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• Defining and formulating operational behavioural level for cyclist traffic

• Developing a two-layer framework to capture tasks in the mental and

physical layers

• Applying framework to model bicycle queue formation at a signalised

intersection

• Estimating and validating discrete choice models per layer in a case

study in Amsterdam
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Abstract

Operational cycling behaviour is greatly understudied, even lacking a def-

inition of what this behavioural level actually entails in terms of decision

making. In this paper, we define the cyclist operational level and argue that

it consists of two intertwined processes, a mental and a physical process. The

mental process refers to path choices made within a route and the physical

process refers to the bicycle control dynamics through pedalling and steer-

ing. We propose a novel two-layer framework, where each layer captures the

tasks of one of the processes within the operational level. Discrete choice

theory is proposed to model each layer. The plausibility of the framework is

demonstrated through an application focusing on the queue formation pro-

cess upstream of a red traffic light, including selecting a queuing position

and cycling towards it. Models are estimated for the two layers using cy-

clist trajectory data collected at a signalised intersection in Amsterdam, the

Netherlands. The models reveal the attributes that influence the decisions

made in each layer and are face validated using simulation. The proposed

framework and the (behavioural) findings of its application are the main
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scientific contributions of this paper, which pave the way for future research.

Keywords: operational cycling behaviour, two-layer framework, discrete

choice theory, cyclist queue formation process, cyclist queue position

choice, cyclist trajectories

1. Introduction

Though the interest in cycling in cities increases, research on bicycle traf-

fic behaviour is still in its infancy. Insights into this behaviour, and un-

derstanding how cyclists interact with each other and make use of cycling

infrastructure are crucial if cities are to be designed to accommodate large

amounts of cyclists and ensure their safety. Since models can be used to

evaluate different designs under varying traffic situations, this need for in-

sights is linked to the need to create reliable and accurate models that can,

for example, assess the capacity of intersections or predict the number of

encounters on bi-directional cycle paths as a surrogate safety measure.

Research on how cyclists make use of the infrastructure is, however, lim-

ited. Among the few examples is Jiang et al. (2013), who studied the gap

acceptance of cyclists against right-turning vehicular traffic at signalised in-

tersections. They found that cyclists started decelerating when they are

within 30m from the stop line and that their acceptance of a gap depends

on the speed of the cyclist and of the motorised vehicle, as well as the size of

the available gap. Kucharski et al. (2017) observed the formation of multiple

channels in queues at signalised intersections and found that the number of

channels formed correlated with the length of the queue. Since they only

looked at a single intersection, it is possible that the effect of other factors,
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such as the width of the cycle path, has not been identified. In line with this

remark, the authors stressed the need for a bigger sample before a model

could be formulated to describe the queue formation process.

More research effort has been put on modelling the bicycle control dynam-

ics while riding and interacting with other road users, as several microscopic

behavioural models have been developed. Early microscopic cyclist models

made use of modelling paradigms developed for cars, such as Cellular Au-

tomata models, while adjusting their parameters to reflect the lower speeds

of bicycles and their smaller size (Mallikarjuna and Rao 2009; Yao et al. 2009;

Vasic and Ruskin 2012). However, the rules governing the movement between

cells have not been adjusted to represent cycling behaviour. Another exam-

ple is the car-following model that was derived for bicycle traffic by Andresen

et al. (2013). Even though it was calibrated using empirical cyclist data, the

model described single file bicycle flow which is generally not representative

of cyclist movements on cycling infrastructure. In addition to these, mod-

els stemming from research on pedestrian dynamics were developed to model

the microscopic cycling behaviour, such as social force models that determine

the movement of cyclists based on attractive forces towards the desired des-

tination and repulsive forces from obstacles and other traffic users, including

other cyclists (Li et al. 2011; Liang et al. 2012; Huang et al. 2017). Utility-

based models constitute another approach to describe pedestrian dynamics,

but their application to cycling is so far scarce. Only one game theoreti-

cal approach has been applied and was deemed plausible (Gavriilidou et al.

2019b), but it should be extended to improve its behavioural realism, which

is quite cumbersome, due to its complex mathematical derivation.
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We claim that the decisions and actions taken by cyclists while riding and

interacting with other traffic participants and with the infrastructure belong

to the same behavioural level and should be, therefore, modelled together.

We refer to this as operational cycling behaviour level and, since a proper

definition of what it entails is still missing, we define it in this paper. At

the same time we put forward a novel two-layer modelling framework that

can be used to capture the mental and physical processes of operational cy-

cling behaviour. Moreover, this paper proposes for the first time the use

of discrete choice theory to identify and predict microscopic bicycle traffic

flow operations. The third contribution is the application of the proposed

approach to model the behaviour of cyclists when they approach a red traffic

light. Discrete choice models are estimated for both layers based on trajec-

tory data collected in Amsterdam, and describe the queue formation process,

which includes selecting a queuing position and cycling towards it. The es-

timated models are face validated and reveal the factors that play a role in

this process.

The paper is structured as follows. Section 2 defines the cyclist be-

havioural levels and describes the proposed modelling framework. In sec-

tion 3 the proposed mathematical model is explained, followed by its appli-

cation on a dataset described in section 4. The model estimation approach

for each layer is discussed in section 5. In section 6 the results of the best

performing estimated model for each layer are presented, along with simu-

lation results for face validation. Finally, in section 7 conclusions are drawn

and recommendations for future research are made.

4



2. Conceptual modelling framework

The focus of this paper is on modelling operational cycling behaviour.

Since literature describing the behaviour of different modes is not aligned

with respect to what operational behaviour entails, a definition needs to first

be provided. Figure 1 shows the distinction of the behavioural levels used

for car and pedestrian traffic by Michon (1985) and Hoogendoorn and Bovy

(2004), respectively, and the one we propose for cycling traffic.

According to Rasmussen (1983), riding a bicycle is a combination of tasks

executed based on rules to perform manoeuvres and automatic actions for

split-second control of the bicycle. We, therefore, believe that they belong

to the same level, the operational level. We adopt the definitions used for

pedestrians with respect to the strategic and tactical level (Hoogendoorn and

Bovy 2004), whose explanation goes beyond the scope of this paper, and focus

on the operational level. The input to this level is the route from one origin

to a destination. Within this level, two layers are distinguished, following

the concept of a plan-action decision structure proposed by Choudhury et al.

(2010) and applied to model pedestrian walking behaviour by Fukuda et al.

