 . ± . . ± . . ± . . ± .
3 × 10 5 . ± . . ± . . ± . . ± .
1 × 10 4 1.0511 ±0.0905 0.0849 ±0.0026 0.0521 ±0.0150 . ± .
3 × 10 4 . ± . . ± . . ± . . ± .
1 × 10 3 . ± . . ± . . ± . 0.0568 ±0.0032
3 × 10 3 . ± . . ± . . ± . . ± .
1 × 10 2 . ± . . ± . . ± . . ± .

ization to the generator helps utilize more neuron units to learn meaningful
representations. Moreover, as discussed in Chapter 4, an optimal discrimina-
tor cannot provide proper gradients to guide the generator when the real data
distribution and the generated distribution have disjoint supports and thus is
not what we want. Adding a proper L2-Regularization can ease this problem
because the regularization term imposes a penalty on the complexity of a
model and helps the discriminator to learn a smooth discriminant function.

2. Our experiments further provide quantitative evidence that adding L2-Regularization
on the generator and the discriminator improves both the quality and the di-
versity of generated samples. As shown in figure 5.4, figure 5.5, and table
5.6, adding a proper L2-Regularization enables GANs to generate more diverse
samples with higher quality, regardless of the smoothness of input images.
Moreover, by adding a proper L2-Regularization, the variance of the diversity
and the quality metrics get decreased dramatically, suggesting that the model
gets more stable.

5.3. Exp 3: Evaluation of GANs’ Performance on Im-
ages with Different Smoothness

Our artificial dataset contains two slightly different sets of images. The Sharp-
sphere images have all pixel values inside the sphere set to 1 and all other pixels
set to 0. The Smooth–sphere images have smooth transitions in the boundary.

We are interested in the performance of GANs in these two sets of images with
different smoothness. Since real world images are considered as sharp images be-
cause of the large amount of sharp edges, if GANs learn better in the smooth setting,
the algorithm of training a GAN model with smooth images as start and progressing
to sharp images gradually will have the potential to improve the performance of the
model.

In this experiment, we quantitatively evaluate the performance of original GAN
[1] and WGAN[28, 31] in training images with different smoothness factor 𝑘 values.

Setups
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Dataset We evaluate GANs in training images with three different k values:
0, -0.2 and -0.99999. All experiments are repeated for five times. Other settings
of the experiment are shown in table 5.7.

The training datasets used in this experiment are the Sharp-sphere dataset and
the Smooth-sphere dataset. Details of the datasets are presented in table 5.7. In
this experiment, the location of centers of training samples is limited to integer
positions, and thus the maximum sample size is 400 for a 28*28 sized image and
1600 for a 48*48 sized image.

Table 5.7: The training datasets used in this experiment are listed below.

Training dataset Description

Tunable Dataset-28*28 400 tunable images samples, image size: ∗ , radius = .
Tunable Dataset-48*48 1600 tunable images samples, image size: ∗ , radius = .
Tunable Dataset-two-sphere 67230 two-sphere samples, image size: ∗ , radius = .

GAN architecture and hyperparameters Table 5.19 and 5.20 shows the
architecture of the GAN model used and the hyperparameters. A simple GAN model
is used here: both the discriminator and the generator have one hidden layer with
64 units. The generator receives random inputs of two dimensions.

Table 5.8: The structure of GAN used in this experiment. . Fully connected layer with 64
units and Relu non-linearity

Model Generator Discriminator

GAN (28*28) . → . → . . → . → .
WGAN (28*28) . → . → . . → . → .
WGAN (48*48) . → . → . . → . → .
WGAN (two-sphere) . → . → . . → . → .

Table 5.9: List of hyperparameters and their values for training one-sphere GAN.

Hyperparameter Value Description
Dimensions of latent space (one-sphere) 2 Number of random inputs to the generator (for one-sphere dataset)
Dimensions of latent space (two-sphere) 4 Number of random inputs to the generator (for two-sphere dataset)
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the discriminator.
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the generator.
Generator update frequency (WGAN) 5 The frequency of which the generator is updated.
Gradient Penalty (WGAN) 10
L2-Regularization( , GAN) 1 × 10 4 The strength of L2 penalty on the discriminator.
L2-Regularization( , GAN) 1 × 10 4 The strength of L2 penalty on the generator.
Optimizer RMSProp The optimizer used for updating the generator and the discriminator.
Training steps 20,000 Total number of updates during training.
Batch size 64 Number of samples in each mini-batch fed to the network.
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Quantitative evaluation We are interested in evaluating both diversity and
quality. For evaluating diversity, KL divergence is used. For evaluating quality, root
mean square error (RMSE) is used.

