
Optical Flow Based State Estimation
for an Indoor Micro Aerial Vehicle

M. J. Verveld
August 17, 2009

F
ac

u
lt
y

of
A

er
os

p
ac

e
E

n
gi

n
ee

ri
n
g





Optical Flow Based State Estimation
for an Indoor Micro Aerial Vehicle

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

M. J. Verveld

August 17, 2009

Faculty of Aerospace Engineering · Delft University of Technology



Delft University of Technology

Copyright c© M. J. Verveld
All rights reserved.



Delft University of Technology

Department of

Control and Simulation

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance a thesis entitled “Optical Flow Based State Esti-
mation for an Indoor Micro Aerial Vehicle” by M. J. Verveld in partial fulfillment
of the requirements for the degree of Master of Science.

Dated: August 17, 2009

Readers:
prof.dr.ir. J. A. Mulder

dr. Q. P. Chu

ir. C. de Wagter

ir. J. H. Breeman





Acknowledgements

The idea for this thesis work has developed during my internship at Georgia Tech where
I experienced real world UAV engineering and the challenges which arise when translating
ideas into hardware. Indoor autonomous UAV flight is the next big challenge in this field and
a presentation by dr. R. W. Beard of Brigham Young University showed the use of optical
flow (OF) sensors to estimate distances to obstacles in order to avoid them. After my return
to Delft I decided to use those OF sensors for estimating the state of an indoor micro aerial
vehicle (MAV).
I would like to thank prof.dr.ir. J. A. Mulder and dr. Q. P. Chu for accepting this idea as my
MSc. thesis assignment.
I also want to thank dr. Q. P. Chu for his advise along the way, insightful discussions and
suggestions for subjects which I had not yet considered. This has really deepened my insight
and knowledge.
I want to thank Christophe de Wagter for his design of the sensor board and help with
building and testing it. He has pointed out possible pitfalls and was there with advice when
the idea for the thesis took shape. His extensive self-taught knowledge of electronics has
inspired me and I have learnt a lot from him.
A big thank you to Wiebe, Armin, Menno Wierema and René Lagarde. They were always
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Nomenclature

Greek Symbols
α field of view (fov) angle
Γ = ∂f

∂u , input mapping matrix
γ Observation sigma point vector
δα Smallest measurable angular displacement
δΩ Smallest measurable OF increment
�δ Displacement vector from center of gravity (CoG)
ε Controller error
Θ Elevation angle, in spherical coordinates
θ Pitch angle
μ (O) Distance to rank deficiency of O
σi Singular values of a matrix
σ Standard deviation, only appears without numeral subscript
Φ Discrete state transition matrix
ϕ Roll angle
χ Sigma point vector of the unscented transform
Ψ Azimuth angle, in spherical coordinates
ψ Yaw angle
ωn Natural frequency
ωs Sample frequency
ΩXi Optical flow component of sensor i in direction X
�Ω Optical flow vector field (three dimensional)
�ω Rotational rate vector
�Ω∗ Optical flow vector field (two dimensional projection)

Latin Symbols
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viii Nomenclature

A LTI system matrix
a Acceleration (scalar)
Ax Specific force component along the body X-axis
Ay Specific force component along the body Y -axis
Az Specific force component along the body Z-axis
B LTI system matrix
B Image size
b Lens image distance
CO Observability condition number
C LTI system matrix
C Damper coefficient
D LTI system matrix
d Distance
d circle of confusion (CoC) diameter
DCM Direction Cosine Matrix
dts Sampling timestep
�f (�x, �u) Dynamics equations
F Jacobian of the dynamics
f Lens focal length
fs Specific force
g Gravitational acceleration (scalar)
�h (�x) Observation equations
H Jacobian of the observations
Ix Moment of inertia about the body X-axis
Iy Moment of inertia about the body Y -axis
Iz Moment of inertia about the body Z-axis
Jxz =

∫
xz dm, product of inertia

K Observer gain matrix, or Kalman gain matrix in the stochastic system case
K Spring coefficient
L The input space, generally ⊆ R

m

L Lift force along the body Z-axis
Lf (g) = ∂g

∂�x
�f , Lie derivative of g with respect to �f

Mx Component of the moment about the body X-axis
My Component of the moment about the body Y -axis
Mz Component of the moment about the body Z-axis
M The state space, generally ⊆ R

n

m Mass
n Viewing direction vector of unit length
n Dimension of the state vector
O Observability matrix
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Nomenclature ix

P Error covariance matrix
p Component of �ω along the body X-axis
Q Covariance matrix of w (k)
q Component of �ω along the body Y -axis
R The set of all real numbers
R Covariance matrix of v (k)
r Component of �ω along the body Z-axis
S Cross covariance matrix of v (k) and w (k)
T Thrust force along the body X-axis
t Time
�u System input vector with dimension m
u Component of V along the body X-axis
V Velocity vector
v Component of V along the body Y -axis
v Lens subject distance
v (k) Discrete measurement noise sequence
W = mg, Weight
w Component of V along the body Z-axis
w (k) Discrete process noise sequence
x̄ Mean state vector
x̂ Estimated state vector
�x System state vector with dimension n
X Component of the total aerodynamic force along the body X-axis
�y System output vector with dimension p (deterministic)
Y Component of the total aerodynamic force along the body Y -axis
Z The set of all integers
�z Observations vector (stochastic)
Z Component of the total aerodynamic force along the body Z-axis

Subscripts
body Vector quantity is expressed in the body frame of reference

e→b Denotes transformation from e for earth to b for body reference frame. May also
include s for sensor frame

earth Vector quantity is expressed in the earth frame of reference

sensor Vector quantity is expressed in the sensor frame of reference

Superscripts
1 Used to denote that the quantity is only the first term of a complete definition
T Transpose of a matrix
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Acronyms

ADC analog-to-digital converter

ASTI Aerospace Software and Technologies Institute

BWB blended wing body

CNC computer numerical control

CoC circle of confusion

CoG center of gravity

cpi counts per inch

CS Chip Select

DC direct current

DCM direction cosine matrix

DLR dorsal light response

dof depth of field

DSP digital signal processor

EKF Extended Kalman filter

EMAV European Micro Aerial Vehicle Conference and Flight Competition

EMD elementary motion detector

EML Embedded Matlab

EoM equations of motion

fps frames per second
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xii Acronyms

fov field of view

GPS Global Positioning System

HKF Hybrid Kalman Filter

IARC International Aerial Robotics Competition

I2C Inter-Integrated Circuit Bus

IC Integrated Circuit

IEKF Iterated Extended Kalman filter

IMU inertial measurement unit

I/O Input/Output

ISP In-System Programming

LTI linear time invariant

MAV micro aerial vehicle

μC microcontroller

MEMS Micro-Electro-Mechanical Systems

MISO Master in Slave out

MMSE minimum mean squared error

MOSI Master out Slave in

MSD mean squared difference

MSE mean squared error

OF optical flow

OMR Opto-Motor Response

PWM Pulse Width Modulation

RISC Reduced Instruction Set Computer

RK4 4th order Runge-Kutta

SCK Serial Clock

SLAM Simultaneous Localization And Mapping

SPI Serial Peripheral Interface Bus

UART Universal Asynchronous Receiver/Transmitter

UAV unmanned aerial vehicle

UKF Unscented Kalman filter

UT Unscented Transform
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Chapter 1

Introduction

This introductory chapter discusses the motivation for the work of this thesis, it presents an
approach based on literature research and it defines the goal of the thesis.

1-1 Background

Right from the beginning, aeronautical engineering has strived towards faster, larger or higher-
reaching aircraft. Only recently has another research path been ventured upon. During the
past decade, there has been an increasing research effort to develop aircraft that are as
small as possible. At first, there was a military need for aircraft without a pilot onboard.
These unmanned aerial vehicles (UAVs) have since proven themselves as highly successful in
a growing range of missions. An increasing number of civilian applications are emerging as
well. The common elements found in unmanned aerial vehicle (UAV) applications are Dull,
Dangerous and Dirty (DDD). Although a typical military acronym, it is applicable to the
civilian market as well.
As technological advances in electronics have allowed critical onboard systems to become
ever smaller and lighter, a branch of UAVs has emerged which is designed for applications
where small size is a driving requirement. The term adopted for these systems is micro aerial
vehicle (MAV). One particular mission environment requiring small size, is the interior of
buildings.
This thesis work is motivated by the specific challenges that this mission environment poses.
Possible application areas include surveillance missions in hazardous situations such as fires
or pollution accidents and intelligence gathering. In such situations sending in humans may
not be possible due to hazards or risk of detection. A flying vehicle which can navigate the
scene would give firefighters or special forces a valuable tool to assess the situation and to
look for valuable information or the location of victims.
To encourage research and development, a number of design competitions and conferences are
being held worldwide on a regular basis. Two important ones are the European Micro Aerial
Vehicle Conference and Flight Competition (EMAV) and the International Aerial Robotics
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2 Introduction

Competition (IARC). Both include an indoor flight competition with an emphasis on precision
navigation and autonomy. As an example of what is required for a practical application, the
challenge posed by the IARC combines outdoor and indoor parts in a fully autonomous
mission:

“The 5th [and current] Mission requires a fully autonomous aerial subvehicle -
launched from a ”mother ship” - to penetrate a building and negotiate the more
complex interior space containing hallways, small rooms, obstacles, and dead ends
in order to search for a designated target without the aid of global-positioning nav-
igational aids, and relay pictures back to a monitoring station some distance from
the building. — The 5th Mission will continue to adhere to the Competition’s 18-
year practice of posing tasks that cannot be completed with current technology and
skills. As with previous missions, nothing within the World military or industrial
arsenal of robots will be able to complete the proposed mission at the time the
guidelines are released.”, (IARC, 2009).

(a) MIT’s quadrotor (b) Georgia Tech’s coaxial rotor (c) Embry-Riddle’s monoblade

Figure 1-1: Examples of IARC 2009 aircraft designs

Most entries into this competition have approached the indoor aircraft problem with a quadro-
tor design, such as MIT’s in Figure 1-1 a, while Georgia Tech has a coaxial rotorcraft, Fig-
ure 1-1 b, and Embry-Riddle Aeronautical University’s solution is a more exotic monoblade
design, Figure 1-1 c.

Another category which is not represented in the IARC, is the flapping wing or ornithopter
design. An example of this approach is the Delfly from ASTI in Delft, Figure 1-2. This team
is participating in the EMAV events.
Looking at these competitions and the designs which the participants have produced gives an
idea of the direction in which future real-world applications may go. It is still an experimental
and fast developing field and research and experience will have to show what the best solutions
are and which applications MAVs will ultimately be most useful for.

1-2 Problem Statement

The examples in the previous section show that there exist several aircraft design approaches
which are capable of flying in the indoor environment. The next design problem to meet

M. J. Verveld M.Sc. Thesis



1-2 Problem Statement 3

Figure 1-2: ASTI’s DelFly I

(a) Accelerometers
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(b) Gyroscopes

Figure 1-3: Inertial sensor technologies and their applications, from (Schmidt, 2009)

mission requirements is to make a given platform autonomous. This means that it must be
capable of stabilising itself in all degrees of freedom and on top of that have a way of navi-
gating and exploring a building with unknown geometry.
The specific problem posed by building interiors with respect to aircraft control is that the
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4 Introduction

vehicle is enclosed in all directions. This limits not only the freedom of movement, but also
the reception of positioning signals such as the Global Positioning System (GPS). The earth’s
magnetic field is distorted in many buildings as well. This limits the usefulness of magnetome-
ters which are frequently used to control attitude. These factors mean that a conventional
avionics suite consisting of inertial measurement unit (IMU), GPS and a 3-axis magnetometer
will not work here.
The only component which is unaffected by the environment is the IMU. The accelerome-
ters and gyroscopes making up the IMU of an MAV are generally Micro-Electro-Mechanical
Systems (MEMS). Due to the size reduction and mass-producibility of these silicon-based
sensors, they are the most viable if not the only option fitting within the extremely tight
weight and size budget of MAVs. (Barbour, 2009) notes that the downside of MEMS is that,
as size decreases, sensitivity decreases and noise increases. Also, the temperature dependency
in the Young’s modulus of silicon is ∼ 100 ppm/◦C, which significantly reduces scale factor
stability. At present, the best attainable accuracy for all-MEMS IMUs is limited by the gyro
performance, which is at around 10 – 30 ◦/h bias stability, while accelerometer performance
is at about 10 μg bias stability, see Figure 1-3. Note however, that this is the high-end perfor-
mance limit and most commercially available MEMS devices are several orders of magnitude
less accurate. This means performance is strongly dependent on budget and university re-
search generally has to cope with far lower accuracies.
Integrating the signals from these sensors to velocities or even position and attitude angles di-
rectly would yield a quickly diverging solution, therefore MEMS IMUs will require either GPS
to calibrate the solution using e.g. a Kalman filter, or “the integration of [other] augmentation
sensors in GPS-denied environments”, (Barbour, 2009).

1-3 A biology-inspired approach

One type of flying object that is commonly seen to successfully navigate buildings, is of
course the insect. These small organisms have been optimized for flying in complex, dense
environments through millions of years of evolution. Section 1-3-1 shows that the main
instrument exploited by insects to achieve this, is optical flow (OF). Section 1-3-2 then looks
at some OF based control strategies and a comparison of nature with technology.

1-3-1 Sense Perception in Insect Flight

Flying insects are capable of avoiding obstacles and navigating through unpredictable
environments without any need for direct distance sensing such as sonar or laser range-
finders, (Aubépart & Franceschini, 2007). They depend on OF sensing processes for these
capabilities. Attitude stabilisation is achieved through the halteres, which act as gyroscopic
sensors, (Zufferey & Floreano, 2005), and the dorsal light response (DLR), the tendency
to align with the up-down gradient of light intensity which is present in most daylight
environments, (Neumann & Bulthoff, 2001).

OF is the angular speed at which any contrasting objects move past the eye. For several
decades, coherent retinal image-shifts induced during locomotion have been considered a rich
source of information about the momentary self-motion, (Krapp & Hengstenberg, 1996). The
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local optical flow �Ω in viewing direction n (unit length) experienced by an observer moving
at velocity V and rotational rate �ω in a stationary environment is given by Eq. (1-1) where
d is the distance to the object seen in direction n, (Neumann & Bulthoff, 2001). �Ω can be
evaluated across the entire field of view (fov) with spherical coordinates Ψ for azimuth and
Θ for elevation, resulting in a three dimensional vector field, the OF-field. Note that �Ω is
orthogonal to the viewing direction n. The observed OF field is a projection of �Ω onto a
sensor surface.

�Ω (n (Ψ,Θ)) =
V − (

VT n
)
n

d (n)
+ �ω × n (1-1)

(Aubépart & Franceschini, 2007) state that in flying insects, local OF is sensed by an elemen-
tary motion detector (EMD) neuron. The EMD takes input from at least two photorecep-
tors. It is sensitive to a particular OF direction. There exist two classes of models for these:
intensity-based schemes (correlation techniques and gradient methods) and token-matching
schemes. The electronic optical flow sensors (the ADNS-5030 (Avago, 2008)) used in this
work are of the second kind.
The huge fov of the insect’s compound eyes is mapped to a layer of EMDs. However, dif-
ferent kinds of self-motion may induce the same excitation in an EMD, because locally the
corresponding optical flow fields may have the same orientation and magnitude. To extract
information for flight control, a set of integrating neurons is wired to the EMDs. Each inte-
grating neuron is sensitive to the input of a subset of EMDs corresponding to an OF pattern
associated with a particular self-motion component. The firing of such an integrating neuron
may then trigger for example a saccadic turn to avoid an obstacle or affect the beat frequency
of the wings to adjust the perceived ground speed. (Franz, Chahl & Krapp, 2004) have inves-
tigated the capabilities of this circuitry by building an artificial egomotion estimator which
emulates the insect neural structure. They report accurate and robust estimation of rota-
tional rates and ”reasonable” quality translation estimates. Note however, that they use prior
knowledge od the distance distribution of the environment, which is something not available
to flying insects.
Research performed by (Krapp & Hengstenberg, 1996) on the blowfly shows that its brain
contains cells (the tangential neurons) receiving input from many local EMDs on their ex-
tended dendritic networks. Disabling a portion of those cells revealed that they are involved
in course control and gaze stabilisation. 10 neurons, called VS neurons, are a subgroup of
the tangential neurons. (Krapp & Hengstenberg, 1996) show that the VS neurons capture
rotational self-motion from the OF-field, Figure 1-4. (Ibbotson, 1991) has identified a similar
group of interneurons sensitive to translatory optical flow fields in the horizontal plain. One
such neuron, the Hx, is sensitive to OF induced by horizontal translational self-motion, Fig-
ure 1-5.
The global structure of the response fields strongly suggests that distinct neurons in the fly’s
visual system act as sensory filters which extract specific components of self-motion from the
momentary optical flow. Notice that the VS neurons have a low motion sensitivity in the ven-
tral part (Θ < 0◦) of their receptive field. This is the direction where the strongest translation
induced OF can be expected during flight at finite height. And indeed, Hx is especially sensi-
tive in the ventral direction. This reduces the crosstalk from translation signals into rotation
channels. The VS neurons have a high sensitivity in the dorsal part of their receptive field,
which is around and above the horizon in symmetric upright flight. This exploits the large
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distances to the horizon and clouds to preferentially sense rotations, because translational
optical flow components decrease with distance, whereas rotational components do not. This
can be deduced from Eq. (1-1).

Figure 1-4: Anatomy and response of the neurons VS1 in subfigure a, VS6 in subfigure b and
VS8 in subfigure c. The local motion responses are shown in maps representing the right visual
hemisphere. The orientation of each arrow represents the local preferred direction and its length
the normalised local motion sensitivity. The response fields of all VS neurons correspond to
rotational optical flow fields with roughly horizontal axes oriented at different angles of azimuth
(ψ), (Krapp & Hengstenberg, 1996)

Studies by (M. V. Srinivasan, 2006; Barron & Srinivasan, 2006; Ruffier & Franceschini,
2005; Franceschini, Ruffier & Serres, 2007) have investigated Opto-Motor Response (OMR)
involved behaviour in flying insects. By training bees to fly through a tunnel towards a
sucrose feeder, (M. V. Srinivasan, 2006) and (Barron & Srinivasan, 2006) have shown that
the geometric properties of the pattern are largely irrelevant to the flight performance. Even
very subtle, low contrast textures give nearly the same performance. This shows that OF
provides a very robust way of controlling airspeed. Only when virtually no OF cues can be
extracted, such as with a radial pattern, will the bees change their speed to about three
times faster than before. They can still control their speed, but need faster motion to get
the same level of interneuron firing.
The diameter of the tunnel cross-section is linearly proportional to the groundspeed. This
means the bee will fly slower in a narrower tunnel. This can be explained by Eq. (1-1).
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Figure 1-5: Anatomy and response of the Hx neuron. It is highly sensitive to horizontal back-
to-front motion around ψ ≈ 45◦, (Krapp & Hengstenberg, 1996)

Consider the optical flow in the direction of flight, viewed perpendicular to the tunnel wall.
The bee tries to fly at a certain OF-setpoint, Ωset. In the tunnel, the rotations will be
small: ω ≈ 0, so Ωset ≈ V

D . When the distance D decreases, the bee must also decrease its
groundspeed V proportionally to keep Ωset constant.
Insects tend to fly through the centre of the tunnel cross-section. They do this by balancing
OF. This has been shown by moving one wall relative to the opposing wall. Figure 1-6 shows
the resulting flight paths: when the wall moves in the direction of flight, the insect flies
closer to that wall and vice versa. Again, size of the pattern does not influence the position
of flight paths.
(David, 1982) observed fruit flies flying upstream along the axis of a wind tunnel, attracted

by the odour of fermenting banana. The walls of the cylindrical wind tunnel were decorated
with a helical black-and-white striped pattern, so that rotation of the cylinder about its axis
produced apparent movement of the pattern towards the front or the back. He could tune the
pattern movement such as to keep the flies stationary. This reveals the OF setpoint at which
the fly chooses to fly. The flies also compensated their airspeed in a headwind to keep the
OF constant. Similar behaviour has been observed in honey bees by (Barron & Srinivasan,
2006), which will keep their preferred OF in headwinds with velocities up to 50% of the
maximum recorded airspeed of the bee.
Studies of landing behaviour in flies by (M. V. Srinivasan, 2006) have revealed that the
expansion of the image of the surface is used to control deceleration, trigger extension of the
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Figure 1-6: Illustration of an experiment which demonstrates that flying bees infer range from
OF in a tunnel. The subfigures a-f show a top-down view of the tunnel with the flight path
location and arrows showing the motion of the walls. Different pattern sizes between a-c and d-f
have no effect on the flight paths, (M. V. Srinivasan, 2006)

legs and estimate time to contact. In Grazing landings, cues from image expansion are weak.
The dominant pattern is then a translatory flow. Analysis of the landing trajectories revealed
that horizontal speed is roughly proportional to height. The insect achieves this by holding
the angular velocity of the image of the ground (ventral OF) constant during landing. The
horizonal speed will reduce to zero upon contact, automatically ensuring a smooth landing.

1-3-2 Optical Flow Based Flight Control Strategies

To study the flight control structure of insects, (Franceschini et al., 2007) propose a visual
feedback loop controlling the vertical lift component and implement it in a micro helicopter
vehicle to compare its behaviour to that observed in the insect world. The hypothesis is that
flying insects possess similar OF regulators in their brain.
The visual feedback loop, shown in Figure 1-7, takes the pitch angle θ as input and keeps

Figure 1-7: (A) Block diagram of the OF regulator, (B) general symmetric situation diagram of a
flying insect, showing aerodynamic forces generated by the wings. Body drag and gravity are not shown,
(Franceschini et al., 2007)

the ventral OF (directly below the vehicle/insect) constant and equal to a setpoint for a
simple straight, symmetric flight case. This allows a micro-helicopter vehicle with a single
downward looking OF-sensor to perform autonomous take-off, terrain following and landing
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when constrained to fly in a vertical plain. The proposed control scheme was found to
account for many reported behaviours in various species.

Take-off is achieved by pitching forward: the controller responds by increasing the lift force
to keep the OF constant thus causing the vehicle to ascend. When the thrust component
equals drag, the forward velocity becomes constant and the helicopter reaches a stationary
cruise flight at a certain altitude determined by ωset and the pitch angle. A local increase
in relief altitude triggers a response by increasing the lift, thus maintaining a constant
groundheight, which corresponds to terrain following.
Landing is achieved by pitching back to a vertical attitude again. The ensuing deceleration
automatically initiates a proportional decrease in groundheight until landing occurs. When
the vertical attitude is reached, the approach trajectory gets a constant angle and the
velocity will automatically approach zero at touchdown. A typical flight profile is shown in
figure 1-8.

Flying insects are known to descend under headwind and ascent during tailwind. The

Figure 1-8: (A) flight profile, (B) speed profile, (C) ventral optical flow along the ground distance,
(Franceschini et al., 2007)

OF-regulator can also explain this behavior. From Figure 1-7A, one can see that an increase
in headwind speed reduces the groundspeed. This produces a lower optical flow ω and
the controller responds by reducing the lift force to make the optical flow equal to the
setpoint again. This will happen at a lower groundheight. The opposite occurs with reducing
headwinds or increasing tailwinds.
Bees crossing mirror-smooth water have been observed to crash into it. This can be explained
by considering that the OF-sensor may not pick up any optical flow from the water surface.

M.Sc. Thesis M. J. Verveld



10 Introduction

This causes ωmeas = 0 and ε = −ωset < 0. The controller responds by decreasing the lift
force until the insect hits the water.
The visual based control scheme proposed by (Franceschini et al., 2007) involves ”OF-
holding”. It has the interesting effect that the groundheight becomes automatically
proportional to the groundspeed. Insects may use this type of OF-regulator to fly ma-
noeuvres like taking-off, terrain following, landing and responding appropriately to wind
without being informed about groundheight, groundspeed, airspeed, windspeed or ascend
or decent speed. Whether an insect’s deceleration results from its intention to land or
from the braking effects of a strong headwind, the feedback loop will always ensure smooth
touchdowns because it pulls the insect down at a rate that is no faster than that of the
decrease in groundspeed. During both take-off and landing, the closed visual-feedback loop
will compensate for any disturbances, such as uneven terrain, wind gusts, and ground effects.
The model in Figure 1-7 differs from another one, re-
ported by (M. Srinivasan, Zhang, Chahl, Barth & Venkatesh, 2000;
Baird, Srinivasan, Zhang, Lamont & Cowling, 2006; Preiss & Kramer, 1984), where the
OF controls the forward thrust T rather than the vertical lift L. Controlling T instead of L
would, however, produce strikingly different flight patterns from those reported by previous
authors, as follows:

(i) Instead of following a slanting terrain, as migrating butterflies and the micro helicopter
built by (Franceschini et al., 2007) do, insects would gradually decelerate until touching
the rising slope at a negligible speed and would thus inopportunely interrupt their
journey.

(ii) Instead of descending in a headwind and rising in a tailwind, as honeybees, locusts,
dung beetles, mosquitoes, and the micro helicopter do, insects would compensate for
the unfavourable headwind by increasing their airspeed without changing their ground-
height.

These two models can be reconciled, however, if in the block diagram of Figure 1-7A a second
OF regulator is added to control the forward thrust by looking at the lateral OF. Experiments
on tethered and free-flying flies and bees, as well as on tethered locusts, have long shown that
motion detected in the lateral part of the eyes affects the forward thrust, and hence the
forward speed. This additional hypothesis amounts to saying that the panoramic compound
eye is subdivided into a ventral region and a lateral region, each of which is responsible for
measuring the OF for a specific OF regulator: a ventral OF regulator controlling the vertical
lift (and thus the groundheight), as suggested above, and a lateral OF regulator controlling
the forward thrust (and thus the airspeed).