(2014). In the upper layer, cyclists need to choose intermediate destinations

and build up their path within the route while interacting with other traffic

users and with the infrastructure. We call this the ‘operational mental’ layer.

Path choices refer, among other things, to yielding, accepting a gap to merge

or cross, stopping for a red traffic signal, turning, and overtaking. For the

execution of each of these path choices, bicycle control dynamics in the form

of pedalling and steering are necessary. This is the lower operational layer

which we name ‘operational physical’ layer.
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Figure 1: Distinction of behavioural levels for car (left) and pedestrian traffic (middle)

found in literature and for cyclist traffic (right) proposed in this paper.

Given this definition, we build upon the conceptual model of Gavriilidou

et al. (2019a), shown in Figure 2, which describes cycling behaviour at the

operational level, and we fit the two proposed layers within the individual

behaviour, as visualised in Figure 3.

Figure 2: Conceptual model of operational cycling behaviour. Attributes are linked to

individual behaviour. Collectively, they lead to aggregated behaviour. These behaviours

can be observed via microscopic and macroscopic variables (Gavriilidou et al. 2019a).

Five types of path choices have been identified in the operational mental
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layer and each of them is captured by a separate model. The choices corre-

spond to situations when (i) cyclists decide to overtake, but also when they

are approaching an unsignalised intersection intending to cross or merge and

need to decide (ii) whether to accept a gap in the conflicting traffic stream.

Another choice at unsignalised intersections which is at the discretion of the

cyclists is to (iii) yield to oncoming traffic. Moreover, situations at a red

traffic light are covered, where cyclists decide (iv) whether they stop and (v)

where to position themselves in the queue.

We hypothesise that these choices depend on a set of attributes that

need to be taken into account by the models. The attributes displayed in

Figure 3 for the decisions to overtake, yield, and stop at a red traffic light are

the outcome of a stated preference survey we conducted in the Netherlands,

discussed in (Gavriilidou et al. 2019a). They still need to be validated with

field data, but give good insights into the behavioural attributes. The gap

acceptance attributes are taken from (Jiang et al. 2013), even though they

studied interactions between bicycles and motorised traffic. For bicycle-to-

bicycle interactions on designated cycling infrastructure this list needs to be

further investigated. In the application of the framework in this paper, the

attributes describing the queue position choice have been investigated and

the findings are added to the figure.

The operational physical layer consists of the controls that each individ-

ual exerts once a path choice has been made. These controls are steering and

pedalling to determine the cycling direction and speed, respectively. This

layer is described by a single dedicated model covering steering and ped-

alling jointly. By applying these controls the state of each individual cyclist
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Figure 3: List of influential attributes per choice within the individual mental layer

(coloured in red). The choice in the mental layer determines the choices within the oper-

ational physical layer (coloured in blue). The elements that go beyond the scope of this

paper are coloured in gray, while the scope of the model application in this paper is framed

within the green box (built upon (Gavriilidou et al. 2019a)).

(i.e., speed, position and headway) is affected. On an aggregated scale (see

Figure 2) they have an effect on density and other macroscopic characteris-

tics which can, then, result in changes in the choices made by each individual

cyclist, thereby substantiating an interaction between the two layers. This

interaction works in two directions: (i) the choice made in the mental layer

is communicated into the physical layer, and; (ii) the new state of the sys-

tem after applying the decision taken in the physical layer influences the new

choice to be made in the mental layer.
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3. Mathematical modelling

In order to select the mathematical model that best fits our framework,

we should first identify our behavioural assumptions. Those are discussed

in subsection 3.1, followed by the description of the models for each opera-

tional behaviour layer (subsection 3.2 for the operational mental layer and

subsection 3.3 for the operational physical layer).

3.1. Behavioural assumptions

The following assumptions are made regarding the cycling behaviour at

the operational level:

1. Cyclists are effort minimisers, motivated by the general principle of

least effort. This holds for both layers, though the definition of effort

might differ per layer.

2. Decisions in the two layers are made sequentially.

3. The decision made in one layer is input into the other layer.

4. The updating frequency of the mental layer is smaller (i.e., has a longer

horizon) than that of the physical layer.

5. When making a decision, cyclists evaluate a set of alternatives using

specific attributes.

In line with the framework presented in section 2, we propose a two-layer

mathematical model and use discrete choice theory and utility maximisation

to model each layer. This allows the identification of the key attributes of the

decision making process in each layer. It should be noted that discrete choice

models have been used to model the movement of pedestrians (Antonini et al.
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2006) and motorcycles (Shiomi et al. 2012; Lee et al. 2009). In motorcycle

research, a discrete choice model has also been estimated in the context of

queue formation at an intersection (Lee and Wong 2016). One of the main

reasons for the lack of such a cycling model is that discrete choice models

require empirical data to be estimated and there has been a lack of cyclist

trajectory data which we overcome in this paper.

3.2. Modelling the operational mental layer

The use of discrete choice theory to model the operational mental layer

is demonstrated through its application on one of the path choices, namely

the queue position (green box in Figure 3). The description in this sub-

section is qualitative, while the quantitative estimations are introduced in

subsection 5.1.

In the operational mental layer of this application, cyclists need to decide

where to stop in the queue formed upstream of a red traffic light. In our

approach, the two-dimensional space is discretised in diamond-shaped cells,

since we argue that they represent better the space a bicycle occupies than a

rectangular grid. These cells compose the choice set. Each cell is assigned a

(dis)utility based on cell attributes and characteristics of the decision maker

(cyclist). Using discrete choice theory and the utility maximisation prin-

ciple, a model can be estimated from cyclist trajectory data, revealing the

significant attributes and their relative contribution to the overall cell util-

ity. Availability conditions are also taken into account, since cells that are

occupied cannot be re-assigned.

The diamond-shaped grid is visualised in Figure 4, where bicycles al-

ready present in the queue (coloured in black) are standing still and a cyclist
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(coloured in green) approaches and needs to make a decision. Given this

situation, the green cyclist will select a cell that is not yet occupied and

gives the highest utility. In this case the red cell is selected and assigned as

the intended queuing position of the green cyclist. This is the output of the

operational mental layer that is used by the operational physical layer.

Figure 4: Schematic of the operational mental layer during the queuing process at a

(red) traffic light. The green cyclist approaching the traffic light decides in this layer the

intended queuing position (red cell) based on the characteristics of the cells, the availability

conditions and utility maximisation.