(a) center location of generated sharp
spheres visualization

(b) 16 samples of generated
sharp images

(c) center location of generated smooth
spheres visualization

(d) 16 samples of generated
smooth images

Figure 5.6: visualization of center location of generated samples and 16 samples. The red box indicates
the feasible locations of centers.

Results

Qualitative evaluation We first compare the generated samples trained with
smooth images and with sharp images qualitatively. Figure 5.6 shows the visual-
ization of center location of generated samples and 16 samples. Ideally, the center
location would be distributed uniformly over all feasible locations, which would cover
all locations expect four borders that are as wide as the radius of spheres. Figure
5.6(a) visualize the center locations for sharp-sphere dataset, and the red box shows
the feasible locations. We find that he center locations of generated images only
cover the bottom-right part of the red box. However, for smooth-sphere dataset,
the center locations of generated images cover a much larger area, as shown in
figure 5.6(c), which indicates that GANs can generate more diverse images trained
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with smooth images than with sharp ones.
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Figure 5.7: An overview of evaluating the quality (RMSE) and the diversity (KLD) for all models under
different smoothness parameter .

Quantitative evaluation We perform quantitative evaluation for four differ-
ent models: the original GAN trained with 28∗28 one-sphere dataset (GAN (28*28)
), the WGAN trained with 28 ∗ 28 one-sphere dataset (WGAN (28*28)), the WGAN
trained with 48 ∗ 48 one-sphere dataset, and the WGAN trained with two-sphere
dataset (WGAN (two-sphere)). We plot the diversity performance against differ-
ent smoothness parameter 𝑘 for these four models and the quality performance in
figure 5.7.

1. GAN (28*28): The performance of this dataset is shown as the blue curve in
figure 5.7. The KL divergence decreases from more than 1 to less than 0.1
when the smoothness parameter 𝑘 increases, suggesting that the smoother
the training images are, the more diverse the generated samples are. How-
ever, the RMSE does not change obviously with the increase of smoothness
parameter 𝑘, suggesting that the quality of generate samples is less sensitive
to the smoothness of the training images.

2. WGAN (28*28): The performance of this dataset is shown as the green curve
in figure 5.7. The KL divergence decreases when the smoothness parameter
𝑘 increases from -0.99999 to 0, though it does not decrease monotonously.
One possible explanation is that the WGAN already has the ability to generate
diverse images in the very sharp setting (𝑘 = -0.99999), so there is not much
room for improvement with smoother settings. The differences in green curve
may be caused by the four borders of feasible locations. A smooth sphere
has larger radius as it has smooth transitions in boundaries, thus the spheres
that are close to the four borders do not have complete shapes, which add
some difficulties for GANs to learn. That may explain why the performance of
diversity gets slightly worse as the images get smoother. The RMSE, however,
decreases as 𝑘 gets larger, suggesting that the smoother the training images
are, the better the quality of generated samples is.

3. WGAN (48*48): The performance of this dataset is shown as the orange
curve in figure 5.7. Both the KL divergence and RMSE decrease when the
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smoothness parameter 𝑘 increases, suggesting that the smoother the training
images are, the more diverse and of the higher quality the training images
are. Comparing to WGAN (28*28), the feasible center locations get larger,
which leads to a more difficult learning task for GANs. As shown in figure 5.7
on the right, the KL divergence for WGAN (48*48) is indeed higher than the
one for WGAN (28*28). Meanwhile, unlike WGAN (28*28), we observe that
the KL divergence decreases monotonously as 𝑘 increases.

4. WGAN (two-sphere): The performance of this dataset is shown as the pink
curve in figure 5.7. Both the KL divergence and RMSE decrease when the
smoothness parameter 𝑘 increases, suggesting that the smoother the train-
ing images are, the more diverse and of the higher quality the training images
are. Obviously, generating two-sphere images is a harder task, and we ob-
serve that the values of both RMSE and KL divergence are higher than WGAN
(28*28) and WGAN (48*48).