1-3-3 Conclusion

Using only OF and inertia, flying insects are able to perform a wide variety of manoeuvres
while avoiding collisions in diverse environments. They show that OF can be a very robust
and rich source of information on self motion.
The fact that they can’t cope with glass may be explained partly by considering the relatively
short period of time that glass windows have become common in the environment of flying
insects. It is also due to the fact that glass cannot be perceived using optical flow. This is
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1-4 Research Goal 11

one possible shortcoming of the concept, which may be alleviated by addition of another type
of sensor.
The insect brain works like a massively parallel computer for the processing of OF: many
neurons directly behind the photoreceptors are involved with the calculation of the OF field
�Ω. A limited number of integrating neurons capture specific components of �Ω. These compo-
nents correspond to certain modes of self motion, i.e. translations and rotations. The output
of these integrating neurons is then used to control the flight.
Insect flight control is not based on the actual velocities of flight, but instead uses the trans-
latory OF components directly. These OF components are basically the velocities scaled by
viewing distances. This gives rise to some very elegant natural behaviours:

• insects fly through the middle of a tunnel or narrow opening by balancing the OF;

• grazing landings (with some forward velocity) are performed smoothly by keeping OF
constant while approaching the surface. This means forward velocity reduces to zero at
touchdown;

• Insects are known to descend in headwinds. They do this by holding the ventral OF
constant by adjusting the lift force. By doing so, they automatically benefit from wind
shear;

• Terrain following is also a consequence of the same control loop.

1-4 Research Goal

The problem of autonomous indoor flight requires some form of sensor fusion, as concluded
in the problem statement in Section 1-2. Nature suggests the use of vision and to exploit the
information contained in the motion of features across the field of view, or OF, as the means
to observe the motion of an MAV. This will give information about the distances to obstacles
as well.
While insects only separate the translatory and rotatory OF components in Eq. (1-1), and
use the translatory components directly for flight control, this is not a convenient concept
for the control of an MAV. In order to apply conventional controller algorithms and possibly
employ Simultaneous Localization And Mapping (SLAM), it is necessary to know the actual
velocity and distances. This may be done by using several optical flow cameras facing in
different directions. The body velocity components (u, v, w) and body rotations (p, q, r) are
the same for each camera while the viewing distances are different. Solving for these motion
components and viewing distances is theoretically possible using six OF cameras and three
accelerometers.
The goal of this thesis is to investigate the feasibility and performance of this sensor concept.
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Chapter 2

System Description

2-1 Optical flow

2-1-1 Introduction

The sensor concept proposed in this work relies heavily on optical flow (OF). OF is known
in human and animal perception to support a wide variety of visual tasks, including 3D
shape acquisition, oculomotor control, perceptual organization, object recognition and scene
understanding, (Fleet & Weiss, 2005). The function of OF useful for this work is the sense of
self motion induced by visually perceiving the movement of the environment across the entire
field of view. This sense of self motion is used by many species to navigate through diverse
environments, be it on foot, in flight or while swimming. A common requirement of the process
is the presence of stationary surroundings sufficiently close to the moving observer. The
surroundings should also reflect sufficient amounts of light and have some texture. However,
looking at the example of flying insects shows that nature is capable of using OF in situations
with very little light and sparse texture. This makes it a potentially robust and information
rich quantity to exploit for navigation in complex and dense environments such as inside
buildings.

2-1-2 Definition

The quantity optical flow is defined as the angular rate at which a point on an object moves
in relation to an optical sensor. As the sensor lens projects the light within its field of view
onto a two dimensional surface, the angular rate of features in the image is two dimensional
as well. When the sensor is attached to a body flying through a three dimensional space
with stationary objects in it, the optical flow of points on those objects will be a function
of the body motion relative to the objects (translations u, v,w and rotations p, q, r) and the
distance from the sensor to the points of interest. This assumes that the surface of the objects
has adequate texture and is sufficiently illuminated for the sensor to distinguish and track
features.
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16 System Description

In general, optical flow will vary across the field of view of the sensor, whose coordinates are
the azimuth and elevation angles (Ψ and Θ, respectively), and this gives rise to an optical
flow vector field.

Definition 2.1 The local optical flow �Ω (Ψ,Θ, t) in viewing direction n (Ψ,Θ) experi-
enced by an observer moving at velocity V (t) and rotational rate �ω (t) in a stationary
environment is, from (Neumann & Bulthoff, 2001):

�Ω (Ψ,Θ, t) =
V (t) −

(
V (t)T n (Ψ,Θ)

)
n (Ψ,Θ)

d (Ψ,Θ, t)
+ �ω (t) × n (Ψ,Θ) (2-1)

where d (Ψ,Θ, t) is the distance to the object seen in direction n (Ψ,Θ).

Eq. (2-1) results in a three dimensional optical flow vector which is orthogonal to the viewing
direction n. The sign convention is such that a translation in a positive direction of the body
axes has a positive contribution to the optical flow.

Xbody

Ybody

Zbody

Zcamera

Ycamera

Xcamera

Ψ

Θ

Figure 2-1: Camera rotation

However, �Ω is still described in the body reference frame. Assume that no deformations occur
in the camera projection, i.e. a homographic projection is applicable. Then the optical flow
perceived at angles (Ψ,Θ) from the optical axis is equivalent to projecting �Ω onto the camera
X−Y plane rotated by (Ψ,Θ) as defined in Figure 2-1. This is done with a projection matrix
P :

M. J. Verveld M.Sc. Thesis



2-2 Concept 17

Let the direction cosine matrix (DCM) using the ZYX order of rotation with Euler angles
ϕ, θ and ψ be defined by

DCM =

⎡
⎣ cos θ cosψ cos θ sinψ − sin θ

sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ

⎤
⎦ (2-2)

Note that the camera axes are interchanged with respect to the body frame such that the
camera Z-axis coincides with its optical axis, no ϕ rotation is applied, ψ = Ψ and θ = Θ.
These facts are taken into account by pre-multiplying DCM by a transformation matrix and
substitution of Ψ and Θ:

P =
[

0 −1 0
0 0 1

]
DCM =

[
sin Ψ − cos Ψ 0

sinΘ cos Ψ sin Θ sinΨ cos Θ

]
(2-3)

The two dimensional optical flow field �Ω∗ observed by the camera is then:

�Ω∗ (Ψ,Θ, t) = P �Ω (Ψ,Θ, t) (2-4)

An example of the optical flow field resulting from a translation u and from a rotation q is
shown in Figure 2-2 a and b, respectively. Of course, in general, �Ω∗ will be a superposition
of all motion components.

2-2 Concept

The research goal described in Section 1-4, calls for a state estimation method which will
enable indoor flight control and obstacle avoidance. Buildings generally have interiors with
little room to manoeuvre and bad Global Positioning System (GPS) reception. These proper-
ties of the environment makes traditional state estimation based on an inertial measurement
unit (IMU)/GPS sensor package insufficient for a micro aerial vehicle (MAV) with an indoor
mission requiring some level of autonomy. Section 1-3 in the introduction suggests to use the
concept of OF for indoor state estimation.
As has been explained in Section 2-1, OF consists of a linear combination of translational
and rotational motion. The fact that the translations are scaled by the viewing distance
complicates the matter of extracting the motion state. However, if one has several cameras
pointed in different directions, the same motion will determine each OF signal. By solving
the associated observation equations simultaneously, it may be possible to solve for all the
motion states and viewing distances. This would serve both the flight control and obstacle
avoidance goals.
The simplest camera configuration might be to mount six sensors to the sensor board in op-
posing, orthogonal directions along the body axes. This is shown in Figure 2-3. In this way,
there are three pairs of sensors looking in opposing directions. These sensors will see the same
motion components, with the only difference being that the translational motion is divided
by a different viewing distance. Six OF-sensors do produce an observable system in the case
without gravity, but of course this is not very practical. Because the aircraft is assumed to
fly in the presence of a gravitational field, a 3-axis accelerometer is also required. As the
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Figure 2-2: Optical flow fields resulting from different motion components

gravitational acceleration and its direction enter into the system dynamics equations, one
must solve for the attitude as well. As will be shown in Chapter 3, the system is observable,
when the three accelerometer measurements are available. As long as the aircraft moves, the
sensor package provides enough data to solve for the six motion components (u, v, w, p, q,
r), the six viewing directions (d1 − d6) and the two Euler angles involved with the gradient
of the gravitational field, that is pitch angle θ and roll angle ϕ.

The type of optical flow sensor used in this work estimates the optical flow at the point where
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Figure 2-3: Diagram of the geometry, the distance subscripts refer to the sensor number
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Figure 2-4: Sensor 1 optical flow

its optical axis intersects the surface of the object it is looking at. It does this by averaging
the optical flow across its field of view. As explained in Section 2-1, in general, the optical
flow will vary across the sensor field of view. It does so in a continuous and differentiable
manner as long as d (Ψ,Θ) in Eq. (2-1) is continuous and differentiable with Ψ and Θ. The
accuracy of this mean value optical flow estimate depends on mild changes of distance. The
probability that greatly varying distances are present in the field of view reduces as the field
of view becomes more narrow. Therefore, in this respect, a narrow field of view is beneficial
to the accuracy of the estimate. However, considering the small aperture (1.5 mm), the light
flux on the sensor surface may become too small if the field of view is very narrow.
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An example diagram to derive the optical flow for sensor 1 in the schematic Figure 2-3 is
shown in Figure 2-4. The arrows show the positive directions of the body motion from the
sensor perspective. Applying Eq. (2-1) and Eq. (2-4) results in two optical components along
the body X- and Z-axes, denoted as ΩX1 and ΩZ1 , respectively. The resulting equations for
all optical flow sensors are:

X − Y plane X − Z plane Y − Z plane

ΩX1 = u
d1

− r ΩZ2 = w
d2

+ q ΩZ1 = w
d1

+ p

ΩY2 = v
d2

− r ΩX6 = u
d6

+ q ΩY6 = v
d6

− p (2-5)
ΩX3 = u

d3
+ r ΩZ4 = w

d4
− q ΩZ3 = w

d3
− p

ΩY4 = v
d4

+ r ΩX5 = u
d5

− q ΩY5 = v
d5

+ p

2-3 Sensors

2-3-1 Optical Flow Sensors

The OF-sensors used (the ADNS-5030 (Avago, 2008)) were specifically designed for optical
computer mice. In that application, the environment is well conditioned. The sensors look at
a flat surface at a very specific distance, the light source illuminating the surface is constant
and in phase with the sensor electronic shutter. In contrast, the application for which they
are to be used brings widely varying conditions. The light source has a wide range of intensity
and intensity fluctuations, e.g. from the power grid. Also, the viewing distances may vary
from close to zero to the largest distance in the building. Suffice to say that the challenge
will be to adapt the sensor system to cope with these varying conditions.
One indication that this type of OF-sensor may be employed successfully for state estimation
purposes in MAVs is the research performed by (Barber, Griffiths, McLain & Beard, 2007)
on an autonomous landing system for a blended wing body (BWB) UAV. They use one
downward pointing Avago type OF-camera in combination with GPS groundspeed data to
calculate height above ground. In this case, the method yields accurate and reliable estimates.
To use these sensors in a motion state estimation application for indoor flight, the lens must
be changed in order to focus the light from longer distances. The original lenses have a focal
length of 2.7 mm. The sensor surface has sides of 0.8 mm and 15 x 15 pixels. The required lens
properties can be calculated from the lens formula relating focal distance f , subject distance
v and image distance b:

1
f

=
1
b

+
1
v

(2-6)

We need to know f and b. A field of view (fov) of 10◦ gives a good trade off between required
sampling frequency, light intensity and surface feature size. A relation between sensor length
B, image distance b and fov angle α can be found from the geometry in Figure 2-5:

tan
(α

2

)
=
B

2b

⇒ b =
B

2 tan
(

α
2

)
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+

α
2
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B

Figure 2-5: Simple lens geometry

Then f = 1
1
b +

1
v

.

The range of focused distances, also known as depth of field (dof), is determined by the

Figure 2-6: Circle of confusion geometry

circle of confusion (CoC) and the pixel size. The CoC is the area on the sensor at which light
from a point on the subject is projected. Using a ray optics model, this area has a sharp
circular limit and constant light intensity distribution. In reality, the area is soft-edged due to
diffraction and aberrations and the shape is determined by the shape of the aperture, (Ray,
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2002). For estimating the depth of field in this simple lens system however, ray optics gives
a good approximation. To get the same level of sharpness on a sensor with smaller pixels,
the CoC diameter must be smaller as well. The CoC diameter d can be derived from the
geometry in Figure 2-6. Given the lens focal length f , distance from lens to sensor bsensor,
aperture to sensor c, aperture diameter a and the subject distance v, the true image distance
bnominal follows from Eq. (2-6):

bnominal =
1

1
f − 1

v

The sensor distance mismatch is

e = bnominal − bsensor

and the CoC diameter

d =
∣∣∣∣ e

c+ e

∣∣∣∣ a (2-7)

The criterion for a focused image depends on the purpose of the image. In photography, the
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Figure 2-7: Surface quality vs subject distance from (Avago, 2008)

maximum allowable CoC is determined by the human eye observing the printed photograph.
But in this case, a measure directly related to the sensor should be chosen. From (Avago,
2008) c = 2.96 mm and a = 1.5 mm and Figure 2-7 shows that the SQUAL value of the sensor,
which is a measure of the number of features tracked by the digital signal processor (DSP),
drops significantly (25%) when e = 0.3 mm. If this is taken as the threshold for an acceptable
sensor performance, the maximum CoC dmax can be found:

dmax =
0.3

296 + 03
15 = 0.18 mm

Note that the pixels have sides of 0.053 mm, so dmax is more than 3 times the pixel size. dmax

together with the optical geometry (a, c, bsensor and f) determines the depth of field defined
as [vmin, vmax]. Rewriting Eq. (2-6) and Eq. (2-7), this can be expressed as

vmin =
{

1
f − 1

bsensor+ dc
a−d

}−1

vmax =
{

1
f − 1

bsensor− dc
a+d

}−1 (2-8)
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Choosing a field of view of 10◦ and the dimensions of the ADNS-5030 chip, the graph of the
CoC diameter versus v in Figure 2-8 shows that the depth of field is very large (vmin = 56
mm and vmax = ∞). This means that the sensor can be used at any distance larger than 5.6
cm.
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Figure 2-8: Depth of field for an optical flow sensor based on the Avago ADNS-5030 chip with
10◦ field of view

2-3-2 Accelerometers

m

KC

x

Figure 2-9: Schematic of the accelerometer

An accelerometer is a device measuring specific force fs. This is not equal to the true acceler-
ation a as the name suggests, but rather the true acceleration minus gravitational acceleration
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g. As shown in Figure 2-9, conventional accelerometers are based on a proof massm connected
to its surroundings through a spring-damper suspension (K,C) which only allows movement in
the x-direction. Any resulting force acting on the proof mass in the sensitive direction results
in a deformation of the spring. This is then measured by e.g. a capacitance- or induction-
based position pickoff. An analog circuit translates the signal to an output voltage, which
may then be sampled by an A/D-converter for use in a digital avionics system. It should be
noted here that the mass-spring-damper system comprising the core of the accelerometer has
its own dynamics:

ẍ+
C

m
ẋ+

K

m
x = fs

So x does not have a linear relation with the specific force. However, one may avoid these
problems by choosing the natural frequency ωn well above the Nyquist frequency which is
twice the sample frequency ωs and by using an appropriate analog low pass filter. So if

ωn =
√

K
m � 2ωs one has a good approximation for fs by looking directly at x.

The fact that an accelerometer measures the difference between acceleration and gravity may
be explained as follows. The force of gravity is a field force acting equally on all objects
with mass, while accelerations of the accelerometer casing caused by other external forces are
transmitted to the proof mass through its suspension. So the suspension will only be deformed
by external forces other than gravity, as any gravitational force acting on the proof mass is not
transmitted to it through the suspension. With only gravity present, the accelerometer would
measure zero signal, because the proof mass suspension would not deform. The acceleration
of the accelerometer would be equal to the gravitational acceleration, cancelling each other.
In three dimensional space the specific force is a 3 element vector �fs:

�fs = �a− �g =

⎡
⎣ u̇
v̇
ẇ

⎤
⎦−DCMe→b

⎡
⎣ 0

0
g

⎤
⎦ (2-9)

So for the directions orthogonal to �g, the accelerometer measures �a directly.
It follows that to measure the specific force vector, one requires three measurement directions.
Preferably, those directions would be mutually orthogonal, but theoretically the accelerometer
provides sufficient information to construct the specific force vector as long as the directions
span three space. This means that most commercially available accelerometers are packaged
as a set with three proof masses mounted in three mutually orthogonal directions. The
package is marked on the outside indicating those directions to facilitate correct mounting.
Like any measuring instrument, accelerometers generally suffer from a number of measurement
errors as illustrated in Figure 2-10:

• bias error b: a (quasi-)constant value being added to the measurement signal;

• scale error Δa: a (quasi-)constant value denoting the difference with the expected slope
of the output graph;

• higher order errors: the output graph is assumed to be linear, any deviations from this
assumed linear relation produce errors;

• direction errors: alignment errors of the proof masses showing up as cross-coupling
effects between the output directions;

• noise: often modelled as white noise with standard deviation σ.
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σ

V (output)

a

b
fs (input)

Figure 2-10: Calibration graph with error types common to accelerometers

2-3-3 Observation Equations

The sensors described above provide input which can be used to estimate the state of the
aircraft on which they are mounted. To do so, it is necessary to know how the observation
signals �z depend on the state variables�x. This is described by the observation equations,
denoted by �h (�x).
The equations of the optical flow sensors have been derived in Sections 2-1 and 2-2 as Eq.
(2-5). The equations for the accelerometers should be added to complete �h (�x). They can
be derived by elaborating Eq. (2-9), which was written in earth reference frame. The true
acceleration of a vehicle in the body reference frame is

�a = �̇V + �ω × �V =

⎡
⎣ u̇
v̇
ẇ

⎤
⎦ +

⎡
⎣ p
q
r

⎤
⎦×

⎡
⎣ u
v
w

⎤
⎦

and the gravitational acceleration vector is

�g = DCMe→b (θ, ϕ)

⎡
⎣ 0

0
g

⎤
⎦

where DCMe→b (θ, ϕ) is the transformation matrix from earth to body reference frame in-
volving only pitch and roll in this case, because �g is vertical and therefore independent of
heading angle ψ. DCMe→b (θ, ϕ) can be expressed as

DCMe→b (θ, ϕ) =

⎡
⎣ 1 0 0

0 cosϕ sinϕ
0 − sinϕ cosϕ

⎤
⎦
⎡
⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦ =

⎡
⎣ cos θ 0 − sin θ

sinϕ sin θ cosϕ sinϕ cos θ
cosϕ sin θ − sinϕ cosϕ cos θ

⎤
⎦
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So the accelerometer output becomes

�fs =

⎡
⎣ Ax

Ay

Az

⎤
⎦ =

⎡
⎣ u̇
v̇
ẇ

⎤
⎦ +

⎡
⎣ p
q
r

⎤
⎦×

⎡
⎣ u
v
w

⎤
⎦− g

⎡
⎣ − sin θ

sinϕ cos θ
cosϕ cos θ

⎤
⎦ (2-10)

Taking Eq. (2-5) and Eq. (2-10) together, the observation equations can be written as

�z = �h (�x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
d1

− r
w
d1

+ p
v
d2

− r
w
d2

+ q
u
d3

+ r
w
d3

− p
v
d4

+ r
w
d4

− q
u
d5

− q
v
d5

+ p
u
d6

+ q
v
d6

− p

u̇+ qw − rv + g sin θ
v̇ + ru− pw − g sinϕ cos θ
ẇ + pv − qu− g cosϕ cos θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2-11)

Eq. (2-11) refers to the case where the sensor package is aligned with the body frame of
reference of the aircraft. In general, this is not the case however, and �h (x) can be modified to
accommodate a sensor package which has a fixed rotation of (ϕs, θs, ψs) with respect to the
body frame of reference and which is displaced by �δ from the center of gravity (CoG). The
rotation matrix, or DCM, from the body frame of reference to the sensor frame of reference
is given by

DCMb→s (ϕs, θs, ψs) =

⎡
⎣ cos θs cosψs cos θs sinψs − sin θs

sinϕs sin θs cosψs − cosϕs sinψs sinϕs sin θs sinψs + cosϕs cosψs sinϕs cos θs

cosϕs sin θs cosψs + sinϕs sinψs cosϕs sin θs sinψs − sinϕs cosψs cosϕs cos θs

⎤
⎦

(2-12)
Let �Vbody, �ωbody denote the motion of the aircraft in the body frame of reference.
The optical flow sensors will be looking in different directions, so the rotational rate should
be rotated by DCMb→s to express it in the sensor frame of reference:

�ωsensor = DCMb→s �ωbody (2-13)

The velocity must also be rotated by (ϕs, θs, ψs), but in addition, it is affected by �δ:

�Vsensor = DCMb→s

(
�Vbody + �ωbody × �δ

)
(2-14)

With these transformations, the optical flows for the rotated and displaced sensor package
can be expressed in �Vbody and �ωbody by substitution of Eq. (2-13) and Eq. (2-14) into Eq. (2-5).
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The accelerometer output �fs =
[
Ax Ay Az

]T will be affected by (ϕs, θs, ψs) and �δ as
follows:

�fssensor = DCMb→s

⎛
⎝�fsbody

−
⎡
⎣ q2 + r2 ṙ − pq −q̇ − pr

−ṙ − pq p2 + r2 ṗ− qr
q̇ − qr −ṗ− qr p2 + q2

⎤
⎦�δ

⎞
⎠ (2-15)

where �fsbody
refers to the specific force at the CoG in the body frame of reference, Eq. (2-10).

2-4 Dynamics

The sensor concept proposed here is intended to be used with a MAV, which is specifically
designed to fly indoors.
In order to apply a Kalman Filter for the estimation of the motion state of this aircraft, its
dynamics equations or equations of motion (EoM) need to be known. In the case of indoor
aircraft two important assumptions can be made:

1. The majority of MAVs can be considered symmetrical about a symmetry plane spanned
by their body X- and Z-axes. This is not critical, but it simplifies the EoM;

2. By approximation, the aerodynamic moments �M can be considered to only depend on
the controller input.

An MAV designed for indoor flight must be capable of hover and very slow flight and it will
be limited to low velocities in the confined environment of a building interior. Common de-
sign solutions use moving wings to generate all the aerodynamic forces and moments required
for flight. In such a design the moments will be generated by varying torques or applying
differential thrust. Within the limited flight envelope the control derivatives can be consid-
ered constant. External disturbances like wind gust and turbulence are also expected to be
negligible inside most buildings. This means that the aerodynamic moments do not depend
significantly on the states and can be directly calculated from the control inputs provided
that the control derivatives are known.
As this is a conceptual study, aiming to investigate the general performance of a new sensor
concept, no specific aerodynamic model has been used in the simulation. Therefore �M is
treated as a known quantity.
In the pendulum experiment, described in Section 9-1, the Kalman filter runs without mo-
ment inputs as the motion is autonomous. Once the pendulum is moving, there are no
outside disturbances apart from a slight drag moment. The dynamics model in the Kalman
filter includes Eq. (2-16) in this case:

My =
(Ax − g sin θ) Iy

R
(2-16)

where Ax is expressed in the body-fixed frame of reference.

The second assumption enables the use of a generic dynamics model requiring only vehicle
inertias (mass m and the moments of inertia Ix, Iy, Iz and Jxz) and aerodynamic moment
inputs which can be directly calculated from the control of the aircraft. The accelerometer
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measurements can be substituted for the aerodynamic forces: X = Axm, Y = Aym and
Z = Azm. So the input vector becomes

�u =
[
Ax Ay Az Mx My Mz

]T

The resulting generic nonlinear EoM from (Mulder, Staveren & Vaart, 2000) are:

−W sin θ +X = m (u̇+ qw − rv)
W cos θ sinφ+ Y = m (v̇ + ru− pw)
W cos θ cosφ+ Z = m (ẇ + pv − qu)

Mx = Ixṗ+ (Iz − Iy) qr − Jxz (ṙ + pq)
My = Iy q̇ + (Ix − Iz) rp+ Jxz

(
p2 − r2

)
Mz = Iz ṙ + (Iy − Ix) pq − Jxz (ṗ− rq)

(2-17)

The derivatives of the motion states can be written explicitly as

u̇ = rv − qw − g sin θ +Ax

v̇ = pw − ru+ g cos θ sinϕ+Ay

ẇ = qu− pv + g cos θ cosϕ+Az

ṗ = MxIz−qrIz
2+qrIz Iy−Jxz p qIy+Jxz p qIx−J2

xzrq+Jxz Mz+Jxz p qIz

−J2
xz+Ix Iz

q̇ =
My−(Ix−Iz)rp−Jxz(p2−r2)

Iy

ṙ = MzIx−p qIx Iy+p qI2
x−Jxz rqIz+Jxz rqIy−J2

xzp q+Jxz Mx−Jxz rqIx

−J2
xz+Iz Ix

(2-18)

where W = mg.
Recall from Section 2-2 that the state vector to be estimated is

�x =
[
u v w p q r θ ϕ d1 . . . d6

]T

The kinematics for θ̇ and ϕ̇ are

θ̇ = q cosϕ− r sinϕ
ϕ̇ = p+ q sinϕ tan θ + r cosϕ tan θ

(2-19)

and the derivatives of the camera distances are unknown, so a noise term wi can be substituted.
The differential equation describing the EoM can be summarised as

�̇x = �f (�x, �u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax − qw + rv − g sin θ
Ay − ru+ pw + g sinϕ cos θ
Az − pv + qu+ g cosϕ cos θ

MxIz−qrIz
2+qrIz Iy−Jxz p qIy+Jxz p qIx−J2

xzrq+Jxz Mz+Jxz p qIz

−J2
xz+Ix Iz

My−(Ix−Iz)rp−Jxz(p2−r2)
Iy

MzIx−p qIx Iy+p qI2
x−Jxz rqIz+Jxz rqIy−J2

xzp q+Jxz Mx−Jxz rqIx

−J2
xz+Iz Ix

q cosϕ− r sinϕ
p+ q sinϕ tan θ + r cosϕ tan θ

w1
...
w6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2-20)

This will be used in the observability analysis in Section 3-3-2 and the Kalman filter imple-
mentations used with the simulated and hardware generated data.

M. J. Verveld M.Sc. Thesis



Chapter 3

Observability

3-1 LTI Definition

The observability properties of linear state space systems are a special case of those for
nonlinear systems. Therefore, it is convenient to look at the well-understood case of linear
systems, before defining the problem for nonlinear systems. (Olsder & Woude, 2005, p.73)
give the following definition of observability for linear time invariant (LTI) systems:

(A,B,C,D) : �̇x = A�x+B�u
�y = C�x+D�u

with �u ∈ R
m, �x ∈ R

n and �y ∈ R
p.