3.3. Modelling the operational physical layer

As already mentioned, the intended queuing position is fed as input to

the discrete choice model of the operational physical layer, where the cyclist

decides upon the controls to reach this position. The controls are a combina-

tion of pedalling and steering, which are expressed as changes in speed and

direction relative to the speed and direction, respectively, at the moment the

decision is made. The justification of the choice of speed and direction differ-

ence as controls over the choice of their corresponding absolute values or the

choice of a new position in the two-dimensional space in the next time step

relates to the assumption that cyclists are effort minimisers. This means that
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they choose the relative effort they are willing to exert in each time step and

that goes through changes in pedalling and steering rather than anticipation

of their future position.

The choice alternatives are visualised in the fan-shaped individual-specific

grid in Figure 5. The fan shape is selected because it reflects the angular

movements that characterise cyclist motion. The angular sections capture

the radial directions accessible with appropriate changes in steering. The

number of angular sections and arched zones is only illustrative and should

be determined dependent on the application. In this example, the middle

angular section corresponds to no change in the direction, two sections to

the right correspond to a small and a bigger steering movement towards the

right, and sections to the left steering to the left. The arched zones represent

possible relative speed regimes that can be reached through pedalling or

braking. The arch closest to the bicycle corresponds to speed reduction

(deceleration), the arch furthest away corresponds to an increase in speed

(acceleration) and the middle arch corresponds to a choice of no change in

speed.

Two more aspects are demonstrated in the figure. One is the sequence

of decisions in time within this layer (a lighter shade of grey is given to the

grid for decisions to be made in each future time step). The sequence of

positions resulting from these choices leads the cyclist to the final position

and together forms the cyclist trajectory. The other aspect demonstrated

is that the grid is always aligned with the cycling direction of the cyclist

at the moment the decision is made. This is shown by the rotation of the

grid in each time step, such that the ‘no change in direction’ alternative is
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a continuation of the change in direction that was chosen in the previous

time step. The centre of the grid in each time step corresponds to the new

location of the cyclist, which depends on the time step, the cycling speed

and the choice of change in speed made in the previous step. As the figure

is illustrative and no numerical values for speed and time are assigned, the

distance separating the different grids is only qualitative.

Figure 5: Schematic of the operational physical layer during the queuing process at a traffic

light given the intended queuing position (red cell) provided by the operational mental

layer. A sequence of decisions (blue cells) is made that corresponds to the combination

of angle and speed difference with the highest utility at each time step (grey-scale fans).

The sequence of positions resulting from these choices forms the cyclist trajectory.

At each time step, the cell in the fan with the highest utility is selected and

the position of the cyclist is updated for one time step, when a new decision

is required. It is possible that in between these decision moments there is an

interaction with the operational mental layer if a situation occurs that was

originally not anticipated by the cyclist and necessitates the estimation of a

new intended queuing position (e.g., if another cyclist occupies the originally

intended position).

In any case, the result of this interaction between the two layers and the

decisions made over time is the cyclist trajectory to reach the intended queu-
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ing position. This trajectory together with the final queuing position fully

describe the operational cycling behaviour. A quantitative application of the

proposed framework is presented in section 5, where specific models have

been estimated using field data from Amsterdam, the Netherlands. Prior to

that, the data available for the model identification is described in section 4.

4. Data on queue formation process

This section presents the dataset used for the model estimation and val-

idation. First, both the site and dataset are introduced (subsection 4.1),

followed by a description of the data processing to prepare the dataset to

estimate the models (subsection 4.2).

4.1. Site and dataset description

The dataset used for the model estimation contains cyclist trajectories

that have been extracted from video camera footage at a signalised inter-

section in Amsterdam, the Netherlands (Figure 6(a)). The site consists of

a 2m-wide unidirectional cycle path that is separated on the left from mo-

torised traffic (even though the cycle path itself can be used by scooters)

via a traffic island that has a different surface type but no height difference

and can be used by pedestrians and cyclists who queue. The cycle path is

also separated from the sidewalk by a curb on the right. These areas are

illustrated in Figure 6(b). With two cameras elevated over the cycle path,

top-view video images were recorded during an afternoon. The combined

view of both cameras covers a length of 20m upstream of the stop line at the

traffic light.
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(a) Combined view from front and back camera at the intersection. The

yellow tape on the cycle path marks the overlapping area between the two

cameras.

(b) Study areas of the traffic island, the cycle path and the sidewalk. The

black lines denote the edges of the cycle path and a green button is used to

show the location of the ‘request-green’ button.

Figure 6: Top view and areas of interest at the site.

As the aim of our application is to use the two-layer framework to model

the queue formation process (i.e., choosing a location to queue and cycling

towards it), trajectories of cyclists approaching the traffic light during the

red-light phase are collected. We focus on pure bicycle-to-bicycle interactions

and therefore, only bicycle trajectories are extracted. Red-light phases where
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more than one scooter was present are omitted, as well as phases when there

is interaction with crossing pedestrians. The phases with one scooter are

kept, assuming that one scooter does not have an effect on the results when

considering pure bicycle-bicycle interactions. Only the position it occupies

is tracked, so that it is not available to cyclists that arrive later. This way

the sample of tracked bicycles increases, and the trajectory of the scooter is

ignored.

The last criterion for a red-light phase to be removed from the dataset

is the presence of disturbances, such as pedestrians crossing and creating

conflicts, bicycles joining the queue from another side or even the sidewalk

where they were parked, and cyclists that decided to run the red light even

though they had originally queued, thereby initiating movements within the

queue.

The final dataset consists of 46 red-light phases with 454 cyclists and

18 scooters in total queuing up. It should be noted that cyclists arriving

after the traffic light turned green were not included since their intended

queuing position, if any, was not observed. The transition from video files to

microscopic cyclist trajectories comprises six steps, which were performed as

follows:

1. Decomposition of videos into frames with an average frame rate of 6

frames per second (fps).

2. Manual tracking per frame of the head of each cyclist who approaches

the intersection during a red-light phase until standstill.

3. Height transformation to project the trajectories at the head positions

to the ground.
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4. Orthorectification to correct for the distortion due to the fact that the

cameras were placed at an angle and did not point vertically downwards

to the cycle path, as well as to compensate for the lens distortion.

5. Time conversion from frame number to seconds.

6. Trajectory merging of the two cameras for each cyclist.

For more information about the data collection and the extraction steps,

the reader is directed to the paper by Goñi Ros et al. (2018).

