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Abstract

Finite-element discretizations of the acoustic wave @quoah the time domain often employ mass lumping to avoid
the cost of inverting a large sparse mass matrix. For theskeoader formulation of the wave equation, mass lumping
on Legendre-Gauss-Lobatto points does not harm the agcuksere, we consider a first-order formulation of the
wave equation. In that case, the numerical dispersion fdrdmtjree polynomials exhibits super-convergence with a
consistent mass matrix and mass lumping destroys that pyope consider defect correction as a means to restore
the accuracy, in which the consistent mass matrix is apprately inverted using the lumped one as preconditioner.
For the lowest-degree element, fourth-order accuracy ircdb be obtained with just a single iteration of defect
correction.

The numerical dispersion curve describes the error in thenealues of the discrete set of equations. However,
the error in the eigenvectors also play a role, in two ways.gédynomial degrees above one and when considering
a 1-D mesh with constant element size and constant matedgégies, a number of modes, equal to the maximum
polynomial degree, are coupled. One of these is the corhgstigal mode that should approximate the true eigenfunc-
tion of the operator, the other are spurious and show haveali amplitude when the true eigenfunction is projected
onto them. We analyse the behaviour of this error as a fumaifahe normalized wavenumber in the form of the
leading terms in its series expansion and find that this estoeeds the dispersion error, except for the lowest degree
where the eigenvector error is zero. Numerical 1-D testéirrorthis behaviour.

We briefly analyze the 2-D case, where the lowest-degreapotial also appears to provide fourth-order accuracy
with defect correction, if the grid of squares or trianglesiighly regular and material properties constant.

Keywords: Finite Element Method, Mass Lumping, Wave Equation

1. Introduction

Numerical simulation of the wave equation in the time dontain be accomplished by a suitable finit&elience
method. This method is relatively easy to implement andljgdizze. High-order diferencing is often used to improve
both computational and memorifieiency. For problems with sharp velocity contrasts, howebe finite-diference
method is less attractive, because the solution is nificgntly smooth across these contrasts and sharp interfaces
between dierent materials cannot be easily represented on a firfitereince grid. In numerical simulations of
wave propagation, this produces stair-casing, as showigirnlfof [1]. This may be a serious drawback for seismic
applications in complex geologies [2].

The finite-element method can, in principle, overcome tltkfieulties if element faces follow sharp contrasts.
Mass lumping is usually applied to avoid the cost of invertinlarge sparse consistent mass matrix. However, mass
lumping may cause a loss of spatial accuracy. This is notftnuéhe second-order formulation of the wave equation.
The choice of Legendre polynomials and Gauss-Lobatto paictiually leads to better accuracy after mass lumping,
as proven in the Appendix of [3]. These results were confirtatat by [4, 5].
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For variable-density acoustics as well as the elastic sysfavave equations, a first-order formulation can some-
times be more convenient. In the 1-D acoustic case, thidgee\wa pair of equations in the pressure and in the particle
velocity. The usual finite-element discretization invahdifferent spaces for each, for instanet, andL?. If the
solution is represented by polynomials with and withouttoarity across elements, the first-order formulation can be
made identical to the second-order one [6, section 13.4&]e, we adopt the naive approach of discretizing each of
the pair of first-order equations for pressure and velociti the same spectral-element method.

Unfortunately, the application of mass lumping to first-@rdifferentiation with Legendre-Gauss-Lobatto (LGL)
points leads to a decrease of accuracy [7]. In this paper,rojoge to use defect correction [8] to compensate for
this loss of accuracy. Defect correction employs a loweeodiscretization of a problem as a preconditioner for a
higher-order discretization. The gain in accuracy pegtien is the same as that of the lower order [8, section 7]. If,
for instance, an operator with fourth-order accuracy ispnelitioned by one with second-order accuracy, the firgt ste
provides an approximate solution with second-order acyur@ne additional iteration already leads to fourth-order
accuracy if the numerical solution isf&ently well resolved by the discretization to lie in the asyatig regime where
it converges.

In the work of [9], the diagonal of the mass matrix was used pgeeconditioner to the consistent mass matrix.
Here, we will show that method to be ledeetive.

To investigate the properties of the proposed scheme, vierpethe same type of dispersion analysis as in [3], but
now on a discrete operator that represents the first instethe second derivative in space. If the polynomial basis
has degreéV, a discrete Fourier transform of the discrete operatortegua matrix with smallM x M blocks, for
which eigenvalues and eigenvectors can be determined,rieaiheor symbolically or as a series approximation for
small wavenubers. Each of tid eigenmodes deals with one separate point on the dispensive.cTheir interaction
can be characterized as ‘spurious’ and was quantified iny3jdmsidering the eigenvector errors. An alternative
approach was followed by [10, 4, 6], where the eigenvect@asewonstructed directly and then the eigenvalues that
constitute the dispersion curve were determined.

We examined the numerical dispersion curves and error mlrafor four schemes with polynomial basis func-
tions: the standard elements with equidistant nodes (E@#)egendre-Gauss-Lobatto points (LGL), the Chebyshev-
Gauss-Lobatto nodes without a weighting function [11] (§@hd with (CGLw). Section 2 describes the various
discretizations, how we apply defect correction and areatiie numerical dispersion. Section 3 lists the leading erro
terms in the dispersion curves for the consistent mass xn&br the lumped one, and after one iteration of defect
correction. It includes estimates of the error in the eigetors. Numerical experiments for simpldfdientiation
as well as for 1-D wave propagation on a periodic mesh aredecl. In Section 4, we apply Fourier analysis on a
periodic grid to obtain error estimates for the 2-D caseh lhot square bilinear elements and for squares cut onto half
to obtain a regular mesh of triangles. Section 5 summariaefiraings.

2. Method

2.1. Elements
A first-order formulation of the acoustic wave equation is

ov_op 10p_ov
Pot = ox p2 ot ox

with particle velocityv(t, X) and pressur@(x, t) (actually without the minus sign) as function of timmand position
X. The densityp(x) and sound speet{x) will be taken as constant for the purpose of analysis. Weneil consider
time stepping errors and only concentrate on the spatiatatisation. ConsideN elements bounded by positions
Xj = Xo + jhj, j = 0,...,N. Each element hal§l + 1 nodes at relative positiog, k = 0,..., M, with {, = -1 and
{m = 1. Their corresponding global positions agg = X; + 3 (¢« + 1)jh;. In the periodic case, the solution ag is
the same as ory. The number of degrees of freedomNg,s = MN on a periodic grid both for the particle velocity
and pressure.