Discussion

1. The experimental results provide a strong evidence suggesting that GANs
generate more diverse and higher quality images in the smooth setting than
in the sharp setting.

2. Comparing the normal GAN and the WGAN, WGAN has better performances
both in diversity and quality, especially for diversity. This is consistent with
our discussion in Chapter 2 and the claim in [28, 31] that optimizing the
Wasserstein distance is a better objective for GANs than optimizing the original
Jensen-Shannon divergence.

3. Comparing WGAN trained with 28*28 image size and WGAN trained with
48*48 image size, WGAN (48*48) has higher KL divergence value than WGAN
(28*28), but similar RMSE results. This is reasonable since larger image size
leads to larger feasible center locations, and generating diverse spheres with
larger feasible center locations is generally a harder task for WGAN.

5.4. Exp 4: Smooth-to-sharp Training Method
Observing the fact that a GAN model performs better in smooth image settings, in
this experiment, we are encouraged to explore whether the performance of GANs
can be improved by training a GAN model with smooth images first and progress
gradually to sharp ones.

Setups

Dataset The training datasets used in this experiment are one-sphere dataset
and two-sphere dataset. The smoothness of an image in one dataset is tunable and
is controlled by the smoothness factor 𝑘. Although the smoothness is controllable,
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the training goal is to generate sharp images in the end. Details of the datasets are
described in table 5.10.

Table 5.10: The training datasets used in this experiment are listed below.

Training dataset Description

Tunable Dataset-28*28-half 200 tunable images samples, image size: ∗ , radius = .
Tunable Dataset-28*28-full 400 tunable images samples, image size: ∗ , radius = .
Tunable Dataset-48*48-half 800 tunable images samples, image size: ∗ , radius = .
Tunable Dataset-48*48-full 1600 tunable images samples, image size: ∗ , radius = .
Tunable Dataset-two-sphere 67230 two-sphere samples, image size: ∗ , radius = .

GAN architecture and hyperparameters Table 5.19 and 5.20 shows the
architecture of the GAN model used and the hyperparameters.

Table 5.11: The structure of GAN used in this experiment. . Fully connected layer with
64 units and Relu non-linearity

Model Generator Discriminator

GAN (28*28) . → . → . . → . → .
WGAN (28*28) . → . → . . → . → .
WGAN (48*48) . → . → . . → . → .
WGAN (two-sphere) . → . → . . → . → .

Table 5.12: List of hyperparameters and their values for training one-sphere GAN.

Hyperparameter Value Description
Dimensions of latent space (one-sphere) 2 Number of random inputs to the generator (for one-sphere dataset)
Dimensions of latent space (two-sphere) 4 Number of random inputs to the generator (for two-sphere dataset)
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the discriminator.
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the generator.
Generator update frequency (WGAN) 5 The frequency of which the generator is updated.
Gradient Penalty (WGAN) 10
L2-Regularization( , GAN) 1 × 10 4 The strength of L2 penalty on the discriminator.
L2-Regularization( , GAN) 1 × 10 4 The strength of L2 penalty on the generator.
Optimizer RMSProp The optimizer used for updating the generator and the discriminator.
Training steps 20,000 Total number of updates during training.
Batch size 64 Number of samples in each mini-batch fed to the network.

Smooth-to-sharp algorithm The key idea of our proposed smooth-to-sharp
algorithm is to start training with smooth images, and progresses to sharp ones. In
this experiment, we exemplify this algorithm by the settings shown in table 5.13.
The total number of training steps is 20000, and we allocate these steps for different
smoothness parameter 𝑘: 0, -0.2, -0.6, -0.8 and -0.99999.