4.2. Data processing

Figure 7 shows the cyclist trajectories, speeds and steering angles of one

red-light phase. The extracted raw trajectories contain noise (‘*’ in Fig. 7),

which necessitates a smoothing process to be applied on the data. The

smoothing is done by means of a moving average with a fixed-length sliding

window across the trajectory data vectors (x: vector of positions in the

horizontal direction, y: vector of positions in the vertical direction, t: vector

of time instances corresponding to each position). The calculation of the

mean is performed for each element of the original vector while centring the

window around the corresponding element. Different sliding window lengths

were compared (see appendix Appendix A). The results only have limited

difference and favour the smoothing of the trajectories over a duration of 6

frames. The smoothed data points are marked by ‘+’ in Figure 7.

Although the average frame rate was 6fps, it was not constant over time,

resulting in data points that are not separated by the same time gap. For our

application, it is crucial to have a consistent time discretisation throughout

all cyclist trajectories as each point corresponds to a moment at which a
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decision was made. These points are derived by taking the instant right

before these homogenised timestamps and projecting the trajectory in (x,y)

using the smoothed speed at that instant. Different time steps were compared

(see appendix Appendix A) and a time step of 1 second was found to be

best at muting the noise. This means that each cyclist is assumed to make a

new decision regarding the steering angle and speed difference every second.

The final data points are marked by ‘o’ in Figure 7.

The trajectories show the path each cyclist followed from the moment

they were detected by the back camera up to their final queuing position.

The values in both axes have been adjusted for the visualisation, such that

the (0,0) point coincides with the location of the ‘request-green’ button, while

in the actual dataset they have positive values that increase in the direction

of cyclist movement. The speed and steering angle are computed between

consecutive data points and are visualised relative to the horizontal distance

that the cyclist has traversed. The horizontal axis of these two graphs has

been offset such that all trajectories end at the same point, which facilitates

the comparison between the original, the smoothed and the final dataset. A

number of observations can be made:

• The trajectories show a good match between the original, the smoothed

and the final dataset.

• The smoothing helps reducing the noise in the speed and steering angle.

• The speed is decreasing throughout the observed trajectory which is

in line with the findings of Jiang et al. (2013) that deceleration occurs

within the 30m upstream of the intersection.
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• The steering adjustments are small at the beginning of the trajectory.

• When the speed is low, the steering adjustments increase and they are

maximum at the end of the trajectories where the speed is the lowest

and the head is swaying more.
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Figure 7: Cyclist trajectories numbered based on their order of arrival (top), speed (bot-

tom left) and steering angle (bottom right) when approaching a red traffic light in the

original dataset, when smoothed with a sliding window length of 6 frames and finally

when homogenised with time step of 1s. In the top figure the point (0,0) is the location

where the stop line meets the curb of the sidewalk, while at the bottom figures the positions

in x have been offset such that they end at the same arbitrary point for all cyclists.

These final trajectory points are used for the model estimation. The

operational mental layer requires only the last point which corresponds to

the queuing position of each cyclist. The operational physical layer takes into

account every point as they have been assumed to correspond to a decision

point. It should be noted that the reason why the operational mental layer
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does not make use of the original dataset is to guarantee the consistency

between the two layers.

5. Model estimation approach

In this section the estimation approach for each layer (subsection 5.1 for

the operational mental layer and subsection 5.2 for the operational physical

layer) is discussed. It includes a justification of the grid choice and selection

of attributes to explain the corresponding behaviour, as well as assumptions

specific to the model estimation.

5.1. Operational mental layer estimation approach

This layer aims to capture the decision making when joining a queue,

where cyclists have to choose their queuing position, as introduced in Fig-

ure 4. The observed queuing positions (i.e., last trajectory point of the

processed dataset when cyclists are at standstill) are visualised in Figure 8,

where the point (0,0) is the location of the ‘request-green’ button and the red

lines indicate the boundaries of the cycle path. As expected, positions next to

the ‘request-green’ button are the most frequently selected. Other positions

at the stop line are also favourable, as well as positions on the traffic island,

especially for cyclists who want to make a left turn at the intersection. As

the queue increases in length, there is a preference for a position next to the

curb of the sidewalk rather than a position in the middle of the cycle path.

These choices can be analysed to identify which attributes have an in-

fluence, and to what extent, on the queuing position choice by estimating a

choice model. The estimation requires the definition of the choice set (5.1.1),
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Figure 8: Observed queuing positions. The point (0,0) is the location where the stop line

meets the curb of the sidewalk (also the location of the ‘request-green’ button). The red

lines indicate the boundaries of the cycle path.

the specification of the utility functions (5.1.2) and the demarcation of the

estimation assumptions (5.1.3).

5.1.1. Choice set definition

The cycle path and surrounding areas (sidewalk and traffic island next

to the cycle path) are discretised using the aforementioned diamond-shaped

grid. The resulting cells correspond to the choice alternatives of a cyclist. As

previously mentioned, this grid better captures the shape of the bicycle (com-

pared to a rectangular grid) and allows for a more realistic representation of

queuing.

Each cell is scaled such that it can fit one cyclist based on the standard

dimensions of 2m length and 70cm handlebar width (CROW 2016). These

dimensions also show a good match with the average observed spacing in the

longitudinal and lateral direction between stopped cyclists in our dataset.

The grid is generated in such a way that there is a cell right next to the
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sidewalk whose middle crosses the stop line. This is because the ‘request-

green’ button is located right next to the stop line so cyclists stop on top of

the line rather than behind it.

The real queuing position is then projected to this grid and assigned to

the cell whose centroid is closest to it. This projection results in the top plot

of Figure 10, which will be explained in the subsection 6.1. The choice set

for each cyclist comprises the cells that are not already occupied by others.

5.1.2. Utility specification

The attributes (cell characteristics) that are hypothesised to capture the

attractiveness (utility) of a cell are the distance to the stop line, the distance

to the edges of the cycle path and the presence of other cyclists in the queue.

Moreover, the behaviour of the first cyclist is hypothesised to be different

from the behaviour of the rest, since the first arriving cyclist needs to stop

next to the ‘request-green’ button to be able to press the button to request

green. For this reason, the attributes related to the distance to the stop line

and the distance to the edges of the cycle path are separately estimated for

the first cyclist and for the rest. Given these hypotheses, a general description

of the specific attributes is first provided, followed by a full list of the detailed

attribute notation and definition.