Definition 3.1 An LTI system (A,B,C,D) is called observable if the initial state
�x (t0) can be reconstructed from the knowledge of the input �u and output �y on the
interval [t0, t1] for any finite t1 > t0.

Because �u is given, once �x (t0) is known, the state �x on the whole interval [t0, t1] can be
determined. Note that observability is a global concept, it holds for the whole state space.
To test the observability of an LTI system, the observability matrix O, given by

O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ (3-1)

is used.

Theorem 3.1 (A,B,C,D) is observable if rankO = n, where n is the dimension of
the state vector �x.
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3-2 Nonlinear Observability

The definition of observability for linear systems has to be adapted in order to extend it to
the class of nonlinear state space systems:

Σ :
�̇x = �f (�x, �u)
�y = �h (�x)

(3-2)

where �u ∈ L, a subset of R
m, �x ∈M , the state space with dimension n, �y ∈ R

p and �f and �h
are vector functions of appropriate dimensions.
Whereas in the linear case the observability condition holds for the entire domain of �x,
for nonlinear systems observability is state dependent and has to be determined locally
(Hedrick & Girard, 2005). First, the definition of distinguishability is required:

Definition 3.2 Given Σ. Two states �x0 and �x1 are distinguishable if and only if there
exists an input function �u∗ such that: �h (�x0) 
= �h (�x1).

Local observability can then be defined as follows:

Definition 3.3 Σ is locally observable at �x0 if and only if there exists a neighbourhood
of �x0 such that every �x in that neighbourhood other than �x0 is distinguishable from
�x0.

To test whether a system is locally observable at �x0, an observability matrix similar to the
linear case can be constructed. (Hermann & Krener, 1977) describe this in terms of the Lie
derivative:

Definition 3.4 Let �f (�x) : R
n → R

n be a vector field in R
n,

let g (�x) : R
n → R be a scalar function differentiable up to degree n− 1 and

let the gradient of g with respect to �x be ∂g
∂�x =

[
∂g
∂x1

∂g
∂x2

. . . ∂g
∂xn

]
.

Then the Lie derivative of g with respect to �f is: Lf (g) = ∂g
∂�x
�f .

Higher order Lie derivatives are defined as L2
f (g) = ∂

∂�x

{
L1

f (g)
}
�f , . . .

Ln
f (g) = ∂

∂�x

{
Ln−1

f (g)
}
�f . By definition L0

f (g) = g.

Note that the Lie derivative is a scalar valued quantity.
The matrix to test for local observability of Σ at �x0 for some constant control �u∗ is defined
by

O (�x0, �u
∗) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dL0
f (h1)
...

dL0
f (hp)
...

dLn−1
f (h1)

...
dLn−1

f (hp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�x=�x0, �u=�u∗

(3-3)
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where d is the gradient operator with respect to x, �h (�x) : R
n → R

p and hi is the ith element
of �h.
O (�x0, �u

∗) determines the local observability of Σ at �x0. Σ is said to satisfy the observability
rank condition at �x0 if the dimension of the image of O (�x0, �u

∗) is n.

Theorem 3.2 If and only if Σ satisfies the observability rank condition at �x0 then Σ
is locally observable at �x0.

The proof can be found in (Hermann & Krener, 1977).

(Walcott, Corless & Żak, 1987) gives the following elaboration of the gradient of the Lie
derivative of g with respect to �f :

dLf (g) = Lf (dg) =

(
∂ (dg)T

∂�x
�f

)T

+ dg
∂ �f

∂�x
= �f T ∂ (dg)T

∂�x
+ dg

∂ �f

∂�x
(3-4)

This may be used to expand the rows of Eq. (3-3), yielding an approximation to O (�x, �u)
using the Jacobians of �f and �h:

Theorem 3.3 Let

F (�x, �u) =
∂ �f (�x, �u)
∂�x

H (�x) =
∂�h (�x)
∂�x

then

O (�x, �u) =

⎡
⎢⎢⎢⎢⎢⎣

H (�x)
H (�x)F (�x, �u)

H (�x) {F (�x, �u)}2

...
H (�x) {F (�x, �u)}n−1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

∅
p×n

E (�x, �u)
E (�x, �u)F (�x, �u)

...
E (�x, �u) {F (�x, �u)}n−2

⎤
⎥⎥⎥⎥⎥⎦ +

higher
order
terms

(3-5)

where

E (�x, �u) =

⎡
⎢⎢⎣
�f T ∂(dh1)T

∂�x
...

�f T ∂(dhp)T

∂�x

⎤
⎥⎥⎦

Proof of theorem 3.3. Using d
(
�a ·�b

)
= �aT ∂�b

∂�x +�bT ∂�a
∂�x , an arbitrary row of O (�x, �u) can be

written as

dLk
f (hi) = d

[
∂
∂�x

{
Lk−1

f (hi)
}
�f
]

= dLk−1
f (hi)

∂ �f
∂�x + �f T ∂(dLk−1

f (hi))T

∂�x

= d
[

∂
∂�x

{
Lk−2

f (hi)
}
�f
]

∂ �f
∂�x + higher order terms

= dLk−2
f (hi)

(
∂ �f
∂�x

)2
+ �f T ∂(dLk−2

f (hi))T

∂�x
∂ �f
∂�x + higher order terms

...

= dhi

(
∂ �f
∂�x

)k
+ �f T ∂(dhi)

T

∂�x

(
∂ �f
∂�x

)k−1
+ higher order terms

(3-6)
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where k = 1 . . . n− 1 and i = 1 . . . p. For k = 0, definition 3.4 combined with Eq. (3-4) yields
dL0

f (hi) = dhi.
The first term in the last expression in Eq. (3-6) is equal to the ith row in H (�x, �u) {F (�x, �u)}k

and the second term in the last expression is equal to the ith row in E (�x, �u) {F (�x, �u)}k−1 �

Returning to the observability rank condition for linear systems for a moment, the following
proof shows that it follows from theorem 3.2 as a special case. This approaches the problem
from another direction than the usual proof based on Cayley-Hamilton, as can be found in
(Olsder & Woude, 2005).

Proof of theorem 3.1. Substitute �f (�x, �u) = A�x + B�u and �h (�x) = C�x + D�u in Σ. The
jacobians with respect to �x are: H (�x) = C and F (�x, �u) = A. The matrix E (�x, �u) = ∅

p×n

and all other higher order terms are zero as well, because they all involve second and higher
order derivatives of f and h which are equal to zero in this case. Substituting this result in
Eq. (3-5) yields the local observability matrix for a linear system (A,B,C,D):

O (�x, �u) = O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ (3-7)

Because Eq. (3-7) doesn’t depend on �x or �u, it follows from theorem 3.2 that the system is
observable on the entire state space if rankO = n. �

3-3 Observability of the Optical Flow Sensor System

This section describes an observability analysis of the optical flow (OF) sensor system based
on the first term of Eq. (3-5) for a 2D case and the full 3D problem, both with accelerometers.
This first term of O (�x, �u), henceforth denoted as O1 (�x, �u), is used often in practice to check
for local observability as the full definition (Eq. (3-3)) in terms of Lie derivatives tends to
become very complex. It has to be computed analytically and the Lie derivatives expand
dramatically as each higher order is the dot product of �f and the gradient of the previous
order.
Moreover, it is my hypothesis that the rank of O1 (�x, �u) is a lower bound for the rank of
O (�x, �u). That is, we have:

Conjecture For any x0 ∈M and some constant permissible input u∗, it holds that

rank

⎡
⎢⎢⎢⎢⎢⎣

H (�x0)
H (�x0)F (�x0, �u

∗)
H (�x0) {F (�x0, �u

∗)}2

...
H (�x0) {F (�x0, �u

∗)}n−1

⎤
⎥⎥⎥⎥⎥⎦ ≤ rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dL0
f (h1)
...

dL0
f (hp)
...

dLn−1
f (h1)

...
dLn−1

f (hp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�x=�x0, �u=�u∗

(3-8)
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This would make rankO1 (�x, �u) a conservative estimate, which is an important condition for
its use as it would ensure that a system is locally observable if O1 (�x, �u) has full rank.
A problem arises when comparing rankO (�x, �u) applied to the 2D study case with physical
arguments. It can be interpreted as an additional argument to use O1 (�x, �u) instead of O (�x, �u).
This is discussed at the end of Section 3-3-1.

3-3-1 A Two Dimensional Study Case

The observability matrix of the full three dimensional problem is very complex as it depends
on 14 states, has 210 rows, involves the matrix product of F to the 13th power and has 14
terms in the form of Eq. (3-5). Therefore, in order to simplify the analytical investigation of
the local observability of the optical flow sensor system, one may look at a two dimensional
problem resembling the three dimensional optical flow sensor system.
Figure 3-1 shows the geometry and state variables of this 2D study case. There are two
velocity components, u and v, defined in the body reference frame (Xbody, Ybody). There is
one rotational rate r. There is one attitude angle θ. And there are four distances d1 − d4

associated with the cameras. These are the states in the vector �x that must be observed.
To do so, there are four optical flow cameras mounted along the body axes. Each has only
one optical flow output Ω1 − Ω4, unlike in the 3D case, where each sensor sees a surface
with two optical flow components. Furthermore, there is an accelerometer, measuring specific
forces Ax and Ay in body axes directions. Those are the measurements contained in vector
�y. The only element in the input �u is the moment Mz with direction normal to the plane
of motion. Finally, there is a uniform gravitational field with acceleration g in the negative
Yearth direction.

The equations of motion of this system can be derived from the full 3D equations, Eq.
(2-20), by elimination of terms which become zero because they involve out of plane motion.
Kinematics simplify to θ̇ = r and the derivatives of the sensor-wall distances are unknown, so
a noise term wi is used. This yields:

�̇x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u̇
v̇
ṙ

θ̇

ḋ1

ḋ2

ḋ3

ḋ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= �f (�x, �u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax + rv − g sin θ
Ay − ru− g cos θ

Mz
Iz

r
w1

w2

w3

w4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3-9)

The measurement equations describing �y can also be derived from the 3D case, 3-14, in a
similar way:

�y =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ω1

Ω2

Ω3

Ω4

Ax

Ay

⎤
⎥⎥⎥⎥⎥⎥⎦ = �h (�x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u
d1

− r
v
d2

− r
u
d3

+ r
v
d4

+ r

u̇− rv + g sin θ
v̇ + ru+ g cos θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3-10)
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Xbody

Ybody

Xearth

Yearth

θu

v

r

d1

d2

d3

d4

Figure 3-1: Diagram of the 2D problem with state variables

To construct the local observability matrix using Eq. (3-5), the Jacobians of �f (�x, �u) and �h (�x)
are required. These have been computed using Matlab Symbolic Toolbox:

F (�x, �u) =
∂

∂�x
�f (�x, �u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 r v −g cos θ 0 0 0 0
−r 0 −u g sin θ 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3-11)

H (�x) =
∂

∂�x
�h (�x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
d1

0 −1 0 − u
d2
1

0 0 0
0 1

d2
−1 0 0 − v

d2
2

0 0
1
d3

0 1 0 0 0 − u
d2
3

0
0 1

d4
1 0 0 0 0 − v

d2
4

0 −r −v g cos θ 0 0 0 0
r 0 u −g sin θ 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3-12)

Before attempting a state observer including �f (�x, �u) to solve for the state vector, one may try
to solve �h (�x) directly with a nonlinear solver. However, in this case the observations alone
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can never provide full observability as there are less equations then unknowns to solve for
(n = 8). Indeed, for nonzero values of �x, rank (H (�x)) = 6. If one of either u, v or r is zero
then the rank reduces to 5. If both u and v are zero the rank is equal to 4. The distances are
assumed to have nonzero positive values. A distance may become practically ∞ if the sensor
is looking at open sky for example. This reduces the rank by 1 if at least one other state is
zero. θ may reduce the rank of H (�x) when one or more distances are ∞.
These findings have been calculated by taking a grid of sample points across the state space
and substituting these numerical values in the symbolic Jacobian H (�x). This is not a defini-
tive method as certain areas of interest may be very small and may not get sampled. However,
by choosing the grid such as to include points that can be expected to produce lower rank,
such as values which cause terms to cancel out, one can still gain useful insight into the local
observability behaviour.
The next step would be to compute the local observability matrix and repeat the sampling
method described above to investigate the local observability behaviour of the system includ-
ing dynamics. The symbolic observability matrix O1 (�x, �u) calculated using the symbolic tool-
box from Matlab is too large to be printed in this report. The maximum of rankO1 (�x, �u) = 7.
If this would be equal to the rank of the full observability matrix, it would mean that the “two
dimensional version”of the optical flow sensor system will not work, regardless which filtering
method is applied as there is too little data available to reconstruct the state �x. However,
when applying the full observability matrix rank condition, it yields full rank. Note that this
does not falsify the conjecture on page 32 as rankO1 (�x, �u) < rankO (�x, �u).
When evaluating rankO (�x, �u) across the state space, a problem appears. The rank of O is
equal to 8 for all �x, except when one or more distances go to ∞. This means that, according
to the full local observability rank condition, one would be able to estimate the distances
d1 − d4 even when there is no motion, i.e. when u = v = r = 0. This is impossible from
a physical point of view. One might be able to establish that there is no movement relative
to the walls, but this gives no information about the distances. The distances appear in the
optical flow components in Eq. (3-10) only in a quotient with the translations u and v. So
if all quotients are zero, nothing can be inferred about d1 − d4. Formally, the system is
indistinguishable (definition 3.2) at �x =

[
0 0 0 θ d1 d2 d3 d4

]T as there is a set of
states producing the same output regardless of the input Mz. It follows from definition 3.3
that the system is locally unobservable at �x =

[
0 0 0 θ d1 d2 d3 d4

]T . This case
appears to falsify the observability rank test using O (theorem 3.2) as it produces full rank
at that point in the state space.
Unfortunately, literature has not clarified how this discrepancy may be explained. As
rankO1 (�x, �u) appears to produce the correct results, it will be used in this thesis.
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3-3-2 Local Observability Analysis of the Full Three Dimensional Problem

The analysis in Section 3-3-1 can also be applied to the full three dimensional problem.
Referring to Section 2-3-3, Eq. (3-13) and Eq. (3-14) give a summary of the 3D problem with
the sensors package placed in the center of gravity (CoG) and aligned with the body frame
of reference:

�x =
[
u v w p q r θ ϕ d1 . . . d6

]T

�u =
[ Mx My Mz

]T

�z =
[

ΩX1 ΩZ1 ΩY2 ΩZ2 ΩX3 ΩZ3 ΩY4 ΩZ4 ΩX5 ΩY5 ΩX6 ΩY6 Ax Ay Az

]T

�̇x = �f (�x, �u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax − qw + rv − g sin θ
Ay − ru+ pw + g sinϕ cos θ
Az − pv + qu+ g cosϕ cos θ

MxIz−qrIz
2+qrIz Iy−Jxz p qIy+Jxz p qIx−J2

xzrq+Jxz Mz+Jxz p qIz

−J2
xz+Ix Iz

My−(Ix−Iz)rp−Jxz(p2−r2)
Iy

MzIx−p qIx Iy+p qI2
x−Jxz rqIz+Jxz rqIy−J2

xzp q+Jxz Mx−Jxz rqIx

−J2
xz+Iz Ix

q cosϕ− r sinϕ
p+ q sinϕ tan θ + r cosϕ tan θ

w1
...
w6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3-13)

�z = �haligned (�x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
d1

− r
w
d1

+ p
v
d2

− r
w
d2

+ q
u
d3

+ r
w
d3

− p
v
d4

+ r
w
d4

− q
u
d5

− q
v
d5

+ p
u
d6

+ q
v
d6

− p

u̇+ qw − rv + g sin θ
v̇ + ru− pw − g sinϕ cos θ
ẇ + pv − qu− g cosϕ cos θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3-14)
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Again, using Matlab Symbolic Toolbox, jacobians F (�x, �u) and Haligned (�x) have been com-
puted. F (�x, �u) doesn’t fit on a page, but Haligned (�x) gives:

Haligned (�x) = ∂
∂�x
�h (�x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
d1

0 0 0 0 −1 0 0 − u
d2
1

0 0 0 0 0
0 0 1

d1
1 0 0 0 0 − w

d2
1

0 0 0 0 0
0 1

d2
0 0 0 −1 0 0 0 − v

d2
2

0 0 0 0
0 0 1

d2
0 1 0 0 0 0 − w

d2
2

0 0 0 0
1
d3

0 0 0 0 1 0 0 0 0 − u
d2
3

0 0 0
0 0 1

d3
−1 0 0 0 0 0 0 − w

d2
3

0 0 0
0 1

d4
0 0 0 1 0 0 0 0 0 − v

d2
4

0 0
0 0 1

d4
0 −1 0 0 0 0 0 0 − w

d2
4

0 0
1
d5

0 0 0 −1 0 0 0 0 0 0 0 − u
d2
5

0
0 1

d5
0 1 0 0 0 0 0 0 0 0 − v

d2
5

0
1
d6

0 0 0 1 0 0 0 0 0 0 0 0 − u
d2
6

0 1
d6

0 −1 0 0 0 0 0 0 0 0 0 − v
d2
6

0 −r q 0 w −v g cos θ 0 0 0 0 0 0 0
r 0 −p −w 0 u g sinϕ sin θ −g cosϕ cos θ 0 0 0 0 0 0
−q p 0 v −u 0 g cosϕ sin θ g sinϕ cos θ 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The sensor package may also be positioned at an offset from the CoG and with an arbitrary
orientation as explained in Section 2-3-3. This results in modified observation equations and
has consequences for the observability as explained below.

The method of sampling the state space used in Section 3-3-1 to investigate the local ob-
servability is repeated here for select values of �x with a focus on zeros. Zero values appear
to be the only cases where the observability rank drops, with the exception of the attitude
angles which cause vanishing terms at some other values as well. Table 3-1 lists the findings
for the case where the sensor package is aligned with the body frame and positioned in the
CoG and for the case with a fixed rotation and displacement of the sensor package. Both the
rank of the Jacobian of the observations, H (x), and the local observability matrix O1 (x, u)
is listed. The first conclusion from Table 3-1 is that, in general, motion is required to observe
all the states. At least one component of both V and �ω should be nonzero in the case of
the rotated sensor package. The fact that the aligned sensor package has lower observability
rank in some cases can be explained by considering that the alignment means that some of
the measurements are, at least in theory, exactly zero. This means that the rotated sensor
package also has critical directions where the observability rank drops, but those directions
aren’t tested in this table.
Furthermore, the Jacobian of the measurement equations H (�x) already gives full rank in
most cases. So it should be possible to solve for �x with a nonlinear solver, using only h (�x).
However, nonlinear solvers are not adapted to stochastic processes and will not produce a
minimum variance solution as does the Kalman filter. Also, incorporating knowledge of the
system inertia and dynamics should produce more accurate results. Results in support of
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Table 3-1: Local observability

number of rank condition rank condition
zero states aligned case rotated case

V �ω θ&ϕ rankH rankO1 rankH rankO1

0 0 0 14 14 14 14
0 0 2 14 14 14 14
0 1 0 14 14 14 14
0 2 0 14 14 14 14
0 3 0 13 13 13 13
1 0 0 13 14 14 14
1 1 0 13 14 14 14
1 2 0 13 14 14 14
1 3 0 13 13 13 13
2 0 0 12 12 14 14
2 0 2 11 12 13 14
2 1 0 12 12 14 14
2 1 1 12 12 14 14
2 1 2 11 11 13 14
2 2 0 12 12 14 14
2 2 2 11 11 13 13
2 3 0 11 11 13 13
3 0 0 8 8 8 8
3 3 0 8 8 8 8
3 3 2 8 8 8 8

these assumptions have been obtained from attempts to solve Eq. (3-14) directly using sev-
eral nonlinear solver algorithms available in Matlab. The “best” result was achieved using
fminunc with the jacobian as given above. The solution took several hours to compute on a
2+ GHz Core 2 Duo machine for only 30 seconds of data. Moreover the solution was very
inaccurate compared to the Kalman filter performance.
A note about the use of the accelerometer data in the equations of motion. Ideally, the equa-
tions for u̇, v̇ and ẇ should include bias values for Ax, Ay and Az respectively. These are then
extra states with a derivative equal to zero. The current sensor configuration does however
not support this, because the problem including bias states is not observable. The addition
of 3 biases brings the state vector to a length of 17 elements. The highest value of rankO1

= 16. This is found by substituting into O1 a large set of random numerical values from the
domain of the state space.
To alleviate this problem, the accelerometer has been calibrated prior to each series of exper-
iment runs as described in Section 8-1.

3-3-3 Two Quantities to Gauge the Observability Condition

To gauge how well a system is observable, the observability condition number CO may be used,
(Chen, 1991; Driels & Pathre, 1990). It is derived from the singular value decomposition of
the observability matrix. For nonlinear, time-invariant systems Σ, this will depend on �x and
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�u, i.e. CO (�x, �u) is a local quantity for nonlinear systems.

Definition 3.5 Let a nonlinear state space system Σ be given as in Eq. (3-2) and
its local observability matrix O (�x, �u) as in Eq. (3-3). Then the observability condi-
tion number CO is defined as the ratio between the maximum and minimum nonzero
singular values of O (�x, �u). So,

O (�x, �u) = USV T

where U ∈ R
np×np and V ∈ R

n×n are orthogonal matrices and S ∈ R
np×n has its only

nonzero elements along the diagonal. These elements σi are ordered such that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, σr > σr+1 = 0

where r = rank (O (�x, �u)). Then CO = σ1
σr

.

A closely related measure, proposed by (Hong, Chun, Kwon & Lee, 2008), indicates the small-
est perturbation in O which makes O rank deficient:

Definition 3.6 Let O,Δ ∈ R
np×n, then

μ (O) ≡ min
rank(O−Δ)<n

‖Δ‖2

The following theorem provides a means to compute μ (O):

Theorem 3.4 (Golub & Loan, 1996, Th. 2.5.3) Let O,Δ ∈ R
np×n and σi as in defi-

nition 3.5 then,
μ (O) = σn

Note that these two observability condition measures may also be based on O1 (�x, �u) under the
same conditions as described at the end of Section 3-3-1. CO and μ (O) will be used to analyse
the observability condition development over time during simulation in the final thesis report.
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Chapter 4

Kalman Filters

4-1 Basic Kalman filter derivation

This section describes the derivation of the Kalman filter problem for linear systems. Al-
though the application to this work requires another type suited for nonlinear systems, the
Conventional Kalman filter problem still forms the basis for these as well. Its derivation
clearly shows the purpose of the Kalman filter as a zero bias, minimum variance estimator
based on the least squares cost function.

4-1-1 The state observer

The Kalman filter is part of the class of filters known as observers that reconstruct missing
information, such as part of the state vector, from measured output and input of a state-space
model.
To start the derivation of the Kalman filter problem, we start out with a deterministic linear
time invariant (LTI) model.

x (k + 1) = Ax (k) +Bu (k)
y (k) = Cx (k) +Du (k)

(4-1)

where x (k) ∈ R
n is the state vector, u (k) ∈ R

m is the input vector, y (k) ∈ R
l is the output

vector and k ∈ Z is the discrete-time sequence index.

Consider the approximation x̂ (k) of x (k) for k ≥ 0 with x (0) unknown. Using only u (k)
with initial state x̂ (0) 
= x (0), we have

x̂ (k + 1) = Ax̂ (k) +Bu (k)

and the error εx (k) = x̂ (k) − x (k) will diminish if and only if A is asymptotically stable.
This becomes apparent considering that

x̂ (k + 1) − x (k + 1) = Ax̂ (k) +Bu (k) −Ax (k) −Bu (k)
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⇒ εx (k + 1) = Aεx (k)

However, using only u (k) one has no control over the rate at which x̂ (k) converges to x (k).
The estimate can be improved by adding a correction term based on the difference between
the measured output y (k) and the estimated output ŷ (k) = Cx̂ (k) +Du (k):

K (y (k) − ŷ (k))

where K is a gain matrix. This results in

x̂ (k + 1) = Ax̂ (k) +Bu (k) +K (y (k) − Cx̂ (k) −Du (k)) (4-2)

K should be chosen such that the error εx (k) goes to zero for k → ∞. The state error
propagation equation satisfies

εx (k + 1) = (A−KC) εx (k)

from which it follows that K should make A −KC asymptotically stable. For the existence
of K the following condition holds:

Lemma 4.1 (Kailath, 1968) Given matrices A ∈ R
n×n and C ∈ R

l×n, if the pair
(A,C) is observable, then there exists a matrix K ∈ R

n×l such that A−KC is asymp-
totically stable.

4-1-2 the Conventional Kalman filter

The conventional Kalman filter originally described by (Kalman, 1960) is applicable to the
discrete-time LTI system corrupted with process and measurement noise vectors w (k) and
v (k), respectively:

x (k + 1) = Ax (k) +Bu (k) + w (k) (4-3)
z (k) = Cx (k) + v (k) (4-4)

where the direct feed-through term Du (k) has been omitted. This could be included as
well, but for a lot of problems the term is not needed. The logical step now is to apply the
asymptotical observer from Eq. (4-2). This yields

εx (k + 1) = (A−KC) εx (k) +Kv (k) − w (k)

for the error in the estimated state. However, the condition that the pair (A,C) must be
observable is not sufficient to obtain a minimal error εx, in contrast to the deterministic case
where the estimate will converge asymptotically to the true state if this condition holds. In
addition, we need to minimise the influence of w (k) and v (k) on the state estimate x̂ (k). An
important assumption here is that w (k) and v (k) are zero mean white-noise sequences, i.e.
they have a normal distribution with a joint covariance matrix

E

[ [
v (k)
w (k)

] [
v(j)T w(j)T

] ]
=

[
R (k) S(k)T

S (k) Q (k)

]
Δ (k − j) ≥ 0

If the assumption that w (k) and v (k) are uncorrelated holds, than S (k) is equal to the zero
matrix of appropriate dimensions.