For the finite-element basis functiong(), we take the Lagrange interpolating polynomials of dedvieelative
to the nodes, sgk(¢) = ki, the Kronecker delta. In each element, we have a local mas&neand first-derivative



matrix D, each with entries

1 1
Aa= [ WOWONO L, i - [ 1w(§)wk(§)%w.(4) o,

The local lumped mass matri}%&k’I = Okl Z,'\io Ay is a diagonal matrix with values proportional to quadratuegghts.
We consider four choices for the nodes: the standard elemiémtequidistant nodesy = k/M, k = 0,1,..., M
(EQU); the Legendre-Gauss-Lobatto points (LGL) that &eezeros of (+ g“Z)P;\,I (), the Chebyshev-Gauss-Lobatto

points¢y = — cosfrk/M) with an unweighted scalar product (CGL) and with the waigghfunctionw(?) = 1/ /1 - £2
(CGLw). Numerical quadrature with weigmﬁk/ Tiko At&’k is exact for polynomials up to degrge= 1+2 floor{M/2}
for CGL and EQUI and degres= 2M — 1 for LGL and CGLw.

2.2. Mass matrix and defect correction

With the local mass and first-derivative matrices, we caerabde the global mass matrixl and derivative matrix
D. A leap-frog time discretisation with time stey is

1 1
KtMV(Vm—l _ Vn) _ Dppn+l/2, A_t/\/(':)(pr‘l+3/2 _ pn+l/2) — van+l_ (1)

Here, the material properties are absorbed into the masscesmand the superscriptdenotes the solution at time

t" = top + nAt. Note that we have made a distinction between the first-aiéviv operator®, and D,, but for the
periodic problems considered later on in the analysis amdenigal tests, they will be taken the same. As shown
in Appendix A, the time-stepping stability limit for a ledmg scheme is given by the CFL number22(£), with

L= —Mglﬂnglz)p and wherep(-) now denotes the spectral radius. For time stepping, we twaatoid the cost

of inverting the consistent mass matrix and replace it bjuitsped version. Depending on the choice of nodes, this
may or may not harm the spatial accuracy. Formally, the lummasion should be exact for numerical quadrature
of polynomials up to a degree of at leadl 2- 2 for the second-order form of the wave equation aktl-21 for the
first-order form. If its accuracy is less, we can iterate wiith lumped mass matrix as preconditioner. This approach
resembles defect correction [8], which has the followingwamient property. Consider two operatafs and £,
where Ly has an order of accuragy (k = 1,2) andp; > py. We can try to solveL;u = f with the iterative scheme
ul =0,u*t = ul + L;}(f - £1u)), wherej = 0,1,... denotes the iteration count, not the time step. Convergence
is obtained if the operat@ = 7 - Lg%l has a spectral radiygg) < 1. In a finite-diference context, the order of
accuracy ofi! is min(py, (j + 1)p1), which suggests that a few iterations will ofterffize to get a sfiiciently accurate
though not necessarily fully converged result [8]. In owseave can take the lumped mass matrixfor= M- and

the consistent mass matrix #s = M. However, for degre® > 1, the eigenvalues and eigenvectors are mixed up in
a non-trivial way [3] and the property that the accuracy éases by an ordegy per iteration may be lost.

2.3. Dispersion

The numerical dispersion of the finite-element scheme caanadyzed by considering the eigenvalues of the
first-order operatoM~—1D or (M“)~1D when discretized on a ficiently fine periodic mesh with constant material
properties and a constant element gizélternatively, we can use the fact that the elements arstation-invariant
if all is constant and perform a Fourier transform on the sofu We then have to take thd degrees of freedom
inside an element as a vector and do a transform on each cemipover theN elements. This results in a small
M x M matrix in the Fourier domain. However, we can go one steghéurind also involve thé individual
components. These are aliased but still can be considepadagely by looking at the eigenvalues of thex M
block and unwrapping the result [3]. This produces a discegiproximation to the exact operatog, where
& = K(xn — X0)/(NM) = kh/M € [-r, x] is scaled version of the wavenumberThe relative dispersion error can than
be characterized by/¢ — 1. Note that the error in the dispersion curve does not telfaii story, because errors in
the eigenvectors also play a role.



Table 1: Leading error terms in the dispersion curves for grashial basis of degrell and various sets of nodes, using the consistent or lumped
mass matrix or lumped with one iteration basedrits spectral radius(G) is given, as well as the CFL number without and with mass lumping

M nodes consistent lumped 1iteration p(G) CFL (consist.)  CFL (lumped)  CFL (1 iter.)
1| LGL —1808* -3 -5 23 | 2/V3=1155 2 1.457
2 ot — 5708t — et 35 | V2/3=0471 23=0667 0.535
3 - 3595E° — 500" - Topé® 47 | 0.278 0.365 0.308
4 P — 2.8 - a8 59 | 0.188 0.239 0.208
5 rorrosieh . sowmsé . —soeered . | 611 | 0138 0.171 0.151
3 | cGL see LGL -3¢ -2 35 | seelGL 0.311 0.342
4 e — 042 4 5/7 0.198 0.247
5 -2z s 2 | 0.966 0.132 0.203
1 | cGLw -4 -3 - L& 12 | 1414 2 1.570
2 | cGLw 52 — 5 r&2 12 | 0.426 23=0.667 0.541
3 | CGLw ool — 235 sl 12 | 0.213 0.354 0.297
4 | CGLw -t — 228 -5 12 | 0.132 0.224 0.192
5 | CGLw ot P T 40 1/2 | 0.0909 0.155 0.135
3 | EQUI see LGL — ot —52£2 | 0.651 | seelGL 0.369 0.329
4 a9 288284 | (1.72) 0.184 (0.173)
5 32801 3579085%2 | (1.96) 0.125 (0.117)
LGL M=1 LGL M=2 LGL M=3
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Figure 1: Dispersion curves for Legendre-Gauss-Lobatiatpavithout and with mass lumping and after one iterationgdigreeM = 1 (a), 2 (b),
and 3 (c).
3. Results

3.1. Dispersion analysis

We compared the various spatial discretizations in terntkaf dispersion curves, obtained by Fourier analysis,

as well by set of numerical experiments. As an example, Fahalvs dispersion curves for polynomials of degrees 1
to 3 on Legendre-Gauss-Lobatto points (LGL). Each grapkwshibe result without and with mass lumping as well as
with 1 iteration of defect correction. The jumps in Fig. 1e aaused by the fact that in the Fourier analylsisnodes

are considered simultaneously. Each of them correspona@géaticular root of the eigenvalue equation and can be
assigned to a flierent wavenumber in the spectrum, according to how well dteesponding eigenvector matches
the Fourier mode for that wavenumber [3].