Regarding the distance to the stop line, cells whose centroid is down-

stream the stop line are differentiated from those that are upstream. This

way the former, i.e. stopping after having crossed the stop line, can be pe-

nalised and avoided as a queuing position.

With respect to the distance to the edges of the cycle path, it is hypoth-

esised that the effect on utility is not symmetrical as the distance increases
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within and outside of the two edges, because being on the cycle path is de-

sirable, while being on the sidewalk is less comfortable due to the presence

of pedestrians and being on the traffic island increases the proximity to mo-

torised traffic. Based on this hypothesis, the area covered in the choice set is

subdivided into four sublanes, namely the sidewalk, the right lane of the cy-

cle path, the left lane and the traffic island. The right edge of the cycle path

is taken as reference for the first two sublanes and the left edge as reference

for the last two.

The presence of other cyclists can be represented in several ways. There-

fore, more than one attribute is defined. One way is the distance to the

nearest cyclist in the queue. Another considers the number of cyclists within

each of the aforementioned sublanes, as the more cyclists stopped within a

sublane, the less attractive the sublane becomes, because cyclists cannot ma-

noeuvre to overtake and would need to join the end of the queue. This end of

the queue may also be seen as an offset of the stop line within each sublane,

i.e. cyclists have a higher utility in stopping closer to the end of the queue.

An attribute is therefore added that considers the distance to the cyclist at

the back of the queue of the sublane.

The full list of attributes for this layer is given below:

• XF [-]: dummy indicating whether the cyclist is the first one arriving.

• Xbutton [-]: dummy to denote if a cell is the cell next to the ‘request-

green’ button (Xbutton = 1).

• Xd2stop [m]: longitudinal distance between the location of the stop line

and the centroid of the considered cell.
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• Xup [-]: dummy indicating whether the considered cell is upstream or

on the stop line.

• Xonside [-]: dummy to denote if a cell is on the sidewalk (Xonside = 1).

• Xonisland [-]: dummy to denote if a cell is on the traffic island (Xonisland =

1).

• Xrightln [-]: dummy to denote if a cell is on the right lane of the cycle

path (Xrightln = 1).

• Xleftln [-]: dummy to denote if a cell is on the left lane of the cycle path

(Xleftln = 1).

• Xd2Redge [m]: absolute lateral distance between the location of the right

edge of the cycle path and the centroid of the considered cell.

• Xd2Ledge [m]: absolute lateral distance between the location of the left

edge of the cycle path and the centroid of the considered cell.

• Xd2nearEucl [m]: Euclidean distance between the centroid of the consid-

ered cell and the one closest to it that is occupied by cyclists already

standing in the queue.

• Xd2nearX [m]: minimum absolute longitudinal distance between the lo-

cation of the centroid of the considered cell and those already occupied

by cyclists standing in the queue.

• Xd2nearY [m]: minimum absolute lateral distance between the location

of the centroid of the considered cell and those already occupied by

cyclists standing in the queue.
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• Xtotal [cyclists]: the total number of cyclists within the sublane of the

considered cell.

• Xd2lastX [m]: longitudinal distance between the last queuing cyclist in

the sublane where the considered cell belongs and the centroid of the

considered cell, if the considered cell is upstream.

In the construction of the systematic part of the utility functions (V ),

interaction terms among these attributes are used in a linear weighted sum-

mation. The weights (coefficients) are denoted by β and are generic for all

alternatives as there is no straightforward way to classify them in nests that

would acquire alternative specific weights. An example utility function of a

cell c (Vc) in a model where only the interaction term between the dummy

XF, the dummy Xup, and the variable Xd2stop is considered, is shown in

Equation 1.

Vc =

βupF ∗XF ∗Xd2stopc ∗Xupc + βupR ∗ (1−XF) ∗Xd2stopc ∗Xupc

+ βdownF ∗XF ∗Xd2stopc ∗ (1−Xupc)

+ βdownR ∗ (1−XF) ∗Xd2stopc ∗ (1−Xupc)

(1)

5.1.3. Estimation assumptions

When estimating a model within this layer, the following assumptions are

made to simplify the estimation process:

1. There is no correlation between the alternatives (Independence of Ir-

relevant Alternatives, IIA property) and therefore, a multinomial logit

model can be used.
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2. Queuing spots are assigned upon the entrance of a cyclist in the camera

vision field, which means that this decision precedes any decisions on

the operational physical layer and that the assignment of spots follows

the order of arrival of cyclists.

3. The assigned queuing spots are not updated over the course of the

cyclist trajectory. This means that the interaction between the two

layers is in this application one-way.

4. Cyclists are assumed to be aware of the spot selected by their prede-

cessors. This is imposed through availability conditions in the logit

model, which remove cells that are already assigned to a cyclist from

the choice set of oncoming cyclists.

These assumptions can later be relaxed, e.g., by considering spatial cor-

relation between the diamond-shaped cells and by allowing the updating of

the decision for the intended queuing position. The spatial correlation should

be considered in future research as cyclists do not see the diamonds on the

cycle path but might apply different discretisation of space in areas combin-

ing several cells. This would require the definition of those areas and the

estimation of a mixed logit model. The decision updating becomes relevant

when unanticipated changes take place, such as a cyclist entering the cycle

path from another direction and occupying the originally desired position.

Another reason to consider updating is when speed differences are large and

overtaking might place. In this case, the first come first serve rule might need

to be replaced by a rule based on cycling speed. Since the dataset does not

contain disturbances of sudden appearing cyclists and there is no information

on desired queuing positions other than the revealed one, these effects are
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righteously ignored.

5.2. Operational physical layer estimation approach

Within this layer, the intended queuing position is known and the cyclist

decides in every time step the changes in pedalling and steering until the

next time step. In order to reach the intended queuing position, a sequence

of time steps, and corresponding decisions, is needed and results in the cyclist

trajectory.

The estimation requires the definition of the choice set (5.2.1), the speci-

fication of the utility functions (5.2.2) and the demarcation of the estimation

assumptions (5.2.3).

5.2.1. Choice set definition

In the physical layer, cyclists decide whether they will change their speed

and direction at the current time step. By looking at the combinations that

occur in the processed dataset the discretisation of the fan-shaped grid of

Figure 5 can be motivated.

