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2 1. INTRODUCTION

Quantum mechanics has been playing a central role for physics innovations since
the last century. It was applied to a wide variety of situations and changed our under-
standing about the nature. One of the examples is the Standard Model, a confluence
of quantum mechanics and special relativity that unites fundamental forces and parti-
cles. Another example is the physical properties of phases of matters, which cannot be
understood without involving quantum mechanics. Lastly, quantum mechanics allows
nonlocal correlations on the particles that are far from each other, which violates any
theories based on local hidden variables [1, 2].

The development of quantum mechanics not only shaped our understanding about
the physical world but also led to important applications in modern technology, such as
lasers, magnetic resonance imaging, and integrated circuits. One of the emerging appli-
cations is quantum computation, which exploits quantum mechanics for information
processing. This is a highly active research field, as it promises to resolve challenges that
are beyond the reach of classical computers.

1.1. QUANTUM COMPUTATION
Conventional computers operate according to classical physics, such that the basic unit
for computation, the bit, is always in a state of 0 or 1. Quantum computers operate ac-
cording to quantum mechanics. The basic unit for information processing is the quan-
tum bit, or qubit. Unlike a classical bit in a classical computer which can only be either
0-state or 1-state, a qubit adheres to the superposition principle of quantum mechanics,
allowing it to be in a state of superposition of 0 and 1. The difference between conven-
tional computers and quantum computers become even more apparent when concern-
ing multiple qubits. When dealing with multiple qubits, they can be regarded as a single
entity that also follows the superposition principle. A system comprising N qubits can be
in a state of superposition of 2N states, leading to non-trivial multi-qubit states known
as entangled states. By leveraging multi-qubit entanglement, quantum algorithms can
process encoded information and extract useful quantity at the end, achieving speed-up
for certain computational tasks.

The physical form of a qubit is a quantum mechanical two-level system that can be
in a state of coherent superposition. Quantum mechanical two-level systems have been
demonstrated in various physical systems. Examples include atomic levels of ions or
atoms [3–8], superconducting circuits [9–12], photons [13], spins of nuclei [14, 15], and
spins of electrons or quasi-particles in solid-state systems [16–18]. For making a prac-
tical quantum computer, however, there are additional requirements to be considered.
Important aspects are defined by the DiVincenzo criteria [19], stating that on (1) a scal-
able physical system with well characterized qubits, we should have (2) the ability to
reliably initialize qubits into a known state. These qubits should have (3) long coherence
time. Furthermore, we should be able to perform (4) a universal set of quantum gates
and have (5) measurement capability.

Advancing the state of the art in the qubit quantity and quality is essential for exe-
cuting quantum algorithms for relevant problems [20–22]. The first DiVincenzo crite-
ria, a scalable physical system, should be regarded as an umbrella term encompassing
the integration of many qubits, efforts and yields [23], interconnections and wiring [24],
control electronics [25], power dissipation [26], and the degree of automation [27]. In a
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scaled-up system, it is also essential to improve qubit operation fidelities. The error rate
of the quantum gates needs to be reduced, such that all the qubits can interact effec-
tively and maintain a low accumulated error in quantum circuits. Quantum error cor-
rection codes have been developed to extend quantum coherence and reduce gate error
by combining multiple defective physical qubits into a logical qubit with an improved er-
ror rate [28]. The fidelity of the physical qubits need to exceed certain thresholds, which
depend on the details of error correction protocol. As an example, in a qubit platform
with 2D connectivity, the surface code typically requires gate fidelity above 99% [29].
This necessitates scalable and high-fidelity qubit control protocols.

1.2. SPIN QUBITS IN PLANAR GERMANIUM QUANTUM DOTS
Spins in gate-defined semiconductor quantum dots are considered as a promising ap-
proach for quantum computation, as their production method is compatible with the
classical computer based on semiconductor technology [30–33]. Among all the semi-
conductor materials, hole spins in germanium quantum dots have several advantages,
including strong spin-orbit interaction (SOI), absence of valley degeneracy and large
heavy hole - light hole splitting [34], small in-plane effective mass [35], and the forma-
tion of ohmic contacts with metals [35–37]. Based on these developments, in this thesis
we further explore the physics and control protocols enabled by hopping spins in the
quantum dot arrays. Our results provide insights into challenges in spin-qubit systems,
such as qubit addressability in large qubit arrays, charge-noise limited dephasing, in-
terconnects that extend beyond nearest neigbours, efficient single-qubit gates, and high
fidelity two-qubit gates.

1.3. THESIS OUTLINE
In this thesis, we study germanium spin qubits in experiments and numerical simula-
tions. The rest of the thesis is organized in the following chapters.

• In chapter 2 we provide the background information relevant to the work in this
thesis, including the theoretical description of spins in germanium quantum dots,
as well as the measurement setup used in the experiments.

• In chapter 3 we study the control protocols for spin-spin exchange interactions,
and quantify the individual coupling strength in a configuration of 2×2 array when
all the nearest neighboring coupling are turned on. We can tune to a regime of
equal coupling strength, in which the four-spin entangled states emerge as the
resonating valence bond states.

• In chapter 4 we model the qubit frequency susceptibility to charge noise and pre-
dict the optimal magnetic field orientation for extended qubit coherence time.

• In chapter 5 we show multi-photon transitions in a two-spin system, and discuss
opportunities to use this method for qubit addressability in large qubit array based
on shared control architecture.

• In chapter 6 we demonstrate coherent spin qubit shuttling through quantum dots.
We quantify the loss of the quantum information during the process.
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• In chapter 7 we demonstrate high-fidelity baseband control of single qubit and
two qubit gates, with extended coherence times by operating at low magnetic field.
The single qubit gate is realized based on shuttling between the quantum dots, re-
sembling the original spin qubit proposal by Loss and Divincenzo. The two-qubit
CPhase gate achieves average fidelity 99.3% in the randomized benchmarking ex-
periments.

• In chapter 8 we conclude and provide an outlook on the near future for germa-
nium spin-qubits operations.
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2.1. MATERIALS AND DEVICES FOR SPIN QUBITS IN GERMANIUM
A quantum dot device is a physical structure in the solid state system that can confine
particles, typically electrons or holes, in a small region with a size of about 100 nm.
Here, we will consider the quantum dot implementation of gate-defined semiconduc-
tor quantum dots. In this method, carriers are confined in the z-direction by band mis-
alignment of the semiconductor heterostructure, and confinement in the xy-direction
is established by shaping the electrical potential landscape via voltage-biased metallic
electrodes. The spin degree of freedom of the trapped carriers can be controlled and
used as spin qubits. Spin qubits in gate-defined quantum dots have been pioneered in
III-V materials (e.g. GaAs). More recently group IV materials such as silicon have be-
come the workhorse, as the spin coherence time is extended by order of magnitude due
to the natural abundance of isotopes with zero nuclear spin. Silicon spin qubits steadily
advance in qubit numbers [1, 2] as well as control fidelity [3–6].

In this thesis we work on spin qubits in another group-IV material - germanium. The
planar Ge/SiGe heterostructure plays an important role in forming quantum dots and
spin qubits. The schematic of the material stack is shown in Fig. 2.1a. The energy pro-
file in Fig. 2.1b provides the confinement in the out-of-plane direction. It also reveals
an important property: the lowest heavy hole bands are separated from the light hole
and split-off bands by more than tens of meV, thanks to the spin-orbit coupling and the
engineered compressive strain in the quantum well.

The confinement potential in the in-plane direction is created by applying voltages
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Figure 2.1: Ge/SiGe heterostructure and valence band energy. a, Schematic illustration of the material stack,
including Ge/SiGe heterostructure, metal electrodes and the dielectric in between. The thickness of the quan-
tum well is typically around 16 nm. The insulating gate dielectrics AlOx electrically isolates metal gate from
the heterostructure. The gate creates electric field and accumulates two-dimensional hole gas (2DHG) in the
quantum well. b, Simplified illustration of valence band of the heavy hole band (blue) and light hole (green).
We plot the lowest two heavy hole sub-bands HH0,1 and light hole sub-bands LH0,1. They are the results of
out-of-plane valence band confinement potential. The compressive strain in the quantum well results in va-
lence band energy difference∆E . Here we assume the strain in the SiGe layers are homogeneous and relaxed to
zero, resulting in a zero heavy hole - light hole splitting (which is an oversimplification). In this plot we assume
a linear potential is created by the out-of-plane electric field. This is another simplification which neglect the
screening effect of the accumulated holes as well as the finite dimension effect of the metal gate, in which both
should create curvature in the potential profile. The figure is modified from Fig. 4.2A.
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on the metallic gate electrodes on top of the heterostructure. The gate electrodes are
electrically isolated from other gates and heterostructures by the dielectrics (e.g. AlOx).
As depicted in Fig. 2.2, the electrodes are patterned in specific shapes, circular plungers
and elongated barriers, to create the desired electrical potential at the depth of the quan-
tum well plane to trap holes. The distance between barriers is typically on the scale of
100 nm, to have strong in-plane confinement and a sizable quantized orbital energy level
spacing which isolates the orbital excited states from the orbital ground state. Designing
the plungers and barriers to arrange several quantum dot potential wells together real-
izes a basic unit cell of spin qubits. In reality, the concept mentioned above is not possi-
ble without high-quality heterostructures. The quantum well with low-disorder and high
electrical uniformity allows the potential experienced by holes to be shaped as designed,
without interruption or extra dots forming at unintended locations.

To detect a single low energy excitation in the solid-state device, we have to amplify
the signal generated from the device and meanwhile suppress energy excitations as well
as noise from the environment. The first-stage amplification is realized by the charge
sensor, a single-hole transistor (SHT), as part of the drawing in Fig. 2.2. The current
through the sensor can be very sensitive to the electrostatic potential experienced by
the sensor quantum dot, amplifying the signal of charge movement nearby [7, 8]. This
property is used to measure the change of hole occupations of the neighbouring quan-
tum dots, which reveals the spin states of the holes after spin-to-charge conversion (Sec-
tion 2.5.1). Without averaging for multiple experimental runs, this scheme can resolve
the charge occupation of a single experimental run (single-shot readout) with high con-

+ +

++ ++ +++++++++

Sensor
barrier 

Sensor
barrier 

Capacitive coupling

Interdot tunneling

Quantum dot 
plunger

Quantum dot 
plunger

Interdot 
barrier

Current

Si0.2Ge0.8

Si0.2Ge0.8

Ge
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Dot-reservoir tunneling

Source
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Figure 2.2: Schematics of a quantum dot device. Cross-sectional illustration of a device containing three
gate-defined quantum dots. In the ideal scenario, by applying appropriate voltages on the individual plunger
(circular metal gate in grey) and the surrounding barriers (finger-shape metal gate in grey), the confinement
in three directions is formed underneath the plunger and in the plane of the Ge-quantum well, which can trap
the positively charged holes. The quantum dots on the left typically accumulate in a few-hole regime. The
sensor dot on the right typically accumulates more holes, and tunnel-coupled to the reservoirs which have
high carrier density. The reservoirs are contacted to the source and drain (in green) by diffusing the metal,
typically Al or Pt, into the heterostructure. The interdot (dot-reservoir) tunnelling processes are marked in
dashed-cyan (-orange) arrows. The tunnelling current through the sensor is sensitive to the hole occupations
of the quantum dots via the capacitive coupling. In this plot the fanouts of the quantum dot plunger gates are
not plotted. Several parts of the AlOx are omitted.
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fidence.
Several procedures are taken to suppress noise. As explained in Section 2.7, the de-

vice is placed in a radiation shield and cooled to a nominal temperature of 20 mK in the
dilution refrigerator. The wires connected to it are attenuated or filtered. These experi-
mental practices are meant to cool down electrons, phonons and photons that can inter-
act with charges and spins in the quantum dots. There are still some degrees of freedom
in the environment that remain unfrozen at such low temperature. The charge noise
from the two-level fluctuators can interfere the charge sensor signals and also dephase
spin qubits. To establish low noise, it is key to have a high quality heterostructure, dielec-
tric, and metal gate stack [9, 10]. The nuclear spins in the semiconductor quantum well
can dephase the spin qubits via hyperfine interaction. In the case of germanium, thanks
to the anisotropic hyperfine interaction, the effective noise strength can be made smaller
by applying an in-plane magnetic field [11]. Further nuclear spin noise reduction may
be established by isotopically enriching the germanium to nuclear spin-free isotopes.

2.2. CONFINED HOLES IN PLANAR GERMANIUM
In the valence band of germanium the low energy states near the Γ-point are holes that
have total angular momentum 3

2ħ or 1
2ħ as a result of the underlying electron spin ( 1

2ħ)
and the p-like orbital (1ħ). The angular momentum eigenstates are| j ,m j 〉 = | 3

2 ,± 3
2 〉 for

heavy holes, | 3
2 ,± 1

2 〉 for light holes, and | 1
2 ,± 1

2 〉 for the split-off bands [12]. The planar
heterostructure used in this thesis has growth direction [001] corresponding to the z-
axis at out-of-plane direction. This defines the rotational symmetry and the quantum
number m j is related to the projection of angular momentum along z-direction (m jħ).
At low energy regime that the wave-functions are localized close to the Γ-point and ne-
glecting the split-off band which is 0.29eV above heavy hole and light hole bands, we
can study the energy levels of the germanium using 4× 4 Luttinger-Kohn Hamiltonian
with effective mass approximation [13, 14]. The full Hamiltonian of a hole confined in a
quantum dot, in the basis | j ,m j 〉 = {| 3

2 , 3
2 〉, | 3

2 ,− 3
2 〉, | 3

2 , 1
2 〉, | 3

2 ,− 1
2 〉}, is written as

H = HLK +HBP +Vconfine(x, y, z)+HZeeman, (2.1)

where Vconfine(x, y, z) is the confinement potential, HLK is the Luttinger-Kohn Hamilto-
nian describing kinetic energy [13]

HLK =


P +Q 0 S R

0 P +Q R† −S†

S† R P −Q 0
R† −S 0 P −Q

 , (2.2)

{P , Q, S, R, S†, R†} are in the form
∑
αβ cαβ

pαpβ
m with the generalized momentum pα =

−iħ∂α+e Aα including vector potential Aα at the direction α ∈{x, y , z} (see chapter 4 for
explicit formulas; see [14, 15] for extensive discussion). HBP is Bir-Pikus term describing
the effect of strain field. The Zeeman energy is [14]

HZeeman = 2µBκ J⃗ · B⃗ +2µB q(J 3
x Bx + J 3

y By + J 3
z Bz ). (2.3)
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Here µB is Bohr’s magneton, κ = 3.41, q = 0.066, B⃗ = (Bx ,By ,Bz ) is the magnetic field, and

J⃗ = (Jx , Jy , Jz ) are spin-3/2 matrices [14]

Jx =


0 0

p
3/2 0

0 0 0
p

3/2p
3/2 0 0 1
0

p
3/2 1 0

 , (2.4)

Jy =


0 0 −i

p
3/2 0

0 0 0 i
p

3/2
i
p

3/2 0 0 −i
0 −i

p
3/2 i 0

 , (2.5)

Jz =


3/2 0 0 0

0 −3/2 0 0
0 0 1/2 0
0 0 0 −1/2

 , (2.6)

which show the intrinsic spin-3/2 structure of heavy holes m j =± 3
2 and light holes m j =

± 1
2 .

Despite the complicated Hamiltonian Eq. (2.1), we can take HZeeman as the start-
ing point when describing the hole spin qubit in the planar germanium heterostruc-
ture used in this thesis. The reason is that the heavy hole (| 3

2 ,± 3
2 〉) - light hole (| 3

2 ,± 1
2 〉)

energy separation, created in germanium quantum well by the compressive strain and
the confinement in growth direction, is the dominant energy scale in Eq. (2.1). There-
fore, we can first look at the block of heavy holes in Eq. (2.1), find out the main compo-
nents of the lowest two energy eigenstates (with the spin wave functions determined by
Eq. (2.3)), and later consider the perturbation from the terms which couple heavy hole
and light hole sectors. These coupling terms include {Jx , Jy , J 3

x , J 3
y } in HZeeman and the

off-diagonals {S, R, S†, R†} in HLK and HBP.
In this picture, heavy holes (for both m j =± 3

2 ) have the effective mass m⊥ = m0/(γ1−
2γ2) ≈ 0.20m0 at out-of-plane and m∥ = m0/(γ1 +γ2) ≈ 0.057m0 at in-plane direction,
with Luttinger parameters γ1 = 13.38 and γ2 = 4.24 for Ge [16]. The ground state spa-
tial wave-function ΨH

0 (x, y, z) of the heavy holes subjected to the confinement potential
Vconfine(x, y, z) can be obtained accordingly. By plugging the explicit form of spin-3/2
matrices (Eq. (2.4)- (2.6)) in Eq. (2.3), the Zeeman interaction in the heavy hole block is

H H
Zeeman = 1

2
µB

(
3qσx Bx −3qσy By + (6κ+13.5q)σz Bz

)
. (2.7)

Combining the orbital and the spin degree of freedom, we can write the lowest two en-
ergy eigenstates {|g 〉,|e〉} as |g 〉 = (c−g | 3

2 ,− 3
2 〉+c+g | 3

2 ,+ 3
2 〉)⊗ΨH

0 (x, y, z) and |e〉 = (c−e | 3
2 ,− 3

2 〉+
c+e | 3

2 ,+ 3
2 〉)⊗ΨH

0 (x, y, z), where the coefficients c±g ,e depend on the magnetic field orien-
tation (Bx , By , Bz ).

When including the heavy hole-light hole interaction, the above expressions of {|g 〉,|e〉}
become the approximation of the energy eigenstates. The true eigenstates will be the su-
perposition of the heavy hole (major part) and the light hole (minor part). The resulting
energy structure is discussed in the next section.
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2.2.1. EFFECTIVE SPIN-1/2 SYSTEM AND g -MATRIX
For spin-qubit applications we can simplify the system and only look at the lowest two
energy eigenstates {|g 〉,|e〉} of Eq. (2.1). At zero magnetic field, these two states are de-
generate. At finite magnetic field, the energy difference between the two eigenstates
depends on the magnetic field strength and orientation, forming an effective spin-1/2
system. The g-matrix is defined by the effective spin-1/2 Hamiltonian [17]

H = 1

2
µBσ⃗ · ĝ · B⃗ , (2.8)

where the Pauli matrices σ⃗ acting on the states spanned by {|↓≡ |g 〉〉,|↑〉 ≡ |e〉}. The g-
matrix can have singular value decomposition ĝ = Û ĝd V̂ , where the matrix ĝd is diag-
onal, the matrix V̂ defines the magnetic axes, and the matrix Û defines the qubit basis.
Thus, the g-matrix depends on the choice of the qubit basis and cannot be uniquely de-
fined. Notice that it is possible to be made symmetric with certain sets of qubit basis and
magnetic axes, while in general it can be non-symmetric in other basis.

We note that the g -matrix mentioned in this chapter is equivalent to the term ‘g -
tensor’ in some literature, but may differ in others. For example, ‘g -tensor’ is sometimes
used to refer to a 3×3 real symmetric matrix that represents the measurable eigenvalues
in ĝd and magnetic axes V̂ . In a planar, uniform heterostructure, ĝd and V̂ of a spin are
independent of the position of its wave function along the plane. A hole spin will rotate
when it is moving along the plane and in the presence of spin-orbit coupling (e.g. linear
Rashba HR ∝ pyσx−pxσy). One way of modelling this is to include both the spin and the
orbital degrees of freedom in the Hamiltonian. The other way of modelling is to absorb
the spin-orbit coupling in the g -matrix. In this framework, the g -matrix depends on
the position in the presence of a spin-orbit interaction. After the hole is displaced along
the plane to a new position, the Hamiltonian Eq (2.8) is different than the Hamiltonian
before the displacement. This effect can be captured by the position-dependent matrix
Û .

When the heavy hole-light hole interactions are neglected, ĝ is entirely given by
Eq. (2.7), which has magnetic axes aligned with the symmetry axes of the heterostruc-
ture (x-, y-, z-axis), and is highly anisotropic as (gxx , g y y , gzz )= (3q , −3q , 6κ+ 13.5q)=
(0.2, -0.2, 21.4). The g-matrix is modified when taking into account the heavy hole-
light hole interactions. The interaction mixes the heavy hole states {|↓〉,|↑〉} with vir-
tual states of light holes. The changes of energies can be seen in the second order per-
turbation. As an example, we can look at the spin in the out-of-plane magnetic field
B⃗ = B ẑ. Before adding the heavy hole-light hole interactions, the qubit ground state is
|↓〉 = | 3

2 ,− 3
2 〉⊗ΨH

0 (x, y, z) and excited state is |↑〉 = | 3
2 , 3

2 〉⊗ΨH
0 (x, y, z), with the orbital en-

ergy Eh and the Zeeman splitting E↑−E↓ = gzzµB B . HZeeman and heavy hole-light hole
interactions HHL (off-diagonals {S, R, S†, R†} in HLK and HBP) introduce energy correc-
tions via the light hole states labelled by the index l :

∆E↑ =
∑

l

1

Eh −El
〈↑ |HHL +HZeeman|l〉〈l |HHL +HZeeman| ↑〉 (2.9)

∆E↓ =
∑

l

1

Eh −El
〈↓ |HHL +HZeeman|l〉〈l |HHL +HZeeman| ↓〉 (2.10)
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From these we obtain the correction of one of the components ∆gzz = ∆E↑−∆E↓
µB B . The

corrections of the other components (e.g. ∆gxx , ∆g y y ) can be obtained similarly. These
formula also indicates that, by changing the spatial wave functions of {|↑〉, |↓〉,|l〉} and
the orbital energies Eh,l via Vconfine(x, y, z), the energy corrections ∆E↑,↓ as well as the
g-matrix components change accordingly.

In theory, the g -matrix still remains highly anisotropic, gzz ≫ gxx , g y y , if the quan-
tization energy of the z-direction confinement is still dominant. The anisotropy is pre-
dicted to change when the wave function is squeezed such that the confinement poten-
tial in x or y direction becomes comparable to z-direction [18]. The strain profile in HBP

can also change the g -matrix, as shown in the theory [19]. In particular, the off-diagonal
elements become non-zero when shear strain is present. In this case, the magnetic axes
of ĝ are not along the original coordinate axes but can be tilted. The tilting angle can
vary from dot to dot, as reported in the experimental work [11].

2.2.2. ZEEMAN ENERGY

The Zeeman energy ∆EZ =µB|ĝ · B⃗ | of a spin is the energy difference between the eigen-
energies of Eq. (2.8). It is linearly proportional to magnetic field strength and depends
on the alignment between the magnetic field and the magnetic axes of the g -matrix.
The constant-Zeeman energy surface is an ellipsoid in the three-dimensional space of
magnetic field, ∆E 2

Z = B⃗ · (ĝ T ĝ ) · B⃗ . Three symmetry axes of the ellipsoid, or the eigen-
vectors of the matrix ĝ T ĝ , is the magnetic axes of the g -matrix. Thus, the magnetic axes
can be determined through the measurement of the Zeeman energy as a function of field
orientation.

The g -factor (omitting the sign) is a scalar defined by the measurable quantities ∆EZ

and B⃗ as g = ∆EZ
µB B , or g = |ĝ ·B⃗ |

|B⃗ | , where the magnetic field strength B = |B⃗ |.

2.2.3. DRIVING MECHANISM - ELECTRIC DIPOLE SPIN RESONANCE

The typical methods of driving a single spin qubit (flipping from |↓〉 to |↑〉) are either
applying oscillating magnetic field as electron spin resonance [3, 20] (ESR) or applying
oscillating electric field as electric dipole spin resonance (EDSR), which couples the mo-
tion to the spin via micromagnets [4, 21] or spin-orbit interaction [22–25].

Germanium has strong spin-orbit interaction allowing EDSR. When applying an os-
cillating electric field, there are two effects happening at the microscopic levels: g -matrix
magnetic resonance (g -TMR) and iso-Zeeman EDSR [26]. g -TMR is the result of the
change of magnetic axes of the g -matrix due to the deformation of the wave function,
moving in non-harmonic potential, or moving in a spatially varying strain field [27, 28].
This effect can be correlated to the measurement of the gate-voltage-dependent g -matrix
(e.g. measuring magnetic axes and the corresponding g -factors at various gate voltage
settings). Iso-Zeeman EDSR is the result of the effective magnetic field seen in the mov-
ing frame of the hole due to spin-orbit interaction. This effect occurs as if the hole were
moving in a perfectly uniform quantum well without its spatial wave function changing
during the motion. In this ideal case, the magnetic axes and the g -factor components do
not depend on the position of the hole (translational invariance in the lab frame). The
effective spin-orbit interaction for holes in the two-dimensional plane has been stud-
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ied theoretically [16, 22, 29, 30]. The effective cubic Rashba spin-orbit coupling me-
diates EDSR when the wave function is in the moving potential that is circular in the
xy-plane [16, 31]. The effective linear Rashba spin-orbit coupling can appear and allow
much faster EDSR when the potential is elliptic in the xy-plane [18, 32].

One of the descriptions for EDSR mechanism is the g -matrix formalism [17] that in-
cludes both effects mentioned above. The g -matrix is modulated by the oscillating gate
voltage nearby the confined hole. The wave function of the hole can be displaced and
deformed at the same time, changing the g -matrix through heavy hole-light hole inter-
action. In this model it is assumed the linear modulation ĝ (Vg) = ĝ0+ ĝ ′Vg, with the gate
voltage Vg(t ) =Vac cos(ωdt ) oscillating in the angular frequencyωd that is in the resonant
condition with the spin, ħωd =∆EZ = gµB B . When the system is fully coherent, the spin
can evolve between the states |↓〉 and |↑〉 at the Rabi frequency given by [17]

fRabi =
µB BVac

2hg
|(ĝ0 · b⃗)× (ĝ ′ · b⃗)|, (2.11)

where the unit vector b⃗ = B⃗
B , the magnetic field strength B = |B⃗ | and the effective g -factor

g .

2.3. TUNNEL COUPLINGS BETWEEN QUANTUM DOTS
Spin-qubits in gate-defined quantum dot heavily rely on tunnel coupling between two
dots for their operations. Due to the g-factor anisotropy and spin-orbit effect, the tun-
nelling process between two dots can simultaneously cause the spin to flip. A general
spin non-conserving tunnelling Hamiltonian of an electron (or a hole) between orbital
ground state levels of the two quantum dots L,R can be written as [33]

Ht =
∑

α,β=↑,↓
tαβc†

LαcRβ+h.c., (2.12)

where α,β are spin indices, c†
Lα (cRβ) is creation (annihilation) operator in dot L (R), h.c.

is hermitian conjugate and tαβ are tunnel couplings in a matrix form. If we consider the
coupling has time reversal symmetry, we can parametrize the tunnel coupling matrix
with four real numbers (tc , t⃗so) = (tc , tx , ty , tz ). The corresponding terms are expressed as
tαβ = (tc I+i t⃗so ·⃗σ)αβ, where σ⃗denotes Pauli matrices. In the basis {|L ↑〉 , |L ↓〉 , |R ↑〉 , |R ↓〉},
we explicitly write down the tunnelling Hamiltonian in the matrix form

Ht =
(

0 tc I + i t⃗so · σ⃗
tc I − i t⃗so · σ⃗ 0

)
=


0 0 tc + i tz ty + i tx

0 0 −ty + i tx tc − i tz

tc − i tz −ty − i tx 0 0
ty − i tx tc + i tz 0 0

 .

(2.13)
This 4 by 4 matrix is also a minimal model for describing tunnel coupling of a sin-

gle spin in a double quantum dot. Here the double quantum dot needs to be isolated,
meaning negligible particle-exchanging interactions to the environment such as reser-
voirs or the third quantum dot. If this assumption does not hold, we will need more basis
states to describe the full system.
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In the case of an isolated two-spin system in a double quantum dot, we have a min-
imal model with five basis states { S(2,0), S(1,1), T 0(1,1), T +(1,1), T −(1,1) }. The basis
states are defined by acting creation operators on the vacuum |0〉 with the order (L ↑,L ↓
,R ↑,R ↓). The explicit forms of the states are: |S(2,0)〉 = c†

L↓c†
L↑ |0〉, |S(1,1)〉 = |↑,↓〉−|↓,↑〉p

2
=

c†
R↓c†

L↑−c†
R↑c†

L↓p
2

|0〉, |T 0(1,1)〉 = |↑,↓〉+|↓,↑〉p
2

= c†
R↓c†

L↑+c†
R↑c†

L↓p
2

|0〉, |T +(1,1)〉 = |↑,↑〉 = c†
R↑c†

L↑ |0〉, |T −(1,1)〉 =
|↓,↓〉 = c†

R↓c†
L↓ |0〉. Computing the matrix elements of Eq. (2.12) accordingly, we can derive

the following Hamiltonian [33, 34]

Ht ,2Q =p
2tc |S11〉〈S20|+ i

p
2tz |T 0〉〈S20|−

∑
±

(ty ± i tx ) |T ±〉〈S20|+h.c.

=


0

p
2tc −i

p
2tz −ty + i tx −ty − i txp

2tc 0 0 0 0
i
p

2tz 0 0 0 0
−ty − i tx 0 0 0 0
−ty + i tx 0 0 0 0

 .
(2.14)

2.4. SINGLE SPIN IN A DOUBLE QUANTUM DOT
The minimal Hamiltonian for the charge and spin dynamics of a single spin in an iso-
lated double quantum dot can be obtained by adding the Zeeman energies and charging
energies of the single spin to the tunnel coupling Hamiltonian Eq. (2.13), similar to the
model in [35]. Fig. 2.3a is an illustration. In the basis {|L ↑〉 , |L ↓〉 , |R ↑〉 , |R ↓〉} we have the
Hamiltonian

H1Q =
(

ϵI tc I + i t⃗so · σ⃗
tc I − i t⃗so · σ⃗ −ϵI

)
+ 1

2
µB

(
σ⃗ · (ĝL · B⃗) 0

0 σ⃗ · (ĝR · B⃗)

)
. (2.15)

In this formula, ϵ is the detuning energy of the double quantum dot and has an opera-
tional meaning that the energy difference between (1,0) and (0,1) configurations equals
to 2ϵ when ϵ is the dominant energy scale. tc is the spin-conserving tunneling, t⃗so are
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Figure 2.3: Single spin in a double quantum dot. a, An illustration of the double quantum dot potential and
spin-degenerate orbital levels on the left and right quantum dots (QDL,R). The fainted lines are excited orbital
levels that are not taken into account in the effective model. b,c, Four energy levels of the single spin in double
quantum dot given by Eq. (2.15). Parameters used here: θR = 50◦, Zeeman energies h fL = h fR = 0.4tc in (b)
and h fL = h fR = 4tc in (c). In this thesis we focus more on the situation similar to (b) where 2tc ≫ h fL,R.
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spin-dependent tunnelings, ˆgL,R are g -matrices of the left and right dots, and B⃗ is the
magnetic field. Here B⃗ is expressed in the coordinate system of the lab frame. Here the
g -matrices can be defined slightly different than Eq (2.8). Because the orbital degree of
freedom and the spin-orbit effect (t⃗so) are explicitly included in the Hamiltonian, the g -
matrices (ĝ = Û ĝd V̂ in Eq (2.8)) can be chosen as real symmetric matrices that can be
uniquely determined by measuring the eigenvalues ĝd and the magnetic axes V̂ when
the orbital wave function is static and localized in dot L and R.

Due to the different microscopic details in dot L and dot R, such as inhomogeneous
strain, confinement potential and the interface, the g -matrices ˆgL,R can be unequal and
the vectors ˆgL,R · B⃗ ≡ h

µB
⃗fL,R do not point to the same direction. In other words, the effec-

tive magnetic fields in dot L and dot R which define the spin quantization axes are not
aligned.

We can reduce the number of parameters in the model by going into the local spin
basis [36]. We apply a rotation matrix R = RL ⊗RR to transform the Hamiltonian H ′

1Q =
R†H1Q R such that the diagonal blocks of the Zeeman interaction become ∝ fLσz⊗ f⃗R ·σ⃗
and the transformed spin-orbit tunnel couplings t⃗ ′so become all zero,

H1Q,local =
(
ϵI t ′c I
t ′c I −ϵI

)
+ 1

2
h

(
fLσz 0

0 fR(σz cosθR +σx sinθR)

)
. (2.16)

Here t ′c =
√

t 2
c +|t⃗so |2 is the transformed spin-conserving tunnel coupling (in the follow-

ing we use tc to stand for t ′c ), θR is the polar angle of f⃗R. Since there are only two quantum
dots in the system, not a chain of dots forming a loop, the azimuthal angle of f⃗R can be
arbitrary and we set it to zero. We note that this model is similar to that of a flopping-
mode qubit [35]. The local spin basis used in this model is valid for a specific magnetic
field direction. When the field direction changes, the local spin basis changes and the
parameters in Eq. (2.16) also change.

2.4.1. SINGLE-SPIN SHUTTLING
In this thesis we use the model Eq. (2.16) to describe spin shuttling between two dots.
Here the discussion is limited to the case of small Zeeman energy (2tc ≫ h fL,R) such
that the spin-doublets of the double-dot orbital ground state are always energetically
lower than the double-dot orbital excited state, as indicated in Fig. 2.3b. We assume the
requirement for coherent spin shuttling is adiabatic in the charge dynamics (we notice
that theoretically this requirement may not be necessary if the charge relaxation is much
faster than the qubit energy splitting). The degree of adiabaticity is quantified by the

Landau Zener transition probability P charge
LZ = exp(−2π2t 2

c /(h dϵ
d t )). This formula implies

that, to maintain the same charge adiabaticity, we should double tc if we want to increas-
ing the ramp speed dϵ

d t by four times.
Once the process satisfies the adiabatic charge transfer, we can simplify the system

and only look at the spin of the orbital ground state by projecting the Eq. (2.16) onto the
orbital ground state and obtain

H2×2 = h fL

4
(1− ϵ√

t 2
c +ϵ2

)σz + h fR

4
(1+ ϵ√

t 2
c +ϵ2

)(σz cosθR +σx sinθR). (2.17)
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The above Hamiltonian describes the spin precession frequency and precession di-
rection that can be tuned between two generally fixed values (between fL and fR, be-
tween ẑ and f⃗R) by ϵ. This gives us a qualitative understanding about spin adiabaticity in
the shuttling process. Putting into the framework of Landau Zener transition, the level
velocity of the spin is on the order of ∝ fL,R

d
d t ( ϵtc

), and the size of avoided-crossing is
∝ fL,R. This implies that to maintain the same degree of adiabaticity, we have to keep
the quantity fL,R/ d

d t ( ϵtc
) to be the same. In another word, the experimental parameters,

including the Larmor frequencies fL,R, the ramp speed dϵ
d t , and the tunnel coupling tc,

should be varied in the following ways:

(1) When doubling the external magnetic field (which doubles the Larmor frequen-
cies fL,R), the ramp speed dϵ

d t needs to be doubled.

(2) When doubling the tunnel coupling tc, the ramp speed dϵ
d t needs to be doubled.

(3) When doubling the external magnetic field while keeping the same ramp speed,
the tunnel coupling needs to be halved.

2.4.2. SPIN SHUTTLING AS A SINGLE QUBIT GATE

It is worth to notice that, in addition to coherent evolution, the spin interacts more to
the environment and decoheres much faster at the charge anti-crossing ϵ= 0, compared
to the point far from charge anti-crossing |ϵ| ≫ tc. The decoherence can be due to the
low-frequency fluctuations of the position of the charge anti-crossing, or due to the spin-
flip accompanied by absorption (relaxation) the energies from (to) the environment [35].
Both effects are more pronounced at the charge anti-crossing because the charge states
become delocalized and the spin couples more to the charge noise. This can be seen in
Eq. (2.17), in the experiments Fig. 6.16 and Fig. 7.11.

Because of the above consideration regarding spin coherence, it can be beneficial to
do single-spin rotation by moving the spin quickly from ϵ≪ −tc to ϵ≫ tc, letting the
spin precesses for a certain period (as short as possible to minimize dephasing), and
finally moving the spin quickly from ϵ≫ tc back to ϵ≪−tc (see experiments in chapter
7). This operation method can be seen as an extreme version of flopping-mode qubits.
The key difference is the reduced exposure to the decoherence near the charge anti-
crossing. With this method, the spin spends most of the time in the region with longer
coherence time. The trade-off is the requirement of larger detuning amplitude, which
increases the power dissipation compared to flopping-mode qubits. As shown in the
latter chapter, this operation method can have short gate time, on the order of the spin
precession period, if the quantization axis angle θR is sufficiently large (e.g. ≥ 22.5◦). The
short gate time reduces the dephasing of the target qubit as well as the spectator qubits
and achieves high average gate fidelity.

This operation can also be seen as extreme version g -matrix modulation, where the
double quantum dot is considered as a single quantum dot which has highly-tunable
orbital energy levels and highly tunable spin quantization axis. In the situation of θR >
45◦, a spin flip requires only four shuttles. The entire process can be viewed as a strong
driving system, where the resonance condition of the driving field ϵ(t ) becomes more
than just a monochromatic driving field at the qubit frequency.
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2.5. TWO SPINS IN A DOUBLE QUANTUM DOT
The two spins in a double quantum dot form a basic unit for spin-qubit operations in
this thesis. It allows initialization and readout of the two-spin states. The charge stability
diagram of a double quantum dot is shown in Fig. 2.4a. In this diagram there are three
regions having two spins in total: (2,0), (1,1), and (0,2). To describe the charge and spin
dynamics over these three regions, we assume the two-spin system is well isolated such
that there is negligible tunnel coupling to other quantum dots or reservoirs and therefore
we only consider six basis states {S(2,0),S(0,2),S(1,1),T 0(1,1),T +(1,1),T −(1,1)}. Here
we neglect higher orbital states such as the triplets T +,−,0(2,0) and T +,−,0(0,2), which are
typically few hundreds of µeV above the singlet ground states in the single-hole regime
of germanium devices presented in this thesis [37]. We also neglect zero-field splittings
that can appear in heavy hole system with cubic spin-orbit coupling [36, 38, 39].

Adding the Zeeman energies and charging energies of the two spins to the tunnel
coupling Hamiltonian Eq. (2.14), the complete Hamiltonian is

H2Q,local =



Uc +ϵ 0
p

2tc −i
p

2tz −ty + i tx −ty − i tx

0 Uc −ϵ
p

2tc −i
p

2tz −ty + i tx −ty − i txp
2tc

p
2tc 0 EZ− 0 0

i
p

2tz i
p

2tz EZ− 0 0 0
−ty − i tx −ty − i tx 0 0 EZ+ 0
−ty + i tx −ty + i tx 0 0 0 −EZ+

 , (2.18)

where Uc is the charging energy, ϵ is the detuning energy (difference of the chemical po-
tentials of the two dots), EZ± = 1

2 (g1 ± g2)µBB are the Zeeman energies. Similar to the
treatment in Eq. (2.17) (2.16), here we use the local spin basis and move the effect of
misalignment between two spins to spin-non-conserving tunnelings tc,x,y,z. The Hamil-
tonian written in the global spin basis, where the quantization axes of the two dots are
described in the lab frame, can be found in [34].

2.5.1. INITIALIZATION AND READOUT

In this system the charging energy and detuning energy are typically the largest energy
scales, which results in the energy levels as function of detuning energy ϵ in Fig. 2.4b,
where the Zeeman splittings between S(1,1) and T +,−,0(1,1) are invisible. The large en-
ergy scale created by the detuning energy is used to initialize the spin state in (0,2) and
then adiabatically converted to one of the eigenstates in (1,1) charge configuration. The
first part is performed by pulsing ϵ to (0,2) (or (2,0)) and waiting for typically tens or
hundreds of µs. This makes the spins relax mostly to the ground state S(0,2) because the
excited state energy can be as high as hundreds ofµeV and much larger than the phonon
or electron temperature if operating at base temperature of 20 mK (1K ≈ 86µeV ).

The second part of the initialization is performed by pulsing ϵ from (0,2) to (1,1) with
certain speed. The corresponding adiabatic state evolutions are marked by the orange
double-arrow in Fig. 2.4c-e. Depending on the adiabaticity when passing through the
spin-orbit gap ∆ST− , the final spin state (at the center of charge configuration of (1,1))
can be |↑↓〉 or T − ≡ |↓↓〉. Fig. 2.4c is the case when spin-non-conserving tunnelings are
zero, which makes∆ST− = 0 and the spin state after initialization is |↑↓〉. Fig. 2.4de are the
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Figure 2.4: Energy levels of a two-spin system. a, Charge stability diagram. The triangular marker is the point
for PSB. The dashed lines mark the PSB triangle. b, Energy levels. S(1,1) and T+,−,0(1,1) are overlapped. c,
The zoom-in of the energy levels near the charge anti-crossing. The red (blue) lines are the energy levels when
tc = 0(0.4) GHz. The spin-non-conserving tunnelings tx,y,z are set to zero. Zeeman energies are EZ+ = 1 GHz
and EZ− = 0.1 GHz. d, The blue solid (dashed) lines are the energy levels when ty = 0(0.2) GHz. Non-zero spin-
non-conserving tunnelings open the spin-orbit gap ∆ST− . e, The energy levels when Zeeman energies are
EZ+ = 0.05 GHz and EZ− = 0.005 GHz. In c-e, the orange double-arrows mark the state evolution of adiabatic
initialization and readout.

cases when non-zero spin-non-conserving tunnelings open the gap ∆ST− , and the spin
states after initialization are T −.

The readout method, termed Pauli spin blockade (PSB), is the reverse of the initial-
ization. The PSB implementation in this thesis is also done adiabatically, where we pulse
ϵ from (1,1) to a point in the PSB triangle in (0,2) (Fig. 2.4a). The pulse moves the states
along the energy levels in Fig. 2.4c-e, bringing T −(1,1) (or |↑↓〉 in the case of zero spin-
non-conserving tunnelings) to S(0,2) while other spin states remain in the charge con-
figurations of (1,1). The charge states, (0,2) and (1,1), are measured by the nearby charge
sensor. From the signal of the charge states, we acquire one bit of information of the
spin states. Typically, one of the spins is used as ancilla qubit, where we do not apply any
manipulation pulses to it and we assume the spin state is not rotated by the manipula-
tion pulses applied to the other spin. Knowing the state of the ancilla qubit, we can infer
the state of the other qubit using one bit of information acquired via PSB. It needs more
involved operation protocols to acquire the complete two-spin state.

The spin-state relaxation time at the readout point of PSB is usually much shorter
than the relaxation time at the center of (1,1) charge configuration, due to the spin-orbit
interaction. At high magnetic field the relaxation time can be only few µs or lower, which
is not sufficient for the charge sensor to distinguish (0,2) and (1,1) charge states. In this
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situation, we use latch-PSB to convert (1,1) charge state to the (0,1) charge state which
has longer relaxation time enabled by the low transition rate between (0,1)-(0,2) [40, 41].

To conclude this subsection, we remark that the double quantum dot system allows
qubit manipulation even the energy splittings of the spin states are much smaller than
the thermal energy of the environment. This can be realized without any feedback or
post-selection protocol. Here, the adiabatic initialization from (0,2) and (1,1) makes the
effective temperature of the two-spin system, at (1,1) charge configuration, much lower
than the environmental temperature. After initialization, we typically set the voltage
deep in (1,1) charge configuration, where the hole wave functions are highly localized
and coupling of the spin states to the environment is weak. In this circumstance, the
absorption and relaxation time are typically above 1 ms, which is slow enough and allows
multiple quantum gates operations.

2.5.2. ADIABATIC TWO-QUBIT GATE
The two spins in the double quantum dot are coupled via the intermediate virtual states
which has charge configuration of (0,2) or (2,0). Based on Eq.(2.18), when Uc ± ϵ ≫
tc ,EZ±, we can use second-order perturbation to compute the interactions between the
four spin states in the (1,1) charge configuration. In the simplified case when tx,y,z = 0,
the result is the Heisenberg Hamiltonian [42]

Hexchange =


−EZ+ 0 0 0

0 −EZ−− J/2 J/2 0
0 J/2 EZ−− J/2 0
0 0 0 EZ+

 , (2.19)

where J = 4Uc t 2
c

U 2
c −ϵ2 is the exchange coupling and the basis states are rearranged to the com-

putational basis { |↓↓〉, |↓↑〉, |↑↓〉, |↑↑〉 }. Considering J (t ) is turned on and off adiabatically,
the state evolution from t = 0 to t = tg follows the unitary

Uadiabatic =


1 0 0 0
0 e−iφ↓↓→↓↑ 0 0
0 0 e−iφ↓↓→↑↓ 0
0 0 0 e−iφ↓↓→↑↑

 , (2.20)

where φ↓↓→i = 2π
∫ tg

0 f↓↓→i (t )d t is the phase accumulation of the instantaneous eigen-
state i and f↓↓→i (t ) is the transition frequency from |↓↓〉 to instantaneous eigenstate i
that depends on the exchange J (t ).

We can decompose the unitary into the single-qubit phase gates and the rest:

Uadiabatic =
(

1 0
0 e−iφ↓↓→↓↑

)
⊗

(
1 0
0 e−iφ↓↓→↑↓

)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−i (φ↓↓→↑↑−φ↓↓→↓↑−φ↓↓→↑↓)

 .

(2.21)
In the situation φ↓↓→↑↑ −φ↓↓→↓↑ −φ↓↓→↑↓ ̸= 0, the two-spin system acquires a non-

trivial two-qubit phase. This two-qubit phase can be expressed as the integral of f↓↑→↑↑−
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f↓↓→↑↓, which is interpreted as the frequency shift of the first qubit that depends on the
state of the second qubit. This frequency shift can be measured straightforwardly by
preparing the second qubit in |↑〉 and |↓〉, and measuring the corresponding frequencies
of the first qubit.

In the simplified example of Eq. (2.19) when tx,y,z = 0 and J (t ) is adiabatic and ap-
proximated as a square pulse to simplify the calculation (takes value of Jon ≪ EZ− in the
time interval 0 < t < tg ), the frequency shift is f↓↑→↑↑ − f↓↓→↑↓ = Jon and the two-qubit
phase is 2πJontg . To realize a two-qubit Controlled-Phase gate of π, the gate time needs
to be tg = 1

2Jon
.

In a more complicated case when tx,y,z ̸= 0, all the matrix elements between the com-
putational states are non-zero, unlike the simplified case in Eq. (2.19) [36, 43]. Despite
the non-zero matrix elements, as long as the state evolution is adiabatic when turning
on and turning off the exchange, the unitary of the state evolution will still be in the
form as Eq. (2.20). The formula relating the two-qubit phase and the exchange pulse

φ↓↓→↑↑−φ↓↓→↓↑−φ↓↓→↑↓ = 2π
∫ tg

0 f↓↑→↑↑(t )− f↓↓→↑↓(t )dt will still hold. The relation of re-
quired gate time tg and the amount of exchange f↓↑→↑↑(t )− f↓↓→↑↓(t ) can be determined
accordingly.

2.6. ROTATING FRAME AND LAB FRAME
In this section we show the conventional way of qubit operation, the rotating frame, as
well as the lab frame operations implemented in chapter 7. Firstly we outline the con-
ventional single-spin EDSR control (the microscopic mechanism is discussed in 2.2.3).
To describe the evolution of qubit state under the driven signal, we start from the basis
of lab frame, defined by the ground state of an undriven spin |↓〉 and the excited state |↑〉.
In this basis, the Hamiltonian of the driven system can be written as [44]

H = 1

2
ħωqσz +ħΩ(t )σx cos

(
ωdt +φ(t )

)
, (2.22)

where ωq is the qubit angular frequency, ωd is the angular frequency of the drive (typi-
cally at the microwave frequency), ħΩ(t ) (φ(t )) is the envelop (phase) of the drive which
is time-dependent and is usually slower thanωd. As shown in the next section, for a con-
stant drive pulse such that Ω(t ) = Ω and φ(t ) = 0 for 0 < t < tg , the spin state evolves
around x-axis with the Rabi frequency fRabi =Ω/2π.