With lumping, the deviation from the exact dispersion cuihe straight line, increases, but not so much at the
smaller values of. With one iteration ofz = I — (M“)~1 M, the result is improved. For the smaller wavenumbers,
we have analytically determined the asymptotic error behenby taking the leading term in the series expansion
of k/& — 1 for the eigenvalue that is valid at sméll The results are listed in Table 1 for various cases. Foredegr
M = 1 andM = 2, the standard element (EQUI), the Legendre-Gauss-Lmpaints (LGL) and the unweighted
Chebyshev-Gauss-Lobatto (CGL) points lead to the sameetiigation and, therefore, all provide the same results.
The same is true when the consistent mass matrix is used, fffeechoice of nodes does not matter. The exception
is the weighted scheme with Chebyshev-Gauss-Lobatto n@iekw), where the weighting functions changes the
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Figure 2: Dispersion curves for CGLw without and with mass limg@and after one iteration, for degrée= 1 (a), 2 (b), and 3 (c).

outcome. Note that for the latter, the error analysisrdidinvolve a weighted norm. Figure 2 show dispersion curves
for degrees up to 3.

Interestingly, the LGL scheme without mass lumping has atfearder error instead of the usual second-order.
In the finite-diference world, [13] found the same behaviour. Without lurgg@ind just a single iteration, this fourth-
order behaviour is recovered, albeit with a larger errorstamt and not necessarily on a finitékeience grid with
constant mesh spacing.

With LGL and higher but odd degrees, 1 iteration reducesitteecf the error but does not iice to recover the
super-convergence obtained with a consistent mass matnig.appears to contradict the expected behaviour of the
defect correction method, until one realized thatNbr- 1, there arevl coupled modes, each representingféedéent
point on the dispersion curve. This coupling is responditievhat are known as ‘spurious’ models and apparently
has a negativefiect on the performance of the defect correction method.

For even degrees, the error constant changes after lumptnmpbthe exponent. The error can be reduced by one
or more iterations. Appendix B shows that the spectral adfithe iteration matrix obeys(g) = (M + 1)/(2M + 1).

The CFL number that dictates the maximum allowable time istéipted in the last two columns. For degree 1, it
is nearly twice as large after lumping. This will amplffset the cost of one iteration if the time stepping error does
not dominate the problem. For higher degrees, the increaS€EL is not as dramatic.

A closed-form expression for the leading dispersion errith Whe consistent mass matrix and LGL points was
found by [7] and is quoted in Appendix C. A conjecture for thenped case is included. For oddl, the error is
completely due to the mass lumping and the related expregsidhe leading error can be found in [3].

With Patera’s scheme (CGL), we do expect the mass lumpingwerl the accuracy, as the choice of nodes for
the unweighted case is not related to any type of accuratencahquadrature. The application of a single iteration
may completely ruin the formal accuracy and more iteratanesrequired to repair the harm. The same happens in
the standard case (EQUI).

The behaviour of CGLw follows a regular pattern. Note tha wWeighted norm was not used in the analysis.
Overall, errors are larger than with LGL. M is odd, the lumping increases the error, buMfis even, lumping
improves it and iterations will only increase the error. Hpectral radius of the defect correction matrix does not
depend on the degree of the elemen) = 1/2, as shown in Appendix B.

One may wonder if diagonal preconditioning [9, e.g.] wouddfprm in a similar way. As an example, we consider
LGL for degreeM = 3 and letH = | — (diag M-})"*M. In the Fourier domain, we obtain eigenvalues betweén
and%. After one iteration, the dispersion curve for smaliehaves ag(1 — 3%5 - %058). The term With3i6 actually
destroys the formal accuracy, which needs to be repairdd suibsequent iterations. We therefore expect diagonal
preconditioning to be far lesdfeient than preconditioning with the mass-lumped mass matri

3.2. Error in the eigenvectors

The dispersion curves describe the errors in the eigersalferM > 1, the error in eigenvectors also plays
a role. To obtain that error, we compare to the exact eigetifumw, which is of the formw; = €™, with x;
the node positions as defined above. The discrete probleraig@svectorsy. We can expres& as a the unique
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Table 2: Exponents of the leading error in the dispersioneand in the eigenvectors with LGL points and polynomialsaigegree 5. The first
of each pair corresponds to the relative error in the eidamva for the first-order formulation or in the square root of theegigaluex? for the
second-order formulation. The second corresponds to thenexy ofé in the leading error of the matri® describing the eigenvector errors. This
error is zero forM = 1. The last column shows expressions for the trendvfor 1, suggested by these results, whefkl) = 2 floor{(M + 1)/2},
thatis,p(M) = M if M is even andp(M) = M + 1 if M is odd.

order massmatrix M=1 2 3 4 5 | trendM > 1)
1 consistent 4, - 4,2 8,4 8,4 12,6 2p(M), p(M)
lumped 2,—- 4,2 6,4 8,4 10,6 2M,p(M)
2 consistent 2,- 4,4 6,5 86 10,7 2M,M+2
lumped 2,—- 4,4 6,5 8,6 10,7 2M,M+2

Table 3: Numerical results for the,,- and L,-errors when taking the first derivative using Legendre poiyials and a consistent mass matrix.
Listed are the exponentsof a power-law fit of the fornthP, whereh o 1/Ngof, to thelLe- or Lo-errors shown in Fig. 3. The second and third
column were obtained for a uniform grid. The fourth and fifthucons were obtained for a mesh with an abrupt jump in mesh sizevéalthe
domain. Columns six to ten show similar results, but with pridgecinstead of sampling of the initial data and the exacttsaiu The sixth column,
for Le on a uniform mesh, now agrees with the first row of results indabOn the non-uniform mesh, the convergence rates are worse

sampling projection
mesh| uniform | non-uniform | uniform | non-uniform
M Lo Ly | Lo Lo Lo Ly | L Lo

40 45|10 20 40 45|10 20
20 25|20 25 20 2519 25
3.0 3530 35 40 46| 3.0 4.2
40 45|39 45 39 44139 44
50 55|50 55 6.1 66|51 6.3

O~ wWwN P

linear combinations of these eigenvectorsvby= Z,'\ial Y1qi. The error in the eigenvectors is given by the vectors
r =g — W, | =0,1,...,M = 1. Here 4, is the Kronecker delta, which is zero except ffer |, the index
that corresponds to the ‘physical’ eigenvalue that appnexeés M¢&. The other indices correspond to the ‘spurious’
modes. Instead of an absolute error, we can determine avesdgitor by dividing each vectay element-wise byv to
obtainf| with f; j = r; j/W;. The vectors| can be combined into a matr& which has them as columns. This matrix
describes the error in approximating the exact eigenfandis well as the energy that is leaked into the ‘spurious’
modes.