The observed choices are visualised by the blue dots in Figure 9. It shows

that most observations are concentrated around zero in the angle difference

and more specifically in the boundary of [-15,15] degrees. Larger changes in

the steering angle only take place when there is no, or very small, change

in the speed (∆Speed between [-2,2] km/h). From further inspection of the

dataset, it is noted that this coincides with very low speeds. Moreover,

regarding the speed changes, most observations are negative, which is in line

with the findings of section 4 that cyclists are already decelerating when

entering the observed area.
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Following these insights, for our application the fan-shaped choice grid is

defined to range from speed changes of -12 km/h to +8 km/h with a step

of 2 km/h, and the steering angle changes included are {-45,-30,-15,-10,-

5,0,5,10,15,30,45} degrees. The observed choices are then assigned to their

closest grid point and choices that would result in a negative cycling speed

are made unavailable.
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Figure 9: Observed choices of changes in steering angle and speed.

5.2.2. Utility specification

Based on the observation that the distance to other cyclists and the curb

play a role in the decision for the queuing position, we hypothesise that they

also affect the path that is chosen to reach that position. In this decision

layer, the position of the stop line is less relevant but what might have an

effect is the distance to the intended queuing position. When considering
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this distance, one can differentiate between choices that result in passing the

intended queuing position and choices that do not. This way the former can

be penalised and avoided towards the end of the trajectory. Additionally, it

is hypothesised that the behaviour towards moving cyclists differs from the

behaviour against stopped cyclists or obstacles. This discrepancy is captured

by the distance to the nearest bicycle and the difference in cycling speed,

which is calculated separately for moving and for stationary bicycles. The

full list of attributes is given below:

• Xd2dest [m]: Euclidean distance between the destination (i.e., the in-

tended queuing position) and the location to be reached within a time

step if the considered change in speed and angle is chosen.

• Xpass [-]: dummy indicating whether in the next step, given the consid-

ered change in speed and angle, the cyclist will have traversed a longer

longitudinal distance than needed to reach the intended queuing posi-

tion.

• Xd2Mov [m]: minimum Euclidean distance between the anticipated po-

sitions of the cyclists in front who are moving, and the location to be

reached within a time step if the considered change in speed and angle

is chosen.

• Xd2Stop [m]: minimum Euclidean distance between the anticipated po-

sitions of the cyclists in front who are stopped, and the location to be

reached within a time step if the considered change in speed and angle

is chosen.
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• XspdMov [m/s]: maximum speed difference between the considered speed

and that of cyclists in front who are moving.

• XspdStop [m/s]: speed to be reached if the considered change in speed

is chosen and if there are cyclists in front who are stopped. Since the

stopped cyclists have no speed, this attribute reflects the disutility of

having the considered speed when others have stopped.

• Xstep [-]: dummy indicating whether in the next step the cyclist will

need to get on or off the curb of the sidewalk.

• Xoffpath [-]: dummy indicating whether in the next step the cyclist will

need to get on or off a the traffic island.

These attributes are used in a linear weighted summation to construct

the systematic part of the utility functions (V ), with the exception of the

distance to the destination, which is covered by an interaction term between

the dummy Xpass and the Xd2dest. An example utility function of alternative

a (Va) in a model where only this interaction term is considered, is shown in

Equation 2.

Va = βover ∗Xd2desta ∗Xpassa + βunder ∗Xd2desta ∗ (1−Xpassa) (2)

5.2.3. Estimation assumptions

When estimating a model within this layer, we make the following as-

sumptions:

• Changes in cycling speed and direction are decided simultaneously.

• Cyclists do not move backwards and so no negative speeds are allowed.
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• Decisions made by the same person at different time steps are indepen-

dent. As no serial correlation is assumed, a multinomial logit model is

to be estimated.

• When other cyclists are present, there is full knowledge of their current

speed and direction.

• Zero acceleration is assumed for the other cyclists and so their antic-

ipated position within one time step can be estimated based on their

current cycling speeds.

• There is no memory from previous time steps. Only cyclists within the

vision field at the current position affect the decision to be made.

• The vision field contains everything that is in front of or at least at the

same longitudinal position as the cyclist making a decision.

The pitfall of ignoring the serial correlation is that bias of an individual

towards a certain type of behaviour is overlooked, and the risk of inconsistent

behaviour between time steps is introduced. Even though it decreases the

model realism, we argue that it is an acceptable simplification to get first

insights into the operational physical layer. If this assumption is relaxed and

panel data are considered, a mixed logit model should be estimated. In terms

of anticipation, the assumption of zero acceleration is reasonable as it cannot

be expected that the intentions of others are known. The full knowledge

of the speed and position assumption could be relaxed by considering some

noise rather than the exact measurements. Last but not least, future research

should introduce a memory function to improve the anticipatory skills of

cyclists and increase the model realism.
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6. Results and discussion

This section provides and discusses the model estimation results for each

layer. Models have been estimated using Python Biogeme (Bierlaire 2016).

The best performing model is found based on goodness of fit measures, i.e.

ρ̄2, AIC and BIC criteria, and is presented in subsection 6.1 for the opera-

tional mental layer and in subsection 6.2 for the operational physical layer.

Both models are face validated by means of simulation with Biogeme. The

simulation results are discussed in subsection 6.3.

6.1. Operational mental layer model

The estimated values of the coefficients of the best performing model are

shown in Table 1, along with their robust statistics. The model consists of

12 parameters, one third of which captures the behaviour of the first arriving

cyclist. These four attributes are differently weighed from the correspond-

ing ones for the rest of the cyclists, which confirms the hypothesis made in

subsection 5.1.2 that the behaviour of the first cyclist is different.

The cell next to the ‘request-green’ button has a positive coefficient

(βbuttonF = 1.24) for the first cyclist, while it does not affect the utility

for the rest of the cyclists. Moreover, the utility decreases the further the

queuing position is from the stop line. This disutility is greater in the case

of crossing the stop line and stopping further downstream (βdownF = −2.13)

compared to stopping upstream of the stop line (βupF = −1.18). Regard-

ing the distance to the edges, as most cyclists stop within the cycle path,

the only attribute with sufficient observations to estimate a coefficient is the

distance from the curb of the sidewalk to a position within the right lane of
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the cycle path. This coefficient has a positive value (βrightlnF = 4.91), which

shows that first arriving cyclists prefer to be close to the middle of the cycle

path (i.e. at the end of the right lane). This is reasonable since it serves the

purpose of stopping next to the ‘request-green’ button.