SINGLE-QUBIT GATE IN THE ROTATING FRAME
Driven by the sinusoidal signals, the state of a qubit can be conveniently described in the
rotating frame. Going into the frame that rotates around z-axis with angular frequency
ωr, the basis states become time-dependent: |↑̃(t )〉 = e−iωrt/2 |↑〉 and |↓̃(t )〉 = e iωrt/2 |↓〉.
The evolution of qubit states in the lab frame and rotating frame are depicted in Fig. 2.5.
When choosing the rotating frame frequency to be the same as drive frequency (ωr =
ωd), under the rotating wave approximation the fast time-dependent term in Eq. (2.22),
σx cos(ωdt +φ(t )), is down-converted. The resulting Hamiltonian in this rotating frame
is

H = 1

2
ħ(ωq −ωd)σz + 1

2
ħΩ(t )

(
σx cosφ(t )+σy sinφ(t )

)
. (2.23)
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The first term vanishes if the drive frequency matches resonant condition ωq = ωd.
In this situation, the Hamiltonian has a simple form

H = 1

2
ħΩ(t )

(
σx cosφ(t )+σy sinφ(t )

)
. (2.24)

This allows single-qubit gates that rotate the spin along x- or y-axis by applying a non-
zero drive envelop Ω(t ) and the phase φ(t ) = 0 or π/2 (Fig. 2.6). If we do not apply
any drive signal, Ω(t ) = 0, the spin undergoes free evolution which does not evolve in
the rotating frame, while it evolves as a free precession in the lab frame. To perform a
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Figure 2.6: Illustration of the driven qubit in lab frame and rotating frame. The qubit frequency is fq ≡
ωq/2π = 1 GHz. The drive signal with frequency matching qubit resonance ( fd ≡ ωd/2π = 1 GHz) is turned
on at t = 0. The driving envelop is Ω(t )/2π = 0.05 GHz with a phase φ = −π/2 (Eq. (2.23)). The state evolves
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fr = 1GHz. In (b) the state rotates around -y-axis. The small wiggles are the result of the counter rotating term
that is neglected in rotating wave approximation (Eq. (2.23)).
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rotation along z-axis, we update the phases in the subsequent drive signals of x- and
y-rotations [45]. This ‘virtual Z-gate’ has advantages compared to the ‘real Z-gate’ de-
scribed in the coming paragraphs.

TWO-QUBIT OPERATIONS IN THE LAB FRAME

There are scenarios when the qubit dynamics can be better understood in the lab frame.
One scenario concerns the single-qubit state evolution in a series of shuttling events
and precession around unparallel quantization axes of the quantum dots that the spin
is shuttled to. The second scenario is when the drive is not a sinusoidal signal but with
other shapes without periodic structure, such as a simple square pulse (i.e. baseband
signal).

The shuttling-based single-qubit gates implemented in chapter 7 contain both in-
gredients. There we make use of unparallel quantization axes to create a Xπ/2 gate in the
lab frame. Because the drive field is not sinusoidal, we cannot simply update the phases
of the subsequent drive signals as the implementation of ‘virtual-Z gate’ [45]. Instead, we
implement the ‘real-Z gate’ by idling the qubit for a period τ, which allows the spin to pre-
cess around z-axis for an angleφ= 2π fqτ. With Xπ/2 and Zφ, we can implement arbitrary
single-qubit rotations, such as Yπ/2 = Zπ/2Xπ/2Z3π/2 and Yφ = X3π/2ZφXπ/2. Therefore, we
have an universal single-qubit gate set {Xπ/2, Zφ}.

The lab frame operation can be extended to two-qubit circuits by taking care of the
‘real Z-gate’ we make when idling the individual qubit, such that the ‘real Z-gate’ are
identity operations and do not change the quantum circuits we want to execute. This
problem is not present if the single-qubit gate does not interfere with each other. In this
ideal case, we can execute the circuit directly, applying multiple Xπ/2,A on qubit A and
multiple Xπ/2,B on qubit B as we want. With the concern of the interference, however, we
apply single-qubit gates Xπ/2,A and Xπ/2,B sequentially without overlapping the drive sig-
nals, as implemented in chapter 7. To avoid the overlap, we have to idle one of the qubits,
which creates a ‘real Z-gate’. What we have to do is to make the ‘real Z-gate’ become an
identity operation. As an example, if we want to execute the circuit Xπ/2,AXπ/2,BXπ/2,A,
we make the time separation ∆t between two Xπ/2,A to accommodate the drive signal
of Xπ/2,B. The timing of the second Xπ/2,A is then scheduled such that qubit A precesses
integer number of rounds for the time duration ∆t and make an identity operation. In
the experiments we typically observed a phase crosstalk, where Xπ/2,A results in a phase
accumulation on qubit B that is different than the phase acquired during free precession
for the same amount of time. This effect appears to be linear and can be compensated
by adjusting the time separation ∆t .

We remark that, instead of idling the spectator qubit, an alternative scheme is to drive
the spectator qubit to make an identity gate with the gate time identical to the gate time
of the driven qubit [46]. This can eliminate the required additional idle time to make
identity gate on the spectator qubit.

In the large-scale qubit system, the sequential operations mentioned above appear
to be not scalable. It is desired to execute quantum gates in a parallel fashion. One
possibility is to have a working empirical model to estimate the amount of interference
and apply a compensation signal. The other possibility is to operate in a sparse qubit
array where qubits are placed further apart. This is expected to reduce the amount of
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interference and allow simultaneous single-qubit operations.

2.7. MEASUREMENT SETUP
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Figure 2.7: Schematics of the measurement setup (adapted from [47]).

The main experimental results presented in each chapter are acquired using the de-
vice and measurement setup shown in Fig. 2.7. For experiments in chapter 3 and 7 that
only involve baseband qubit control, the microwave sources (PSG E8267D, SGS100A) are
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not used but remain connected. The setup is identical to the previous work [47] with mi-
nor modifications (e.g. attenuation and connection of coax lines at room temperature).

The 2×2 quantum dot device is wire-bonded on a printed circuit board (PCB). The
PCB is mounted on the cold finger and surrounded by a radiation shield; both are ther-
mally anchored on the mixing chamber plate of the dilution refrigerator. On the PCB are
bias tees combining high-frequency (>kHz) and dc signals, as well as the NbTiN induc-
tors for RF reflectometry measurement of the charge sensors (described below).

The dc voltages of the gates and ohmics on the device are provided by digital-to-
analog converters (DACs) of a SPI rack at room temperature which is powered by batter-
ies and gyrators, through the dc lines (orange) which are filtered by RC-filters and copper
powder filters mounted at mixing chamber plate.

For baseband control of the qubits, we use Keysight M3202A arbitrary waveform gen-
erators (AWG) to generate voltage pulses with 1 ns time resolution and in the frequency
range of dc-400 MHz. The baseband signals travel through ferrite common mode chokes
as well as attenuators at room temperature and cryogenic temperature, and combine
with dc voltages via the bias tees on the PCB.

For the EDSR experiments at high magnetic field and high qubit frequencies (chapter
5 and 6), we superimpose oscillating signals (at microwave frequency of 1-3 GHz) onto
the baseband voltage pulses that are delivered to the gates {P1, P4, P2}. In our imple-
mentation, microwave signals (purple lines) from the vector sources are combined with
three of the high-frequency lines from AWGs via the room temperature diplexers with
pass bands dc-400 MHz and 1.5-10 GHz.

The vector sources output microwave pulses with controllable amplitude, frequency,
phase and duration via IQ modulation. The I- and Q-components of the microwave are
modulated by the signals at the input ports I and Q, which are generated by AWGs (dark
blue). Additionally, we use pulse modulation to improve the microwave suppression to a
total of -120 dB. When the absolute phase of EDSR pulse is relevant (the synchronization
experiment in chapter 6), we synchronize the microwave and the AWGs by connecting
the 10 MHz reference clock signal of the vector source of P2 to Keysight PXIe chassis, and
setting the vector source frequency to integer multiple of 10 MHz.

We use RF reflectometry to detect the resistance change of the charge sensors that are
embedded in the LC circuits (NbTiN inductors). The relevant modules in the SPI rack
(reflectometry) are built in-house. Two RF signals around the resonant frequencies of
the LC circuits (≈140 MHz) are emitted by the RF sources (RF src), which can be turned
on and off by the splitted AWG signals at the trig ports. They are combined (splitter
ZFRSC-42-S+), attenuated and superimposed onto the dc voltage with the bias tees on
the PCB. The RF signal is reflected by the LC circuits, guided by the directional coupler
to the cryogenic amplifier CITLF3 at 4 K stage. The signal is further amplified at room
temperature (RF amp), downconverted (IQ mixer) by the frequencies of the RF sources,
measured and averaged by the Keysight M3102A digitizer. Both I- and Q-components of
the two signals are measured. We typically fine-tune the RF frequencies to have most of
the signals in one of the components (shown as OUT-I in Fig. 2.7).
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3
PROBING RESONATING VALENCE

BONDS ON A PROGRAMMABLE

GERMANIUM QUANTUM SIMULATOR

Simulations using highly tunable quantum systems may enable investigations of con-
densed matter systems beyond the capabilities of classical computers. Quantum dots and
donors in semiconductor technology define a natural approach to implement quantum
simulation. Several material platforms have been used to study interacting charge states,
while gallium arsenide has also been used to investigate spin evolution. However, deco-
herence remains a key challenge in simulating coherent quantum dynamics. Here, we in-
troduce quantum simulation using hole spins in germanium quantum dots. We demon-
strate extensive and coherent control enabling the tuning of multi-spin states in isolated,
paired, and fully coupled quantum dots. We then focus on the simulation of resonating
valence bonds and measure the evolution between singlet product states which remains
coherent over many periods. Finally, we realize four-spin states with s-wave and d-wave
symmetry. These results provide means to perform non-trivial and coherent simulations
of correlated electron systems.

Parts of this chapter have been published in C.-A. Wang, C. Déprez, H. Tidjani, W.I.L. Lawrie, N.W. Hendrickx, A.
Sammak, G. Scappucci, and M. Veldhorst, Probing resonating valence bonds on a programmable germanium
quantum simulator, npj Quantum Information 9, 58 (2023).
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3. PROBING RESONATING VALENCE BONDS ON A PROGRAMMABLE GERMANIUM QUANTUM

SIMULATOR

3.1. INTRODUCTION
Quantum computers have the potential of simulating physics beyond the capacity of
classical computers [1–4]. Gate-defined quantum dots are extensively studied for quan-
tum computation [5, 6], but are also a natural platform for implementing quantum sim-
ulations [7–11]. The control over the electrical charge degree of freedom has facilitated
the exploration of novel configurations such as effective attractive electron-electron in-
teractions [12], collective Coulomb blockade [13], and topological states [14]. Coher-
ent systems may be simulated when using the spin states of electrons in quantum dots,
though experiments thus far have relied on gallium arsenide heterostructures [15–17],
where the hyperfine interaction limits the spin coherence and therefore the complexity
of simulations that can be performed. This bottleneck can be tackled by using group
IV materials with nuclear spin-free isotopes. A natural candidate would be silicon, but
this material comes with additional challenges due to the presence of valley states and a
large effective electron mass [18].

Hole quantum dots in planar Ge/SiGe heterostructures exhibit many favorable prop-
erties found in different quantum dot platforms [19]. Natural germanium has a high
abundance of nuclear spin-free isotopes and can be isotopically purified [20]. Holes
in germanium benefit from a low effective mass [21, 22], absence of valley degenera-
cies, ohmic contacts to metals [23], and strong spin-orbit coupling for all-electrical con-
trol [24, 25]. Recent advances in heterostructure growth have resulted in stable, low-
noise germanium devices [26]. This has sparked rapid progress, with demonstrations of
hole quantum dots [23], single hole qubits [25], singlet-triplet (ST) qubits [27], two-qubit
logic [28], and a four qubit quantum processor [29].

Here, we explore the prospects of hole quantum dots in Ge/SiGe for quantum simu-
lation. We focus on the simulation of resonating valence bond (RVB) states, which are of
fundamental relevance in chemistry [30] and solid state physics [31–34] and have been
used in other platforms as a feasibility test for quantum simulation [35–38]. In our simu-
lation, we probe RVB states in a square 2×2 configuration. First, we realize ST qubits for
all nearest-neighbour configurations. We then study the coherent evolution of four-spin
states and demonstrate exchange control spanning an order of magnitude. Furthermore,
we tune the system to probe valence bond resonances whose observed characteristics
comply with predictions derived from the Heisenberg model. We finally demonstrate
the preparation of s-wave and d-wave RVB states from spin-singlet states via adiabatic
initialization and tailored pulse sequences.

The experiments are based on a quantum dot array defined in a high-quality Ge/SiGe
quantum well, as shown in Fig. 3.1a [29, 39]. The array comprises four quantum dots and
we obtain good control over the system, enabling to confine zero, one, or two holes in
each quantum dot as required for the quantum simulation. The dynamics of resonating
valence bonds is governed by Heisenberg interactions. The spin states in germanium
quantum dots, however, also experience Zeeman, spin-orbit and hyperfine interactions
(see Section 3.7). We therefore operate in small magnetic fields and acquire a detailed
understanding of the system dynamics to apply tailored pulses. In the regime where
Heisenberg interactions are dominating, the total spin is conserved. We can therefore
study the subspaces of different total spin separately. The relevant subspace for the RVB
physics is the zero total spin space spanned by the basis formed by the four-spin states
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states formed by the spins in the quantum dots i and j . In this basis, the Heisenberg
Hamiltonian HJ reads:

HJ (Stot = 0) ≡ HS =
(

−Jx − Jy

4

p
3

4 Jyp
3

4 Jy − 3
4 Jy

)
, (3.1)

where Jx = J12 + J34 and Jy = J14 + J23. Figures 3.1.b-c show the eigen energies and
eigenstates of HS for different regimes of exchange interaction. When the exchange in-
teraction is turned on in only one direction, Jx ≫ Jy or Jx ≪ Jy , the system is equiv-
alent to two uncoupled double quantum dots. The ground state is then a product of
singlet states |Sx〉 or |Sy 〉 = |S14S23〉. However, when all exchanges are on and in particu-
lar when they are equal, Jx = Jy , the eigenstates are coherent superpositions of |Sx〉 and
|Sy 〉, which simulate the RVB state. In this regime, the ground state is the s-wave super-
position state |s〉 = 1p

3
(|Sx〉−|Sy 〉) and the excited state is the d-wave superposition state

|d〉 = |Sx〉+ |Sy 〉.
Fig. 3.1.b shows that RVB states can be generated from uncoupled spin singlets by

adiabatically equalizing the exchange couplings. Alternatively, if the exchange couplings
are pulsed diabatically to equal values, valence bond resonances between |Sx〉 or |Sy 〉
states occur.
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Figure 3.1: RVB states in a 2×2 quantum dot array. a, False-coloured scanning electron micrograph of the Ge
quantum dot array. Plunger and barrier gates are coloured in blue and green respectively, and the correspond-
ing gate voltages applied on them are labelled. To achieve independent control of the quantum dot potentials
and tunnel couplings, virtual plunger and barrier gate voltages are defined (see Supplementary Note 1 [40]).
Single hole transistors used as charge sensors are coloured in yellow. The scale bar corresponds to 100 nm.
b, Energy diagram corresponding to the Hamiltonian HS . The stars denote the corresponding eigenstates de-
picted in c. When the exchange interaction is dominated by horizontal (vertical) pairs, the ground state is |Sx 〉
(|Sy 〉), and in our experiments we use this configuration for initialization. Resonating valence bond states ap-
pear when Jy = Jx , the eigenstates are the ground state with s-wave symmetry and excited state with d-wave
symmetry.
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3.2. RESULTS

3.2.1. SINGLET-TRIPLET OSCILLATIONS IN THE FOUR DOUBLE QUANTUM

DOTS

Probing the RVB physics relies on measuring the singlet probabilities in the (1,1) charge
state [17, 36]. We thus investigate singlet-triplet (ST) oscillations within all nearest-
neighbour pairs.

To generate ST oscillations, we operate in a virtual gate landscape and apply pulses
on the virtual plunger gates vPi of each quantum dot pair according to the pulse se-
quence depicted in Fig. 3.2.a [27, 41–44]. The double quantum dot system is initial-
ized in a singlet (0,2) state. Then, the detuning between the quantum dots is varied by
changing the virtual plunger gate voltages. The system is diabatically brought to a ma-
nipulation point in the (1,1) sector creating a coherent superposition of |S〉, |T −〉 and
|T 0〉 [27, 41–44]. After a dwell time tD, the system is diabatically pulsed back to the (0,2)
sector where the ST probabilities are determined via single-shot readout using (latched)
Pauli-spin-blockade [45–47].
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Figure 3.2: Singlet-triplet qubits on all nearest-neighbour configurations. a, Schematics of the pulse se-
quence used to generate singlet-triplet oscillations in double quantum dots. b, Charge stability diagram of a
double quantum dot (Q3Q4) in the few-hole regime. c, S-T− oscillations as a function of time and detuning
δvP34 = 0.5(vP3 −vP4) varied along the dashed line in b. At larger magnetic fields, here B = 3 mT, and limited
tunnel couplings, we observe a minimum oscillation frequency due to the S-T− anticrossing. We tune the sys-
tem in a regime with smaller magnetic fields (B = 1 mT) and larger tunnel couplings, to operate away from this
point. d, S-T− oscillations observed in this regime for all possible permutations of nearest-neighbour quan-
tum dot pairs. Black lines are fits of the data (see Section 3.4).
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Results of such experiments performed at B = 3 mT with Q3Q4 pair are presented
in Fig. 3.2.c. Clear oscillations between the |S〉 and |T −〉 state are observed over a large
range of gate voltage. Importantly, using this method we find the S-T − anticrossing,
which is the position where the frequency has a minimum. The observation of such
oscillations, predominating over oscillations between |S〉 and |T 0〉 states, agrees with re-
cent investigations suggesting that S-T − oscillations dominate in germanium ST qubits
placed in an in-plane B field [44].

Fig. 3.2.c also suggests that a (1,1)-singlet can be initialized from a (0,2)-singlet, by
changing the energy detuning between the quantum dots while avoiding to pass the S-
T − anticrossing. We achieve this by shifting the anticrossing towards the center of the
(1,1) charge sector by decreasing the magnetic field to B = 1 mT and increasing the tun-
nel couplings (Fig. 3.6). Fig. 3.2.d demonstrates clear S-T − oscillations observed in this
regime for all nearest-neighbour configurations (see also Fig. 3.7). Importantly, these os-
cillations also enable to determine the singlet/triplet states on two parallel quantum dot
pairs by using sequential readout [48].

3.2.2. TUNING OF INDIVIDUAL EXCHANGES USING COHERENT OSCILLATIONS

The overlap of the HS eigenstates with |Sx〉 and |Sy 〉 depends on Jx and Jy (see Sec-
tion 3.5). A quantitative comparison between experiments and theoretical expectations
thus requires fine control over the exchange couplings.

In this purpose, we focus on the evolution of coherent four-spin ST oscillations. These
oscillations are induced using the experimental sequence depicted in Fig. 3.3.a (see also
Supplementary Figure 3 [40]). We turn off two parallel exchange couplings and initialize
a |Sx〉 or a |Sy 〉 state in parallel double quantum dots. We then rotate one of the singlet
pairs to a triplet |T −〉 state through coherent time evolution after pulsing to the S-T − an-
ticrossing, creating a four-spin singlet-triplet product state (e.g. |T −

34S12〉 or |T −
23S14〉). All

barrier gate voltages are then diabatically pulsed to turn on all the exchange couplings
leading to coherent evolution of the four-spin system. After a dwell time tD, two pairs are
isolated (not necessarily the initial ones) and their spin-states are readout sequentially,
which allows to deduce spin-correlations of opposite pairs, as was realized in linear ar-
rays in GaAs [17].

The observation of resonating valence bond requires equal couplings between all
four quantum dots. In navigating to this point, we carefully develop a virtual landscape,
keep control over all the individual exchange interactions. First, we separately equal-
ize the horizontal (J12 = J34) and vertical (J14 = J23) exchange couplings. Then, we tune
the vertical and horizontal exchanges to the same coupling strength. The Chevron pat-
terns displayed in Fig. 3.3.c-d are consistent with a Heisenberg Hamiltonian (see see
Fig. 3.8 to Fig. 3.10) and the minima in the oscillation frequency mark the location of
equal exchange couplings for horizontal (J12 ≃ J34 ≃ Jx /2 for Fig. 3.3.c) or vertical pairs
(J14 ≃ J23 ≃ Jy /2 for Fig. 3.3.d). Through an iterative process, we can find ranges of virtual
gate voltages where J12 ≃ J34 and J23 ≃ J14.

We can now control the spin pairs simultaneously, while maintaining the exchange
couplings in both the horizontal and vertical directions equal (see Section 3.6), with a
priori Jx ̸= Jy . Through the readout of both pairs, we can obtain the frequency of four-
spin ST oscillations observed in this regime (Fig. 3.3.e), which is given by fST = Jy /2h or
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Figure 3.3: Four-spin coherent singlet-triplet oscillations and exchange characterization. a, Schematics of
the pulse sequence used to measure four-spin ST oscillations from an initial |T−

34S12〉 state. b, The 2D his-
tograms of the sensor signals formed by sequential 500 single-shot readouts of Q3Q4 and Q1Q2 ST states. The
left panel shows the initial state |T−

34S12〉 at tD = 0 ns. The right panel shows the state at tD = 19 ns correspond-
ing to half an oscillation period. (Data corresponds to c for δVx = 0.) c, Oscillations in ST probability PS34T12
as a function of gate voltage variation δVx . The amplitude of exchange pulses applied on the virtual barrier
gates during the free evolution step are varied between measurements around a predetermined set of barrier
gate voltages where Jx < Jy . The amplitude of voltage pulses on vB12,34 are varied anti-symmetrically while
the amplitudes of the pulses on vB23,14 are kept constant, as shown in the top illustration. The initial state
is |T−

34S12〉. d, Similar experiment where oscillations in PS34T12 are studied as a function of the gate voltage
variation δVy . δVy is the shift in the amplitudes of the exchange pulses applied anti-symmetrically on vB23,14
(see top illustration). The initial state is |T−

34S12〉. e, Oscillations in PS23T14 (left) and PS34T12 (right) as func-
tions of tD and δV ′

x . The amplitude of exchange pulses are varied symmetrically around the operation point
(δV ′

x = 0 mV where Jx ≃ Jy ) according to the top illustration ensuring that J12 ≃ J34 and J14 ≃ J23 along the full
voltage range. The initial states are respectively a |T−

23S14〉 (left) and a |T−
34S12〉 state (right). f, Exchange cou-

plings Jx,y extracted by fitting the oscillations in e with A cos(2π fST tD +φ)exp(−(tD/Tϕ)2)+ A0 as a function
of gate voltage variation δV ′

x . The oscillation frequencies of PS23T14 (PS34T12 ) corresponds to Jx /2h (Jy /2h).
The shaded areas correspond to the estimated uncertainty on the exchange couplings derived based on as-
sumptions discussed in Section 3.6.

Jx /2h depending on the initial state, and with that determine the exchange interaction.
As highlighted in Fig. 3.3.f., the virtual control enables to tune Jx from 15 MHz to 109
MHz with Jy remaining between 46 and 56 MHz. Clearly, the exchange interaction can
be controlled and measured over a significant range and tuned to a regime where all
couplings are equal (we obtain a precision of≈ 3 MHz, as discussed in Section 3.6, mostly
determined by drifts between experiments).
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Figure 3.4: Valence bond resonances. a, Probabilities of having horizontal singlet pairs PS12S34 and vertical
singlet pairs PS23S14 as a function of dwell time tD. All the exchange couplings are tuned toward an identical

value of Ji j /h ≃ 25 MHz. Lines are fits to the data with PSS = 1/2 V cos(2π fSS tD+φ)exp(−(tD/Tϕ)2)+A0 giving
respectively Tϕ = 167 ns and 143 ns for data corresponding to PS12S34 and PS23S14 . The state is initialized as
|Sx 〉. b, Illustration showing valence bond resonances characterized by oscillations between the singlet prod-
uct states |Sx 〉 and |Sy 〉. c, PS12S34 and, d, PS23S14 as a function of tD and virtual barrier gate voltage variation
δV ′

x . The state is initialized as |Sx 〉. e, The oscillation frequency as a function of δV ′
x . The blue (red) points are

extracted from c (d). The black points are the theoretical predictions fSS =
√

J 2
x + J 2

y − Jx Jy /h computed using

the exchanges Jx and Jy measured in Fig. 3.3.e. f, Visibility Vx,y as a function of gate voltage variation δV ′
x . The

triangles in blue (red) are extracted from c (d). The expected values are derived from equations (3.4) and (3.6)
of Section 3.5 using the measured exchanges. The shaded areas correspond to one standard deviation from
the best fit for the experimental data, and for the theoretical data they correspond to the uncertainties on the
amplitude and the frequency computed using the uncertainties on the exchange couplings values. g, Ratio of
the visibilities Vy /(Vx +Vy ) as a function of the gate voltage variation δV ′

x .

3.2.3. VALENCE BOND RESONANCES

Valence band resonances can occur when all Ji j are equal. To experimentally assess
this, we prepare |Sx〉 or |Sy 〉, which are superposition states of HS . We then pulse the ex-
changes such that Jx ≈ Jy . Fig. 3.4.a shows the result of the time evolution in this regime
of equal exchange couplings. Since we start from a superposition state of HS , the time
evolution leads to coherent oscillations between |Sx〉 or |Sy 〉, which results in periodic
swaps between the singlet states as depicted in Fig. 3.4.b. In addition, we readout both
in the horizontal and vertical configuration, and observe an anti-correlated signal, con-
sistent with signatures of valence bond resonances [32, 36]. The observation of more
than ten oscillations shows the relatively high level of coherence achieved during these
experiments further confirmed by the characteristic dephasing time Tϕ ≈ 150 ns.

Fig. 3.4.c-d show a more detailed measurement, which we can fit using
Vx,y

2 cos(2π fSS tD+
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φ)exp(−(tD/Tϕ)2)+ A0 to extract the evolution of the frequencies fSS and of the visibili-
ties Vx,y , plotted on Fig. 3.4.e and Fig. 3.4.f. We find a quantitative agreement between the

measured frequencies and the theoretical expectation fSS =
√

J 2
x + J 2

y − Jx Jy /h despite

deviations for the lowest values of δV ′
x that could result from the uncertainties in the

exchange couplings. We also find a qualitative agreement for the visibilities though the
measured Vx,y remain lower, in particular when the exchange is larger. Fermi-Hubbard
simulations and further analysis (see Supplementary Notes 7 and 8 [40]) reveal that part
of the visibility loss can be attributed to leakage and to the insufficient diabaticity of the
voltages pulses. We speculate that the rest of the visibility loss is mainly due to the deco-
herence induced by the voltage pulses at the manipulation stage, or by pulse distortion
arising from the non-ideal electrical response of the wiring. The underlying mechanism
affects similarly the results of the measurements in the both readout directions over most
of the voltage range spanned (see Supplementary Note 8 [40]). Consequently, a more
quantitative agreement is reached when comparing the ratio Vy /(Vx + Vy ) (Fig. 3.4.g) of
the visibilities measured over the visibilities predicted, similarly as is done in ref. [36].
Overall, the good agreement observed confirms that the dynamics is governed by HS .

3.2.4. PREPARATION OF RESONATING VALENCE BOND EIGENSTATES
Having observed valence bond resonances, we now focus on the preparation of eigen-
states of HS which are the |s〉 and |d〉 RVB states. |s〉 is the ground state of HS when
Jx = Jy , whereas |Sx〉 and |Sy 〉 are the ground states when Jx ≫ Jy and Jx ≪ Jy . Experi-
mentally we therefore prepare |s〉 from |Sx〉 or |Sy 〉 by adiabatically tuning the exchange
interactions to equal values. Fig. 3.5.a shows experiments where we control the ramp
time tramp to tune to this regime and we observe a progressive vanishing of phase os-
cillations. For large tramp ≳ 140 ns, the oscillations nearly disappear and the measured
probability saturates to PS12S34 ≃ 0.78. Performing similar experiments starting from a
|Sy 〉 state or measuring PS23S14 leads to identical features with singlet-singlet probabili-
ties saturating between 0.66 and 0.72 (see Supplementary Figure 22 [40]). These values
are close to the probabilities | 〈Sx,y |s〉 |2 = 3/4 expected when the s-wave state is pre-
pared.

We can now also prepare the ground state HS for arbitrary exchange values, by care-
fully tuning the ramp time (tramp = 160 ns in our experiments). Fig. 3.5.b shows the
evolution of PS12S34 for different δV ′

x . Since we prepare the ground state, coherent phase
evolution results in a PS12S34 that is virtually constant for any δV ′

x and only faint oscil-
lations are observed. PS12S34 , however, is strongly dependent on δV ′

x , as increasing Jx

changes the ground state to |Sx〉.
The measured PS12S34 values can be compared with predictions using Jx,y values ex-

tracted from four-spin singlet-triplet oscillations (see Section 3.5). Fig. 3.5.c shows that a
good agreement exists between the theory and the experiments. The raw experimental
probabilities PS12S34 remains smaller than the theoretical predictions due to systematic
errors during the experiments, which are most likely state initialization and readout er-
rors (see Supplementary Note 8 [40]). Measuring PS23S14 leads to a similar agreement,
although the imperfections have a larger impact in this experiment. Rescaling the data
by constant factors, that compensate for systematic errors, allows to reach a quantitative
agreement, as shown in Fig. 3.5.c. From this we conclude that the ground state of HS is
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Figure 3.5: Initialization of RVB eigenstates. a, Evolution of RVB oscillations as a function of the time to set all
exchanges equal (Ji j ≃ 25 MHz) (see Fig. 3.3.a). For tramp ≳ 140 ns, the ground state with s-wave symmetry is

adiabatically prepared. b, Evolution of the singlet-singlet probability PS12S34 with δV ′
x after adiabatic initial-

ization of the ground state. c, Evolution of the mean singlet-singlet probability measured after adiabatic initial-
ization of the ground state with δV ′

x for both readout directions. The experiments are compared to theoretical
expectations using exchange coupling values extracted from four-spin singlet-triplet oscillations (Section 3.5
and 3.6). The shaded areas correspond to one standard deviation from the best fit for the experimental data,
and for the theoretical data they correspond to the uncertainties on the amplitude and the frequency com-
puted using the uncertainties on the exchange couplings values. Rescaled data (dark red and blue triangles)
are obtained by multiplying each raw dataset (red and blue triangles) by a constant factor corresponding to
the mean ratio of the predicted probabilities over the measured probabilities. d, Experimental sequence used
to investigate the formation of the d-wave state. Before the free evolution step, one exchange pulse on vB23 is
applied for a time tJ . e, f, Evolution of singlet-singlet oscillations measured for different exchange pulse dura-
tions tJ . The vanishing of oscillations at tJ ≃ 25 ns marks the formation of a d-wave state. g, h, Linecuts of e
and f for tJ = 25 ns.

adiabatically initialized in these experiments.

We prepare the d-wave state by including an additional operation where we exchange
two neighbouring spins [36]. This results in a transformation of neighbouring spin-spin
correlations to diagonal correlations. We experimentally implement this step by adding,
before the free evolution step, an exchange pulse of duration t J during which only one
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exchange coupling is turned on (see Fig. 3.5.d).
Fig. 3.5.e-f shows PS12S34 and PS23S14 measured as functions of tD and t J in experi-

ments where the system is initialized in |Sx〉 and the exchange J23 is pulsed. As a func-
tion of the exchange pulse duration, we observe a periodic vanishing of RVB oscillations
(linecuts provided in Fig. 3.5.g-h, imperfections in exchange control cause residual oscil-
lations). Due to the exchange pulse, a periodic swapping of neighbouring spins occurs,
and thus a periodic evolution between neighbouring spin-spin correlations and diago-
nal correlations. Thus the regime where the d-wave eigenstate is prepared is marked by
the vanishing of RVB states. The mean of the probabilities, PS23S14 ≃ 0.21 and PS12S34 ≃
0.13, measured for t J = 25 ns are in the direction of theoretical expectations | 〈Sx,y |d〉 |2 =
1/4.

3.3. DISCUSSION
In this work we demonstrated a coherent quantum simulation using germanium quan-
tum dots. Clear evolution of resonating valence bond states appeared after tuning to a
regime where all nearest neigbours have equal exchange coupling. We furthermore es-
tablished the preparation of the s-wave and d-wave eigenstates. In addition, we have
shown that we can control the exchange interaction over a significant range in a multi-
spin setting.

The low-disorder and quantum coherence make germanium a compelling candidate
for more advanced quantum simulations. Improving the initialization and readout fi-
delities will enable to observe a stronger correspondence between ideal predictions and
experimental results. Additionally, advanced voltage pulsing may facilitate to reduce er-
rors occurring when controlling the spin states. Furthermore, a significant improvement
in the quantum coherence may be obtained by exploring sweet spots [49] and by using
purified germanium.

Controlling multi-spin states is also highly relevant in the context of quantum com-
putation. The realization of exchange-coupled singlet-triplet qubits enables to imple-
ment fast two-qubit gates [50–53]. Leakage may then be reduced by exploiting the large
out-of-plane g -factor for holes in germanium [27, 44]. Also, operation with four-spin
manifolds provides means for decoherence-free subspaces [54].

Extensions of this work leveraging the full tunability of germanium quantum dots
could provide new insights for extensive studies of strongly-correlated magnetic phases
and associated quantum phase transitions. In particular, the implementation of similar
simulations in triangular lattices offer new possibilities to investigate the emergence of
non-trivial phases arising from frustration [33, 34]. Likewise, the preparation of RVB
states and the investigation of their dynamics in larger devices may help to probe their
properties experimentally and explore how they relate to superconductivity in doped
cuprates [31].
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In a double dot, the (1,1) singlet energy reads as ES ≃ ε
2 −

√
ε2

4 +2t 2
c , with tc the tun-

nel coupling between the quantum dots and ε the detuning between the quantum dots
(taken as zero at the (2,0)-(1,1) charge transition) [27]. The energy of the triplet states

are ET 0 ≃ 0 and ET ± ≃ ±Σg
2 µB B with Σg the g -factor sum. The corresponding energy

diagram is sketched in Fig. 3.6.
In the (1,1) charge sector, the ground state is the singlet |S〉. Above a given value of

detuning εSO, the |T −〉 state becomes the ground state. Consequently there is an anti-
crossing between the |S〉 and |T −〉 due to the spin-orbit interaction. In order to maintain
the singlet ground state in the (1,1) charge sector, one can decrease the magnetic field B
or increase the tunnel coupling tc.
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Figure 3.6: Energy diagrams of a double quantum dot system at low fields. At low tunnel couplings tc, the
singlet S and the triplet T− energy states anti-cross due to the spin-orbit interaction. Increasing tc, the energy
of singlet state is lowered. At sufficiently large tc, the singlet state remains the ground state in the (1,1) charge
state for any value of the detuning ε.

At B = 1 mT, the ground state is the singlet state for Q1Q2 and Q1Q4 pairs in the whole
(1,1) charge sector. It gives more freedom for the singlet-(1,1) initialization with these
two quantum dot pairs. For the Q2Q3 and Q3Q4, there is still a S-T − anticrossing that
appears at finite detuning but sufficiently far from the charge transition line. It reduces
charge noise effects detrimental for four-spin experiments.

To observe high visibility ST oscillations, pulses on the virtual barrier voltages are
applied to reduce tc while going from the initialization to the manipulation point. This
configuration offers more flexibility to initialize |Sx〉 or |Sy 〉 states.

Fig. 3.7 presents the ST oscillations of Fig. 3.2.d over larger ranges of dwell time tD.
By fitting the data, we extract the characteristic dephasing times Tϕ and the frequency
of the oscillations f for each pair (3.1). We note that there are large variations of both Tϕ
and f . The variation of f can be explained by differences in the strengths of the tunnel
couplings tc, the differences in the g -factor and in the amplitudes of the barrier voltage
pulses. They lead to variations of the energy splitting between the |T −〉 and |S〉 states.
The variations of Tϕ can result from different effects like residual exchange interactions
with the other quantum dots or leakage to the |T 0〉 states. The lower coherence of Q2Q3

and Q1Q4 pairs compared to that of Q1Q2 and Q3Q4 could also result from the field ori-
entation. Additionally, the spin life time is reduced when the spin-orbit field is oriented
perpendicular to the external magnetic field [29, 55].



3

44
3. PROBING RESONATING VALENCE BONDS ON A PROGRAMMABLE GERMANIUM QUANTUM

SIMULATOR

Dwell time tD (µs)

0

1

0 1 2 3 4 5 6 7

P S

Q1Q4

0

1

5 10 15 20 250

Q1Q2

P S

0

1

0 1 2 3 4 5

P S

Q2Q3

0

1

0 2 4 6 8 10

P S

Q3Q4

a

b

c

d

Figure 3.7: Singlet-Triplet oscillations observed with each double quantum dot. Same measurements than
ones showed in Fig. 3.2.d. Data (points) are fitted with A cos(2π f tD +φ)exp(−(t/Tϕ)2)+ A0 to extract Tϕ and
f .

Dot Pair Frequency (MHz) Tϕ (µs)

Q1Q2 1.056±0.001 11.2±0.4
Q2Q3 2.636±0.005 2.5±0.1
Q3Q4 2.043±0.004 5.1±0.3
Q1Q4 1.223±0.004 4.2±0.2

Table 3.1: Characteristics of singlet-triplet oscillations of individual dot pairs. The uncertainties correspond
to one standard deviation from the best fits.
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THEORETICAL MODEL
The Heisenberg Hamiltonian HS in the global singlet subspace can be written, up to an
overall energy shift, as:

HS = (−1

2
Jx + 1

4
Jy )σz +

p
3

4
Jyσx = h0 cosθσz +h0 sinθσx , (3.2)

where cosθ = −2Jx+Jy

2
√

J 2
x−Jx Jy+J 2

y

, sinθ =
p

3Jy

2
√

J 2
x−Jx Jy+J 2

y

, h0 = 1
2

√
J 2

x − Jx Jy + J 2
y , and σx,z are

the Pauli matrices. Here we denote the basis states {|0〉 , |1〉} ≡ {|S12S34〉 , 1p
3

(|T +
12T −

34〉 +

|T −
12T +

34〉− |T 0
12T 0

34〉)} ≡ {

(
1
0

)
,

(
0
1

)
} .

The eigen energies are Eg =−h0 and Ee = h0. The eigenstates are:
|g 〉 =

(
−sin θ

2

cos θ
2

)

|e〉 =
(

cos θ
2

sin θ
2

) . (3.3)

In the singlet-singlet oscillation experiments, the state is initialized in a singlet-singlet

state |S12S34〉 =
(
1
0

)
which can be written as −sin θ

2 |g 〉+cos θ
2 |e〉. After the free evolution

this state becomes, up to a phase factor:

|ψ(t )〉 =−sin θ
2 |g 〉+cos θ

2 e−iωeg t |e〉 =
(

sin2 ( θ2 )+cos2 ( θ2 )e−iωeg t

sin( θ2 )cos( θ2 )(−1+e−iωeg t )

)
= e−iωeg t/2

(
cos(

ωeg t
2 )− icosθ sin(

ωeg t
2 )

−isinθ sin(
ωeg t

2 )

)
,

where ωeg ≡ωe −ωg = 1
ħ
√

J 2
x − Jx Jy + J 2

y is the frequency of the singlet oscillations.

The probability of being in the state |0〉 is PS34S12 (t ) = |〈S12S34|ψ(t )〉 |2 =
1
2

(
1+cos2θ+ sin2θcos(ωeg t )

)
. The visibility of the oscillations is then:

Vx = P max
S34S12

−P min
S34S12

= sin2θ =
3J 2

y

4(J 2
x − Jx Jy + J 2

y )
. (3.4)

To describe the readout in the y direction, we use the basis {|0y 〉 , |1y 〉} = {|S14S23〉 , 1p
3

(|T +
14T −

23〉+
|T −

14T +
23〉− |T 0

14T 0
23〉)}. The original basis can be re-written in terms of the new basis as:{

|0〉 =− 1
2 |0y 〉−

p
3

2 |1y 〉
|1〉 =

p
3

2 |0y 〉− 1
2 |1y 〉

. (3.5)

Therefore, PS23S14 (t ) = |〈0y |ψ(t )〉 |2 = 1
4 (1+(sin2θ−p

3sinθcosθ)
(
1−cos(ωeg t )

)
. The

visibility is then:
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Vy = 1

2
(sin2θ−p

3sinθcosθ) = 3Jx Jy

4(J 2
x − Jx Jy + J 2

y )
. (3.6)

We note that sin2θ−p
3sinθcosθ = 6Jy Jx

4(J 2
x−Jx Jy+J 2

y )
> 0 and thus PS34S12 (t ) and PS23S14 (t )

oscillate in phase opposition. There are periodic swaps between |Sx〉 and |Sy 〉 which are
the resonating valence bond oscillations as shown in Fig. 3.4.

SINGLET PROBABILITIES OF S-WAVE AND D-WAVE STATES

To prepare the s-wave and d-wave states, the exchanges are set to be equal. It corre-
sponds to the Hamiltonian of equation (3.2) with θ = 120◦. The s-wave state is the ground

state and reads |s〉 = |g 〉 = (−
p

3
2 , 1

2 ). The singlet-singlet probability in both x and y direc-
tions for this state are PS34S12 = PS23S14 = 3

4 . The d-wave state is the excited state and reads

|d〉 = |e〉 = ( 1
2 ,

p
3

2 ). The singlet-singlet probabilities for this state are PS34S12 = PS23S14 = 1
4 .

When the exchanges are different, the equation (3.3) gives the ground state singlet-

singlet readout probability PS34S12 = sin2 θ
2 = 1−cosθ

2 = 1
2 − −2Jx+Jy

4
√

J 2
x−Jx Jy+J 2

y

and PS23S14 =

( 1
2 sin θ

2 +
p

3
2 cos θ

2 )2 = 1
2 + 1

4 cosθ+
p

3
4 sinθ = 1

2 + −Jx+2Jy

4
√

J 2
x−Jx Jy+J 2

y

. These formula are used

in Fig. 3.5.c.

3.6. FOUR-SPIN COHERENT OSCILLATIONS IN THE GLOBAL TRIPLET

SUBSPACE

THEORETICAL MODEL

Here we derive the theoretical results used to infer the exchange coupling Jx,y from
the four-spin singlet-triplet oscillations. In our experiments, we operated in the mS =
−1 global triplet subspace spanned by a natural basis {|S12T −

34〉 , |T −
12S34〉 , 1p

2
(|T 0

12T −
34〉−

|T −
12T 0

34〉)}. Considering only Heisenberg exchange interactions, the Hamiltonian can be
written as:

HT =


−J12 − J23+J14

4 − J23+J14
4 − J23−J14

2
p

2

− J23+J14
4 −J34 − J23+J14

4 − J23−J14

2
p

2

− J23−J14

2
p

2
− J23−J14

2
p

2
− J23+J14

2

=


− Jx+δx

2 − Jy

4 − Jy

4 − δy

2
p

2

− Jy

4 − Jx−δx
2 − Jy

4 − δy

2
p

2

− δy

2
p

2
− δy

2
p

2
− Jy

2

 .

(3.7)

We focus on the situation whereδx,y ≪ Jx,y . First, we notice that in this limit 1p
2

(|T 0
12T −

34〉−
|T −

12T 0
34〉) is decoupled from the other states. Thus, when the system is diabatically ini-

tialized to |S12T −
34〉, it evolves to |T −

12S34〉 and back to |S12T −
34〉 at a frequency fST . To cal-

culate fST , we perform a basis change to {|0〉 , |1〉 , |2〉} ≡ { 1p
2

(|S12T −
34〉−|T −

12S34〉), 1p
2

(|S12T −
34〉+

|T −
12S34〉), 1p

2
(|T 0

12T −
34〉− |T −

12T 0
34〉)} and separate the Hamiltonian into two terms:
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H ′
T =

 − Jx
2 −δx

2 0

−δx
2 − Jx+Jy

2 −δy

2

0 −δy

2 − Jy

2

=

 − Jx
2 0 0

0 − Jx+Jy

2 0

0 0 − Jy

2

+
 0 −δx

2 0

−δx
2 0 −δy

2

0 −δy

2 0

= H0+V ,

(3.8)
where H0 only contains diagonal elements Jx,y and V only contains off-diagonal el-

ements δx,y . In the non-degenerate case δx,y ≲ |Jx − Jy |, we apply the second order
perturbation theory to the term V . The eigen energies become:

E0 = E (0)
0 +E (1)

0 +E (2)
0 = 〈0|H0 |0〉+〈0|V |0〉+ ∑

i={1,2}

| 〈i |V |0〉 |2
E (0)

0 −Ei

=− Jx

2
+ δ2

x

2Jy
, (3.9)

E1 = E (0)
1 +E (1)

1 +E (2)
1 = 〈1|H0 |1〉+〈1|V |1〉+ ∑

i={0,2}

| 〈i |V |1〉 |2
E (0)

1 −Ei

=− Jx + Jy

2
− δ2

x

2Jy
−
δ2

y

2Jx
,

(3.10)

E2 = E (0)
2 +E (1)

2 +E (2)
2 = 〈2|H0 |2〉+〈2|V |2〉+ ∑

i={0,1}

| 〈i |V |2〉 |2
E (0)

2 −Ei

=− Jy

2
+
δ2

y

2Jx
. (3.11)

|S12T −
34〉 = 1p

2
(|0〉 + |1〉) and |T −

12S34〉 = 1p
2

(|1〉 − |0〉) . Thus, we infer that fST corre-

sponds to the energy difference:

fST = E0 −E1

h
= Jy

2h
+ δ2

x

Jy h
+

δ2
y

2Jx h
. (3.12)

Equation (3.12) shows that the S-T − oscillation frequency minimum allows to extract
the exchange value Jy .

According to these calculations, when the barrier gate voltages are varied by δVx and
δVy at fixed evolution time t , the constant ST probability lines should draw ellipses cen-
tered at the voltages where J12 = J34 and J14 = J23. One can use this property to equalize
the exchange couplings.

The Hamiltonian H ′
T can also be diagonalized in the degenerate case Jx = Jy = J . The

eigen energies read as: 
Eg = −3J−

√
J 2+4δ2

x+4δ2
y

4 ≈−J − δ2
x+δ2

y

2J

Ee1 =− J
2

Ee2 =
−3J+

√
J 2+4δ2

x+4δ2
y

4 ≈− J
2 +

δ2
x+δ2

y

2J

(3.13)
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

|g 〉 = 2δx |0〉+(J+
√

J 2+4δ2
x+4δ2

y )|1〉+2δy |2〉
Ng

≈ |1〉
|e1〉 = −δy |0〉+δx |2〉

Ne1
≈ δy√

δ2
x+δ2

y

|0〉+ δx√
δ2

x+δ2
y

|2〉

|e2〉 =
2δx |0〉+(J−

√
J 2+4δ2

x+4δ2
y )|1〉+2δy |2〉

Ne2
≈− δx√

δ2
x+δ2

y

|0〉+ δy√
δ2

x+δ2
y

|2〉

(3.14)

The initialized |S12T −
34〉 state can be decomposed as:

|S12T −
34〉 =

1p
2
|g 〉+ 1p

2
(

δy√
δ2

x +δ2
y

|e1〉− δx√
δ2

x +δ2
y

|e2〉). (3.15)

As the system evolves, the measured singlet-triplet probability is:

PST (t ) = |〈S12T −
34|e−iH ′

T t/ħ |S12T −
34〉 |2 = |1

2
e−iωg t + 1

2

δ2
y

δ2
x +δ2

y
e−iωe1 t + 1

2

δ2
x

δ2
x +δ2

y
e−iωe2 t |2

=
δ4

x +δ2
xδ

2
y +δ4

y

2(δ2
x +δ2

y )2
+ δ2

x

2(δ2
x +δ2

y )
cos

(
(ωe2 −ωg )t

)+ δ2
y

2(δ2
x +δ2

y )
cos

(
(ωe1 −ωg )t

)+ δ2
xδ

2
y

2(δ2
x +δ2

y )2
cos

(
(ωe2 −ωe1 )t

)
=
δ4

x +δ2
xδ

2
y +δ4

y

2(δ2
x +δ2

y )2
+ 1

2
cos(

ωe1 +ωe2 −2ωg

2
t )cos(

ωe1 −ωe2

2
t )+

δ2
x −δ2

y

2(δ2
x +δ2

y )
sin(

ωe1 +ωe2 −2ωg

2
t )sin(

ωe1 −ωe2

2
t )

+
δ2

xδ
2
y

2(δ2
x +δ2

y )2
cos

(
(ωe2 −ωe1 )t

)
.

(3.16)
According to equation (3.16), in two special cases (1) when δx = 0, fST equals to J

2h +
δ2

y

2Jh and (2) when δy = 0, fST equals to J
2h + δ2

x
Jh . In the general case δx,y ̸= 0, PST oscillates

with three frequencies where two of them are close to each other resulting in a beating.

More specifically, PST oscillates with a fast frequency
ωe1+ωe2−2ωg

2 = J
2ħ + 3

4
δ2

x
Jħ while the

amplitude is modulated at a lower frequency
ωe1−ωe2

2 = δ2
x+δ2

y

4Jħ . Therefore, as long as δx,y

remains sufficiently small, such that
δ2

x+δ2
y

2Jħ t ≲ π, a frequency minimum still appears
when δx,y = 0 which allows us to extract Jx,y .