In [3], the matrixS was determined in the Fourier domain, followed by an invétserier transform. We can
obtain the same results by working in the spatial domaimgusiie eigenvectors obtained by static condensation.
Given the fact that these vectors are completely defined diy fiinst M values forj; = 0,1,...,M -1 atjo = 0, the
matrix S will have sizeM x M.

In Appendix D, we have listed the eigenvalue and eigenvestiars for polynomials up to degréd = 5 and
LGL points, both for the first-order formulation that is thebgect of this paper and for the second-order formulation
discussed elsewhere [3].

Table 2 summarizes the exponents of the leading errors ieifevalues and eigenvectors. The last column
contains the suggested trends fdr > 1, where it should be noted that exponents for the dispemsimor in the
second-order case were proven in [3] and later also in [4][&hdFor the first-order case with a consistent mass
matrix, a proof can be found in [7].

3.3. Numerical experiments

Before turning to the first-order formulation of the wave atijon, we consider simple fiierentiation with the con-
sistent mass matrix to verify the eigenvalue and eigenvestimates. We consider the functip(x) = ﬁ] sin(2rmx)
with m = 3 on the periodic intervad € [0, 1). The mesh is either uniform with constdnt 1/N for N elements or
with two different spacingh, andhg. In the last case, we skf = h, for j = 0, IN-1, hj = hgfor j = %N, N -1,
with N chosen even arlgl = 0.8hg. Figure 3 shows the maximum error as a function of the recgdrof the number
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Table 4: As Table 3, but for the weighted Chebyshev polynasnigée also Fig. 4.

sampling projection
mesh | uniform | non-uniform| uniform | non-uniform
Lo Ly | Lo Ly Lo Ly | Lo Ly

20 2510 21 20 2510 21
20 25|20 25 20 25|20 25
30 35|30 35 40 45|29 43
40 45|40 45 39 45|39 44
50 55|50 55 6.0 65|51 6.3

abowNnRrZ

Legendre Legendre

Maximum error
Maximum error

.
5}
o
5}
£

10° 10®

100 1010

Figure 3: Maximum dterentiation error for a simple test problem using Legendtgnmmials as a function of the number of degrees of freedom,
Ngof, for polynomial degrees 1 to 5. The grid spacing is either toriga) or has an abrupt jump halfway the periodic domain (b).

of degrees of freedoniNgor, for polynomial degrees 1 to 5. Power-law fits to the resultsjole the powers listed in
Table 3. With pointwise sampling of the input function and txact solution, the error behaviour is worse than the
estimates of Table 2. With a proper projection on the basistfon and a uniform mesh, the same powers are found
for the L., estimates. With the non-uniform mesh, the maximum erroeappto behave &' and error cancellation
and super-convergence are lost.

Similar results with weighted Chebyshev polynomials (CGlare shown in Fig. 4 and Table 4. Again, the odd
degrees lead to a better performance.

These numerical results confirm that dispersion error ammlyy itself is insfficient and that the eigenvector
errors have to be included as well.

In addition to the above dispersion-curve analysis, we paviormed a set of numerical experiments on the first-
order formulation of the acoustic wave equation. We conmsidRicker pulse, the second time derivative of a Gaussian,
travelling around once on a periodic domain.

We ran at at a fraction of I8 times the maximum time step dictated by the CFL conditionvimidaitoo much
imprint of the time stepping error. A less costly alternatwould be to perform higher-order time stepping [14, 15,
16, 17] or dispersion correction [18, 19, 20].

As before, we used two filerence spacinly. andhg. The standard deviation of the Ricker pulse w#x3@5 times
the length of the domain. The initial and final position ofdentre was at.@4 of the length of the domain, in the part
to the right that has the larger spacing.

Figure 5a—c plot the maximum errors in the particle velog(tyax, X) after one round trip for a varying number
of degrees of freedom without and with mass lumping and witd @xtra iteration for polynomial degrebbs= 1 to
5. One iteration clearly paysfofor the lowest degreeyl = 1, and also for the higher degrees when the number of
degrees of freedom is small and the error large. Overallefieet of the eigenvector errors, summarized in Table 2,
dominates the results for degrees larger than one. The iraprent with defect correction is the largest for the lowest
degree,M = 1. Although the fourth-order super-convergence for thigrée is lost on a non-uniform mesh, the
accuracy after 1 iteration is still considerably bettemntkath just mass lumping.

In addition to the above runs, a few additional experimergsveonducted to investigate how a larger number of
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Chebysh Chebyshev (weighted)

Maximum error
Maximum error

1N ot

(@ (b)
Figure 4: As Fig. 3, but for weighted Chebyshev polynomial&(@).

iterations &ect the result and if a diagonal matrix would be a better prditmner, as suggested by [9]. Figure 5e—
f show the result of increasing the number of iterations with operatorg, without attempting to obtain some
acceleration with the conjugate gradient method. We olesgslight improvement, but the increase in computational
costs hardly paysfb

Figure 6 shows results after using the diagonal of the massxivestead of the lumped mass matrix as precondi-
tioner. It can be seen that in order for the di&)(to behave similar tavi, at least 20 iterations are required, showing
that the lumped mass matrix is superior as preconditioner.

Finally, Fig. 7 displays the error behaviour for CGLw. Ndtatthe dispersion curves are based on the usual norm
and do not involve weighting. Again, one iteration helpsnpiove the accuracy, as for LGL.

4. Generalization to 2D

We can quickly analyze the performance in 2D by consideriogrier analysis on a periodic grid with square
elements, both for bilinear elements and for linear elesenttriangles.

We start with bilinear elements on squares. Teidenote a shift operator in thedirection, such thalxpy =
Pk+1. Here, pg) denotes the discrete pressure in the poiaty() with xc = Xo + khy andy, = yo + lhy and grid
spacingsy andhy. Its Fourier symbol iSy = exp (&1) with |€1] < 7, whereé, is related to the wavenumbkg in the
x-direction byé; = kehy. Likewise, Typxi = pri+1 With symboI'IA'y = exp (&2) with |£;] < 7. One row of the assembled
mass matrix in a single node, relative to the others, is

M= A [16+ 4T+ T+ Ty + Ty) + AT+ T+ T + T,Ty |

Its symbol is R R L .
M= (T +4+TY(T, 1 +4+T)) = §(2+ cosér)(2 + coséy).