M. J. Verveld M.Sc. Thesis



4-1 Basic Kalman filter derivation 43

To derive the estimated state at time step k, from time k − 1 the predicted state estimate
x̂ (k|k − 1) at time k is available, and furthermore u (k) and z (k). Since εx (k) is a stochastic
signal, we can require that its mean should equal zero. Secondly, in order to make the
fluctuations of εx as small as possible, the second order moment of the probability density
function of the error must be minimised. These two requirements mean that the desired
estimate x̂ (k|k) is unbiased

E [x (k)] = E [x̂ (k|k)] (4-5)

and the covariance matrix P (k|k) is minimal

minP (k|k) = minE
[
(x (k) − x̂ (k|k)) (x (k) − x̂ (k|k))T

]
(4-6)

For the prediction to time step k + 1, similar conditions hold. Note that the Kalman filter
can still be applied when the problem contains noises with other distributions than Gaussian,
but the resulting estimate will no longer satisfy the minimum variance condition, Eq. (4-6).
To derive expressions for x̂ (k|k), P (k|k), x̂ (k + 1|k) and P (k + 1|k), first rewrite Eq. (4-3)
and Eq. (4-4) as [

z (k)
−Bu (k)

]
=

[
C 0
A −In

] [
x (k)

x (k + 1)

]
+ L (k) ν (k) (4-7)

with L (k) from [
R (k) S (k)T

S (k) Q (k)

]
= L (k)L (k)T

and ν (k) an auxiliary variable representing the noise sequences. The problem can be written
in one equation where matrix M must be found to satisfy the conditions Eq. (4-5) and Eq.
(4-6): [

x̂ (k|k)
x̂ (k + 1|k)

]
=

[
M11 M12 M13

M21 M22 M23

]⎡
⎣ z (k)

−Bu (k)
x̂ (k|k − 1)

⎤
⎦ (4-8)

Substitution of Eq. (4-7) into Eq. (4-8) yields[
x̂ (k|k)

x̂ (k + 1|k)
]

=
[
M11C +M12A −M12

M21C +M22A −M22

] [
x (k)

x (k + 1)

]
+[

M11 M12

M21 M22

]
L (k) ν (k) +

[
M13

M23

]
x̂ (k|k − 1) (4-9)

To apply the unbiasedness condition, we need to evaluate the mean

E [x̂ (k|k)] = (M11C +M12A)E [x (k)] −M12E [x (k + 1)] +M13E [x̂ (k|k − 1)] ,

E [x̂ (k + 1|k)] = (M21C +M22A)E [x (k)] −M22E [x (k + 1)] +M23E [x̂ (k|k − 1)] .

Both equations satisfy the unbiasedness condition in Eq. (4-5) provided that

M12 = 0, M13 = In −M11C,

M22 = −In, M23 = A−M21C
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After substitution of these results into Eq. (4-9) and reordering, we obtain[
x (k) − x̂ (k|k)

x (k + 1) − x̂ (k + 1|k)
]

=
[
In −M11C
A−M21C

]
(x (k) − x̂ (k|k − 1))−

[
M11 0
M21 −In

]
L (k) ν (k)

This leaves M11 and M21 to be determined. The covariance matrices that are to be minimised
can be found by noting that ν (k) and (x (k) − x̂ (k|k − 1)) are uncorrelated, as follows

P (k|k) = E
[
(x (k) − x̂ (k|k)) (x (k) − x̂ (k|k))T

]
= P (k|k − 1) −M11CP (k|k − 1) − P (k|k − 1)CTMT

11

+M11

(
CP (k|k − 1)CT +R (k)

)
MT

11

(4-10)

and

P (k + 1|k) = E
[
(x (k + 1) − x̂ (k + 1|k)) (x (k + 1) − x̂ (k + 1|k))T

]
= AP (k|k − 1)AT +Q (k) −M21

(
CP (k|k − 1)AT + S (k)

)
− (

AP (k|k − 1)CT + S (k)
)
MT

21 +M21

(
CP (k|k − 1)CT +R (k)

)
MT

21

(4-11)

To apply the completion-of-squares argument from (Kailath, Sayed & Hassibi, 2000), Eq.
(4-10) can also be written as

P (k|k) = (In −M11C)P (k|k − 1) (In −M11C)T +M11R (k)MT
11

=
[
In −M11

] [ P (k|k − 1) P (k|k − 1)CT

CP (k|k − 1) CP (k|k − 1)CT +R (k)

]
︸ ︷︷ ︸

N

[
In

−MT
11

]
(4-12)

The underbraced matrix N can be factorised using the Schur complement
(Verhaegen & Verdult, 2007, p.19), where P is written in place of P (k|k − 1) for brevity:

N =
[
In PCT

(
CPCT +R (k)

)−1

0 Im

]
×

[
P − PCT

(
CPCT +R (k)

)−1
CP 0

0 CPCT +R (k)

]
×

[
In 0(

CPCT +R (k)
)−1

CP Im

]

Substituting this factorisation into Eq. (4-12) yields

P (k|k) = P (k|k − 1) − P (k|k − 1)CT
(
CP (k|k − 1)CT +R (k)

)−1
CP (k|k − 1)

+
(
P (k|k − 1)CT

(
CP (k|k − 1)CT +R (k)

)−1 −M11

) (
CP (k|k − 1)CT +R (k)

)
×

((
CP (k|k − 1)CT +R (k)

)−1
CP (k|k − 1) −MT

11

)
Since the covariance matrix R (k) of the measurement noise v (k) and a quadratic form are
both positive-definite, the term CP (k|k − 1)CT + R (k) is also positive definite. Therefore
the third term on the righthand side has a positive definite contribution to the covariance

M. J. Verveld M.Sc. Thesis



4-1 Basic Kalman filter derivation 45

P (k|k). Note that the first two terms on the righthand side do not depend on M11. Therefore
the minimum occurs when the last term vanishes. This occurs when

M11 = P (k|k − 1)CT
(
CP (k|k − 1)CT +R (k)

)−1

A similar derivation on P (k + 1|k) yields

M21 =
(
AP (k|k − 1)CT + S

) (
CP (k|k − 1)CT +R (k)

)−1

With all sub-matrices of M determined, substitution into the linear estimate equation Eq.
(4-8) gives the solution to the conventional Kalman filter problem for the unbiased, minimum
variance state estimate at time k

x̂ (k|k) = P (k|k − 1)CT
(
CP (k|k − 1)CT +R (k)

)−1
z (k)

+
(
In − P (k|k − 1)CT

(
CP (k|k − 1)CT +R (k)

)−1
C
)
x̂ (k|k − 1)

(4-13)

with covariance matrix

P (k|k) = P (k|k − 1) − P (k|k − 1)CT
(
CP (k|k − 1)CT +R (k)

)−1
CP (k|k − 1) (4-14)

and the one step ahead estimate

x̂ (k + 1|k) =
(
AP (k|k − 1)CT + S (k)

) (
CP (k|k − 1)CT +R (k)

)−1
z (k)

+Bu (k) +
(
A− (

AP (k|k − 1)CT + S (k)
)

× (
CP (k|k − 1)CT +R (k)

)−1
C
)
x̂ (k|k − 1)

(4-15)

with covariance matrix

P (k + 1|k) = AP (k|k − 1)AT +Q (k) − (
AP (k|k − 1)CT + S (k)

)
× (

CP (k|k − 1)CT +R (k)
)−1

(
CP (k|k − 1)AT + S (k)T

) (4-16)

The common notation for x̂ (k|k) and P (k|k) contains a matrix K (k) called the Kalman gain.
The expression in Eq. (4-13) can be written in terms of K (k) as follows:

K (k) = P (k|k − 1)CT
(
CP (k|k − 1)CT +R (k)

)−1
(4-17)

→ x̂ (k|k) = K (k) z (k) + (In −K (k)C) x̂ (k|k − 1)

→ x̂ (k|k) = x̂ (k|k − 1) +K (k) {z (k) − Cx̂ (k|k − 1)} (4-18)

and Eq. (4-14) becomes

P (k|k) = P (k|k − 1) −K (k)CP (k|k − 1) (4-19)
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4-2 Extended Kalman Filter

The original Kalman filter was developed to deal with linear systems. In the physical reality
however, the vast majority of processes have nonlinearities in their behaviour. Therefore many
attempts have been made to develop suitable minimum mean squared error (MMSE) estima-
tors for nonlinear problems. These are generally suboptimal solutions however, because the
optimal solution requires that the complete conditional probability density is known, which
may require an unbounded number of parameters (Kushner, 1967). A stochastic discrete-time
nonlinear state-space system can be modelled as follows:

x (k + 1) = fd (x (k) , u (k) , k) + Fw (k) ,
z (k) = h (x (k) , u (k) , k) +Gv (k)

(4-20)

where fd and h are nonlinear vector functions. The process and measurement noises w (k)
and v (k) are assumed to appear linearly in the model. The system whose states are to be
estimated is often continuous in time. In that case it can be described by a continuous time
process model. The system dynamics are then represented in generic continuous state space
form along with the discrete measurement equation in Eq. (4-21),

ẋ (t) = f (x (t) , u (t) , t) + Fw (t) , x (t0) = x0

y (t) = h (x (t) , u (t) , t)
z (k) = y (k) +Gv (k) , k = 1, . . . , N

(4-21)

In this case the one step ahead prediction, Eq. (4-25), can be calculated by directly integrating
the nominal state equation using a numerical integration routine. Note that the input vector
u (t) should be averaged or interpolated over the integration interval as denoted by ū.
The Extended Kalman filter (EKF) has been developed to apply the Kalman filter to the
system in Eq. (4-21). The idea is to linearise all the nonlinear models so that the conventional
Kalman filter can be applied.
A Taylor series expansion of the discrete time stochastic process∗ x (k + 1) = fd (x (k)) around
x̄ (k) = x̄k can be expressed as

x (k + 1) = fd (x (k)) = fd (x̄k + δxk) = fd (x̄k) +
∞∑

n=1

1
n!
∇nfd (x̄k) δxn

k (4-22)

where δxk is a zero mean Gaussian variable with covariance Pxx and x̄k is the mean state
vector at time k. The mean and covariance of x (k + 1) are, from (S. Julier & Uhlmann, 2001)

x̄ (k + 1) = fd (x̄k) +
1
2
∇2fd (x̄k)Pxx (k) +

1
4!
∇4fd (x̄k)E

{
δxk

4
}

+ . . . (4-23)

Pxx (k + 1) = ∇fd (x̄k)Pxx (k) (∇fd (x̄k))
T + 1

2×4!∇2fd (x̄k)
[
E

{
δxk

4
}

− E
{
δx2

kPxx (k)
}− E

{
Pxx (k) δx2

k

}
+ P 2

xx (k)
]

× (∇2fd (x̄k)
)T + 1

3!∇3fd (x̄k)E
{
δx4

k

} (∇3fd (x̄k)
)T + . . .

(4-24)

Observe that the nth order term in the series for x̄ (k + 1) is a function of the nth order
moment of x multiplied by the nth order derivative of fd (x) evaluated at x = x̄ (k). So the

∗for brevity, the dependence on u (k) and k has been omitted. This doesn’t change the form of the expansion
however
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mean is correct up to nth order provided that the moments and derivatives can be evaluated
correctly up to nth order. A similar reasoning holds for the covariance as well, although the
structure of the terms is more complex. Because the scaling factor multiplying each term
becomes progressively smaller for larger n, the lowest order terms will likely have the largest
impact on x̄ (k + 1) and Pxx (k + 1). Therefore, the filter algorithm should be concentrated
on evaluating the lowest order terms.
The EKF does exactly this: it truncates the Taylor series after the first term, assuming that
the second and higher order terms of δxk in Eq. (4-22) can be neglected. It follows that

x̄ (k + 1) ≈ fd (x̄k)

Pxx (k + 1) ≈ ∇fd (x̄k)Pxx (k) (∇fd (x̄k))
T

The observation function h is linearised along similar lines. The first order derivatives of
fd and h, the Jacobian matrices Fx and Hx, need to be evaluated at each time step. This
means that the EKF assumes both functions are differentiable. The EKF algorithm can be
summarised as follows:

1. the one step ahead prediction

x̂ (k + 1|k) = x̂ (k|k) +

tk+1∫
tk

f (x̂ (t|tk) , ū (t) , t) dt (4-25)

2. the error covariance matrix of the prediction

P (k + 1 | k) = Φ (k)P (k | k) ΦT (k) +Qd (4-26)

where
Φ (k) = exp (Fx (k) · (tk+1 − tk))

Fx (k) =
∂

∂x
f (x̂ (k | k) , u (k) , k)

Qd = ΓQΓT , Γ =
∂f

∂u

3. the Kalman gain matrix

K (k + 1) = P (k + 1 | k)HT
x (k + 1)

×{
Hx (k + 1)P (k + 1 | k)HT

x (k + 1) +R
}−1 (4-27)

where
Hx (k + 1) =

∂

∂x
h (x̂ (k + 1 | k) , u (k + 1) , k + 1)

4. the measurement update equation

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) +K (k + 1)
×{z (k + 1) − h (x̂ (k + 1 | k) , u (k + 1) , k + 1)} (4-28)

5. the error covariance matrix of the state estimate

P (k + 1 | k + 1) = [In −K (k + 1)Hx (k + 1)]P (k + 1 | k)
× [In −K (k + 1)Hx (k + 1)]T +K (k + 1)RKT (k + 1)

(4-29)
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4-3 Iterated Extended Kalman Filter

Depending on the problem, the EKF may not always converge. Especially, EKF performance
is sensitive to the choice of the initial state estimate. If this is not close enough to the true
state at that time, the filter may not converge. This also means that the estimate may diverge
at a later time, if the measurements are momentarily of poor quality. This limits the practical
usefulness of the EKF.
A method to reduce the effect of measurement function nonlinearity, thereby improving filter
performance and convergence interval, is due to J. V. Breakwell, although first published
by (Denham & Pines, 1966). It comprises local iteration of the measurement update, re-
linearising about the updated state x̂ (k + 1 | k + 1) to compute a new updated state which is
presumably closer to the true state. The iteration may continue until the difference between
two consecutive iteration steps is below a threshold ε. The algorithm is similar to the EKF,
with Eq. (4-28) replaced by Eq. (4-30). Let ηi be the ith iteration to the updated state, then

ηi+1 = x̂ (k + 1 | k) +K (k + 1)
× [z (k + 1) − h (ηi, u (k + 1) , k + 1) −Hx (k + 1, ηi) {x̂ (k + 1|k) − ηi}] (4-30)

So at each time step, η1 is set equal to x̂ (k + 1|k) and the stopping criterion is

‖ηi+1 − ηi‖∞
‖ηi‖∞

< ε

The last iteration is taken for x̂ (k + 1 | k + 1) and Eq. (4-29) is then evaluated based on this
last iteration.

(Breakwell, 1967) has pointed out that this local iteration produces a biased estimate. How-
ever, as the error covariance becomes smaller, so does the bias in the estimate. This presumes
that the filter is converging of course.
(Jazwinski, 1970) reports significant performance gains of the Iterated Extended Kalman
filter (IEKF) over the EKF in some simulated nonlinear systems. The example of a highly
nonlinear reentry simulation shows that most performance improvement is achieved with the
first two iterations.

4-4 Unscented Kalman Filter

To address the inaccuracies arising from the fundamental first order approximation inherent
to the EKF implementation, (S. J. Julier & Uhlmann, 1997) have introduced the concept of
Unscented Transforms and extended it to the problem of recursive estimation. The result is
known as the Unscented Kalman filter (UKF).
The UKF is based on the idea that

“it is easier to approximate a probability distribution than it is to approximate an
arbitrary nonlinear function or transformation”, (S. Julier & Uhlmann, 2001).

The algorithm is based on propagating a carefully selected set of state vector variations,
called sigma points, through the system nonlinear dynamics and then approximating the first

M. J. Verveld M.Sc. Thesis



4-4 Unscented Kalman Filter 49

two moments of the distribution through weighted sample mean and covariance calculations.
No linear approximation of the nonlinear transformation is applied and the order of the
approximation can be scaled by choosing the number of sigma points. Furthermore, the UKF
does not require the calculation of any Jacobian or Hessian matrices, not only simplifying
implementation, but also making it suitable for black box applications, e.g. in a filtering
toolbox and applications involving non-differentiable functions. When using the conventional
L+1 number of sigma points, the accuracy of the UKF can be compared to the second-order
Gauss filter and the computational order is O

(
L3

)
, which is comparable to the EKF. L is

the number of states to be estimated plus the process and measurement noise disturbances.

The UKF algorithm may be summarised as follows:

1. The state estimate and covariance are augmented with the mean and covariance of the
process noise

xa(k | k) =
[
x̂T(k | k) E

[
wT(k + 1)

] ]T

P a(k | k) =
[
P (k | k) 0

0 Q

]

2. A set of 2L+1 prediction sigma points is derived from the augmented state and covari-
ance where L is the dimension of the augmented state

χp,0(k | k) = xa(k | k)

χp,i(k | k) = xa(k | k) +
(√

(L+ λ)P a(k | k)
)

i
i = 1 . . . L

χp,i(k | k) = xa(k | k) −
(√

(L+ λ)P a(k | k)
)

i−L
i = (L+ 1) . . . 2L

where (√
(L+ λ)P a(k | k)

)
i

is the ith column of the matrix square root of

(L+ λ)P a(k | k)

using the definition: The matrix square root A of B satisfies B ≡ AAT .

3. The prediction sigma points are propagated through the equations of motion

χp,i(k + 1 | k) = f (χp,i(k | k)) i = 0 . . . 2L

4. The propagated sigma points are recombined to produce the predicted state and covari-
ance

x̂ (k + 1 | k) =
2L∑
i=0

Ws(i)χp,i(k + 1 | k)

P (k + 1 | k) =
2L∑
i=0

Wc(i) [χp,i(k + 1 | k) − x̂ (k + 1 | k)] [χp,i(k + 1 | k) − x̂ (k + 1 | k)]T
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where the weights for the state and covariance are given by

Ws(0) =
λ

L+ λ

Wc(0) =
λ

L+ λ
+

(
1 − α2 + β

)
Ws(i) = Wc(i) =

1
2 (L+ λ)

λ = α2 (L+ κ) − L

Values for α, β and κ have to be chosen to tune the prediction step. The constant α
determines the spread of the sigma points around xa(k | k) and is usually set to small
positive values less than one (typically in the range 0.001 to 1). The secondary scaling
parameter κ is usually set to either 0 or 3−L. When κ is set to 0, weights of the sigma
points are directly related to L. When κ = 3 − L, the 4th order moment information
is mostly captured in the true Gaussian case. β is used to incorporate prior knowledge
of the distribution of x in the computation of Wc (0). In the case of the Gaussian
distribution, the optimum value is β = 2. Some guidelines to choose these constants for
a particular problem are given in (S. J. Julier & Uhlmann, 2004).

5. For the update step the predicted state and covariance are augmented with the mean
and covariance of the measurement noise

xa(k + 1 | k) =
[
x̂T(k + 1 | k) E

[
vT(k + 1)

] ]T

P a(k + 1 | k) =
[
P (k + 1 | k) 0

0 R

]

6. A set of 2L+1 update sigma points is derived from xa(k + 1 | k) and P a(k + 1 | k) where
L is the dimension of the augmented state

χu,0(k + 1 | k) = xa(k + 1 | k)

χu,i(k + 1 | k) = xa(k + 1 | k) +
(√

(L+ λ)P a(k + 1 | k)
)

i
i = 1 . . . L

χu,i(k + 1 | k) = xa(k + 1 | k) −
(√

(L+ λ)P a(k + 1 | k)
)

i−L
i = (L+ 1) . . . 2L

7. Alternatively, the prediction sigma points propagated through the equations of motion
(step 3) can be used directly

χu,i(k + 1 | k) =
[
χT

p,i(k + 1 | k) E
[
vT(k + 1)

] ]T ±
√

(L+ λ)Ra

where

Ra =
[

0 0
0 R

]

8. The update sigma points are fed to the observation function h

γi(k + 1 | k) = h (χu,i(k + 1 | k)) i = 0 . . . 2L
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9. The result is recombined to yield the predicted measurement and predicted measurement
covariance

ẑ (k + 1 | k) =
2L∑
i=0

Ws(i) γi(k + 1 | k)

Pzz =
2L∑
i=0

Wc(i) [γi(k + 1 | k) − ẑ (k + 1 | k)] [γi(k + 1 | k) − ẑ (k + 1 | k)]T

10. the UKF Kalman gain is computed as

Kk+1 = PxzP
−1
zz

where the state-measurement cross-covariance matrix is expressed as

Pxz =
2L∑
i=0

Wc(i) [χu,i(k + 1 | k) − x̂ (k + 1 | k)] [γi(k + 1 | k) − ẑ (k + 1 | k)]T

11. The familiar state update equation is

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) +Kk+1 (z (k + 1) − ẑ (k + 1 | k))

12. Finally, the updated covariance is

P (k + 1 | k + 1) = P (k + 1 | k) −Kk+1PzzK
T
k+1

4-5 Hybrid Kalman Filter, a combination of IEKF and UKF

The overall structure of the Kalman filter lends itself to a simple combination of two filters.
As shown in Section 4-1, the Kalman filter has an observer structure consisting of a prediction
and a correction part. The prediction part yields x̂ (k + 1|k) and P (k + 1|k) which can then
be corrected with the second part of another filter algorithm.
There is a tradeoff between accuracy and computation time when comparing the (I)EKF
with the UKF. Applied to the optical flow (OF) problem in this thesis, it takes the UKF
about 6 times longer than the IEKF. The UKF does give better results however, so it may be
interesting to see whether the performance gain is achieved mainly in the prediction part or in
the correction part. In order to investigate this, the Hybrid Kalman Filter (HKF) algorithm
is introduced. It uses the UKF prediction (steps 1 - 4) and the IEKF correction (steps 3 - 5
with Eq. (4-30)).
If the performance of this filter is much like the UKF, it may be concluded that the largest
performance gain is due to the use of the Unscented Transform (UT) in the prediction part.
If, on the other hand, the HKF performs much like the IEKF, then the correction part is
most affected by the use of the UT. Of course, these results will only apply to this particular
problem as research results in literature show a large dependence of filter algorithms on the
specific problem they are solving.

M.Sc. Thesis M. J. Verveld



52 Kalman Filters

M. J. Verveld M.Sc. Thesis



Part II

Simulation
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Chapter 5

Structure

This chapter explains the goals which the simulation intends to fulfil and how the problem has
been approached. The simulated sensors require information not only about the vehicle state,
for which the equation of motion are solved, but also about the environment. Particularly,
the geometry of the walls surrounding the vehicle. An algorithm to calculate the required
camera viewing distances is described. Also, the digital nature of the data collection has been
modelled. Finally, the whole simulation process is summarised in a flow diagram.

5-1 Goals & Approach

The first goal of the simulations is to explore the problem in general. Defining the sensor
configuration has to be done based on which states should be estimated and the sensitivity of
the observability of those states to properties of the environment and the sensors themselves.
This includes e.g. the geometry and scale of the room, sensor noise level and camera field of
view.
The simulation should also provide a convenient and fast way to test various algorithms for
filtering the required state variables from the sensor data.
Finally, the simulations can be used to choose an experiment setup. It should give an idea
whether the experiment will be able to show the performance differences between the filter
algorithms.

The algorithms developed for filtering can later be used in the hardware-in-the-loop case.
To this end, it is important that the simulated data resembles the hardware as closely as
possible. This has been done by concurrently developing the simulation and the hardware.
In the first stage the simulation was used to define the concept and later on the simulation
has been refined using knowledge about the e.g. the sensor properties gained from building
the hardware.
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5-2 modelling

Xearth

Yearth

Zearth

Figure 5-1: Diagram of the room geometry

The first task was to generate optical flow signals. As the sensor concept is designed with
indoor flight in mind, the environment should be an enclosed space with walls and corners.
A generic room model has been created as in Figure 5-1. The origin of the earth frame of
reference is the starting position for the simulation. The direction of gravity is in the positive
Zearth direction. Six distances along the positive and negative directions of the axes define
the position of the walls.
The next step is to calculate the distance from an optical flow (OF)-camera to a wall along
the camera optical axis (the centerline of its field of view). The situation is sketched in
Figure 5-2. The position of the camera is at �p, the unit vector defining its optical axis is
�u, the line-of-sight distance is sI , the unit vector defining the wall orientation is �n and the
position of the wall is defined by its distance to the origin, dwall. A point on the plane of the
wall can be defined as: �a = −�n dwall.
The line-of-sight can be described by the parametric equation �L (s) = �p + s �u. �L (s) can
be parallel to the wall in which case �n · �u = 0. So this possibility should be checked. In
a numerical simulation, a threshold should be defined, as the dot product may never yield
exactly zero. Assuming that �L (s) is not parallel to the wall, the line-of-sight distance sI may
be calculated as follows. At the intersection point �b, �L (s) − �a is perpendicular to �n. This
condition is equivalent to �n ·

(
�L (s) − �a

)
= 0. Solving for s yields:

�n · (�p− �a) + s �n · �u = 0
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Xearth

Yearth

Zearth

�n

�u �p

dwall

sI

�a

�b

Figure 5-2: Line-of-sight calculation

→ sI =
−�n · (�p− �a)

�n · �u (5-1)

However, since there are six walls and six OF-cameras, each camera has to be tested for each
wall. This yields six distances for each camera, some of which will be negative. The negative
ones correspond to walls in the opposite direction of �u. The wall, which the sensor is looking
at, can be found by selecting the smallest positive distance. The distances found for each
sensor can then be substituted in Eq. (2-1) together with the vehicle motion to yield the OF
signals.

