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Fault-tolerant Control of Robot Manipulators with Sensory Faults using
Unbiased Active Inference

Mohamed Baioumy1∗, Corrado Pezzato2∗, Riccardo Ferrari2, Carlos Hernández Corbato2 and Nick Hawes1

Abstract— This work presents a novel fault-tolerant control
scheme based on active inference. Specifically, a new formu-
lation of active inference which, unlike previous solutions,
provides unbiased state estimation and simplifies the definition
of probabilistically robust thresholds for fault-tolerant control
of robotic systems using the free-energy. The proposed solution
makes use of the sensory prediction errors in the free-energy
for the generation of residuals and thresholds for fault detection
and isolation of sensory faults, and it does not require additional
controllers for fault recovery. Results validating the benefits
in a simulated 2-DOF manipulator are presented, and future
directions to improve the current fault recovery approach are
discussed.

Index Terms— Fault-tolerant control, fault recovery, active
inference, free-energy principle, robotics, robot manipulator.

I. INTRODUCTION

Fault tolerant (FT) control is of vital importance for many
applications such robots working in production lines [1]. In
order to guarantee high standards of reliability and security,
the area of FT control of robot manipulators increasingly
gathered importance in recent years [2]. Many approaches
have been developed for faults in actuators and sensors [3]–
[7]. Model based fault tolerant techniques are amongst the
most advanced approaches to tackle the problem of fault
detection and isolation (FDI) for dynamical systems [8].
These methods rely on monitoring system outputs using
mathematical models to generate residual signals which are
compared to a threshold. Faults are detected if the threshold
is exceeded, while the actions for fault recovery are usually
performed through controller re-design or by switching to a
different controller [9].

Regarding FT control for robot manipulators, [6] performs
fault diagnosis in image-based visual servoing. The residual
signal is defined as the root mean squared estimation error
(RMSE) of a Kalman filter, which predicts the values of
a number of features in the camera image. The residual is
compared against a user-defined static threshold and fault
isolation is achieved via a decision table. The controller
reconfiguration is not designed in the paper, and it would re-
quire an additional element on top of the FDI scheme. Visual
information from a camera can also be used to compensate
for lack of observability in case of sensory faults. In [7], three
different second-order sliding mode observers are used for
generating residuals using independent measurements from
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camera images. The detection thresholds were selected to
minimize the probability of false or missed alarms on the
basis of simulation and experimental data. However, the
visual subsystem is assumed faultless.

FDI through static thresholds can be effective, but stochas-
tic decision theory has been shown to outperform these
methods. The actual distributions of residuals can be es-
timated such that a user can define thresholds based on
their acceptable probability of false positives [10]–[13]. The
work in [14] showed fault-tolerant steering control of an
agricultural vehicle for bailing, detecting sensory faults and
artefacts in images through statistical learning. The sensors
configuration for control was then decided at run-time.

Generally speaking, model-based fault tolerant control
schemes rely on additional supervision blocks that increase
system complexity. FDI and fault recovery present two main
challenges: a) The definition of robust yet sensitive pairs of
residuals and thresholds; b) The design of specific additional
supervisory systems to accommodate large faults.

The work presented in this paper extends the active infer-
ence controller (AIC) recently developed by the authors in
[15], [16]. Active inference relies on approximate Bayesian
inference [17], [18] for prediction errors minimization, and
it allows state estimation and control using a single cost
function. This scheme showed remarkable capabilities while
dealing with missing sensory information or large unmodeled
dynamics, see [15], [19] respectively. The authors in [20]
initially presented a fault tolerant control scheme with an
AIC which showed great promise. However, this presented
a few fundamental limitations which will be thoroughly
discussed in Sec. II-B. Most importantly, FDI in [20] can
be affected by false-positives when target state changes,
and it relies on a static threshold which might be over-
conservative. In this work, we: improve the state estimation
of a standard AIC; develop an unbiased AIC (u-AIC); reduce
the probability of false-positives and allow to easily define
a probabilistically robust threshold for fault detection.

The paper is organised as follow: Sec. II presents the
background on active inference for fault-tolerant control
highlighting the limitations of past work. Sec. III presents a
new formulation of the AIC with unbiased state estimation,
while Sec. IV explains how fault tolerant control is achieved
with this new formulation. Results for a simulated 2-DOF
robot arm are presented in Sec. V while Sec. VI reports a
summary and future challenges.
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II. PRELIMINARIES

This section presents the background knowledge on active
inference for robot control [15], [20] required to understand
and justify the need for an unbiased AIC.