One row of the derivative matrix iR is
DO = LT - T, +4+Ty),

with symbol .
D = Zi(2 + cosgr) sinéy.
For D@, we can swag and&,. Then,

/\;(_11'*)(1) _ 3' S|n§1

~j -1
= 57 cose, = 611~ Taofd):

showing that we have fourth-order accuracy with bilineanents and a consistent mass matrix. With mass lumping,
the result has only second-order accuracy:

MDD = 12 + cosgy) sing: ~ & [1- 1+ £3)].
8



The expressions can be used to estimate the eigenval@byhoting that
G =1-}(2+cos&)(2+ cossr) € [0, 8.
After one iteration with3, the error becomes

~ 180 (661 + 106365 + 5¢3).

restoring the fourth-order accuracy.

We can repeat this analysis for linear elements on triaregybelsa regular mesh consisting of squares cut in half
across the diagonal, from the left upper to the right lowenen With unit spacing, the first triangle has vertices
(0,0), (1,0), (0 1) with basis functiongl — x — y, x,y} and the second has, ), (1,0), (0, 1) with basis functions
{-(1-x-vy),1-vy,1-x}. For the Fourier analysis, we select 8 triangles containsidié¢ the 4 squares surrounding
one node and assemble the matrices. Then, one row of the naéiss imgiven by

M=56+T+ T+ T+ Ty + T T+ T,

with corresponding symbol .
M = (34 COS£y + COSE, + COSEr — £2)).

A row of the x-derivative matrix is
DO = F[2(Tx - T + Ty - T + T, (- T
with symbol A
D = Li2sing; + sing + sing - £)).
Now, o
MEDW ~ gy [1- 262 {262 - 56,6 - £)],
revealing fourth-order behaviour of the error. The restdisthe derivative in they-direction are the same after
swappingTy andTy or & andé,. With mass lumping, the operator becomes

(M) DD = DO ~ieg[1- 4 + & - 8]

providing only second-order accuracy. These expressigngaovide an estimate of the eigenvalue rangé:of
G = L3~ cos¢; — cosé; — cosy — &)] € [0, 3]

One iteration withG reduces the relative error to

ks (1265 - 25636, + 356362 — 206185 + 1063).

again restoring the fourth-order accuracy.

It remains to be seen if this accuracy can actually be oldaimeumerical experiments. A practical problem
in seismic applications is the need to sample the wave fielarlitrary points of the computational domain. To
reach a sfiiciently high interpolation degree, the polynomials thadresent the solution are not suited. Essentially
non-oscillatory interpolation may provide a solution iatlcase [21, 22].

5. Conclusions

We have compared four finite-element schemes with polynlobaisis functions for the first-order formulation
of the acoustic wave equation, using Legendre-Gauss-tmbates, Chebyshev-Gauss-Lobatto without and with
weighting function or the standard element. Mass lumpiegiréd for numericalféciency since it allows for explicit
time stepping, tends to decrease the spatial accuracyemaming accuracy in the numerical dispersion is best for th
Legendre-Gauss-Lobatto nodes and, for polynomials of eddess, exceeds that that of the second-order formulation
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of the wave equation. In some cases, the accuracy can bevetpby applying one iteration on the consistent mass
matrix, preconditioned by its lumped version. For polynalsiof degree one, this improves the accuracy from second
to fourth order in the element size. In other cases, the imgment in accuracy is less dramatic.

The error in the eigenvectors for the first-order formulatioowever, is worse than obtained for the second-order
formulation, without and with mass lumping. Because themigctor error is zero for the lowest-degree scheme,
with linear polynomials, our iterative approach appeatsaanost attractive for just that case.

Fourier analysis in two space dimensions suggests thabtimthforder error behaviour should be obtained for
the lowest-order scheme, either with bilinear elementsuatdlaterals or with linear elements on triangles, attleas
on very regular meshes and with constant material progeiithether or not this still holds on general unstructured
meshes remains to be seen.
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Appendix A. Time-stepping stability

We examine the stability of the the time-stepping schemdylgonsidering a discrete energy. Weighted scalar
products on the 1-D domaif are defined by

(P.)p = L Wp(x)p(x)a(x)dx, (v, u), = fQ Wy ()v(x)u(x)dx,

for the pressure and velocity, respectively. The domaimitifioned intoK elements, each withl + 1 nodes. For the
velocity at timen, we use the representatigh= Zszl Zyzlvﬂfqbk,g(x) with k running over the elements adidver the

M + 1 nodes of each element. On a periodic mesh, the ifidef on an element refers to the same nodé adv of

its left neighbour. Likewise, we lgi™/2 = 3¢ ) 3, o2y (x). With this, we have

(Vn, un)v — (Vn)TMVUn, (pn+l/2, qn+l/2)p — (pn+l/2)TMpqn,

in terms of the mass matricedl, and M.
The discrete energy can be defined as [23]

8n — %(Vn,\/n)v + %(pn+l/2’ pn—l/Z)p.

With p" = 3(p™¥/2 + p"-1/2), it can be expressed as

(A1)

At ’ At

&= 30+ 67y - a7 (B B
p

Energy is conserved if
0= 8n+1 _ 8n — %(Vm-l + vn’vn+1 _ vn)v + %(pn+l/2’ pn+3/2 _ pn—l/2)p —
%At {(Vn+1 + Vn)TDppn+1/2 + (pI’H—l/Z)TDV(Vr‘H—l + Vn)} — %At (Vn+1/2)T (Z)p + DJ) pn+1/2,

wherev™%/2 = $(v" + v™1). This requiresD, = —DJ, which is the case for LGL, CGL, and EQUI on a periodic
mesh, as these scheme havg= —Dg and we have takefd, = D;,. For CGLw, however, this is not true.
The discrete energy is non-negative for

V) TDIMEDN" VIDI MDY
> max >max————
(A1)~ vzop (V)T MWV + (P")TMpp" — v20 vI MV

With ¥ = MY/?v, this becomes

LN max% L= (MY DIMGDM, Y2
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or
2

(L

e £= (M DM (M DM2).

e

The similarity transform B
L= MMLM? = MTDIMD,

does not alter the eigenvalues 6f As LGL, CGL, and EQUI have\l, = M, = M andD, = D, = —D,TD =Pona
1-D periodic mesh, examining the eigenvalueslof — M- tDM1D will suffice.
This leaves the question of the stability CGLw. Eliminatimiithe velocity from the time-stepping equations (1)
leads to
pn+3/2 _ an+l/2 + pn—l/2
At?

For CGLw, the matrixZ is not symmetric. However, numerical evidence shows tkatigenvalues are non-negative
and bounded and that the time-stepping scheme therefouddshbe stable in 1D. Note that this does not guarantee
stability in 2D, as non-symmetric matrices with non-negagéiigenvalues are not necessarily non-negative thensselve
and vice versa. Addition of two such matrices may lead taainiities. Given the limited interest of the method, we
have not further investigated its stability properties.