The model for the accelerometer signals simply uses Eq. (2-10) for the specific force
vector. The scale factor and bias error are assumed to remain constant and to have been
measured immediately before the experiment. This means they can be subtracted from the
measurement data and are therefore not required in the simulation.
Sofar only those physical processes have been described which are desirable to be measured.
Unfortunately though, all practical sensors are subject to additional undesirable processes
which affect their output. The most general one is measurement noise. This has been
modelled by adding a (band-limited) gaussian noise term to the signals. The magnitude of
the noise is determined as a fraction of the standard deviation of the signals themselves.
Anther important mechanism altering the ideal signals is the fact that the sensors have a
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(a) time domain

(b) frequency domain

Figure 5-3: Sampling a continuous signal

digital output, which, in the case of the OF-cameras, originates in the array of photoreceptors
and the digital signal processor (DSP). The accelerometers generate continuous signals
which are subsequently sampled in an analog-to-digital converter (ADC). Both types of
sensor output can be simulated by rounding the continuous signals to a set of discrete values
which are multiples of the step size. The rounding should be towards the zero, i.e. selecting
the first discrete value which is closer to zero than the continuous signal.
Also, the discrete signals are encoded using a finite number of bits. This means there is a
maximum and minimum value determined by the number of bits used. For example, an
eight bit ADC can produce [10000000, 01111111]output ⇒ [−10000000,+01111111]binary =
[−128,+127]decimal, using standard two’s complement encoding. Multiplying by the step
size, this yields the saturation limits of the digitised sensor system.
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In order to properly simulate the sample rate of the hardware, it may be necessary to choose
a lower sample rate for the sensor output than the dynamics requires for accurate numerical
integration. No low pass filtering has been applied prior to downsampling in the simulation,
because no indication has been found that the hardware does apply an analog low pass filter
before sampling. This means that high frequency signal content may show up in the sampled
signal as low frequency oscillations which aren’t present in the real process. This effect is
known as aliasing and it is an additional disturbance which has been intentionally simulated,
because it is expected to be present in the hardware as well.
An example of what happens when a continuous time analog signal is sampled at 5 Hz and
a sample step of 0.2, rounding towards the zero, is shown in Figure 5-3. The “continuous”
signal is simulated by taking a very small timestep. There are three additional peaks in the
spectrum plot of the signal which has been sampled without first applying a lowpass filter.
These are absent in the plot which has first been filtered using an 8th order Chebyshev Type
I lowpass filter with a cut-off frequency of 0.4 times the sample frequency. The additional
peaks are caused by the aliasing effect. No spectral content is present above 5/2 = 2.5 Hz
for the sampled signals. This means that when sampling at 50 Hz, the OF-cameras and
accelerometers cannot measure oscillations faster than 25 Hz, but they will get aliasing effects
from that region. So if there is a significant amount of power present at frequencies above
25 Hz, such as from sources like an electric motor, it will cause major measurement errors.
The hardware experiment doesn’t contain such vibration sources, thus limiting the problem.
The only high frequency source is the measurement noise originating in the sensors themselves.

The OF-sensors used in the hardware exhibit a peculiarity concerning the sampling: The step
size is a function of the sample timestep used. This is described in Chapter 7. The relation
is described by Eq. (7-1):

δΩ =
δα

dts
, δα = 5.48 · 10−3 rad

e.g. choosing dts = 0.02 s gives δΩ = 0.274 rad/s = 15.7 ◦/s, while choosing dts = 0.05 s
gives δΩ = 0.110 rad/s = 6.28 ◦/s. Clearly, there is a trade-off between high sample rates
and good sample resolution. This trade-off has been investigated by running simulations at
three sample rates: 3000 Hz, 50 Hz and 20 Hz. The first one is intended to provide an ideal
case and the lower two are realistic frequencies to run the hardware on.

To quickly implement simulations, the platform of choice is Matlab/Simulink. It provides
access to all the required tools for modelling a system and analysing data. Initially, the
system was simulated in Matlab only, but later it was moved to Simulink as it handles the
integration of the state derivatives, making the modelling easier. Also, it provides Embedded
Matlab (EML) functions, which are compiled to run much faster than the regular m-code and
output can be viewed while the simulation is still running.
The flow diagram of the simulation is shown in Figure 5-4. It gives an overview of the major
elements of the simulation and the data flows from one element to another. The process starts
by loading some parameters like aircraft inertias, room dimensions and initial conditions into
the Matlab workspace. Then the data generation Simulink model is called. The blocks
Pendulum, Helix and Random Force are three options for the input model. These calculate
the input vector �u =

[
X Y Z Mx My Mz

]T as a function of the current state of
the aircraft. Pendulum generates the input for a pendulum motion in one plane with drag
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Figure 5-4: Flow diagram of the simulation

simulating the hardware experiment setup, Helix produces an ascending helical flight path
with varying diameter and Random Force generates forces and moments from a gaussian
distribution with predetermined standard deviations.
Aircraft Dynamics calculates the aircraft motion using the general nonlinear equations of

motion (EoM) (Eq. (2-18)). The result is ~xaircraft =
[
u v w p q r ψ θ ϕ

]T
and

in addition the position and accelerations are output. The position is used by the helix
input and the accelerations are required for the accelerometer equations. The OF cameras

& accelerometers block generates the sensor signals ~y =
[
~ΩT ~fT

s

]T
and distances to walls

~d1−6 as described above. These are only the ideal processes without noise and generated at
the same frequency as ~xaircraft. These effects are added to the output by noise and sampling,
respectively. The sampling block uses a sampling timestep, which is an integer multiple of
the simulation timestep and an equidistant ADC step size with saturation limits.
The time sequences of ~u, ~x and ~yd are stored in a MAT-file for processing by the various
Kalman filter types, which are separate Simulink models, and finally presentation of the data
in plots to gauge the performance of the filters.
The Kalman filter is written in one EML function block which computes ~̂x and the state
covariance matrix P for one timestep. These are then fed back using a unit delay to the
prediction step together with ~u for computation of the predicted state ~xp and covariance Pp
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of the next timestep. The only components of �u being used as input by the Kalman filter are
Mx, My and Mz. The update step uses �yd together with R and Pp to correct �xp as described
in Chapter 4.
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Chapter 6

Results

This chapter describes which conditions have been simulated and discusses the resulting
filter output. To investigate the state estimation performance of the filter algorithms, some
important parameters have been varied. The combinations of parameter values creates a
number of condition cases for each of which simulated sensor and reference state data has
been generated. The graphs with the results are referred to in the text and have been included
with the appendix. Some simulation specific conclusions are drawn from the results, leaving
the overall conclusions to Chapter 10.

6-1 cases

(a) helix (b) pendulum

Figure 6-1: Tracks of the simulated vehicle with respect to the room (wireframe)
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Three filter algorithms have been tested using simulated data: the Iterated Extended Kalman
filter (IEKF), Hybrid Kalman Filter (HKF) and Unscented Kalman filter (UKF). Two of the
input conditions, namely the helical path and the pendulum motion have been applied to the
filters. The tracks of these motion cases are shown in Figure 6-1. The random force option is
not physically realistic and doesn’t add sufficiently to the results to include it in the analysis.
The data from the remaining two motion cases has been corrupted by measurement noise.
It is band-limited white noise, generated by Simulink and the standard deviation is 10% of
each signal standard deviation. Four sampling cases have been defined: case A uses a very
high sampling frequency of 3000 Hz and double precision numerical format (64 bits), case B
has been down-sampled to 50 Hz with double precision, case C is 50 Hz and 8-bit precision
and case D is 20 Hz and 8-bit. Table 6-1 gives an overview of the conditions. The last
two sampling cases use the same data rates and precision as produced by the ATmega1281
microcontroller and can therefore serve as a test to compare the simulated pendulum case
with the hardware experiment.
The initial conditions have been chosen as a generic estimate assuming some idea of the
dimensions of the environment and the vehicle motion. The helix has been estimated using

�x0 =
[

1 0 0 0 0 0 0 0 2 2 2 2 2 2
]T

and the pendulum using

�x0 =
[

0 0 0 0 0 0 −40 π
180 0 2 2 2 2 2 2

]T

Table 6-1: Simulation conditions

Sampling case Motion case
Case Noise-to-signal ratio dts [s] Num. format Helix Pendulum

IEKF IEKF
A 10% 1

3000 double (64-bit) HKF HKF
UKF UKF
IEKF IEKF

B 10% 1
50 double (64-bit) HKF HKF

UKF UKF
IEKF IEKF

C 10% 1
50 signed char (8-bit) HKF HKF

UKF UKF
IEKF IEKF

D 10% 1
20 signed char (8-bit) HKF HKF

UKF UKF

6-2 results

The resulting sensor output and motion state generated by the helix and pendulum simula-
tions is included with Appendix A-1 and Appendix B-1, respectively. They show the clean
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states without any noise or downsampling applied.
The helix provides a non periodic motion case with a frequency sweep and strongly varying
distances with discontinuous derivatives caused by the corners of the room. The rotational
rates are not synchronised with the “orbit”, in fact the moments have been generated with
Matlab’s white noise generator.
The pendulum is included for comparison material with the hardware experiment and so the
parameters have been chosen to match the experiment as closely as possible. This includes
the sensor board attitude with respect to the pendulum and its distance to the pendulum
centre of gravity. The resulting motion is a damped oscillation with one dominating
frequency. A number of velocities and rotations and ϕ remain zero, because the motion
remains in one plane.
The helix motion provides measured moments as inputs, while the pendulum is an au-
tonomous motion, i.e. there is no external input once the motion has started. With the
pendulum, the Kalman filters have to work without moments being supplied as known
quantities. However, two moments (Mx and Mz) are zero and My follows from the states.
This facilitates the experiment, simplifying measurements and repeatability. Other than
concerning the moments, the filter algorithms have not been modified to account for planar
motion in the pendulum case. The out-of-plane attitude of the sensor board with respect to
the pendulum results in sufficient signals on all optical flow (OF) components and specific
forces.

Table 6-2 provides an overview of the performance of the filters in terms of mean squared
error (MSE) of the dimensionless signals. All estimated states have been made dimensionless
through division by the mean square of the corresponding simulated states. It also shows
the mutual differences between the filters by the mean squared difference (MSD) of the
dimensionless estimated states.

Table 6-2: MSEs of the dimensionless estimated states and mutual differences between the filters

MSE MSE MSE MSD MSD MSD
Simulation Run of the of the of the between between between

IEKF HKF UKF IEKF & HKF IEKF & UKF UKF & HKF
helix case A 0.2319 0.1746 0.1937 0.2383 0.2600 0.0388
helix case B 1.5433 0.5111 0.6293 1.4029 1.5050 0.4744
helix case C 0.7271 0.5719 0.7331 0.8090 0.9189 0.4963
helix case D 3.1604 0.6092 0.9111 3.0702 3.2928 0.7987

pendulum case A 0.2310 0.0875 0.1052 0.2712 0.3010 0.0450
pendulum case B 0.5463 0.1670 0.1764 0.5373 0.5493 0.0447
pendulum case C 0.6640 0.2506 0.2603 0.5760 0.5879 0.0492
pendulum case D 11.7048 0.1920 0.2044 11.7343 11.7349 0.0520

The mean values presented in the table are composed of all elements of the state vector. That
is also the reason for first making all values dimensionless. This condenses the information,
but each individual value has little meaning as such. Rather, the idea is to compare the MSEs
between filters and sample cases. This gives a quick indication of the relative performance of
the filters under the various conditions.
The pendulum case is only based on the nonzero states. The simulated states which remain
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zero, because of the in-plane motion, cannot be used for division to make the corresponding
estimated states dimensionless.
There is a general trend (with 3 exceptions) of increasing MSEs going from case A to D.
This is expected as the quality of the data also decrease from A to D. The IEKF results of
the pendulum case D have diverged which explains the very high MSE.
The MSDs show how closely the estimated states follow each other. This metric has been
chosen instead of the more common correlation, because it divides the differences by the
same value as the MSEs thus allowing comparison between MSE and MSD as well.
The MSDs give an answer to the question posed in Section 4-5, namely which part of the
UKF filter provides the largest contribution to the performance gain observed between IEKF
and UKF. Since the HKF has similar MSE as the UKF and has a much smaller MSD
with the UKF than with the IEKF, it may be concluded that the effect of the Unscented
Transform (UT) in the prediction part may be attributed with the largest performance
gain. After all, the UT has been implemented in the prediction part of the HKF. This is
also the most computationally intensive part since it involves 4n + 1 function evaluations
of the equations of motion (EoM), steps 2 and 3 in Section 4-4, whereas the IEKF requires
only one. Application of the UT to the update part uses the propagated sigma points from
the prediction which are then fed to the observation function. This is algebraic however,
requiring no expensive integration algorithm and is therefore much quicker.
The HKF does even more than just approach the UKF performance, it slightly improves
on it. The iterations in the update part (Eq. (4-30) on page 48) may be the cause of this
improvement. In any case, it is apparent that the nonlinear nature of the observation
equations from Section 2-3-3 does not provide a performance advantage to the UT based
update part. This is a remarkable and unexpected finding. (S. Julier & Uhlmann, 2001)
describe a benefit for systems involving coordinate transformations. The observation
equations in this work also involve a transformation from body frame to the rotated sensor
frame. Moreover, the prediction does not provide any information on the distances, which
are the hardest states to estimate. So these have to be estimated entirely by the update part.
Nevertheless, the iterated linearised algorithm of the IEKF, using the predicted state and co-
variance from the UKF, does this even a little better than the UT based algorithm. Whether
the small performance difference is significant cannot be concluded from these results however.

A more detailed overview of the results is given by graphs. The errors of the estimated states
of the helix motion have been plotted in Figures A-8 - A-23 and of the pendulum motion in
Figures B-7 - B-22. All three filter types have been plotted together allowing for performance
comparison.
Looking at these figures, the first point of observation is that the IEKF produces the largest
errors and that UKF and HKF have very similar performance, although the HKF converges
a bit faster. These conclusions have also been drawn based on Table 6-2. The IEKF has
a smaller convergence zone, an example of which can be seen in the graphs of helix case B,
Figures A-12 - A-15. Initially the errors are large until the solution happens to get close, after
which it converges and the errors stay smaller.
Rotational rates are estimated well by the UKF/HKF, even at 20 Hz, while the attitude
estimation deteriorates more quickly at low signal resolutions. The distance estimates tend
to lag a bit when abrupt changes in distance occur. The pendulum results show a clear
periodicity in the distance errors because of this lagging.
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Among the sample parameters which were changed between the cases, the sample rate has
the largest impact on performance. The benefit of a better OF resolution, δΩ, with 20 Hz,
compared to 50 Hz doesn’t show in the results, because the lower sample rate itself has a
larger negative influence. The graphs show the change from double precision to signed 8-bit
integers to hardly have an effect on the performance.
The observability condition number CO yields an interesting observation in the pendulum
case. Although it has not been included with the plots explicitly, CO shows peaks when the
pendulum velocity crosses zero. The peaks indicate points in the state space with difficult
observability. The velocity error graphs of the UKF/HKF show the largest errors just after
this zero crossing. This suggests that the difficult observability condition at the direction
reversals may drive the errors in these estimates. More on CO will follow in the hardware
experiment results, where the observability condition numbers have been plotted.
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Chapter 7

Hardware Description

The hardware, which was built for the experiment, is shown in Figure 7-1. Its overall
dimensions are 66× 51× 41mm. There are four double sided copper circuit boards consisting
of two copper layers with an insulating polymer substrate in between them. Three of them
are identical and contain the optical flow (OF)-cameras. The fourth is the main board which
connects the sensors to the microcontroller (μC), the μC to an external computer via serial
link, it provides a clock signal for the μC and a direct current (DC) voltage conversion. In
addition, a small board containing the 3-axis accelerometer has been glued onto the main
board such that the accelerometer axes are parallel to the optical axes of the OF-cameras.
The accelerometer is connected to two pins of the μC using an I2C serial interface.
The surface of the boards in the picture is textured with the “blueprint” of the circuitry.
This blueprint has been used by the CNC mill at Aerospace Software and Technologies
Institute (ASTI) to remove copper at the red or blue coloured areas creating separate
conduction paths. Red is for one side and blue for the opposite side. This method allows
for rapid prototyping of new electronics designs. Compared to conventional etched boards it
has the disadvantage that the copper on the conduction paths may tear during milling which
can interrupt the connection. Also while in use the board remains vulnerable. A number of
bypasses needed to be soldered onto the boards to repair such damage.
The central component of the system is an AVR ATmega1281 μC with an 8-bit Reduced
Instruction Set Computer (RISC) architecture. This means it runs only using simple instruc-
tions such as bit shifting, addition and multiplication of 8-bit integers. These instructions
are each executed in a single clock cycle. If higher precision integer operations are required,
it will take more than one clock cycle. The integer arithmetic poses severe limitations on
the ability to do onboard Kalman filtering, in addition to the fact that the computational
power is at least two orders of magnitude too low. The μC is still very useful for collecting
measurement data and forwarding this to the host PC. It is well possible to do this at very
precise intervals using the onboard counters which can act as timers and run independently
of the CPU. There are several other such peripheral features such as ADCs, Pulse Width
Modulation (PWM) and a number of general purpose and specific I/O ports. These ports
have been used to communicate with the sensors and with the host PC.
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Figure 7-1: 3D render of the sensor board with 6 OF-sensors and a 3-axis accelerometer
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The six ADNS-5030 OF Integrated Circuits (ICs) are mounted on three satellite boards as
shown in the 3D images. The configuration is designed such that the sensor pairs on each
board look in opposite directions and the satellite boards point in three mutually orthogonal
directions. They are connected to the μC using a 4-wire serial bus using the Serial Peripheral
Interface Bus (SPI) protocol. There is the Master out Slave in (MOSI) pin for sending bits
to the ADNS-5030, the Master in Slave out (MISO) pin for sending bits back to the μC,
the Serial Clock (SCK) providing the clock signal for synchronous data transfer and a Chip
Select (CS) pin for each ADNS-5030. The slaved ADNS-5030 chips only respond when their
CS pin is low. This means collecting data from all 6 can be done sequentially through the
same two pins (MISO and MOSI) on the μC by pulling each CS down in turn, while pulling
up the other Chip Selects. First, an address byte is sent to specify the register from which
the contents must be read. Then a zero byte is sent while at the same time the data from the
register comes in through the MISO.
The OF signal from each ADNS-5030 has two components which are stored in two registers.
The data sequence to read out all OF sensors in one timestep is as follows:

1. Pull the CS pin of chip x low and the CS of chip x− 1 high;

2. write the power & resolution register to select normal operation and high resolution
(1000 cpi);

3. read the motion register to check whether new motion data is available;

4. read the Delta X register for the first OF component;

5. read the Delta Y register for the second OF component;

6. read the quality register to see whether a sufficient number of features are being tracked;

7. and finally continue to the next chip returning to step 1.

To get the OF data from all six sensors takes 4.18 milliseconds. Strictly, the data is not
recorded at the same time instant, but the small time delay between the sensors has been
neglected.
The ADNS-5030 outputs a count in its Delta X and Delta Y registers representing units of
displacement of the mouse (1 counter increment equals 1 · 10−3 inch displacement). This
count accumulates until the registers are read out resetting the value to zero. In order to
convert these counts to OF, one needs to know the sample timestep dts and the geometry of
the mouse assembly which is implicitly assumed by the manufacturer when they define a unit
count value. This geometry is shown in Figure 7-2.
The quantity actually measured by the sensor is an angle. A feature tracked across the
sensor surface represents a certain angular displacement. When this angular displacement is
combined with the surface-to-lens distance it yields the translatory displacement referred to
by the manufacturer. In the mouse assembly, the surface to lens distance is 4.90 mm. One
counter increment is then equivalent to an angular displacement δα of 25.4

1000·4.90 = 5.18 · 10−3

rad. This quantity holds for the mouse assembly which has a field of view angle of 0.180 rad.
The field of view of the OF-camera is 0.190 rad. Therefore, in this application a unit counter
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Figure 7-2: The ADNS-5030 IC in its intended mouse application assembly, (Avago, 2008)

increment corresponds to δα = 0.190
0.180 5.18 · 10−3 = 5.48 · 10−3 rad.

The OF step size produced by the ADNS-5030 can now be expressed as

δΩ =
δα

dts
(7-1)

e.g. choosing dts = 0.02 s gives δΩ = 0.274 rad/s = 15.7 ◦/s, while choosing dts = 0.05 s
gives δΩ = 0.110 rad/s = 6.28 ◦/s. Clearly, there is a trade-off between high sample rates
and good sample resolution. A large δΩ leads to large rounding errors, especially since the
registers are reset to zero after a read operation, effectively producing a round-towards-zero
behaviour. This trade-off has been investigated by running the experiment at several sample
rates.

The 3-axis accelerometer on the sensor board is the LIS302DL. It is a compact (3×5×0.9mm)
Micro-Electro-Mechanical Systems (MEMS) device with built-in ADCs. This means that
the output is stored in digital registers as signed 8-bit integers, like in the case of the
ADNS-5030. There are two sensitivity settings available, namely ±2 g or ±8 g. These are
actually minimum values and in reality the values are typically ±2.3 g or ±9.2 g, respectively.
For this application, ±2 g is the most appropriate setting, because a high sensitivity is critical
for good filter performance. The signed 8-bit integer encoding means that the sampling
step size is about 18 mg. Of course, the actual values must be measured in order to get
correct results. The calibration procedure is described in Chapter 8. Also, as explained in
Chapter 5, aliasing may be an issue with this sensor, as there is no mention of any low pass
filter being applied. Only a high pass filter may be enabled, but this doesn’t solve aliasing
and is not desirable for this application.
An Inter-Integrated Circuit Bus (I2C) interface connects the accelerometer with the μC.
This is a two wire serial interface with a clock line (SCL) and a data line (SDA) which are
both bidirectional. Each bit transferred on the SDA is accompanied by a pulse on the SCL.
The μC is configured as the master device and the accelerometer as a slave. The master
initiates all communication by generating a start code. In order to read from a register on
the LIS302DL, the Master sends the address of the slave device ending with a zero to signify
that the following data will be “written” to the slave. This is followed by the address of the
register to be read. Message acknowledgement bits are returned by the slave after both. A
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new start code follows and then the slave address is sent again, but this time ended with a
one to indicate a read request. The slave should respond with an acknowledge bit followed
by the data byte in the register of interest. Finally the master sends an acknowledge bit
followed by a stop code.
In this case, the I2C has been implemented in software using two general purpose I/O pins on
the μC. It is generally slower since the CPU has to handle all operations, while a hardware
peripheral implementation can run parallel to other CPU tasks. That is not a problem
however, since the data rate is limited by the consideration of OF resolution (δΩ) which
leaves enough time to handle software I2C for the accelerometer. The details of this interface,
especially the timings, are very device specific and custom code was already available for the
LIS302DL making it the convenient option as well.

As mentioned before, the experiment has been run at several values of sample timestep dts.
The shortest possible dts is determined by the time it takes to get the data from the sensors
and to send it to the PC. This takes on average 38227 clock cycles which at 3.6864 MHz
amounts to 10.37 ms or a sample frequency of 96 Hz. The first versions of the onboard
software worked with this timestep, simply executing all the tasks in the loop without
waiting. However, as explained above, the OF resolution (δΩ) depends on dts. It is therefore
important to have control over the time between readouts of the sensors. To achieve this,
one of the onboard counters has been used. It has a 16 bit memory register for the count
value and can be connected to the system clock signal, or external source, either directly
or through a 1/8 frequency reduction. In this case, the counter has been hooked up with
the system clock through the frequency reduction. Furthermore, it has an output compare
register to enable counting a predetermined number of clock cycles. Although it is possible to
let the counter trigger an interrupt when the count reaches the value in the output compare
register, this was not necessary in this case since the CPU doesn’t have any other tasks to
attend to while waiting for the start of the next sample timestep. Therefore, after the data
has been forwarded to the PC, the CPU starts polling the flag which signals that the number
of clock cycles is equal to the output compare register. When this occurs the flag and the
counter value are reset and the program continues with the next sampling cycle. Figure 7-3
shows the situation when dts = 0.02s. Each segment amounts to the time spent on one task
with respect to the duration of the entire sampling cycle.

The communication with the host PC is taken care of using the Universal Asynchronous
Receiver/Transmitter (UART) interface. Asynchronous means that there is no common clock
signal between the two communicators. The receiver has to synchronise its internally gener-
ated baud rate with the phase of the received start bit. If the transmitter is sending frames
at too fast or too slow bit rates, the receiver will not be able to synchronise the frames to the
start bit. Frequency mismatch is introduced if the baud rate generator can not do an exact
division of the system frequency to get the baud rate wanted. The resulting errors become
larger when a higher baud rate is requested. Therefore, the system clock source has been set
to the external full swing crystal oscillator on the main board in Figure 7-1, which runs at
3.68640 MHz. At this frequency all standard baud rates up to 230.4 kbps are exact divisions
of the system clock. This allows for faster communication with the host PC.
The bytes from a received frame are put in a buffer until the CPU has time to process them
or the buffer becomes full. An interrupt flag may be enabled to signal the arrival of new
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Figure 7-3: Sampling cycle pie chart, the numbers represent time in seconds from the start of
the cycle

bytes. This has been done in the μC to let the program react to a command from the user
immediately. Only at some stages it is preferable not to interrupt the CPU, such as while
communicating with the sensors. Therefore, interrupts are temporarily disabled during those
intervals.
It is most convenient to use a USB to TTL serial converter cable for the connection with the
PC/laptop. These are available with a 0.1 inch 6 pin single in line female connector which
plugs readily into the serial and power connector. The pin layout starting from pin 1 is GND,
CTS#, VCC, TXD, RXD and RTS#. GND is the ground pin. VCC should provide a voltage
in the range of 3.3 - 5V in order for the voltage regulator to work. TXD is the transmit pin
from the PC perspective. It connects to the RXD pin on the μC. The RXD pin on the cable
receives data from the μC TXD. CTS# and RTS# are not used.
In order to write new code into the Flash memory of the μC while it is in-system, there is
a 6 pin In-System Programming (ISP) port available. The AVRISP mkII In-System Pro-
grammer by Atmel has been used in combination with AVR Studio 4 to upload code to the
Atmega1281. This allows for rapid debugging and changing of functionality while testing the
sensor board. AVR Studio is a software development environment based on the C language
with a compiler for the AVR μC family. It has the capability to test run code by emulating
the μC, showing exactly what happens at each clock cycle and linking these actions to the C
statements. This is very useful for debugging and checking the functionality prior to loading
the software onto the μC.
A functional flow diagram of the final version of the C-code has been included as Figure D-1
in Section D-1 of the Appendix.
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Chapter 8

Sensor Calibration

The output of real-world measurement instruments cannot be expected to correspond to the
quantities being measured without a proper calibration procedure. Many factors influence
the raw signal. A calibration procedure aims to correct for the quasi-constant factors, i.e.
the ones with a sufficiently constant value over the calibration interval. These may include
manufacturing imperfections, slow processes in the sensor or environmental factors, e.g. the
effect that a change of local gravity has on a pendulum clock.
In order to calibrate an instrument, one needs a standard. This may be another instrument
with an accuracy which is known to be better than the required tolerance. In some cases it
may also be a physical quantity of known magnitude, e.g. a proof mass.
This chapter discusses the calibration procedures which have been employed for the sensor
board in this thesis work.