COMPARISON WITH EXPERIMENTS
We perform experiment where we study how four-spin singlet-triplet oscillations evolve
when δVx , δVy and the dwell time tD are varied. Fig. 3.8-3.10 show the results of these
experiments for different operation points that we compare with numerical simulations
of time evolution using the Hamiltonian HT .

To perform the simulations, the exchange couplings away from δVx,y = 0 are mod-

elled using exponential models J34/12 = Jx
2 exp(±κδVx ) and J14/23 = Jy

2 exp(±κδVy ) [16].
The factor κ = 0.059 mV−1 is extracted from the frequency of isolated two-spin S-T −
oscillations whereas the Jx,y values are taken from the frequency minimum in the cor-
responding sub-figures c-f. The exchange values here are within 10 % of deviation com-
pared to the exchanges displayed in Fig. 3.3.f.
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Fig. 3.8, 3.9, and 3.10 show three sets of data/simulations corresponding to exper-
iments where the barrier gate voltages are varied by δVx,y around the points {vB 0

12 +
δV ′

x ,vB 0
23−βδV ′

x ,vB 0
34+δV ′

x ,vB 0
14−βδV ′

x } with δV ′
x =20, 0, -20 mV and vB0 = {vB 0

12, vB 0
34,

vB 0
23, vB 0

14} = {16,−10.5,0,9.5} mV (vB0 is the predetermined set of voltages where ex-
change couplings are approximately equals mentioned in the main text). These δV ′

x
values correspond approximately to the center and the limits of the range spanned in
Fig. 3.3.e. In the three cases, the data and the simulations show an overall remarkably
good agreement.

Fig. 3.8.a-b, 3.9.a-b and 3.10.a-b show the results of these measurements consist-
ing in varying δVx , δVy at fixed tD and the corresponding simulations. We observe that
constant probability lines form a network of stripes drawing ellipses centered around
δVx,y ≃ 0 mV in agreement with the above discussion.

Fig. 3.8.c-f, 3.9.c-f and 3.10.c-f display the time evolution of four-spin singlet-triplet
probabilities measured while varying either δVx or δVy around the centers of these el-
lipses. It confirms that the frequency minimum is reached when δVx,y ≃ 0 mV i.e. at the
center of the ellipse.

In these three configurations, we clearly have J12 ≃ J34 and J14 ≃ J23 for δVx,y ≃ 0 mV.
Similarly for δV ′

x = 26 mV, singlet-triplet probabilities also draw an ellipse centered on
δVx,y ≃ 0 mV (Fig. 3.11). Extrapolating these results, we assume that these equalities
remain valid over the full range of voltage −20 mV É δV ′

x É 26 mV spanned in Fig. 3.3.e
and thus that the frequency of four-spin ST oscillations fST directly gives Jx,y /2.

We note that the ellipses are tilted and even distorted especially when Jx is large. It
could indicate a cross-talk between vertical and horizontal virtual barrier gates but also
a deviation from the equations derived above which are valid only for small variations of
exchange couplings.

In Fig. 3.9.b (initialization/readout in y direction), we also remark that both the mea-
surements and the simulation show a complex pattern when voltages are varied away
from the origin. This pattern appears less clearly in the measurement data of Fig. 3.9.a
(initialization/readout in x direction).

Likewise, we notice beating patterns in Fig. 3.8.e and 3.10.d. They result from the
third level, 1p

2
(|T 0

12T −
34〉− |T −

12T 0
34〉), that is not completely decoupled and has an overlap

with the initial state.
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Figure 3.8: Additional measurement data and numerical simulations of four-spin coherent singlet-triplet
oscillations at low Jx . a, b, Probabilities PS34T12 and PS23T14 as functions of barrier gate voltage variations
δVx,y at fixed evolution time tD = 180 ns. c, d, Oscillations in PS34T12 and PS23T14 as functions of gate voltage
variation δVx . e, f, Oscillations in PS34T12 and PS23T14 as functions of virtual gate voltage variation δVy . The
right panels are numerical simulations based on the Hamiltonian HT . The virtual barrier voltages are varied
around the operation point {36,−14.1,20,5.9} mV which corresponds to the point δV ′

x = 20 mV in Fig. 3.3.e.
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Figure 3.9: Additional measurement data and numerical simulations of four-spin coherent singlet-triplet
oscillations at medium Jx . a, b, Probabilities PS34T12 and PS23T14 as functions of virtual barrier voltage vari-
ations δVx,y with a fixed evolution time tD = 105 ns. c, d, Oscillations in PS34T12 and PS23T14 as functions
of gate voltage variation δVx . e, f, Oscillations in PS34T12 and PS23T14 as functions of gate voltage variations
δVy . The right panels are numerical simulations based on the Hamiltonian HT . The virtual barrier voltages
are varied around vB0 = {16,−10.5,0,9.5} mV which corresponds to the point δV ′

x = 0 mV in Fig. 3.3.e.
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Figure 3.10: Additional measurement data and numerical simulations of four-spin coherent singlet-triplet
oscillations at large Jx . a, b, Probabilities PS34T12 and PS23T14 as functions of virtual barrier voltage variations
δVx,y with a fixed evolution time tD = 60 ns. c, d, Oscillations in PS34T12 and PS23T14 probabilities as functions
of gate voltage variation δVx . e, f, Oscillations in PS34T12 and PS23T14 as functions of gate voltage variation δVy .
The panels on the right are numerical simulation based on the Hamiltonian HT . The virtual barrier voltages
are varied around {−4,−6.9,−20,13.1} mV, which corresponds to the point δV ′

x = −20 mV (outside the range
spanned in Fig. 3.3.e).
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Figure 3.11: Signature of equal exchange couplings. Probability PS12T34 as a function of the voltage varia-
tion δVx,y at fixed tD = 113 ns. The barrier gate voltages are varied around {42,−15.18,26,4.82} mV which
corresponds to the extreme point δV ′

x = 26 mV in Fig. 3.3.e. The ellipse drawn by constant probability lines is
centered around δVx,y ≃ 0 indicating that at this point J12 ≃ J34 and J23 ≃ J14.

UNCERTAINTY ON THE EXCHANGE COUPLING VALUES

Our method to determine the barrier gate voltages required to have J12 = J34 and J23 =
J14 leads to some uncertainties on the values of the exchange couplings. They originate
from the uncertainty on the determination of the center of ellipse drawn by the oscilla-
tions when varying δVx,y at fixed tD (see Fig. 3.8 to 3.11). We estimate that the center’s
position can be determined with a ±2 mV precision. Small drifts between experiments
also typically lead to such uncertainties. Using the exponential models described above,
we can then translate this uncertainty into an uncertainty on the exchange values at a
given set of barrier gate voltages.

To express it, we assume that atδVx,y = 0, the parallel exchange couplings are actually
imbalance (J12 ̸= J34 and J14 ̸= J23). We note δV 0

x,y the voltage shifts required to reach the

balance J12 = J34 = J 0
x /2 and J14 = J23 = J 0

y /2. Then, as κ|δVx,y −δV 0
x,y |≲ 0.1, we can write

the differences of exchange couplings as:δx = J12 − J34 = J 0
x

2 exp(−κ(δVx −δV 0
x ))− J 0

x
2 exp(κ(δVx −δV 0

x )) ≃ J 0
xκ(δV 0

x −δVx )

δy = J23 − J14 = J 0
y

2 exp(−κ(δVy −δV 0
y ))− J 0

y

2 exp(κ(δVy −δV 0
y )) ≃ J 0

yκ(δV 0
y −δVy )

.

(3.17)
Likewise, the sums of the exchange couplings are given by:Jx = J12 + J34 ≃ J 0

x (1+ κ2(δVx−δV 0
x )2

2 )

Jy = J14 + J24 ≃ J 0
y (1+ κ2(δVy−δV 0

y )2

2 )
. (3.18)

Using equation (3.12), the errors on the exchange couplings extracted are then given
by: 

σJy = 2 fST − Jy /h = 2
(J 0

x )2

J 0
y h
κ2(δVx −δV 0

x )
2 + (J 0

y )2

J 0
x h
κ2(δVy −δV 0

y )
2

σJx = 2
(J 0

y )2

J 0
x h
κ2(δVy −δV 0

y )
2 + (J 0

x )2

J 0
y h
κ2(δVx −δV 0

x )
2

. (3.19)
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Notably, the uncertainty on the position of the center of the ellipse can only lead to
an overestimation of the exchange values. The latter is about 3 MHz in average for the
data displayed in Fig. 3.3.f. Additionally, fitting the four-spin singlet-triplet oscillations
also leads to uncertainty on the value of fST from which the exchanges are inferred. We
thus assume that the precision on the determination of the exchange couplings is set
by the maximum of the two above uncertainties and we use it to draw the error bars in
Fig. 3.3.f. Typically the former uncertainty is much larger than the uncertainty on the
frequency fit.

The errors bars on the predicted singlet-singlet oscillation frequency fSS (Fig. 3.4.e),
visibilities Vx,y (Fig. 3.4.f) and on the singlet-singlet probabilities in the RVB ground state
(Fig. 3.5.c) are then drawn by computing the minimum and maximum values of these
quantities in the exchange coupling ranges fixed by the uncertainties on Jx,y .

3.7. LIMITS OF THE THEORETICAL DESCRIPTIONS
Up to now, we assumed that the system dynamics is only governed by the Heisenberg
Hamiltonian. Yet, the effective Hamiltonian Htot of the system contains other terms.
When each quantum dot contains one hole, Htot can be written as:

Htot = HJ +HZ +HSO +Hhp, (3.20)

where HJ =∑
<i , j> Ji j (S⃗i ·S⃗ j− 1

4 ), HZ =∑
i giµBB , HSO and Hhp are respectively the Heisen-

berg, Zeeman, spin-orbit and hyperfine terms. The physics of RVB states is solely deter-
mined by the Heisenberg term HJ that conserves the total spin and the spin projection
whereas the other terms couple states of different spin subspaces. To prevent these cou-
plings, we operate the device with few milli-Teslas in-plane magnetic fields ensuring that
the exchange couplings are the largest energy scales. In that case, one can assume that
Htot ≃ HJ and derive analytical formulas describing the system dynamics. Here we jus-
tify further this approximation by quantifying the magnitude of the other terms.

HYPERFINE INTERACTION
We first focus on the effects of hyperfine interaction. It results in a Zeeman-like term
that randomly varies in time and couple different total spin subspaces. In ref. [27], the
authors evaluated the Zeeman energy noise in germanium ST qubits placed in a 1 mT
perpendicular magnetic field, supposedly the most unfavorable direction regarding hy-
perfine interaction [56, 57]. They found δEZ < 2 neV or δEZ/h < 0.48 MHz [44]. This
suggests that the hyperfine coupling can be safely discarded in the theoretical descrip-
tion.

ZEEMAN GRADIENTS
To express the Zeeman term HZ, we need a full basis of the 16×16 Hilbert space. A con-
venient choice of basis for our theoretical description consists in using the basis ψ1111 =
{0S ,1S ,0T − ,1T − ,2T − ,0T 0 ,1T 0 ,2T 0 ,0T + ,1T + ,2T + ,Q−,Q0,Q+,Q−−,Q++} that decomposes the
Hilbert space into the different total spin S subspaces and that also decomposes these
subspaces into smaller subspaces with different spin projections mS [17]. The differ-
ent states that compose the ψ1111 basis are expressed in Table 3.2. Note that the states
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{0S ,1S } and {0T − ,1T − ,2T − } correspond to the basis-states of the global singlet and mS =
−1 triplet subspaces used above.

(S,mS ) States

(0,0) {0S ,1S } = {|S12S34〉 , 1p
3

(|T +
12T −

34〉+ |T −
12T +

34〉− |T 0
12T 0

34〉)}

(-1,1) {0T − ,1T − ,2T − } = {|S12T −
34〉 , |T −

12S34〉 , 1p
2

(|T 0
12T −

34〉− |T −
12T 0

34〉)}

(0,1) {0T 0 ,1T 0 ,2T 0 } = {|S12T 0
34〉 , |T 0

12S34〉 , 1p
2

(|T +
12T −

34〉− |T −
12T +

34〉)}

(1,1) {0T + ,1T + ,2T + } = {|S12T +
34〉 , |T +

12S34〉 , 1p
2

(|T 0
12T +

34〉− |T +
12T 0

34〉)}

(-1,2) {Q−} = 1p
2

(|T 0
12T −

34〉+ |T −
12T 0

34〉)
(0,2) {Q0} = 1p

6
(|T +

12T −
34〉+ |T −

12T +
34〉+2 |T 0

12T 0
34〉)

(1,2) {Q+} = 1p
2

(|T 0
12T +

34〉+ |T +
12T 0

34〉)
(-2,2) {Q−−} = |T −

12T −
34〉

(2,2) {Q++} = |T +
12T +

34〉

Table 3.2: 16 basis-states used to describe the effect of Zeeman gradients. Each line corresponds to a sub-
space with given total spin S and a given spin projection mS . The states that form the basis of each subspace
are expressed in terms of two-spin singlet and triplet states. The Heisenberg Hamiltonian does not couple the
different subspaces.

In this basis, the Zeeman Hamiltonian can be expressed as:

HZeeman =µBB



0 0 0 0 0
g−

34
2

g−
12
2 0 0 0 0 0 0 0 0 0

0 0 0 0 0
−g−

12

2
p

3

−g−
34

2
p

3

g−
p

6
0 0 0 0 0 0 0 0

0 0
−g+

34
2 0

g−
12

2
p

2
0 0 0 0 0 0

g−
12

2
p

2
0 0 0 0

0 0 0
−g+

12
2

−g−
34

2
p

2
0 0 0 0 0 0

g−
34

2
p

2
0 0 0 0

0 0
g−

12

2
p

2

−g−
34

2
p

2

−g+
4 0 0 0 0 0 0 g−

4 0 0 0 0
g−

34
2

−g−
12

2
p

3
0 0 0 0 0 0 0 0 0 0

g−
12p
6

0 0 0
g−

12
2

−g−
34

2
p

3
0 0 0 0 0 0 0 0 0 0

g−
34p
6

0 0 0

0 g−
p

6
0 0 0 0 0 0 0 0 0 0 g−

2
p

3
0 0 0

0 0 0 0 0 0 0 0
g+

34
2 0

g−
12

2
p

2
0 0

g−
12

2
p

2
0 0

0 0 0 0 0 0 0 0 0
g+

12
2

−g−
34

2
p

2
0 0

g−
34

2
p

2
0 0

0 0 0 0 0 0 0 0
g−

12

2
p

2

−g−
34

2
p

2

g+
4 0 0 −g−

4 0 0

0 0
g−

12

2
p

2

g−
34

2
p

2

g−
4 0 0 0 0 0 0 −g+

4 0 0 0 0

0 0 0 0 0
g−

12p
6

g−
34p
6

g−

2
p

3
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
g−

12

2
p

2

g−
34

2
p

2

−g−
4 0 0 g+

4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −g+
2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g+
2



,

(3.21)
where g−

i j = gi − g j , g± = g1 + g2 ± g3 ± g4. We observe that the Zeeman terms lead

to leakage outside from the global singlet subspace {0S ,1S } and from mS = −1 triplet
subspace {0T − ,1T − ,2T − } which are relevant for our experiments. It can lead to discrep-
ancies between experimental results and theoretical expectations derived only from the
Heisenberg Hamiltonian. In our system, we have 0.15 < gi < 0.3. Therefore the magni-
tudes of the couplings induced by the Zeeman fields remain typically of the order of a
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few MHz at 1 mT and thus are small compared to the exchange couplings Ji j . That is
why we can neglect them in our theoretical description.

As a side note, we mention that this expression assumes that the spin quantization
axis of all the quantum dots are the same. In practise, for an in-plane magnetic field, the
spin quantization axis in the laboratory frame can be different for the different quan-
tum dots due to the variations in the local electrostatic potentials. Yet, we can always
redefine with a local spin basis ensuring that all quantization axis are aligned providing
a renormalization of the spin-conserving and spin-non-conserving tunnel couplings.

SPIN-ORBIT TERMS
In absence of spin-orbit interaction, a double quantum dot system can be described by
the following Hamiltonian [58]:

HDQD = ϵ |S20〉〈S20|+
p

2tc (|S20〉〈S11|+ |S11〉〈S20|)+HZ. (3.22)

In this expression, HZ is the Zeeman term, ϵ the energy detuning (taken as zero at
(0,2) - (1,1) charge transition), tc the spin-conserving tunnel coupling whereas |S20〉 and
|S11〉 are respectively the singlet (2,0) and (1,1) states.

To take into account the spin-orbit effects, one can allow for spin-non-conserving
tunneling processes to occur [58]. This can be model by adding another term HSO to the
previous Hamiltonian. It writes as :

HSO = i
p

2tz |T 0〉〈S20|−
∑
±

(ty ± itx ) |T ±〉〈S20|+h.c., (3.23)

where tSO= (tx , ty , tz ) is the spin-non-conserving tunneling term due to spin-orbit
coupling and |T 0〉,|T −〉 and |T +〉 are the different triplet (1,1) states. The main effect of
the spin-orbit interaction is thus to couple the singlet states to the triplet states. Similarly
to the Zeeman gradients, the spin-orbit coupling leads to leakage outside the total singlet
and mS =−1 triplet subspaces.

In our experiments we operate in the regime tc < 10 GHz and ϵ ∼ 300 GHz, which
allows us to treat the effect of the higher excited charge state |S20〉 using the second or-
der quasi-degenerate perturbation theory [59]. The resulting energy change of the state

|S11〉 due to the spin-conserving coupling to the |S20〉 is − 2t 2
c
ϵ . This change of energy cor-

responds to the exchange coupling J . Alternatively, the effective couplings between the
|S11〉 state and triplet states mediated by the virtual state |S20〉 are − 2itctz

ϵ for the cou-

pling between the |T 0〉 and |S11〉 states, and −
p

2tc(ty±itx )
ϵ for the coupling between the

|T ±〉 and|S11〉 states. Therefore, the relative amplitude of the spin-orbit couplings over
the exchange couplings is given by tSO/tc. In ref. [44], a ratio tSO/tc of 0.034 was found
in germanium double quantum dots. Although the exact values of tSO and tc depend
on the details of the electrostatics, we still expect the ratio tSO/tc to remain small in our
system and thus we also expect that the spin-orbit terms have a limited impact on the
dynamics of the system. This is in agreement with the measured leakage features and
Fermi-Hubbard model simulations presented in Supplementary Note 7 [40]. We observe
that the probability of leakage fluctuates slower than the four-spin singlet-singlet oscilla-
tions or singlet-triplet oscillations, and the magnitude is in general below 0.2 if it is away
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from the point Jx ≈ Jy (Supplementary Figure 9, Supplementary Figure 10 and Supple-
mentary Figure 12 to Supplementary Figure 15 [40]).

DIAGONAL EXCHANGE COUPLINGS

We have also neglected the impact of diagonal exchange couplings J13 and J24 in our
system. This assumption is based on different arguments. First, from the square geom-
etry of our device, we expect that the spin-conserving tunnel couplings tc between Q1

and Q3 and between Q2 and Q4 are much smaller than the couplings between adjacent
quantum dots due the larger distance between quantum dots. Considering that for, a

double quantum dot, the exchange coupling is given by J =
√
ϵ2/4+2t 2

c −ϵ/2 ≃ 2t 2
c
ϵ (limit

tc
ϵ ≪ 1), one can expect a significant reduction of the exchange couplings along the di-

agonals. Further, for four-spin experiments, the operation point O is chosen far from the
center of the (1,1,1,1) charge region, as shown in Supplementary Figure 3 [40]. It ensures
that the double well potentials of Q1Q2, Q2Q3, Q3Q4 and Q4Q1 pairs are all asymmetric
and it allows to induce a finite exchange couplings between spins in adjacent quantum
dots. At this point, the quantum dots’ energy levels corresponding to different charge
configurations are positioned with respect to each other as depicted in Fig. 3.12. In this
configuration, it is likely that ϵ13,ϵ24 > ϵ12,ϵ23,ϵ34,ϵ41 suggesting again that the diagonal
exchange couplings are reduced compared to the vertical and horizontal ones.

En
er

gy

Q1 Q2 Q3 Q4

µreservoir

Nh=1

Nh=2

Nh=3

Figure 3.12: Sketch of the quantum dot energy levels at the operation point O. The chemical potentials of
the quantum dots are tuned by controlling the plunger gate voltages to ensure charge occupations Nh of one
hole per quantum dot while keeping a sufficiently large asymmetry of the double well potentials for adjacent
quantum dots. The asymmetries of the potentials for Q2Q4 and Q1Q3 are comparatively smaller.

To get more understanding of the effects of diagonal exchange couplings on the mea-
surements, we can compare theoretical predictions with and without diagonal exchange
couplings.

Adding the diagonal exchange couplings, the Heisenberg Hamiltonian becomes:

H∗
J = ∑

<i,j>
Ji j (S⃗i · S⃗ j − 1

4
)+ J13(S⃗1 · S⃗3 − 1

4
)+ J24(S⃗2 · S⃗4 − 1

4
), (3.24)

and in the singlet subspace, with the {|0〉 , |1〉} = {|S12S34〉 , 1p
3

(|T +
12T −

34〉+|T −
12T +

34〉−|T 0
12T 0

34〉)}

basis, it can be written as:
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H∗
S =

(
−Jx − Jy+JD

4

p
3

4 (Jy − JD)p
3

4 (Jy − JD) − 3
4 (Jy + JD)

)
, (3.25)

where JD = J13 + J24.
When Jx = Jy = J , the Hamiltonian becomes:

H∗
S =

(
− 5

4 J − 1
4 JD

p
3

4 (J − JD)p
3

4 (J − JD) − 3
4 (J + JD)

)
. (3.26)

This Hamiltonian can be diagonalized easily and the eigen energies are E1 =− 3
2 J and

E2 =− 1
2 J − JD (see also ref. [60, 61], note that there is a difference in the conventions for

the overall energy offset). The associated eigenvectors are actually still the s-wave RVB
state |s〉 = 1p

3
(|Sx〉−|Sy 〉) and the d-wave RVB state |d〉 = |Sx〉+|Sy 〉 independently of the

values of J and JD (providing JD ̸= J ). |s〉 is the ground state for J > JD which corresponds
the regime investigated in our experiments according to the data displayed in Fig. 3.5.a-
c. On the other hand, |d〉 is the ground state for J < JD. In both cases, we expect to
see resonating valence bond oscillations having a frequency given by f ∗

SS = 1
h |E1 −E2| =

1
h |J − JD|. More generally, f ∗

SS is given by:

f ∗
SS =

√
J 2

x + J 2
y − Jx Jy + J 2

D − JD(Jx + Jy ) =
√

(Jx − JD)2 + (Jy − JD)2 − (Jx − JD)(Jy − JD).
(3.27)

Therefore, in the limit where Jx,y > JD, the presence of diagonal exchange leads to an
effective reduction of the exchange couplings that drives the oscillations between singlet
product states.

In the mS = −1 global triplet subspace spanned by {|S12T −
34〉 , |T −

12S34〉 , 1p
2

(|T 0
12T −

34〉−
|T −

12T 0
34〉)}, the Hamiltonian can be written as:

HT =


−J12 − J23+J14+J13+J24

4
−J23−J14+J13+J24

4
J23−J14−J13+J24

2
p

2−J34−J14+J13+J24
4 −J34 − J23+J14+J13+J24

4
J23−J14−J13+J24

2
p

2
J23−J14−J13+J24

2
p

2
J23−J14−J13+J24

2
p

2
− J23+J14+J13+J24

2



=


− Jx+δx

2 − Jy+JD

4 − Jy−JD

4
δy+δD

2
p

2

− Jy−JD

4 − Jx−δx
2 − Jy+JD

4
δy+δD

2
p

2
δy+δD

2
p

2

δy+δD

2
p

2
− Jy+JD

2

 ,

(3.28)

where δD =−J13 + J24.
Repeating the calculation of four-spin singlet-triplet oscillations in Section 3.6, we

derive that for the initial state |S12T −
34〉, the minimum singlet-triplet oscillation frequency

occurs when δx = δy +δD = 0. Similarly, for the initial state |S14T −
23〉, the minimum fre-

quency occurs when δx +δD = δy = 0. The corresponding minimum oscillation frequen-

cies are f x(y)
ST,min = 1

2 (Jy(x) − JD). Thus diagonal exchange may be one of the contributions
to the small shift of frequency minimum δVx,min −δVy,min observed in the experiments
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shown in Fig. 3.8 to 3.10. We notice that the voltage shift between x and y direction read-
out |δVx,min −δVy,min| < 2 mV are small. Therefore we can assume that the measured
frequency of four-spin singlet-triplet oscillations at every voltage shift δV ′

x in Fig. 3.3.e-

f is approximately equal to the corresponding frequency minimum, f x(y)
ST ≃ f x(y)

ST,min =
1

2h (Jy(x) − JD), with an estimated frequency uncertainty described in Section 3.6. The
singlet-singlet oscillation frequency derived from the Hamiltonian (3.25) can then be ex-

pressed as f ∗
SS = 2

√
( f y

ST,min)2 + ( f x
ST,min)2 − f y

ST,min f x
ST,min. Therefore, the method used to

equalize parallel exchange couplings and tune them does not allow us to determine the
magnitude of the diagonal exchange couplings.

To summarize, we expect that diagonal exchange couplings to have a very limited
effects in the four-spin oscillation experiments but our measurements do not allow to
estimated their values.
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4
MODELLING OF PLANAR

GERMANIUM HOLE QUBITS IN

ELECTRIC AND MAGNETIC FIELDS

Hole-based spin qubits in strained planar germanium quantum wells have received con-
siderable attention due to their favourable properties and remarkable experimental progress.
The sizeable spin-orbit interaction in this structure allows for efficient qubit operations
with electric fields. However, it also couples the qubit to electrical noise. In this work,
we perform simulations of a heterostructure hosting these hole spin qubits. We solve the
effective mass equations for a realistic heterostructure, provide a set of analytical basis
wave functions, and compute the effective g-factor of the heavy-hole ground-state. Our
investigations reveal a strong impact of highly excited light-hole states located outside the
quantum well on the g-factor. We find that sweet spots, points of operations that are least
susceptible to charge noise, for out-of-plane magnetic fields are shifted to impractically
large electric fields. However, for magnetic fields close to in-plane alignment, partial sweet
spots at low electric fields are recovered. Furthermore, sweet spots with respect to multiple
fluctuating charge traps can be found under certain circumstances for different magnetic
field alignments. This work will be helpful in understanding and improving coherence of
germanium hole spin qubits.

Parts of this chapter have been published in C.-A. Wang, H. Ekmel Ercan, Mark F. Gyure, G. Scappucci, M.
Veldhorst, and M. Rimbach-Russ, Modelling of planar germanium hole qubits in electric and magnetic fields,
npj Quantum Information 10, 102 (2024).
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Hole spins in germanium quantum dots constitute a compelling platform for quan-
tum computation [1, 2]. Holes in germanium benefit from the strong spin-orbit interac-
tion (SOI), absence of valley degeneracy and large heavy-hole and light-hole splitting [3],
small in-plane effective mass [4], and the formation of ohmic contacts with metals [4–6].
These properties allowed a rapid development of planar germanium spin qubits from
quantum dots [4], single and two qubit manipulation [7], singlet-triplet qubits [8], to a
2x2 qubit array [9] as well as high-fidelity operations [10], and rudimentary error correc-
tion circuits [11].

The challenge for hole spin qubits is to overcome decoherence due to charge noise
coupling through the spin-orbit interaction [12–14]. Current dephasing times are T⋆

2 =
100ns-10µs, which could be extended to T2 = 1000µs using dynamical decoupling [10,
15]. The possibility of extended coherence times in germanium hole qubits is studied in
several theoretical works for nanowire [16–19] and planar systems [20–23]. The coher-
ence time can be greatly extended by operating at optimal operation points, so-called
sweet spots, where the qubit resonance frequency has a vanishing derivative with re-
spect to electric fields. Interestingly, it is predicted that at such sweet spots the electric
dipole spin resonance (EDSR) driving is also be the most efficient [24]. In this work, we
investigate the existence of sweet spots in detail. We model the system based on recent
experiments, considering a realistic potential profile resulting from a SiGe/Ge/SiGe het-
erostructure [25]. We show that many basis wave-functions are required for predicting
the susceptibility of the g-factor to electric fields [26–28], shifting predictions for sweet
spots in out-of-plane magnetic fields to experimentally inaccessible electric field values.
However, we also show that sweet spots with respect to electric fields in arbitrary direc-
tions can exist, when the magnetic field is applied with angle θ≲ arctan(g∥/g⊥)/3 = 0.2◦,
where g∥ (g⊥) is the bare in-plane (out of plane) g-factor of the heavy-hole state.

4.1. MODEL
In this work we describe a single hole confined vertically in a strained SiO2/ Si0.2Ge0.8/
Ge/ Si0.2Ge0.8 planar heterostructure using an electrostatic potential through metallic
gates. Fig. 4.1 shows a sketch of the modelled device. The full Hamiltonian describing
the hole reads

H = Hkin +V⊥(z)+V∥(x, y)+HZeeman, (4.1)

where Hkin is the kinetic energy operator, V⊥(z) and V∥(x, y) describes the vertical and
planar confinement, and HZeeman describes the interaction of the spin and the magnetic
field.

EFFECTIVE MASS THEORY FOR STRAINED GERMANIUM
Since our quantum dot structures are large compared to the inter-atom distances and
operated at low densities ρ ∼ 1010 cm−2 (single hole regime), the wave-functions are lo-
calized close to the Γ point at k = 0. In this regime and within the effective mass approx-
imation, the kinetic energy is well-described by the 6× 6 Luttinger-Kohn Hamiltonian.
Additionally, in germanium the split-off band is far separated in energy by ∆SO = 0.29eV
and thus negligible for the low-energy dynamics. This allows us to reduce our investiga-
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tion to the standard 4×4 Luttinger-Kohn Hamiltonian. In the basis of total angular mo-
mentum eigenstates | j ,m j 〉 = {| 3

2 , 3
2 〉 , | 3

2 ,− 3
2 〉 , | 3

2 , 1
2 〉 , | 3

2 ,− 1
2 〉} the Luttinger-Kohn Hamil-

tonian reads

Hkin = HLK =


P +Q 0 S R

0 P +Q R† −S†

S† R P −Q 0
R† −S 0 P −Q

 . (4.2)

The upper-left block P +Q describe the kinetic energy of the spin- 3
2 heavy-hole state,

the lower-right block P −Q describes the kinetic energy of the spin- 1
2 light-hole state,

S describes the heavy-light-hole coupling with same spin, and R describes the heavy-
light-hole coupling with opposite spin direction. The operators are described by

P = ħ2

2m0
γ1(k2

x +k2
y +k2

z ), (4.3)

Q = ħ2

2m0
γ2(k2

x +k2
y −2k2

z ), (4.4)

R =p
3

ħ2

2m0

[
−γ2(k2

x −k2
y )+ iγ3kx ky + iγ3ky kx

]
, (4.5)

S =−p3
ħ2

2m0
γ3

[
(kx − i ky )kz +kz (kx − i ky )

]
, (4.6)

where ħkξ = −iħ∂ξ is the momentum operator in ξ = x, y, z direction, ħ the reduced
Planck constant, m0 the bare electron mass, and γ1 = 13.38, γ2 = 4.24, and γ3 = 5.69 the
Luttinger parameters for Ge [3]. Hamiltonian (4.2) also defines the vertical effective mass
mH(L)

⊥ = m0/(γ1∓2γ2) and in-plane effective mass mH(L)
∥ = m0/(γ1±γ2). The spin quan-

tization is given by the growth direction [001] corresponding to out-of-plane z-direction.
The effect of an external magentic field is included by substituting the momentum with
the generalized momentum p −→ p+e A, where A = (2zBy −yBz ,−2zBx+xBz ,0)T /2 is the
electromagnetic vector potential in the Landau gauge [29] and e is the electron charge.

Si0.2Ge0.8

Si0.2Ge0.8

Ge dw

60 nm

0 nm
di

θ

z

xy

B

Fz

Metal gate

-18 nm

dox

Figure 4.1: Schematics of a gate-defined quantum dot in a planar germanium heterostructure. The quantum
dot is confined in the z-direction by the SiGe-Ge-SiGe layers and the Ge quantum well has width dw = 18nm.
The insulating oxide layer has width dox = 5nm. The in-plane confinement is created by the electrostatic
gates which are located at the top of the heterostructure. Our model assumes a uniform electric field in the
z-direction and a parabolic potential in the xy-plane. The potential profile along the dashed line is plotted in
Fig. 4.2A. The illustration of the accumulated hole wave function is colored in green.
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Figure 4.2: A, The potential of the heterostructure along the growth direction and the nth sub-band of the heavy
(light) hole levels HHn (LHn). For this plot, the electric field strength is Fz = 0.5MV/m. B, C, The energy levels
of the nth heavy-hole sub-bands and the light-hole sub-bands. The levels with negative slope are located in
the quantum well, while levels with a positive slope spread outside the quantum well.

The effect of strain in the Ge well in between the SiGe layers is described by the Bir-
Pikus Hamiltonian (see Methods). We assume uniaxial strain (ϵx y = ϵxz = ϵy z = 0), such
that the strain operators become a constant in the different materials. This allows us
to describe the effect of strain and an applied electric field in the z-direction using the
following potential

V⊥(z) =−eFz z −


0, 0 < z < di

Ul , −dw < z < 0

0, z <−dw

. (4.7)

Here, dw = 18nm is the thickness of the strained-Ge quantum well, di = 60nm is the
thickness of the Si0.2Ge0.8 top layer, Fz is the out-of-plane electric field necessary for hole
accumulation, and Ul is the band-offset of the heavy-hole (l = HH) and light-hole (l =
LH) for the strained Ge layer (see Methods). The SiGe/Ge/SiGe heterostructure is capped
by a SiO2 top interface, modelled as an infinite potential with appropriate boundary con-
ditions Ψ(z = aw ) = 0. An illustration is shown in Fig. 4.2A. The in-plane confinement is
modelled as a displaced harmonic potential V∥(x, y) = 1

2 mH(L)
∥ ω2

0,H(L)(x2 + y2) + eFx +
eFy with in-plane masses mH(L)

∥ and strength of the harmonic potential mH(L)
∥ ω2

0,H(L) ≡
γ1+γ2

m0

ħ2

a4
0

with a0 = 50nm. In-plane electric fields, Fx and Fy , are centred and have aver-

age 〈Fx〉 = 〈Fy 〉 = 0. The magnetic field has a magnitude of B = 0.1T for the simulations
presented in this work if not mentioned explicitly, and is applied in the x-z-plane with
an angle θ between the field direction and x-axis.

The last term in Eq. (4.1) HZeeman = 2µBκ J ·B+2µB q(J 3
x Bx+J 3

y By+J 3
z Bz ) describes the

interaction between the hole spin and the magnetic field, where µB = eħ/(2m0) is Bohr’s
magneton, B = (Bx ,By ,Bz )T the magnetic field, J = (Jx , Jy , Jz )T the vector consisting of
the spin- 3

2 matrices, and κ = 3.41 and q = 0.067 the isotropic and an-isotropic Zeeman
coefficients for Ge [30].
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SIMULATION OF G-FACTOR OF THE GROUND STATE
The total Hamiltonian Eq. (4.2) is projected on a set of basis states and then diagonalized
numerically. The basis vectors in our simulations consist of product statesΨH(L)

j ,k (x, y, z) =
φH(L)

j (x, y)ψH(L)
k (z), which are given by independently solving the in-plane and out-of-

plane effective mass Schrödinger equation for the heavy-hole and light-hole bands. The
in-plane orbital wave functions are Fock-Darwin states, labelled as |n, l〉. The z-direction
sub-bands of heavy (light) holes HHn (LHn) have the form of piece-wise Airy functions [31,
32] with Ben-Daniel–Duke boundary conditions (see Methods) ψp (z = a) = ψq (z = a)
and ∂zψp (z = a) = ∂zψq (z = a) with (p, q) = (Si0.2Ge0.8,Ge), (Ge,Si0.2Ge0.8) and a = 0,−dw .
Calculations involving higher orbital states in the realistic heterostructures are compu-
tationally expensive. As the first attempt to simulate sweet spots in the realistic systems,
we only considered the effective potentials created in the region of Si0.2Ge0.8 and Ge,
while neglecting the difference of other material parameters such as the Luttinger pa-
rameters and Zeeman coefficients. Fig. 4.2 shows the lowest sub-band states in the het-
erostructure. The wave-functions of the sub-bands can be separated into states which
are localized inside the quantum well, localized at the triangular potential at the surface,
or delocalized between well and top-interface. For electric fields Fz < 3.5MV/m, there
are five heavy-hole states and two light-hole states completely localized inside the quan-
tum well as indicated by the spectrum in Fig. 4.2B and 4.2C. We note that with increasing
electric fields, first the light-hole states and then the heavy states “leak" out of the quan-
tum well. The heavy-hole ground state is confined in the quantum well for the electric
field lower than Fz ≈ 2.5MV/m, which marks the upper limit of electric field in this work.
We consider three heavy-hole sub-bands and 1 to 57 light-hole sub-bands to simulate
the Zeeman splittings of the heavy-hole ground state, which we justify as a sufficient set
due to convergence with increasing states. The effective g-factor g (Fz ) is then the ratio
between Zeeman splitting and the magnetic field strength.

SIMULATION OF THE DEPHASING TIME
In order to estimate the performance of the planar hole qubits we also compute the ef-
fective dephasing times in the presence of charge noise. We first model charge noise as
random fluctuations of the electric field. For the electric field fluctuations, we assume
that the noise follows a S( f ) = A2

ξ
/ f spectral density [9, 33] with ξ= x, y, z. To efficiently

model the dynamics due to charge noise, we make the following additional assumptions.
Firstly, the noise is coupled to the qubit linearly [34, 35], secondly, there are no spatial
noise correlations, and thirdly, we assume noise in x and y direction to be identical.
However, note that these assumptions may break in the presence of alloy disorder, stray
strain from metallic gates [36], or extremely close fluctuating charge traps [21]. Using
these assumptions, the pure dephasing time is then given by

T⋆
2 (Fξ) = ħ

µB
√

log(r )Aξ

∣∣∣ ∂g (Fξ)
∂Fξ

B
∣∣∣ . (4.8)

Here, g (Fξ) is the effective g-factor of the ground state and the bandwidth r = 1.68 ×109

is the ratio of the lower and higher frequency cutoff. First-order sweet spots are defined

by a vanishing linear noise coupling
∂g (Fξ)
∂Fξ

= 0, thus give rise to exceptionally long de-
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phasing times. Because of the finite numbers of basis states included in our simulations
and the finite step size in electric field, the g-factor is not completely a smooth function,

which gives rise to local variations that overshadow the general trend of ∂g (Fz )
∂Fz

. Since
these local variations are mostly an artifact of our simulations and our interest lies in the
general trend, the interpolated g-factor g (Fz ) is fitted to a fourth order polynomial.

The fluctuation strength of the linear out-of-plane electric field noise is estimated to
be Az = 3.5kV/m inside the quantum well, based on the charge noise estimation [37]
from plunger gate fluctuations and Schrödinger-Poisson simulation that includes metal
/ dielectrics gate layers and the germanium heterostructure [38], but on the larger side
of estimations based on microscopic 3D charge noise simulations [39] in silicon. Since
the g-factor is independent under translation in the x y-plane, fluctuating linear in-plane
electric fields do not cause any dephasing. However, the hole spin can still be strongly
affected by higher-order coupling terms [23].

To provide a realistic comparison, we follow reference [39] and investigate the impact
of randomly distributed fluctuating charge traps located at the interface between SiGe
and the oxide [40]. Assuming a continuous metal above the oxide, the potential of a
fluctuating charge trap can be well-described by

δV j =
( Fc

|r j +δr j |
− Fc

|r j |
− Fc

|r j +δr j + rm| +
Fc

|r j + rm|
)
. (4.9)

Here, ri = (x j , y j ,di ) is the location of the charge trap, δr j with |δr j | = 0.1nm is the dis-
placement vector between the two metastable charge states of the fluctuating trap, rm =
(0,0,2dox)T is the vector pointing to its mirror charge, and Fc = e/(4πϵ0ϵm) is the cou-
pling strength from the Coulomb interaction with ϵ0 and ϵm = 14.67 being the vacuum
and material permittivity of SiGe. To match a surface charge density of 1.2×10−10 cm2 [39],
we generate 11 randomly positioned fluctuating charge traps in an 300nm×300nm area
with a random orientation of the displacement vector. In linear order of coupling strength
(see Methods), the total dephasing time is then given in the quasistatic noise limit by [21,
39, 41]

T⋆
2,tlf =

p
2ħ

〈σδE 〉
(4.10)

where σδV is the standard deviation of the energy shifts of the individual fluctuators for
a given configuration and 〈·〉 denotes the average over different of these configurations.
Since the dephasing time as well as the qubit resonance frequency is strongly dependent
on the magnitude of the applied magnetic field due to the strong g-factor anisotropy,
a comparison of T⋆

2 with fixed magnetic field significantly favours small g-factors. To
provide a fair comparison of T⋆

2 between different magnetic field angles (see Fig. 4.5),
we rescale the magnetic field in T⋆

2 such that for different magnetic field angles the qubit
resonance frequency are equal.
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SIMULATION OF THE RABI FREQUENCY
Single-qubit gates can be implemented by periodic modulation of gate voltages in prox-
imity of the quantum dot, giving rise to time-dependent electric fields Fξ→ Fξ+Fξ,ac sin(2π frest )
using the cubic Rashba interaction [3, 42]. The speed of the operation, the Rabi fre-
quency, can be estimated by (see method 4.4)

Ωξ,Rabi =
1

h

∣∣eFξ,ac 〈0| ξ̂ |1〉
∣∣ , (4.11)

where ξ̂= x̂, ŷ , ẑ is the position operator and |0〉 and |1〉) are the eigenvectors of the qubit
states. To provide a fair comparison, we also rescale Ωξ,Rabi such that for different mag-
netic field angles the qubit resonance frequency are equal.

4.2. RESULTS

OUT-OF-PLANE G-FACTOR AND CONVERGENCE BEHAVIOR
The out-of-plane g-factor strongly depends on the electric field, as shown in Fig. 4.3A.
The g-factor and its derivative changes significantly with the choice of the light-hole
states. If we only consider the states in the quantum well, the g-factor is monotonically
increasing with respect to the electric field. By incorporating the highly excited light-hole
states (up to the 56th excited state in this work), the g-factor changes and is monoton-
ically decreasing with respect to electric field. The zero-derivative point, i.e. the sweet
spot, is not observed in the range of electric fields considered here. Applying larger elec-
tric fields would result in a ground state that is not located in the quantum well and
therefore not considered. Our simulated g-factors match qualitatively with experiments
using Hall-Bar measurements at low density [6, 43].

We investigate the dependence of the choice of the energy sorted light-hole levels in
Fig. 4.3B. The g-factor converges slowly, indicating that the high energy light-hole states
are not negligible for the estimation of the g-factor. Large steps in convergence originate
from a light-hole state that is localized inside the quantum well, states localized at the
top interfaces have minimal impact, and the small steps at larger number originate from
delocalized states. We remark that the full 6-band model including the split-off-band (or
even more bands) may have to be considered to achieve a higher accuracy of the g-factor.

A B

g e� g e�

Electric �eld (MV/m) nLH

E = 0.5 MV/m

E = 1.5 MV/m

E = 2.5 MV/mn
LH, saturated

w.f. inside QW

θ = 90�

bare g⊥

magnetic �eld angle

Figure 4.3: A, The out-of-plane g-factor of the ground-state as a function of electric field. The solid curve is the
g-factor obtained by including nLH,saturated = 57 light-hole states in the simulation. The dashed curve is the g-
factor obtained by simulating the light-hole states located in the germanium quantum well. B, The g-factor as
a function of light-hole level numbers nLH. Curves in different colors are the results taken at different electric
field.
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IN-PLANE G-FACTOR

The in-plane g-factor is plotted in Fig. 4.4A. Compared to the out-of-plane g-factor, the
in-plane g-factor is much smaller and it has weaker dependence on the electric field.
The g-factor is monotonically increasing with respect to the electric field in both choice
of light-hole states, as shown in the dashed and solid curves in Fig. 4.4A. The g-factor de-
pendence of the light-hole levels is plotted in Fig. 4.4B. Our simulation results match the
measured g-factors g = 0.2±0.1 in devices using the same heterostructure [9], where the
large spread can be attributed to non-circular confinement [8]. The slow convergence
is qualitatively similar to the g-factor dependence for out-of-plane magnetic fields. In
general, operating planar hole qubits in in-plane magnetic field direction will result in a
longer coherence time than operation in out-of-plane magnetic fields.
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Figure 4.4: A, The in-plane g-factor of the ground-state as a function of electric field. The solid curve is the
g-factor obtained by including nLH,saturated = 57 light-hole states in the simulation. The dashed curve is the g-
factor obtained by simulating the light-hole states located in the germanium quantum well. B, The g-factor as
a function of light-hole level numbers nLH. Curves in different colours are the results taken at different electric
field.

OPTIMAL MAGNETIC FIELD ANGLE FOR OUT-OF-PLANE ELECTRIC FIELD NOISE

The opposite dependence of the g-factor on electric field for in-plane and out-of-plane
magnetic fields, shown in Figs. 4.3A and 4.4A, suggests that an optimal field angle ex-
ists where the g-factor is first-order insensitive to changes in the out-of-plane electric
field. In earlier works, an optimal angle for silicon nanowires was predicted close to
θ = arctan(g∥/g⊥) [18]. Here, we expect the optimal magnetic field angle close to θ =
arctan(g∥/g⊥)/3 (see Methods). We therefore investigate the angle dependence, shown
in Fig. 4.5A. The g-factor as a function of electric field becomes very flat for angles θ =
0.2◦−0.25◦. For certain magnetic field angles, the Zeeman splitting becomes insensitive
to electric field fluctuations over a wide range of electric field values, which leads to en-
hancement of the spin coherence times. Fig. 4.5B shows the estimated dephasing T⋆

2,⊥
time as a function of electric field, considering fluctuations in Fz at various magnetic
field angles. From the plot, we find sweet spots at an optimal magnetic field angle of
θ = 0.22◦ if we operate the hole spin qubit at electric fields around Fz = 1MV/m. The
optimal field angle is decreased if we operate the qubit at lower electric field. We note,
that current vector magnets already satisfy the required subdegree precision. In a large-
scale germanium quantum processor, each qubit may be brought to its own sweet spot
by tuning the electric field to compensate local variations.
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OPTIMAL MAGNETIC FIELD ANGLE FOR FLUCTUATING CHARGE TRAPS
In Fig. 4.5C we show the dephasing time T⋆

2,tlf originating from randomly positioned two-
level fluctuators (TLFs) averaged over 200 configurations and normalized with respect to
the Lamor frequency. Our results show T⋆

2,tlf in the range 200−500ns for |θ| < 0.25◦, and

T⋆
2,tlf > 1µs for out-of-plane magnetic fields. While a few individual configurations show

the emergence of sweet spots in the operation window 0.5MV/m ≤ Fz ≤ 2.5MV/m that
greatly enhance the noise protection (see Fig. 4.6 in Methods), the averaged results do
not show such a feature. In contrast to out-of-plane electric fluctuations, for suppressing
fluctuating charge traps out-of-plane magnetic field directions are beneficial. We also
see an approximately linear relationship between out-of-plane electric field and T⋆

2,tlf
for all investigated magnetic fields, indicating a strong impact of higher-order multipole
moments. This is in agreement with recent findings that non-separable confinement
with respect to in- and out-of-plane can strongly enhance spin-orbit coupling, thus, the
susceptibility to charge noise [44].