Results We exemplify the progress of Smooth-to-Sharp training by the WGAN
with Two-sphere dataset in figure 5.8. After the GAN model finishes training with
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Table 5.13: Smooth-to-sharp training algorithm: the training starts with the very smooth images, then
progresses to sharp ones. The total number of updates is 20000.

smoothness parameter 𝑘 0 -0.2 -0.6 -0.8 -0.99999

number of steps 2500 2500 2500 2500 10000

a certain smoothness images, we conduct the quantitative evaluation and record
the KL divergence and the RMSE. In figure 5.8(a), we visualize the KL divergence
against different smoothness factor. We find that the KL divergence goes down as
the training samples progress from smooth to sharp. In figure 5.8(b), we also find
that the RMSE goes down as the training samples progress from smooth to sharp.
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(a) WGAN (two-sphere): KL divergence
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(b) WGAN (two-sphere): RMSE

Figure 5.8: Plots showing the progress of Smooth-to-Sharp training of WGAN (two-sphere). We conduct
the quantitative evaluation and record the KL divergence and the RMSE after the GAN model finishes
training with a certain smoothness images.

Furthermore, we conduct a quantitative comparison of the original direct training
method and our proposed Smooth-to-Sharp training method. We compare the
diversity (KL divergence) and the quality (RMSE) of generated samples for four
different GAN models. The result is shown in table 5.14. We find that for all listed
GAN models, our Smooth-to-Sharp method obtains lower KL divergence and RMSE
for all listed GAN models (shown with bold font in table 5.14), suggesting that
under the Smooth-to-Sharp method, a GAN generates more diverse and higher
quality images.

Discussion

1. The comparison results provide a strong evidence suggesting that the per-
formance of GANs can be improved by training progressively: training a GAN
model with smooth images first and progress gradually to sharp ones. The
direct training method and our Smooth-to-Sharp method are compared fairly
with all other settings the same. As shown in table 5.14, our Smooth-to-Sharp
method outperform the original direct training method notably with respect to
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Table 5.14: Experiment results for GAN models, either trained in the direct way or our proposed ”Smooth-
To-Sharp (STS)” method. Each experiment is repeated five times and we record the average KL diver-
gence and RMSE.

Model Method KL Divergence RMSE

GAN (28*28) direct 1.1525 0.0860
STS 0.8648 0.0819

WGAN (28*28) direct 0.0425 0.1070
STS 0.0117 0.0845

WGAN (48*48) direct 0.0480 0.0733
STS 0.0260 0.0682

WGAN (two-sphere) direct 0.1644 0.2684
STS 0.0679 0.2062

both the KL divergence and RMSE. Moreover, the progressive training method
especially boosts the performance of diversity, as the improvement of KL di-
vergence is more significant than RMSE.

2. Our proposed Smooth-to-Sharp method is an example of the progressively
training, which is easy to implement, suitable for different GAN models and
has little additional computational cost. It can be considered as a form of data
augmentation as the GAN is trained with images with different smoothness.

5.5. Exp 5: Experiments on the MNIST Dataset
In this section, we will apply the two techniques to the MNIST dataset [35] that
contains hand-written digits: adding L2-Regularization and the smooth-to-sharp
method. These two techniques have been shown to improve GANs’ performance
on our proposed artificial dataset. We use the MNIST dataset to validate these two
techniques on real-world datasets.

Setups

Dataset The training dataset used in this experiment is the MNIST dataset.
The MNIST dataset contains 60,000 examples of hand-written digits from 0 to 9.
The size of one image is 28 * 28.

The architecture and hyperparameters of GAN Table 5.15 and 5.16 shows
the architecture of the GAN model used and its hyperparameters.

Evaluation of adding L2-Regularization Since the proposed quantitative
evaluation of quality and diversity can be only applied to our artificial dataset of
spheres, we evaluate GANs’ performance on the MNIST dataset in a qualitative
manner. The GAN is trained with different L2-Regularization strength 𝜆: 0, 1 × 10 5,
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Table 5.15: The structure of GAN used in this experiment. . Fully connected layer with
512 units and Relu non-linearity

Model Generator Discriminator

GAN . → . → . → . . → . → . → .
WGAN . → . → . → . . → . → . → .

Table 5.16: List of hyperparameters and their values for training GANs in this experiment.

Hyperparameter Value Description
Dimensions of latent space 48 Number of random inputs to the generator (for one-sphere dataset)
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the discriminator.
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the generator.
Generator update frequency (WGAN) 5 The frequency of which the generator is updated.
Gradient Penalty (WGAN) 10
L2-Regularization( , GAN) 1 × 10 4 The strength of L2 penalty on the discriminator.
L2-Regularization( , GAN) 1 × 10 4 The strength of L2 penalty on the generator.
Optimizer RMSProp The optimizer used for updating the generator and the discriminator.
Training steps 20,000 Total number of updates during training.
Batch size 64 Number of samples in each mini-batch fed to the network.