8-1 Accelerometer Calibration Procedure and Results

Some accuracy characteristics of the LIS302DL accelerometer from the data sheet are given
in table 8-1. It is clear that both the sensitivity and bias are not very accurately known

Table 8-1: Some LIS302DL Mechanical Characteristics, (“LIS302DL Datasheet”, 2007)

Parameter Min. Typ. Max. Unit
Measurement range ±2.0 ±2.3 ±2.5 g
Sensitivity 16.2 18 19.8 mg/digit
Sensitivity change vs
temperature

±0.01 %/◦C

Typical zero-g level
offset accuracy

±40 mg

Zero-g level change
vs temperature

±0.5 mg/◦C
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by the manufacturer. Also, there is a significant temperature dependency. The calibration
procedure will attempt to determine the current sensitivity and bias for each of the three
axes. It is assumed that the temperature remains sufficiently constant during the experiment
session following a calibration. It means that some warmup time must be allowed before the
calibration procedure is performed and that the power remains turned on throughout the
experiment session.
Gravity is used as the standard for calibrating the accelerometer. The local gravity magnitude
has been taken to be 9.81276 m/s2, which is the typical value measured in Soest∗ from
(Anderson, 1998). Note that the units of g used by the manufacturer are assumed to refer to
the conventional standard value of 9.80665 m/s2.
The procedure to calibrate the direct digital output �Araw (in 8-bit signed integer form) and
obtain the specific force vector �fs, is as follows:

1. With the power and serial data connection plugged in, the sensor board is clamped to
a lab stand in an orientation such that the X-axis output is maximised. This is done by
manipulating the clamp and watching the output with a short period moving average
to get a more stable readout.

2. When the maximum is found, the setup is left stationary and the subsequent data are
logged over a period of one minute.

3. The mean of this dataset is recorded as Axmax .

4. Steps 1 - 3 are repeated for the opposite direction and then for the Y and Z-axes,
yielding an additional 5 values.

5. The bias and scale values for each axis are calculated as follows:

biasx = Axmax+Axmin
2

biasy = Aymax+Aymin
2

biasz = Azmax+Azmin
2

(8-1)

scalex = 2g
Axmax−Axmin

scaley = 2g
Aymax−Aymin

scalez = 2g
Azmax−Azmin

(8-2)

6. Finally the calibrated accelerometer output is:

�fs =

⎡
⎣ scalex 0 0

0 scaley 0
0 0 scalez

⎤
⎦
⎛
⎝ �Araw −

⎡
⎣ biasx

biasy

biasz

⎤
⎦
⎞
⎠ (8-3)

This is a simple calibration procedure which assumes that the axes are exactly mutually
orthogonal. To also measure the deviations from orthogonality one needs to use a two-axis
turn table and measure output at many different attitudes. Although such a turn table is
available, it is not practical to use it for the following reason: The experiment is carried out in

∗Soest is the geographically closest value from a reliable source that the author could find. It should be
accurate for Delft to within ±0.01%
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a different building and in several sessions. The accelerometer must be calibrated before each
session as its internal temperature has an influence on the measurements. Disconnecting the
accelerometer and carrying it outdoors and into a room at another temperature might very
well have more adverse effects on the calibration than the benefits afforded by using the turn
table. The simple calibration procedure described above can be performed quickly and in
the same environment as the experiment itself ensuring more constant conditions. Therefore,
only the simple calibration has been performed.

8-2 Sensor Board Attitude Determination

The sensor board has been attached to the pendulum at a fixed orientation. In order to
measure this orientation, the calibrated accelerometer signals have been used. The pendulum
is constrained to swing only in one plane. By measuring the gravity vector at several pendulum
positions in this plane, the attitude of the sensor board with respect to the pendulum may
be found. In order to measure only gravity, the pendulum has to be stationary. So additional
strings have been attached to fix the pendulum at an attitude of about 40◦ to either side.
These angles don’t have to be precise as long as the pendulum is in its plane of swing.
Measurements were taken for a period of at least one minute at these attitudes and at the
straight down equilibrium (0◦) attitude. The mean of the resulting data has been taken to
find g-vectors at these three attitudes:

�g (θ ≈ −40◦) =
[ −9.129054766208 0.3234418409320 3.759077245266

]T

�g (θ = 0◦) =
[ −6.774889040408 7.1458360400000 1.268402844240

]T

�g (θ ≈ +40◦) =
[ −1.267322016168 9.5017698009360 −2.221252216848

]T

The pendulum- (or body-) fixed frame of reference has been defined with theXB-axis pointing
in the direction of motion, the ZB-axis pointing straight towards the centre of the earth when
the pendulum is in its equilibrium position and the YB-axis normal to the plane of swing such
that it forms a right-handed coordinate system.
The directions of the axes of the pendulum frame can be found in the sensor board frame
of reference as follows. The three measured gravity vectors should all lie in one plane. This
is the plane of swing of the pendulum. There are three combinations into pairs of vectors
possible. The vector cross product of each pair yields a normal vector to the plane. Of course
these normal vectors aren’t exactly the same, so the mean of the three results is taken as the
best estimate of the vector normal to the plane of swing. The result is then divided by its
2-norm to yield a unit length vector �nYB,sensor defining the direction of the YB-axis in the
sensor board frame. �g (θ = 0◦) is also divided by its length to yield �nZB,sensor and finally
�nXB,sensor is found by taking the cross product of the other two directions, taking care of the
order to get a right-handed coordinate system.
The goal of this procedure can be most conveniently expressed as a direction cosine matrix
(DCM). The DCM from body to sensor board frame may be expressed in the directions found
as follows:

DCMb→s =
[
�nXB,sensor �nYB,sensor �nZB ,sensor

]
=

⎡
⎣ −0.6077 −0.4060 0.6824

−0.6557 −0.2278 −0.7197
0.4477 −0.8848 −0.1278

⎤
⎦

Of course, DCMs→b = DCMT
b→s because the DCM is orthogonal by definition.
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8-3 OF Sensor Calibration Procedure and Results

The optical flow (OF) sensors produce counts of angular displacements of features as described
in Chapter 7. Knowing the original lens geometry, the present field of view (fov) angle and
the sample timestep one may calculate the expected OF step size as has been done in that
chapter. However, the actual value may be slightly different due to tolerances in the geometry
and possibly other factors. Therefore, a calibration curve is required relating the scale factor
to the measured OF.
The sample timestep dts is expected to have an influence on the calibration curve, since it
affects the scale factor:

δΩ =
δα

dts

Also, the registers containing the count are flushed when they are read, effectively creating
a round-towards-zero behaviour. Thus, a larger δΩ can be expected to increase this effect
thereby increasing the lower threshold for accurate OF measurements.
The experiment has been carried out using primarily TL tubes as light source. In addition,
some light bulbs were directed at the ceiling. These light sources are all connected to the
same AC power source. This means the light intensity oscillates at 50 Hz. These oscillations
might have an effect on the perceived OF. The effect is hard to predict because the internal
frame rate of the ADNS-5030 is self-adjusting according to an unknown algorithm.
Another factor which is known to strongly influence the sensor output is the number of texture
features present on the surface of the objects in the sensor fov. Also, light intensity is an
important factor. For the experiment, these last two factors have been dealt with by making
sure that both are sufficient. The ADNS-5030 has not been designed for the task it is being
used for and future applications may have access to better quality sensors. In order for the
Kalman filter to work, the signal should be as good as possible, so the experiment aims to
provide optimal lighting and texture conditions.
The calibration procedure has been carried out once before the experiments. That should be
sufficient, because the factors affecting this sensor calibration are expected to be very constant
in time and reasonably independent of other environmental variables.
The single axis turn table of the instrument lab (room 0.44) at the faculty of Aerospace
Engineering in Delft has been used as the standard for the calibration. It can be set to a
constant rotational velocity, whose rate is checked using an optical interruptor sensor and a
timer. The setup is shown in Figure 8-1. The procedure is as follows:

1. The sensor board is mounted in the centre of the turn table and connected to a laptop
through the sliding contacts on the table.

2. Surrounding the table is a metal ring meant as a safety fence. The inside of this ring
(the side facing the sensor) is used to attach paper to. The white paper has a black dot
print on it with a random pattern. The dots range in diameter between 22 and 44 mm.
This size gives a well contrasting texture for the sensor at the distance involved.

3. The table is tuned to a certain angular velocity.

4. Once the angular velocity has been checked and tuned with the timer, measurement
data from the sensor board is logged to the laptop for a period of about one minute.
Note that the OF data from the sensor board is pre-processed by multiplying the 8-bit
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Figure 8-1: The calibration setup. The top image shows the turn table with its controls and the
metal fence surrounding it. To the left of it, the laptop for logging the data and to the left of
that the timer for tuning the desired angular rate of the turn table. The bottom image shows the
top of the turn table with the sensor board mounted to it. The torch next to it is composed of
multiple LEDs. The textured paper at which the sensor is looking can be seen on the inside of
the fence.

signed integers from the ADNS-5030 by δΩ which yields the expected magnitude of the
OF.

5. Steps 3 and 4 are repeated until the following range of angular velocities has been
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covered:

ω = ±{
20 60 100 140 180 220 260 300 340

}
deg/s

6. The logged data for each ω is filtered to remove spikes and subsequently the mean is
taken. This value is the measured OF (Ωm) corresponding to that value of ω.

7. Because the sensor motion is purely rotational, the sensor output should equal ω. A
calibration graph is constructed by plotting the correction factors ω

Ωm
versus Ωm and

interpolating the data points using Matlab’s shape-preserving piecewise cubic interpo-
lation.
To correct new measurement data, a table lookup function may be used to obtain the
correction factor corresponding to the pre-processed sensor output Ωm and multiply
that correction factor with Ωm to obtain the calibrated OF.

The whole procedure has been carried out at 50 Hz sample rate (dts = 0.02 s) with TL tubes
as a light source, at 25 Hz (dts = 0.04) with TL light and at 50 Hz with a DC light source
(to test the effect of oscillations in the light intensity). The graph showing the resulting three
calibration curves is shown in Figure 8-2. The first observation is that the minimum reliable
Ω depends clearly on dts. Both graphs sampled at 50 Hz show a sharp drop around the same
value of |Ωm|, whereas the one at 25 Hz drops away at half the angular rate. Considering
the assumption that the output would be rounded towards zero, it is an unexpected effect
that the graphs quickly drop away below the point where they pass the unit correction factor
value. In that case, one would expect the raw data to undervalue the actual Ω, thereby
causing a higher correction factor close to zero. Clearly another effect dominates the signal,
if the rounding issue exists at all. The data sheet of the ADNS-5030 offers no information
on the exact process of the flushing of the registers and it is possible that the digital signal
processor (DSP) continues an internal count.
The general trend is an increasing correction factor with increasing |Ωm|. Towards the high
angular rates this may be explained by assuming that the sensor “misses” some counts. The
counts represent angular displacements, so the sensor might loose track of features occasionally
and as a result count less angular displacements. This would result in a lower |Ωm| and thus
a higher correction factor. This effect is strongest in the DC light source graph. At first sight
it would appear that the oscillating light intensity from the TL tubes is a better environment
than the constant light from the torch on batteries used as DC light source. However, a more
probable explanation is that the overall light intensity from the torch was too low. Although
the torch covered the field of view of the sensor as it turned with it, the TL tubes may very
well have illuminated the paper surface with a greater mean power flux. The DC light graph
doesn’t look as symmetric as the other two with TL source, especially at higher angular rates.
This supports the idea that the sensor skips some angular displacement counts as this effect
would evidently become larger when the surface is less well illuminated. Another factor which
is not addressed by these calibration experiments is the light spectrum. The ADNS-5030 is
most sensitive to red light, but it does respond to other frequencies as well. Both light sources
have a red component in their spectra, but the combined effect of the whole spectrum on the
signal from the photoreceptors is not easily calculated.
Concluding, the oscillating light from the TL tubes appears not to pose a big problem for the
sensor and light intensity is probably a strong factor in sensor performance. More tests at
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various light sources with measured properties should be performed to get conclusive answers
to these questions. The calibration data with TL tubes do provide a good means to correct
the sensor output as the lighting conditions are similar to the room where the experiment has
been carried out.

Figure 8-2: The ADNS-5030 OF calibration curve
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Chapter 9

Experiment

An important goal of the thesis work is described in this chapter. The experiment was the
end result of building, programming and debugging the hardware and the simulation phase
preceding that.
First the experiment environment, the geometry of the motion generating pendulum and the
data logging setup is described. Then the results are discussed referring to the corresponding
graphs included with the appendix. Some specific conclusions are drawn based on these
results, leaving the overall conclusions to Chapter 10.

9-1 Setup

The experiment’s aim is to investigate the optical flow (OF) sensor concept through a hard-
ware implementation in a realistic environment. The environment is an office room at ASTI
shown in Figure 9-1. Its dimensions are approximately 3 × 4 × 2.6 m, it is lit by TL tubes
and it has two windows at one end. The motion pattern was chosen to be a pendulum for
the following reasons:

• It has to be a well-reproducible motion with easily identifiable pattern and parameters
for validation purposes. The pendulum produces a sinusoidal motion pattern with
known period and decreasing amplitude. This can be easily recognised in the estimated
states and it can be simulated to provide a comparison.

• The pendulum is autonomous, i.e. it requires no input after the motion has started.
This means that the moments acting on the pendulum mass don’t have to be measured,
which simplifies the experiment and eliminates a noise source.

• The pendulum provides changing velocities and rotation in the range of a typical indoor
micro aerial vehicle (MAV) with momentary zero velocity points at the extremes of the
pendulum swing arc. This should provide interesting data to test the Kalman filters
and check the observability.
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The pendulum consists of two strings attached to the ceiling at one end and to each other at
the lower end. The angle between the two strings ensures that the motion stays within one
plane. A short string connects the triangle with a mass. This mass is a solid steel cylinder
weighing 1.13 kg. It ensures that the pendulum keeps oscillating long enough to record a
good dataset. The effective pendulum arm is 1.45 m.
The sensor board is connected to the pendulum at the string junction and also to the data
cable, which runs along one of the strings to the ceiling and then to the laptop PC. Its sus-
pension is such that it keeps its attitude with respect to the pendulum during its motion.
The camera output was monitored during test runs to align the dotted paper with the tra-
jectory. These remained in the same place also indicating that the sensor board kept its
orientation.
Before starting each run, the weight was held by an extra line to the wall, in order to get the
same starting attitude.

Figure 9-1: The office room at ASTI with the pendulum experiment setup. The dotted paper has
been placed in the view of the sensors to enhance the texture and thereby tracking performance.

9-2 Results

During an experiment, the data is logged on a PC using the RS232 serial interface as described
in Chapter 7. In order to convert the signal to units of rotational rate it is multiplied by δΩ,
as described in Section 8-3, immediately after receiving the OF data. This factor is later fine-
tuned in Matlab using the calibration graphs from the same section. Before this fine-tuning,
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some simple filtering is applied to deal with sensor artefacts which are very non-white noise
sources (and therefore hard to deal with in the Kalman filter). An example of the “raw” OF
before these filters have been applied is shown in Figure 9-2.

Figure 9-2: OF signal before filtering

The two artefacts mentioned above are

• one timestep high-valued peaks and

• many short duration zero values amid nonzero data.

The second artefact may be caused by the functioning of the register. To filter these,
two filter algorithms have been applied. Firstly, the data is checked for zero values with
neighbouring nonzero values. These are replaced by the mean of both their neighbouring
values. Secondly, a 3-point median filter is applied. This removes any one timestep peaks.
An example of the filtered and calibrated hardware output is shown in Figure 9-3. It shows
an OF component and a specific force component from two experiment runs, one sampled
at 50 Hz and one sampled at 25 Hz. The hardware output is compared to data from the
simulations under similar conditions. Clearly, the pendulum drag term in the simulated
data has been set higher than the hardware experiment. Other than that, it is apparent
that the hardware output shows more noise and spikes making it more challenging to filter.
Also notice that in the 50 Hz OF graph the hardware output exhibits some “sticking” to the
zero during the first few oscillations. This phenomenon originates in the ADNS-5030 digital
signal processor (DSP). When insufficient movement is perceived in combination with a low
number of tracked features, the sensor goes into a “rest” mode, from which it takes time
to go back to normal operation mode. The ADNS-5030 has been designed to use as little
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power as possible for use with wireless computer mouses. Although the data sheet (Avago,
2008) mentions a rest mode configuration register which allows the user to “force” a rest
mode selection (including normal operation mode), this doesn’t work in practise because the
sensor decides by itself to go back to the rest mode based on the optical input. Especially
the sensors which were directed at the ceiling were prone to this flaw, as the ceiling was lit
only by a couple glow bulbs, producing less light intensity than the TL tubes.

(a) optical flow (OF) of sensor 3 in sensor board X-direction

(b) specific force component in the sensor board X-direction

Figure 9-3: Sample of the hardware output during a run at 50 Hz and a run at 25 Hz. The
hardware signals (solid lines) are compared to simulated data (dashed).

Another observation which can be made from the graph in Figure 9-3 b is that, at first
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sight, the accelerometer appears to oscillate at double frequency as compared to the OF
sensor. Each minimum of |Ax| coincides with a zero crossing of ΩX3 and thus an extreme
of the pendulum path. The maxima of |Ax| coincide with the maxima of |ΩX3|. This may
be expected, as the accelerations will be largest when the pendulum is moving at maximum
velocity which happens twice during each period. Looking at the minima of |Ax| again,
they show an alternating pattern where a positive ΩX3 zero crossing corresponds with a low
valued peak of |Ax| and vice versa. This is because of the rotated attitude of the sensor
board with respect to the pendulum motion. The fact that the simulated data shows a very
good fit, especially with respect to the alternating peak ratio, indicates that the simulation
parameters are quite close to the actual experiment.

The state estimates and standard deviation estimates resulting from application of the
three types of Kalman filters (Iterated Extended Kalman filter (IEKF), Unscented Kalman
filter (UKF) and Hybrid Kalman Filter (HKF)) to the two representative datasets discussed
above, are included in Appendix C.
Comparing IEKF to UKF/HKF, the first observation is that the IEKF shows a much a higher
noise level in its state estimates. Also, a number of states, which should be essentially equal
to zero, have very significant nonzero values. This is due to the completely wrong attitude
estimate of the IEKF. After an initial diverging phase, θ starts oscillating about -180◦ and
ϕ has a much larger amplitude than θ although it should be zero. The large oscillations in
p, which should also remain zero, are a result of the erroneous attitude. Concerning the
distance estimates, the IEKF has a strong tendency to produce negative values and the
filter solution would completely diverge if not for a condition that the distances can only be
positive. Each time a distance value becomes arbitrarily small however, the filter innovation
becomes very inaccurate because the predicted OF components are calculated by dividing
velocity components by distances, producing very large corrections through the innovation.
These have a destabilising effect on the solution.
Comparing the UKF and HKF, the first observation is that they produce very similar results
as has been noted in the results discussion of the simulations as well. The common difference
with the IEKF is the prediction step, so this part of the filter appears to have the larger
influence on the state estimates. The UKF uses the Unscented Transform (UT) for the
correction part of the filter as well, but this doesn’t produce a big performance gain over
the HKF. This result is remarkable, since the prediction is the “simple” part of the filter: it
contains only a very straightforward set of general nonlinear rigid body dynamics equations
which are integrated using the 4th order Runge-Kutta (RK4) algorithm at a small integration
timestep. The correction part of the filter, on the other hand, uses the highly nonlinear
observation equations to estimate the distances. These equations are algebraic however.
The major difference is the way in which the predicted covariance matrix P (k + 1 | k) is
calculated: the EKF makes one function evaluation through the RK4 algorithm and uses that
in the Jacobian of the dynamics Fx to calculate P (k + 1 | k). This ignores all higher order
derivatives with respect to the state, thus linearising the relation. The UKF on the other
hand evaluates the dynamics for a well defined set of perturbations of the state vector. The
resulting predictions for the perturbed states form a transformed set from which P (k + 1 | k)
can be reconstructed. This method is much more computationally intensive as it requires
many RK4 calls per filter timestep, but it yields a more accurate one-step-ahead prediction.
This must explain the difference in filter performance as it is the only difference between the

M.Sc. Thesis M. J. Verveld



90 Experiment

IEKF and HKF.

The condition number CO which is defined in Section 3-3-2 as the ratio between the largest
and the smallest nonzero singular value of the observability matrix O1 has also been plotted.
The best observability condition occurs when CO = 1 and higher means harder to observe.
The peaks in the CO-plots of the UKF and HKF coincide with the moments where the
velocity crosses zero and the pendulum reverses direction. Theoretically those points are
unobservable, as explained in Chapter 3. In practise, the sensors are never sampled at the
exact moment of the direction reversal. Moreover, the measurements are too noisy and
inaccurate to find a value of the rank of O1 lower than 14. Therefore the rank condition for
observability doesn’t give much information in practise. Therefore the peaks in CO are a good
indicator to signal possible problems with observability. To be sure that the rank condition is
met, the other condition number presented in Section 3-3-2, namely μ

(O1
)
, is useful. If CO

would stay above a certain threshold for a longer time, the Kalman filter might well diverge.
In this case, temporarily not updating the state could be a way to improve filter stability. The
state would still need to be estimated in the background to monitor CO though. Alternatively,
the condition could be a collective low-value threshold for all OF signals as this would
imply a high CO as well. The advantage is that in this case, the Kalman filter could be halted.

The standard deviation estimates of the three filters have been plotted together per state.
These are included as Figures C-16 - C-19 and C-35 - C-38. Due to convergence problems
with the filters with a UT-based prediction part, the main diagonal entries of P (k + 1 | k)
corresponding to the distances have been set to constant predetermined values. This yielded
better filter results for the UKF and HKF. This may be partly explained by the fact that
the equations of motion (EoM) contain zero derivatives for the distances, because they are
unknown. No new information is available, so the predicted covariance cannot be expected
to be very accurate. The update part doesn’t change the distance covariances much as the
corresponding standard deviations remain mostly constant in the graphs.
For a properly converging filter solution, the estimated standard deviations should show a
decreasing trend towards a horizontal asymptote. The IEKF doesn’t show any decreasing
trends. Rather, it shows mostly constant but noisy values for V, �ω, θ and ϕ. At 25 Hz, ϕ
has a lot of high peaks which correspond to the direction reversals of the pendulum. The
distances show periodic divergence followed by a sudden “reset” to a small value. At 25 Hz, d4

even completely diverges. This means both high values of d4 and of σd4 . This is accompanied
at the same time by a very low value of d5. The distances would have diverged much faster
without the absolute value constraint. These results indicate that the IEKF is not converging
and is performing very poorly.
The standard deviations from the UKF and HKF algorithms do suggest some convergence in
the velocities, rotations and in θ. The periodicity of the source data manifests itself in most
graphs through oscillations with additionally some peaks in ϕ. These coincide with the three
highest peaks of CO in the 50 Hz HKF case. Generally, there is a strong correlation between
the standard deviations and the observability condition numbers.