=—Lp™V2  L=-MIDMD.

Appendix B. Spectral radius of G

The spectral radius @& = | -(M")~1 M, with mass matrix\M and its lumped versiom", should be smaller than 1
for convergence. Here, we provide estimates on a periodmagowithN elements, each with sitg, j = 0,...,N-1.
The basis functions have degrike

We start with some simple observations. The vector congjgf all ones is an eigenvector gfwith eigenvalue
0. This follows immediately from the fact thatt- is a diagonal matrix obtained from the row sums/df The
eigenvalues o6 do not change under the similarity transform(f)/2G(M")~1/2, Since this is a symmetric matrix,
its eigenvalues should be non-negative. Note tthas positive entries on the diagonal.

For the lowest degred)l = 1, the mass matrix per element is

2 1
=1
S e(l )
and the assembled mass matrix is of the favty;_1 = ghj_1, M;; = 3(hj_1 + h;j), Mjj.1 = th;, and zero otherwise.
In the periodic case, theshould be interpreted asnodN Then,
hj_1 h;
Gijj-1= TSh ey Gii=3% Gjj= —%m

and zero otherwise. In the equidistant case with congignthe eigenfunctions argy, k = 0,...,N - 1, with
Oki = exp(Zikl/N),1 = 0,...,N-1. The corresponding eigenvalues é[ie—cos(Zrk/N)]. Therefore, the eigenvalues
of G lie in the interval [02/3].

In the non-equidistant case, Gershgorin’s theorem [24]beaapplied:|1 - gl < X [gij| leads tod - %l = %
implying 0 < A < 2/3, which are the same bounds as in the equidistant case.

Legendre polynomials

We now turn to the general caskl > 1. The mass matrix for a single element in modal form is defimgd

= f_ll W()y (O (2) with a weighting functiorw(x) and model basis functiong (), k = 0, ..., M. The lumped
mass matrix in nodal form is\®, whereW = diag{wp, Wy, ..., Wy} is diagonal withwp = wy = 1/[M(M + 1)] and
wj = 1/[M(M + 1)Pu(xj)?] for j=1,...,M - 1.

For Legendre polynomials, this results in a diagonal matrith Am] 1/() + 2) | = ,M. To obtain
its nodal representaqu” = F"A™ we take the Legendre-Gauss-Lobotto (LGL) pom,tshat are the roots of
1-2)EPu() =
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The modal-to-nodal map" = (F™)~* with Fei = ¥(&), fork, 1 = 0,..., M. This can be expressed in closed form
as [25, e.q.]

M
,k——wk@,) 2w = A =2 W)
j=0

Here,yx = 1/(k + %) fork=0,...,M -1 andyy = 2/M with the LGL nodes. Note that the numerical quadrature
weightsw; should not be confused with the weighting functie).

The nodal form of the basis functionsgs= F"y. We havepk(£)) = 6k, by definition andiy(¢) = Z,"io Uk ().
This is the same as the earlief'¢.

The lumped version oA" is AL, a diagonal matrix obtained from the row sumxigk =% A The latter are
proportional to the LGL quadrature weights:

1 -1
W= SAG = [M(M + 1) (Pu(@)?]
The diference between the mass matrices is expressed by

(A" — A" = (i)z [’)’M - )w WicPm ()P (i)
g M M + % ] J ’

whereyy = 2/M, so
2M(1 + M)

2M + 1
Define a vectof with fi = WkPu (Zi). ThenAt — A" = 240 £T \we immediately obtain an eigenvecforSince

M M ’
. Pwm () -
= ;O [WicPw ()T Z ( M(M + 1)[Pw(z)12)

k=0

(A" - AY)jy = WjWiPwm (£7) Pm (Zk)-

1
= MM +1);Wk= M(M + 1)’

the corresponding eigenvaluej'aﬁ—l. The other eigenvalues are zero because the matrix has rank 1

Next, consider the matrig = (AL) (A" — A") = ZAWM ALY-1£ T, As

M
A =2 D WPy = 57
k=0

the matrix has an eigenvectqr= 2(A-)~f with entriesqx = Pw(Zk) and the corresponding eigenvaluelig.y =
(M +1)/(2M + 1). The other eigenvalues are zero, as before.
To go from this result to the assembled case, we follow [9F Bounds of the eigenvaluek,obey

T L _ T L _
minMsﬂsmaXM

x20 XTI MLx x#0 xXTMx
For boolean matrix. represents the local-to-global map that takke+« 1) unknowns on th&l elements to the global
MN unknows. Then,

_ XTLT(AF — AMLx XTLT(A- — AMLx
mpn——————— < Al<max——————,
x20  XTLTALLx X0 XTLTALLx

which after settingy = Lx, results in
T(AL _ AN L n
min A =AY o maxY T(A- - Ay
yz0  yTAly y# 0 yTALy
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Lety’ = (A“)¥?y, using the fact thaf is diagonal with positive entries on the diagonal. Then,
(y/)T(AL)—l/Z(AL _ An)(AL)—l/Zy/

Ve )Ty’ ==
NT(ALY-1/2( AL _ ANV ALY=1/2\
max Y LA) THAT - AN(AT) Ty
y'#0 OR%

The bounds follow from the smallest and largest eigenvatfg#-)~*/2(A- — A")(A-)~Y2, which by a similarity
transform based omAt)Y/? are the same as those @t)~(A- — A"), namely zero andmay = (M + 1)/(2M + 1).

Note thatg hasN(M - 1) zero andN non-zero eigenvalues, reflecting the fact that the elemetrixA- — A" has
rank 1.

For evenM, the maximum eigenvalue is obtained for a veetobtained from chaining the highest modal function
Pm(2) over the nodes. Consider an indexing functggi k) = (Mj + k) modMN that enumerates th&N degrees
of freedom on a periodic grid with elemengs= 0,...,N — 1 and nodes per elemekt= 0,..., M. The vectorv
has elementsy(jx = Pw(-®"), the highest degree Legendre polynomial evaluated at @le hodes¢-°-. Recall
that G refers to a single element and does not contain the elenmmnt $herefore, the subs@tyji,).q(jik) = Ckuke
corresponding to the interior nodes wkh=1,...,M - 1 andk, = 0O,..., M, does not depend on the element size
h;j. At the endpoints, we hav€qjo).qj.0-I = %GOJ and Gq(j0).qj0y+l = ﬁGOJ forl = 1,...,M, whereas
Ga.0.q(.0) = Goo. Since for even values d¥l, the corresponding is symmetric according tyy = Vq(j-1), for
[ =1,..., M, we find thatGv = AmayV.