1 × 10 4 and 1 × 10 3. For every 𝜆, we repeat the training for 20 times and report
the results.

Evaluation of Smooth-to-Sharp training Here we apply the Smooth-to-
Sharp training method to the MNIST dataset. We smoothen the images by Gaussian
smoothing technique. The smoothness parameter here is the standard deviation
𝜎 of the Gaussian distribution. In this experiment, we exemplify the Smooth-to-
Sharp method using the settings shown in table 5.17. We train a GAN model with
smoothened images (𝜎 = 2) first, and then progress gradually to less smoothened
images (𝜎 = 1.5, 1, 0.5). Finally, we train the model with the original sharp images
(𝜎 = 0).

Table 5.17: Smooth-to-sharp training algorithm: the training starts with very smooth images, then
progresses to sharp ones.

smoothness parameter 𝜎 2 1.5 1 0.5 0

number of steps 2500 2500 2500 2500 10000

Results
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(a) (b) 1 × 10 5

(c) 1 × 10 4 (d) 1 × 10 3

Figure 5.9: Visualization of samples from successfully trained cases.

Adding L2-Regularization To evaluate the benefit of adding L2-Regularization,
we repeat the training of a GAN model for 20 times. We find that not all training
results contain recognizable digits. We roughly categorize these GAN models into
successfully trained and unsuccessfully trained. Some of the trained GAN models
can generate relatively ”good” images, and we categorize them as successful trained
cases. In figure 5.9 we visualize 64 generated samples from successfully trained
GANs with different L2-Regularizations. Some of the trained GAN models, how-
ever, cannot generate meaningful images,and we categorize them as unsuccessful
trained cases. We also visualize generated samples from failed training cases with
different L2-Regularizations in figure 5.10.

We compare the generated samples by visual inspection. In figure 5.9, we
demonstrate collections of 64 samples from GANs with differen L2-Regularizations.
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Though this comparison is subjective, we find that among these four different col-
lections, images generated by GAN with 𝜆 = 1 × 10 4 (figure 5.9(c)) have the best
image quality and diversity, as they contain different digits and most digits are
clearer and sharper than other collections of images.

(a) (b) 1 × 10 5

(c) 1 × 10 4 (d) 1 × 10 3

Figure 5.10: Visualization of samples from unsuccessfully trained cases. These images are of low visual
quality.
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Figure 5.11: The relationship between and the number of successfully trained cases in 20 repeats.
When no regularization is added ( ), only 1 out of 20 trainings succeed. When a suitable regu-
larization is added ( 1 × 10 4), 18 out of 20 training cases succeed. However, if the regularization
strength is too strong ( 1 × 10 3), only 2 out of 20 cases succeed.

Furthermore, we analyze the relationship between 𝜆 and the number of suc-
cessfully trained cases, as shown in figure 5.11. If we do not add a regularization
term, only 1 out of 20 trained GANs can generate ”good” images, categorized as
successfully trained. If we add a suitable regularization term (𝜆 = 1 × 10 4), the
successful training rate is raised to 18 out of 20. However, if the regularization
strength is too strong (𝜆 = 1 × 10 3), only 2 out of 20 cases succeed.

Smooth-to-sharp training Our Smooth-to-Sharp training method stabilizes
the training of normal GANs, as all 20 repeats are successful, for all 𝜆s from 0 to
1 × 10 3. We visualize and compare the generated samples from direct method and
from our Smooth-to-Sharp method, as shown in figure 5.12, 5.13, and 5.14. Al-
though a visual inspection is objective, we find that images generated by GANs with
Smooth-to-Sharp training method are generally of high quality and high diversity.

Discussions

Adding L2-Regularization

1. We find that adding L2-Regularizations with certain strength significantly in-
crease the proportion of successful trainings, suggesting that adding a proper
L2-Regularization stabilize the training process. If no regularization is added,
the majority of trainings fail and generate meaningless samples.

2. It is difficult to compare the quality and the diversity of generated images
objectively by simply inspecting the samples because they do not have notable
differences.