Another peculiar phenomenon emerging in the UKF/HKF estimates is a “beat” in the veloci-
ties, in q and in θ. This low frequency oscillation in the amplitude of these signals is of course
completely absent in the true motion. Some internal feedback might interfere with the filter
estimates. The pendulum has been modelled as an autonomous system, so the moment about
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the Y-axis which rotates the pendulum weight is being calculated from the accelerometer
measurements and the pith angle as follows:

My =
(Ax − g sin θ) Iy

R
(9-1)

This happens for each timestep of the RK4 integration using interpolated values of Ax and the
value of θ from the previous timestep within the integration algorithm (which spans one filter
timestep using a number of smaller timesteps to integrate the dynamics). This will make the
filter less stable compared to the case when �M is available as input. The simulation results,
discussed in Section 6-2, do not show the beat however even though they have been calculated
using the same filter algorithms. Perhaps the lower quality of the hardware experiment data
in combination with the lower filter stability causes the beat to appear.
Aliasing, the artificial addition of low frequency content due to sampling without proper
low pass filtering, may also contribute to the beat. A combination of low filter stability
and aliasing could produce a resonance effect. Although the simulation attempts to model
aliasing, it may be very different from the hardware due to different noise characteristics.
The magnitudes of the signals affected by the beat are generally too large. The minima of
the amplitudes in these signals are close to the simulated amplitudes of the corresponding
states. Whatever is causing the beat is adding artificial energy to the solution. Perhaps the
addition of a total energy term to the state in combination with a condition allowing only
decrease would stabilise the filter. It would be hard to keep the filter applicable to more
general motion cases, but the addition of Eq. (9-1) has made the filter specific already.
Comparing the results from the data set recorded at 50 Hz with those from the data set
recorded at 25 Hz, the following may be noted: In general, the 25 Hz data yields higher
errors and less stability. It aggravates the beat phenomenon. This means that, although the
resolution in Ω is better at 25 Hz, the higher time resolution is preferable in this comparison.
It may very well be that using two different sample rates for the accelerometer and the OF
sensors may be the best compromise. The correction step in the Kalman filters would have to
be rewritten and the accelerometer data would be used only in the prediction step. It would
mean a drastic change of the filter algorithms and of the software of the microcontroller (μC).
This was not possible within the scope of this thesis work.
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Chapter 10

Conclusions & Recommendations

From the literature study on insect motion perception and flight control in the introduction,
it can be concluded that these species use optical flow (OF) extensively to successfully navi-
gate complex indoor environments. This thesis proposes an OF-based approach for the flight
control and obstacle avoidance of indoor MAVs. The implementation of OF sensors in the
proposed concept is driven by the factors availability, low cost, and light weight. It should be
noted that other approaches, e.g. using wide angle cameras, are also possible. This would re-
quire more processing power and make the sensor package more expensive, larger and heavier
and therefore be less practical.
It has been the goal of this M.Sc. work to investigate a design which should be relatively
easy to build and test using real hardware. In this way, the theory and simulation results
have been compared to real world performance. This should give valuable information about
the validity of concepts like observability and simulation results. That is perhaps a more
important goal than the design of a particular sensor concept itself.
Observability analysis indicates that the concept with 6 orthogonally mounted OF-sensors
and 3 accelerometers should provide sufficient output to observe the platform motion (u, v,
w, p, q, r), the sensor-obstacle distances (d1 − d6) and two attitude angles (θ, ϕ) as long as
the platform is moving relative to a stationary environment. The accelerometer biases are
not observable though, which has been alleviated by calibrating the accelerometers prior to
each set of experiment runs. Figure 9-3 b shows that the calibration is working quite well as
the hardware output fits well with the simulation data (which had zero bias).
The result of the simulation clearly indicates that the use of the Unscented Transform (UT)
in a Kalman filter yields better estimates for this problem. The largest effect is achieved in
the prediction step. This can be concluded, because the Unscented Kalman filter (UKF) and
Hybrid Kalman Filter (HKF) algorithms share the same prediction part based on the UT and
they have very comparable performance, while the Iterated Extended Kalman filter (IEKF)
uses a linearised prediction step and it produces much larger errors. The use of the UT in the
update step, as is done in the UKF, doesn’t provide clear performance benefits. This is an
unexpected finding as the nonlinear nature of the observation equations, including coordinate
transformation and velocities and distances only appearing as ratios, would suggest that an
algorithm with higher order probability distribution capture would produce better results.
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The HKF, using iterations with UT-based predicted state and covariance, appears to yield
the best results.
The convergence zone of the IEKF appears to be smaller than that of the other algorithms,
so the initial conditions have to be chosen closer to the true values to get results which don’t
diverge. The cost of the improved accuracy of the UT-based filters is about 6 times longer
computation time.
Theory indicates that the problem is observable. However, many factors affect the quality
of the solution. Observability does not imply a useful result or even a converging one. That
depends on the requirements of the application, the quality of the sensors, many conditions of
the environment, such as lighting, texture on obstacles, the scale of the room, and it depends
on the filter algorithm. The real world data suffers from many deteriorating factors, such as
noise, limited resolution, sample rate and manufacturing inaccuracies. These factors cause
the problem and its solution to be stochastic in nature, meaning that it is never equal to the
true values, and can be close at best. Therefore the theoretical statement that an estimation
problem is observable only provides a starting point. In principle, the solution can be re-
constructed from the observations, given perfect signals and an exact process model. It says
nothing about the achievable quality of the data.
A useful quantity which can be derived from the concept of observability, is the observability
condition number CO. Both the simulation and the hardware experiment results clearly show
that CO peaks (indicating a hard to observe motion state) when the velocity approaches zero.
The error of the pendulum velocity estimate may be driven by the observability condition.
The standard deviations show a clear correlation with CO, indicating that filter performance
is impacted by the observability condition.
The simulation and hardware experiment show that even with an extremely low cost sensor
package, the stated problem may yield converging results. The errors in these results do get
larger when the quality of the measurement data deteriorates. Given the fact that the sensors
needed a lot of light and very large contrast in the texture to work, it is fair to say that a
practical application onboard of an micro aerial vehicle (MAV) would require much better
quality sensors to work in generic indoor environments.
Also, the processing power requirements for the Kalman filter are significant. The UKF/HKF
have run about realtime on an intel core 2 duo machine. This was in Simulink’s “Rapid Ac-
celerator” mode, which does compile the code to run it quicker. However, an implementation
of the algorithm in C++ may produce better results. Still, to fit sufficient computation power
onboard of a small, lightweight vehicle with very limited power available is expected to be
very hard at best. A more realistic scenario would be a datalink and off-board processing of
the filter together with a controller. The control commands could then be send back to the
vehicle. This scenario has been successfully demonstrated by (Berkelaar & Oonk, 2009), who
have used off-board image processing to extract the attitude of their quadrotor from images
containing laser dots.
For application in an indoor MAV, this sensor concept requires the aerodynamic moments
applied to the vehicle as inputs. The confined space usually means that an indoor MAV is
essentially in a hover state most of the time. Then these moments can be directly derived
from the control inputs, with negligible dependence on the motion state. If the moments do
depend strongly on the motion of the vehicle, they would have to be estimated in the Kalman
filter using the control commands as inputs. This would alter the problem and would require
more tests. Addition of gyroscopes to the sensor board may in that case be an option, al-
though these have not been included originally because the rotational rates can be tracked

M. J. Verveld M.Sc. Thesis



95

very well using the OF sensors. Gyroscopes also introduce additional states because their
bias errors must be estimated as well.
Better quality sensors and an addition to the configuration may improve the filter perfor-
mance to useful levels. In principle, the UT based Kalman filter has shown to be capable of
estimating the motion state of an indoor MAV using OF sensors and accelerometers. The
example of flying insects indicates that a lot is possible. Their completely different data pro-
cessing structure with highly parallel neuron network would be an interesting research topic.
However, insects don’t know their absolute velocities and that is where this work has diverged
from the path that nature has chosen. It turned out to be difficult to estimate the velocity
and distances as individual states. A promising research path would be to look at control
concepts which can handle translational optical flow directly.

M.Sc. Thesis M. J. Verveld



96 Conclusions & Recommendations

M. J. Verveld M.Sc. Thesis



Bibliography

Anderson, N. A. (1998). Instrumentation for Process Measurement and Control. In (3rd ed.,
chap. 2). CRC Press.
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Appendix A

Helix Simulation Graphs

This appendix section contains the results from one simulation run using the helical path
trajectory.
First, the simulation output is shown, including the moment vector �M used as input, the
accelerometer output �A, the optical flow signals Ω and the vehicle states �V , �ω, θ, ϕ and
d1 − d6.
This is followed by the four sample cases as described in Section 6-1. In order to compare
filter performance, the resulting state estimates from the three Kalman filter algorithms have
been plotted together as errors with respect to the true states.
The discussion of these results is included with Section 6-2 on page 64.
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A-1 Input, Measurements and the State

Figure A-1: �M

Figure A-2: �A
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Figure A-3: Ω
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Figure A-4: �V

Figure A-5: �ω

M. J. Verveld M.Sc. Thesis



A-1 Input, Measurements and the State 107

Figure A-6: θ & ϕ

Figure A-7: d1 – d6
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A-2 Sample Case A

Figure A-8: �V estimation errors

Figure A-9: �ω estimation errors
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Figure A-10: θ & ϕ estimation errors

Figure A-11: d1 – d6 estimation errors
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A-3 Sample Case B

Figure A-12: �V estimation errors

Figure A-13: �ω estimation errors
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Figure A-14: θ & ϕ estimation errors

Figure A-15: d1 – d6 estimation errors
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A-4 Sample Case C

Figure A-16: �V estimation errors

Figure A-17: �ω estimation errors
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Figure A-18: θ & ϕ estimation errors

Figure A-19: d1 – d6 estimation errors
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A-5 Sample Case D

Figure A-20: �V estimation errors

Figure A-21: �ω estimation errors
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Figure A-22: θ & ϕ estimation errors

Figure A-23: d1 – d6 estimation errors
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Pendulum Simulation Graphs

This appendix section contains the results from one simulation run using the pendulum model.
First, the simulation output is shown, including the accelerometer output �A, the optical flow
signals Ω and the vehicle states �V , �ω, θ, ϕ and d1 − d6. As the pendulum is an autonomous
system, no moments are available as input to the filters.
This is followed by the four sample cases as described in Section 6-1. In order to compare
filter performance, the resulting state estimates from the three Kalman filter algorithms have
been plotted together as errors with respect to the true states.
The discussion of these results is included with Section 6-2 on page 64.
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B-1 Input, Measurements and the State

Figure B-1: �A
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Figure B-2: �Ω
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Figure B-3: �V

Figure B-4: �ω
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Figure B-5: θ & ϕ

Figure B-6: d1 – d6
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B-2 Sample Case A

Figure B-7: �V estimation errors

Figure B-8: �ω estimation errors
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Figure B-9: θ & ϕ estimation errors

Figure B-10: d1 – d6 estimation errors
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B-3 Sample Case B

Figure B-11: �V estimation errors

Figure B-12: �ω estimation errors
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Figure B-13: θ & ϕ estimation errors

Figure B-14: d1 – d6 estimation errors
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B-4 Sample Case C

Figure B-15: �V estimation errors

Figure B-16: �ω estimation errors
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Figure B-17: θ & ϕ estimation errors

Figure B-18: d1 – d6 estimation errors
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B-5 Sample Case D

Figure B-19: �V estimation errors

Figure B-20: �ω estimation errors
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Figure B-21: θ & ϕ estimation errors

Figure B-22: d1 – d6 estimation errors
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Appendix C

Hardware Experiment Graphs

These graphs show the state estimates from the three filter types for a run at 50 Hz and a run
at 25 Hz. Unlike with the simulation results, no “truth” data is available for the experiment.
Therefore, the plots do not show the error, but simply the signals themselves. However, the
motion has certain known properties, such as period and amplitude of a damped sinusoid.
For reference, the simulated states for the pendulum are plotted in Figures B-3 - B-6. The
estimated standard deviations have been plotted as well. This gives an indication of the
convergence behaviour of the Kalman filter. The corresponding discussion is included with
Section 9-2 on page 86.
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C-1 State Estimates, Condition Numbers and Standard Deviations
from a Data Recording at 50 Hz

Figure C-1: IEKF velocity estimates @ 50 Hz
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Figure C-2: IEKF rotation estimates @ 50 Hz

Figure C-3: IEKF attitude estimates @ 50 Hz
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Figure C-4: IEKF distance estimates @ 50 Hz
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Figure C-5: IEKF condition number @ 50 Hz

Figure C-6: UKF velocity estimates @ 50 Hz
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Figure C-7: UKF rotation estimates @ 50 Hz

Figure C-8: UKF attitude estimates @ 50 Hz
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Figure C-9: UKF distance estimates @ 50 Hz
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Figure C-10: UKF condition number @ 50 Hz

Figure C-11: HKF velocity estimates @ 50 Hz
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Figure C-12: HKF rotation estimates @ 50 Hz

Figure C-13: HKF attitude estimates @ 50 Hz
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Figure C-14: HKF distance estimates @ 50 Hz
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Figure C-15: HKF condition number @ 50 Hz

Figure C-16: Standard deviation estimates of the velocities @ 50 Hz
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Figure C-17: Standard deviation estimates of the rotations @ 50 Hz

Figure C-18: Standard deviation estimates of the attitude @ 50 Hz
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Figure C-19: Standard deviation estimates of the distances @ 50 Hz
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C-2 State Estimates, Condition Numbers and Standard Deviations
from a Data Recording at 25 Hz

Figure C-20: IEKF velocity estimates @ 25 Hz
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Figure C-21: IEKF rotation estimates @ 25 Hz

Figure C-22: IEKF attitude estimates @ 25 Hz
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Figure C-23: IEKF distance estimates @ 25 Hz
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Figure C-24: IEKF condition number @ 25 Hz

Figure C-25: UKF velocity estimates @ 25 Hz
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Figure C-26: UKF rotation estimates @ 25 Hz

Figure C-27: UKF attitude estimates @ 25 Hz
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Figure C-28: UKF distance estimates @ 25 Hz
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Figure C-29: UKF condition number @ 25 Hz

Figure C-30: HKF velocity estimates @ 25 Hz
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Figure C-31: HKF rotation estimates @ 25 Hz

Figure C-32: HKF attitude estimates @ 25 Hz
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Figure C-33: HKF distance estimates @ 25 Hz
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Figure C-34: HKF condition number @ 25 Hz

Figure C-35: Standard deviation estimates of the velocities @ 25 Hz
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Figure C-36: Standard deviation estimates of the rotations @ 25 Hz

Figure C-37: Standard deviation estimates of the attitude @ 25 Hz
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Figure C-38: Standard deviation estimates of the distances @ 25 Hz
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Code Listings

D-1 Flow Diagram of the Code Running on the Microcontroller
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opticflow5030_x6.c

int main(void)

uart.c

void uart_transmit_uchar(unsigned char
data)

char receiveChar(void)

void uart_init(void)

protocol.c

void handle_protocol(void)

adns5030.c

void adns_init(void)

unsigned char adns_version(unsigned 
char sensor)

void adns_reset(unsigned char sensor)

void adns_getflow(void)

void adns_snapimage(unsigned char 
sensor)

i2c.c

void I2C_Init(void)

inline static void I2C_START(void)

inline static void I2C_BIT(uint8_t x)

inline static uint8_t I2C_ACK(void)

inline static uint8_t I2C_BITREAD(void)

uint8_t I2C_Read(uint8_t dev, uint8_t sub)

void I2C_Write(uint8_t dev, uint8_t sub, uint8_t dat)

void uart_transmit_string(char *data)

void uart_transmit_Bcd(unsigned char
byte)

void uart_transmit_Hex(unsigned char
byte)

spi.c

lis302.c

ISR(USART1_RX_vect)

void Counter1_init(void)

void image_mode(unsigned char sensor)

void flow_mode(void)

void adns_wakeup(unsigned char sensor)

unsigned char adns_status(unsigned 
char sensor)

inline static void I2C_STOP(void)

void LIS302_Init(void)

accelerometer_t LIS302_Read(void)

void spi_init(void)

unsigned char spi_RW (unsigned char output)

unsigned char spi_read(unsigned char address)

void spi_write(unsigned char address, unsigned char data)

Figure D-1: Diagram of the functional flow of the microcontroller software. It shows all func-
tions arranged by the files in which they are present. Each file groups functions with a partic-
ular purpose together. opticflow5030 x6.c contains the main function from where execution
starts, protocol.c contains the main logic of the various operation modes, lis302.c controls
the accelerometer IC using the Inter-Integrated Circuit Bus (I2C) serial communication proto-
col contained in i2c.c, adns5030.c controls the optical flow ICs using the Serial Peripheral
Interface Bus (SPI) protocol contained in spi.c, uart.c contains the Universal Asynchronous
Receiver/Transmitter (UART) functions for communication with the host computer.
Each arrow represents a function call.
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D-2 Embedded Matlab IEKF Algorithm

1f u n c t i o n Y = IEKF ( U )

Y = ze r o s (242 , 1) ;
% D i r e c t i o n C o s i n e M a t r i x from S e n s o r B o a r d to P e n d u l u m

SB2P = [ −0.607873596459256 , −0.655798968567627 , 0.447680023625497 ;
6−0.406013862505740 , −0.227812369076838 , −0.885016535409802;

0.682379977857542 , −0.719742479864316 , −0.127782348146782] ;
% R e c o n s t r u c t i n p u t s P_k , yhat_k , u , omega , params , dt , g

P_k = r e s h a p e ( U (1 : 1 96 ) ,14 ,14) ;
y h a t _ k = U (197 : 210) ;

11u = U (211 : 213) ;
om e g a = U (214 : 225) ;
ac c e l = U (226 : 228) ;
de l t a = 0 .15 8 ;
a c c e l _ p = SB2P ∗( a c c el + d e l t a ∗[− y h a t _ k (4) ∗ y h a t _ k (6) ;− y h a t _ k (5) ∗ y h a t _ k (6) ; ( y h a t _ k (4) ˆ2 + y h a t _ k

(5) ˆ2) ] ) ;
16p a r a m s = U (229 : 233) ;

dt = U (234) ;
N = ro u n d ( dt ∗3000) +2;
g = U (235) ;
t u n i n g = U (236 : 244) ;

21u_k = [ ( SB2P ∗( U (245 : 247) + d e lt a ∗[− y h a t _ k (4) ∗ y h a t _ k (6) ;− y h a t _ k (5) ∗ y h a t _ k (6) ; ( y h a t _ k (4) ˆ2 +
y h a t _ k (5) ˆ2) ] ) ) ; U (248 : 250) ] ;

tp _ Q 1 = t u n i n g (1) ;
tp _ Q 2 = t u n i n g (2) ;
tp _ Q d = t u n i n g (3) ;

26t p _ Q a t t = t u n i n g (4) ;
tp_R = t u n i n g (5) ;
tp _ R a = t u n i n g (6) ;

G = 0.6∗ eye (14) ; G ( 9 : 1 4 , 9 : 1 4 ) = eye (6) ;
31% max a l l o w a b l e 2 - norm of the e r r o r in the f i l t e r e d s t a te i t e r a t o r

e p s i l o n = 1e−10;
% max n u m b e r of i t e r a t i o n s per t i m e s t e p

ma x _ j = 20;

36% S y s t e m n o i s e :

fm = t p _ Q 1 ∗ [ 1 ; 1 ; 1 ] ; % 2*[1 E -2;5 E - 3 ; 7 . 5 E -3];

tm = t p _ Q 2 ∗ [ 1 ; 1 ; 1 ] ; % * [ 5 . 1 8 8 5 E - 6 ; 6 . 0 4 7 9 E - 6 ; 1 . 1 0 1 8 E - 0 0 5 ] ;

stdw = [ fm ; tm ; t p _ Q a t t ∗ [ 1 ; 1 ] ; t p _ Q d ∗ ones (6 , 1 ) ] ;
Q = diag ( stdw . ˆ 2 ) ;

41% M e a s u r e m e n t n o is e :

stdv = [ tp_R ∗ ones (12 , 1) ; t p _ R a ∗ ones (3 , 1 ) ] ;
R = diag ( stdv . ˆ 2 ) ;

% One s ta g e a h ea d p r e d i c t i o n u s in g RK4 i n t e g r a t i o n

46x _ p r e d i c t = RK4 ( yhat_k , N , dt , params , u_k , [ a c c e l _ p ; u ] , g ) ;

% c o v a r i a n c e m a t r i x of the s t at e p r e d i c t i o n e r ro r v e c t o r

F = dfdx ( yhat_k , p a r a m s ) ;
Phi = expm ( F∗ dt ) ;

51Ga m m a = ( Phi ∗ dt )∗G ;
P _ p r e d i c t = Phi ∗ P_k ∗ Phi ’ + G a mm a ∗ Q∗ Gamma ’ ;

% I t e r a t e the n o m i n a l s t a t e s

eta2 = x _ p r e d i c t ;
56er r o r = 2∗ e p s i l o n ; % i n i t i a t e e r r or with a v a lu e l a r g e r than e p s i l o n

j = 0;
Vdot = z e r o s (3 , 1 ) ;
P = P _ p r e d i c t ;

61wh i l e e rr o r > e p s i l o n

if j >= m a x _ j

b re a k

end

j = j+1;
66eta1 = eta2 ;

H = dhdx ( eta1 , g , d e l t a ) ;
% K a l m a n gain m a t r i x

[ K , P ] = S q u a r e R o o t K a l m a n G a i n ( H , P_predict , R ) ;
% K = P _ p r e d i c t * H ’* inv ( H * P _ p r e d i c t * H ’ + R ) ;

71% m e a s u r e m e n t u p d a t e

z _ k p l u s 1 = [ o m e ga ; a c c e l ] ;
Vdot (1) = a c c e l _ p (1)−eta1 (5) ∗ eta1 (3)+eta1 (6) ∗ eta1 (2)−g∗ sin ( eta1 (7) ) ;
Vdot (2) = a c c e l _ p (2)−eta1 (6) ∗ eta1 (1)+eta1 (4) ∗ eta1 (3)+g∗ sin ( eta1 (8) )∗ cos ( eta1 (7) ) ;
Vdot (3) = a c c e l _ p (3)−eta1 (4) ∗ eta1 (2)+eta1 (5) ∗ eta1 (1)+g∗ cos ( eta1 (8) )∗ cos ( eta1 (7) ) ;

76% Vdot = ( eta1 ( 1 : 3) - y h a t _ k ( 1 : 3 ) ) / dt ;

eta2 = x _ p r e d i c t + K ∗( z _ k p l u s 1 − f u n c 2 ( eta1 , Vdot , g , de l t a ) − H ∗( x_predict −eta1 ) ) ;
er r o r = norm ( ( eta2−eta1 ) , inf ) / norm ( eta1 , inf ) ;

end
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yhat = eta2 ;
81

sd = sqrt ( diag ( P ) ) ;
F = dfdx ( yhat , p a r a m s ) ;
H = dhdx ( yhat , g , d e l ta ) ;
% O b s e r v a b i l i t y m a t r i x

86W = ze r o s (15∗14 ,14) ; W ( 1 : 1 5 , : ) = H ;
term = H ;
for ii = 1:13

term = term ∗ F ;
W ((1+15∗ ii ) : ( 1 5 + 15∗ ii ) , : ) = term ;

91end

sv = svd ( W ) ;
tol = max ( size ( W ) )∗ eps ( max ( sv ) ) ;
r = sum ( sv > tol ) ;
c o n d i t i o n = sv (1) / sv ( r ) ;

96
% C o n s t r u c t o u t p u t v e c t o r Y

Y ( 1 : 1 96 ) = r e s h a p e ( P , 1 96 , 1 ) ;
Y (197 : 210) = yhat ;
Y (211 : 224) = sd ;

101Y (225 : 238) = sv ;
Y (239) = r ;
Y (240) = c o n d i t i o n ;
Y (241) = j ;

end

106
f u n c t i o n y = RK4 ( x0 , N , dt , params , u_k , u_k_1 , g )

% RK4 ( X0 , N , DT , PARAMS , U_K , U_K_1 , G )

% RK4 a l g o r i t h m . I n t e g r a t e s a hard c o d e d f u n c t i o n f u n c 1 . m

111
h = dt /( N − 1) ;
y = x0 ;
K = ze r o s ( l e n g t h ( x0 ) , 4 ) ;

116for i = 1 : N−1
u = u_k + ( i−1)/( N−2)∗( u _ k_ 1 − u_k ) ;
K ( : , 1 ) = h∗ f u n c 1 ( y , u , params , g ) ;
K ( : , 2 ) = h∗ f u n c 1 ( y+.5∗ K ( : , 1 ) , u , params , g ) ;
K ( : , 3 ) = h∗ f u n c 1 ( y+.5∗ K ( : , 2 ) , u , params , g ) ;

121K ( : , 4 ) = h∗ f u n c 1 ( y+K ( : , 3 ) , u , params , g ) ;
y = y + ( K ( : , 1 ) + 2∗ K ( : , 2 ) + 2∗ K ( : , 3 ) + K ( : , 4 ) ) /6 ;

end

end

126f u n c t i o n xdot = f u nc 1 ( x , U , params , g )

% x is the s t a t e v e c t o r : [ u v w p q r th e t a phi d1 ... d6 ] ’ ,

% U is the i n p u t v e c t o r : [ Fx Fy Fz Mx My Mz ] ’ ,

% p a r a m s is a v e c t o r with c o n s t a n t s : [ Ix Iy Iz Jxz m ] ’

131
xdot = z e r o s (14 , 1) ;
den = −p a r a m s (4) ˆ2 + p a r a m s (1) ∗ p a r a m s (3) ;
xdot (1) = U (1)−x (5) ∗x (3)+x (6) ∗x (2) − g∗ sin ( x (7) ) ;
xdot (2) = U (2)−x (6) ∗x (1)+x (4) ∗x (3) + g∗ sin ( x (8) )∗ cos ( x (7) ) ;

136xdot (3) = U (3)−x (4) ∗x (2)+x (5) ∗x (1) + g∗ cos ( x (8) )∗ cos ( x (7) ) ;
xdot (4) = ( U (4) ∗ p a r a m s (3) − x (5) ∗ x (6) ∗ p a r a m s (3) ∗( p a r a m s (3) − p a r a m s (2) ) . . .