TOTAL OPTIMAL MAGNETIC FIELD ANGLE
The optimal point of operation is then given by the relative strengths of the different
sources of fluctuations and their corresponding dephasing times. For uncorrelated noise
the total dephasing time due to charge noise is given by(

1

T⋆
2,tot

)2

=
(

1

T⋆
2,⊥

)2

+
(

1

T⋆
2,tlf

)2

. (4.12)

Since both contributions are of similar order, T⋆
2,⊥ ≃ T⋆

2,tlf, the global optimum depends
on the exact configuration of the fluctuating charges, thus be device dependent [45]. We
note, since sweet spots for single charge fluctuators [21, 24] or gate electrodes [45] can be
found, a partial sweet spot might be recovered through careful gate calibrations and re-
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Figure 4.5: A, The g-factor of the ground-state as a function of out-of-plane electric field with different mag-
netic field angle when considering nLH = 57 light-hole levels. B, Dephasing time T⋆2,⊥ due to out-of-plane

electric field noise with amplitude Az = 3.5kV/m, plotted as a function of electric field at different magnetic
field angle and strength. C, Dephasing time T⋆2,tlf originating from 11 randomly positioned two-level fluctua-

tors (TLFs) in the quantum dot vicinity, averaged over 200 configurations, and as a function of electric field at
different magnetic field angle. The shaded regions represent standard deviations over the simulated configu-
rations estimated through bootstrapping. D, Rabi frequency as a function of electric field at different magnetic
field angle and strength. The EDSR driving is at in-plane direction with the magnitude Fx = 10kV/m. All four
curves are almost overlapping. In plots B-D, the magnetic field strength is chosen such that for each angle the
Zeeman splittings are equal (2.5 GHz).
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quires further investigations. Furthermore, for hole qubits in natural Ge quantum wells,
dephasing caused by fluctuations of the nuclear spin bath severely limits coherence [15,
46]

A qubit’s quality factor is determined by the number of coherent oscillations within
it’s decoherence time. Therefore, it is also important to consider how the frequency of
coherent oscillations respond to magnetic field angles that yield sweet spots. Fig. 4.5D
shows the Rabi frequency for in-plane driving caused by the cubic Rashba spin-orbit in-
teraction [3, 23]. We note that faster Rabi frequencies are accessible using a non-circular
in-plane confinement [23], a non-separable confinement [44], and local strain varia-
tions [47]. Since we do not see a significant drop in Rabi frequency at small angles, the
sweet spot allows for fast qubit operations combined with long coherence times. The
ability to calibrate each qubit into its own sweet spot with local electric fields can allow
compensating local variations through disorder, opening the possibility to a scalable ar-
chitecture.

4.3. DISCUSSION
In conclusion, we simulated the effective g-factor of hole spins in planar germanium
heterostructures and studied its dependence on the electric field, the magnetic field ori-
entation, and the light-hole level numbers. We observed that the excited light-hole levels
which are not confined by the quantum well have non-negligible contribution to the g-
factor and its derivative with respect to the electric field. When including those light-hole
levels, we find a tunable sweet spot of the g-factor with respect to out-of-plane electric
field if the magnetic field is oriented close to in-plane direction. We note that recent
experimental work reporting a sweet spot for holes in silicon FDSOI supports the op-
portunity for sweet spots for holes in planar germanium [45]. Decoherence is currently
a bottleneck for scaling planar germanium hole qubits [9] thus operating at (scalable)
sweet spots may therefore enable the next step in advancing to larger quantum circuits.

We presented proof-of-principle simulation results by including higher levels and a
realistic heterostructure potential. Our model can be extended to study the response of
hole qubits to decoherence from time-dependent charge noise, g-factor variability from
realistic electrostatic and mechanical potentials.

4.4. METHODS

DERIVATION OF THE VERTICAL CONFINEMENT POTENTIAL FROM STRAIN TEN-
SOR, BAND OFFSET, AND ELECTRIC FIELD

The vertical confinement V⊥(z) of the quantum dot consists of two contributions; align-
ment of the Fermi-energy of the heterostructure giving rise to a band offset and strain in
the quantum well. The band offset is a constant for the different materials and can be ex-
perimentally measured or theoretically computed [48]. Strain is in general a 3×3 strain
tensor ϵ for each band and its effect on the hole states is described by the Bir-Pikusr
Hamiltonian. For simplifications, we only consider in this paper the effect of hydrostatic
strain and uniaxial strain and ignore all shear-strain components (ϵx y = ϵxz = ϵy z = 0).
Consequently, the Bir-Pikus Hamiltonian becomes diagonal in the heavy-hole and light-
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hole basis | j ,m j 〉 = {| 3
2 , 3

2 〉 , | 3
2 ,− 3

2 〉 , | 3
2 , 1

2 〉 , | 3
2 ,− 1

2 〉}
HPB = diag(Pϵ+Qϵ,Pϵ+Qϵ,Pϵ−Qϵ,Pϵ−Qϵ) (4.13)

with the coefficients

Pϵ =−aV (ϵxx +ϵy y +ϵzz ), (4.14)

Qϵ =−bV

2
(ϵxx +ϵy y −2ϵzz ), (4.15)

where aV and bV are the deformation potentials, which strongly depend on the silicon
concentration x in the Six Ge1−x layer of the heterostructure. For x = 20% we use aV =
2.0eV and bV =−2.16eV [3].

Since strain is only present in the quantum well and only depends on the band j =
1
2 , 3

2 and not the sign of the spin, we can rewrite the effect of the band offset and strain as
an effective potential of the form

V⊥(z) =−


0, 0 < z < di

Ul , −dw < z < 0

0, z <−dw

, (4.16)

where l = HH,LH denotes the band. Note, that solely due to the uniaxial strain com-
ponents, the heavy and light-hole degeneracy is lifted inside the quantum well. For our
simulations we use the following parameters UHH = 150meV and ULH = 100meV ex-
tracted from [48] and coincides with the values from [3]. By adding a global electric
potential −eFz z originating from the metallic plunger gate on top we end up with ex-
pression (4.7) in the main text.

DERIVATION OF THE ANALYTICAL WAVEFUNCTIONS AND NUMERICAL SIMU-
LATION
The total Hamiltonian Eq. (4.1) is projected on a set of basis states and then diagonal-
ized numerically. The basis states for the heavy-hole (light-hole) are product states of
in-plane Fock-Darwin wave functions φH(L)

j (x, y) and the derived wave-functions in z-

direction consisting of piece-wise Airy functions

ΨH(L)
j ,k (x, y, z) =φH(L)

j (x, y)ψH(L)
k (z), (4.17)

with

ψH(L)
k (z) =


c H(L)

k,1 Ai
(
uH(L) −ϵH(L)

k − z/ζH(L)
0

)
+ c H(L)

k,2 Bi
(
uH(L) −ϵH(L)

k − z/ζH(L)
0

)
, 0 < z < di

c H(L)
k,3 Ai

(
−ϵH(L)

k − z/ζH(L)
0

)
+ c H(L)

k,4 Bi
(
−ϵH(L)

k − z/ζH(L)
0

)
, −dw < z < 0

c H(L)
k,5 Ai

(
uH(L) −ϵH(L)

k − z/ζH(L)
0

)
, z <−dw

.

(4.18)

Here, Ai and Bi are the conventional Airy functions, ζH(L)
0 = (ħ2/(2mL(H)eFz ))

1
3 and

E H(L)
tri =ħ2/(2mH(L)ζ

H(L)
0 ) are the effective confinement length and energy of the triangu-

lar potential, uH(L) =UH(L)/E H(L)
tri is the effective potential barrier, and ϵH(L)

k = E H(L)
k /E H(L)

tri
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is the effective eigenenergy of the heavy-hole (light-hole) sub-band k. The weighting fac-
tors c H(L)

k,n are defined via the Ben-Daniel-Duke boundary conditions [31, 32]ψp (z = a) =
ψq (z = a) and 1

mH(L)
⊥,p

∂zψp (z = a) = 1
mH(L)

⊥,q

∂zψq (z = a) with (p, q) = (Si0.2Ge0.8,Ge), (Ge,Si0.2Ge0.8)

and a = 0,−dw . Assuming that the effective masses of the heavy-hole (light-hole) in SiGe
are identical to the Ge effective masses, i.e. mH(L)

⊥,Ge = mH(L)
⊥,SiGe and mH(L)

∥,Ge = mH(L)
∥,SiGe, the

boundary conditions become independent of the effective mass, and we arrive at the ex-
pressions in the main text. We notice that this assumption causes an error of 5% in mH

⊥ ,
15% in mL

⊥ and mH
∥ , and 11% in mL

∥ outside the quantum well. We find the eigenener-

gies E H(L)
k of the heavy-hole (light-hole) band via the boundary conditions in Eq. (4.7)

following Ref. [32] but translate it to a computational task of finding roots of a fifth-order
polynomial of the Airy functions. The roots are solved numerically using the Reduce
function in Mathematica. Afterwards, we check and add missing roots using a bisection
algorithm.

The in-plane orbital wave-fucntions are the solution of a 2D harmonic confinement
in the presence of a magnetic field. The general solutions are the Fock-Darwin states

φH(L)
j=(n,l )(x, y) =

√
1

πl 2

n!

(n +|l |)!
exp

(
x2 + y2

2a2
B ,H(L)

)

×
(

x2 + y2

a2
B ,H(L)

) |l |
2

L
|l |
n

(
x2 + y2

a2
B ,H(L)

)
×exp(−i l arctan(y/x)), (4.19)

where L
|l |
n (ξ) are the generalized Laguerre polynomials, aB ,H = 50nm and aB ,L = 42.6nm

are the Bohr radii, and j labels the eigenenergies in ascending order.
For both heavy-hole and light-hole, we use a fixed number of 78 in-plane orbital wave

functions. The expression and the integrals between the in-plane orbits are computed
analytically. In z-direction, we consider nHH heavy-hole sub-bands and nLH light-hole
sub-bands. We observe that the g-factors changes with nLH and saturates as nLH in-
creases. The largest nLH we consider is 57. Contrarily, the number of heavy-hole sub-
bands has a significant smaller impact on the g-factor. The largest nHH we consider is 4.
The numbers of basis states are 78×nHH and 78×nLH for heavy-hole and light-hole. The
total dimension of the projected Hamiltonian is then given by ntot = 156× (nHH +nLH).

We consequently compute the effective g-factor, the ratio of Zeeman splitting to the
magnetic field strength, of the heavy-hole ground state by diagonalizing the projected
Hamiltonian

g = (E1 −E0)/(µB B), (4.20)

where Ei are the energy-sorted eigenvalues.
To find the electric field dependence of the g-factor, the above procedure is repeated

for values of electric field in the interval Fz = 0.5− 3.5MV/m with a step size of ∆Fz =
5× 10−3 MV/m. For each electric field value we compute the z-direction sub-bands of
the heavy-hole and light-hole, construct the basis states, compute the projected total
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Hamiltonian Eq. (4.1), diagonalize the matrix, obtain the eigenvalues and eigenstates,
and finally compute the effective g-factor from the eigenvalues.

To keep the simulation tractable, we truncate the Hilbert space and limit the number
of basis wavefunctions ψH(L). However, due to the dense energy structure of the heavy
and light-hole bands with multiple anti-crossings at higher energies (Fig. 4.2), our choice
of truncations might miss the respective partner eigenstate at an energy anti-crossing.
Together with a finite step size and numerical precision, this leads to small and local fluc-
tuations in the resulting g-factor. While these simulations are not visible in the plots of
the g-factors, these fluctuations can affect the derivative d g (Fz )/dFz and consequently
the dephasing time. To avoid these artifacts in our results, we fit the resulting g-factor
g (Fz ) to a Polynomial in Fz up to fourth order before taking the derivative. We note, that
the results are well-approximated by the fitting.

SIMULATION OF RABI FREQUENCY
Single qubit operations for hole qubits can be implemented by applying an oscillating
electric field, Fξ → Fξ + Fξ,ac sin(2π frest ) with ξ = x, y, z, matching the resonance fre-
quency of the qubit fres = 2µB g (Fx ,Fy ,Fz )B/(2πħ). The dynamics of the driven system
can be best estimated in the adiabatic frame of Hamiltonian (4.1) [49]

Hadiabatic =U †HU − iħU † dU

d t
(4.21)

= Hdiag −2πiħ freseFξ,ac sin(2π frest )U † dU

dFξ
, (4.22)

where U †HU ≡ Hdiag contains only diagonal entries. From the first to the second line, we

used dU
d t = dFξ

d t
dU
dFξ

with
dFξ
d t = 2π fresFξ,ac sin(2π frest ) assuming a linear response and ig-

noring higher-order terms. The resonant transition amplitude between the qubit states
|0〉 and |1〉 is then given in the rotating frame by

〈0|Hadiabatic |1〉 =π freseFξ,ac(1+e4πi frest )〈0|U † ∂U

∂Fξ
|1〉 . (4.23)

By ignoring the counter-rotating term, the so-called rotating wave-approximation, we
end up with expression (4.11) of the main text. Conveniently, this method requires only
knowledge about the instantaneous eigenvectors of the qubit space. The Rabi frequency
is then given by

Ωξ,Rabi =
2

h
| 〈0|Hadiabatic |1〉 |. (4.24)

If we further use the linearity of the driving , i.e., Htot = H+eFξ,ac sin(2π frest )x, the upper
expression can be recast into the more familar expression

Ωξ,Rabi =
1

h
|eFξ,ac 〈0| ξ̂ |1〉 |, (4.25)

where ξ̂= x̂, ŷ , ẑ is the corresponding position operator.
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OPTIMAL MAGNETIC FIELD ANGLE FOR OUT-OF-PLANE FLUCTUATIONS
The emergence of an optimal magnetic field angle can be derived from Hamiltonian (4.1)
of the main text. While this derivation can be easily generalized to arbitrary magnetic
fields, we pursue a magnetic field in the xz-plane B = (B cos(θ),0,B sin(θ))T . To diag-
onalize the heavy-hole state sector we apply the unitary rotation U = e−iφσy /2 with σz

being the Pauli matrix acting only on the heavy-hole space and

φ= arctan

(
4κ+9q

2q
tan(θ)

)
= arctan

(
g⊥
g∥

tan(θ)

)
. (4.26)

Here, κ and q are the isotropic and an-isotropic Zeeman coefficients and g⊥ = 6κ+27q/2
and g∥ = 3q are the out-of-plane and in-plane pure heavy-hole g-factors. While the an-
gle θ describes the rotation of the magnetic field, the angle φ describes the rotation of
the heavy-hole quantization axis. Minimal variation of the g-factor is then expected to
be close toφ= 45◦ where the orbital contributions from in-plane and out-of-plane mag-
netic fields compensate each other [18]. From our simulations, we can see that the ratio

of the slopes ∂g (Fz )
∂Fz

normalized to equal qubit frequencies for θ = 90◦ and θ = 0◦ are not
equal, therefore we end up with θopt ≈ arctan(g∥/g⊥)/3.

OPTIMAL MAGNETIC FIELD ANGLE FOR FLUCTUATING CHARGE TRAPS
The potential caused by a single charge trap, approximated as point-charge, is given by
the Coulomb potential. The potential difference of a two-level fluctuator (TLF) subject
to screening from the metal gates (here assumed to be continuous) is given by

δV j =
( Fc

|r j +δr j |
− Fc

|r j |
− Fc

|r j +δr j + rm| +
Fc

|r j + rm|
)
. (4.27)

The first two terms are the potentials caused by the two meta-stable states of the two-
level fluctuator with the remaining terms being their image charges. Here, ri = (x j , y j ,di )
is the location of the charge trap, δr j with |δr j | = 0.1nm is the displacement vector be-
tween the two metastable charge states of the fluctuating trap, rm = (0,0,2dox)T is the
vector pointing to its mirror charge, and Fc = e/(4πϵ0ϵm) is the coupling strength from
the Coulomb interaction with ϵ and ϵm = 14.67 being the vacuum and material permit-
tivity of SiGe.

We consider 11 randomly positioned charge traps that serve as two-level fluctuators
(TLFs) in a 300nm× 300nm area drawn from a uniform distribution. We furthermore
draw the vector connecting the two meta-stable states of the fluctuator δr j from a uni-
form 3D vector with fixed length |δr j | = 0.1nm. The corresponding potential for a given
configuration reads

Vb =
11∑

j=1
δV j

∣∣∣
δr j →b jδr j

. (4.28)

Here b is a binary vector indicating the current state of each TLF, i.e. 0 for not displaced
and 1 for displaced. For example, (0, · · · ,0)T represents all charge traps in their original
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position. To get the average fluctuations, we compute for each state of the TLFs the
corresponding qubit energy shift

δEbk
= 〈0|Vbk

|0〉−〈1|Vbk
|1〉 , (4.29)

where |0〉 and |1〉 are the qubit states. To speed up the computation, we use instead a
series expansion of the upper expression up to 6th-order in x and y and up to second
order in z. In our simulations, we make use of our analytical expressions and compute
the matrix elements from a general polynomial and substitute later the actual values.

The total fluctuations caused by the TLFs are consequently given by the root-mean-
square with respect to the TLF states

σ2
δE = 1

N 2

∑
k
δE 2

bk
, (4.30)

where N is the number of TLF states. In our simulations, we linearize the problem and
neglect TLF states with more than one excitation. This is a good approximation [39, 41]
and becomes exact if δE(··· ,1,··· ,1··· ) = δE(··· ,1,··· ,0··· ) +δE(··· ,0,··· ,1··· ) and if there is no correla-
tion between the TLFs.

As a final step, we repeat the upper steps for 200 configurations of the 11 TLFs and
average over them.

OPTIMAL MAGNETIC FIELD ANGLE FOR SELECTED INDIVIDUAL FLUCTUAT-
ING CHARGE TRAPS
Fig. 4.6 shows the dephasing time caused by a few selected TLF configurations as a func-
tion of out-of-plane electric field for different magnetic field configurations. Depending
on the configuration, sweet spots can appear for small θ angles (Fig. 4.6A), just out-side
the window of investigation (Fig. 4.6B), and also for θ = 90◦ (Fig. 4.6C).
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Figure 4.6: Dephasing time T⋆2,tlf, caused by three different TLF configurations, as a function of out-of-plane

electric field with different magnetic field angles. A. Emergence of a sweet spot for magnetic fields with small
θ. The sweet spot is robust against small changes in magnetic field orientation. B. Emergence of incomplete
sweet spot features that are highly sensitive to magnetic field orientations. C. Emergence for a sweet spot for
out-of-plane magnetic field similar to the one reported in Ref. [21].
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5
BICHROMATIC RABI CONTROL OF

SEMICONDUCTOR QUBITS

Electrically-driven spin resonance is a powerful technique for controlling semiconductor
spin qubits. However, it faces challenges in qubit addressability and off-resonance driving
in larger systems. We demonstrate coherent bichromatic Rabi control of quantum dot
hole spin qubits, offering a spatially-selective approach for large qubit arrays. By applying
simultaneous microwave bursts to different gate electrodes, we observe multichromatic
resonance lines and resonance anticrossings that are caused by the ac Stark shift. Our
theoretical framework aligns with experimental data, highlighting interdot motion as the
dominant mechanism for bichromatic driving.

Parts of this chapter have been published in V. John, F. Borsoi, Z. György, C.-A. Wang, G. Széchenyi, F. van
Riggelen, W.I.L Lawrie, N.W. Hendrickx, A. Sammak, G. Scappucci, A. Pályi, and M. Veldhorst, Bichromatic
Rabi control of semiconductor qubits, Physical Review Letters 132, 067001 (2024).
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5.1. INTRODUCTION
Spin qubits based on semiconductor quantum dots represent a promising platform for
quantum computing owing to their small qubit footprint, long coherence times, and
compatibility with semiconductor manufacturing techniques [1, 2]. However, the present
control of spin qubit devices relies on a brute force approach, where each qubit is indi-
vidually connected to at least one control line. This approach poses a significant chal-
lenge for scaling to larger systems and is affecting current progress [3, 4]. Multiplexing
strategies will most likely become essential and this has been the motivation for vari-
ous proposals, such as crossbar arrays with shared control [5, 6]. Executing quantum
algorithms requires selective quantum control, but its implementation in large qubit ar-
rays poses significant challenges. Recently, the concept of bichromatic spin resonance
has been proposed to offer addressable microwave control in qubit crossbar architec-
tures [7]. In this approach, two microwave tones with frequencies fw and fb are utilized.
These tones are applied to the word and the bit line of the crossbar array, respectively. By
exploiting the nonlinearity of electric dipole spin resonance (EDSR) [8–16], rotations of
a qubit with Larmor frequency of | fw± fb| at the intersection of the two lines [Fig. 5.1(a)]
can be targeted. This operation scheme presents new opportunities for both spatially
selective qubit addressing and gate parallelization [7]. Analogous two-photon processes
have been utilized in Rydberg-atom processors [17, 18] and superconducting qubits [19]
to optimize qubit performance.

Here, we investigate experimentally and theoretically the bichromatic driving of semi-
conductor spin qubits in a 2-qubit system defined in a strained germanium quantum
well. We find that both qubits can be coherently driven by mixed frequency signals, in-
cluding the sum and difference of the corresponding frequencies. We investigate the oc-
currence of resonance anticrossings in EDSR spectroscopy maps, which originate from
the Autler-Townes (also known as ac Stark) shift of a photon-dressed spin transition.
Additionally, we introduce a model that reveals the importance of spin-conserving and
spin-flip tunneling terms in bi- and monochromatic EDSR.

We investigate bichromatic driving of spin qubits in a two-qubit system within a four-
qubit germanium quantum processor (Figs.5.1b, c) [20, 21]. By tuning the electrostatic
potential using plunger and barrier gates, we confine a single-hole quantum dot under-
neath each of the four plungers P1-P4, and define virtual gate voltages vP1-vP4 based on
P1-P4 to achieve independent control ( [22], Supplementary Note 1). We focus on the
spin qubits Q1 and Q2, while Q3 and Q4 remain in their ground state. We furthermore
define the detuning voltage ϵ12 =vP1−vP2 [23].

5.2. RESULTS

5.2.1. BICHROMATIC EDSR SPECTROSCOPY

Fig.5.1d displays the charge stability diagram of the double quantum dot system, ob-
tained through rf-reflectometry charge sensing [24]. The device is operated in an in-
plane magnetic field of 0.675 T, resulting in qubit frequencies of fQ1 = 1.514 GHz and
fQ2 = 2.649 GHz. To investigate the bichromatic driving approach, we follow the pulse
protocol outlined in Fig.5.2a. We initialise the Q1, Q2 qubits in the |↓↓〉 state by adia-
batically pulsing ϵ12 from the (0, 2) to the (1, 1) charge state via the spin-orbit induced
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Figure 5.1: Bichromatic control of a spin qubit. a, Bichromatic driving in a crossbar architecture. b, False-
color scanning electron microscopy of a 2x2 germanium quantum dot device, nominally identical to the one
used here. c, Illustration of the four-qubit processor. We operate Q1 and Q2 with microwave bursts applied
to P2 and P4. We model qubit rotations via AC detuning modulation (sketched potential). d, Charge stability
diagram of the double quantum dot illustrating the (1, 1) charge sector and the detuning ϵ12 axis (black line).
The white star indicates the gate voltages used for the qubit manipulation stage. The green and blue arrows
indicate the displacement within the vP1, vP2 framework, when applying a microwave burst on P2 and P4,
showcasing the different orientation of the driving fields. The displayed length of the arrows is proportional to
the amplitude of the signal at the device, amplified by a factor of 5 for visibility.

anticrossing. Next, we manipulate the spins by two simultaneous microwave pulses on
plunger gates P2 and P4, with a duration tp and microwave frequencies fP2 and fP4. We
perform such two-tone qubit manipulation at the voltage point indicated in Fig.5.1c cor-
responding to ϵ12 = −20 mV. Finally, we return to the (0, 2) charge sector and perform
read-out using latched Pauli spin blockade [20].

The 2D EDSR spectroscopy in Fig.5.2b reveals resonance lines from monochromatic
and bichromatic spin excitations. Monochromatic qubit transitions labelled as Q1P2,
Q1P4, Q2P2, Q2P4 (with the superscript defining the driving plunger gate) are observed as
vertical and horizontal lines at the corresponding Larmor frequencies. Bichromatic ex-
citations appear as tilted resonance lines, with negative (positive) slopes indicating the
frequency sum (difference) matching the qubit Lamor frequency. Three-photon bichro-
matic excitations can also be observed when a combination of two photons with the
same frequency, and a third one with a different frequency match the qubit Larmor fre-
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Figure 5.2: Bichromatic EDSR spectroscopy. a, Bichromatic control sequence. b, Single-shot probability
versus fP4 and fP2, at ϵ12 = −20 mV. We include three turquoise, blue and purple dotted lines to enclose
the bichromatic resonances of Q2P2,P4, Q1−P2,P4 and Q2−P2,P4 respectively. The broad vertical excitation
at fP4 ∼ 1.8 GHz is associated to a transmission resonance in the lines, and not to a spin transition. c,
d Monochromatic, bichromatic and three-photon bichromatic excitations in the 2D frequency plane, as pre-
dicted by theory. e, Energy diagram of a two-spin system with finite exchange and finite magnetic field. The
green and blue arrows represent the applied microwave frequencies fP2 and fP4, when driving the Q2−P2,P4

transition. Driven spin-flipping processes originate from higher order processes via the S(2,0) state involving
the spin-conserving tunneling term t and spin-flip tunneling term Ω. f, g Coherent Rabi oscillations of the
Q2−P2,P4 and Q2P2,P4 bichromatic transition. The corresponding fP2 and fP4 frequencies are indicated with
the purple and turquoise diamonds in b.

quency.
Figs. 5.2c, d depict the expected resonance lines considering the individual reso-

nance frequencies of the two qubits. The qubits exchange interaction resulting from
interdot tunnelling (55 MHz at ϵ12 = −20 mV, see Section 5.4.3) is taken into account.
To label the Larmor frequency of qubit i when qubit j is in the excited state, we use the
notation Qi _ (with i , j ∈ {1,2} and i ̸= j ). The monochromatic transition from |↓↓〉 to |↑↑〉
driven by P4 is then denoted as (Q1+Q2_)P4. A bichromatic transition can be visualised
as a two-step process via a virtual state, as illustrated in Fig.5.2e. Following perturba-
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tion theory, bichromatic spin transitions are activated thanks to spin-conserving (t ) and
spin-flipping (Ω) tunnelling terms, which hybridize the four possible spin states with the
S(2,0) state, as discussed below and in Suppl. Note 8 [22].

We analyze three resonance lines (dashed lines in Fig.5.2b) resulting from bichro-
matic rotation of Q1 and Q2. The bichromatic Q1 spin resonance (Q1−P2,P4) occurs
when the frequency difference matches the Q1 Larmor frequency. Similarly, Q2 exhibits
bichromatic resonance lines from both frequency difference (Q2−P2,P4) and frequency
sum (Q2P2,P4). The bichromatic spin resonance Q1P2,P4 is not investigated due to the
presence of a high-pass filter (Section 5.4.5). The conditions for the three studied bichro-
matic qubit rotations are: Q1−P2,P4 : fP4− fP2 = fQ1, Q2−P2,P4 : fP4− fP2 = fQ2 and Q2P2,P4 :
fP4 + fP2 = fQ2. At these frequency combinations, we also achieve coherent bichromatic
qubit rotations with a Rabi frequency exceeding 1 MHz, as we demonstrate in Figs. 5.2f,
g and Fig. 5.8, Fig. 5.9, and Fig. 5.10.

5.2.2. ANTICROSSINGS IN THE BICHROMATIC SPECTROSCOPY AND AUTLER-
TOWNES EFFECT

At the intersection of specific resonance lines (see Fig.5.2b), we also observe anticross-
ings (labelled as ACn with n ∈ {1, . . . ,5} in Figs. 5.2c and d). In Fig.5.3, we analyse the evo-
lution of the two bichromatic spin resonances, Q2−P2,P4 and Q2P2,P4, in the frequency
plane. We vary the two microwave frequencies together to follow the two resonance
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Figure 5.3: Modelling the frequency anticrossings due to the Autler-Townes effect. a, c Single-shot prob-
abilities (1−P↓↓) in a frequency range around the bichromatic Q2−P2,P4 and Q2P2,P4 resonance conditions,
respectively. These scans are higher-resolution measurements along the color-coded diagonals enclosed by
two dashed lines in Fig.5.2b. Vertical lines of Fig.5.2b appear horizontal, and horizontal lines appear slightly
tilted (as can be seen with Q1P2 and Q1P4 in d). The values on the fP2 axes are valid at∆ fP2 = 0. b, d Calculated
transitions nearby the Q2−P2,P4 and Q2P2,P4 resonances. e, f Illustration of the driven transitions at the four
anticrossings. Strong driving via P2 induces a photon-dressed spin transition.
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lines, using ∆ fP2 in the range of [-40, 40] MHz centered around the bichromatic reso-
nance. This procedure allows to monitor in detail the Q2 bichromatic spin resonance
within the boxed areas indicated in Fig.5.2b. The bichromatic resonance aligns with the
expected value of ∆ fP2 = 0 for most of the frequency range. However, significant anti-
crossings occur when the resonance intersects with other qubit transitions. Examples
of these anticrossings are observed at specific frequencies, and are labelled as AC5, AC3
(for Q2−P2,P4), and AC4, AC1 (for Q2P2,P4).

The appearance of anticrossings in the frequency plane, such as AC3 in Fig. 5.3a,
result from resonant driving of monochromatic and bichromatic transitions from the
|↓↓〉 state to higher (1,1) states. As shown in Figs. 5.3e-f, AC3 involves three resonant
processes: the bichromatic transition |↓↓〉 ↔ |↓↑〉, the monochromatic P4 drive |↓↓〉 ↔
|↑↑〉, and the monochromatic P2 drive |↓↑〉 ↔ |↑↑〉. Due to the greater driving efficiency
of P2 compared to P4 (see projected amplitudes in Fig. 5.1c), the dominant transition is
|↓↑〉↔ |↑↑〉 (Suppl. Note 8 [22]).

Driving via P2 dresses up the spin states |↓↑〉 and |↑↑〉 with microwave photons. In the
rotating frame where these states are degenerate in the absence of P2 driving, the eigen-
states become dressed in the form |↓↑〉±|↑↑〉p

2
, and the corresponding eigenvalues exhibit

a splitting set by the Rabi frequency. In this context, dressing refers to the coherent in-
teraction between the electromagnetic field and the spin system, resulting in entangled
states of spins and photons becoming the eigenstates of the coupled system.

This effect, known as the Autler-Townes effect or ac Stark shift, has been observed
in quantum optics and in strongly driven superconducting qubits [25, 26]. It is at the
basis of control strategies for highly coherent solid-state qubits [27]. In particular, the
continuous driving can decouple the spin from background magnetic field noise and
thus extend their coherence [28, 29].

Due to the Autler-Townes effect, the resonance frequencies of the two weaker transi-
tions (|↓↓〉↔ |↓↑〉 and |↓↓〉↔ |↑↑〉) are shifted by the Rabi frequency of the strongly driven
|↓↑〉 ↔ |↑↑〉 transition, resulting in the anticrossing between the resonance lines (AC3 in
Figs. 5.3a, b).

We use a two-spin qubit Hamiltonian to model our system and gain a quantitative
understanding. The model considers the lowest orbital in each dot, including four states
in the (1,1) charge regime, as well as the (0,2) and (2,0) singlet states. Spin-conserving
and spin-flip tunneling between the quantum dots are also included, with a coupling
strength of t for spin-conserving transitions and Ω for spin-flip transitions (Suppl. Note
8A [22]). Despite neglecting additional electrical g-tensor modulations [2, 30], this min-
imal model successfully explains electrically driven spin transitions via ac modulation
of the detuning voltage using both monochromatic and bichromatic resonance tech-
niques. Here, spin dynamics occur through virtual transitions between the (1,1) spin
states and the (0,2) and (2,0) singlet states, mediated by the spin-conserving and spin-
flipping terms, as shown in Fig.5.2e.

Our model provides an explanation for the observed resonance crossings and anti-
crossings in Figs. 5.3a, c. Furthermore, by analyzing the five anticrossings AC1 to AC5 us-
ing Floquet theory as discussed in Suppl. Note 8C [22], we estimate the spin-conserving
and spin-flip tunneling energies to be on average t = (18.1± 1.9)µeV and Ω = (14.3±
2.4)µeV (Suppl. Note 8F [22]).
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5.2.3. DEPENDENCE ON DETUNING ENERGY OF DOUBLE QUANTUM DOT

To verify our theoretical description, we investigate the dependence of the Q1−P2,P4 res-
onance anticrossing on the detuning voltage. Experimental data and the expected de-
tuning dependence from the model are shown in Figure 5.4. In the model, we use the
average tunneling amplitudes and vary the detuning voltage. Moreover, we utilise an
estimated detuning lever arm of α = 0.0917 eV/V and quantum dot charging energy of
U = 2.56 meV (Suppl. Note 8B [22]). Our theoretical model accurately captures the di-
minishing size of the anticrossing as the detuning approaches ϵ12 ∼ 0. Both the bichro-
matic and monochromatic resonance lines fade, indicating a reduced efficiency as de-
tuning approaches zero. This is consistent with our model, since the transitions take
place via the S(0,2) and S(2,0) states and in the high detuning limit the transition through
S(0,2) dominates the driving. At zero detuning, the two contributions become equal,

fP2
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1- P
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shifted state

Populated state
Unpopulated state

fit

ϵ12 during manipulation
-22 mV -14 mV

a b c d e f

AC2
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Figure 5.4: Detuning dependence of the frequency anticrossings. a-e, Bichromatic spectroscopy around the
fQ1 = fP4 − fP2 resonance versus detuning voltage. The anticrossing AC2 originates from strong driving of the
|↑↓〉→ |↓↑〉 transition with P2 via the Autler-Townes shift. The AC2 frequency gap narrows down as a function
of detuning voltage due to suppressed virtual transition from the (1, 1) to the (2, 0) charge state. We overlay
the transition lines expected from theory. f, Driven transitions at AC2, displaying the four lowest states from
Fig.5.2c.
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while the Rabi frequency has a minimum.
The diminished efficiency of bichromatic operations near the charge-symmetry point

supports the fundamental role of virtual interdot transitions as the underlying driving
mechanism (Section 5.4.2). In Suppl. Note 8D [22], we discuss the limitations of our
model and suggest that additional mechanisms, such as EDSR induced by g-tensor mod-
ulation, may be necessary to fully interpret all experimental observations [31–33].

5.3. CONCLUSIONS
Electric dipole spin resonance has enabled high-fidelity quantum gates on individual
qubits, but a key challenge is the development of advanced operations for scalable con-
trol. Here, we have established bichromatic control of spin qubits, and turned challenges
in EDSR [14] into an opportunity for addressable qubit control in larger arrays. Moreover,
we showed the relevance of interdot motion in obtaining bichromatic and monochro-
matic driving. Furthermore, as the positions of the observed resonance anticrossings are
predictible from the qubits parameters, we envision that, while on the one hand these
can be exploited for the operation of dressed semiconductor qubits, on the other hand,
these frequencies should be avoided when implementing bichromatic EDSR. Future ex-
periments may focus on the optimization of bichromatic driving, for example by tuning
parameters such as the interdot coupling, aiming to achieve high-fidelity control of large
qubit arrays.
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5.4. EXTENDED DATA

5.4.1. POWER DEPENDENCE OF ANTICROSSING AC2 (Q1−P2,P4, Q2P4)

a b

c

Figure 5.5: Rabi oscillation of Q1P4,−P2 as a function of microwave power applied to the two plunger gates
at ϵ12 = −24 mV. a, EDSR spectroscopy map performed at ac driving power of (PP2,PP4) = (−5,3) dBm. b, c
Rabi oscillations as a function of the power on the P2 and P4 driving gates. Here, the strong P2 driving field
is resonant with the ↑↓↔↓↑ transition. This results in a frequency shift of the Lamor frequency of the ↓↓↔↓↑
transition when sweeping its power. In contrast, the weak P4 probe field does not alter the Lamor frequency,
and sweeping its power leads, in fact, only to an increase in the Rabi frequency. This behaviour is consistent
with the Autler-Townes splitting of the ↑↓- and ↓↑-state. Both plots are performed with fP4 = 2.50GHz and
fP2 = 1.07GHz.
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5.4.2. EDSR SPECTROSCOPY MAP AT ZERO DETUNING
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Figure 5.6: Bichromatic EDSR spectroscopy at zero detuning voltage. We prepare the double quantum dot
system in the ⇊-state, apply the bichromatic control sequence, and measure the 1−P⇊ probability. The major
difference to Fig. 2 is the preparation of the system at zero detuning. In this configuration, only two vertical
and two horizontal lines are observed, the monochromatic transitions Q1 at ∼ 1.60 GHz and Q2 at ∼ 2.55 GHz.
Note that this plot has been taken with fP1 and fP2, instead of fP2 and fP4. However, we have also observed
the absence of the bichromatic signal for fP2 and fP4 when decreasing the detuning.

5.4.3. EXCHANGE COUPLING AT OPERATION POINT

Here, we determine the exchange coupling at our operation point ϵ12 =−20 mV by mea-
suring the resonance frequencies fQ1, fQ1_, fQ2, and fQ2_, defined as:

Q1 :⇊↔↑↓ (5.1)

Q1_ :↓↑↔⇈ (5.2)

Q2 :⇊↔↓↑ (5.3)

Q2_ :↑↓↔⇈ (5.4)

We compare fQ1 with fQ1_, and fQ2, fQ2_, obtaining similar values of 55 MHz for fQ1 and
57 MHz for fQ2.
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Figure 5.7: Determination of exchange interaction via conditional EDSR spectroscopy. a, c, e, g, Pulse se-
quences to prepare the control qubit in the two basis states and probe the target qubit. The blue (green) pulse
is applied on P4 (P2) to control Q1 (Q2). b, d, f, h Measurement results from the corresponding pulse sequences
to probe Q1, Q1_, Q2, and Q2_ respectively. The difference in resonance frequency concludes an exchange in-
teraction of 56 MHz at a voltage of vP1 = -10 mV, and vP2 = 10 mV.

5.4.4. RESONANCE LINE IDENTIFICATION AND RABI ROTATIONS
To identify all the resonance lines of Figs. 3 and 4, we simulate the position of all the
expected lines neglecting the Autler-Townes effect. We can write the considered bichro-
matic transitions as

m · f offset
P2 + fP4 = fQ ,m =±1, (5.5)

where fQ represents the qubit frequencies fQ1 and fQ2. Our expected resonance lines
follow

fres = nP2 · fP2 +nP4 · fP4, (5.6)

where fP2 = f offset
P2 +∆ fP2. Here, fres can be fQ1, fQ2, or fQ1 + fQ2_, and nP2 and nP4 are

integers referring to the considered harmonic. By plugging in Eq. (5.5) into Eq. (5.6), we
obtain

fP4 = fres

m ·nP2 +nP4
+ nP2

m ·nP2 +nP4
· (m · fQ1 −∆ fP2) (5.7)

We use these equations to calculate the expected resonance lines as visible in Fig. 5.8,
Fig. 5.9, and Fig. 5.10.
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Figure 5.8: Coherent Rabi control by bichromatic driving. a, EDSR spectroscopy map of Q1−P2,P4 with two
indicated positions, where Rabi oscillations have been performed. b, c, Rabi oscillation corresponding to the
blue and orange marker in (a). The marker of (c) are shifted 40 MHz away from the bichromatic line because
the power on both plungers had to be increased from -5 to -1 dBm for P2 and from 3 to 5 dBm for P4 to see
any oscillations. d, Rabi oscillations with similar power settings as in (c), but the values of fP2 and fP4 have
been swapped, driving Q1P2,−P4 instead of Q1−P2,P4. This makes the corresponding marker falls outside the
depicted regime shown in (a).
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5.4.5. ATTENUATION
We approximate the amplitude arriving at the device by measuring the attenuation of
the fridge lines of a comparable setup at cryogenic temperature, and the frequency re-
sponse of an equivalent diplexer that is used to combine the microwave signal with the
baseband pulses from the AWG. The measurement data with the Savitzky-Golay filter
can be seen in Fig. 5.11. Since the measurement has only been performed on a similar
setup, this constitutes only an approximation, but the general shape of the attenuation
is expected to be the same.
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Figure 5.11: Attenuation caused by diplexer and fridge cables. Amplitude of the signal arriving at the device
level considering PP4 = 2.5dBm. The signal of P2 with PP2 =−6dBm is approximately the same since it has 8.5
dB less attenuation on the lines. A Savitzky-Golay filter is applied on the data, the result is shown with orange-
dashed line.

5.4.6. MONOCHROMATIC RABI FREQUENCIES
Table 5.1 shows the measured monochromatic Rabi frequencies of the two considered
qubits. Notably, Q1_P4 differs by a factor of two from Q1P4. Pmw is the microwave power
at the output of the signal generator, and corresponds to PP2 for Q1 and PP2 for Q2.

Table 5.1

Transition fres (GHz) tRabi (ns) fRabi (MHz) Pmw (dBm) A (mV)

Q1P4 1.51 42.5 11.76 2.5 2.3

Q1_P4 1.57 88.6 5.65 2.5 2.4

Q2P2 2.65 24.2 20.66 -6.0 2.3

Q2_P2 2.74 22.6 22.1 -5.8 2.2
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6
COHERENT SPIN QUBIT SHUTTLING

THROUGH GERMANIUM QUANTUM

DOTS

Quantum links can interconnect qubit registers and are therefore essential in networked
quantum computing. Semiconductor quantum dot qubits have seen significant progress
in the high-fidelity operation of small qubit registers but establishing a compelling quan-
tum link remains a challenge. Here, we show that a spin qubit can be shuttled through
multiple quantum dots while preserving its quantum information. Remarkably, we achieve
these results using hole spin qubits in germanium, despite the presence of strong spin-orbit
interaction. In a minimal quantum dot chain, we accomplish the shuttling of spin basis
states over effective lengths beyond 300 µm and demonstrate the coherent shuttling of su-
perposition states over effective lengths corresponding to 9 µm, which we can extend to
49 µm by incorporating dynamical decoupling. These findings indicate qubit shuttling
as an effective approach to route qubits within registers and to establish quantum links
between registers.

Parts of this chapter have been published in F. van Riggelen-Doelman, C.-A. Wang, S.L. de Snoo, W.I.L. Lawrie,
N.W. Hendrickx, M. Rimbach-Russ, A. Sammak, G. Scappucci, C. Déprez, and M. Veldhorst, Coherent spin
qubit shuttling through germanium quantum dots, Nature Communication 15, 5716 (2024).

103



6

104 6. COHERENT SPIN QUBIT SHUTTLING THROUGH GERMANIUM QUANTUM DOTS

6.1. INTRODUCTION

The envisioned approach for semiconductor spin qubits towards fault-tolerant quan-
tum computation centers on the concept of quantum networks, where qubit registers
are interconnected via quantum links [1]. Significant progress has been made in control-
ling few-qubit registers [2, 3]. Recent efforts have led to demonstrations of high fidelity
single- and two-qubit gates [4–7], quantum logic above one Kelvin [8–10] and operation
of a 16 quantum dot array [11]. However, scaling up to larger qubit numbers requires
changes in the device architecture [12, 13].

Inclusion of short-range and mid-range quantum links could be particularly effective
to establish scalability, addressability, and qubit connectivity. The coherent shuttling
of electron or hole spins is an appealing concept for the integration of such quantum
links in spin qubit devices. Short-range coupling, implemented by shuttling a spin qubit
through quantum dots in an array, can provide flexible qubit routing and local address-
ability [14, 15]. Moreover, it allows to increase connectivity beyond nearest-neighbour
coupling and decrease the number of gates needed to execute algorithms. Mid-range
links, implemented by shuttling spins through a multitude of quantum dots, may en-
tangle distant qubit registers for networked computing and allow for qubit operations at
dedicated locations [14, 16–18]. Furthermore, such quantum buses could provide space
for the integration of on-chip control electronics [1], depending on their footprint.

The potential of shuttling-based quantum buses has stimulated research on shut-
tling electron charge [19–21] and spin [15, 22–29]. While nuclear spin noise prevents
high-fidelity qubit operation in gallium arsenide, demonstrations of coherent transfer
of individual electron spins through quantum dots are encouraging [22–26]. In silicon,
qubits can be operated with high-fidelity and this has been employed to displace a spin
qubit in a double quantum dot [15, 27]. Networked quantum computers, however, will
require integration of qubit control and shuttling through chains of quantum dots, in-
corporating quantum dots that have at least two neighbours.

Meanwhile, quantum dots defined in strained germanium (Ge/SiGe) heterostruc-
tures have emerged as a promising platform for hole spin qubits [30, 31]. The high
quality of the platform allowed for rapid development of single spin qubits [32, 33],
singlet-triplet qubits [34–36], a four qubit processor [2], and a 4×4 quantum dot array
with shared gate control [11]. While the strong spin orbit interaction allows for fast and
all-electrical control, the resulting anisotropic g -tensor [31, 37] complicates the spin dy-
namics and may challenge the feasibility of a quantum bus.

Here, we demonstrate that spin qubits can be shuttled through quantum dots. These
experiments are performed with two hole spin qubits in a 2×2 germanium quantum dot
array. Importantly, we operate in a regime where we can implement single qubit logic
and coherently transfer spin qubits through an intermediate quantum dot. Furthermore,
by performing experiments with precise voltage pulses and sub-nanosecond time reso-
lution, we can mitigate finite qubit rotations induced by spin-orbit interactions. In these
optimized sequences we find that the shuttling performance is limited by dephasing and
can be extended through dynamical decoupling.
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Figure 6.1: Coherent shuttling of hole spin qubits in germanium double quantum dots - schematics and
detuning axes. a, False colored scanning electron microscope image of a representative quantum dot device.
The quantum dots are formed under the plunger gates (light blue) and separated by barrier gates (dark blue)
which control the tunnel couplings. A single hole transistor is defined by the yellow gates and is used as charge
sensor. The scale bar corresponds to 100 nm. Unless specified otherwise, an external magnetic field of 0.25 T
is applied in the direction indicated by the arrow. b, Schematic showing the principle of bucket-brigade-mode
shuttling. The detuning energy ϵ23/34 between the two quantum dots is progressively changed such that it
becomes energetically favorable for the hole to tunnel from one quantum dot to another. c, e, Schematic il-
lustrating the shuttling of a spin qubit between QD2 and QD3 (e) and between QD3 and QD4 (i). d, f, Charge
stability diagrams of QD2-QD3 (f) and QD3-QD4 (j). To shuttle the qubit from one site to another, the virtual
plunger gate voltages are varied along the detuning axis (white arrow), which crosses the interdot charge tran-
sition line.
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Figure 6.2: Coherent shuttling of hole spin qubits in germanium double quantum dots - measurement re-
sults. a, Schematic of the pulses used for the shuttling experiments shown in (b) and (c), where the resonance
frequency of the qubit is probed after the application of a detuning pulse using a 4 µs EDSR pulse. b, c Probing
of the resonance frequency along the detuning axis for the double quantum dot QD2-QD3 (b) and QD3-QD4
(c). The ramp time used to change the detuning is 40 ns for the measurement shown in (b) and 12 ns for the
measurement shown in (c). Nearby the charge transition, the resonance frequency cannot be resolved due
to a combination of effects discussed in Section 6.8.1. d, Schematic of the pulses used for coherent shuttling
experiments of which the results are shown in (e) and (f). The qubit is prepared in a superposition state us-
ing a π/2 pulse and is transferred to the empty quantum dot with a detuning pulse of varying amplitude, and
then brought back to its initial position after an idle time. After applying another π/2 pulse we readout the
spin state. e, f, Coherent free evolution of a qubit during the shuttling between QD2-QD3 (e) and QD3-QD4
(f). Since the Larmor frequency varies along the detuning axes, the qubit initialized in a superposition state
acquires a phase that varies with the idle time resulting in oscillations in the spin-up P↑ probabilities.
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6.2. RESULTS

6.2.1. COHERENT SHUTTLING OF SINGLE HOLE SPIN QUBITS

Fig. 6.1.a shows a germanium 2×2 quantum dot array identical to the one used in the ex-
periment [2]. The chemical potentials and the tunnel couplings of the quantum dots are
controlled with virtual gates (vPi, vBij), which consist of combinations of voltages on the
plunger gates and the barrier gates. We operate the device with two spin qubits in quan-
tum dots QD1 and QD2 and initialised the |↓↓〉 state (see Section 6.4). We use the qubit
in QD1 as an ancilla to readout the hole spin in QD2, using latched Pauli spin blockade
[2, 38, 39]. The other qubit starts in QD2 and is shuttled to the other quantum dots by
changing the detuning energies (ϵ23/34) between the quantum dots (Fig. 6.1.b, c and e).
The detuning energies are varied by pulsing the plunger gate voltages as illustrated in
Fig. 6.1.d and f. Additionally, we increase the tunnel couplings between QD2-QD3 and
QD3-QD4 before shuttling to allow for adiabatic charge transfer. The hole carrying the
spin remains in its orbital ground state and with increasing |ϵ|, the charge becomes local-
ized in the quantum dot with the lowest chemical potential as displayed in Fig. 6.1.b. In
our experiments, we tune to have adiabatic evolution with respect to charge, and study
adiabatic and diabatic shuttling with respect to spin.