For M odd butN even, we can do the same, but sifyg(—1) = —1 in that case, a minus sign needs to be applied
in alternating elementsyy iy = (—1)'Pum(£ 1) Note that application of a minus sign has tifieet of reversal of the

order: Py (£C%) = —Pw(£CY) for k = 0, ..., M. With this vector, the same approach as above lea@s'te Amaw.
Chebyshev polynomials

The weighting function can be takena§) = 2(1 - ¢?)7Y/2, with an extra factor 2r to integrate a unit constant
to 2, as in the case of the Legendre polynomials. The mod# fasctions ares«(¢) = Tk(() = coskarccos),
k=0,...,M, and the Chebyshev-Gauss-Lobotto (CGL) nafjes — cos@l/M), | = 0,..., M. The modal-to-nodal
map has entries

Fl = (-1)2Mw;wy cosgr jk/M),
with w; = 1/M, for j = 1,...,M — 1 andwp = wy = 1/(2M) [26, eq. 3.5.6]. The mass matrix in model form is
A™ = diag2,1,...,1}, which represents the orthogonality of the Chebyshev potyals. For its lumped version,
we can show thaF™A-(F™T = diag2,1,...,1,2}. Knowing that numerical quadrature with the CGL nodes is
exact for polynomials up to degre®P- 1, we expect that the non-zero eigenvector can be represeytde modal
basis function of highest degree, evaluated at the CGL nolfi¢sis is expressed ag with entriesq; = Tw(¢)) =
(-DM-J j = 0,...,M, then E"q); = djm. From this, it follows thatA* — A")q = F"diag0,0,...,0,1}F"q =
%F” diag2,1,...,1,2}F"q = %ALq. Using the same approach of [9] as before, this implies timetgenvalues o
lie between 0 and/R.

Appendix C. Leading dispersion errorsfor LGL

The leading error term in the dispersion curve for the Legempdlynomials without lumping can be found in [7,
eqg. (14)]. In our notation and after division by, this provides

2 ( M+l 2M+1)
s~ 30" (G ) . 1)
@M+ D)) | 2l (g g)2M if M even
With mass lumping and the LGL points, we conjecture that ¢aeling error term is
2 (-M
(MM (M1 M
LT omrt\emy ) \Mr1) (C.2)

We have verified this last result up k = 10. For oddM, this matches the very last equation in [3], which describes
the error caused by replacing the consistent mass matrits lymped version. For eveM, e = —2M &c.
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Appendix D. Leading eigenvector errors

In the following, we will present expressions for the digerdispersion and for eigenvector errors. For the mass
matrix, the consistent and lumped versions are conside¥ésl.only consider Legendre polynomials up to degree
M = 5 and Legendre-Gauss-Lobatto (LGL) nodes. For referemseilts for the second-order formulation of the
wave equations are included, for which some can be also felsegvhere [3]. For the first-order case, the eigenvalues
of the discrete operator ardlk. For the second-order case, they efend we list only the non-negative values of
k. Because the analytic expressions rapidly become quit@licated, only results in the form of leading terms in a
series representation in terms of the normalized wavenuébd—r, ] are given. Since for polynomials of degree
M, M modes are coupled if elements of constant size and constdatial parameters are considered, the eigenvalues
come in groups oM elements and the corresponding eigenvector errors carpbesented by th& columns of the
matrix S, as explained in Section 3.2. Among theeigenvalues, one corresponds to the ‘physical’ eigenvidae
approximatesM¢ in the first-order or 1£)? in the second-order formulation. The eigenvector errotbiseat and
therefore zero for degrdd = 1. For the higher degrees, a zero entry in the matrix shoutedd a(£P), with p the
power ofé pulled out in front of the matrix.

M = 1, LGL, first-order, consistent mass matrix:

3sin¢
K= ~
2 + cosé

£(1- 3%, s=o0.
M = 1, LGL, first-order, lumped mass matrix:
k=sing~¢£(1-3£%), s=0.

M =1, LGL, second-order, consistent mass matrix:

f6(1—cos§)
K = WN§(1+2%1§2)’ S=0.

M = 1, LGL, second-order, lumped mass matrix:

k= 2(1-cost) ~ £(1- 4¢°), S=0.

M = 2, LGL, first-order, consistent mass matrix:

sing) (2 cost # /10— cogé)

2-cog¢

2(2 2
{-5.&(1+ ). s:sFZC~§—6( 1 _1).

M = 2, LGL, first-order, lumped mass matrix:

k=-1 sing(cosg F 8+ sinzg) ~{-26,8(1- Zet)), S=s"~287¢

M = 2, LGL, second-order, consistent mass matrix:

4 p—
o~ e(1+ &%), VI8, s:ssz‘%—%)(i _f).

M = 2, LGL, second-order, lumped mass matrix:
k~{E(1- &%), V6), S=5%~ -555€
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M = 3, LGL, first-order, consistent mass matrix:

KN{_\/7§(1_3920 8) 1_?:1}’

25 -50 25
S=8RC. 2L -5-iv210 10 -5+iV210.
-5+iv210 10 -5-iV210

M = 3, LGL, first-order, lumped mass matrix:

- yRe(1- ) VB
5 -10 5

S~ apét|-1-iV6 2 -1+iV6|.
-1+iv6 2 -1-iV6

M = 3, LGL, second-order, consistent mass matrix:

S3C _ j81V5 .5
{ 2240 \/7’ \/7} =S 3500
M = 3, LGL, second-order, lumped mass matrix:

saL e
{ 2240 \/7’\/7} S=S5""~ 35"

M = 4, LGL, first-order, consistent mass matrix:

0
-1

N o)

0 56 -56
0 -24 24

8 F4C
K~{_\/%,—9g,§(1+491§f2 ). %1} S=S"~ %' 0 21 ;1
0 -24 24

M = 4, LGL, first-order, lumped mass matrix:

e~ (- e 32, B), s=sT a5

M = 4, LGL, second-order, consistent mass matrix:

K~ {5(1 + 22848, 1/210- 6805 1 V42,1 210+ 6«/805}

0 -336V805 0 336805

o a0 | 7360 ~16(230+ V805 0 -16(230- V805)
5325075 ~11270 7805+ 17V805) 0 7(805- 17V805)
7360 -16(230+ V805 O —16(230— 805)

M = 4, LGL, second-order, lumped mass matrix:

K~{§(1 52:£%), A/ 3(55~ V1345) /21/8, /1(55+ 134)}

16
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0 3136V1345 0 -3136V1345

o | -86080 371345+ 13V1345 0  32(1345-13V134H
20760079 131810 -49(1345+31V1345 0 -49(1345-31V134H
~86080  371345+13VI345 0  32(1345- 13V134)