A. Active inference controller (standard AIC)

The AIC in [15], [20] is defined for torque control in
joint space of a generic robot manipulator (Fig. 1). The robot
arm is equipped with encoders and velocity sensors with
relative sensory readings yq, yq̇ . In addition, the end-effector
Cartesian position yv is made available through a camera.
The system’s output is represented by y = [yq, yq̇, yv] ∈
Rd. The proprioceptive sensors and the camera are affected
by zero mean Gaussian noise η = [ηq , ηq̇ , ηv]. The camera is
affected by barrel distortion. The AIC can be used to control
the robot arm to a desired configuration µd, providing the
control input u ∈ Rm as torques to the single joints. To
this end, the control input is computed on the basis of the
so-called free-energy and the generalised motions µ̃ [20].

RobotControlAct.StateEst.

Camera
AIC

Fig. 1. General AIC control scheme for joint space torque control.

The free-energy principle relies on Bayesian inference [21]
for state estimation. The goal is to find the posterior over
states given observations, p(x|yv,yq,yq̇). This computation
is in general intractable using Bayes’ rule and in practice the
true posterior distribution is approximated with a variational
distribution Q(x) [22]. The most probable state is computed
by minimizing the Kullback-Leibler divergence (DKL) be-
tween p(x|y) and Q(x) [18]:

DKL(Q(x)||p(x|y)) =

∫
Q(x) ln

Q(x)

p(x|y)
dx

=F + ln p(y) (1)

where F represents the free-energy. By minimizing F ,
Q(x) approaches the true posterior p(x|y). The probabilistic
model p(x,yv,yq,yq̇) is factorized as:

p(x,yv,yq,yq̇) = p(yv|x)p(yq|x)p(yq̇|x)︸ ︷︷ ︸
observation model

p(x)︸︷︷︸
prior

(2)

If Q(x) is a Gaussian with mean µ and the Laplace
approximation is utilized [23], then F reduces to

F = − ln p(µ,yv,yq,yq̇) + C , (3)

where C is a constant. Higher order derivatives of the state
x ∈ Rn are combined in the term µ̃ (i.e. µ̃ = [µ,µ′,µ′′]).
This is referred to as generalized motions [18], [24]. The
number of generalised motions considered will affect the
update laws for state estimation and control.

In order to characterize the free-energy and compute
it, one has to define two generative models, one for the
state dynamics, and one for the observations. The latter
is modeled according to [18] as y = g(µ) + z, where
g(µ) = [gq, gq̇, gv] : Rd 7→ Rd represents the non-linear
mapping between sensory data and states of the environment,
and z is Gaussian noise z ∼ (0,Σy). The generative model
of the state dynamics is defined as [18]:

dµ

dt
= µ′ = f(µ) +w (4)

where f(µ) : Rn 7→ Rn is a generative function dependant
on the belief about the states µ and w is Gaussian noise
w ∼ (0,Σµ). As in previous work [16], we define f(·) such
that the robot will be steered to a desired joint configuration
µd following the dynamics of a first order linear system with
time constant τ .

f(µ) = (µd − µ)τ−1 (5)

From equation (5) we can see that the desired state is
encoded in the prior. The time constant τ influences the
generative model of the state dynamics f(·). As explained
in [16], the AIC has two extremes depending on the value
of τ−1. If τ−1 → 0, the AIC only performs filtering and
no control. On the other hand, if τ−1 → ∞ the AIC is
equivalent to a PID controller [16], [25]. For any value
in between, there is a compromise between estimation and
control. The estimation and control are thus ‘coupled’ and
state-estimation with the standard AIC results in a bias
towards the desired target, see (7). If all distributions in
equation (2) are assumed Gaussian, the expression for free-
energy simplifies to (see [15] for complete derivations):

F =
1

2

∑
i

(
ε>i Piεi − ln |Pi|

)
+ C, (6)

where i ∈ {yq, yq̇, yv, µ, µ′}, and Pi defines a precision
(or inverse covariance) matrix. Note that we set τ = 1
as in [15], [26]. The terms εi with i ∈ {yq, yq̇, yv}
are the Sensory Prediction Errors (SPE), representing the
difference between observed sensory input and expected one.
In general, the SPE for a sensor s are defined as (ys−gs(µ)).
The model prediction errors are instead defined considering
the desired state dynamics as εµ = (µ′ − f(µ)) and εµ′ =
(µ′′−∂f(µ)/∂µµ′). In particular, for the robot arm used in this
paper, εyq = (yq−µ), εyq̇ = (yq̇−µ′), εv = (yv−gv(µ)),
and εµ = (µ′+µ−µd), εµ′ = (µ′′+µ′). For more details
on the derivation of equation (6), refer to [15], [16], [18].