The g -tensor of hole spin qubits in germanium is sensitive to the local electric field.
Therefore, the Larmor frequency ( fL) is different in each quantum dot [32–34]. We ex-
ploit this effect to confirm the shuttling of a hole spin from one quantum dot to another.
In Fig. 6.2.a. we show the experimental sequence used to measure the qubit resonance
frequency, while changing the detuning to transfer the qubit. Fig 6.2.b (c) shows the ex-
perimental results for spin transfers from QD2 to QD3 (QD3 to QD4). Two regions can be
clearly distinguished in between which fL varies by 110 (130) MHz. This obvious change
in fL clearly shows that the hole is shuttled from QD2 to QD3 (QD3 to QD4) when apply-
ing a sufficiently large detuning pulse. To investigate whether such transfer is coherent,
we probe the free evolution of qubits prepared in a superposition state after applying a
detuning pulse (Fig. 6.2.d) [27]. The resulting coherent oscillations are shown in Fig. 6.2.e
(f). They are visible over the full range of voltages spanned by the experiment and arise
from a phase accumulation during the idle time. Their frequency fosc is determined by
the difference in resonance frequency between the starting and the end points in detun-
ing as shown in Fig. 6.9. The abrupt change in fosc marks the point where the voltage
pulse is sufficiently large to transfer the qubit from QD2 to QD3 (QD3 to QD4). These
results clearly demonstrate that single hole spin qubits can be coherently transferred.

6.2.2. THE EFFECT OF STRONG SPIN-ORBIT INTERACTION ON SPIN SHUT-
TLING

The strong spin-orbit interaction in our system has a significant impact on the spin dy-
namics during the shuttling. It appears when shuttling a qubit in a |↓〉 state between
QD2 and QD3 using fast detuning pulses with voltage ramps of 4 ns. Doing this gener-
ates coherent oscillations shown in Fig. 6.3.b that appear only when the qubit is in QD3.
They result from the strong spin-orbit interaction and the use of an almost in-plane mag-
netic field [40]. In this configuration, the direction of the spin quantization axis depends
strongly on the local electric field [35, 37, 41–43] and can change significantly between
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Figure 6.3: Rotations induced while shuttling by the difference in quantization axes. a, Schematic explaining
the effect of the change in quantization axis direction that the qubit experiences during the shuttling process.
The difference in quantization axis between quantum dots is caused by the strong spin-orbit interaction. b,
Oscillations induced by the change in quantization axis while shuttling diabatically a qubit in a |↓〉 state be-
tween QD2 and QD3. Ramp times of 4 ns are used for the detuning pulses. Note that the oscillations have a
reduced visibility, meaning that the difference in quantization axes does not induce a full spin flip. The angle
between the quantization axes of the two quantum dots can be estimated from the amplitude of the oscilla-
tions, see Section 6.8.2. c, Oscillations due to the change in quantization axis at a fixed point in detuning, as
function of the voltage pulse ramp time used to shuttle the spin. When the ramp time is long enough, typically
above 30 ns, the spin is shuttled adiabatically and the oscillations vanish. d, Magnetic-field dependence of the
oscillations induced by the difference in quantization axis. e, Frequency of the oscillations fosc induced by the
change in quantization axis as a function of magnetic field for different shuttling processes. The oscillation fre-
quency fosc for QD3 is extracted from measurements displayed in (d) (and similar experiments for the other
quantum dot pairs) and is plotted with points. fosc scales linearly with the magnetic field. Comparing fosc
with resonance frequencies measured using EDSR pulses (data points depicted with stars) reveals that fosc is
given by the Larmor frequency of the quantum dot towards which the qubit is shuttled (black label).
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neighbouring quantum dots. Therefore, rapid shuttling of a hole results in a change of
angle between the spin state and the local spin quantization axis. In particular, a qubit
in a basis state in QD2 becomes a qubit in a superposition state in QD3 when it is shut-
tled diabatically with respect to the change in quantization axis. Consequently, the spin
precesses around the quantization axis of QD3 until it is shuttled back (Fig. 6.3.a). This
leads to qubit rotations and the aforementioned oscillations.

While these oscillations are clearly visible for voltage pulses with ramp times tramp

of few nanoseconds, they fade as the ramp times are increased, as shown in Fig. 6.3.c,
and vanish for tramp > 30 ns. The qubit is then transferred adiabatically, can follow the
change in quantization axis and therefore remains in the spin basis state in both quan-
tum dots. From the visibility of the oscillations, we estimate that the quantization axis of
QD3 (QD4) is tilted by at least 42◦ (33◦) compared to the quantization axis of QD2 (QD3).
These values are corroborated by independent estimations made by fitting the evolution
of fL along the detuning axes (see Section 6.8.2).

Fig. 6.3.d and Fig. 6.3.e display the magnetic field dependence of the oscillations gen-
erated by diabatic shuttling. Their frequencies fosc increase linearly with the field and
match the Larmor frequencies fL measured for a spin in the target quantum dot. This
is consistent with the explanation that the oscillations are due to the spin precessing
around the quantization axis of the second quantum dot.

6.2.3. SHUTTLING PERFORMANCE

To quantify the performance of shuttling a spin qubit, we implement the experiments
depicted in Fig. 6.4.a, c and d [15, 27] and study how the state of a qubit evolves de-
pending on the number of subsequent shuttling events. For hole spins in germanium,
it is important to account for rotations induced by the spin-orbit interaction. This can
be done by aiming to avoid unintended rotations, or by developing methods to correct
them. An example of the first approach is transferring the spin qubits adiabatically. This
implies using voltage pulses with ramps of tens of nanoseconds, which are significant
with respect to the dephasing time. However, this strongly limits the shuttling perfor-
mance (see Fig. 6.14). Instead, we can mitigate rotations by carefully tuning the duration
of the voltage pulses, such that the qubit performs an integer number of 2π rotations
around the quantization axis of the respective quantum dot. This approach is demand-
ing, as it involves careful optimization of the idle times in each quantum dot as well as
the ramp times, as depicted in Fig. 6.4.b. However, it allows for fast shuttling, with ramp
times of typically 4 ns and idle times of 1 ns, significantly reducing the dephasing ex-
perienced by the qubit during the shuttling. We employ this strategy in the rest of our
experiments.

We first characterize the shuttling of a spin qubit initialized in a basis state. We do
this by preparing a qubit in a |↑〉 or |↓〉 state and transferring it multiple times between
the quantum dots. Fig. 6.5.a and b display the spin-up fraction P↑ measured as a function
of the number of shuttling steps n. The probability of ending up in the initial state shows
a clear exponential dependence on n. No oscillations of P↑ with n are visible, confirming
that the pulses have been successfully optimized to account for unwanted spin rotations.
We extract the characteristic decay constants n∗ by fitting the data for the shuttling of
qubits prepared in |↑〉 and |↓〉 states separately as they originate from distinct sets of
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Figure 6.4: Quantifying the performance for the shuttling of basis states in double quantum dots - pulse
sequences. a, Schematic of the pulse sequence used for quantifying the performance of shuttling basis states
(blue) or a superposition state (grey). The spin qubit is prepared in the quantum dot where the shuttling
experiment starts, by either applying an identity gate (shuttling a |↓〉 state), a (π)X pulse (shuttling a |↑〉 state)
or (π/2)X pulse (shuttling a superposition state, also referred to as Ramsey shuttling experiments). Detuning
pulses are applied to the plunger gates to shuttle the hole from one quantum dot to another, back and forth,
and finally the appropriate pulses are applied to prepare for readout. Moving the qubit from one quantum
dot to another is counted as one shuttling event n = 1. Since the hole always needs to be shuttled back for
readout, n is always an even number. The schematic shows an example for n = 6. b, Zoom-in on the detuning
pulses used for the shuttling. To make an integer number of 2π rotation(s) around the quantization axis of the
second quantum dot, all ramp and idle times in the pulse need to be optimized. c, Pulse sequence used for
implementing a Hahn echo shuttling experiment. In the middle of the shuttling experiment, an echo pulse
(π)X is applied in the quantum dot where the spin qubit was initially prepared. Example for n = 12. d, Pulse
sequence for a CPMG shuttling experiment. Two (π/2)Z(π)X pulses are inserted between the shuttling pulses.
Example for n = 24.
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Figure 6.5: Quantifying the performance for the shuttling coherent spin states in double quantum dots -
results. a, b, Spin-up probabilities P↑ measured after shuttling n times a qubit prepared in a spin basis state
between QD2 and QD3 (c) and between QD3 and QD4 (d). The decay of P↑ as a function of n is fitted to
an exponential function P↑ = P0 exp(−n/n∗)+Psat. c, d, Performance of the shuttling of superposition state
between QD2 and QD3 (g) and QD2 and QD3 (h) for different shuttling sequences. The decay of the coherent
amplitude A of the superposition state are fitted by A0 exp(−(n/n∗)α) whereα is a fitting parameter. The error
bars indicate one standard deviation from the best fits.
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experiments. In all cases, we find a characteristic decay n∗ ≃ 3000 shuttles between
quantum dots, corresponding to a polarization transfer fidelities of F = exp(−1/n∗) ≃
99.97 % per shuttle within the sequence. This is similar to the fidelities reached in silicon
devices [6, 27], despite the anisotropic g -tensors due to the strong spin-orbit interaction
in our platform.

The exponential decay of the spin polarization to approximately 0.5 can emerge from
different effects. At the charge anticrossing, the spin polarization life time is strongly re-
duced (see Fig. 6.16), due to high frequency charge noise and coupling to phonons [44].
Passing the charge anticrossing repeatedly thus leads to a randomization of the spin.
Moreover, while the qubit starts in a basis state, it undergoes coherent rotations due to
the diabatic spin shuttling and thus it is in a superposition state in the second quan-
tum dot. The qubit, although initially in the spin basis state, then becomes sensitive to
dephasing which can also lead to an exponential decay of P↑. The experimental decay
observed probably results from a combination of these mechanisms.

We emphasize that the exact impact of dephasing on the performances of the shut-
tling of spin basis state depends on the difference in quantization axes of the quantum
dots and on the pulse sequence used (see Section 6.6). In our experiment, the dephas-
ing is probably mitigated by a decoupling effect induced by repeatedly waiting in the
initial quantum dot (see explanation in Section 6.6). While extrapolating this result to a
long chain of quantum dots is not straightforward, similar noise-averaging effects may
occur in the presence of spatially correlated noise in the chain [45]. In the absence of
decoupling effects and for the purpose of shuttling basis states, adiabatic shuttling still
provides a good alternative as we find n∗ to remain above 1000, corresponding to fideli-
ties per shuttle within the sequence above 99.90 % (see Section 6.7.1).

We now focus on the performance of coherent shuttling. We prepare a superposi-
tion state via an EDSR (π/2)X pulse, shuttle the qubit, apply another π/2 pulse and mea-
sure the spin state. Importantly, one must account for ẑ-rotations experienced by the
qubits during the experiments and the corresponding phase accumulation defined with
respect to the qubit rotating frame in the initial quantum dots. The latter can be equiv-
alently defined with respect to the lab frame. Therefore, we vary the phase of the EDSR
pulse ϕ for the second π/2 pulse i.e. the final pulse is a (φ)Z(π/2)X = (π/2)φ pulse. For
each n, we then extract the amplitude A of the P↑ oscillations that appear as function of
ϕ [15, 27]. Fig. 6.5.c, d show the evolution of A as a function of n for shuttling between
adjacent quantum dots. We fit the experimental results using A0 exp(−(n/n∗)α) and find
characteristic decay constants n∗

23 = 64±1 and n∗
34 = 77±2. Remarkably, these numbers

compare favourably to n∗ ≃ 50 measured in a SiMOS electron double quantum dot [27],
where the spin-orbit coupling is weak.

The exponents, α23 = 1.36± 0.05 and α34 = 1.28± 0.06, characterize the spectrum
of the noise experienced by the qubit while it is shuttled and suggest that the noise is
neither purely quasi static nor white. The non-integer values of α contrast with obser-
vations in silicon [15, 27], and suggest that the shuttling of hole spins in germanium is
limited by other mechanisms. Two types of errors can be distinguished. Errors may oc-
cur during the diabatic part of the spin dynamics. On the other hand, errors can also be
induced by the dephasing experienced by the qubits during the finite time spent in each
quantum dot, including the ramp times (see Section 6.6). To investigate the effect of de-
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phasing, we modify the shuttling sequence and include a (π)X echoing pulse in the mid-
dle as displayed in Fig. 6.4.d. We note that the echoing pulses are defined with respect
to the rotating frame of the qubit in the starting quantum dots. Fig. 6.5.c and d show
the experimental results and it is clear that in germanium the coherent shuttling perfor-
mance is improved significantly using an echo pulse: we can extend the shuttling by a
factor of four to five, reaching a characteristic decay of more than 300 shuttles. Similarly,
the use of CPMG sequences incorporating two decoupling (π/2)Z(π)X pulses (Fig. 6.4.d)
allows further, although modest, improvements. These enhancements in the shuttling
performance confirm that dephasing is limiting the shuttling performance, contrary to
observations in SiMOS [27]. We speculate that the origin of the difference is two-fold.
Firstly, due to the stronger spin-orbit interaction, the spin is more sensitive to charge
noise, resulting in shorter dephasing times. Secondly, the excellent control over the po-
tential landscape in germanium allows minimizing the errors which are due to the shut-
tling itself.

While the results obtained for the diabatic shuttling in germanium double quantum
dots are similar to those attained in silicon devices for adiabatic shuttling [15, 27], one
should be careful in comparing and extrapolating them to predict the performance of
shuttling through longer quantum dot chains. Quantum dot chains that would allow to
couple spin qubits over appreciable length scales will put higher demands on tuning,
on uniformity, and the ability to tune all couplings. Moreover, a qubit shuttled through a
chain may probe different noise environments which can further affect the performance.

6.2.4. SHUTTLING THROUGH INTERMEDIATE QUANTUM DOTS

For distant qubit coupling, it is essential that a qubit can be coherently shuttled through
chains of quantum dots. This is more challenging, as it requires control and optimiza-
tion of a larger amount of parameters while more noise sources may couple to the sys-
tem. Within a chain, a quantum dot will have at least two neighbours. To transport spin
states from one site to another they have to pass through intermediates quantum dots.
Therefore, an array of three quantum dots could be considered as the minimum size to
explore the performance of shuttling in a chain.

We perform two types of experiments to probe the shuttling through chains of quan-
tum dots, labelled corner shuttling and triangular shuttling. Fig. 6.6.b shows a schematic
of the corner shuttling, which consists of transferring a qubit from QD2 to QD3 to QD4

and back along the same route. The triangular shuttling, depicted in Fig. 6.6.c, consists
of shuttling the qubit from QD2 to QD3 to QD4, and then directly back to QD2, without
passing through QD3 (for the charge stability diagram QD4-QD2 and a detailed descrip-
tion see Section 6.8.4).

To probe the feasibility of shuttling through a quantum dot, we first measure the free
evolution of a superposition state while varying the detuning between the respective
quantum dots. The results are shown in Fig 6.6.a. We find a remarkably clear coherent
evolution for hole spin transfer from QD2 to QD3 to QD4 and to QD2. We observe one
sharp change in the oscillation frequency for each transfer to the next quantum dot. We
also note that after completing one round of the triangular shuttling, the phase evolu-
tion becomes constant, in agreement with a qubit returning to its original position. We
thereby conclude that we can shuttle through quantum dots as desired.
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Figure 6.6: Coherent shuttling through quantum dots - free evolution and schematics. a, Results of free
evolution experiments, similar to those displayed in Fig. 6.2.e and f for the corner and triangular shuttling pro-
cesses. In these experiments, the amplitude of the detuning pulse is increased in steps, in order to shuttle a
qubit from QD2 to QD3 and back (top panel), from QD2 to QD3 to QD4 and back (second panel). The measure-
ment in the third panel is identical to the measurement in the second panel, but the final point in the charge
stability diagram is stepped towards the charge degeneracy point between QD2 and QD4. In the bottom panel
the qubit is shuttled in a triangular fashion: from QD2 to QD3 to QD4 to QD2. The ramp times for this experi-
ment are chosen in such a way that the shuttling is adiabatic with respect to the changes in quantization axis.
b, c, Schematic illustrating the shuttling of a spin qubit around the corner: from QD2 to QD3 to QD4 and back
via QD3 (b) and in a triangular fashion: from QD2 to QD3 to QD4 and directly back to QD2 (c). The double
arrow from QD4 to QD2 indicates that this pulse is made in two steps, in order for the spin to shuttle via the
charge degeneracy point of QD4 - QD2 and avoid crossing charge transition lines.
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Figure 6.7: Coherent shuttling through quantum dots. a, c, Performance for the corner shuttling (a) and the
triangular shuttling (c) of a qubit prepared in the basis states. b, d, Performance for shuttling a qubit prepared
in a superposition state for the corner shuttling (b) and the triangular shuttling (d) and for different shuttling
sequences. Shuttling performance for different processes are summarized in Table 6.1. The error bars indicate
one standard deviation from the best fits.
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We now focus on quantifying the performance of shuttling through quantum dots
by repeated shuttling experiments. To allow comparisons with previous experiments,
we define n as the number of shuttling steps between two quantum dots. Meaning that
one cycle in the corner shuttling experiments results in n = 4, while a loop in triangular
shuttling takes n = 3 steps. The results for shuttling basis states are shown in Fig. 6.7.a
and Fig. 6.7.c. We note that the spin polarization decays faster compared to the shuttling
in double quantum dots, in particular for the triangular shuttling. The corresponding
fidelities per shuttle within the sequence are F ≃ 99.96 % for the corner shuttling and
F ≥ 99.63 % for the triangular shuttling.

For the corner shuttling, the faster decay of the basis states suggests a slight increase
of the systematic error per shuttling. This may originate from the use of a more elabo-
rated pulse sequence, which makes pulse optimization more challenging. Nonetheless,
the characteristic decay constant n∗ remains above 2000 and corresponds to effective
distances beyond 300 µm (taking a 140 nm quantum dot spacing). The fast decay for
the triangular shuttling is likely originating from the diagonal shuttling step. The tunnel
coupling between QD2 and QD4 is low and more challenging to control, due to the ab-
sence of a dedicated barrier gate. The low tunnel coupling demands slower ramp times
(tramp ≃ 36 ns) for the hole transfer. This increases the dephasing experienced by the
qubit during each shuttle and also the time spent close to the (1,1,0,0)-(1,0,0,1) charge
degeneracy point, where fast spin randomization will likely occur.

Remarkably, we find that the performance achieved for coherent corner shuttling
(as shown in Fig. 6.7.b) are comparable to those of coherent shuttling between neigh-
bouring quantum dots. This stems from the performance being limited by dephasing.
However, the performance for the CPMG sequence appears inferior when compared to
the single echo-pulse sequence. Since the shuttling sequence becomes more complex,
we speculate that it is harder to exactly compensate for the change in quantization axes.
Imperfect compensation may introduce errors, which are not fully decoupled using the
CPMG sequence. Alternatively, simulations shown in Fig. 6.13 suggest that the decou-
pling achieved using a CPMG sequence depends on the idle time in the initial quantum
dots. For an idle time corresponding to a (2k +1)π (with k an integer) phase accumula-
tion, the decoupling achieved using either an ideal echo or a CPMG sequence is very sim-
ilar. In such a scenario, the effect of imperfect decoupling pulses would become more
apparent in a CMPG sequence and would lead to decreased performance.

The performance of the coherent triangular shuttling, displayed in Fig. 6.7.d, fall
short compared to the corner shuttling. Yet, the number of shuttles reached remains lim-
ited by dephasing as shown by the large improvement of n∗ obtained using dynamical
decoupling. The weaker performance are thus predominantly a consequence of the use
of longer voltage ramps. A larger number of coherent shuttling steps may be achieved
by increasing the diagonal tunnel coupling, which could be obtained by incorporating
dedicated barrier gates.

6.3. CONCLUSION
We have demonstrated coherent spin qubit shuttling through quantum dots. While holes
in germanium provide challenges due to an anisotropic g -tensor, we find that spin basis
states can be shuttled n∗ = 2230 times and coherent states up to n∗ = 67 times and even
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up to n∗ = 350 times when using echo pulses. The small effective mass and high uni-
formity of strained germanium allow for a comparatively large quantum dot spacing of
140 nm. This results in effective length scales for shuttling basis states of lspin = 312 µm
and for coherent shuttling of lcoh = 9 µm. By including echo pulses we can extend the ef-
fective length scale to lcoh = 49µm. These results compare favourably to effective lengths
obtained in silicon [15, 27–29]. However, we note that, in general, extrapolating the per-
formance of shuttling experiments over few sites to predict the performance of practical
shuttling links requires caution. Quantum dot chains that would allow to couple spin
qubits over appreciable length scales will put higher demands on tuning, uniformity,
and the ability to tune all the couplings, making the optimization of the shuttling more
challenging. Moreover, the spin dynamics and thus the coherent shuttling performance
will depend on the noise in the quantum dot chain. For example, if the noise is local,
echo pulses may prove less effective. However, in that case, motional narrowing [22, 25,
29, 45–47] may facilitate the shuttling.

Furthermore, operating at even lower magnetic fields will boost the coherence times
[4, 37, 40] and thereby increase the shuttling performance. Moreover, at lower magnetic
fields the Larmor frequency is lower, which eases the requirements for the precision of
the timing of the shuttling pulses. At very low fields, charge noise might not be the lim-
iting noise source anymore and even further improvements may be achieved exploiting
purified germanium [4, 37, 40]. Finally, shuttling could help mitigate problems in qubit
addressability which may arise at low magnetic field.

While we have focused on bucket-brigade-mode shuttling, our results also open the
path to conveyor-mode shuttling in germanium, where qubits would be coherently dis-
placed in propagating potential wells using shared gate electrodes. This complementary
approach holds promise for making scalable mid-range quantum links and has recently
been successfully investigated in silicon [29], though on limited length scales. For holes
in germanium, the small effective mass and absence of valley degeneracy will be bene-
ficial in conveyor-mode shuttling. Rotations induced by the spin-orbit interaction while
shuttling in conveyor-mode could be compensated by applying an appropriate EDSR
pulse after the qubit transfer. Such methods could also be used in bucket-brigade-mode
shuttling, as suggested by preliminary experiments shown in Section 6.7.2. It may allow
for even faster qubit transfers and thus shuttling over longer distances.

Importantly, quantum links based on shuttling and spin qubits are realized using the
same manufacturing techniques. Their integration in quantum circuits may provide a
path toward networked quantum computing.

6.4. METHODS

MATERIALS AND DEVICE FABRICATION

The device is fabricated on a strained Ge/SiGe heterostructure grown by chemical vapour
deposition [30, 48]. From bottom to top the heterostructure is composed of a 1.6 µm
thick relaxed Ge layer, a 1µm step graded Si1−x Gex (x going from 1 to 0.8) layer, a 500 nm
relaxed Si0.2Ge0.8 layer, a strained 16 nm Ge quantum well, a 55 nm Si0.2Ge0.8 spacer layer
and a < 1 nm thick Si cap. Contacts to the quantum well are made by depositing 30 nm
of aluminium on the heterostructure after etching of the oxidized Si cap. The contacts
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are isolated from the gate electrodes using a 7 nm aluminium oxide layer deposited by
atomic layer deposition. The gates are defined by depositing Ti/Pd bilayers. They are
separated from the each other and from the substrate by 7 nm of aluminium oxide.

EXPERIMENTAL PROCEDURE
To perform the experiments presented, we follow a systematic procedure composed of
several steps. We start by preparing the system in a (1,1,1,1) charge state with the hole
spins in QD1 and QD2 initialized in a |↓〉 state, while the other spins are randomly initial-
ized. Subsequently, QD3 and QD4 are depleted to bring the system in a (1,1,0,0) charge
configuration. After that, the virtual barrier gate voltage vB12 is increased to isolate the
ancilla qubit in QD1. The tunnel couplings between QD2 and QD3 and, depending on
the experiment, between QD3 and QD4 are then increased by lowering the correspond-
ing barrier gate voltages on vB23 and vB34. This concludes the system initialization.

Thereafter, the shuttling experiments are performed. Note that to probe the shut-
tling between QD3 and QD4, the qubit is first transferred adiabatically (with respect to
the change in quantization axis) from QD2 to QD3. To determine the final spin state af-
ter the shuttlings, the qubit is transferred back adiabatically to QD2. Next, the system is
brought back in the (1,1,1,1) charge state, the charge regime in which the readout is op-
timized. This is done by first increasing vB23 and vB34, then decreasing vB12 and finally
reloading one hole in both QD3 and QD4. We finally readout the spin state via latched
Pauli spin blockade by transferring the qubit in QD1 to QD2 and integrating the signal
from the charge sensor for 7 µs. Spin-up probabilities are determined by repeating each
experiment a few thousand times. Details about the experimental setup can be found in
section 2.7 of this thesis.

SUB-NANOSECOND RESOLUTION ON VOLTAGE PULSES
For these experiments, we use voltage pulses applied to the electrostatic gates by the
arbitrary wave form generators (AWGs). These pulses are compiled as a sequence of
ramps, using control software. The ramps are defined by high precision floating points:
time stamps and voltages. The maximum resolution in time is set by the maximum sam-
ple rate of the AWGs, which is 1 GSa/s and which translates to a resolution of 1 ns. Using
this sample rate, the signal that is outputted by the AWGs has discrete steps, as depicted
in Fig. 6.8.a. Simply moving this sampled pulse in time is only possible with a preci-
sion of 1 ns. However, it is possible to achieve sub-nanosecond resolution by slightly
adjusting the voltages of the pulse instead. As illustrated in Fig. 6.8.a, in this way it is
possible to delay a pulse with less than 1 ns. Quantitatively: to achieve a time delay of τ,

the voltages forming the ramp are shifted by −τdVramp(t )
dt . The output of the AWGs has a

higher order low-pass filter with a cut-off frequency of approximately 400 MHz. This fil-
ter smoothens the output signal and effectively removes the effect of the time discretiza-
tion, as is shown in Fig. 6.8.b. The time shift of the pulse is not affected by the filter, since
it does not change the frequency spectrum of the pulse. To summarize, combining the
high precision in the voltages of the pulse with the output filtering of the AWGs allows to
output a smooth voltage ramp that is delayed by τ <1 ns, despite the limited sampling
rate. Applying this technique to all voltage ramps results in sub-nanosecond resolution
on the overall pulse sequence.
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Figure 6.8: AWG pulses with sub-nanosecond precision. a, Ideal voltage pulse starting at 1 ns (dotted black)
and ideal voltage pulse delayed by 0.6 ns with respect to the first one (dotted blue). For both pulses, the dis-
cretized sampling is plotted in solid lines. The delay between the two pulses combined with the sampling,
leads to a shift of the voltage steps. b, Ideal pulses (starting at 1 ns and 1.6 ns) and pulses as outputted by the
AWG after filtering without (light grey) and with the 0.6 ns delay (light blue). The filtering clearly smoothens
the sampled pulses such that the outputted signals closely resemble the ideal pulses.
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Figure 6.9: Evolution of the Larmor frequency for shuttling in double quantum dots. a, b, Larmor frequency

differences∆ f = fL(vP2, vP3)− f QD2
L (a) and∆ f = fL(vP3, vP4)− f QD3

L (b) measured along the detuning axis of
QD2-QD3 (a) and QD3-QD4 (b). The quantum dot where the shuttling experiment starts is taken as the refer-
ence point for the frequency. ∆ f is independently evaluated from measurements of the resonance frequency
using an EDSR pulse (data displayed in Fig. 1.g and k) and from the frequency of the coherent oscillations
that appear when a qubit is shuttled in a superposition state (data displayed in Fig. 1.h and l). Both sets of
data points overlap in (a) and (b), confirming that the coherent oscillations arise due to a change in Larmor
frequency along the detuning axis. For the free evolution experiments, the shuttling between QD2 and QD3
(shown in (a)) is completely adiabatic (ramp times of 40 ns) while the shuttling between QD3 and QD4 (shown
in (b)) is only partially adiabatic (ramp times of 4 ns). In the latter case, the frequency difference measured is
barely affected by the limited adiabaticity as the visibility M of the oscillations induced by the change in quan-
tization axes (M < 0.1 from Fig.6.17) is sufficiently small compared to that of the oscillations arising from the
phase evolution of the superposition state (V ≈ 0.5 when the hole is in QD4). Moreover, the Larmor frequency
of spins in both QD3 and QD4 are close to 1 GHz. The free evolution experiments were performed with a time
resolution of 1 ns, meaning that the oscillations due to the diabaticity of the shuttling only show up as an alias-
ing pattern and do not disturb the oscillations due to free evolution.
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n∗, |↓〉 transfer n∗, |↑〉 transfer n∗, |↓〉−i |↑〉p
2

transfer α, |↓〉−i |↑〉p
2

transfer

Ramsey: 64±1 1.36±0.05
QD2 ⇄ QD3 (3.36±0.09)×103 (3.2±0.1)×103 Hahn: 376±5 1.44±0.04

CPMG: (4.5±2)×102 1.14±0.06
Ramsey: 77±2 1.28±0.06

QD3 ⇄ QD4 (2.9±0.1) ×103 (3.1±0.1)×103 Hahn: 332±6 1.17±0.04
CPMG: (5.0±0.1) ×102 1.3±0.07

Ramsey: 67±2 1.11±0.06
Corner (2.23±0.08)×103 (2.28±0.07)×103 Hahn: (3.5±0.2)×102 1.2±0.1

CPMG: (2.6±0.2)×102 0.76±0.07
Ramsey: 19±1 1.08±0.07

Triangular (3.8±0.4)×102 (2.7±0.3)×102 Hahn: 78±3 1.07±0.05

Table 6.1: Summary of shuttling performance. For the spin basis state shuttling experiments, the spin polar-
ization decays are fitted by P0 exp(−(n/n∗))+Psat, with n the number of shuttles. For the coherent shuttling
experiments, the coherence decays are fitted by A0 exp(−(n/n∗)α), where n∗ represents the number of shut-
tles that can be achieved before the polarization or the coherence drops by 1/e.

6.5. OPTIMIZATION OF THE SHUTTLING PULSES

MEASUREMENT DATA
In this section, we illustrate and discuss the importance of careful pulse optimization.
Fig. 6.10 shows the results of experiments where we probe the performance of the coher-
ent shuttling between QD2 and QD3 using the Ramsey sequence depicted in Fig. 6.4.a.
The detuning pulses used for all these experiments are identical, except for the idle time
tidle in QD3 (idle time 2 in Fig. 6.4.b). This idle time in QD3 was optimized to 0.95 ns for
the experiments displayed in the main text.

We observe that the evolution of amplitudes extracted at the end of the shuttling se-
quence is strongly dependent on the idle time in QD3. For tidle = 0.9 and tidle = 1 ns,
which are close to the optimum, the amplitude shows a smooth and progressive decay.
When tidle is increased, oscillations of the amplitude as function of the number of shut-
tling steps n appear and their periodicity varies with tidle. These oscillations witness the
rotations induced by the change of quantization axes, which are imperfectly compen-
sated for tidle ≥ 1.1 ns. They lead to coherent errors after each shuttling event, which
add up, and significantly modify the state of the qubit. For example, for tidle = 1.6 ns,
the superposition state is virtually transformed to a spin basis state after a few shuttling
rounds. This emphasizes the necessity of optimizing the voltage pulses to compensate
for the effect of rotations induced by the spin-orbit interaction.

The optimized idle times for each shuttling process can be found by performing mea-
surements similar to those displayed in Fig. 6.10, and by looking for a regular decay of
the amplitude as function of n. This optimization can also be done by studying the decay
of the spin-up probabilities in spin basis state shuttling experiments.

SIMULATION OF THE STATE EVOLUTION
In Fig. 6.10, we see that for non-optimized idle times, like tidle = 1.5 ns, the amplitude can
saturate to a finite value at large n. This is in contrast to what we observe for optimized
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Figure 6.10: Signatures of non-optimized idle times in Ramsey shuttling experiments. Results of coherent
shuttling experiments between QD2 and QD3 obtained using Ramsey sequences. The idle time spent in QD3 is
different for the results shown in the different subplots, as indicated by the titles. For non-optimized idle times,
oscillations of the amplitude as function of the number of shuttles n appear and the amplitude can saturate to
a non-zero value at large n.
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idle times tidle = 0.9 ns and tidle = 1 ns, which decay to zero. To understand this feature,
we carry out simulations of the dynamics of a qubit initialized in the |↓〉−i |↑〉p

2
superposi-

tion state which is shuttled between two neighboring quantum dots. Each shuttling step
is modelled by a rotation. This rotation arises from the precession around the quanti-
zation axis of the quantum dot towards which the qubit is shuttled. We also calculate
for every even n the expected measurement result, i.e. the amplitude of the P↑ oscilla-
tions that appear when the phase ϕ of the second π/2 pulse is varied. This is shown in
Fig. 6.11.c, with two examples corresponding to a non-optimized idle time and an opti-
mized idle time.

Number of shuttles n

X

Y
X

optimized idle time
non-optimized idle time

n = 14

n = 8

n = 6

n = 4

n = 2

n = 12

n = 10
Y

a b

c

n = 0

Figure 6.11: Simulation of the effect of non-optimized idle times. a, Distribution of the qubit states in the
Bloch sphere after an even number of shuttles, for an non-optimized idle time. b, Spread of the qubit state
after a large number of shuttles, when the qubit is dephased. c, Simulated measurement results, i.e. amplitude
of the oscillations appearing while varying the phase of the second π/2 pulse, as a function of n, for a non-
optimized idle time and an optimized idle time.

Fig. 6.11.a displays the trajectory in the Bloch sphere of the qubit for the first 14
shuttling steps, in the reference frame of the quantum dot where the shuttling experi-
ment starts. The different states of the qubit map a circle which is tilted compared to
the equator. The product of the two rotations generated by shuttling back-and-forth is
equivalent to a single rotation around a fixed axis. Consequently, multiple shuttling cy-



6

124 6. COHERENT SPIN QUBIT SHUTTLING THROUGH GERMANIUM QUANTUM DOTS

cles can be seen as successive rotations around this fixed axis which elucidates the tra-
jectory observed in the Bloch sphere. This also explains the oscillations of the amplitude
as function of n seen in Fig. 6.10, as the distance between origin and the projection of
the state on x y-plane can vary significantly depending on the number of shuttles for an
non-optimized idle time. In contrast, when the idle times are well-optimized, the qubit
states are on the equator of the Bloch sphere and no oscillations of the amplitude with n
can be observed.

Next, we include the effects of dephasing in the simulations, by assuming that the
qubit frequencies fluctuate between repetitions of a given experiment with a fixed n.
We observe that the state of the qubit is spread along a circle with a distribution that
becomes more uniform as n increases, meaning when the qubit experiences more de-
phasing. An example is shown in Fig. 6.11.b for n = 98, corresponding to the data shown
in Fig. 6.11.c. The center of the circle, which is equivalent to the statistical average of
the qubit state when the qubit is completely dephased, is not on the equator on Bloch
sphere. This explains the finite amplitude observed in the measurements at large n. Ex-
cept for the revival of the amplitude observed for tidle = 2.1 ns, these simulations capture
most of the features observed in Fig. 6.10.

6.6. MODELLING OF THE QUBIT DYNAMICS DURING SHUTTLING
MODEL USED AND UNDERLYING ASSUMPTIONS

In general, the quantum process of 2n shuttles, between QD2 and QD3 back-and-forth
n times, is given by the sequential application of the individual processes:

U2n shuttles = 〈
n∏

j=0
U

( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3〉 , (6.1)

where U
( j )
QD2(QD3) is the j -th superoperator describing the dynamics in quantum dot

QD2(QD3), U
( j )
r,QD2(r,QD3) is the j -th superoperator describing the dynamics of ramping

to quantum dot QD2 (QD3), and 〈·〉 denotes averaging over different noise initializations.
The dynamics within the qubit subspace without decoherence is given by:

UQD2 = exp

(
−i

φQD2

2
σz

)
(6.2)

Ur,QD2UQD3Ur,QD3 = exp

(
−i

φQD3

2
(cos(θ23)σz + sin(θ23)σx )

)
, (6.3)

where θ23 is the effective tilt angle between the quantization axes that also takes the
ramping time into consideration,φQD2(QD3) are the effective phases accumulated around
the corresponding quantization axis and σx,y,z are the Pauli matrices in QD2. In the su-
peroperator representation, the unitary dynamics can be conveniently expressed by:

UQD2 =UQD2 ⊗U∗
QD2 (6.4)

= eHQD2 . (6.5)

Here, HQD2 = −iφQD2(σz ⊗ 12 − 12 ⊗σz )/2 and ⊗ denotes the Kronecker product. To
describe the effect of decoherence we consider for each process low-frequency charge
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noise (modelled as quasistatic fluctuations of accumulated phasesφQD2(QD3) →φQD2(QD3)+
δφQD2(QD3)), and high-frequency charge noise which causes dephasing and relaxation at
the charge anticrossing. The latter noise sources are modelled within a standard Lind-
blad equation (allowing us to drop the index j ) and described by the following Lindblad
operators in superoperator representation using row-stacking convention [49]:

LQD2 =


−γr

QD2 0 0 γr
QD2

0 −γr
QD2 −γ

ϕ

QD2 γr
QD2 0

0 γr
QD2 −γr

QD2 −γ
ϕ

QD2 0

γr
QD2 0 0 −γr

QD2

 , (6.6)

Lr,QD2 =


−γr

r,QD2 0 0 γr
r,QD2

0 −γr
r,QD2 −γ

ϕ

r,QD2 γr
r,QD2 0

0 γr
r,QD2 −γr

r,QD2 −γ
ϕ

r,QD2 0

γr
r,QD2 0 0 −γr

r,QD2

 , (6.7)

LQD3 =
(
R(θ23)⊗R(−θ23)T )


−γr

QD3 0 0 γr
QD3

0 −γr
QD3 −γ

ϕ

QD3 γr
QD3 0

0 γr
QD3 −γr

QD3 −γ
ϕ

QD3 0

γr
QD3 0 0 −γr

QD3

(
R(−θ23)⊗R(θ23)T )

, (6.8)

Lr,QD3 =
(
R(θ23)⊗R(−θ23)T )


−γr

r,QD3 0 0 γr
r,QD3

0 −γr
r,QD3 −γ

ϕ

r,QD3 γr
r,QD3 0

0 γr
r,QD3 −γr

r,QD3 −γ
ϕ

r,QD3 0

γr
r,QD3 0 0 −γr

r,QD3

(
R(−θ23)⊗R(θ23)T )

, (6.9)

where R(θ) = e−iθσy /2 rotates the quantization axis by θ in the xz-plane. Here, γϕQD2(QD3)
is the dephasing rate and γr

QD2(QD3) the relaxation/excitation rate for idling in QD2(QD3)

and γ
ϕ

r,QD2(QD3) is the dephasing rate and γr
r, QD2(QD3) the relaxation/excitation rate for

shuttling from QD3 to QD2 (QD2 to QD3). To simplify the expressions, we further as-
sumed that the qubit is coupled to a hot qubit bath at the anticrossing [44] giving rise to
equal relaxation and excitation rates. This assumption is justified by the fast randomiza-
tion of the spin state at the anticrossing observed in Fig. 6.16.

The basic repetition, a 2-shuttle process, can now be described as a Markov chain:

U2 shuttles = 〈eHQD2+LQD2 eLr,QD2 eHQD3+LQD3 eLr,QD3〉 . (6.10)
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Here, we make the following assumptions. Firstly, high-frequency noise, causing re-
laxation and dephasing processes and described by γϕr,QD2(QD3) and γ,r

r,QD2(QD3), is rele-
vant only exactly at the anticrossing and is instantaneous. Secondly, we neglect high-
frequency noise during the idling in QD2 and QD3 since idling dynamics is dominated
by low-frequency noise. This allows us to add the coherent part of the dynamics during
the ramp before (after) reaching the anticrossing to the dynamics described by HQD2

(HQD3). We note that this is a good approximation if 〈φQD3〉 is close to an integer multi-
ple of 2π, i.e. the shuttling rounds are well calibrated. Using the Zassenhaus expansion
formula, we can now further approximate the 2-shuttling process by a product of two
matrices:

U2 shuttles = 〈eC eD〉 . (6.11)

Here, the C -matrix only consists of the average phase accumulated 〈φQD2〉 and describes
a unitary process while all decoherence is included in the D-matrix. For n being an even
integer, a 2n-shuttle process can then be written as:

U2n shuttles =
〈

n/2∏
i=1

eD


1 0 0 0
0 e−i 〈φQD2〉 0 0
0 0 e i 〈φQD2〉 0
0 0 0 1

eD

〉
, (6.12)

with the decoherence matrix:

D ≈Lr,QD2 +Lr,QD3 +HQD2 +HQD3 −〈HQD2〉 . (6.13)

SHUTTLING OF SPIN BASIS STATES

The return probability of the basis states, which are identical for both basis states as the
excitation and relaxation rate are assumed to be equal close to the charge anticrossing,
can be computed from the superoperator 〈↑̃|U2n shuttle |↑̃〉, where |↑̃〉 is the vectorized
density matrix of the |↑〉 basis state. We now consider two extreme cases, 〈φQD2〉 = m
with even or odd m multiple of π. If m is an even multiple of π, we can simplify the
expression to U2n shuttles = 〈enD〉, while for m being an odd multiple of π, the sequence
corresponds to a Hahn echo experiment with a phase-flip operation instead of a bit-flip
operation. In Fig. 6.12, we have simulated the basis state decay for varying m considering
(a) uncorrelated and (b) correlated charge noise. While most cases shows only a single,
and slow exponential decay, the special case of m = 2πk (with k an integer) shows a fast
initial Gaussian followed by a slow exponential decay. Regardless of the chosen value of
m, the decay converges to 〈↑̃|Un→∞ |↑̃〉 = 1

2 . We find that for most m, the initial rapid
decay is absent due to decoupling over potentially many shuttle rounds. Thus, the (par-
tial) noise-decoupling effect occurs for most choices of the waiting times in the initial
quantum dot. We find that the fast decay of the basis states can only be observed for
〈φQD2〉 = m ±δ with m being multiples of 2π and δ ≤ 0.02π. Since our experimental re-
sults do not show a fast Gaussian decay of the basis states, we believe that our timing is
chosen such that the fast initial Gaussian dephasing is echoed out [45]. Consequently, we
can fit the decay for the shuttling of spin basis states to an exponential decaying function
exp(−n/n∗). We note that the final slow decay can either originate from spin random-
ization or from dephasing.
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Figure 6.12: Simulation of the basis state decay. Evolution of the spin-up probability P↑ as a function of the
number of shuttling events simulated using Eq. (6.1) for a, uncorrelated and b, correlated quasistatic fluctu-
ations for various 〈φQD2〉 = m. For both correlated and uncorrelated noise, the fast initial decay vanishes,
except when m is close to (a multiple of) 2π. In the simulation the following parameters were chosen: quan-
tization axis difference θ23 = 52◦, high-frequency dephasing rate γ

ϕ
r,QD2 = γ

ϕ
r,QD3 = 0.00125, relaxation rate

γr
r,QD2 = γr

r,QD3 = 0.000125, standard deviation of the quasistatic fluctuations σφQD2 =σφQD3 = 0.004. For un-

correlated fluctuations σφQD2 →p
2σφQD2 to get identical free induction decays. These parameters lead to a

pure dephasing after n∗ = 63 shuttles in absence of decoupling.

RAMSEY, HAHN-ECHO, AND CPMG DYNAMICAL DECOUPLING

The decay of the superposition states can be computed from the same superoperator via
the amplitude

A = 1

2
max
ϕ

[〈ϕ̃+|U2n shuttle |φ̃+〉−〈ϕ̃−|U2n shuttle |φ̃+〉
]

, (6.14)

where |ξ̃±〉 is the vectorized density matrix of the state |ξ±〉 = 1
2 (|↑〉±e iξ |↓〉) with ξ=ϕ,φ.

The initial phase of the superposition state is in general unknown due to the unsynchro-
nized clock between the AWG and the vector source (see section below) and may vary
for each single shot measurement of the experiment. However, the phase difference be-
tween initial and final state is fixed for each shot. We have numerically confirmed that
the dynamics is only slightly affected by an additional averaging over the initial phase
of the initial superposition state for 〈φQD2〉 = m with m being close to multiples of 2π
(same regime in which the fast initial decay can be observed for the basis state). For
other choices, the initial phase has a negligible impact and is averaged out after a few
shuttling rounds.

The quantum process of a dynamical decoupled 2n shuttles, shuttling between QD2

and QD3 back-and-forth n times, is given by the sequential application of the individual
processes:

U Echo
2n shuttles = 〈

n/2∏
j=0

U
( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3 Ux,π/2

n∏
j=n/2

U
( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3〉 ,

(6.15)
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U CPMG
2n shuttles = 〈

n/4∏
j=0

U
( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3 Uy,π/2

3n/4∏
j=n/4

U
( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3 Uy,π/2

n∏
j=3n/4

U
( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3〉, (6.16)

where Ux,y,π/2 are superoperator representation of the spin-flips around the x and y axis.
For corner shuttling, shuttling between QD2 to QD3 to QD4 and back n times, one needs
to make the substitution:

U
( j )
r,QD2U

( j )
QD3U

( j )
r,QD3 →U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3U

( j )
QD4U

( j )
r,QD4U

( j )
QD3U

( j )
r,QD3, (6.17)

where U
( j )
QD4 is the j -th superoperator describing the dynamics in dot QD4, U

( j )
r,QD4 is

the j -th superoperator describing the dynamics of ramping to quantum dot QD4. The
dynamics within the qubit subspace without decoherence is analogousely given by:

Ur,QD2UQD3Ur,QD3UQD4Ur,QD4UQD3Ur,QD3 = exp

(
−i

φQD3

2
(cos(θ23)σz + sin(θ23)σx )

)
×exp

(
−i

φQD4

2
(cos(θ34 +θ23)σz + sin(θ34 +θ23)σx )

)
×exp

(
−i

φQD3

2
(cos(θ23)σz + sin(θ23)σx )

)
,

where θ34 is the effective tilt angle between the quantization axes of QD3 and QD4 that
also takes the ramping time into consideration, φQD3,a(b) is the effective phases accumu-
lated in QD3 before (after) shuttling to QD4, and φQD4 is the effective phases accumu-
lated in QD4.

Note that in general the quantization axes of QD2, QD3 and QD4 do not need to lay
in the same plane. To account for the misalignment we use the Euler-angle decomposi-
tion, i.e. by adding a rotation around the quantization axis of QD3 before the shuttling
to QD4 and adding the inverse rotation after the shuttling back to QD3. The additional
phase commutes (by design) with the idling dynamics in QD3. Consequently, the addi-
tional rotation can be added/subtracted from the rotation accumulated during idling in
QD3 (care has to be taken with the relaxation decay dynamics). Since we do not know
the phase of the rotation in our experiment, we assume in our simulations that all three
quantization axes are in the xz-plane. We have numerically confirmed that the dynam-
ics is only mildly affected by this choice and only close to 〈φQD2〉 = m with m being a
multiple of 2π.

In Fig. 6.13, we have simulated for the corner shuttling the evolution of the coher-
ence, i.e. the amplitude (see Eq. (6.14)) of the superposition state, for a (a) Ramsey, (b)
Hahn-echo, and (c) CPMG dynamical decoupling sequence for various m using uncor-
related quasistatic charge noise. When m is a multiple of 2π, the dynamical decoupling
for the CPMG sequence shows a significant improvement compared to the Hahn-echo.
In contrast, when m is a multiple of π, a Hahn-echo sequence achieves a similar decou-
pling effect as the CPMG sequence because of the interplay between the phase and spin
flips in QD2. This could possibly explain the reduced effect of CPMG measured in cor-
ner shuttling. We note that simulations considering time-correlated phase fluctuations,
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Figure 6.13: Simulation of the dynamics for the Ramsey, Hahn-echo and CPMG sequences for corner shut-
tling. Evolution of the superposition state for corner shuttling as a function of the number of shuttling events
using eq. (6.14) for uncorrelated quasistatic fluctuations for varying phases 〈φQD2〉 = m and assuming perfect
single-qubit gates Ux,y,π/2. The gain of implementing a CPMG dynamical decoupling sequence compared
to an echo is negligible. In the simulation the following parameters were chosen: quantization axis differ-
ences θ23 = 52◦ and θ34 = 40◦, high-frequency dephasing rate γ

ϕ
QD2 = γ

ϕ
r,QD3 = γ

ϕ
r,QD4 = 0.00125, relaxation

rate γr
r,QD2 = γr

r,QD3 = γr
r,QD4 = 0.000125, standard deviation of the quasistatic fluctuations σφQD2 =σφQD3 =

σφQD4 = 0.009. These parameters lead to a pure dephasing after n∗ = 63 shuttles in absence of decoupling. We

note that the decay in these simulations are underestimated as they include only quasistatic noise.

instead of quasistatic phase fluctuations, show qualitatively similar results for the im-
provement of decoupling using CPMG sequences compared to Hahn-echo sequences.