+ x (4) ∗x (5) ∗ p a r a m s (4) ∗( p a r a m s (1) − p a r a m s (2) + p a r a m s (3) ) . . .
+ p a r a m s (4) ∗( U (6) − p a r a m s (4) ∗x (6) ∗x (5) ) ) / den ;

xdot (5) = ( U (5) − ( p a r a m s (1) − p a r a m s (3) )∗x (6) ∗x (4) − . . .
141( x (4) ˆ2 − x (6) ˆ2) ∗ p a r a m s (4) ) / p a r a m s (2) ;

xdot (6) = ( U (6) ∗ p a r a m s (1) + x (4) ∗ x (5) ∗ p a r a m s (1) ∗( p a r a m s (1) − p a r a m s (2) ) . . .
− x (6) ∗x (5) ∗ p a r a m s (4) ∗( p a r a m s (1) − p a r a m s (2) + p a r a m s (3) ) . . .
+ p a r a m s (4) ∗( U (4) + p a r a m s (4) ∗x (4) ∗x (5) ) ) / den ;

xdot (7) = x (5) ∗ cos ( x (8) ) − x (6) ∗ sin ( x (8) ) ;
146xdot (8) = x (4) + x (5) ∗ sin ( x (8) )∗ tan ( x (7) ) + x (6) ∗ cos ( x (8) )∗ tan ( x (7) ) ;

end

f u n c t i o n z = f u n c 2 ( x , Vdot , g , d e l t a )
% The o b s e r v a t i o n e q u a t i o n s with a r o t a t e d s e n s o r b o a rd

151P2SB = [ −0.607873596459256 , −0.406013862505740 , 0.682379977857542 ;
−0.655798968567627 , −0.227812369076838 , −0.719742479864316;
0.447680023625497 , −0.885016535409802 , −0.127782348146782] ;

x_sb = z e r o s (6 , 1 ) ;
% v e l o c i t y in the s e n s o r b oa r d f r am e

156x_sb ( 1 : 3 ) = P2SB ∗( x ( 1 : 3 ) + c r os s ( x ( 4 : 6 ) , [ 0 ; 0 ; − d e lt a ] ) ) ;
% r o t a t i o n in the s e n s o r b oa r d f r am e

x_sb ( 4 : 6 ) = P2SB ∗x ( 4 : 6 ) ;
u = x_sb (1) ;
v = x_sb (2) ;

161w = x_sb (3) ;
p = x_sb (4) ;
q = x_sb (5) ;
r = x_sb (6) ;
th e t a = x (7) ;

166phi = x (8) ;
d1 = x (9) ;
d2 = x (10) ;
d3 = x (11) ;
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d4 = x (12) ;
171d5 = x (13) ;

d6 = x (14) ;
gvec = g∗[− sin ( t h e t a ) ; sin ( phi )∗ cos ( t h e ta ) ; cos ( phi )∗ cos ( th e t a ) ] ;
A_sb = P2SB ∗(( Vdot + cr o s s ( x ( 4 : 6 ) , x ( 1 : 3 ) ) − gvec ) + . . .

d e l t a ∗ [ x (4) ∗x (6) ; x (5) ∗ x (6) ;−( x (4)ˆ2+x (5) ˆ2) ] ) ;
176

z = [ u/ d1 − r ;
w/ d1 + p ;
v/ d2 − r ;
w/ d2 + q ;

181u/ d3 + r ;
w/ d3 − p ;
v/ d4 + r ;
w/ d4 − q ;
u/ d5 − q ;

186v/ d5 + p ;
u/ d6 + q ;
v/ d6 − p ;
A_sb ] ;

end

191
f u n c t i o n F = dfdx ( x , p a r a m s )

% The j a c o b i a n of the d y n a m i c s

u = x (1) ;
196v = x (2) ;

w = x (3) ;
p = x (4) ;
q = x (5) ;
r = x (6) ;

201th e t a = x (7) ;
phi = x (8) ;
Ix = p a r a m s (1) ;
Iy = p a r a m s (2) ;
Iz = p a r a m s (3) ;

206Jxz = p a r a m s (4) ;

F = ze r o s (14 , 14) ;
F ( 1 : 8 , 1 : 8 ) = [0 , r ,−q ,0 ,− w , v , 0 , 0 ;

−r , 0 , p , w ,0 ,− u , 0 , 0 ;
211q ,−p ,0 ,− v , u , 0 , 0 , 0 ;

0 , 0 , 0 , Jxz ∗((− Iy+Ix )∗q/ Iz+q ) /( Ix−Jxz ˆ2/ Iz ) ,((− Iz+Iy )∗r+Jxz ∗(((− Iy+Ix )∗p−Jxz ∗r ) / . . .
0 ,0 ,0 ,(( − Ix+Iz )∗r−2∗ Jxz ∗p ) / Iy ,0 ,(( − Ix+Iz )∗p+2∗ Jxz ∗r ) / Iy , 0 , 0 ;
0 ,0 ,0 ,(( − Iy+Ix )∗q+Jxz ˆ2∗ q/ Ix ) /( Iz−Jxz ˆ2/ Ix ) ,((− Iy+Ix )∗p+Jxz ∗(((− Iz+Iy )∗r+Jxz ∗p . . .
0 , 0 , 0 , 0 , cos ( phi ) ,− sin ( phi ) ,0 ,− q∗ sin ( phi )−r∗ cos ( phi ) ;

2160 , 0 , 0 , 1 , sin ( phi )∗ tan ( t h e ta ) , cos ( phi )∗ tan ( th e t a ) , q∗ sin ( phi )∗(1+ tan ( t h et a ) ˆ2)+r ∗ . . .
end

f u n c t i o n H = dhdx ( x , g , d e l ta )

221% in v e h i c l e r e f e r e n c e fr a m e

u = x (1) ;
v = x (2) ;
w = x (3) ;
p = x (4) ;

226q = x (5) ;
r = x (6) ;
phi = x (7) ;
th e t a = x (8) ;
d1 = x (9) ;

231d2 = x (10) ;
d3 = x (11) ;
d4 = x (12) ;
d5 = x (13) ;
d6 = x (14) ;

236
% J a c o b i a n in case with r o t a t e d s t a t e s

H = [ − .6077482419736110/ d1 , − .4059806710008880/ d1 , . 6823822753390010/ d1 , − . 4059806710008880∗ . . .
.4476800236254970/ d1 , − .8848370081747490/ d1 , − .1277564272619920/ d1 , − . 8848370081747490 . . .

−.6556637310069400/ d2 , − .2278451690760790/ d2 , − .7197449031402851/ d2 , − . 2278451690760790 . . .
241.4476800236254970/ d2 , − .8848370081747490/ d2 , − .1277564272619920/ d2 , − . 8848370081747490 . . .

−.6077482419736110/ d3 , − .4059806710008880/ d3 , . 6823822753390010/ d3 , − . 4059806710008880∗ . . .
.4476800236254970/ d3 , − .8848370081747490/ d3 , − .1277564272619920/ d3 , − . 8848370081747490 . . .

−.6556637310069400/ d4 , − .2278451690760790/ d4 , − .7197449031402851/ d4 , − . 2278451690760790 . . .
.4476800236254970/ d4 , − .8848370081747490/ d4 , − .1277564272619920/ d4 , − . 8848370081747490 . . .

246−.6077482419736110/ d5 , − .4059806710008880/ d5 , . 6823822753390010/ d5 , − . 4059806710008880∗ . . .
−.6556637310069400/ d5 , − .2278451690760790/ d5 , − .7197449031402851/ d5 , − . 2278451690760790 . . .
−.6077482419736110/ d6 , − .4059806710008880/ d6 , . 6823822753390010/ d6 , − . 4059806710008880∗ . . .
−.6556637310069400/ d6 , − .2278451690760790/ d6 , − .7197449031402851/ d6 , − . 2278451690760790 . . .
−.4059806710008880∗ r−.6823822753390010∗ q , . 6077482419736110∗ r+.6823822753390010∗p , − . 6 . . .

251−.2278451690760790∗ r+.7197449031402851∗q , . 6556637310069400∗ r−.7197449031402851∗ p , − . 6 . . .
−.8848370081747490∗ r+.1277564272619920∗q , − .4476800236254970∗ r−.1277564272619920∗ p , . 4 . . .

end

f u n c t i o n [ K , P ] = S q u a r e R o o t K a l m a n G a i n ( H , P_predict , R )
256

k = size ( R , 2 ) ;
l = size ( P_predict , 1 ) ;
s r P _ p r e d i c t = chol ( P_predict ’ ) ’ ;
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srR = chol ( R ’ ) ’ ;
261A = [ H∗ s r P _ p r e d i c t −srR ;

s r P _ p r e d i c t ze r o s ( l , k ) ] ;
[ Qt , Rt ] = qr ( A ’ ) ;
[ m , n ] = size ( Rt ) ;
G = Rt ( 1 : m−l , n−l+1: n ) ’ ;

266sqRe = Rt ( 1 : m−l , 1 : n−l ) ’ ;
K = G∗ inv ( sqRe ) ;
srP = Rt ( m−l+1:m , n−l+1: n ) ’ ;
P = srP ∗ srP ’ ;

end

D-3 Embedded Matlab HKF Algorithm

f u n c t i o n Y = HKF ( U )

Y = ze r o s (242 , 1) ;
% D i r e c t i o n C o s i n e M a t r i x from S e n s o r B o a r d to P e n d u l u m

5SB2P = [ −0.607873596459256 , −0.655798968567627 , 0.447680023625497 ;
−0.406013862505740 , −0.227812369076838 , −0.885016535409802;
0.682379977857542 , −0.719742479864316 , −0.127782348146782] ;

% R e c o n s t r u c t i n p u t s P_k , yhat_k , u , omega , params , dt , g

P_k = r e s h a p e ( U (1 : 1 96 ) ,14 ,14) ;
10y h a t _ k = U (197 : 210) ;

u = U (211 : 213) ;
om e g a = U (214 : 225) ;
ac c e l = U (226 : 228) ;
de l t a = 0 .15 8 ;

15a c c e l _ p = SB2P ∗( a c c el + d e l t a ∗[− y h a t _ k (4) ∗ y h a t _ k (6) ;− y h a t _ k (5) ∗ y h a t _ k (6) ; ( y h a t _ k (4) ˆ2 + y h a t _ k

(5) ˆ2) ] ) ;
p a r a m s = U (229 : 233) ;
dt = U (234) ;
N = ro u n d ( dt ∗3000) +2;
g = U (235) ;

20t u n i n g = U (236 : 245) ;
u_k = [ ( SB2P ∗( U (246 : 248) + d e lt a ∗[− y h a t _ k (4) ∗ y h a t _ k (6) ;− y h a t _ k (5) ∗ y h a t _ k (6) ; ( y h a t _ k (4) ˆ2 +

y h a t _ k (5) ˆ2) ] ) ) ; U (249 : 251) ] ;
n = l e n g t h ( y h a t _ k ) ;
% max a l l o w a b l e 2 - norm of the e r r o r in the f i l t e r e d s t a te i t e r a t o r

e p s i l o n = 1e−10;
25% max n u m b e r of i t e r a t i o n s per t i m e s t e p

ma x _ j = 20;

% HKF s p e c i f i c s e t t i n g s

tp _ Q 1 = t u n i n g (1) ;
30tp _ Q 2 = t u n i n g (2) ;

tp _ Q d = t u n i n g (7) ;
t p _ Q a t t = t u n i n g (3) ;
tp_R = t u n i n g (4) ;
tp _ R a = t u n i n g (5) ;

35
% S y s t e m n o i s e :

fm = t p _ Q 1 ∗ [ 1 ; 1 ; 1 ] ;
tm = t p _ Q 2 ∗ [ 1 ; 1 ; 1 ] ;
stdw = [ fm ; tm ; t p _ Q a t t ∗ [ 1 ; 1 ] ; t p _ Q d ∗ ones (6 , 1 ) ] ;

40Q = diag ( stdw . ˆ 2 ) ;
% M e a s u r e m e n t n o is e :

stdv = [ tp_R ∗ ones (12 , 1) ; t p _ R a ∗ ones (3 , 1 ) ] ;
R = diag ( stdv . ˆ 2 ) ;

45L = n + l e n g t h ( stdw ) ; % l e n g t h of the a u g m e n t e d st a t e v e c t o r

al p h a = t u n i n g (8) ;
ka p p a = t u n i n g (10) ;
l a m b d a = a l p h a ˆ2∗( L + k a p p a ) − L ;
Ws0 = l a m b d a /( L+l a m b d a ) ;

50Wi = 1/(2∗( L+l a m b d a ) ) ;

% 1 - A u g m e n t the s t a te and c o v a r i a n c e

Xa = [ y h a t _ k ; z e r o s (14 , 1) ] ;
55Pa = [ P_k z e ro s (14 , 14) ;

z er o s (14 , 14) Q ] ;

% 2 - p r e d i c t i o n si g m a p o i n t s

ch i _ p = Xa ∗ ones (1 ,2∗ L+1) ;
60% v a r i a t i o n = sqrt ( L + l a m b d a ) * s q rt m ( Pa ) ; % G e b r u i k t A = X * X ipv A = X *X ’

v a r i a t i o n = sqrt ( L+l a m b d a )∗ chol ( Pa ’ ) ’ ; % l ow e r t r i a n g u l a r C h o l e s k y

ch i _ p ( : , 2 : end ) = ch i _ p ( : , 2 : end ) + [ variation ,− v a r i a t i o n ] ;

% 3 - i n s t a n t i a t e each s ig m a p o in t t h r o u g h the e q u a t i o n s of m o t i o n

65for i = 1:2∗ L+1
ch i _ p ( : , i ) = RK4 ( ch i _ p ( : , i ) , N , dt , params , u_k , [ a c c e l _ p ; u ] , g ) ; % ###

end

% 4 - p r o d u c e p r e d i c t e d s t a t e and c o v a r i a n c e

70x _ p r e d i c t = Ws0 ∗ c h i _p ( 1 : n , 1 ) ;
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for i = 2:2∗ L+1
x _ p r e d i c t = x _ p r e d i c t + Wi∗ c h i_ p ( 1 : n , i ) ;

end

75% P _ p r e d i c t = Wc0 *( ch i _ p (1: n ,1) - x _ p r e d i c t ) *( c h i_ p (1: n ,1) - x _ p r e d i c t ) ’;

% for i = 2:2* L +1

% P _ p r e d i c t = P _ p r e d i c t + Wi *( ch i _ p (1: n , i ) - x _ p r e d i c t ) *( c h i_ p (1: n , i ) - x _ p r e d i c t ) ’;

% end

80% M o d i f i e d c o v a r i a n c e m a t r i x algorithm , e n s u r e s p o s i t i v e d e f i n i t e n e s s

P _ p r e d i c t = z e ro s ( n , n ) ;
for i = 2:2∗ L+1

P _ p r e d i c t = P _ p r e d i c t + Wi ∗( c h i _ p ( 1 : n , i ) − c h i _ p ( 1 : n , 1 ) ) ∗( c h i _ p ( 1 : n , i ) − c h i _ p ( 1 : n , 1 ) ) ’ ;
end

85
% I t e r a t e the n o m i n a l s t a t e s

eta2 = x _ p r e d i c t ;
er r o r = 2∗ e p s i l o n ; % i n i t i a t e e r r or with a v a lu e l a r g e r than e p s i l o n

j = 0;
90Vdot = z e r o s (3 , 1 ) ;

P = ze r o s ( n , n ) ;
wh i l e e rr o r > e p s i l o n

if j >= m a x _ j

b re a k

95end

j = j+1;
eta1 = eta2 ;
H = dhdx ( eta1 , g , d e l t a ) ;
% K a l m a n gain m a t r i x

100% K = P _ p r e d i c t *H ’* inv ( H * P _ p r e d i c t *H ’+ R ) ;

[ K , P ] = S q u a r e R o o t K a l m a n G a i n ( H , P_predict , R ) ;
% m e a s u r e m e n t u p d a t e

z _ k p l u s 1 = [ o m e ga ; a c c e l ] ;
Vdot (1) = a c c e l _ p (1)−eta1 (5) ∗ eta1 (3)+eta1 (6) ∗ eta1 (2)−g∗ sin ( eta1 (7) ) ;

105Vdot (2) = a c c e l _ p (2)−eta1 (6) ∗ eta1 (1)+eta1 (4) ∗ eta1 (3)+g∗ sin ( eta1 (8) )∗ cos ( eta1 (7) ) ;
Vdot (3) = a c c e l _ p (3)−eta1 (4) ∗ eta1 (2)+eta1 (5) ∗ eta1 (1)+g∗ cos ( eta1 (8) )∗ cos ( eta1 (7) ) ;

% Vdot = ( eta1 ( 1 : 3) - y h a t _ k ( 1 : 3 ) ) / dt ;

eta2 = x _ p r e d i c t + K ∗( z _ k p l u s 1 − f u n c 2 ( eta1 , Vdot , g , de l t a ) − H ∗( x_predict −eta1 ) ) ;
er r o r = norm ( ( eta2−eta1 ) , inf ) / norm ( eta1 , inf ) ;

110end

yhat = eta2 ;

sd = sqrt ( diag ( P ) ) ;
F = dfdx ( yhat , p a r a m s ) ;

115H = dhdx ( yhat , g , d e l ta ) ;
% O b s e r v a b i l i t y m a t r i x

W = ze r o s (15∗14 ,14) ; W ( 1 : 1 5 , : ) = H ;
term = H ;
for ii = 1:13

120term = term ∗ F ;
W ((1+15∗ ii ) : ( 1 5 + 15∗ ii ) , : ) = term ;

end

sv = svd ( W ) ; % ##

tol = max ( size ( W ) )∗ eps ( max ( sv ) ) ;
125r = sum ( sv > tol ) ;

c o n d i t i o n = sv (1) / sv ( r ) ;

% C o n s t r u c t o u t p u t v e c t o r Y

Y ( 1 : 1 96 ) = r e s h a p e ( P , 1 96 , 1 ) ;
130Y (197 : 210) = yhat ;

Y (211 : 224) = sd ;
Y (225 : 238) = sv ;
Y (239) = r ;
Y (240) = c o n d i t i o n ;

135Y (241) = j ;
end
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f u n c t i o n Y = UKF ( U )

Y = ze r o s (242 , 1) ;
4% D i r e c t i o n C o s i n e M a t r i x from S e n s o r B o a r d to P e n d u l u m

SB2P = [ −0.607873596459256 , −0.655798968567627 , 0.447680023625497 ;
−0.406013862505740 , −0.227812369076838 , −0.885016535409802;
0.682379977857542 , −0.719742479864316 , −0.127782348146782] ;

% R e c o n s t r u c t i n p u t s P_k , yhat_k , u , omega , params , dt , g

9P_k = r e s h a p e ( U (1 : 1 96 ) ,14 ,14) ;
y h a t _ k = U (197 : 210) ;
u = U (211 : 213) ;
om e g a = U (214 : 225) ;
ac c e l = U (226 : 228) ;

14de l t a = 0 .15 8 ;
a c c e l _ p = SB2P ∗( a c c el + d e l t a ∗[− y h a t _ k (4) ∗ y h a t _ k (6) ;− y h a t _ k (5) ∗ y h a t _ k (6) ; ( y h a t _ k (4) ˆ2 + y h a t _ k

(5) ˆ2) ] ) ;
p a r a m s = U (229 : 233) ;
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dt = U (234) ;
N = ro u n d ( dt ∗3000) +2;

19g = U (235) ;
t u n i n g = U (236 : 245) ;
u_k = [ ( SB2P ∗( U (246 : 248) + d e lt a ∗[− y h a t _ k (4) ∗ y h a t _ k (6) ;− y h a t _ k (5) ∗ y h a t _ k (6) ; ( y h a t _ k (4) ˆ2 +

y h a t _ k (5) ˆ2) ] ) ) ; U (249 : 251) ] ;
n = l e n g t h ( y h a t _ k ) ;

24% UKF s p e c i f i c s e t t i n g s

tp _ Q 1 = t u n i n g (1) ;
tp _ Q 2 = t u n i n g (2) ;
tp _ Q d = t u n i n g (7) ;
t p _ Q a t t = t u n i n g (3) ;

29tp_R = t u n i n g (4) ;
tp _ R a = t u n i n g (5) ;

% S y s t e m n o i s e :

fm = t p _ Q 1 ∗ [ 1 ; 1 ; 1 ] ;
34tm = t p _ Q 2 ∗ [ 1 ; 1 ; 1 ] ;

stdw = [ fm ; tm ; t p _ Q a t t ∗ [ 1 ; 1 ] ; t p _ Q d ∗ ones (6 , 1 ) ] ;
Q = diag ( stdw . ˆ 2 ) ;
% M e a s u r e m e n t n o is e :

stdv = [ tp_R ∗ ones (12 , 1) ; t p _ R a ∗ ones (3 , 1 ) ] ;
39R = diag ( stdv . ˆ 2 ) ;

L = n + l e n g t h ( stdw ) ; % l e n g t h of the a u g m e n t e d st a t e v e c t o r

al p h a = t u n i n g (8) ;
beta = t u n i n g (9) ;

44ka p p a = t u n i n g (10) ;
l a m b d a = a l p h a ˆ2∗( L + k a p p a ) − L ;
Ws0 = l a m b d a /( L+l a m b d a ) ;
Wc0 = Ws0 + 1 − a l p ha ˆ2 + beta ;
Wi = 1/(2∗( L+l a m b d a ) ) ;

49
% 1 - A u g m e n t the s t a te and c o v a r i a n c e

Xa = [ y h a t _ k ; z e r o s (14 , 1) ] ;
Pa = [ P_k z e ro s (14 , 14) ;

z er o s (14 , 14) Q ] ;
54

% 2 - p r e d i c t i o n si g m a p o i n t s

ch i _ p = Xa ∗ ones (1 ,2∗ L+1) ;
% v a r i a t i o n = sqrt ( L + l a m b d a ) * s q rt m ( Pa ) ; % G e b r u i k A = X * X ipv A = X * X ’

v a r i a t i o n = sqrt ( L+l a m b d a )∗ chol ( Pa ’ ) ’ ; % l ow e r t r i a n g u l a r C h o l e s k y

59ch i _ p ( : , 2 : end ) = ch i _ p ( : , 2 : end ) + [ variation ,− v a r i a t i o n ] ;

% 3 - i n s t a n t i a t e each s ig m a p o in t t h r o u g h the e q u a t i o n s of m o t i o n

for i = 1:2∗ L+1
ch i _ p ( : , i ) = RK4 ( ch i _ p ( : , i ) , N , dt , params , u_k , [ a c c e l _ p ; u ] , g ) ; % ###

64end

% 4 - p r o d u c e p r e d i c t e d s t a t e and c o v a r i a n c e

x _ p r e d i c t = Ws0 ∗ c h i _p ( 1 : n , 1 ) ;
for i = 2:2∗ L+1

69x _ p r e d i c t = x _ p r e d i c t + Wi∗ c h i_ p ( 1 : n , i ) ;
end

% P _ p r e d i c t = Wc0 *( ch i _ p (1: n ,1) - x _ p r e d i c t ) *( c h i_ p (1: n ,1) - x _ p r e d i c t ) ’;

% for i = 2:2* L +1

74% P _ p r e d i c t = P _ p r e d i c t + Wi *( ch i _ p (1: n , i ) - x _ p r e d i c t ) *( c h i_ p (1: n , i ) - x _ p r e d i c t ) ’;

% end

% M o d i f i e d c o v a r i a n c e m a t r i x algorithm , e n s u r e s p o s i t i v e d e f i n i t e n e s s

P _ p r e d i c t = z e ro s ( n , n ) ;
79for i = 2:2∗ L+1

P _ p r e d i c t = P _ p r e d i c t + Wi ∗( c h i _ p ( 1 : n , i ) − c h i _ p ( 1 : n , 1 ) ) ∗( c h i _ p ( 1 : n , i ) − c h i _ p ( 1 : n , 1 ) ) ’ ;
end

% % 5 - A u g m e n t the p r e d i c t e d s t a t e and c o v a r i a n c e

84% X a _ p r e d i c t = [ x _ p r e d i c t ; z e r o s (15 ,1) ];

% P a _ p r e d i c t = [ P _ p r e d i c t z e r o s (14 ,15) ;

% z e r os (15 ,14) R ];

% L = l e n g t h ( X a _ p r e d i c t ) ;

%

89% % 6 - G e n e r a t e u p d a t e s i g m a p o i n t s

% ch i _ u = X a _ p r e d i c t * ones (1 ,2* L +1) ;

% v a r i a t i o n = chol (( L + l a m b d a ) * P a _ p r e di c t , ’ lower ’) ;

% ch i _ u (: ,2: end ) = ch i _ u (: ,2: end ) + [ variation , - v a r i a t i o n ];

ch i _ u = c hi _ p ( 1 : n , : ) ;
94

% 8 - i n s t a n t i a t e each s ig m a p o in t t h r o u g h the o b s e r v a t i o n f u n c t i o n

ga m m a = z er o s (15 ,2∗ L+1) ;
Vdot = z e r o s (3 , 1 ) ;
for i = 1:2∗ L+1

99Vdot (1) = a c c e l _ p (1)−c hi _ u (5 , i )∗ ch i _ u (3 , i )+c h i _ u (6 , i )∗ c h i _ u (2 , i )−g∗ sin ( c h i _ u (7 , i ) ) ;
Vdot (2) = a c c e l _ p (2)−c hi _ u (6 , i )∗ ch i _ u (1 , i )+c h i _ u (4 , i )∗ c h i _ u (3 , i )+g∗ sin ( c h i _ u (8 , i ) )∗ cos ( c hi _ u

(7 , i ) ) ;
Vdot (3) = a c c e l _ p (3)−c hi _ u (4 , i )∗ ch i _ u (2 , i )+c h i _ u (5 , i )∗ c h i _ u (1 , i )+g∗ cos ( c h i _ u (8 , i ) )∗ cos ( c hi _ u

(7 , i ) ) ;
ga m m a ( : , i ) = fu n c 2 ( c hi _ u ( : , i ) , Vdot , g , d e l t a ) ;

end
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104
% 9 - p r o d u c e the p r e d i c t e d m e a s u r e m e n t and its c o v a r i a n c e

z _ p r e d i c t = Ws0 ∗ g a m ma ( : , 1 ) ;
for i = 2:2∗ L+1

z _ p r e d i c t = z _ p r e d i c t + Wi∗ g a mm a ( : , i ) ;
109end

P_zz = R ;
for i = 2:2∗ L+1

P_zz = P_zz + Wi ∗( g a m m a ( : , i ) − g a m ma ( : , 1 ) ) ∗( g a mm a ( : , i ) − g a mm a ( : , 1 ) ) ’ ;
114end

% P_zz = Wc0 *( g a mm a (: ,1) - z _ p r e d i c t ) *( g a m m a (: ,1) - z _ p r e d i c t ) ’ + R ;

% for i = 2:2* L +1

% P_zz = P_zz + Wi *( g a m m a (: , i ) - z _ p r e d i c t ) *( g a m m a (: , i ) - z _ p r e d i c t ) ’;

119% end

% P_xz = z e r o s (n ,15) ;

% for i = 2:2* L +1

% P_xz = P_xz + Wi *( c h i _ u (1: n , i ) - c h i _ u (1: n ,1) ) *( g a m m a (: , i ) - g a m ma (: ,1) ) ’;

124% end

P_xz = Wc0 ∗( c h i_ u ( 1 : n , 1 ) − x _ p r e d i c t ) ∗( g a m m a ( : , 1 ) − z _ p r e d i c t ) ’ ;
for i = 2:2∗ L+1

P_xz = P_xz + Wi ∗( c h i _ u ( 1 : n , i ) − x _ p r e d i c t ) ∗( g a m m a ( : , i ) − z _ p r e d i c t ) ’ ;
129end

% 10 - K a l m a n gain

K = P_xz ∗ inv ( P_zz ) ;

134% 11 - the s t a t e u p d a t e e q u a t i o n

z _ k p l u s 1 = [ o m eg a ; a c c el ] ;
yhat = x _ p r e d i c t + K ∗( z _ k p l u s 1 − z _ p r e d i c t ) ;

% 12 - u p d a t e d c o v a r i a n c e

139P = P _ p r e d i c t − K∗ P_zz ∗K ’ ;
sd = sqrt ( diag ( P ) ) ;
F = dfdx ( yhat , p a r a m s ) ;
H = dhdx ( yhat , g , d e l ta ) ;
% O b s e r v a b i l i t y m a t r i x

144W = ze r o s (15∗14 ,14) ; W ( 1 : 1 5 , : ) = H ;
term = H ;
for ii = 1:13

term = term ∗ F ;
W ((1+15∗ ii ) : ( 1 5 + 15∗ ii ) , : ) = term ;

149end

sv = svd ( W ) ;
tol = max ( size ( W ) )∗ eps ( max ( sv ) ) ;
r = sum ( sv > tol ) ;
c o n d i t i o n = sv (1) / sv ( r ) ;

154
% C o n s t r u c t o u t p u t v e c t o r Y

Y ( 1 : 1 96 ) = r e s h a p e ( P , 1 96 , 1 ) ;
Y (197 : 210) = yhat ;
Y (211 : 224) = sd ;

159Y (225 : 238) = sv ;
Y (239) = r ;
Y (240) = c o n d i t i o n ;
Y (241) = 1 ; % j ;

end
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