For the rest of the cyclists, three coefficients are estimated concerning the

distance to the edges. There is an increase in utility by being on the right lane

(βrightlnR = 1.21), and a decrease by being on the sidewalk (βonsideR = −6.46)

and on the traffic island (βonislandR = −1.85). The difference in magnitude

of the inflicted disutility can be explained by the fact that the sidewalk is

primarily intended for use by pedestrians, while the traffic island can be used

by cyclists, especially if they want to turn left at the intersection. Also for

these cyclists, there is a disutility the further downstream the queuing posi-

tion is from the stop line (βdownR = −1.29). The coefficient of the attribute

describing the distance to the stop line for cells upstream the stop line is pos-

itive (βupR = 0.30), which might seem counter-intuitive, but can be explained

by its negative correlation with the distance to the nearest bicycle, as well

as with the distance to the last stopped cyclist within a sublane. These two

have negative coefficients βd2nearX = −0.53 and βd2lastX = −0.22, respectively,

which indicates that cyclists want to stay close to each other in the queue in

the longitudinal direction. Since the last stopped cyclist within a sublane is

considered as an offset of the stop line, it is reasonable that the coefficient

is negative and the arriving cyclist wants to stay as close as possible to the

adjusted stop line. The last attribute of the model captures the effect of

the number of queuing cyclists within a sublane and expected has a negative

coefficient (βtotal = −0.39). This shows that the more cyclists stopped within
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a sublane, the lower the utility of that sublane and therefore, it is more likely

that the arriving cyclist will choose to stop in another sublane.

Table 1: Estimated model parameters for the operational mental layer.

Coefficient Coefficient Robust Robust Robust

name value standard error t-test p-value

βbuttonF 1.24 0.37 3.31 0.00

βupF -1.18 0.26 -4.58 0.00

βdownF -2.13 0.55 -3.90 0.00

βrightlnF 4.91 0.75 6.57 0.00

βupR 0.30 0.03 9.70 0.00

βdownR -1.29 0.31 -4.14 0.00

βrightlnR 1.21 0.21 5.89 0.00

βonislandR -1.85 0.23 -8.05 0.00

βonsideR -6.46 1.04 -6.19 0.00

βd2nearX -0.53 0.05 -10.90 0.00

βtotal -0.39 0.06 -6.43 0.00

βd2lastX -0.22 0.04 -6.30 0.00

6.2. Operational physical layer model

The estimated values of the coefficients of the best performing model are

provided in Table 2, along with their robust statistics. All values are statis-

tically significant, which confirms that the hypothesised attributes influence

the choices made with respect to changes in speed and cycling direction.

Moreover, the coefficient values prove that the behaviour towards stopped

34



and moving cyclists is indeed different, especially when considering the dis-

tance. There is a higher disutility when getting closer to a stopped cyclist

than to a moving one. This can be explained by the fact that the moving

cyclist continues to change position, while stopped cyclists form a (static)

obstacle when the intended queuing position is not adjacent to them.

With respect to the distance to the intended queuing position, there is

a penalty for changes in speed and angle that increase this distance. The

penalty is bigger when the position is passed, which is reasonable. Cyclists

should not be willing to cycle further than their intended queuing position.

Another valuable insight is the disutility of having to go on and off the

cycle path at consecutive time steps. As expected, the disutility is much

higher on the side of the sidewalk due to the presence of the curb, while on

the side of the traffic island the surfaces are on the same level and only the

surface type changes.

6.3. Face validation using simulation

Using the estimated parameters for each model, a simulation is performed,

where a prediction is made for each observation in the dataset. This means

that the attributes and availability conditions describing the situation at

which every individual made a decision remain the same. The simulation

uses the estimated model to compute all utility functions and the probabil-

ities of each alternative. The individual’s probabilities of an alternative are

aggregated by averaging over all individuals to whom the corresponding al-

ternative was available. The true (observed) choices can then be compared

with the predicted (simulated) ones.

The comparison for the operational mental layer is visualised in Figure 10,
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Table 2: Estimated model parameters for the operational physical layer.

Coefficient Coefficient Robust Robust Robust

name value standard error t-test p-value

βunder -1.01 0.05 -19.61 0.00

βover -2.04 0.10 -20.75 0.00

βd2Mov -0.40 0.04 -9.06 0.00

βd2Stop -0.24 0.05 -5.24 0.00

βspdMov -0.93 0.06 -15.73 0.00

βspdStop -0.61 0.06 -10.77 0.00

βstep -2.46 0.20 -12.44 0.00

βoffpath -0.83 0.09 -9.08 0.00

where the white dot at point (0,0) is the location of the ‘request-green’ but-

ton and the red lines indicate the boundaries of the cycle path. The observed

choices show a preference for the right lane of the cycle path, which is well

reproduced in the simulation results. Moreover, the choice of the first ar-

riving cyclists to stop next to the ‘request-green’ button is very accurately

replicated by the simulation. Another observation is that cyclists at the front

of the queue are likely to stop at any lateral position on the cycle path or on

the traffic island, while the longer the queue grows, the most preferable the

right lane becomes, possibly due to the presence of the curb so the cyclists

can rest their foot. This trend is also captured by the model; the front cells

on the left lane have a higher probability than those upstream and the proba-

bility decreases with the longitudinal distance. These simulation results are,

therefore, considered a good representation of reality.
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Figure 10: Probability of a diamond cell being selected as the queuing position in the

observed (top) and the simulated (bottom) dataset. The white dot, point (0,0), is the

location where the stop line meets the curb of the sidewalk (also the location of the

‘request-green’ button). The red lines indicate the boundaries of the cycle path.

The comparison for the operational physical layer is visualised in Fig-

ure 11. The pattern displayed in the two fans is similar with observed choices

having less variance and thus higher probability values for no change in di-

rection and slight deceleration, while the simulated choices are more scat-

tered. The trend of speed reductions and small changes in the steering angle

is captured well by the simulation. In order to present these results more

quantitatively in a single assessment value, the positions in x and y that re-

sult from the choices of speed and angle change are calculated. The absolute

percentage error made in each observation i can be computed per direction
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(i.e., x and y) using the formulas

xerrori =
|xsimi

− xobsi |
xobsi

yerrori =
|ysimi

− yobsi|
yobsi

(3)

The mean absolute percentage error (MAPE) in the longitudinal x direc-

tion is 4.37% and in the lateral y direction 1.79%. These values are considered

low and prove that the model generates plausible results.

Figure 11: Probability of a combination of change in steering angle and speed to be selected

in the observed (left) and the simulated (right) dataset.