6.7. ALTERNATIVE SHUTTLING PROTOCOLS TO MITIGATE UN-
INTENDED ROTATIONS

6.7.1. ADIABATIC SHUTTLING

For completeness, we also investigate the performance of the shuttling processes when
the shuttling pulses are adiabatic, i.e. when there is no spin rotation induced by the dif-
ference between the quantization axes of the quantum dots. Fig. 6.14 shows the results
of such investigations for the shuttling of basis states and for the shuttling of superposi-
tion states. In both cases, we obtain significantly lower performance compared to those
achieved with diabatic pulses (see Fig. 6.5). According to our findings, dephasing can
largely explain this difference in performance for the coherent shuttling experiments. As
the time required for each shuttling event is increased in the adiabatic experiments, the
qubit experiences more dephasing during each shuttling step and the phase coherence
is lost after a smaller number of shuttling steps n. The use of echoing pulses allows us to
get an improvement of the coherent shuttling performance by a factor 6 to 8, larger than
those obtained for diabatic shuttling.

For shuttling basis states, the lower performance suggests that the probability of hav-
ing a spin-flip during a shuttle increases if the latter is performed adiabatically. This
could originate from the longer time spent in the vicinity of the charge transition, where
spin randomization induced by charge noise is enhanced [44]. Overall, the data in Fig. 6.14
clearly show that an approach based on diabatic spin shuttling is preferable for hole spin
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Figure 6.14: Performance of adiabatic shuttling. a, b, c, Spin polarization as a function of the number of
shuttling steps n for a qubit initialized in the basis states. d, e, f, Amplitude as a function of the number of
shuttling steps n for qubits initialized in a superposition state, without (Ramsey) and with echo pulse (Hahn).

qubits in germanium.

6.7.2. RABI CONTROL AFTER SHUTTLING

Since the rotations induced by diabatic shuttling are coherent, it should be possible to
compensate these rotations by applying a microwave pulse. This requires the synchro-
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nisation of the internal clocks of the arbitrary waveform generators (AWGs) and the mi-
crowave source. Fig. 6.15.a shows the pulse sequence used to investigate this strategy.
A spin prepared in the |↓〉 state is shuttled back-and-forth once between QD2 and QD3.
The idle time in QD3 is purposely chosen such that the spin does not experience a 2πm
rotation around the tilted quantization axis. As a result, after the shuttling, the spin is
not in the |↓〉 state anymore. Back in QD2, an EDSR pulse is applied of which the phase
ϕ and duration tMW are varied. Finally, the spin is readout.
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Figure 6.15: Compensating shuttling-induced oscillations with a final EDSR pulse. a, Schematic of the pulse
sequence used for testing the effect of an EDSR pulse after shuttling a spin qubit. A spin qubit is initialized in
the |↓〉 state and shuttled back-and-forth between QD2 an QD3. Finally, a microwave pulse of duration tMW
and phase ϕ is applied. b, Results of the measurement sequence depicted in (a), in the case where the clock
of the AWGs and the microwave source are not synchronized. c, Results in the case where the clocks of the
AWGs and the microwave source are synchronized. The reduced visibility of the oscillations in the spin-up
probability, compared to the data presented in the main text, is due to a different tuning of the device.

Fig. 6.15.b and c show the result of this experiment, without and with synchronisa-
tion of internal clocks of the AWG and microwave source. From Fig. 6.15.b it is clear that,
if the internal clocks are not synchronized, the measured spin-up probability does not
depend on the phase of the microwave pulse. Due to the lack of synchronization, the
phase of the EDSR pulse (with phase ϕ and duration tMW) varies between the single shot
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measurements of a single experiment, viewed in the lab frame. Therefore, the informa-
tion about the phase of the spin after shuttling is lost and it is not possible to coherently
drive the spin. In Fig. 6.15.c, we recover an oscillation in spin-up probability as a func-
tion of the phase of the microwave source, which indicates that the state of the spin is
well-defined after the shuttling. It is therefore possible to coherently drive the spin after
shuttling. The results in Fig. 6.15.b and c illustrate the importance of the synchroniza-
tion of AWGs and microwave source clocks in the prospect of using a final EDSR pulse
to compensate rotations induced by shuttling. The experiments presented in the main
text of the manuscript were performed without synchronisation between the microwave
source and the AWGs.

6.8. EXTENDED DATA

6.8.1. SPIN RANDOMIZATION NEARBY THE INTERDOT CHARGE TRANSITION

In Fig. 6.2.b and c, we show the evolution of the qubit resonance frequency fL along the
detuning axis of the QD2-QD3 quantum dot pair and of the QD3-QD4 quantum dot pair.
fL is measured by shuttling the spin and applying a 4 µs long EDSR pulse on one plunger
gate. While fL can be clearly determined when the hole is well-localized in one quantum
dot, it cannot be measured nearby the charge transition as the spin-up probability has a
high value over the whole range of frequency spanned. We think that this is the result of
a combination of different effects.

Trandomize  = 21(1) ns 

a b

Figure 6.16: Randomization of spin states around the QD2 - QD3 charge transition. a, Shown is the result of
the shuttling of a spin in the |↓〉 state while changing the detuning and the idle time. Note that in contrast to
the measurement shown in Fig. 6.3b of the main text, the time resolution on the x-axis is not large enough to
distinguish the oscillations with gigahertz frequency, instead what is visible here is an aliasing pattern. b, The
data plotted and fitted here correspond to a linecut of (a), taken at the dashed line. The typical time it takes
for the spin to randomize (while starting in the |↓〉 state) is 21±1 ns and is extracted by fitting an exponential
function. The error bar corresponds to one standard deviation from the best fit.

Since the two quantum dots have different quantization axes, the system effectively
behaves as a flopping-mode qubit nearby the charge transition [41, 50–52] and the EDSR
driving is thus expected to be more efficient. This appears, in Fig. 6.2.b, when the qubit
is in QD2: along the resonance line, we observe an alternation of high and low spin-up
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probabilities that witness rapid variations of the Rabi frequency. As a consequence, the
power broadening increases significantly in the vicinity of the charge transition which
prevents us from resolving the qubit resonance frequency. We have not observed such
effects in the other quantum dots and speculate it is due to the driving efficiency and the
depahsing. In this studied device, the four qubits can usually be efficiently driven with
one particular plunger gate. This drivability is likely the origin why the effect disappears
once the qubit is in in QD3 in Fig. 6.2b.

The gradient of shear strains induced by the thermal contraction of the gate elec-
trodes can lead to large increases of the Rabi frequency [53]. It is likely that this effect is
enhanced in the vicinity of the charge transition, as the hole is delocalized between the
two quantum dots and its wavefunction extends below the edges of several gates. Finally,
nearby the charge transition, excitations to higher energy states induced by charge noise
are more likely to occur [44], especially on the relatively long timescale of 4 µs. These
transitions to higher energy states lead to a randomization of the spin states, which ex-
plains the large spin-up probabilities observed over the full frequency range.

This last argument is supported by the data shown in Fig. 6.16. This figure shows
the result of shuttling a qubit in a |↓〉 state while changing the detuning and varying the
idle time (similar to Fig. 6.3a of the main text). It becomes clear that once the spin ap-
proaches the charge anticrossing between QD2 and QD3 (indicated by the striped black
line in Fig. 6.16a), the time it takes for the spin state to be randomized decreases very
rapidly to about Trandomize = 21 ± 1 ns (fit to an exponential decay shown in Fig. 6.16.b).
The randomization of the spin close to the charge anticrossing could also be an explana-
tion for the fact that the spin-up probability measured for shuttling basis states decays
to the value of 0.5 instead of 0.

6.8.2. QUANTIFYING THE QUANTIZATION AXIS TILT ANGLE

ESTIMATION BASED ON THE VISIBILITY OF THE OSCILLATIONS INDUCED BY THE CHANGE

IN QUANTIZATION AXIS

The tilt angle θ between the quantization axis of two different quantum dots can be es-
timated based on the amplitude of the oscillations induced by diabatically shuttling a
qubit in the |↓〉 state. This approximation relies on a simple geometric construction in
the Bloch sphere.

Fig. 6.17.a shows the Bloch sphere projected on the plane defined by the quantization
axes of the two quantum dots (dark blue and dark green). At the beginning of the exper-
iment, the qubit is initialized in the |↓〉 state (red arrow). After shuttling to the neighbor-
ing quantum dot, the qubit state changes due to the difference between the quantization
axes. In the Bloch sphere, this can be represented by rotations of the state vector around
the second quantization axis. After half a period (orange arrow), the state projection on
the quantization axis of the quantum dot where the experiment started differs maximally
from that of the initial state. This sets the visibility M of the oscillations induced by the
change of quantization axis.

In practise, this visibility is reduced due to imperfect initialization and readout. This
can be taken into account by assuming that the state vectors have a norm V < 1 with
V being the visibility of Rabi oscillations measured in the quantum dot where the shut-
tling experiment starts. We neglect relaxation which is irrelevant at the time scale of few
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θ 2M V
θ

a b 

c d 

QD2⇆QD3

QD3⇆QD4

Figure 6.17: Estimation of the tilt angle based on the amplitude of the oscillations induced by the difference
in quantization axis. a, Geometric construction in the Bloch sphere allowing to determine the tilt angle θ
between the quantization axes of adjacent quantum dots (blue and green). θ is determined from the visibility
M of the oscillations induced by the change in quantization axes and the visibility of the Rabi oscillations V . b,
c, Oscillations induced while shuttling a qubit in a |↓〉 state between QD2 and QD3 (b) and between QD3 and
QD4 (c) for increasing ramp times. d, Amplitude of the oscillations as function of the ramp times.

nanoseconds [54] and thus assume that the norm of the vector state stays constant dur-
ing the rotations. We find that:

θ = 1

2
arccos(1−2M/V ) with 0 ≤ θ ≤π. (6.18)

We use this expression to evaluate θ23 (θ34), the tilt angle between the quantization
axes of QD2 and QD3 (QD3 and QD4). Fig. 6.17.b and c show the oscillations induced by
the change in quantization axis as function of the pulse ramp time tramp. The amplitude
M/2 of these oscillations is fitted and plotted in 6.17.d. As discussed in the main text,
the amplitude of the oscillations drop rapidly to zero as tramp increases, because the
shuttling becomes more adiabatic with respect to the difference in quantization axis.
For the evaluation of θ we use the amplitude M/2 = 0.14 (0.07) of the oscillations at the
shortest tramp = 2 ns. We remark that there is no clear saturation of M at the smallest
ramp times, which suggests that the shuttling process is still not fully diabatic and that
higher visibilities could be achieved by shuttling faster. Rabi oscillations for the driving of
the qubit in QD2 (QD3) have a visibility of V = 0.61 (0.48) giving us θ23 ≥ 42◦ (θ34 ≥ 33◦).
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These large values for θ illustrate the strong influence of the local electric field on the
direction of the quantization axis in germanium hole spin qubits operated with an in-
plane external magnetic field.

ESTIMATIONS BASED ON FITS WITH A FOUR-LEVEL MODEL

To get an additional independent evaluation of the tilt angles, we can fit the evolution
of the qubit resonance with a four-level model. To derive such a model, we consider a
single hole in a germanium double quantum dot placed in an external magnetic field
B . We assume that there is a finite tunnel coupling tc between the two quantum dots
QDA and QDB and their quantization axes are tilted with respect to each other by an
angle θ. This last assumption is sufficient to take into account all effects of the spin-
orbit interaction, providing a suitable basis transformation and a renormalization of the
tunneling terms.

The system can be described in the basis {|A,↑A〉 , |A,↓A〉 , |B,↑A〉 , |B,↓A〉}, where ‘A’ or
‘B’ indicates the position of the hole (in quantum dot QDA or QDB) and ↑A or ↓A specifies
its spin states in the frame of quantum dot A. Its Hamiltonian is then given by:

Hmodel = Hcharge +HZeeman =


ϵ 0 tc 0
0 ϵ 0 tc

tc 0 −ϵ 0
0 tc 0 −ϵ

+ 1

2
BµB


gA(ϵ) 0 0 0

0 −gA(ϵ) 0 0
0 0 gB(ϵ)cos(θ) gB(ϵ)sin(θ)eiϕ

0 0 gB(ϵ)sin(θ)e−iϕ −gB(ϵ)cos(θ)

 ,

(6.19)

where ϵ is the detuning energy of the double quantum dot system (taken as zero at
the charge transition), µB is the Bohr magneton and gi are the g -factors in the different
quantum dots, ϕ is the azimuthal angle between the two quantization axes. Note that,
with this convention, ϵ corresponds to half of the difference between the electrochem-
ical potentials of the two quantum dots and a tunnel gap of 2tc at the anticrossing. We
remark that this model is similar to that of a flopping-mode qubit [50]. Diagonalizing the
Hamiltonian, we obtain the qubit resonance frequency fL given by:

fL = µBB

h

√
(2ϵ2 + t 2

c )(gA(ϵ)2 + gB(ϵ)2)+2ϵ(gB(ϵ)2 − gA(ϵ)2)
√
ϵ2 + t 2

c +2gA(ϵ)gB(ϵ)t 2
c cos(θ)

2
√
ϵ2 + t 2

c

,

(6.20)
The evolution of fL along the detuning axes can then be fitted to extract the tilt an-

gles and the tunnel couplings between neighbouring quantum dots. For this purpose,
we first express the detuning energies in terms of gate voltages as ϵ23 = −η23

2 (vP3 −vP0
3)

and ϵ34 =−η34
2 (vP4−vP0

4) where η23 = 0.166 meV/mV and η34 = 0.150 meV/mV are the ef-
fective lever arms along the detuning axis. They are defined as η23 =β3+β2γ23 and η34 =
β∗

4 +β∗
3γ34 where β2 = 0.084 meV/mV, β3 = 0.080 meV/mV (β(∗)

3 = 0.084 meV/mV, β(∗)
4 =
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0.075 meV/mV) are the virtual gate lever arms measured nearby the QD2-QD3 (QD3-
QD4) charge transition via photon-assisted tunnelling experiments [55] and where γ23 =
|∆vP2/∆vP3|=1.026 (γ34 = |∆vP3/∆vP4| = 0.889) are the slopes of the detuning axis. We
extract the evolution of fL as function of vP3 (vP4) from the data displayed in Fig. 6.18.a-b
(Fig. 6.19.a-c) and fit it with eq.(Fig. 6.20).

a b

a b

c d

Figure 6.18: Evaluation of the tilt angle between QD2 and QD3 quantization axes using a four-level model. a,
Free evolution experiments for shuttling a qubit in superposition state between QD2 and QD3 back-and-forth.
The superposition state is prepared in QD2. b, Zoom-in on the vicinity of the charge transition. The two data
sets are identical to those displayed in Fig. 1.h. c, d, Resonance frequency extracted from the oscillations along
the detuning axis in (a) and (b) and fit with the model of eq. (6.20).

Fig. 6.18.c-d display the evolution of fL along the ϵ23 detuning axis which is fitted
to the above model assuming a linear dependence of g with vP3. We observe that the
model reproduces well the measured evolution. This allows to estimate an interdot tun-
nel couplingtc of 4.4±0.2 GHz and a tilt angle θ23 of 51.8±0.7◦. The error bars correspond
to one standard deviation from the best fit. This evaluation is consistent with the lower
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bound found using the previous method.
Fig. 6.19.d-e display the evolution of fL along the ϵ34 detuning axis. In this case, fit-

ting the data does not allow to extract the tilt angle, even if we assume a quadratic de-
pendence of the g -factor with the gate voltage. Indeed, for 0◦ ≤ θ≲ 40◦, the shape of fL

curve is nearly solely determined by the tunnel coupling and the variation of the g -factor
with vP4. Consequently, the data can be equally well fitted by models where θ34 is fixed
at 0◦, 10◦, 20◦, 30◦ or 40◦. This leads to such a large uncertainty on the value of θ34 that
it prevents us from extracting it. Nevertheless, the tunnel coupling between QD3 and
QD4 can still be estimated from these fits and, for θ34 fixed to 40◦ (30◦), we find tc = 8±1
(tc = 6.2±0.8) GHz.

What does become clear, however, is that we cannot obtain proper fits of the data
with model where θ34 is fixed to values larger than 40◦. The underlying reason appears
when plotting the expected evolution of fL in such model: for θ34 ≳ 50◦, fL should dis-
play a minimum that we do not observe experimentally. This suggests that θ34 is lower
than 50◦.

This analysis also allows us to estimate the degree of adiabaticity of the charge trans-
fers between the neighbouring quantum dots i and j . For that, we use the Landau-

Zener formula P i j
LZ = exp(

−2πt 2
c tramp

2ħ∆ϵi j
) that gives us the probability of having a transition

to the excited charge state while changing the detuning linearly by ∆ϵi j = ηi j

2 ∆vPi j in
a time tramp. We emphasize that the factor 2 in front of ∆ϵi j comes from our defini-
tion of ϵi j . Taking ∆vP3 = 19.5 mV for shuttling between QD2 and QD3, ∆vP4 = 18 mV
for shuttling between QD3 and QD4 and tramp = 4 ns, we find P 23

LZ ≃ 2×10−2 and P 34
LZ ≃

2× 10−7(9× 10−5). The values obtained for the shuttling between QD3 and QD4 sug-
gest that the charge transfer between these two quantum dots is adiabatic. In contrast,
there is non-negligible probability of exciting higher charge states while shuttling be-
tween QD2 and QD3 with these settings.

To improve the fidelity of the shuttling process between QD2 and QD3, we increased
the tunnel coupling by lowering the barrier gate voltage vB23 from −40 mV to −75 mV.
Fig. 6.20 shows the results of similar analysis performed after lowering the barrier gate
voltage. Fitting the evolution of the resonance frequency along the detuning axis, we
find that tc = 16.1± 0.6 GHz and θ23 = 54.2± 0.6◦. For these experiments, η23 = 0.164
and ∆vP3 = 24 mV, thus we find P 23

LZ ≃ 2×10−19. In this gate voltage configuration, the
shuttling process is fully adiabatic with respect to the charge degree of freedom. Conse-
quently, we used these barrier gate voltage settings to have better shuttling performance
and, in particular, for the experiments presented in Fig. 6.5 and Fig. 6.7.



6

138 6. COHERENT SPIN QUBIT SHUTTLING THROUGH GERMANIUM QUANTUM DOTS

Data
Fit, θ34= 0°
Fit, θ34= 10°
Fit, θ34= 20°
Fit, θ34= 30°
Fit, θ34= 40°
Model with θ34= 50°

Data
Fit, θ34= 0°
Fit, θ34= 10°
Fit, θ34= 20°
Fit, θ34= 30°
Fit, θ34= 40°
Model with θ34= 50°

a b

d

c

e

Figure 6.19: Evaluation of the tilt angle between QD3 and QD4 quantization axes using a four-level model. a,
b, c, Free evolution experiments for the adiabatic shuttling of a qubit in a superposition state between QD3 and
QD4 back-and-forth. In (a) the qubit is prepared in superposition in QD4, while in (b) and (c) the superposition
state is prepared in QD3. d, e, Evolution of the resonance frequency along the detuning axis, extracted from
the oscillations in (a), (b) and (c), and fits with models of eq. (6.20) where the tilt angle is fixed. The expected
evolution for θ34 = 50◦ is computed using the parameters extracted from the fit with θ34 = 40◦.



6.8. EXTENDED DATA

6

139

a b

c d

Figure 6.20: Evaluation of the tilt angle between QD2 and QD3 quantization axes using a four-level model at
a lower barrier gate voltage. a, Free evolution experiments for shuttling a qubit in a superposition state be-
tween QD2 and QD3 back-and-forth. The superposition state is prepared in QD2. b, Zoom-in on the vicinity
of the charge transition. c, d, Resonance frequency extracted from the oscillations along the detuning axis ex-
tracted from (a) and (b) and fit with the model of eq. (6.20). Compared to Fig. 6.18, here the barrier gate voltage
vB23 is lower (−75 mV instead of −40 mV) leading to a higher tunnel coupling. These settings correspond to
the settings used to acquire the data displayed in Fig. 6.5 and Fig. 6.7.
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QD2 ⇄ QD3 QD3 ⇄ QD4 Corner Triangular

T ∗
2 in QD2(ns) (2.8±0.1)×102 N. A (2.8±0.1)×102 (2.8±0.1)×102

α in QD2 1.8±0.2 N. A 1.8±0.2 1.8±0.2
T ∗

2 QD3 (ns) (4.1±0.3 )×102 (5.0±0.3)×102 (4.1±0.3)×102 (4.1±0.3)×102

α QD3 1.6±0.2 1.8±0.3 1.6±0.2 1.6±0.2
T ∗

2 (ns) in QD4 N. A. (3.1±0.2)×102 (3.1±0.3)×102 (3.1±0.3)×102

α in QD4 N. A. 1.8±0.2 1.4±0.3 1.4±0.3
t∗ (ns) shuttling 339±5 408±9 (3.5±0.1)×102 (3.4±0.2)×102

α shuttling 1.41±0.05 1.30±0.07 1.13±0.07 1.11±0.08

Table 6.2: Dephasing times and decay coefficients for static and shuttled qubits. The dephasing times T∗
2

for static qubits are measured with standard Ramsey experiments (data shown Fig. 6.21), performed at the
starting and the end points of the shuttling pulses. The dephasing time t∗ for shuttled qubits are extracted by
fitting the amplitude as a function of the total time, as shown in Fig. 6.21. The error bars indicate one standard
deviation from the best fits. The voltages applied on the barrier gates vary between experiments, which can
lead to different T∗

2 and α values for a static qubit in a given quantum dot.

6.8.3. T⋆
2 OF STATIC QUBIT AND SHUTTLING PERFORMANCE AS A FUNCTION

OF SHUTTLE TIME
To get some insight on how the shuttling performance compare to the typical coherence
times in the system, we plot in Fig. 6.21 the qubit dephasing times T ∗

2 along side the re-
sults of the shuttling experiments as function of time. We evaluate the T ∗

2 of a static qubit
at the locations in the charge stability diagrams corresponding to the starting and the
end points of the shuttling pulses. The T ∗

2 values are measured using a standard Ramsey
protocol. The resulting oscillations are fitted by A cos(2πt f +ϕ0)exp(−(t/T ∗

2 )α)+ A0 al-
lowing to extract both T ∗

2 and the decay coefficients α. The corresponding data and fits
are shown in Fig. 6.21.a-b.

Moreover, for all the shuttling processes, we calculate for each number of shuttling
events n the total time between the two π/2 pulses of the Ramsey shuttling experiments.
Fig. 6.21.c-f show the results of shuttling experiments used to quantify the performances.
These data are identical to those shown in Fig. 6.5 and Fig. 6.7, but the amplitude decay
is shown as a function of the time duration of the shuttling experiments.

An overview of the fit parameters is shown in Table 6.2. Since the total measurement
time for the shuttling experiments (several thousands of seconds) is very different from
that for the Ramsey experiments (several hundreds of seconds), and therefore the type
and amount of noise integrated are different, some caution is required when comparing
the decay parameters. However, it is clear that the dephasing times of static and moving
qubits are of the same order of magnitude.
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QD2⇆QD3⇆QD4 
t* = 3.5(1)e2 ns

QD2 T2* = 2.8(1)e2 ns  

QD3 T2* = 4.1(3)e2 ns  

QD2⇆QD3  
t* = 339(5) ns  

QD3 T2* = 5.0(3)e2 ns  

QD4 T2* = 3.1(3)e2 ns 

QD3⇆QD4  
t* = 408(9) ns 

QD2→QD3→QD4→QD2
t* = 3.4(2)e2 ns 

a

c

e

b

d

f

Figure 6.21: Comparison of the dephasing times for static and shuttled qubits. a, b, Results of Ramsey ex-
periments for a spin in QD2 and QD3 (a) (QD3 and QD4 in (b)) at the same plunger and barrier gate voltages
settings as the shuttling experiments between QD2 and QD3 (a) (QD3 and QD4 in (b)). c, d, The result of the
shuttling experiment, to assess the shuttling performance with a superposition state (without echo pulse), be-
tween QD2 and QD3 (c) (QD3 and QD4 in (d)), same as in Fig. 3g (3h) of the main text. However, here the
amplitude is plotted as a function of the total time between the two π/2-pulses. e, f, Similar to (a) and (b), but
for the corner shuttling and the triangular shuttling. The gate voltage settings for these experiments are the
same as for the Ramsey experiments shown in (a) for QD2 and QD3 and for QD4 shown in (b). The error bars
indicate one standard deviation from the best fits.
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6.8.4. CHARGE STABILITY DIAGRAM OF PAIR QD2-QD4 AND TRIANGULAR

SHUTTLING
The charge stability diagram of the quantum dot pair QD2-QD4, measured in a config-
uration identical to that of the triangular shuttling, is displayed in Fig. 6.22. No clear
interdot charge anticrossing is visible, which suggests that the tunnel coupling between
the two quantum dots is very low. This is expected, considering the device geometry, and
it forces us to split the final pulse for the triangular shuttling in two parts. As depicted
in Fig. 6.22, the voltages are first changed to bring the system close to the (1100)-(1001)
degeneracy point before applying a second pulse that brings the system in the (1100)
charge state. This reduces the probability that we excite the (1101) charge state, while
transferring the qubit.

(1100)

(1001)

Figure 6.22: Charge stability diagram of quantum dot pair QD2-QD4. No clear interdot transition can be
distinguished. The shuttling of a spin qubit from QD2 to QD4 is performed using two voltage pulses (white
arrows). The labels (N1N2N3N4) represent the charge occupation in the quantum dots.
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7
OPERATING SEMICONDUCTOR

QUANTUM PROCESSORS WITH

HOPPING SPINS

Qubits that can be efficiently controlled are essential for the development of scalable quan-
tum hardware. Although resonant control is used to execute high-fidelity quantum gates,
the scalability is challenged by the integration of high-frequency oscillating signals, qubit
crosstalk and heating. Here, we show that by engineering the hopping of spins between
quantum dots with a site-dependent spin quantization axis, quantum control can be es-
tablished with discrete signals. We demonstrate hopping-based quantum logic and obtain
single-qubit gate fidelities of 99.97%, coherent shuttling fidelities of 99.992% per hop, and
a two-qubit gate fidelity of 99.3%, corresponding to error rates that have been predicted to
allow for quantum error correction. We also show that hopping spins constitute a tuning
method by statistically mapping the coherence of a 10-quantum dot system. Our results
show that dense quantum dot arrays with sparse occupation could be developed for effi-
cient and high-connectivity qubit registers.

Parts of this chapter have been published in C.-A. Wang, V. John, H. Tidjani, C.X. Yu, A.S. Ivlev, C. Déprez, F. van
Riggelen-Doelman, B.D. Woods, N.W. Hendrickx, W.I.L. Lawrie, L.E.A. Stehouwer, S.D. Oosterhout, A. Sammak,
M. Friesen, G. Scappucci, S.L. de Snoo, M. Rimbach-Russ, F. Borsoi, M. Veldhorst, Operating semiconductor
quantum processors with hopping spins, Science 385, 447-452 (2024).
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7.1. INTRODUCTION

Loss and DiVincenzo proposed hopping of electrons between two quantum dots as an
efficient method for coherent spin control [1]. By applying discrete pulses to the quan-
tum dot gates, a single spin can be transferred between qubit sites with differently ori-
ented spin quantization axes, thereby enabling two-axis control of the qubit. Universal
quantum logic is then achieved through a tunable exchange interaction between spins
residing in different quantum dots. That work initiated the field of semiconductor spin
qubits and inspired more than two decades of extensive research, but a successful im-
plementation of Loss and DiVincenzo’s initial proposal has remained elusive because of
experimental challenges [2].

Alternative methods for coherent single-spin control have emerged, including elec-
tron spin resonance [3, 4] and electric dipole spin resonance using either micromag-
nets [5, 6] or spin-orbit interaction [7–10] to enable a coupling between the electric field
and the spin degree of freedom. However, all of these methods rely on resonant Rabi
driving and require high-power, high-frequency analog control signals that already limit
qubit performance in small quantum processors [11–13]. The development of local, ef-
ficient, low-power control mechanisms of semiconductor spins is now a key driver [14–
16]. To this end, qubits encoded in multiple spins and in multiple quantum dots, such
as singlet-triplet, hybrid, and exchange-only qubits, have been investigated as possible
platforms [2]. Although these qubit encodings have enabled digital single-qubit con-
trol, they also come with new challenges in coherence, control, and creation of quan-
tum links. For example, the exchange-only qubits are susceptible to leakage outside of
their computational subspace and require four exchange pulses to execute an arbitrary
single-qubit gate and ≥ 12 exchange pulses for a single two-qubit gate [17–19].

Here, we demonstrate that single-spin qubits can be operated using baseband con-
trol signals, as envisaged in the original proposal for quantum computation with quan-
tum dots [1]. We used hole spins in germanium quantum dots, in which the strong spin-
orbit interaction gives rise to an anisotropic g-tensor that is strongly dependent on the
electrostatic and strain environment [20]. We harnessed the resulting differences in the
spin quantization axis between quantum dots [21, 22] to achieve high-fidelity single-
qubit control using discrete pulses by shuttling the spin between quantum dot sites. A
key advantage in such a hopping-based operation is that the spin rotation frequency
is given by the Larmor precession. The latter remains sizeable even at small magnetic
fields where quantum coherence is substantially improved [23, 24]. This enabled us to
perform universal quantum control with error rates exceeding the thresholds predicted
for practical quantum error correction[25] while also operating with low-frequency base-
band signals. We then exploited the differences in quantization axes to map the spin de-
phasing times and g -factor distributions of an extended 10-quantum dot array, thereby
efficiently gathering statistics on relevant metrics in large spin qubit systems.
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7.2. RESULT

7.2.1. HIGH-FIDELITY SINGLE-QUBIT OPERATIONS AND LONG QUBIT CO-
HERENCE TIMES AT LOW MAGNETIC FIELD

A large difference in the orientation of the spin quantization axes between quantum
dots is essential for hopping-based qubit operations. Holes in planar germanium het-
erostructures manifest a pronounced anisotropic g -tensor, with an out-of-plane g -factor
g⊥ that can be two orders of magnitude larger than the in-plane component, g∥ [20, 24,
26, 27]. Consequently, a small tilt of the applied magnetic field from the in-plane g -
tensor will lead to a strong reorientation of the spin quantization axis in the out-of-plane
direction. Subsequently, when an in-plane magnetic field is applied, the orientation of
the spin quantization axis is highly sensitive to the local g -tensor, and thus to confine-
ment, strain, and electric fields, thus becoming a site-dependent property [21, 24, 28,
29]. Here, we exploited this aspect to establish hopping-based quantum operations in
two different devices: a four-quantum dot array [30] arranged in a 2×2 configuration
and a 10-quantum dot system arranged in a 3-4-3 configuration.

We populated the four-quantum dot array with quantum dots Dm with m ∈ [[1, 4]]
with two hole spins QA and QB which can be shuttled between quantum dots by electri-
cal pulses on the gate electrodes (Fig. 7.1A). A magnetic field up to 40 mT was applied
to split the spin states and positioned in-plane up to sample-alignment accuracy (see
Section 7.4). The relatively small magnetic fields ensured that the maximum qubit fre-
quency (140 MHz) and its corresponding precession period (7 ns) were within the band-
width of the arbitrary waveform generators used. In combination with engineered volt-
age pulses with sub-nanosecond resolution [21] (Section 7.9.1), we were able to shuttle a
spin qubit to an empty quantum dot and thereby accurately change the qubit precession
direction several times within one precession period. Altogether, this enables efficient
single-qubit control through discrete voltage pulses (Fig. 7.1B).

The net effect of a multiple-shuttle protocol is a rotation R(n̂,θ) of the spin state
around an axis n̂ and with an angle θ. To implement a specific rotation such as the
quantum gate Xπ/2, the number of required shuttling steps depends on the angle be-
tween the two quantization axes. Because of the large angle between the axes of D1 and
D4, θ14 > 90◦/4 = 22.5◦, a pulse consisting of four shuttling steps is sufficient to realize
a precise quantum gate Xπ/2,A (Section 7.7.1 and the supplementary materials [31], Sec-
tion 3). As outlined on the top right panel of Fig. 7.1C, such a four-shuttle pulse moves
the spin between D1 and D4 four times with waiting periods t1 and t4, respectively. By
measuring the spin-flip probability of QA, PA↑, after two consecutive rotations R(n̂,θ)2,
we could determine the values of t1 and t4 where PA↑ is maximal, which occurs when
R(n̂,θ) = Xπ/2,A.

Although this method allows calibration of the pulse timing to compose an Xπ/2,A

gate, it is not necessarily the optimal trajectory. Different choices of (t1, t4) are possible
(Fig. 7.1C), including a composition of four-shuttle pulses with different waiting times in
D4. The latter implementation allows for the construction of gates with a rotation angle
θ less sensitive to Larmor frequency fluctuations in D4. We constructed such a gate by
fitting the data in Fig. 7.1C to an effective model and determined the quantization axes
angle θ14 between the quantum dots D1 and D4, the individual Larmor frequencies, and
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Figure 7.1: Hopping-based single-qubit operations - schematics and tune-up. (A) Left: scanning electron
microscopy image of the 2×2 quantum dot array device [30], including gate-defined charge sensors at two
corners. Scale bar, 100 nm. Right: schematic of the two spin qubits, QA and QB. The black dashed lines mark
the relative quantization axis direction in the quantum dot pair D1-D4 (D2-D3), with the angle θ14 (θ23). (B)
Example of a baseband pulse ϵ14(t ) used to manipulate qubit QA, by shuttling the spin back and forth between
quantum dots D1 and D4 and allowing the spin to precess in the individual quantum dots for the time t4 and
t1. (C) Tune-up procedure of a four-shuttle pulse for the Xπ/2 gate of QA at 20 mT. Top: pulse sequence of
the experiment. Bottom left: measured spin-up probability PA↑(t1, t4). Bottom right: simulation results. The
red markers identify the timings for implementing an Xπ/2,A gate and corresponds to the maximal spin-up
probability. The markers are periodic in t1 and t4, but for clarity we only plot a few of them. (D) Calibrated
pulse for Xπ/2,A gate with unequal wait time t4 and t ′4.

the effective precession time during the ramp. Through simulation of the qubit dynam-
ics, we designed a more noise-resilient Xπ/2,A gate based on four shuttling steps with
unequal wait times t4 and t ′4 in D4 (Fig. 7.1D). Following the same approach, we design
an Xπ/2,B gate for QB that only requires a two-shuttle protocol because the angle of the
difference in quantization axes of D2 and D3, θ23, is very close to 45◦ (supplementary
materials [31], Section 3).

We further calibrated the pulse timing using repetition sequences, as shown in Fig. 7.2C,
and in AllXY sequences [32] (see the supplementary materials [31], Section 3). The Yπ/2

gate in the AllXY sequences was realized by Yπ/2 = Zπ/2Xπ/2Z3π/2 and the Zπ/2 gate was
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(A) Free induction decay obtained from Ramsey experiments at 25 mT. (B) T∗
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The data points are fitted with an effective model including electric noise and nuclear noise (Section 7.9.2).
(C) Spin-up probability after applying a varying number of Xπ/2 gates on each qubit. (D) Example of a pulse
sequence in QA single-qubit randomized benchmarking and the measurement results of both qubits. The
uncertainties are obtained from bootstrapping with 95% confidence intervals.

implemented by idling the qubit for the time defined by its precession in the lab frame.
The calibrated Xπ/2 gates had a total gate time of 98 (35) ns for QA(QB), corresponding
to effective qubit rotation frequencies of 2.6 (7.1) MHz, considerable compared with the
Larmor frequencies fA(B) = 42.6 (89.5) MHz at the in-plane magnetic field of 25 mT.

The high ratio between qubit rotation and Larmor frequency results in low power
dissipation, which is a critical aspect for scaling up quantum processors [33]. To com-
pare the power consumption of the hopping-based single-qubit control with the elec-
tric dipole spin resonance technique, we defined the required number of voltage os-
cillations to flip a qubit, Ncycles, and the derived energy efficiency, η =1/Ncycles, which
we found largely determines the power dissipation under the assumption that dielectric
losses are dominant over other dissipation mechanisms (Section 7.5). For our system,
we estimate an efficiency of η = 25(50)% for QA(QB). By comparison, previous demon-
strations of high-fidelity universal qubit logic in silicon exhibited η in the range of 0.04
to 0.07% [11, 12, 15]. Moreover, despite applying sizeable amplitudes to move the spins
between localized orbitals of adjacent quantum dots, we still obtained a factor of 20 re-
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duction in power dissipation with respect to the electric dipole spin resonance technique
(Section 7.5). Engineering lower required pulse amplitudes and increasing the orthog-
onality of the spin quantization axes will enable a further reduction of the dissipated
power. Furthermore, the hopping-based approach can simplify the signal delivery and
required control electronics and thus alleviate the detrimental heating effects.

Having established universal single-qubit control, we used the set of gates {Xπ/2,
Yπ/2} to investigate the qubit coherence times at low magnetic fields. By using a Ramsey
sequence (Fig. 7.2A), we obtained a dephasing time T ∗

2 of 7.0 (4.5)µs at 25 mT for QA(QB),
an order of magnitude larger than that measured at 1 T in the same sample [23, 30]. We
were able to further extend the coherence times using Hahn and Carr-Purcell-Meiboom-
Gill (CMPG) techniques, obtaining T H

2 = 32(24)µs and T CPMG−512
2 = 1.9(1.7) ms, respec-

tively. The dependence of the dephasing times as a function of magnetic field (Fig. 7.2B)
indicates that charge noise remains the main cause for decoherence for magnetic fields
as low as 5 mT (Section 7.9.2).

We characterize the single-qubit gate fidelity using randomized benchmarking (RB)
and gate set tomography (GST) [34–36] (Section 7.6.1 and Section 7.6.2). The results
of RB with average Clifford fidelity (Fig. 7.2D) set the lower bounds of the Xπ/2 average
gate fidelity at FXπ/2,A ≥ 99.967(4)% and FXπ/2,B ≥ 99.960(6)%, consistent with the error
modeling (Section 7.8.1). Using GST we benchmarked the Xπ/2 and Yπ/2 gates, obtaining
an average gate fidelity ≳ 99.9%. From the GST analysis, we infer that dephasing is the
dominant contribution to the average gate infidelity. Taking into account the multiple
shuttling steps to execute a single gate, we estimate a coherent shuttling fidelity per hop
as high as Fshuttle = 99.992% (Section 7.6.3).

7.2.2. HIGH-FIDELITY TWO-QUBIT EXCHANGE GATE

We now focus on assessing the single-qubit and two-qubit gate performance in the two-
qubit space. We implemented a two-qubit state preparation and measurement (SPAM)
protocol (Figs. 7.3A,B). For the state preparation, we adiabatically converted the two-
spin singlet in D2 to the triplet |QAQB〉 = |↓↓〉. For the state measurement, we performed
sequential Pauli spin blockade (PSB) readouts on QA and QB by loading ancillary spins
from the reservoir and adiabatic conversion to the state |↓↓〉 in quantum dots D3 and
D4. The difference in the effective g -factor between the quantum dots D1 and D2 allows
for the construction of a controlled-Z (CZ) gate even at low magnetic fields. We did so
by pulsing the virtual barrier gate voltage vB12, which controls the exchange coupling J
between QA and QB from 10 kHz to 40 MHz (Fig. 7.4C) (Section 7.9.3 and Section 7.7.2).
Because the maximum exchange coupling strength is non-negligible compared with the
Zeeman energy difference ∆EZ and the qubit frequency fA, pulse shaping is essential to
mitigate coherent errors [12, 37]. We implemented exchange pulses with a Hamming
window and performed the CZ gate calibration (Fig. 7.4D) (Section 7.9.4).

We now advance to benchmarking a two-qubit gate in germanium, by executing two-
qubit randomized benchmarking (Section 7.6.1 for further details, and Section 7.6.2 for
two-qubit GST). Individual Clifford gates were implemented by sequentially applying
one or more of the gates CZ, XA(B)

π/2 , ZA(B)
π/2 , and I. From the fit of the decay constants of

the reference and interleaved sequence in Fig. 7.4E, we determined the average Clifford
gate fidelity as FClifford2 = 98.60(6)% and the average CZ gate fidelity as FCZ = 99.33(10)%,
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consistent with the result of error modeling (Section 7.8.2). For the single-qubit gate
performance in the two-qubit space, we estimate the lower bound of fidelity, averaged
between both qubits, as 1

2 (FXπ/2,A +FXπ/2,B) ≥ 99.90(5)%. We believe that these high fi-
delities to result from the high driving efficiency and relatively long T⋆

2 at low magnetic
field.
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Figure 7.3: High-fidelity two-qubit gate in germanium - schematics. (A) Schematics of two-qubit initializa-
tion, manipulation and individual readout. |QAQB〉 was initialized by relaxing to the singlet ground state in D2
and then adiabatically moving one spin to D1. Quantum circuits consisting of single-qubit gates (spin hop-
pings) and two-qubit gates (exchange pulse J (t )) were performed. The final quantum state was read out by
preparing ancillary spins and then performing two PSB readouts. In each readout, the chemical potentials of
the quantum dots were pulsed such that the spin can either move to the neighboring dot (indicated by arrows)
or stay in the original dot (indicated by arrows with × markers) with probabilities depending on the spin state
|QA(B)〉. (B) Two dimensional histograms of the sensor signals formed by 500 single-shot measurements for
four different two-qubit states, which are prepared by applying Xπ/2,A(B) gates.
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7.2.3. HOPPING SPINS TO BENCHMARK LARGE AND HIGH-CONNECTIVITY

QUANTUM DOT ARCHITECTURES

The presented sparse occupation of a quantum dot array allows the construction of high-
fidelity hopping-based quantum logic, but it may also facilitate the implementation of
quantum circuits with high-connectivity. Although two-dimensional quantum circuits
with nearest neighbor connectivity can already tolerate high error rates [25, 38, 39], an
increased connectivity may substantially lower the physical qubit overhead and lower
the logical qubit error rate [40]. We therefore envision a qubit architecture with sparse
occupation (Fig. 7.5A) to be a potential platform. Here, qubits may be shuttled to re-
mote sites for distant two-qubit logic, and single-qubit logic can be executed during this
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Figure 7.5: Hopping spins to benchmark large and high-connectivity quantum dot architectures. (A) Our
vision of a semiconductor quantum computing architecture comprising hopping Loss-DiVincenzo (LD) spin
qubits (black arrows), readout units (eyes), and empty quantum dot sites for shuttling operations. (B) Layout of
the 10 quantum dot array, with gate-defined charge sensors labelled in analogy to the four cardinal points (NS,
ES, WS, and SS). (C) Control sequence used to characterize the array. A spin originally in D4 was shuttled across
the whole array, allowed to evolve at a certain quantum dot, and read out. (D) Qubit rotations induced by the
difference in quantization axes as a function of idling time in quantum dot D6 and magnetic field. (E) D6 Lar-
mor frequency, extracted from the Fourier analysis of (D) versus magnetic field. Linear fit yields an estimated
g -factor of 0.062. Inset shows the shuttling trajectory of the spin qubit from D4 to D6. (F) Extended time evo-
lution in D6 at B = 41.4 mT, yielding a qubit frequency of 34.51 MHz and a dephasing time of T∗

2 =1.12 µs. The
experimental trace was fitted (dashed lines) as described in Section 7.9.6. (G and H) Table and visualization of
the extracted parameters: g -factors and T∗

2 , respectively.
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trajectory.
As a first step toward such architectures, we developed and characterized an ex-

tended system comprising 10 quantum dots. The system (Fig. 7.5B) consists of a multi-
layer gate architecture with quantum dots, Dn with n ∈ [[1,10]], and peripheral charge
sensors, which may be integrated within the array through development of vertical in-
terconnects such as in [41]. By exploiting dedicated (virtual) barrier and plunger gate
voltages, we prepared the quantum dots D1 and D4 in the single-hole regime, leaving
the others empty (see Section 14 of the supplementary material [31], and Section 7.9.5).

The hopping-based qubit gates were used to rapidly characterize the different quan-
tum dot g -factors and coherence times. After initializing the associated qubit pair Q1,Q4
into its |↑↓〉 eigenstate, we diabatically shuttled the Q4 spin to another quantum dot site,
Dn. We let it precess for a time tDn , after which the spin was shuttled back and read
out. The misalignment between the spin quantization axes gives rise to spin rotations
with the Larmor frequency fDn [21]. The resulting oscillations are shown as a func-
tion of waiting time in D6, tD6, and magnetic field (Fig. 7.5D). From the linear scaling
of the D6 Larmor frequency with the magnetic field, we extracted an effective g -factor of
0.062 (Fig. 7.5E) and from the decay of the oscillations a dephasing time of T ∗

2 = 1.12µs
(Fig. 7.5F). Repeating this protocol to reach all the quantum dots, we extracted the Lar-
mor frequency and dephasing time at each site, as displayed in Figs. 7.5G, H. For the case
of Q1 (Q4), we shuttled the spin to D5 (D8) back and forth twice, interleaved by a varying
precession time in D1, tQ1 (in D4, tQ4), which we explain in detail in Section 16 of the
supplementary material [31]. Our experiments showed an average T ∗

2 of 1.3±0.4µs at a
magnetic field of 41.4 mT (Section 7.9.6), and we attribute the fast dephasing of D9 (T ∗

2 =
290 ns) to charge noise originating from a fluctuator nearby. Furthermore, we obtained
an average g -factor of 0.04±0.03. The observed variability in this distribution is likely
a result of multiple factors: the heterogeneity inherent in the shapes of the quantum
dots (dot-to-dot variability), the presence of strain gradients in the quantum well arising
from the gates above or the SiGe strained relaxed buffer below, and the impact of inter-
face charges. The average g -factor that we obtained was considerably lower than what
has been observed in the literature [10, 24, 26, 30]. We suggest that this reduction is pri-
marily due to two phenomena: a precise in-plane magnetic field configuration and an
appreciable renormalization of the gyromagnetic ratio from the pure heavy-hole value
of ∼ 0.18 [27, 28, 42]. Such renormalization is driven by substantial inter-band mixing
between the heavy-hole and the light-hole band, which we attribute to asymmetries in
the strain, as simulated in Section 18 of the supplementary material [31]. Furthermore,
these simulations indicate that such a low average effective g -factor only occurs when
the misalignment of the magnetic field is smaller than 0.1◦ with respect to the plane of
the g -tensors, emphasizing the importance of accurately controlling the magnetic field
orientation when operating with germanium qubits.

7.3. CONCLUSION
We have shown that hopping spin qubits between quantum dots with site-dependent
g -tensors allows for coherent shuttling with fidelities up to 99.992%, single-qubit gate
fidelities up to 99.97%, and two-qubit gate fidelities up to 99.3%. This method allows for
efficient control with baseband pulses only and fast execution of quantum gates even
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at low magnetic fields where the coherence is high. Using this approach for the con-
trol of dense quantum dot arrays with sparse qubit occupation can alleviate challenges
in crosstalk and heating, while providing high connectivity. Recent theoretical develop-
ments predict that increased connectivity can substantially improve logical qubit per-
formance and reduce the required overhead on physical qubits [40]. Sparse spin qubit
arrays could be particularly suited for error correction schemes requiring either a larger
number of nearest neighbors or coupling beyond nearest neighbors. A substantial chal-
lenge remains in addressing the qubit-to-qubit variation. This was already highlighted
in the original work by Loss and DiVincenzo [1]. We envision that the characterization
of larger qubit arrays and statistical analysis will become pivotal, with the presented 10-
quantum dot array already providing a first indication that design considerations can
determine relevant qubit parameters. Site-dependent quantization axes can be realized
by g-tensor engineering such as in elongated quantum dots [43], by using nanomag-
nets, or by applying currents through nanowires above the qubit plane [44]. The devel-
oped control methods for high timing accuracy can also advance exchange-only qubits
that are operated using baseband pulses [19] and affect platforms such as supercon-
ducting qubits [45]. We envision establishing high-fidelity quantum operation through
low-power control in uniform and large-scale systems to be a critical step in realizing
fault-tolerant quantum computing.