To achieve state-estimation a gradient descent on the free-
energy is used. The variable µ̃ is updated as:

˙̃µ = Dµ̃− κµ
∂F

∂µ̃
, (7)

where κµ is the gradient descent step size, and D is a shifting
operator with ones on the upper diagonal. This form of
gradient descent is needed due to using generalized motions
as mentioned earlier [17]. The control actions, are also
computed through gradient descent; however, the expression
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for F does not include any actions explicitly. The chain
rule is then used, assuming an implicit dependency between
actions and sensory input.

u̇ = −κu
∂F

∂u
= −κu

∂F

∂y

∂y

∂u
, (8)

where κu is the gradient descent’s step size. The term ∂y
∂u is

often approximated as linear, similarly to [15], [26].

B. Limitations of fault-tolerant control with standard AIC

The AIC was used in [20] for fault tolerant control. In this
subsection we aim at highlighting the main limitations of the
AIC, which are addressed in Sec. III through the proposed
unbiased active inference scheme. The main idea in [20] was
that the SPE in the free-energy could be used as residuals
for fault detection, removing the need for more advanced
residual generators. Besides, the precision matrices in the
free-energy could be used for fault accommodation, since
they represent the trust associated to sensory readings. For
a faulty sensor, the relative precision was decreased to zero
to perform fault recovery. Specifically, the residuals in [20]
are generated by considering the quadratic form of the SPE
ε>s Pysεs, where εs = ys − gs(µ) with s ∈ {q, q̇, v}. A
static fault detection threshold ψs was chosen as an upper
bound on the quadratic terms.

The SPE depends on the belief µ, which is biased towards
a given goal. This means that the SPE in standard AIC can
increase for causes that are not necessarily related to a fault,
i.e. the robot is stuck due to a collision or there is an abrupt
change in the goal µd, for example in a pick-and-place
application. The residuals are thus dependent on the goal,
which is problematic. This was not an issue in [20] because
of the over-conservative threshold used for fault detection,
but it becomes apparent when the SPE are closely analysed.
Fig. 2 reports the absolute value of the SPE for the joint of
a robot arm controlled using an AIC, during a point to point
motion with three via-points µd1 , µd2 , µd3 .

Fig. 2. Effect of abrupt change in goal on the SPE in standard AIC. The
SPE increases sharply without the presence of any sensory faults.

Using a tighter threshold to detect faults of small entity
by using the approach proposed in [20] would lead to many
false positives. In this work we tackle the problem of biased

sensory prediction errors and we define an unbiased AIC
where the SPE are independent from the input, providing
more accurate state estimation. With the u-AIC is also
possible to use the sensory prediction error directly for fault
detection using a probabilistically robust threshold instead of
a static one as in [20].

III. UNBIASED ACTIVE INFERENCE

To tackle the problems discussed in the previous section,
the unbiased AIC is developed (u-AIC).

A. Derivation of the u-AIC

Consider a probabilistic model with explicit actions
p(x,u,yv,yq,yq̇), where unlike the AIC, x = [q q̇]>. The
distribution factorizes as:

p(x,u,yv,yq,yq̇) = p(u|x)︸ ︷︷ ︸
control

p(yv|x)p(yq|x)p(yq̇|x)︸ ︷︷ ︸
observation model

p(x)︸︷︷︸
prior

(9)
Given the sensory data, we then aim to find the posterior

over states and actions p(x,u|yv,yq). We approximate the
posterior with a variational distribution Q(x,u). We utilize
the mean-field assumption (Q(x,u) = Q(x)Q(u)) and the
Laplace approximation. The posterior over the state x is
assumed Gaussian with mean µx. The posterior over actions
u is also assumed Gaussian with mean µu. This results in
the following expression for variational free-energy:

F = − ln p(µu,µx,yv,yq,yq̇) + C (10)

This expression can be factorized as in equation (9). Assum-
ing Gaussian model F can be expanded to:

F =
1

2
(ε>yqPyqεyq + ε>yq̇Pyq̇εyq̇ + ε>yvPyvεyv

+ ε>x Pxεx + ε>u Puεu − ln |PuPyqPyq̇PyvPx|) + C,
(11)

where εyq , εyq̇ , εyv are the sensory prediction errors of
position encoder, velocity encoder, and the visual sensor
respectively. Furthermore, εx and εu are the prediction errors
for the prior on the state and the control action respectively.