5.5. Exp 5: Experiments on the MNIST Dataset

5

51

(a) , direct method (b) , smooth-to-sharp method

Figure 5.12: Visualization of samples from direct training method and from the Smooth-to-Sharp method.
.

(a) 1 × 10 5, direct method (b) 1 × 10 5, smooth-to-sharp method

Figure 5.13: Visualization of samples from direct training method and and from the Smooth-to-Sharp
method. 1 × 10 5.

Smooth-to-Sharp training

1. We find that all trainings taking the Smooth-to-Sharp algorithm are successful,
suggesting the capability of this algorithm to stabilize the training process.
Compared with direct method, the number of successfully trained cases is
raised from 1/20 to 20/20 with the Smooth-Sharp algorithm alone.

2. It is difficult to compare the quality and the diversity of generated images
objectively by simply inspecting the samples because they do not have notable
differences.

Previous experiments are all performed on artificial datasets. Our quantita-
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(a) 1 × 10 4, direct method (b) 1 × 10 4, smooth-to-sharp method

Figure 5.14: Visualization of samples from direct training method and from the Smooth-to-Sharp method.
1 × 10 4.

tive evaluation on artificial datasets demonstrates that both adding a proper L2-
Regularization and using the Smooth-to-Sharp training could boost the performance
of GANs. This experiment on the MNIST dataset validates the efficacy of these two
methods on real-world dataset.

5.6. Exp 6: Wasserstein Distance, Diversity and Qual-
ity

To explore alternative evaluation metrics, we investigate the relationship between
the estimatedWassterstein distance and GAN’s performance. The estimatedWasser-
stein distance is obtained from the discriminator’s output, and GAN’s performance
is represented by both the diversity metrics and the quality metrics proposed in
Chapter 3.

Setups We analyze this relationship using our proposed artificial dataset because
both the diversity and the quality metrics can only be evaluated quantitatively on
our artificial datasets. Three different datasets are used in this experiment: the
One-sphere dataset with 28*28 images, the One-sphere dataset with 48*48 images
and the Two-sphere dataset with 28*28 images. The details of these datasets are
shown in table 5.18.

Table 5.18: The training datasets used in this experiment are listed below.

Training dataset Description

One-sphere Dataset-28*28 200 images samples, image size: ∗ , radius = .
One-sphere Dataset-48*48 1600 images samples, image size: ∗ , radius = .
Two-sphere Dataset 67230 two-sphere samples, image size: ∗ , radius = .
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Table 5.19 and 5.20 show the architecture of the GAN model used in this exper-
iment and its hyperparameters.

Table 5.19: The structure of GAN used in this experiment. . Fully connected layer with
64 units and Relu non-linearity

Model Generator Discriminator

WGAN (28*28) . → . → . . → . → .
WGAN (48*48) . → . → . . → . → .
WGAN (two-sphere) . → . → . . → . → .

Table 5.20: List of hyperparameters and their values for training one-sphere GAN.

Hyperparameter Value Description
Dimensions of latent space (one-sphere) 2 Number of random inputs to the generator (for one-sphere dataset)
Dimensions of latent space (two-sphere) 4 Number of random inputs to the generator (for two-sphere dataset)
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the discriminator.
Learning rate ( ) 1 × 10 3 The learning rate used for optimizing the generator.
Generator update frequency (WGAN) 5 The frequency of which the generator is updated.
Gradient Penalty (WGAN) 10
Optimizer RMSProp The optimizer used for updating the generator and the discriminator.
Training steps 20,000 Total number of updates during training.
Batch size 64 Number of samples in each mini-batch fed to the network.

In this experiment, we record the estimated Wasserstein distance, the estimated
KL-divergence, and the estimated RMSE. All training procedures are repeated five
times and for each training procedure we record those three values every 1000
iterations (20000 iterations in total), which means that there are 100 records for
every dataset.

Results

Wassterstein distance and KL divergence We apply logarithm transfor-
mation to the KL divergence in order to give a better linear relationship between the
Wassterstein distance and the KL divergence. To reveal the relationship, we fit two
lines per dataset for smooth images and sharp images, respectively. The scatter
plots and fitted lines are shown in figure 5.15. For each fitted line, we report the 𝑟
and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 in table 5.21. The 𝑟 value indicates the percentage of Wasserstein
distance variation that is explained by a fitted line, and a low 𝑝 − 𝑣𝑎𝑙𝑢𝑒 suggests
significant linear relationship between these two variables.