7.4. MATERIAL AND METHODS
The two devices are fabricated on a Ge/SiGe heterostructure with a 16 nm germanium
quantum well buried 55 nm below the semiconductor/oxide interface [46, 47]. The de-
vices gate stack is realised using a multilayer of Pd gates and Al2O3 gate oxide, grown
by atomic layer deposition. Ohmic contacts are made by a thermally-diffused Al and
Pt contact layer for the 2×2 and 10 quantum dot devices, respectively. Details on the
fabrication of the first device can be found in ref. [30]. The second device is based on
a similar approach, but has an additional layer of gates and gate oxide. The experi-
ments are performed in two Bluefors dilution refrigerators with an electron tempera-
ture lower than 140 mK [48]. We estimate a possible misalignment angle between the
device plane and the magnetic field axis of ±2◦. We also note that due to an offset
in the height position of the 10 quantum dots chip on the cold finger of the cryostat
with respect to the center of the field, the effective magnetic field is 69% of the ap-
plied field. We have determined this factor using the Ge-73 gyromagnetic ratio, mea-
sured via CPMG sequences on a different device mounted in the same position in a dif-
ferent cool-down. This factor also agrees well to what estimated using simulations of
the coil field. In each of the two setups, we utilize an in-house built battery-powered
SPI rack https://qtwork.tudelft.nl/~mtiggelman/spi-rack/chassis.html to set direct-
current (DC) voltages, while we use a Keysight M3202A arbitrary waveform generator
(AWG) to apply alternating-current (AC) pulses via coaxial lines. The DC and AC voltage
signals are combined on the printed circuit board (PCB) with bias-tees and applied to
the gates. In the individual bias-tee, the DC signal undergoes a resistor of 1 MΩ, and the
high-frequency signal undergoes a capacitor of 100 nF. Each charge sensor is galvanically
connected to a NbTiN inductor with an inductance of a few µH forming a resonant tank
circuit with resonance frequencies of ∼ 100 MHz. The reflectometry circuit also con-

https://qtwork.tudelft.nl/~mtiggelman/spi-rack/chassis.html
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sists of a directional coupler (ZEDC-15-2B) mounted on the mixing chamber stage. The
readout signals are amplified by a cryogenic SiGe amplifier mounted on the 4 K stage (a
CITLF3 with gain of 33 dB), by a room-temperature amplifier (a M2j module of the SPI
Rack with a gain of 70 dB) and demodulated with a Keysight M3102A digitizer module
with a sampling rate of 500 MSa/s.

7.5. POWER DISSIPATION AND SCALING ADVANTAGES OF SHUTTLING-
BASED CONTROL

To execute the shuttling operations, trapezoidal voltage pulses are applied on the gates.
To achieve high-fidelity single qubit control a handful of such shuttling pulses are re-
quired, each with ramp times of a few nanoseconds between two discrete voltage lev-
els. This stands in stark contrast with state-of-the-art electron dipole spin resonance
(EDSR) control where typically high frequency, sinusoidal pulses are applied, and many
oscillations of the driving signal are needed to achieve the desired gate fidelity [11, 12].
This gives an advantage to a shuttling-based architecture considering energy dissipa-
tion, crosstalk and complexity of the required control electronics.

VAC

C

tan(δ)

time (ns)

200

Voltage / Power

1mV / 0.5fW

1mV / 30fW

0.20

Equal Dissipation

a b

Figure 7.6: Heat dissipation. a, Schematic of the model of the heat dissipation, due to some capacitor C with
loss tangent tan(δ). b, For equal pulse amplitude and DC-offset, the heat dissipated per cycle is the same
independent of the pulse shape. C · tan(δ) = 10−18F was assumed in this example.

Already at the current system sizes, EDSR-based devices experience a drift in qubit
frequency that is linked to heat dissipation of the signal [16]. When resistive losses are
limited, this heat-dissipation is believed to result from a dielectric loss of energy is stored
in the electric field around the signal-line. Effectively the system is a capacitor with some
loss tangent tan(δ) , defined as tan(δ) = ϵ′′/ϵ′ in a non-conductive system, with ϵ′′ and
ϵ′ the imaginary and real part of the electric permittivity [49]. During each charging cy-
cle, a fraction proportional to tan(δ) of the stored electric energy is lost as depicted in
Fig. 7.6. With a DC bias around zero the total capacitive energy stored and discharged
by the signal line is proportional to CV 2

AC, where C is the capacitance and VAC the EDSR
amplitude, with which the capacitor is charged. The total energy lost is proportional to
ELoss = Ncycles tan(δ)CV 2

AC, where Ncycles gives the number of oscillations required to per-
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form a qubit operation. In a simplified model, we can take the electric permittivity and
with it the loss tangent of silicon and germanium to be largely independent of frequency
in the relevant frequency range [50, 51]. In this model, for an identical geometry and
driving amplitude, the energy dissipation is assumed to solely depends on the number
of cycles of the operation and not on the pulse-shape, as indicated in Fig. 7.6. Hence
1/Ncycles is a measure of the efficiency of the operation.

For an EDSR-based Xπ-gate the number of cycles is given by Ncycles,EDSR = fLarmor
2 fRabi

,
which is exactly the inverse of the efficiency η as defined in the main text. The driv-
ing efficiency is inherently limited by the relatively small Rabi frequency fRabi ≪ fLarmor

when operating in the weak-driving (adiabatic) regime, in which the rotating-wave ap-
proximation holds. We note that while faster driving is possible, it requires complex
amplitude and phase modulation for high-fidelity implementations [37, 52] which also
dissipate additional heat. An experimental demonstration of high-fidelity qubit logic is
given by Xue et al. operated with Rabi (Larmor) frequencies of fRabi = 2MHz ( fLarmor =
12GHz) [12, 15]. This corresponds to an efficiency of η= 2 fRabi/ fLarmor ≈ 1/3000. Simi-
larly Noiri et al. demonstrated η≈ 1/1500 [11]. For the prior device, an EDSR amplitude
of VAC ≈ 5mV is reported at the bond pads of the chip [15]. This corresponds to an energy
dissipation of ELoss ≈ 0.075tan(δ)C V2 per Xπ-gate for high-fidelity EDSR control.

Shuttling based gates do not face a similar inherit efficiency limitation, instead being
limited by the relative tilt in quantization axis. In the main part of the paper we demon-
strate that to perform an Xπ-gate using shuttling, the hole is shuttled two to four times
back and forth depending on the angle between the quantization axes of the quantum
dot pairs. With periodic pulse timings and negligible ramp times this corresponds to
Ncycles = 1/η. This is done with a typical amplitude VAC = 20mV. Using the Ncycles = 4 fig-
ure, this corresponds to a heat-dissipation corresponding to ELoss = 2·0.0016tan(δ)C V2 =
0.0032tan(δ)C V2, where the additional factor of two accounts for the two plunger gates
on which the voltage is applied.

Crosstalk, like heat dissipation, is a problem observed in the current spin-qubit de-
vices and is expected to become more significant as the number and density of qubits
increase [13]. This crosstalk can originate from close spacing of signal lines, both on and
off the qubit chip. As the density of the quantum dots increases, the capacitance be-
tween the gates is expected to grow accordingly, increasing the crosstalk further. Since
the admittance between signal lines is directly proportional to the signal frequency, the
capacitive crosstalk will be less for low-frequency shuttling-based pulses, compared to
high-frequency EDSR experiments which face challenges similar to conventional high-
frequency integrated circuits [53]. In integrated circuits design, a rule of thumb is to keep
the distance between traces to three times the trace width [53]. This might pose a signif-
icant limitation for qubit routing, especially for larger 2D arrays. An architecture based
on the demonstrated high-fidelity shuttling gates is thus expected to be less sensitive to
crosstalk, which will be advantageous in scaling to large qubit counts.

In large spin systems consisting of many hundreds or thousands of qubits, the scal-
ability of control electronics is a major consideration. The electronic hardware required
to generate the IQ modulated sinusoidal EDSR pulses need high analog voltage reso-
lution, which is significantly more involved than the shuttling pulses consisting of two
voltage levels. The lower required voltage accuracy and precision of the shuttling based
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control allows scaling the qubit count while limiting the electronic overhead, cost and
energy consumption. The required timing resolution of shuttling based control should
be below 90 ps for a 40 MHz Larmor frequency (Section 7.9.1), higher than the sampling
resolution of the IQ modulated EDSR driving. However, EDSR signals need to control
the qubit phase with a similar precision as the shuttling pulses, thus requiring a simi-
larly high resolution.

7.6. FIDELITY BENCHMARKING

7.6.1. RANDOMIZED BENCHMARKING

Experiment implementation In the single-qubit randomized benchmarking (RB), the
sequence lengths are varied from { 1, 3, 10, 30, ..., 6000 }, in total 25 different lengths.
We execute sequences of different lengths once in a random order. After going over all
the 25 sequences, we repeat a random execution again with different random order. In
total we repeat this execution 32 times. For every sequence we perform 400 single-shot
readout. The final spin-down probability PA(B),↓ of the RB sequences on qubit A(B) with
the idled qubit B(A) is obtained by averaging over 400 single-shot readout and tracing
out the qubit B(A) from the two-qubit state probability Pσσ′ . An experiment takes 4.5
hours to complete, with no re-calibration within the individual experiment.

In the two-qubit interleaved randomized benchmarking (IRB), the sequence lengths
are { 1, 2, 4, 8, ..., 200 }, in total 20 different lengths. The order of sequence execution is
similar to the single-qubit RB. We execute a reference sequence and right afterward an
interleaved sequence with the same length, and then continue on the sequences with
different lengths in a random order. After going over all the 20 sequences, we repeat a
random execution again with different random order. In total we repeat 128 times. For
every sequence we perform 200 single-shot readout. An experiment takes 7.5 hours to
complete, with no re-calibration during the individual experiment.

In both single- and two-qubit RB, we observe the 2D histograms of the charge sensor
signal are well-separate even at the maximal sequence lengths, while they have an overall
shift which gradually increases for the longer sequence. We speculate that the intensive
pulsing locally heats up the two-level fluctuators and the high-kinetic inductors, shifting
chemical potential of the single-hole charge sensor and the impedance of the LC circuits,
respectively [16]. For the single-qubit RB and the first two-qubit RB (IRB1), we apply
adaptive thresholding on the histograms to obtain the two-qubit state probability Pσσ′ .
For the other two-qubit RB experiments (IRB2,3), we add an extra wait time of 300µs
before reloading the ancilla qubits for readout. This amount of wait time is sufficient to
reduce the sensor signal shift and we are able to use pre-defined constant thresholds to
obtain the two-qubit state probability Pσσ′ .

Fidelity extraction In single-qubit RB, the single-qubit Cliffords consist of the gates
Xπ/2, Zπ/2, and the idle gate I. We measure the final state probability of the sequences
containing m Clifford gates and a recovery Clifford gate which is the inverse of the cor-
responding m-Clifford sequence. The spin-down probability averaged over 32 random
sequences is fitted to P↓(m) = Apm +B , where p is the decay rate of the sequence, m is
the number of Cliffords, A and B are the parameters absorbing SPAM errors. The average
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Fitting formula Results IRB1 IRB2 IRB3

Fit with super-exponent model
P (m) = Ap(mα) +B

αref 0.862 ± 0.046 1.050 ± 0.058 0.988 ± 0.057
αint 0.867 ± 0.041 0.946 ± 0.047 0.954 ± 0.047

rref (%) 2.55 ± 0.40 1.17 ± 0.25 1.55 ± 0.31
rCZ (%) 1.20 ± 0.68 1.36 ± 0.49 1.21 ± 0.56

Fit with single-exponent model
P (m) = Apm +B

rref (%) 1.56 ± 0.07 1.40 ± 0.06 1.48 ± 0.06
rCZ (%) 0.79 ± 0.11 0.67 ± 0.10 0.86 ± 0.11

Table 7.1: Two-qubit interleaved randomized benchmarking results for three individual runs. The pa-
rameter settings are identical to two-qubit GST experiments, where magnetic field B = 25 mT and the CZ
gate has maximum exchange coupling J ≈ 21 MHz. The infidelity of the two-qubit Clifford rref is related
to the decay rate of the reference RB sequence by rref = 1 − Fref = 3

4 (1 − pref). The infidelity of the in-
terleaved CZ gate rCZ is related to the decay rates of the reference sequence and interleaved sequence by
rCZ = 1−FCZ = 3

4 (1−pint/pref). The uncertainty represents the 95% confidence interval.

Clifford fidelity is related to the decay rate by FClifford1 = 1− 1
2 (1−p). The measurements

in Fig. 7.2D shows the average Clifford fidelity FClifford1,A = 99.967(4)% and FClifford1,B =
99.960(6)%. The uncertainties are obtained from bootstrapping re-sampling with 95%
confidence intervals. The average number of gates for single-qubit Clifford is 1.0 Xπ/2,
2.42 Zπ/2 and 0.04 I. Defining the infidelity of gate i as ri = 1−Fi and assuming the Clif-
ford gate infidelity equals to the sum of the primitive gate infidelity weighted by the av-
erage composition, rClifford = rXπ/2 +2.42rZπ/2 +0.04rI, the average Clifford fidelity sets the
lower bounds of the Xπ/2 average gate fidelity FXπ/2,A ≥ FClifford1,A and FXπ/2,B ≥ FClifford1,B.

In two-qubit RB, the two-qubit Cliffords consist of the gates CZ, XA(B)
π/2 , ZA(B)

π/2 , and I.
Similar to the single-qubit RB, we measure the final state probability of the sequences
containing m Clifford gates and a recovery Clifford gate. The return probability of the
reference sequence (interleaved sequence) is fitted to P↓↓,ref(int)(m) = Apm

ref(int)+B , where
pref(int) is the decay rate of the sequence, m is the number of Cliffords, while A and B are
the parameters absorbing the SPAM errors. From the reference sequence decay curve
in Fig. 7.4E, we determine the average Clifford gate fidelity FClifford2 ≡ Fref = 1− 3

4 (1−
pref) = 98.60(6)%. The uncertainties are obtained from bootstrapping re-sampling with
95% confidence intervals. The average number of gates for two-qubit Clifford is 1.63
CZ, 1.60 XA(B)

π/2 , 2.68 ZA(B)
π/2 , and 0.00009 I. This implies the relation between gate errors,

rClifford2 ≡ rref = 1.63rCZ +Σi=A,B1.60rXπ/2,i +2.68rZπ/2,i. From this relation we find the av-
erage Clifford gate fidelity sets the lower bound of CZ gate fidelity FCZ = 1−rCZ ≥ 1− rref

1.63 =
99.14(4)%, which is consistent with the IRB result FCZ = 1− 3

4 (1−pint/pref) = 99.33(10)%.
We estimate the lower bound of single qubit gate fidelity in the two-qubit subspace, aver-
age between both qubits, as 1

2 (FXπ/2,A+FXπ/2,B) = 1− 1
2 (rXπ/2,A+rXπ/2,B) ≥ 1− 1

2
rref−1.63rCZ

1.60 =
99.90(5)%.

We perform additional check for the potential echoing effect in two-qubit RB/IRB
experiments, by fitting the data with super-exponential formula. As shown in Table 7.1,
the exponents are in the range of 0.86 - 1.05, showing small deviations from a pure expo-
nential decay.
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7.6.2. GATE SET TOMOGRAPHY AND COMPARISON WITH TWO-QUBIT RAN-
DOMIZED BENCHMARKING

Gate set tomography implementation We carried out gate set tomography (GST) ex-
periments using the python package pyGSTi [34]. For single-qubit GST, we use the de-
fault gateset {I, X, Y}, where I is the idle gate of 5

fA
≈ 118 ns ( 9

fB
≈ 102 ns), X(Y) stands for

of X(Y)π/2. The six fiducials for state preparation and measurements are { null, X, Y, XX,
XXX, YYY }, where null is the gate with zero idle time. The five germs are {I, X, Y, XY, XXY
}. The circuit length are power of two from 1 up to 128, resulting in total 1120 sequences,
which takes 17 minutes to complete in the experiment. In every sequence, the spin-up
probability PA(B),↑ of qubit A(B) with the idled qubit B(A) are obtained by averaging over
500 single-shot readout and tracing out the qubit B(A) state from the two-qubit state
probability Pσσ′ .

For two-qubit GST, we use the default gateset {I, X A , XB, YA, YB, CZ}. Here the idle gate
takes 100 ns. The 11 measurement fiducials are {null, XB, YB, XBXB, XA, YA, XAXA, XAXB,
XAYB, YAXB, YAYB }. The 16 preparation fiducials are measurement fiducials plus the
gates {XAXBXB, YAXBXB, XAXAXB, XAXAYB, XAXAXBXB }. The 16 germs are { I, XA, YA, XB, YB,
CZ, XAYA, XBYB, XAXAYA, XBXBYB, XBYBCZ, CZXAXAXA, XAXBYBXAYBYA, XAYBXBYAXBXA,
CZXBYACZYBXA, YAXAYBXAXBXAYAYB }. The circuit length are {1,2,4,8}, resulting in to-
tal 1702 sequences, which takes 18 minutes to complete in the experiment. In every
sequence the two-qubit state probability Pσσ′ is obtained by averaging over 500 single-
shot readout.

The measurement outcome of the gate sequence is analyzed in the python package
pyGSTi with CPTP model, which considers the gates, the state preparation and mea-
surement as completely positive trace-preserving processes. The corresponding process
matrices are estimated and multiple derived quantities can be computed. In the case
of single-qubit GST, the estimated process of the single qubit gates can be projected and
decomposed into rotation operators as listed in Table 7.2. For both single-qubit and two-
qubit GST, we report gate errors metrics (Table 7.3, 7.4) and SPAM error (Table 7.5, 7.6).

The tables include the averaged gate infidelity 1− tr(G−1
expGideal)+d
d(d+1) , non-unitary averaged

gate infidelity d−1
d (1−

√
u(G−1

expGideal), 1/2 trace distance 1
2∥Ja(Gideal)−Ja(Gexp)∥, and 1/2

diamond-distance 1
2 maxρ∥(Gideal ⊗ I )ρ− (Gexp ⊗ I )ρ∥. Here d = 2Nqubits is the dimension

of the Hilbert space, Gexp is the process of the gate in the GST experiment in the form of
Pauli transfer matrix (PTM), Gideal is the PTM of the ideal gate, u(M) = tr(Ja(M)2) is the
unitarity of the matrix M , Ja(M) is the Jamiolkowski isomorphism map between the ma-
trix M and the corresponding Choi Matrix, ∥.∥ denotes the trace norm, and ρ is a density
matrix of dimension n2 [34, 54].

Discrepancy between RB and GST in two-qubit gate benchmarking The different bench-
marking results obtained by GST and interleaved RB may stem from the presence of low-
frequency noise. In GST, the CZ gate is repeated to amplify and extract the single-gate
dephasing error rs. Similar to the Ramsey dephasing, repeating the CZ gate N -times

results in an error r (N ) = r (Nα)
s where α = 1 if the error is Markovian, or α ≈ 2 if the de-

phasing error is dominated by the energy level fluctuations with 1/ f noise spectrum [55,
56]. In the latter case, the errors of the CZ gates in different position within a repeated CZ
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gate sequence (e.g. the first CZ gate and the second CZ gate) are correlated. This type of

error with temporal correlation is non-Markovian. Analyzing the decay r (N ) = r (N 2)
s us-

ing a Markovian error model can result in deviations of estimated single-gate errors from
the actual error. The outcome of our GST experiments always shows model violations,
which is in line with this hypothesis. On the other hand, in RB the CZ gates are placed
between Cliffords that reduce the correlation of the CZ gate errors at different position of
a sequence. According to the numerical study [56], under the 1/ f noise the RB provides
better than a factor-of-2 estimate of the gate error. We believe this worse-case deviation
of the error estimate (a factor of 2) is smaller than the one from GST, in view of the 1/ f
noise and gate implementation in our system. Therefore, we consider the results of the
interleaved RB to be more representative for the average gate fidelity, while GST is used
to access the full tomographic reconstruction of the quantum processes.

Gate
Rotation axis

n̂ = (nx ,ny ,nz )
Rotation angle

θrot(π)
IA (0.038,0.027,0.999) 0.0038
XA (1,1×10−3,−1.7×10−6) 0.5018
YA (1×10−3,1,2×10−7) 0.5019
IB (−0.0057,0.014,1) 0.0051
XB (1,−1×10−4,−2×10−7) 0.5015
YB (−1×10−4,1,−4×10−7) 0.5016

Table 7.2: Single qubit gate parameters determined from GST.

Gate
Avg. gate

infidelity (%)

Non-unitary
avg. gate

infidelity (%)

1/2 trace
distance (%)

1/2 diamond-
distance (%)

Eigenvalues
1/2 diamond-
distance (%)

IA 0.38 ± 0.02 0.38 ± 0.02 0.82±0.03 0.83±0.05 1.22±0.05
XA 0.061 ± 0.008 0.061 ± 0.008 0.33±0.02 0.34±0.07 0.44±0.03
YA 0.058 ± 0.008 0.057 ± 0.008 0.35±0.02 0.35±0.05 0.45±0.02
IB 0.71 ± 0.03 0.70 ± 0.03 1.32±0.06 1.33±0.09 1.97±0.09
XB 0.019 ± 0.007 0.019 ± 0.007 0.24±0.02 0.25±0.03 0.36±0.03
YB 0.023 ± 0.007 0.022 ± 0.007 0.25±0.02 0.26±0.04 0.37±0.02

Table 7.3: Single-qubit GST gate fidelity. The single-qubit GST is performed under the same setting as single-
qubit RB and two-qubit IRB and GST, where residual exchange coupling J ≈ 10− 15 kHz. The uncertainty
represents the 95% confidence interval.
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Gate
Avg. gate

infidelity (%)

Non-unitary
avg. gate

infidelity (%)

1/2 trace
distance (%)

1/2 diamond-
distance (%)

Eigenvalues
1/2 diamond-
distance (%)

IA ⊗ IB 0.36 ± 0.27 0.36 ± 0.26 0.9±1.5 1.0±2.4 1.4±0.6
XA ⊗ IB 0.46 ± 0.28 0.43 ± 0.28 2.0±0.9 2.7±2.4 3.6±1.6
YA ⊗ IB 0.82 ± 0.35 0.78 ± 0.35 2.7±1.2 3.5±4.5 4.4±2.4
IA ⊗XB 0.33 ± 0.27 0.32 ± 0.27 0.8±0.9 1.2±1.7 0.7±1.2
IA ⊗YB 0.51 ± 0.39 0.49 ± 0.38 1.7±0.9 2.4±2.5 2.4±1.6

CZ 1.87 ± 0.52 1.78 ± 0.50 4.4±0.7 6.2±3.8 8.1±0.9

Table 7.4: Two-qubit GST gate fidelity. The parameter settings are identical to two-qubit IRB experiments,
where magnetic field B = 25 mT and the CZ gate has maximum exchange coupling J ≈ 21 MHz. The uncer-
tainty represents the 95% confidence interval.

Qubit Readout probability
Single-qubit GST experiment Two-qubit GST experiment
Prepare |↓〉 Prepare |↑〉 Prepare |↓〉 Prepare |↑〉

QA
P↓ (%) 96.9 8.6 97.3 10.0
P↑ (%) 3.1 91.4 2.7 90.0

QB
P↓ (%) 95.0 8.0 95.1 7.2
P↑ (%) 5.0 92.0 4.9 92.8

Table 7.5: Estimation of SPAM fidelity in single-qubit space based on single-qubit GST and two-qubit GST
experiments.

Readout probability Prepare |↓↓〉 Prepare |↓↑〉 Prepare |↑↓〉 Prepare |↑↑〉
P↓↓ (%) 94.0 6.2 8.6 1.5
P↓↑ (%) 3.7 90.7 1.3 8.5
P↑↓ (%) 2.1 0.7 85.4 6.0
P↑↑ (%) 0.2 2.4 4.7 84.0

Table 7.6: Estimation of SPAM fidelity based on two-qubit GST results. We use the SPAM operations estimated
by GST, including the initial state (a density matrix) and the positive operator-valued measure (POVM), to
compute the expected readout probability when preparing specific computational states. The computational
states are prepared using the imperfect initialization of |↓↓〉 and the perfect single-qubit gates.

7.6.3. EVALUATION OF THE SHUTTLING FIDELITY
In this section we show the connection between shuttling fidelity Fshuttle and the gate
fidelity extracted from single-qubit randomized benchmarking. The Xπ/2,A gate is com-
posed of four shuttling ramps of 2 ns and some idle periods. Because the spin state
rotates during the 2 ns-ramp in a predictable way, we consider the 2 ns-ramp as a quan-
tum gate. The average gate fidelity of this single-shuttle gate is taken as shuttling fidelity
Fshuttle. In principle, the deterministic part of the gate can be compensated by applying
a calibrated rotation after the ramp. The stochastic part of the gate (incoherent error)
that cannot be compensated contributes to the shuttling infidelity.
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In Table 7.7 we list the error sources and find that the wave function uncertainty due
to pulse timing is the major error source. The non-integer waiting time between each
shuttling step, as well as the differences in execution times of the Clifford gates, result
in randomization of this error. We therefore consider the errors as uncorrelated, consis-
tent with the assumptions of randomized benchmarking, and use the relation rXπ/2,A =
4rshuttle + ridle, where rXπ/2,A is the infidelity of Xπ/2,A, rshuttle = 1−Fshuttle is the shuttling
infidelity and ridle is the infidelity that accounts for all the idling operations. This relation
gives the lower bound of the shuttling fidelity, Fshuttle = 1− rshuttle ≥ 1− 1

4 rXπ/2,A . Based
on the single-qubit RB fidelity FXπ/2,A ≥ 99.967(4)%, we calculate the shuttling fidelity
Fshuttle ≥ 99.992(1)%. From the gate Xπ/2,B we estimate the shuttling fidelity Fshuttle ≥
99.980(3)%. However, we remark that the quantization axis of qubit B is very close to
45◦, which may result in decoupling, and therefore an underestimation of ridle and pos-
sibly rshuttle.

7.7. MEASUREMENT AND FIT OF DOUBLE QUANTUM DOT EN-
ERGY SPECTRUM

7.7.1. SINGLE-QUBIT ENERGIES
Using the Ramsey sequence, we measure the free precession frequency as a function
of detuning in the double quantum dot system D1-D4 as well as D2-D3, in order to
characterize the tunnel couplings, the position of the anti-crossings, and the relative
angle of the quantization axes under the voltage settings used for implementing the
hopping-based quantum gates. The corresponding charge stability diagrams are shown
in Figs. 7.7b, c. Following the modelling approach in the work [21], the system is de-
scribed in the basis {|L,↑L〉,|L,↓L〉,|R,↑L〉,|R,↓L〉}, where ‘L’ or ‘R’ indicates the position of
the hole in quantum dot QDL or QDR and ↑L or ↓L specifies its spin states in the frame of
quantum dot L. Its Hamiltonian is written as:

H4×4 =


ϵ 0 tc 0
0 ϵ 0 tc

tc 0 −ϵ 0
0 tc 0 −ϵ

+1

2
µBB


gL(ϵ) 0 0 0

0 −gL(ϵ) 0 0
0 0 gR(ϵ)cos(θ) gR(ϵ)sin(θ)e−iφ

0 0 gR(ϵ)sin(θ)eiφ −gR(ϵ)cos(θ)

 ,

(7.1)
where ϵ is the detuning energy of the double quantum dot system (taken as zero at the
charge transition), µB is the Bohr magneton and the gi are the g -factors of the quan-
tum dot i , θ (φ) is the polar (azimuthal) angle between the two quantization axes. An
example of the energy levels is shown in Fig. 7.8. We note that this model is similar to
that of a flopping-mode qubit [57]. Diagonalizing the Hamiltonian, we obtain the qubit
resonance frequency fres (at the limit of small Zeeman energy µBB ≪ tc):

fres = µBB

h

√
(2ϵ2 + t 2

c )(gL(ϵ)2 + gR(ϵ)2)+2ϵ
√
ϵ2 + t 2

c (gR(ϵ)2 − gL(ϵ)2)+2gL(ϵ)gR(ϵ)t 2
c cos(θ)

2
√
ϵ2 + t 2

c

,

(7.2)
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Assuming a linear dependence of g -factors gL(R)(ϵ) on the detuning ϵ, we fit the above
formula to the data and extract the tunnel coupling tc,14 = 27 ± 1 GHz and the angle
between quantization axes θ14 = 65±2◦ for the quantum dot pair D1-D4. In the quantum
dot pair D2-D3 we extract the tunnel coupling tc,23 = 20± 1 GHz and the angle θ23 =
51±2◦. The results are shown in Fig. 7.9. We notice that the extracted quantization axis
angles are higher than the values extracted from the fitting in Fig. 7.1C and Fig. 6c of
the supplementary material [31], where θ14 = 41.5◦ and θ23 = 44.7◦(see Section 3 of the
supplementary material [31]). This discrepancy might be attributed to the adiabaticity
of the shuttling process, and the non-linear g -factor variation as a function of voltages
around the charge anti-crossing.

7.7.2. TWO-QUBIT ENERGIES AND COHERENCE TIME
We measure the qubit energies and the coherence times of the two-qubit system as
shown in Fig. 7.10. We observe several features, such as the non-monotonic dependence
of qubit energies as function of barrier gate voltages. To explain this result, we model the
two-qubit system using an extended minimal-size Fermi-Hubbard model with the six
basis states { S(2,0), S(0,2), T +(1,1), S(1,1), T 0(1,1), T −(1,1)}. The Hamiltonian is writ-
ten as [58–60]

H2Q =



U +ϵ2Q 0 −ty + i tx
p

2tc −i
p

2tz −ty − i tx

0 U −ϵ2Q −ty + i tx
p

2tc −i
p

2tz −ty − i tx

−ty − i tx −ty − i tx h f+ 0 0 0p
2tc

p
2tc 0 0 h f− 0

i
p

2tz i
p

2tz 0 h f− 0 0
−ty + i tx −ty + i tx 0 0 0 −h f+

 . (7.3)

The charging energy takes the value U = 2.56 meV [61]. The detuning energy of the two-
spin system is ϵ2Q (which is different than the single-spin system discussed in Section
3 of the supplementary material [31]). The Zeeman interactions are included in h f± =
1
2 (gA ± gB)µBB . The hopping between the quantum dots is modelled through a spin-
probability conserving tunnel coupling tc + i tz and a spin-probability non-conserving
tunnel coupling tx+i ty. The impact of a magnetic field is described by the Zeeman inter-
action Hamiltonian, where we use a local spin basis such that the two spins are aligned.
Consequently, this redefines the spin-conserving and spin-non-conserving tunnel cou-
plings.

In the experiments, we change the voltage vB12 at constant detuning to tune the tun-
nel couplings (tc, tx, ty, tz) and the resulting exchange coupling. We assume that all the
tunnel couplings change exponentially as a function of the barrier gate [59] exp(− 1

2κvB12)
with identical κ = 0.059 mV−1 and estimate the prefactors by fitting the parameters to
our measurements. This assumption also implies that the ratios tx,y,z/tc remain con-
stant. Since the eigenenergies of Hamiltonian (7.3) only depend on the absolute value of
tc + i tz and tx + i ty and not on their complex argument (can be easily verified by com-
puting the characteristic polynomial), the phases cannot be estimated by analyzing the
eigenenergies. For the Zeeman interactions, we assume the g -factors depend linearly
on the gate voltage, gA(B)(vB12) = g (0)

A(B) + g (1)
A(B)vB12. Finally, we set the detuning ϵ2Q to a

fixed value of zero, because we operate at fixed plunger gate voltages (vP1, vP2) close to



7

168 7. OPERATING SEMICONDUCTOR QUANTUM PROCESSORS WITH HOPPING SPINS

b

a

Xπ/2
Xπ/2

Xπ/2

vB12(t)QA

QB
Xπ/2Xπ/2 Xπ/2

40

80

160

120

-90 -20 50 -90 -10-50

40

20

0

ΔfA = fA, QB    - fA, QB  
ΔfB = fB, QA    - fB, QA  

Q
ub

it 
fr

eq
ue

nc
y 

(M
H

z)

J 
(M

H
z)

empirical formula

vB12 (mV) vB12 (mV)

A

0.2

0.8

0 50 100

τ

τ (ns)

QA, QB
QA, QB  

A

0.2

0.8

B

0.2

0.8

τ (ns)0 1000 0 1000τ (ns) 0 3000τ (ns)
0 500τ (ns)

c d e

-80 -40-60
vB12 (mV)

-20
0

2

4

T 2*   (
µs

)

QA, QB  QA, QB  QB, QA  QB, QA  
Ramsey decay at vB12 = -65 mV (J ≈ 20 MHz)

T2
* =2.7 µs T2

* =320 nsT2
* =970 nsT2

* =560 ns

Ramsey at vB12= -65 mV 

QA, QB  
QA, QB  

QB, QA  
QB, QA  

Figure 7.10: Qubit frequencies and coherence time as a function of virtual barrier voltage at magnetic field of
25 mT. a, The Ramsey experiments for measuring qubit frequencies as well as the free evolution decay time T⋆2
at various virtual barrier gate voltage vB12. The circuits here is an example of qubit A frequency measurement
conditioned on qubit B state. The pulse on vB12 is trapezoidal with linear ramp times of 80 ns to avoid diabatic
state transitions. b, Free induction decay of individual qubit conditioned on the other qubit at vB12 =−65 mV.
The data are fitted to P (τ) = A exp(−(τ/T⋆2 )2)+B to extract T⋆2 . c, The state-dependent qubit frequencies. The

fitting results are plotted in black lines, with the energy diagram in the inset. d, The T⋆2 measurement and the
fitting curves. The sampling time and numbers of sample points are chosen to adapt for the qubit frequencies
and decay rates that depends on vB12, resulting in the T⋆2 experiment time of 18-58 seconds for QA and 38-133
seconds for QB. e, The exchange couplings J =∆ fA(B). The exchange couplings predicted by empirical formula
J = J0 exp(−κ (vB12 −∆vB12)) is plotted, where J0 = 0.24 MHz and κ = 0.059 mV−1, and ∆vB12 = 10 mV. One
set of the data ∆ fA is also plotted in Fig. 7.4C. We note that the data displayed in this figure and in Fig. 7.4C are
taken after a charge jump that shifts vB12 by about ∆vB12 = 10 mV. As an example, the measurement taken at
vB12 =−65 mV in this figure should be considered as the measurement taken at vB12 ≈−75 mV in other parts
of the paper.

the symmetry point for all the two-qubit experiments.
We fit the qubit frequencies in Fig. 7.10c to the eigenenergies of Eq. (7.3). Our fit

shows a good agreement between the model and the experiments. We find the rela-

tive strength between spin-dependent tunnel couplings to be
t 2

x +t 2
y

t 2
c +t 2

z
= 0.11. The corre-

sponding energy levels are plotted in the inset of Fig. 7.10c, where we identify the anti-
crossing between |↑↓〉 and |↓↓〉 as the cause of the bending of exchange coupling around
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vB12 =−85 mV.
Based on this model, we estimate the dephasing of the two-spin system by con-

sidering qubit frequency fluctuations due to three noise sources: the effective electric
noise on vB12 and fluctuations of the g -factors g (0)

A(B) [12]. Assuming 1/ f noise domi-

nates qubit dephasing, the coherence time reads T⋆
2 =

√
2/(S1/ f ln 0.401

te/tm
) [55, 62], where

we define the evolution time te as the high-frequency cutoff and the total measurement
time tm as the low-frequency cutoff, S1/ f is the strength of the single-sided spectral den-
sity of the qubit angular frequency. The strength is related to the noise spectrum of a
particular noise source x ∈ {vB12, gA, gB} by S1/ f = ( ∂ω∂x )2Sx

1/ f , where ∂ω
∂x is the sensitiv-

ity of the qubit angular frequency and the strength of the 1/ f noise Sx
1/ f is defined by

Sx (ω) = ∫ ∞
0 Sx (t )e iωt d t = 2πSx

1/ f /ω with the autocorrelation function Sx (t ) = 〈x(t )x(0)〉.
Here we choose te = T⋆

2 which is the evolution time relevant for a T⋆
2 measurement.

We assume that the three noise sources are independent and their fluctuations uncor-

related, giving rise to a total dephasing time T⋆
2,total = 1/

√
T⋆

2,vB12

−2 +T⋆
2,g(0)

A

−2 +T⋆
2,g(0)

B

−2.

For the transition between two energy levels i and j , we use the derivatives of the transi-
tion angular frequency ωi j with respect to the voltage fluctuations to compute theoret-
ical predictions of the coherence time. We pay close attention to the different band-
widths (tm, te) in the respective measurements. For example, the gate voltage noise

SvB12
1/ f yields T⋆

2,vB12

−2 = 1
2 ln 0.401

te/tm
(
∂ωi j

∂vB12
)2SvB12

1/ f . We now use the the fitting parameters

obtained in Fig. 7.10c to fit the noise strength SvB12,gA,gB
1/ f to the coherence time for all the

transitions. We estimate the noise strengths by minimizing the square sum of the de-
phasing rate differences ∆ 1

T⋆
2

between theoretical and measurement values. Fig. 7.10d

shows the fitting results, having qualitative agreement between the model and the ex-
periment. The model reproduce the trend and several features of T⋆

2 (vB12), and also
predicts the relative dephasing time of different qubit transitions. We find the noise
strength SvB12

1/ f = 0.031mV2, which is equivalent to σvB12 = 0.78 mV if integrating from

1µs to 1000 seconds, a typical time scale for Ramsey measurement, and on the same

order as the results reported in Ref. [12]. The noise strength of SgA(gB)
1/ f at this magnetic

field is equivalent to the qubit frequency noise S
fQA( fQB)
1/ f = (µB B)2SgA(gB)

1/ f = 130(200)kHz2,

which translates toσ fQA(QB) = 50(63) kHz and T⋆
2 = 4.5(3.5)µs if integrating the noise from

1µs to 1000 seconds.
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7.8. ERROR MODELING

7.8.1. ERROR MODELING OF THE HOPPING-BASED SINGLE-QUBIT GATE
Noise estimation We model incoherent error originating from (1) fluctuations in Lar-
mor frequencies of the individual quantum dot, (2) fluctuations in detuning energies, (3)
waveform uncertainty, and (4) thermalization processes near the charge anti-crossing.
First we estimate the noise strength of individual error sources. From the T⋆

2 = 7.0(4.5)µs
of the static qubit A(B) at 25 mT, we estimate Larmor frequency fluctuationσ f = 1p

2πT⋆
2
=

32 kHz for QA and σ f = 50 kHz for QB. For Larmor frequency fluctuations in D3 and D4,
we assume that they are uncorrelated and have equal magnitude as QB. From the fitting
of the coherence times in Fig. 7.11, we obtain the effective electric noise δvP4(δvP3) =
0.19(0.14) mV, which is equivalent to the fluctuations in the position of the charge anti-
crossing ∆ϵ14(23),AC = 17(12)µeV and creates the timing fluctuation of 14(23) ps for shut-
tling operations of QA (QB). For the errors from waveform uncertainty (Fig. 7.12d), we
compute the expected waveforms of the gates Xπ/2,A(B) for the time shifts tshift ranging
from 0 to 0.99 ns. Each waveform results in slightly different timing of shuttling, and
therefore contributes to incoherent error.
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Figure 7.11: Qubit coherence times near the charge anticrossings. The coherence time for qubit A (a) and
qubit B (b) extracted from Fig. 7.9 by fitting to the formula P↑(τ) = A exp(−(τ/T⋆2 )2)+B . The black curves are

the expected coherence time assuming quasi-static electric noise on the gates vP4(vP3), T⋆2 = 1p
2πσ f

and the

voltage-dependent qubit frequency fluctuation is σ f ≈ ∂ f
∂vPi

δvPi + 1
2

∂2f
∂vPi

2 δvPi
2 [57, 63]. We estimate the ef-

fective electric noise δvP4(δvP3) = 0.19(0.14) mV, which minimize the square sum of dephasing rate difference
∆ 1

T⋆
between the measured values and the theoretical values.

Error model We use the discrete model (Eq. (4) of the supplementary material [31]) to
compute the unitary matrices of the target gates and noisy gates, and estimate the in-
coherent error. The method is described as follow. The unitary of a gate U is a series
of free precession for various duration around the corresponding quantization axes of
the quantum dots with different frequencies as depicted in Fig. 6b of the supplemen-
tary material [31]. A noise source can either change the duration or change the preces-
sion frequencies, resulting in a slightly different gate unitary. Averaging over the distri-
bution of the noise parameter gives average gate infidelity, similar to the method used
in Section 7.8.2. For the calculation of errors caused by waveform uncertainty, instead
of using a single target unitary, we use a set of target unitaries generated by the wave-
forms with uniformly distributed time shift tshift. This treatment results in a range of
infidelity rather than a single value. We also estimated infidelity caused by T1-like pro-
cesses, where the qubits are thermalized to 50-50 population around the charge anti-
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Error source Xπ/2,A infidelity (×10−5) Xπ/2,B infidelity (×10−5)
Larmor frequency fluctuations 3.1 0.8

detuning noise 7.2 0.13
waveform uncertainty 4.0 - 14.6 5.1 - 17.2

thermalization 0.04 0.05

total infidelity 14.3 - 25.0 6.0 - 18.1

Table 7.7: Incoherent error estimation. Here we present the error metric in terms of average gate infidelity in
single-qubit space.

crossing with the time scale 1/Γ(ϵ). This time scale depends on the detuning ϵ and has
a minimum value around 300µs. The corresponding infidelity per gate is therefore esti-
mated by integrating the transition rates over the ramp time and multiplying the number

of shuttles, Nshuttle
3

∫ tramp

0 Γ(ϵ(t ))d t .
As summarized in Table 7.7, the results show that a large portion of errors arises from

the waveform uncertainty. The relative impact of the detuning noise and Larmor fre-
quency fluctuations depends on the details of the pulses and quantization axes angle.
The thermalization process has little contribution, because of the extended thermaliza-
tion time at low field and the short ramp time we use. The estimated infidelity of both
qubits are on the same order as the measured infidelity, rX,A(B) ≈ 0.03 (0.04)% given by
randomized benchmarking (RB) and rX,A(B) ≈ 0.06 (0.02)% given by gate set tomography
(GST). The deviations can arise from unaccounted error sources as well as the robust-
ness of the benchmarking protocols under realistic experimental conditions.

7.8.2. ERROR MODELING OF THE TWO-QUBIT GATE
In this section we estimate the average gate infidelity of the CZ gate due to the coherent
error and incoherent error. In a d-dimensional Hilbert space, for a unitary operation
implemented in the experiment, Uexp, the corresponding average fidelity is [64]

F = |tr(U−1
idealUexp)|2 +d

d(d +1)
. (7.4)

Coherent error To evaluate coherent errors, we compute the time evolution of the
two-qubit state under the influence of the gate voltage pulse vB12(t ) with a pulse shape
matching a Hamming window [37] as depicted in Fig. 7.4D by solving the time-dependent
Schrödinger equation numerically [65]. If the system evolves adiabatically, the final
state only acquires one conditional two-qubit phase and two single-qubit phases. These
phases can be calibrated in the experiment by fine-tuning the time and amplitude of the
pulse [37]. On the other hand, non-adiabatic state transitions, as shown in Fig. 7.17cd,
result in errors that cannot be simply calibrated. In our simulation, we fine-tune the
voltage pulses vB12(t ) to achieve a conditional phase of π, compute the unitary time
evolution operator of the quantum process without noise, and compensate for the sin-
gle qubit Z rotations. We find the resulting unitary evolution has an average gate infi-
delity 0.089%. Additionally, we decompose the error in the Pauli basis and express the
simulated unitary by the dominant terms, Uexp = e−i (−0.010YI−0.021XY+0.021YX)Uideal. This
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result is in good agreement with the fact that the implemented pulse shape is designed to
suppress the transition |↑↓〉→ |↓↑〉 while the transitions induced by spin-non-conserving
tunneling are not fully suppressed. We believe that a further reduction of non-adiabatic
transitions can be achieved by incorporating Eq. (7.3) directly into the optimization pro-
cess for finding the pulse.

Incoherent error Incoherent errors are dominantly caused by the 1/f-type low-frequency
fluctuations in vB12 and g -factors gA,B, which result in the random deviations of the uni-
tary operation Uexp from the ideal operation Uideal. We can now write the unitary oper-
ation Uexp(x) that is dependent on a stochastic parameter x of the noise source. While
this can be straightforward generalized to multiple sources, we consider for simplicity
only fluctuations of the accumulated phases and neglect fluctuations of the transition
matrix elements caused by the non-adiabatic time evolution discussed in the previous
paragraph. This allows us to further approximate the 1/f spectral noise with quasistatic

fluctuations by integrating over the corresponding frequenciesσ2 = 2
∫ t−1

e

t−1
m

Sx
f d f . Assum-

ing x to be a stochastic variable drawn from a Gaussian distribution with zero mean and
standard deviation of σ, we can replace the quantity |tr(U−1

idealUexp)| in Eq. (7.4) with the
expectation value [66, 67],

〈|tr(U−1
idealUexp)|2〉 =

∫ ∞

−∞
|tr(U−1

idealUexp(x))|2 1p
2πσ

e−
x2

2σ2 d x. (7.5)

We estimate the accumulated phases by integrating the qubit frequencies fQi,Qj(t , x) over
time under the influence of the voltage pulse vB12(t ) and the noise amplitude x. The
corresponding (stochastic) unitary matrix in the basis |↓↓〉, |↑↓〉, |↓↑〉, |↑↑〉 is then given by

Uexp(x) =


1 0 0 0
0 e−2πi

∫
fQB,QA↓(t ,x)d t 0 0

0 0 e−2πi
∫

fQA,QB↓(t ,x)d t 0
0 0 0 e−2πi

∫
fQA,QB↓(t ,x)+ fQB,QA↑(t ,x)d t

 .

(7.6)
The standard deviation of the noise σ is estimated in a way similar to the T⋆

2 fitting in

Fig. 7.10d and depends on the low(high)-frequency cutoff t−1
m (t−1

e ) asσ∝ 1
T⋆

2
∝

√
ln 0.401

te/tm

[55, 62]. In the case of two-qubit IRB experiments, the total experimental time is tm =
2680 s and te is chosen as the total gate time of 108 ns (including padding time). Based on
these experimental conditions and the results of the T⋆

2 fitting in Section 7.7.2, we esti-
mate the effective standard deviations σvB12 = 0.88 mV, σ fQA = 57 kHz and σ fQB = 72 kHz
during the IRB experiments. Taking the above considerations, we obtain an average gate
infidelity 0.23%, where the main contribution from the noise is caused by fluctuations of
vB12 accounting for an error of 0.19%.

In summary, we find that incoherent error caused by dephasing are dominant over
coherent errors for the average gate fidelity. The total average gate infidelity from the
models is equal to 0.32%, which is on the same scale as the estimated value of 0.67±
0.09% extracted from the IRB experiment, while it significantly differs from the estimated
value of 1.87±0.52% extracted from the GST experiment (Table 7.1 and Table 7.4). The
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deviations can arise from unaccounted error sources as well as the robustness of the
benchmarking protocols under realistic experimental conditions.

7.9. EXTENDED DATA

7.9.1. TIMING PRECISION OF SHUTTLING PULSES
High fidelity hopping-based gates require a precise timing of shuttling pulses. A qubit
fidelity above 99.99% can be achieved when the rotation has an incoherent error of less
than 1.3 degrees. In a simplified example where two quantum dots having quantization
axes which are perpendicular, the timing error of ramps for an Xπ/2 shuttling gate on a
qubit with a Larmor frequency of 40 MHz should be less than 90 ps. This timing preci-
sion is far below the sample rate of 1 GSa/s of the used AWG. Ramps can be timed with
precision higher than the sample rate, because the voltage resolution of the AWG can
be used to shift the ramp in time as shown in Fig. 7.12a. The time resolution ∆tres of a
ramp with a duration long enough to be not affected by the transients at the start and
end of the ramp can be approximated by ∆tres = tramp∆V /A, where tramp the duration of
the ramp, ∆V the voltage resolution of the AWG and A the amplitude of the ramp. This
approximation assumes that the low-pass filter has a cut-off frequency just below the
Nyquist frequency. Surprisingly, the sample rate has no direct effect on the time resolu-
tion of the ramp. A higher sample rate combined with a higher cut-off frequency allows
the generation of shorter ramps and shorter ramps have a higher time resolution. The
voltage resolution and thus the time resolution effectively decrease when oversampling
is used, i.e. when the cut-off frequency is significantly lower than the Nyquist frequency.