The prediction error on the state prior εx is computed
considering a prediction of the state x̂ at the current time-
step, which is a deterministic value. It follows that εx =
(µx−x̂). The prediction x̂ = [q̂ ˆ̇q]> can be computed in the
same fashion as the prediction step of, for instance, a Kalman
filter or of a Luenberger observer. While in such cases the
prediction computation would require the knowledge of an
accurate dynamic model, in this paper we assume we do not
have access to that. Instead, we will propagate forward in
time the current state belief using the following simplified
discrete time model:

x̂k+1 =

[
I I∆t
0 I

]
µx,k (12)

where I represents an unitary matrix of suitable size. This
form assumes that the velocities of the joints will remain
roughly constant and the position of each joint is thus

1121

Authorized licensed use limited to: TU Delft Library. Downloaded on January 10,2022 at 15:01:38 UTC from IEEE Xplore.  Restrictions apply. 



computed as the discrete time integral of the velocity, using
a first-order Euler scheme. As mentioned, if one has access
to a better dynamic model, that can be used instead.

Finally, the state prior now does not encode information
about the target µd (unlike in the standard AIC). The
information about the target is encoded in the distribution
p(u|x). We choose this distribution to be Gaussian as well
with a mean of f∗(µx,µd), which is a function that steers the
systems toward the target. This then results in εu = (µu −
f∗(µx,µd)). The function f∗(µx,µd) can be any controller,
for instance a P controller: f∗(µx,µd)) = P (µd − µx). In
this paper we choose the function such that it converges to a
PID controller; however, other choices can be made without
loss of generality. For state and actions update, first-order
Euler integration is used to obtain discrete time equations.

B. Definition of the observation model

The sensory prediction errors are as in the AIC, that is
εq = (yq −µ), εq̇ = (yq̇ −µ′) and εv = (yv − gv(µ)) but
µ is not biased anymore towards the target µd. The relation
between µ and y is expressed through the generative model
of the sensory input g = [gq, gq̇, gv]. Position and velocity
encoders directly measure the state. Thus gq and gq̇ are linear
mappings between µ and y.

To define gv(µ), instead, we use a Gaussian Process
Regression (GPR) as in [19]. This is particularly useful
because we can model the noisy and distorted sensory input
from the camera, and at the same time we can compute a
closed form for the derivative of the process with respect to
the beliefs µ, required for the state update laws. The training
data is composed by a set of observations of the (planar)
camera output [ȳvx , ȳvz ]> in several robot configurations
ȳq . We use a squared exponential kernel k of the form:

k(yqi ,yqj ) = σ2
f exp

(
− 1

2 (yqi − yqj )>Θ(yqi − yqj )
)

+σ2
ndij (13)

where yqi , yqj ∈ ȳq , and dij is the Kronecker delta function.
Θ is a diagonal matrix of hyperparameters that are fit
according to the training data to obtain accurate predictions.
The hyperparameters are optimized in order to maximize the
marginal likelihood, see [27]. The predictions are then [19]:

gv(yq∗) =

[
k(yq∗ , ȳq)K

−1ȳvx
k(yq∗ , ȳq)K

−1ȳvz

]
gv(yq∗)′ =

[
−Θ−1(yq∗ − ȳq)>[k(yq∗ , ȳq)

> ·αx]
−Θ−1(yq∗ − ȳq)>[k(yq∗ , ȳq)

> ·αz]

] (14)

where · means element-wise multiplication, K is the
covariance matrix, αx = K−1ȳvx and αz = K−1ȳvz .