Wassterstein distance andRMSE To reveal the relationship betweenWasser-
stein distance and the RMSE of generated samples compared to ground-truth im-
ages, we fit two lines per dataset for smooth images and sharp images, respectively.
The scatter plots and fitted lines are shown in figure 5.16. For each fitted line, we
report the 𝑟 and p-value in table 5.22.
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Figure 5.15: The scatter plots and the fitted lines for the Wasserstain distance and the logarithm of KL
divergence. Green dots represent sharp images and blue dots represent smooth images in each dataset.
The fitted lines indicate strong linear relationship between these two variables.

Table 5.21: The and of fitted linear models: log(KL divergence) ∼ Wasserstein distance.

dataset image type p-value

One-sphere (28*28) sharp 0.9216 4.0 × 10 58

smooth 0.9025 5.4 × 10 51

One-sphere (48*48) sharp 0.8104 3.6 × 10 29

smooth 0.8649 2.0 × 10 45

Two-sphere (28*28) sharp 0.8281 1.2 × 10 23

smooth 0.9216 4.3 × 10 43

Discussion

1. We find that the estimated Wasserstein distance (obtained from the discrim-
inator’s loss) is strongly correlated with GANs’ performance, with respect to
the quality and the diversity evaluation metrics on our artificial dataset, as
shown in figure 5.16 and 5.15. Our results provide a quantitative support for
using the Wasserstein distance as a metric to evaluate GANs’ performance.
When first promoted [28], the Wasserstein distance has been suggested to
be potentially correlated with the visual quality of generated images. To our
knowledge, our experiment is the first to demonstrate this correlation quan-
titatively. Moreover, we further find that the Wasserstein distance is highly
correlated not only with the quality but also the diversity of generated sam-

Table 5.22: The and p-value of fitted linear models: RMSE ∼ Wasserstein distance.

dataset image type p-value

One-sphere (28*28) sharp 0.9216 6.7 × 10 54

smooth 0.9409 2.8 × 10 61

One-sphere (48*48) sharp 0.8104 3.5 × 10 29

smooth 0.9216 2.1 × 10 54

Two-sphere (28*28) sharp 0.8104 1.4 × 10 24

smooth 0.8836 1.3 × 10 38
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Figure 5.16: The scatter plots and the fitted lines for Wasserstain distance and the RMSE. Green dots
represent sharp images and blue dots represent smooth images. The fitted lines indicate strong linear
relationship between these two variables.

ples.

2. The linear relationship between theWasserstein distance and the performance
of GANs is only consistent in the same dataset and under the same GAN’s
architecture. Our results exhibit that the linear relationships are different for
different datasets and for images with different smoothness. Hence, a solid
comparison of GANs’ performance can only be conducted using Wasserstein
distance when the dataset and the architecture of GANs are identical.





6
Summary and Conclusions

6.1. Summary

T his thesis work developed a systematic evaluation method to quantitatively as-
sess the performance of GANs on a novel artificial dataset and proposed two

techniques to improve the training of GANs with the help of our evaluation scheme.
We proposed to evaluate GANs from two aspects: the quality, which evaluates

the visual quality of generated images, and the diversity, which evaluates GANs’
ability to generate samples with different modes in the real data distribution.

We invented a series of artificial datasets (figure 3.1), consisting of images with
one or two spheres in arbitrary locations, to evaluate the performance of GANs. Two
important and straightforward properties about the images in our artificial datasets
enable quantitative evaluations from both the quality aspect and the diversity as-
pect, which are the known variations (i.e., all possible locations of the centers of
the spheres are predefined) and the regular shapes (i.e., all images are regularly
spherical in shape).

We further explored the validity of an alternative evaluation metric, the Wasser-
stein distance, as an indicator of the quality and the diversity for Wasserstein GANs.
The Wasserstein distance was estimated by the discriminator and could be ob-
tained directly from the discriminator’s output, making it a cost-effective indica-
tor when considering application in real-world datasets. We compared, using our
artificial datasets, the relationship between the Wasserstein distance and our pro-
posed quantitative evaluation metrics, and found that the Wasserstein distance was
highly correlated with both the quality and the diversity of generated samples (fig-
ure 5.15,5.16). To our knowledge, our study was the first to demonstrate this
correlation in a quantitative manner.