We have used AWGs with a voltage resolution of 0.37 mV and pulses with an ampli-
tude on the order of 200 mV at the AWG outputs (this translates to 25.2 mV on the device
due to the attenuation on the line) and a ramp time of 2 ns. This setting gives a time reso-
lution of 3.7 ps, which meets the requirement for high-fidelity gates. However, the ramps

ba

c

d

t (ns)
0 1 2 3 4 5

0

100

200

pu
ls

e 
(m

V
)

100

99

101

100

95

105

2.59 2.61

1.95 2.05

ideal
sampled
�ltered

ideal
sampled
�ltered

ramp start at 1 ns 
(tshift= 0 ns)

ramp start at 1.6 ns
(tshift= 0.6 ns)

t (ns)

t (ns)

pu
ls

e 
(m

V
)

pu
ls

e 
(m

V
)

Δt

Δt

Δt
 (n

s)

-0.03

0.03

0

tshift (ns)0 1

Figure 7.12: Pulse timing. a, Digital inputs and analogue outputs of the AWG for two pulses with time shifts
tshift = 0 and 0.6 ns. The dotted lines are the ideal linear ramps with 0.6 ns time shift that we are aiming for.
The solid lines are the digital inputs, represented by the discrete sampling with 1 ns resolution. To produce a
time shift of 0.6 ns, a 60 mV decrement of the digital input is made on the rising ramp. The low-pass filtering of
the AWG results in the smoothened output voltages represented by the solid curves, as well as the oscillations
(ringing) after the ramp. b, c, Zoom-in of the pulses around the middle of the ideal ramps. The deviation in
time between the ideal ramps and the analogue outputs at half of the voltage amplitude is denoted as ∆t . d,
The deviation ∆t as a function of time shift tshift. The data set is generated with equally distributed time shifts
from 0 to 0.999 ns. The mean of the distribution corresponds to ∆t = 0. The analogue outputs in all the plots
are calculated using the measured step response of the AWG.
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for the shuttling pulses are short with respect to the transient response of the low-pass
filter. The filter of the AWG adds small wiggles to the short ramps making the timing
less precise. This effect is shown in Fig. 7.12d, where the time deviation for the ramps
with different time shift tshift are plotted. From these calculated ramps we have derived
a maximum deviation of 30.4 ps from the average and a standard deviation of 19.4 ps,
satisfying the basic requirements for 99.99% fidelity. We modeled our gate implementa-
tion in Section 3 of the supplementary material [31] and estimate the incoherent error
due to such timing deviation, as summarized in Table 7.7.

7.9.2. COHERENCE TIMES OF THE INDIVIDUAL QUBITS
Because the g -tensor and hyperfine interaction for heavy hole qubits are expected to be
highly anisotropic, a small magnetic field offset pointing towards an out-of-plane direc-
tion can change the dephasing time significantly. For our device, we find that the mea-
sured qubit frequencies are not completely linear in magnetic field for field strength of
1 mT. Therefore, we can estimate the magnetic field offset for in-plane and out-of-plane

direction by fitting the measured qubit frequency to h f (Bext) =
√

(g∥µB (Bext +B∥
0))2 + (g⊥µB B⊥

0 )2

(Fig. 7.13b and inset). Our best fits show perpendicular magnetic field offsets g⊥µB B⊥
0 =

1.4(1) MHz for QA, 1.8(2) MHz for QB and parallel offsets B∥
0 = 0.08(3) mT for QA, 0.13(2) mT

for QB. The perpendicular offsets are 10 and 13µT assuming an out-of-plane g -factor
g⊥ = 10. The offsets might originate from magnetic materials on the sample board,
trapped flux in superconducting magnet, polarized nuclear spins, Meisner effect of the
metallic top gates, or the Earth magnetic field.

To estimate the magnetic field dependence of the dephasing time, we consider a sim-
plified model assuming Gaussian quasi-static fluctuations of the qubit frequency orig-
inating from nuclear spin noise and quasi-static fluctuations of the g -factor caused by
charge noise. The qubit frequency for an external applied magnetic field Bext is given by

f (Bext,δg ,δ fn) = 1

h

√
((g∥+δg )µB (Bext +B∥

0))2 + (δ fn + g⊥µB B⊥
0 )2. (7.7)

In linear order, the in-plane g -factor fluctuation δg gives rise to qubit frequency fluctua-
tion δ fδg = f (Bext,δg ,0)− f (Bext,0,0) with standard deviationσ f ,δg and the out-of-plane
hyperfine field fluctuationsδ fn give rise to qubit frequency fluctuationδ fn = f (Bext,0,δ fn)−
f (Bext,0,0) with standard deviation σ f ,δ fn . Assuming both noise sources to be indepen-
dent and uncorrelated, the standard deviation of the total qubit frequency fluctuation

at Bext is σ f =
√
σ2

f ,δg +σ2
f ,δ fn

giving rise to a coherence time T⋆
2 = 1p

2πσ f
. From our

fit in Fig. 7.2B (replotted in Fig. 7.13c), we extract an effective hyperfine noise δ fn =
52(7) kHz for QA and 78(8) kHz for QB, corresponding to the coherent time T⋆

2 = 4.3(6)
and 2.9(3)µs. This result is larger than δ fn = 34.4 kHz reported in Ref. [68] in D3 of the
same device and significantly smaller than δ fn = 250 kHz reported in Ref. [24]. The dif-
ference could arise from microscopic details in the device, the simplicity of the model,
as well as the complexity of the nuclear spin noise at low magnetic fields, where the 73Ge
nuclear spins have a quadrupolar splitting caused by strain which has a similar magni-
tude as the precession frequency.



7.9. EXTENDED DATA

7

175

Magnetic �eld (mT)
0 20 40

0

50

100

150

Q
ub

it 
fr

eq
ue

nc
y 

(M
H

z)

Magnetic �eld (mT)
1 10

10

100

T 2 (µ
s)

Magnetic �eld (mT)
5 10 40

10

100T 2 (µ
s)

1000

Nπ

QA
QB

 Ramsey

Hahn

 Ramsey

Hahn

CPMG-32

CPMG-512

QA
QB

100

T 2 (µ
s)

1000

100

T 2 (µ
s) 1000

1 10 100

QA 5 mT
QA 25 mT

QB 5 mT
QB 25 mT

cb

d e

QA
QB

Nπ
2/3 Nπ

2/3

0 4
0

20

2

10

40

a

Nπ

1 10 100

τ τ
YπXπ/2 Xπ/2

CPMG-Nπ

Hahn echo

τ/2 τ/2
YπXπ/2 Xπ/2

Nπ

τXπ/2 Xπ/2

Ramsey

f

Figure 7.13: Coherence time and dependence on magnetic field strength at the idle position of the qubits.
a, The pulse sequences consisting of hopping-based gates Xπ/2(Yπ/2) for measuring qubit frequency and T⋆2
(Ramsey), for T H

2 (Hahn echo), and T CPMG
2 (CPMG-Nπ). b, The frequencies of qubits QA and QB as a function of

external magnetic field. The inset is the zoom-in at low field regime, where a non-linear behavior is observed.
The fitting method is described in the text. Here the superconducting magnet is in the driven mode. In this
mode, the power supply is galvanically connected to its power supply. It introduces extra noise in the system
compared to the normal operation mode. Note that field below 5 mT can only be reached with the magnet in
driven mode. c, The T⋆2 and T H

2 as a function of external magnetic field when the magnet is at the driven mode.

The T⋆2 is extracted from the Ramsey measurement with an average of 10 traces and the experimental time 12-
19 minutes. Here we replot the data in Fig. 7.2B for easier comparison. d, The coherence time as a function
of magnetic field above 5 mT when magnet is in the normal operation mode. The longest coherence time is
obtained at 5 mT, with T⋆2 = 24.1µs, T H

2 = 122µs and T CPMG−512
2 > 3 ms. The T⋆2 is extracted from the Ramsey

measurement with an average of 10 traces and the experimental time 12-19 minutes. When fitting T CPMG−512
2

of QA, we disregard data points corresponding to total evolution time τNπ > 4 ms that are influenced by the
reservoir-induced decay. Exemplary CPMG datasets are shown in Fig.7.14. e,f, The T CPMG

2 as function of
number of π-pulses for both qubits at two different magnetic fields.
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Figure 7.14: Coherence time with dynamical decoupling pulses at magnetic field of 5 mT. a, The coherence
of qubit A and b, the coherence of qubit B as a function of total evolution time Nπτ with CPMG dynamical
decoupling sequence (schematics depict in Fig. 7.13a). The collapse and revival of coherence (peaks marked
by black arrows in the plots Nπ ≤8) should be attributed to hyperfine noise of 73Ge nuclear spin. We notice
that at such low magnetic field the expected linewidth of hyperfine noise becomes comparable to the nuclear
spin precession frequency, which might explain the observed smoother features compared to the work [24].
Despite the collapse-and-revival features, we still fit the data to the formula P (t ) = A exp(−(t/T2)α)+B to
extract coherence time T2. We also notice the coherence at Nπτ = 0 almost stay the same for the plots from
Nπ = 1 to Nπ = 512, which implies the spin states do not have noticeable decay with numbers of shuttles up
to 4096(2048) times for qubit QA(B). We remark that the black data points in the plots Nπ = 512 are removed
from the coherence time fitting, due to the decay induced by tunnel coupling to the reservoir in (a), and due to
the charge jumps of the sensor in (b). In both cases, the fitted T2 should still be valid because the fitting curves
agree with the data, and the fitted T2 fall on the trend of T2-Nπ data in Fig. 7.13e,f.
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7.9.3. MEASUREMENT PROTOCOL FOR RESIDUAL EXCHANGE COUPLINGS
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Figure 7.15: Measurement of exchange coupling using a Hahn echo sequence at magnetic field of 25 mT. a,
Illustration of a pulse used to probe the exchange coupling at vB12,probe starting from the idle point vB12,idle
where the single-qubit gates are performed. The virtual gate voltages vP1,2 are ramped to the values used
for the Ramsey experiments (Fig. 7.10) as well as the GST and RB experiments. b, The circuits for Hahn echo
measurement, probing the difference of accumulated phases on qubit A induced by the flipped state of qubit
B. Echo fringes of qubit A are measured in c by inserting X2

π/2,B at various positions of the circuits {i,ii,iii,iv},

which lets QA interact with flipped QB for various amount of time τ = nT , n = {0,1,2,3}. (b) shows the gates
X2
π/2,B inserting at the position ii. c, The fringes of the Hahn echo measurement. The data sets are shifted

vertically for clearer display. The fringes are fitted to A cos(θ+φ0)+B as black lines and the extracted phase
offsets φ0 are plotted in d. The linear fit of the phase offsets φ0 as a function of evolution time τ gives the
QB-state-dependent frequency variation of QA. The phase accumulation during the ramp and the idle time
before and after the pulses X2

π/2,B are corrected by the residual exchange at the idle position, which is 15(1)

kHz measured via the same method. We note that the measurement displayed in this figure are taken after a
charge jump of vB12, similar to the situation described in the caption of Fig. 7.10.
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7.9.4. CALIBRATION OF THE PULSE-SHAPED CZ GATES
We implement exchange pulses with a Hamming window J (t ) = Jon(0.54−0.46cos(πt/τramp)),
using an empirical relation between the exchange coupling and the gate voltage vB12 ,
J (vB12) = J0 exp(−κ vB12) where J0 = 0.24 MHz and κ = 0.059 mV−1. The CZ gate calibra-
tion is performed in the following order:

1. Conditional phase calibration: for a given pulse amplitude vB12,on, we measure
the accumulated state-dependent phases as function of the ramp time τramp, as
described in Fig. 7.16bc. We find the ramp time τramp = τπramp that allows the state-
dependent phase difference of π (Fig. 7.16d). The pulse amplitudes and ramp
times allowing conditional phase of π are measured and plotted in Fig. 7.16e.

2. Single-qubit phase correction: as described in Fig. 7.4D, after applying an exchange
pulse with a given pulse amplitude and the ramp time, the target qubit QA picks
up a phase that should be calibrated to zero if the control qubit |QB〉 = |↓〉, and to π
if the control qubit |QB〉 = |↑〉. The same correction needs to apply to both qubits.

3. GST calibration: we fine-tune the ramp time τramp and the single-qubit phase cor-
rection with the error reports from gate set tomography (GST) [12, 54].

We measure the non-adiabatic transitions of the implemented exchange pulses in Fig. 7.16.
We observed the gate is sufficiently adiabatic when maximum exchange is below 20 MHz,
motivating the choice of CZ gate parameter vB12,on =−76mV for two-qubit RB and GST
experiments.
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Figure 7.16: Calibration of the conditional phase for the pulse-shaped CZ gates. a, The illustration of vir-
tual barrier gate voltage vB12(t ) with two pulse parameters vB12,on and τramp . The pulse vB12(t ) generates
Hamming window waveform J (t ) = Jon(0.54− 0.46cos(πt/τramp). The maximum exchange coupling Jon is

predicted by empirical formula Jon = J0 exp(−κ vB12,on), where J0 = 0.24 MHz and κ = 0.059 mV−1. b, The
normalized 〈σx(y)〉 of qubit A depending on the state of qubit B, as a function of τramp at a certain gate volt-
age vB12,on. The values 〈σx(y)〉 are measured by the Xπ/2 without (with) Zπ/2 before the readout, normalized
with the Ramsey amplitudes of a reference experiments without the exchange pulse. Here is an example of
vB12,on =−76 mV. c, The state-dependent phases of the qubit A as a function of the ramp time τramp. d, The
ramp time for the state-dependent π phase shift, τramp = τπramp, is determined by linear interpolation and
finding the point where the state-dependent phase shift∆ϕA =ϕA,B↑−ϕA,B↓ =π. e, The ramp time τπramp that
results in CZ gate at various gate voltages vB12,on. We also tune up the CZ gates with Hann window pulses us-
ing the same method. The predictions are based on the analytical formula tramp = 0.25/(a0 J0 exp(−κvB12,on)),
where a0 = 0.54(0.5) for Hamming (Hann) window.
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Figure 7.17: Exchange pulse shapes and the resulting non-adiabatic state transitions. a, The power
spectrum density (PSD) of the exchange pulse shapes, indicating the energy emission that can drive non-
adiabatic state transitions. Hamming (Hann) window functions are J (t ) = Jon(a0 − (1− a0)cos(πt/τramp)),
where a0 = 0.54(0.5). All the shapes have the same pulse time of 46 ns, close to the value used in the RB and
GST experiments. b, The circuit for measuring state transitions induced by the exchange pulses. We use eight
exchange pulses to amplify the transition probability. The pulses with the Hamming window shape param-
eters (τramp, vB12,on) are applied on the state |↑↓〉, and the full two-qubit state is readout at the end. c, The
probability Pσσ′ that indicates non-adiabatic state transitions are measured at 25 mT (∆EZ ≈ 43.7 MHz). The
parameters (τramp, vB12,on) for CZ gates, taken from Fig. 7.16e, are marked in orange circles. The linecuts
at vB12,on = −73,−75,−77 mV (corresponding Jon ≈ 18,20,23 MHz) are displayed in d. An onset of SWAP
transition, |↑↓〉 → |↓↑〉, is observed as the emerging dip (peak) around τ = 25 ns in the plot of P↑↓(↓↑) when
vB12,on becomes more negative. In the nearby parameter space we observe another transition dip (peak)
|↑↓〉 → |↓↓〉. Combining with other measurement data (not showing here), we interpret this transition as QB-
state-dependent QA transition.
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7.9.5. SHUTTLING ACROSS MULTIPLE QUANTUM DOTS: DETUNING AND BAR-
RIER VOLTAGE DEPENDENCE

We probe the oscillations induced by differences in quantization axes as a function of
detuning and barrier voltages. In practice, to shuttle from D4 to D8, we follow this pro-
tocol:

1. initialize the D1, D4 double quantum dot system in the |↑↓〉;
2. ramp the gate voltages from the set point defined as (1,0) to the (0,1), passing

through the (1,0)-(0,1) charge anticrossing (AC). Here, the first number defines the
filling of D4, and the second of D8. Ramp times in between these points are of ∼
10 ns;

3. wait in the (0,1) point for a varying free-precession time;

4. pulse back to the AC, and to the (1,0) setpoint;

5. readout the spin via Pauli spin blockade.

To probe the dependence of the D8 Larmor frequency, we sweep the detuning of the (0,1)
set point. The results of this measurement are shown in Fig. 7.18a. Oscillations starts to
arise when the gate voltage overcomes the charge anticrossing, that is found at ϵ4,8 = 10
mV. For lower detuning voltages, the spin remains in D4, and therefore oscillations are
not present. The Fast Fourier Transform of the data shows well the dependence of the
Larmor frequency in the detuning voltage window. Similar measurements are shown for
the case of a spin transfer from D8 to D5 (Fig. 7.18b), from D6 to D10 (Fig. 7.18c) and
from D3 to D7 (Fig. 7.18d). We observe that, except for the region around the charge
anticrossing, the qubit frequencies are not strongly affected by the detuning voltages.
Rather, barrier gates do have a much stronger effect on the qubit frequencies, which
mostly shift linearly, as illustrated in Fig. 7.19. Interestingly, the D7 Larmor frequency
crosses zero as a function of J6, suggesting a change of sign in the g -factor of the qubit.
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Figure 7.18: Detuning dependence of the hopping-induced spin oscillations. a, We vary the detuning gate
voltage of the (0, 1) set point, corresponding to the shuttling sequence that moves the single spin from D4 to
D8, i.e., from the (1,0) to the (0,1) charge state, across the charge interdot. Similarly to ref. [21], oscillations arise
when the spin is transferred from one dot to the other. We observe that the onset of the oscillations corresponds
to the charge interdot point. The panel on the right shown the FFT of the data. In b, c, d,, we illustrate similar
measurements taken for spin shuttling from D8 to D5, from D6 to D10, from D3 to D7, respectively.
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Figure 7.19: Barrier gate dependence of the hopping-induced spin oscillations. a, Device layout indicating
the two quantum dots D8 and D7, together with the surrounding barrier gates. b, c D7 Larmor frequency evo-
lution while sweeping the J6 and J12 voltages, respectively. d, e D8 Larmor frequency evolution as a function
of J7 and J8. Small changes in the barrier voltages induce a linear shift of the D8 frequency.
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7.9.6. DEPHASING TIMES AND LARMOR FREQUENCIES IN THE 10 QUANTUM

DOT ARRAY
We study the dephasing times (T ∗

2 ) of the 10 quantum dots by shuttling a spin diabati-
cally from the double quantum dot system D1, D4 to each of the quantum dots, and let
it evolve for a varying idle time. We measure the decay of the oscillations as a function
of the time spent in each site by fitting the data shown in Fig. 7.20 and Fig. 7.5F using the
equation: A · sin(2π f t +φ)exp

(−(t/T ∗
2 )2

)+C . Here, 2 · A is the visibility, f the Larmor
frequency, t the free precession time, φ the starting phase, and C the oscillations offset.
The Larmor frequency of an isolated Loss-diVincenzo spin qubit satisfies the relation:

f = gµBB
h , with g the g -factor, µB the Bohr magneton, B the applied magnetic field and

h the Planck constant. From the measurements of the oscillations as a function of mag-
netic field, we extract the g -factor for all the 10 quantum dots (Fig. 7.21). We find that
except for the tunnel coupled Q1, Q4 qubits, f shows a linear dependence to the mag-
netic field. The deviation from the linear trend can be explained from the coexistence of
finite exchange coupling and non-parallel quantization axes.

In general, the lower-than-unity and varying visibilities of the hopping-induced os-
cillations (Figs. S21, S22, S24, S25) are caused by both SPAM errors and by the non-
orthogonality of the quantization axes of adjacent quantum dots. As the estimated SPAM
fidelities are typically in the range of 80-95% (details for qubits A, B in Tables 7.5 and 7.6),
we speculate that the origin of oscillation amplitudes below ∼ 0.8 and their variability are
mainly due to unfavourable spin alignment. In the current approach, we adopted a sim-
ple and sequential tuning approach, which can result in reduced rotations in the Bloch
sphere. However, we could envision more involved tuning protocols that would lead to a
higher contrast if desired, such as further optimization of the time spent in each dot and
possibly additional shuttling steps to ensure that a phase rotation in a dot leads to a full
amplitude rotation.
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Figure 7.20: T∗
2 of the 10 quantum dot array at 41.4 mT. a-j, Each panel is measured using the same method

as presented in Fig. 7.5. We fit the dataset of D9 from 68 ns onward as we observe a frequency shift in the first
∼ 100 ns possibly due to a delay in the electrical response.
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Figure 7.21: Single-qubit rotations as a function of in-plane magnetic field for the 10 quantum dots. a-j, We
repeat the experiments shown in Fig. 7.5 and Fig. 7.20 as a function of magnetic field to obtain a more accurate
estimate of the g -factors. We linearly fit the oscillation frequencies as a function of the magnetic field. We
observe that all qubits but Q1 and Q4 display a Larmor frequency that intersects zero at zero magnetic field.
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8.1. CONCLUSIONS
This thesis presents the development of spin-qubit control protocols in the germanium
quantum dot array. The main findings are summarized below:

⋄ We benchmark the two-qubit controlled-Z gate of hole spin qubits in germanium,
with fidelity above 99% (chapter 7) and highly tunable two-qubit exchange inter-
action, from residual value Joff = 10−15 kHz to the maximal value Jon ≈ 21 MHz.

⋄ At low magnetic field (< 40 mT), we control low frequency spin qubits, encoded in
two-spin ST − states (chapter 3) and in a single spin (chapter 7), using baseband
pulses. We measure the coherence time T2 that is an order of magnitude longer
than the one measured at higher magnetic field (1 T) in the same sample.

⋄ We shuttle a spin between quantum dots, observe the spin state evolution around
non-parallel quantization axes, and control such evolution to make an identity
gate for quantum information transfer application (chapter 6) and an Xπ/2 gate
for fast single-qubit operations (chapter 7).

⋄ We model the g-factor, the electric susceptibility, and the resulting spin dephasing
of a germanium quantum dot (chapter 4).

⋄ We show the protocol for simultaneously turning on the exchange interactions in
a four-spin system (chapter 3).

⋄ We demonstrate coherent Rabi driving via multi-photon processes in a two-spin
system (chapter 5).

8.2. OUTLOOK
In the current status of germanium spin qubit, it is essential to advance both qubit num-
bers and operation fidelity in order to reach the next milestones, such as error correction
code with higher distance or demonstration of quantum supremacy. Here the opera-
tion includes single-qubit gates, two-qubit gates, initialization, readout, shuttling and
idling. In the following subsections we discuss several possible changes can be made,
or what can still be learned, in order to improve qubit operation fidelity in a scalable
way. We’ll mostly focus on Loss-Divincenzo single-spin qubit, discussing the potential
benefits, challenges and trade-off.

8.2.1. MICROSCOPIC ORIGIN AND CONTROLLABILITY OF QUANTIZATION AXES

AND EFFECTIVE G-FACTORS
The spin quantization axes within and between the quantum dots, and their electrical
susceptibility, are highly relevant for spin qubit operations. For operations of single-
qubit gates, the efficient driving is enabled by intrinsic spin-orbit coupling. The driving
can be faster by making quantization axes more sensitive to control signals (analogue to
the hopping-based operations in chapter 7). In contrast, for other qubit operations in-
cluding the idle gate (drive one qubit and idle the other, as shown in Fig. 8.1 and Fig. 8.2),
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two-qubit gates (except CROT), shuttling, and readout, it is desirable to have quantiza-
tion axes insensitive to signals and parallel to each other (or anti-parallel for two-qubit
gates [1]) . Therefore, it would be helpful to understand the origin of the quantization
axes variations (e.g. how much it is from intrinsic spin-orbit coupling and from g-tensor
variations) and if it is controllable at the level of device design and fabrication.

Controllability of g-factors is also relevant for qubit operations. Typically, the adi-
abatic CZ gate is the most straightforward implementation of two-qubit gates, due to
the spin-orbit coupling and anisotropic exchange in germanium double dot. The g-
factor difference determines the Zeeman energy gradient ∆EZ, and therefore the EDSR
crosstalk and the shortest possible gate time of adiabatic CZ. To have short gate time,
it is desired to have sizable g-factor difference between two quantum dots where two-
qubit gates are carried out. On the other hands, the large g-factor difference introduces
side effects, such as higher dephasing error rate during shuttling, and faster relaxation of
T0(1,1) at PSB point (likely to enable parity readout [2]). Therefore, it will be also helpful
to understand how to control the g-factor variations.
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Figure 8.1: Rotation crosstalk of single qubit gates. a, The illustration of a simplified model (Eq. (4) of the
supplementary material [3]) used for simulating the rotation crosstalk by the gate Xπ/2,B on qubit A. The volt-
age pulse on qubit B changes the quantization axis of QA by δθA and the precession frequency to fA′ . fA′
is estimated in the phase crosstalk experiments in Fig. 8.2. The precession of qubit A around the perturbed
quantization axis gives rise to the unintended rotation. b, The measurement of rotation crosstalk. For clarity
the data sets are shifted vertically by −0.05. The circuit for the measurement is on the top, where Xπ/2,pulse
is applied N times, wait for a varying wait time represented by the phase θ, and then Xπ/2,probe to make the
readout signal sensitive to the small rotation angle. Fitting the data simultaneously, we extract the amount of
perturbation on quantization axes δθA = 1.90±0.14◦ and δθB = 0.70±0.07◦. The device setting is the same as
in chapter 7, with magnetic field of 25 mT.

8.2.2. POSSIBLE IMPROVEMENT ON TWO-QUBIT GATES

According to the result of gate set tomography (GST) and the modeling in chapter 7,
the decoherence is the dominant error for two-qubit gate. In particular, the fluctuation
of the exchange coupling (qubit-qubit interaction) has the largest contribution. We list
several possible directions to improve the gate fidelity, especially for incoherent errors:

(1) Diabatic CZ or other type of diabatic gate might have shorter gate time and thus
may result in smaller dephasing error. The challenge is the complex two-qubit inter-
action in germanium. In a simpler system that tunneling processes preserve spin, the
isotropic exchange ∝ σ⃗ · σ⃗ couples |↑↓〉 and |↓↑〉, and leaves |↓↓〉 and |↑↑〉 unaffected. In



8

194 8. CONCLUSION

c
Xπ/2Qprobe

Qpulse

a

Xπ/2

Xπ/2
N

Zθ

Probe=A, Pulse=B
QA
QB

QA

QB

τ= nTA 

τ= nTA+𝛿τA

TA=1/fA 

θ (rad) 2π0

pr
ob

e

-0.3

0.9

θ (rad) 2π0

N=0
N=4
N=8

Probe=B, Pulse=A

Z𝛿τ

N

𝛿τA=26 ps 𝛿τB=220 ps

b

QB
QA

QB

QA

τ= nTB 

τ= nTB+𝛿τB

TB=1/fB 

Figure 8.2: Phase crosstalk of single qubit gates and phase correction. a, The illustration of phase crosstalk
induced by the gate Xπ/2,B on qubit A. In the absence of Xπ/2,B, performing two successive Xπ/2,A requires zero
or integer numbers of free precession period τ= nTA in between. In the presence of Xπ/2,B, an additional wait
time δτA between Xπ/2,B and the next Xπ/2,A is required for correcting the phase induced by Xπ/2,B. b, The
illustration of phase crosstalk induced by the gate Xπ/2,A on qubit B. c, The measurement of phase correction.
For clarity the data sets are shifted vertically by −0.2. By adding N phase gates ZδτA(B)

, we align the phases of

the Ramsey oscillations, indicating that the phase shift due to the crosstalk scales linearly with the number of
gates N . The device setting is the same as in chapter 7, with magnetic field of 25 mT.

contrast, the spin-dependent tunnelings in germanium couples all the four spin states.
To make a specific gate (e.g. CNOT, CZ, SWAP), the pulse needs to achieve the target ro-
tation and at the same time cancel out unwanted four-spin evolution. It requires further
development for such pulses and the corresponding tune-up method for specific device
parameters (spin-dependent tunnelings and Zeeman energies) [1, 4]. The approxima-
tion of diabatic CZ (SWAP) can be made in the limit Jon ≪∆EZ (Jon ≫∆EZ), with coher-
ent error scales as Jon

∆EZ
(∆EZ

Jon
). Notice that coherent errors are typically harder to model,

can have higher worst-case impact, and can be less tolerant in error correction codes [5],
compared to incoherent errors. Therefore, it is desired to reach the limits (Jon ≪∆EZ or
Jon ≫∆EZ).

(2) From the device design perspective, shorter potential barrier between two spins
in theory should lower the tunability of the exchange with respect to the gate voltage, as
well as the sensitivity to charge noise. To have the same Jon/Joff ratio, the less tunable
device requires larger voltage amplitude on the barrier gate. This brings an advantage of
larger signal-to-noise ratio (SNR): the signal (applied barrier gate voltage) is enhanced
compared to the noise (the equivalent barrier voltage fluctuation due to charge noise).
The trade-off is the larger power dissipation on the device, and the possible g-tensor
modulation that rotates the spins. To reduce the voltage amplitude, one may think of
another operation scheme that make use of shuttling instead of large barrier pulses. In
this scheme, two spins are shuttled to a double dot that has smaller interdot distance in
order to make a two-qubit gate with less incoherent error. However, this scheme may
cause other problems, such as the diabatic evolution around the non-parallel quantiza-
tion axes between the dots.

(3) Lowering the field to reduce the Zeeman energy fluctuation of the individual qubit
may still have marginal improvement (which is already implemented in chapter 7). The
trade-off (for adiabatic CZ gate) is the longer gate time due to the smaller Zeeman energy
difference ∆EZ.

(4) From the material perspective, it will be beneficial to have advanced heterostruc-
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tures and device fabrications that allow lower charge noise and electrical susceptibility
of g-factor.

8.2.3. STATE PREPARATION AND MEASUREMENT: FIDELITY AND TIME

One of the important ingredients of quantum error correction is mid-circuit measure-
ment: repeatedly reading out some of the qubits (ancilla qubits) during the circuit ex-
ecution of the other qubits (data qubits). As a theoretical example of operating surface
code as quantum memory [6], the thresholds of readout error rread were estimated to be
on the order of 10 % if gates have no error (rgate = 0) and if the data qubits have no idling
error (ridle = 0) during the readout of ancilla qubits. The threshold of rgate increases to
the values on the order of 0.4 % (exact number depend on the code variant and error
biases) if the readout is fast (ridle = 0) and with high fidelity (rread = 0). Therefore, it is
beneficial to have high fidelity state preparation and measurement (SPAM) within spin
decoherence time and also induce minimal coherent errors on data qubits.

Taking the parameters in the experiments of chapter 7, the initialization and readout
time of a single spin using a two-spin system are 5− 10 µs separately, and the overall
SPAM fidelity is ≈ 93 %. In the same setting, the measured coherence times are T⋆

2 ≈
5µs, T H

2 ≈ 20µs, and T CPMG−512
2 ≈ 1700µs. This SPAM fidelity puts the system at the

theoretical thresholds that require perfect single- and two-qubit gates, as well as perfect
execution of dynamical decoupling sequences.

We list several possible directions to improve the readout and initialization:
(1) Bringing the two-spin system through noise-sensitive anti-crossings can give rise

to errors. In the qubit experiments we typically pulse the voltage of the device (equiva-
lent to detuning energy and tunnel coupling) from the initialization point to qubit opera-
tion point, and then from the qubit operation point to readout point. During the pulsing,
the two-spin state goes through ST − anti-crossing and 11-02 charge anti-crossing. The
associated errors can come from the coherent (Landau Zener transition) and incoher-
ent evolutions (relaxation and absorption). These errors may be improved by studying
the energy levels, the coherent (incoherent) evolution around the anti-crossings, and
how they depends on the control parameters, such as detuning energy, tunnel cou-
pling, magnetic field, phonon and photon temperatures. Taking an theoretical exam-
ple in Fig. 2.4d, the ST − anti-crossing hybridizes the charge states and the spin states
(T −(1,1) and S(2,0)) when EZ+ ≳

p
2tc [7], allowing fast thermalization with photons that

are present as noise on the detuning voltage. This spin-photon coupling should be sup-
pressed if S and T − have similar charge configuration, such as the situation EZ+ ≪p

2tc

in Fig. 2.4e.
(2) The charge lifetime at the readout point of Pauli spin blockade is typically limited

by the relaxation T ±,0(1,1) to S(2,0). The error occurs if the relaxation time is not much
longer than the integration time of the charge sensor. The relaxation time can be effec-
tively extended using charge latching with the help of the nearby reservoir [8] or quan-
tum dots. Further improvement relies on in-depth study on the relaxation process and
how it depends on the control parameters (e.g. tunnel coupling, detuning energy, tem-
perature). On the contrary, for initialization with high fidelity in a short time, it requires
fast relaxation from T ±,0(2,0) to S(2,0). The relaxation might be speed up by coupling
more to the reservoir [9] or populating the environment with more phonons (possibly
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by sending a strong readout pulse to the charge sensor).
(3) Radio-frequency (RF) reflectometry, in the form of SET or dispersive gate sensing,

could be further engineered to have faster response time and higher signal-to-noise ratio
(SNR). Here we briefly discuss the SET implementation. A complete discussion for both
reflectometry methods can be found in [10]. To begin with, it would be informative to
investigate if the LC circuit we used can be well-approximated as the standard matching
circuit when the device is turn-on, or if there are additional effective circuit elements
induced possibly by the loss of the substrate or by accumulating 2D hole gas, which can
complicate the impedance matching conditions [11]. If the matching circuit behaves
similar to the standard one, the SNR of the reflected signal depends on both reflection
coefficient variation and power [10] as

SNR = |∆Γ|2 Pin

Pnoise
≈

∣∣∣∣ ZloadZ0

(Zload +Z0)2

∣∣∣∣(∆Rs

Rs

)2 V 2
device

2Rs

1

Pnoise
(8.1)

at the circuit resonance ω = 1p
LC

and in the small signal regime ∆Rs
Rs

≪ 1, where Pin =
1

1−|Γ|2
V 2

device
2Rs

is the signal power sent toward the circuit, Γ= Zload−Z0
Zload+Z0

is the reflection coef-

ficient,∆Γ≈ 2Zload Z0
(Zload+Z0)2

∆Rs
Rs

is the reflection coefficient variation (at resonance) due to the

SET resistance variation ∆Rs, Rs is the SET resistance, Zload(ω) is the impedance of the
circuit and approximately equals to L

RsC at resonance, Z0 is the transmission line charac-
teristic impedance (typically 50Ω), Vdevice is the sinusoidal voltage amplitude across the
SET, and Pnoise is the noise power. The SNR typically becomes optimal at matching con-

dition Zload = Z0. The bandwidth at the resonance is BW ≈
(

L
RsC +Z0

)
1

2πL and becomes
Z0
πL at matching. Notice that the response time may not be entirely limited by BW, as the
technique used in superconducting qubit systems where readout resonators can be ring
up fast with a pulse having higher amplitude at beginning [12, 13]. The improvement of
SNR and BW should happen by decreasing Pnoise, Rs, C , increasing ∆Rs

Rs
and the upper

limit of Vdevice, while at the same time maintain the matching condition RsZ0 = L
C . In the

literature there are improvements made for individual parameters: Better Pnoise can be
achieved in SQUID or Josephson parametric amplifiers [14, 15]; Rs should be lowered (in
theory) by more symmetric couplings to the reservoirs and small tunnel junction resis-
tance (if the Coulomb island is classical such as a metallic SET [16]); C could be reduced
by using accumulation gates as coupling capacitors [11]; the increased Vdevice was shown
in metallic SET with small island which enhances charging energy [16]; the matching
condition can be reached by tuning the circuit in-situ [17, 18].

(4) Instead of using RF reflectometry, fast charge readout (≲ 10µs) is possible by mea-
suring the dc current of the SET via the amplifier close to the device [9, 19–23]. The dc-
SET method has shown 940 ns integration time for PSB readout that gives SNR = 6.5 of
two charge states and overall SPAM visibility higher than 99 % [9]. Compared to RF re-
flectometry, the advantage of this method is that it doesn’t require LC resonators nearby
the qubit device. On the other hands, it requires space and cooling power for cryogenic
amplifiers.

(5) To make readout much faster than decoherence time while still being able to scale
up the readout apparatus together with qubit numbers, it might be more straightfor-
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ward to extend the coherence time such that we only need dc-SETs with amplifiers at
high temperature stages (or even at room temperature). This will relax the requirements
of high-bandwidth charge detection scheme which needs inductors or amplifiers close
enough to the charge sensors to minimize the capacitance. The coherence time can be
extended by dynamical decoupling, as implemented in other qubit platforms [24, 25].
The time scales should be further extended by operating at lower magnetic field with
isotopically-purified germanium. For example, based on field dependent T⋆

2 in chapter
7 and the relation σhf ∝p

g73Ge between effective hyperfine noise σhf and the concen-
tration g73Ge [26, 27], the 700 ppm 73Ge (about 100 times diluted compared to natural
abundance 7.76%) is estimated to have hyperfine noise weaker than electric noise at the
field above 0.3-0.5 mT. At 0.5 mT, we make an optimistic prediction T⋆

2 = 100− 200µs
by assuming hyperfine noise from silicon and other impurity atoms in the spacer and
the quantum well is not dominant (requires further experimental verification). Such
a coherence time is much longer than RF reflectometry readout and is comparable to
dc-SETs readout with room temperature amplifiers. Going to lower field has additional
benefits, including the longer T1 at the PSB point, and lower requirements on time res-
olution and bandwidth. The expected challenges are the longer measurement time, the
sparse operations (to suppress residual exchange), and if the single- and two-qubit gates
can still have high fidelity.
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SUMMARY

Spins in gate-defined semiconductor quantum dots are considered as a compelling plat-
form for quantum computation. As introduced in Chapter 1 and Chapter 2, hole spins in
germanium quantum dots have several advantages. They allowed a rapid development
of planar germanium spin qubits from single quantum dots to qubit arrays, with pro-
totypical demonstrations of quantum algorithms, quantum error correction and high-
fidelity single qubit control. Based on this development, in this thesis we further explore
the physics and control protocols enabled by hopping spins in the quantum dot array.

Exchange interaction between two spins originates from spin hoppings to the vir-
tual orbital states of the neighbouring quantum dots. It is essential to have controllable
spin-spin interactions for applications in quantum information processing, quantum
information transfer and quantum simulations. In Chapter 3 we experiment with con-
trol protocols of exchange couplings in a 2×2 germanium quantum dot array. We show
the coherent control of the four-spin singlet states and triplet states when all the near-
est neighbour tunnel couplings in the array were turned on. The results of the four-spin
dynamics agree with a simple isotropic exchange model when the energy levels are not
degenerate, which allows us to measure and equalize all the exchange couplings even
though the device has capacitive crosstalk between the gates and the potential barriers.
When the exchange couplings are tuned such that the states are nearly degenerate, we
observe non-negligible state leakage and we attribute to the spin-orbit couplings and
Zeeman energy gradient.

The sizeable spin-orbit interaction in germanium allows spin qubits to be efficiently
driven but also couples the qubit to charge noise. In Chapter 4, we investigate the op-
timal condition of the electric field and magnetic field applied to a germanium quan-
tum dot, aiming to maximize the spin dephasing time in the presence of charge noise.
Through numerical simulations, sweet spots with respect to multiple fluctuating charge
traps can be found under certain conditions for different magnetic field alignments. This
investigation forms a basis for understanding and improving coherence time of hole spin
qubits, and for future studies involving spatially inhomogeneous strain and potential
profile.

The spin-orbit interaction can rotate the spin in the process of spin hoppings to vir-
tual orbital states. This model can explain the experimental finding in Chapter 5, where
the multi-photon spin resonance is excited by bichromatic driving signals. In such a
scheme, the spin is rotated coherently by applying two frequencies on two gate elec-
trodes of the quantum dot device. The strength of the spin resonance depends on the
detuning energy of the double quantum dot, indicating the underlying mechanism of
the spin-dependent interdot tunnel couplings.

Spin shuttling has been proposed for quantum information transfer between dis-
tant spin qubits. It has been studied in quantum dot array of GaAs and Si. In Chapter
6 we realized the first experiment of coherent spin shuttling in germanium. There, we
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move a spin from one quantum dot to the other and back, observing coherent evolution
where the spin state is rotated between |↓〉 and α |↓〉+β |↑〉 with a frequency correspond-
ing to the Larmor frequency of the other dot. We identify this effect as the spin preces-
sion around the spin quantization axis of the other dot that is not parallel to the original
dot, which is likely caused by the strong spin-orbit interaction in germanium. Although
this rotation is non-trivial, it is stable in time and therefore it allows coherent spin con-
trol. We can fine-tune the timing of the shuttling pulses to make the state evolution an
identity gate for every shuttling event between two quantum dots. With the fine-tuned
pulses, we quantify the performance of the shuttling and obtain effective lengths above
300 µm for polarized states, 49 µm (9 µm) for superposition states with (without) dy-
namical decoupling.

Based on the finding in Chapter 6, in Chapter 7 we tune the shuttling pulses to make
the state evolution an Xπ/2 gate with precision allowing average gate fidelity > 99.9%.
The sizable angles of 40◦ − 45◦ between quantization axes of the quantum dots allow
efficient qubit driving via baseband signal, in contrast to the commonly used sinusoidal
signals (EDSR). We use such hopping-based quantum gate to measure coherence time
at magnetic field ranging from 40 mT to 1 mT, and observe trends indicating dephasing
dominated by electric noise at high fields and by nuclear noise at low fields. By applying
the shuttling operations to a 10-quantum dot array, we acquire statistics of coherence
time and g-factor for individual quantum dot.

High-fidelity two-qubit control is one of the crucial elements for quantum compu-
tation. It has been demonstrated for electron spin-qubits in silicon but is still missing
for hole spin-qubits. In Chapter 7, we use hopping-based single-qubit gates to tune up
the two-qubit gate. The two-qubit adiabatic CZ gate is characterized by both interleaved
randomized benchmarking (IRB) and gate set tomography (GST), obtaining the aver-
age gate fidelity FCZ = 99.3% based on IRB and FCZ = 98.1% based on GST. The high-
fidelity gates are compatible with highly-tunable two-qubit interaction (exchange cou-
pling), which has a residual value Joff = 10−15 kHz and a maximal value Jon ≈ 21 MHz
accessible via baseband voltage pulsing. T⋆

2 measurements and numerical simulations
in the exchange-on situation show that fluctuation in the exchange coupling is the dom-
inant error source, which will need to be improved in the future.



SAMENVATTING

Spins in halfgeleider kwantumstippen, gevormd met metalen contacten, worden
beschouwd als een aantrekkelijk platform voor kwantum berekeningen. Zoals
geïntroduceerd in Hoofdstuk 1 en Hoofdstuk 2 hebben gaten-spins in germanium
kwantumstippen verschillende voordelen. Ze maakten een snelle ontwikkeling mogelijk
van planaire germanium-spinqubits, van enkele kwantumstippen tot qubit-arrays,
met prototypische demonstraties van kwantumalgoritmen, kwantumfoutcorrectie en
controle van enkele qubits met een hoge kwaliteit. Op basis van deze ontwikkelingen
onderzoeken we in dit proefschrift verder de fysica en controleprotocollen die mogelijk
worden gemaakt door hoppende spins in de kwantumstipt-array.

Uitwisselingsinteractie tussen twee spins vindt zijn oorsprong in spin-hoppings
naar de virtuele orbitale toestanden van de aangrenzende kwantumstippen. Het is
essentieel om controleerbare spin-spin-interacties te hebben voor toepassingen in
kwantuminformatieverwerking, kwantuminformatieoverdracht en kwantumsimulaties.
In Hoofdstuk 3 experimenteren we met protocollen om de uitwisselingskoppeling
in een 2×2 germanium kwantumstip-array te controleren. We laten de coherente
controle zien van de vier-spin singlettoestanden en triplettoestanden wanneer alle
naburige tunnelkoppelingen in de array waren ingeschakeld. De resultaten van de vier-
spindynamica komen overeen met een eenvoudig isotroop uitwisselingsmodel wanneer
de energieniveaus niet ontaard zijn, waardoor we alle uitwisselingskoppelingen kunnen
meten en egaliseren, ook al heeft het apparaat capacitieve overspraak tussen de
contacten en de potentiaal barrières. Wanneer de uitwisselingskoppelingen zo zijn
afgestemd dat de toestanden bijna ontaard zijn, nemen we een niet te verwaarlozen
toestandslekkage waar en schrijven we deze toe aan de spin-baankoppelingen en de
Zeeman-energiegradiënt.

De omvangrijke spin-baan-interactie in germanium maakt het mogelijk dat spin-
qubits efficiënt worden aangedreven, maar koppelt de qubit ook aan ladingsruis. In
Hoofdstuk 4 onderzoeken we de optimale toestand van het elektrische veld en het mag-
netische veld dat wordt toegepast op een germaniumkwantumstip, waardoor de spin-
defaseringstijd in de aanwezigheid van ladingsruis wordt gemaximaliseerd. Door middel
van numerieke simulatie kunnen onder bepaalde omstandigheden ’sweet spots’ wor-
den gevonden met betrekking tot meerdere fluctuerende ladingsvallen voor verschil-
lende magnetische velduitlijningen. Dit onderzoek vormt een basis voor het begrijpen
en verbeteren van de coherentietijd van gat spin qubits, en voor toekomstige studies met
ruimtelijk inhomogene rek en potentiaalprofiel.

De spin-baan-interactie kan de spin roteren tijdens het spin-hoppen naar virtuele
orbitale toestanden. Dit model kan de experimentele bevinding uit Hoofdstuk 5 verk-
laren, waarbij de multi-foton-spinresonantie wordt opgewekt door bichromatische aan-
drijfsignalen. In een dergelijk schema wordt de spin coherent geroteerd door twee fre-
quenties aan te brengen op twee contact-electroden van het kwantum stip-apparaat.
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De sterkte van de spinresonantie hangt af van de ontstemmingsenergie van de dubbele
kwantumstip, wat het onderliggende mechanisme van de spin-afhankelijke tussendotse
tunnelkoppeling aangeeft.

Een spin-pendel is voorgesteld voor de overdracht van kwantuminformatie tussen
verre spinqubits. Het is onderzocht in een kwantumstip-array van GaAs en Si. In Hoofd-
stuk 6 hebben we het eerste experiment van coherente spin-pendel in germanium ge-
realiseerd. Daar verplaatsen we een spin van de ene kwantumstip naar de andere en
terug, en observeren we een coherente evolutie waarbij de spintoestand wordt gero-
teerd tussen |↓〉 en α |↓〉 + β |↑〉 met een frequentie die overeenkomt met de Larmor-
frequentie van het andere stip. We identificeren dit effect als de spin-precessie rond
de spin-kwantisatie-as van de andere stip die niet parallel is aan de oorspronkelijke stip,
wat waarschijnlijk wordt veroorzaakt door de sterke spin-baan-interactie in germanium.
Hoewel deze rotatie niet triviaal is, is deze stabiel in de tijd en maakt daarom een co-
herente spincontrole mogelijk. We kunnen de timing van de pendelpulsen nauwkeurig
afstemmen om van de toestandsevolutie een identiteitspoort te maken voor elke pen-
delgebeurtenis tussen twee kwantumstippen. Met de nauwkeurig afgestemde pulsen
kwantificeren we de prestatie van het pendelen en verkrijgen we effectieve lengtes boven
300µm voor gepolariseerde toestanden, 49µm ( 9µm) voor superpositietoestanden met
(zonder) dynamische ontkoppeling.

Gebaseerd op de bevindingen in Hoofdstuk 6, stemmen we in Hoofdstuk 7 de pen-
delpulsen af om van de toestandsevolutie een Xπ/2 poort te maken met een precisie die
een gemiddelde poortbetrouwbaarheid > 99.9% mogelijk maakt. De aanzienlijke hoeken
van 40◦−45◦ tussen de kwantisatie-assen van de kwantumstippen maken een efficiënte
qubit-aansturing via het basisbandsignaal mogelijk, in tegenstelling tot de algemeen ge-
bruikte sinusoïdale signalen (EDSR). We gebruiken een dergelijke op hoppen gebaseerde
kwantumpoort om de coherentietijd te meten bij een magnetisch veld variërend van
40 mT tot 1 mT, en observeren de trends die duiden op door elektrische ruis gedomi-
neerde defasering bij hoge velden en nucleaire ruis gedemoniseerde defasering bij lage
velden. Door de pendel-operaties toe te passen op een array van 10-kwantumstippen,
verkrijgen we statistieken van de coherentietijd en de g-factor voor individuele kwan-
tumstippen.

Hoog-betrouwbare twee-qubit-controle is een van de cruciale elementen voor
kwantumberekeningen. Het is aangetoond voor elektronenspinqubits in silicium,
terwijl het nog steeds ontbreekt voor gatspinqubits. In Hoofdstuk 7 gebruiken we de
op hoppen gebaseerde single-qubit-poorten om de twee-qubit-poort af te stemmen.
De adiabatische CZ-poort met twee qubits wordt gekarakteriseerd door zowel
verwoven gerandomiseerde prestatiemeting (IRB) als poortverzameling tomografie
(GST), waarbij de gemiddelde poortbetrouwbaarheid FCZ = 99.3% wordt verkregen
op basis van IRB en FCZ = 98.1% gebaseerd op GST. De hoog-betrouwbare zijn
compatibel met zeer afstembare twee-qubit-interactie (uitwisselingskoppeling), met
de restwaarde Joff = 10− 15 kHz en de maximale waarde Jon ≈ 21 MHz haalbaar met
uitwisselingsregime. De T⋆

2 meting en numerieke simulatie bij de uitwisselingssituatie
laten zien dat fluctuatie in de uitwisselingskoppeling de dominante foutbron is, die in
de toekomst moet worden verbeterd.



DATA AVAILABILITY

The data, analysis and simulation codes used in chapters 2 to 8 are available on Zenodo
or 4TU.ResearchData repositories with DOI listed in Table 8.1.
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