C. Estimation and control using the u-AIC

Similar to the AIC, performing both state-estimation and
control can be achieved using gradient descent on F . This
is simpler in the case of the u-AIC since there is no need to
use the chain rule when computing the control actions (see
eq. (8)) or to consider generalized motion (7):

µ̇u = −κu
∂F

∂µu
, µ̇x = −κµ

∂F

∂µx
, (15)

where κu and κµ are the gradient descent step sizes. The
gradient on control can be computed as:

∂F

∂µu
= Pu(µu − f∗(µx,µd)) (16)

Setting this to zero results in the control action being equal
to f∗(µx,µd). If this function is chosen similar to a PID
controller, then the control law of our system will converge
towards that. This can be extended to richer control by
modifying the probabilistic model in eq. (9). The only term
depending on the control action now is p(u|x); however, a
prior p(u) can be also added. In that case the generative
model would be:

1

α
p(u)p(u|x)p(yv|x)p(yq|x)p(yq̇|x)p(x) (17)

where α is a normalization constant. This prior can then
encode a feed-forward signal (open-loop control law). When
computing the u that minimizes F in that case, it would
be a combination of the feed-forward signal and f∗(µx,µd)
depending on the value of Σu. This is employed in [28].

Since µu converges to f∗(µx,µd), we can achieve unbi-
ased state estimation. In fact, this would result in εu = 0
and thus the current target would not affect the the beliefs
about the states. In u-AIC, the belief about the states is only
affected by the predicted values and the observations from
various sensor, exactly as in a Kalman filter [29].

D. Key differences between AIC and u-AIC

The AIC considers the relationship between states and
observations without explicitly modelling the control actions.
The prior over state p(x) in equation (2) thus encodes the
target/goals state. In filters, such as the Kalman filter, the
prior comes from a prediction step that relies on the previous
state and action. In case of the AIC, the beliefs update law
is essentially a filter where the prediction step is biased
towards the goals state i.e. the agent normally predicts to
move linearly towards the target (see eq. (5)).

In the u-AIC, actions are explicitly modelled and the target
state is encoded in the term p(u|x). This has two implica-
tions. First, the state is not biased towards the target since
its prior p(x) is not. A prior encoding a prediction step will
also improve the overall state-estimation accuracy. Secondly,
explicit actions allow us to directly perform gradient descent
on F with respect to u. This is not possible in the general
AIC case and the chain rule had to be utilized (see eq. (8)).

Finally, the u-AIC has guarantees regarding the stability
of the controller while the AIC does not. This is out of scope
of this paper and will be discussed in future work.

IV. FAULT DETECTION, ISOLATION, AND RECOVERY

In this section we describe how the SPE from the u-AIC
can be used as residual signals, and how to perform FDI.
Without loss of generality, for these derivations we will
consider only the proprioceptive sensors and we discretize
the continuous dynamics with first order Euler integration.
According to the approximated system’s dynamics in (12),
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and expanding the second term in (15) where F is computed
as in (11), the state estimation law can be rewritten as:

µk+1 = γ(µk,uk) + Λ(g(µk)− yk) (18)

Equation (18) represents the dynamics of an estimator
where stability results from the value that we obtain for
diagonal matrix Λ. in [29] it has been shown how the free-
energy principle can be used to derive stable state observers,
for a linear case with coloured noise. It is important to
note that γ and Λ are known expressions resulting from the
partial derivatives of F . The term (yk − g(µk)) represents
the sensory prediction errors. In the u-AIC, the states of the
system are steered towards the desired goal following the
dynamics imposed by the controller. Therefore, the resulting
system’s dynamics can be represented in general as:{

xk+1 = γ(xk,uk) + φ(xk,uk,ρk)

yk = xk + zk
(19)

where xk ∈ Rn and uk ∈ Rm are the state and input
variables, while γ(xk,uk) : Rn × Rm 7→ Rn represents the
dynamics of the system in healthy conditions. yk ∈ Rn is
the measurement of the full state which is affected by the
presence of measurement noise zk ∈ Rn. The expressions
obtained so far for the system dynamics will allow us to cast
easily a model-based fault diagnosis approach in the current
framework, even if the knowledge of an a-priori model is
not needed. The real system can be affected by faults which
are represented by the fault function φ(xk,uk,ρk) : Rn ×
Rm×Rl 7→ Rn. The unknown parameter ρk determines the
fault amplitude and shall be such that φ(xk,uk,0) = 0.

A. Residual generation

Following [12], [30] we rely on two assumptions:
Assumption 1: No fault acts on the system before the fault

time kf , thus ρk = 0 for 0 ≤ k < kf . In addition, before
and and after the occurrence of a fault the variables xk and
uk remain bounded, that is ∃ S = Sx × Su ⊂ Rn × Rm
such that (xk, uk) ∈ S ∀k.