S~

M = 5, LGL, first-order, consistent mass matrix:

K~ {—g \/3(10+ 3V5),-2 \/3(10— 3V5), £(1 — 7ool85625 r12) 2 \/3(10— 3V5),2 \/3(10+ 3«/6)},

-&(9+5v5) -4 (9-5v5) 1 -4 (9-5v5) -4 (9+5v5)
01118+0.2522i  Q04879-0.04359i -4 (7+5V7) 004879+004359  01118- 0.2522i
S~ 32 |_0008881- 017041 —-0.04055-0.049451 - g7 - 5«ﬁ; ~0.04055+ 0.049451 0008881+ 0.1704il.
-0.008881+ 01704 —0.04055+0.04945i —& (7-5v7) -0.04055-0.04945 -0.008881- 0.1704i
01118-02522i  Q04879+0043591 - (7+5V7) 004879-004359i 01118+ 0.2522i

The closed-form expressions for the numerical entries aitlangthy. LetS = s;3H. Then,

hp1 = -1(21+8V5+15V7 + V35)+ ﬁ\/77(980+ 399V5 + 130V7 + 60V35),

hpo = -1(21-8V5+15V7 - V35)- ﬁ\/77(980— 399V5 + 130V7 — 60V35),

and
— Sk — Sk — sk — Sk —
hk,5 - hk,l’ hk,4 - hk,2’ h5,k - h2,k’ h4,k — "3k k= 1’ teeo S.

M =5, LGL, first-order, lumped mass matrix:

K~ {_g 37+ VId) ~2/3(7— VId) £(1 - (828,410 2 \[3(7 - V1d) 2 y/3(7+ «/1_4)},

-0.5618 00618 1 00618 -0.5618
s | 0.1025+0.2115i Q058- 0.04849i -0.3211 0058+ 0.04849i 01025- 0.2115i
S~ %gf% —-0.002446- 0.1207i —0.04699- 0.05795i 009887 —0.04699+ 0.05795i —0.002446+ 0.1207if.
—-0.002446+ 0.1207i —0.04699+ 0.05795i 009887 —0.04699- 0.05795i -0.002446- 0.1207i
0.1025- 0.2115i Q058+ 0.04849i -0.3211 0058- 0.04849i 01025+ 0.2115i

Again, withS = s 3H, we have

hp=-4@+ V14), hyp=-4(3- Vid),

ho1 = g5;(14+ 10V7 + 3V14)+ \/70(59+ 20V2+ 10V7 + 13V14),

ho2 = o5 (14+ 10V7 - 3V14) - ﬁ\/m(sg— 20V2 + 10V7 - 13V14),

hs1 = o,(14— 10V7 + 3V14) - L, \/70(59— 20V2 - 10V7 +13V14),

hs2 = o5 (14— 10V7 - 3V14) - ﬁ\/70(59+ 20V2 - 10V7 - 13V14),

hys = —(7+5V7)/63  hsgs = —(7-5V7)/63

and the other entries follow the same symmetry pattern diprevious caseM = 5, LGL, second-order, consistent
mass matrix:

K~ {5(1 + gz s'0), 2 \/3(10— 3V5), L \/6(35— V805), 2 \/3(10+ 3V5),L \/6(35+ \/8_05)},
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0 0 0

o
< __
Nl

0
-2 /3(49-10V7)

o . jse2s’ | 3.[3(49+10V7)

58677696
-2 /3(49+10V7) \/%1(763— 210V5 + 2,/35(761- 336V5))

%(763- 210V5 - 2,,/35(761- 3365)) (763+210V5 + 2 ,/35(761- 3365))

-
-y

%(763-210V5+2,/35(761- 336V5)) 0 —/#(763+210V5 - 2,/35(761- 336V5))

o
<
Rl | N

(763+ 210V5 - 2,,/35(761- 336V5))

2 ./3(49-10v7) %(763-210V5 - 2,/35(761- 336V5)) 0 —\/;1(763+210«6+2 35(761- 3365))
0 0 O 0 0
, -548 -350 0 898 O
~ g | 1003 -397 0 -6.06 O |.
-1003 397 0 606 O
548 350 0 -898 O

M = 5, LGL, second-order, lumped mass matrix:

K~ {g(l- onlds 10),§\/3(7- Vi4)t \/6(35— V805), 2 \/3(7+ Vi4)t \/6(35+ x/%)},

0 00 00

2,3(a9-10v7) \/g (281-32via-10,f7(23-6V14) 0 —\/g(zsnszﬁu 10,/7(23+6V1)) 0

s~z | -2\3(49+107) \/2(231—32@”10,/7(23—6@) 0 \/2(231+32M—10,/7(23+6m)) 0
2,/3(49+10V7) —\/g (231—32\E1+ 10,/7(23-6v14)) 0 —\/2(231+32M— 10,/7(23+6@)) 0
-2,/3(49-10V7) —\/3(231—32@1—10,/7(23—6@1) 0 \/3(231+32\E1+10,/7(23+6@)) 0

0 00
1645 1172 0 -2817
. 31287
~ g% | -3009 1401 0
3009 -1401 0
0

-1645 -1172

=

o2}

o

o
[cNeoNeoNeoNe)
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Figure 5: Maximum error in the particle velocity,as function of the inverse number of degree of freedoiNgd, for the Legendre-Gauss-Lobatto
nodes (LGL) with (a) the consistent mass matrix, (b) the lumpessmaatrix, and after 1 (c), 2 (d), 3 (e) or 5 (f) iterations with tiefect correction
operatorg.

1P Legendre [1i 1P Legendre [10i 1@ Legendre [20 iterations]
10% 10? 1
5 5
é % 10* %10 ]
= =
o1
—e—2
—e— 3|
4 10° 10° 1
10t =5
10° 10? 1(3’3 16’2 1&3 1(‘12
Ny N, Ny,
(a) 1iteration (b) 10 iterations (c) 20 iterations

Figure 6: Maximum error in the particle velocity,as function of the inverse number of degree of freedgiNgd, for the Legendre-Gauss-Lobatto
nodes (LGL) using the diagonal of the mass matrix as precamditj after 1 (a), 10 (b), or 20 (c) iterations.
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Chebyshev2

Chebyshev2 [0 iterations]

Chebyshev2 [1 iterations]
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(a) consistent

Figure 7: Maximum error in the particle velocity, as function of the inverse number of degree of freedofhyds, for the Chebyshev-Gauss-

(b) lumped

UNum

(c) 1iteration

Lobatto nodes with weighting (CGLw) with the consistent masdrix (a), its lumped version (b), or with one iteration (c).
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