7. Conclusions and recommendations

In this paper, different behavioural levels for cyclists have been defined

for the first time, while focusing on the operational level. We hypothesised

that this level consists of two intertwined processes, namely the path choices

made within a route and the bicycle control dynamics through changes in

38



pedalling and steering. We put forward a novel two-layer framework to cap-

ture the tasks within the mental and physical layers of the operational level.

Discrete choice theory was proposed to model each layer and the plausibility

of the framework was demonstrated through an application. Using cyclist

trajectory data from a signalised intersection in Amsterdam, the Nether-

lands, models were estimated and face validated. The models describe the

behaviour of cyclists when approaching and queuing at a red traffic light,

including selecting a queuing position (operational mental layer) and cycling

towards it (operational physical layer). The models reveal the attributes that

influence queuing behaviour.

For this specific application of the modelling framework, we found that

when deciding on a queuing position, the first arriving cyclist behaves dif-

ferently than the rest as there is the need to stop next to the ‘request-green’

button and press it. Additionally, cyclists prefer to stop on the right lane of

the cycle path and upstream of the stop line. Positions on the sidewalk are

less favourable than those on the traffic island, because the former are hin-

dered by pedestrians on the sidewalk, while the latter can be attractive for

left-turning cyclists. Furthermore, cyclists prefer to stop close to each other,

but once a sublane becomes crowded, they prefer to go to another sublane.

This disutility is traded off with their desire to stay on the right lane and

once the front stopping positions are occupied, there is a trend to stop closer

to the curb of the sidewalk rather than build up all sublanes equally. These

results are intuitive because cyclists want to use the curb as a resting position

when stopped and as an assist when accelerating. Once this intended queuing

position is decided upon, the cyclists need to create a trajectory towards it,
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which they do through changes in their speed and steering angle at regular

time intervals with the aim of reaching that position. Based on our estima-

tion results, cyclists behave differently towards stopped and moving cyclists,

which is reasonable since stopped cyclists form an obstacle on the way and

an increase of the speed difference might lead to unsafe situations that are

preferably avoided. Moreover, they are attracted by their intended queuing

position and deter from passing it. They additionally deter from changing

surface type and, even more strongly, from stepping on and off curbs.

These findings provide valuable insights for the design of cycling infras-

tructure. One way to avoid long sparse queues would be to provide an ele-

vated curb on both sides so that cyclists can use it as a resting spot. This

elevation is also advisable to prevent cyclists from leaving the cycle path

and interfering with pedestrian traffic. When it is not possible, changing the

surface type can be an alternative measure. The reason why sparse queues

should be avoided is the fact that dense queues have shorter discharge times

(Goñi Ros et al. 2018), so their green phase and the cycle time of the inter-

section can be reduced.

The simulation results reproduce patterns observed in the empirical data

and thereby demonstrate the face validity of the models. However, there is

room for improvement, which could be sought in including other attributes,

such as the time of day or weather conditions, or adding personal charac-

teristics such as age, gender, bicycle type and the riding direction after the

light is green. Moreover, heterogeneity between cyclists could be considered

by drawing the coefficients from a distribution rather than fixing them to

one value for everyone. Furthermore, the assumption with respect to the
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independence of alternatives could be lifted and models that allow for corre-

lation of alternatives, such as cross-nested or mixed-logit, could be estimated.

Other modelling assumptions could be tested in future research as well, such

as the vision field and the cyclists in it that are taken into account, or the

anticipation and memory skills of the cyclists.

Apart from improving the currently estimated models, a future research

direction is their adjustment to enable the communication of the two layers

and potentially updating the intended queuing position decision. Addition-

ally, the models could be validated on other intersections and extended for

other datasets where scooters and pedestrians are present so that their effect

is captured as well.

Last but not least, the generalisability of the proposed approach should

be substantiated by estimating models for other choice situations in the con-

ceptual framework. These models can then be used in microsimulations and

to update the model attributes in the framework. A challenge in this process

has been the shortage of cyclist trajectory data which we will tackle in fu-

ture work thanks to the dataset collected through our controlled large-scale

cycling experiment (Gavriilidou et al. 2019a).
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Appendix A. Data smoothing

In this appendix, the results of smoothing with different sliding window

lengths are presented, as well as of the homogenisation with different time

steps. The original, smoothed and final data points are displayed in the plots

of Figure A.12 for the cyclist trajectories, Figure A.13 for the cycling speed

and Figure A.14 for the steering angle.

Sliding window lengths, denoted by k, of 3 and 6 are compared, which

means that every data point is replaced by the mean value of its 3 or 6

surrounding frames. The values are selected based on the average frame

rate of 6fps, which means that frames of 0.5 or 1 second are used for the

smoothing. The only difference that can be detected in the plots is in the

region of -9m in the x direction where the two cameras overlap. In the

original dataset there seems to be a jump from the back camera to the front,
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which is smoothed with this process. The results with k = 6 convert this

jump to an almost continuous trajectory and are therefore favourable.

Regarding the time step, denoted by dt, values of 0.5 and 1 second are

compared, as they are considered to be reasonable time intervals for a new

decision to be made. Smaller values would coincide with the frame rate,

while larger ones would lead to very few points per trajectory as the average

trajectory duration is 7 seconds. The difference in this comparison can be

observed in the plots for the speed and the angle where the larger dt is shown

to be better at muting the noise in the dataset which is introduced due to

the manual tracking. For this reason, the time step is chosen at 1 second.
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Figure A.12: Cyclist trajectories during a red light phase in the original dataset, when

smoothed with different sliding window lengths (top: k = 3 and bottom: k = 6) and

finally when homogenised with different time steps (left: dt = 0.5s and right: dt = 1s).

The point (0,0) is the location where the stop line meets the curb of the sidewalk.
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Figure A.13: Cyclist speed when approaching a red traffic light in the original dataset,

when smoothed with different sliding window lengths (top: k = 3 and bottom: k = 6) and

finally when homogenised with different time steps (left: dt = 0.5s and right: dt = 1s).

The positions in x have been offset such that they end at the same point for all cyclists.
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Figure A.14: Cyclist steering angle when approaching a red traffic light in the original

dataset, when smoothed with different sliding window lengths (top: k = 3 and bottom:

k = 6) and finally when homogenised with different time steps (left: dt = 0.5s and right:

dt = 1s). The positions in x have been offset such that they end at the same point for all

cyclists.
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