Assumption 2: zk is a random variable defined on some
probability spaces (Z,B,PZ ), where Z ⊆ Rn. B(·) indi-
cates a Borel σ-algebra, and PZ is the probability measures
defined over Z . Furthermore, it is not correlated and are
independent from xk, uk and ρk ∀k.

We define the residuals for fault detection as the sensory
prediction errors rk = yk − g(µk). Thus, according to (19),
(18) and following [12], [30], the residuals dynamics will be
given by:

rk+1 = Λrk + δk + φ(xk,uk,ρk) (20)

δk = γ(yk − zk,uk)− γ(µk,uk) + zk+1 (21)

The stochastic process δk, is the random total uncertainty
which affects the residuals generation. It follows that δk
is in the probability space (∆k,B(∆k),Pδk ) where ∆k is
obtained by letting zk and zk+1 vary over Z . Apart from
simple cases, it is not possible to obtain a closed form for

this set, thus numerical approximations are used instead. The
residual rk+1 can be seen as a random variable in the same
probability space of δk [12].

Fig. 3. Healthy residual set at time k + 1 as image obtained from the
output of (20).

The residual set Rk+1 at the next time step k + 1 can
be seen as the image obtained by computing the output of
(20), where the total uncertainty δk varies over its domain
∆k. Note that the healthy residuals can be characterized by
setting ρk = 0.

Remark 1: While the system dynamics γ and the fault
function φ have been introduced for analysis purposes, they
do not correspond to known models of the healthy and
faulty behaviours. In particular, γ is obtained via algebraic
manipulations from current free energy framework’s update
equations. In particular, the residual r for implementing the
detection and isolation logic described next can be directly
computed from the current belief and measurement. Indeed,
the proposed fault diagnosis approach based on the u-AIC is
completely model-free.

B. Threshold for fault detection

As in [30], we consider a probabilistically robust detection
logic of the form:

dM (rk+1) ≤ n

α
, dM (22)

where dM is the detection threshold, n is the dimension of
the residuals, α is a tuning parameter, and dM (·) indicates
the Mahalanobis distance of the residuals. In general:

dM (r) =

√
(r − r̄)>C−1r (r − r̄) (23)

where r̄ , E[r] ∈ Rn and Cr , Cov[r] ∈ Rn×n are
the expected value and covariance matrix of the residuals.
According to the Multivariate Chebyshev Inequality [31]:

Pr[dM (rk) ≥ n

α
] ≤ α, ∀α ∈ [0, 1] (24)

This means that, in healthy conditions, the probability of a
false alarm, that is dM exceeding the threshold d̄M , is upper
bounded by α. The value α can be tuned to achieve the
desired probabilistic robustness of the threshold. The present
detection logic is equivalent to check if the residual at time
step k+1 belongs to a time varying ellipsoid with mean r̄k+1

and covariance Crk+1
. In the general nonlinear case, these

moments can be approximated by their sampled counterparts
obtained in healthy conditions.
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C. Fault isolation

The detection policy in (22) results effective to label the
system as healthy or faulty. However, it is not possible to
use the same SPE generated through equation (11) for fault
isolation. In fact, the free-energy is computed as a weighted
sum of the squared prediction errors fusing different sensory
sources. This means that when a fault occurs, its effects will
propagate to all the SPE in equation (11). We define two
additional free-energies and state estimation processes which
rely on different sensory sources (i.e. either proprioceptive
or visual).

Fp =
1

2
(ε>yq

Pyqεyq + ε>yq̇
Pyq̇εyq̇ + ε>xPxεx

− ln |PyqPyq̇Px|),
(25)

Fv =
1

2
(ε>yv

Pyvεyv + ε>xPxεx − ln |PyvPx|) (26)

Doing so, we can isolate encoder and camera faults
since state estimation is now done using two independent
measurement sources. Fp and Fv are only used for fault
isolation and not control. The thresholds for the SPE from
(25) and (26) are then computed as in Sec. IV-B.

D. Fault recovery

Fault recovery can be performed as in [20]. Once a fault
is detected and isolated, fault recovery is triggered. If a
sensor is marked as faulty, its corresponding precision matrix
is set to zero. The controller can thus exploit the sensory
redundancy to a) have a better a posteriori approximation of
the states, and b) to compensate for missing or wrong sensory
data. Once a fault is detected and isolated, the precision
matrix of the faulty sensor Pfs is reduced to zero:

Pfs = 0 (27)

Interestingly, the active inference framework allows also
for hyper-parameters (precision) learning [16], [32]. The bias
in the standard AIC hindered hyper-parameters learning for
fault recovery purposes, but learning meaningful precision
matrices associated with sensory readings with u-AIC is now
possible and will be investigated in future work.