Furthermore, We explored two improving techniques that boosted the perfor-
mance of GANs, namely the addition of regularization terms and the ”Smooth-to-
Shape” training algorithm. We provided quantitative support that adding a proper
L2-Regularization on both the generator and the discriminator stabilized the training

57
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of GANs and improved the quality and the diversity of generated samples (figure
5.4, 5.5). We developed a progressive training method named as the ”Smooth-to-
Sharp” training algorithm, which trains a GAN model with images of smooth spheres
first and progresses gradually to those of sharp spheres. We demonstrated that the
”Smooth-to-Sharp” algorithm boosted GANs’ capabilities to generate samples with
high quality and high diversity, and that the improvement was more significant in
the diversity aspect (table 5.14).

We further validated the efficacy of these two improving techniques on the
MNIST dataset. We presented that adding L2-Regularizations with certain strength
significantly increased the proportion of successful trainings, supporting that adding
a proper L2-Regularization stabilized the training process in a real-world dataset.
We also observed that all trainings taking the Smooth-to-Sharp algorithm were
successful, validating the capability of the Smooth-to-Shape algorithm to improve
GANs’ performance in a real-world setting.

6.2. Strengths and Limitations
Our work has several strengths.

1. We developed a systematic evaluation method to quantitatively assess the
performance of GANs, which was independent of a pre-trained classifier and
was achieved by evaluating on a novel artificial dataset.

2. We were the first to quantitatively demonstrate the strong correlation be-
tween the Wasserstein distance and both the quality and the diversity of gen-
erated samples, through our proposed evaluation method and on our artificial
datasets, providing evidence to support the use of the Wasserstein distance
to indicate the quality and the diversity of Wasserstein GANs.

3. We proposed two techniques to improve the training of GANs and validated
them both on our artificial datasets and on the MNIST dataset. The two tech-
niques proposed were both simple to implement and required little additional
computation power.

Our work also has limitations.

1. Our quantitative evaluation method can be only applied using the proposed
artificial datasets, because ground truth about the variation and the quality of
samples were required by the evaluation metrics. We would make our artificial
datasets open-source to enable the application of our evaluation methods by
other researchers.

2. Our artificial datasets only contained images of one or two spheres, which
were relatively simple comparing with real-world datasets. We planned to
increase the complexity of our datasets in future work.

3. We only validated the two improving techniques we proposed on the artificial
datasets and the MNIST dataset using one GAN model due to limited time.
Validation of these techniques on different datasets and using various GANs
were planned as future work to increase reliability.



6.3. Future work

6

59

6.3. Future work
Firstly, we plan to increase the complexity of our artificial datasets. The currently
proposed datasets are of one sphere or two non-overlapping and otherwise inde-
pendent spheres. Approaches to improve the complexity of our datasets include
increasing the type of sample shapes, such as introducing into the datasets im-
ages of other regular shapes (e.g., ovals and rectangles), creating dependency
between the two spheres on each image, such as letting the distance between
the two sphere centers follow a Normal distribution, and introducing more complex
background (e.g., background with different colors and with random noises).

Secondly, we plan to further validate the two improving techniques proposed in
this work on more complicated real-world datasets, such as the CIFAR-10 dataset
[36], the ImageNet dataset [26] and so on.

Thirdly, systematical review, assessment, and comparison of the performance
of all typical GAN models using our quantitative evaluation method could help re-
searchers select better models for different research purposes and promote the
improvement of GANs’ performances. With increased number of GANs being pro-
moted, such as LS-GAN [37], MMD-GAN [38], Fisher-GAN [39] that were published
during the composition of this report, such quantitative evaluation is highly war-
ranted.

Lastly, we plan to further investigate the validity of using the estimated Wasser-
stein distance as an alternative evaluation metric. We demonstrated that the esti-
mated Wasserstein distance was strongly correlated with both the quality and the
diversity of generated samples using our artificial dataset. The estimated Wasser-
stein distance could be obtained directly from the discriminator’s output without
additional cost, making it a promising indicator when considering application in
real-world dataset. We can conduct experiments on real-world datasets to explore
the relationship between Wasserstein distance and the quality and the diversity of
generated samples.
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