V. SIMULATION STUDY

In this section we illustrate the fault detection, isolation,
and recovery strategy on a MATLAB simulation using a 2-
DOF robotic manipulator. The dynamical model of the robot
is defined as [33]:

u = M(q)q̈ + C(q, q̇)q̇ +Dq̇ +G(q) (28)

where q = [q1, q2]>, u(t) = [u1, u2]>, D is the
friction coefficient matrix, M is the inertia matrix, C is
the Coriolis matrix, and G models the effects of gravity.
The dynamic model is only used to simulate the response to
the commanded torques since the u-AIC provides a control
law agnostic to the dynamical model. Thus, link’s masses,
friction coefficients, and other dynamical parameters are not
part of the controller. The noisy sensory readings have zero-
mean Gaussian noise. The standard deviation of the noise

for encoders and velocity sensors is set to σq = σq̇ = 0.001,
while the one for the camera to σv = 0.01.

The simulation consists of controlling the robot arm for a
double point-to-point motion from the starting configuration
q = [−π/2, 0] (rad) to µd1 = [−0.2, 0.5] (rad), and
then µd2 = [−0.6, 0.2] (rad). A fault occurs during the
trajectory from µd1 to µd2, i.e. we set kf = 8s. The fault
can affect either the encoders or the camera. The encoder
fault is such that the output related to the first joint freezes
so yq(k) = [q1(kf ), q2(k)]> for k ≥ kf . The fault detection
and recovery of such a fault, as well as the system’s response,
are reported below in Fig. 4 and Fig. 5:

Fig. 4. Normalised dM in case of encoder fault. A detection occur when
the normalized value exceeds 1.

Fig. 5. System’s response in case of encoder fault without recovery (fixed
precision matrices) and with recovery (setting Pyq = 0 after detection).
The fault occurs after 8s.

As can be seen from Fig. 5, the system is not able to reach
the set-point after the occurrence of the fault in case of no
recovery. The robot arm reaches a different configuration to
minimise the free-energy, which is built fusing the sensory
information from the (faulty) encoders and the (healthy)
camera. Recovery happens after 60 (ms), and after that the
faulty reading is discarded by setting zero precision. The
robot arm is then able to reach the final configuration.

The other situation that we consider in this work is a
camera fault. This fault is supposed to be a misalignment,
due for instance to a collision. This is simulated by injecting
a bias i.e. yv(k) = yv(k) + 0.04 for k ≥ kf . Note that the
entity of this fault is small and comparable with the camera
noise, i.e. the zero mean Gaussian noise with σv = 0.01 (m).
The fault detection is reported in Fig. 6. The system’s
response with and without recovery is similar to Fig. 5.

The simulation results will be extended to real experi-
ments, leveraging the scalability and adaptability of the active
inference controller [15]. The steady state errors (ess) and
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Fig. 6. Normalised dM in case of camera fault.

the RMSE between beliefs and actual joint positions for
the simulations are reported in Table I.

TABLE I
SUMMARY OF THE RESULTS USING U-AIC

Metrics Encoder Fault Camera Fault
Recovery No recovery Recovery No recovery

ess, q1 −2.7e−3 0.1674 −2.1e−4 0.0173
ess, q2 −1.5e−3 −0.1176 −2.5e−4 7.0e−3

RMSEq1 3.0e−3 0.0896 5.7e−4 0.0112
RMSEq2 2.5e−3 0.0636 3.5e−4 2.1e−3

VI. CONCLUSIONS

In this paper we presented a new formulation of an active
inference controller where the free-energy depends explicitly
on the control actions. This formulation brings two general
advantages. First, it allows us to remove the bias from
state-estimation which affected the standard active inference
controller, leading to more accurate state estimation. Second,
it simplifies the definition of the control actions since it re-
moves the need for computing partial derivatives of the free-
energy. Next to that, we showed how the new formulation
simplifies the use of established fault detection techniques
with probabilistic robustness, which would have caused many
false positives using standard active inference. The effective-
ness of the approach is showcased in a simulated 2-DOF arm
subject to sensory faults. Future work will investigate fault-
tolerant control with stochastic decision boundaries, a formal
stability proof, and experiments on a real robot manipulator.
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