TUDelft

Relational Deep Learning with Graph
Transformers: Exploring Local and Global
Message Passing

Ignacio Cufiado Barral'
Supervisor(s): Prof. Kubilay Atasu', Cagn Bilgi'
'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Ignacio Cuiado Barral
Final project course: CSE3000 Research Project
Thesis committee: Prof. Kubilay Atasu, Cagri Bilgi, Prof. Thomas Hollt

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract—Graph Transformers have played a key role in the
latest graph learning developments. However, their application
and performance in Relational Deep Learning (RDL), which
has huge potential to remove inefficient data pre-processing
pipelines, remain largely unexplored. For this reason, we present
adaptations to two well-known Graph Transformer models: a
relation-aware local message passing variant (FraudGT) that
computes separate attention matrices for each edge and node
type; and a simplified global-attention version that ignores
heterogeneity (Graphormer). Our analysis demonstrates that
local relation-aware attention achieves state-of-the-art results on
node classification and regression tasks when evaluated against
RelBench tasks, a set of comprehensive RDL benchmarks. We
show how local message passing is computationally cheaper,
faster, more efficient and more accurate than global attention.
Our code is available at https://github.com/ignaciocunado/gt-rdl.

I. INTRODUCTION

Graph Transformers have rapidly become the go-to ap-
proach for handling graph reasoning tasks, offering signifi-
cant improvements over traditional Graph Neural Networks
(GNNGs) [] through the use of self-attention. Recent advance-
ments have focused on refining message passing techniques,
increasing scalability, efficiency and interpretability [2]. Gen-
erally, Graph Transformers can be categorised according to
their attention bias. On one hand, local message passing
Transformers constrain attention to localised neighbourhoods,
while global attention Transformers attend all nodes, shar-
ing information between them. Despite their success, global
attention-based Transformers encounter substantial scalability
limitations when processing large graphs.

Relational Deep Learning (RDL) uses GNNs to learn di-
rectly from relational databases. GNNs have the potential
to extract representations that address all database columns,
eliminating the need for manual feature engineering, which can
introduce human errors, increase costs, and yield suboptimal
features [3), 14 [5]. RelBench was introduced to benchmark
models in this domain, providing 7 realistic datasets covering
node classification, regression, and edge prediction tasks [6].
Recent updates to RelBench have incorporated results from an
advanced Relational Graph Neural Network (ReIGNN) model
[7].

In this work, we investigate how local message-passing
compares to global attention mechanisms within Graph
Transformers in the context of Relational Deep Learning.
Specifically, we implement and evaluate two model vari-
ants: FraudGT, which utilises local message passing, and
Graphormer, which employs global attention [8| 9]]. Our con-
tributions, detailed in include modifications to the
models’ attention mechanisms. We thoroughly evaluate their
performance on a total of 11 RelBench classification and
regression tasks, and conduct an analysis of their runtime
and memory usage to measure efficiency, as presented in
Finally, we answer whether global attention
mechanisms can simulate or dominate the representational
capabilities of purely local message-passing Graph Transform-
ers.

II. RELATED WORK

Since the generalisation of the Transformer to graph learn-
ing [10, [L1} 12} [13]], numerous architectures have integrated
self-attention directly into Graph Neural Networks, signifi-
cantly enhancing their capability to capture complex relation-
ships.

The work on local message passing Transformers has
been extensive. Graph Attention Networks introduced Atten-
tional Layers, which perform neighbourhood-constrained self-
attention, achieving state-of-the-art results on different graph
inductive tasks. Other architectures like LA-MIL and GraphiT
further enhanced local attention by integrating novel node
and edge encodings for domain-specific tasks like multiple
instance learning [14} [15]. Nevertheless, the generalisability
and applicability of these methods to Relational Deep Learning
is unclear.

Graphormer was one of the first models to introduce
global attention, demonstrating the ability of Transformers
to learn meaningful representations of graphs [8]. However,
the quadratic complexity of Graphormer’s layers limits its
scalability, restricting its application primarily to graph clas-
sification on small homogeneous graphs (+200 nodes and
edges). The computational demands of Graphormer mean it
often requires days of training on multiple GPUs, which
is often infeasible for most applications. Alternative global
attention methods, such as the second variant of UGFormer,
proposed by Quoc et al., interleave Transformer layers with
GNN layers [12]]. However, this model was very specialised
on text classification tasks. GOAT introduced dimensionality
reduction techniques to make global attention more tractable
[16]. Despite all the advancements, the scalability of these and
other global attention models to larger graphs, particularly for
inductive node reasoning tasks, remains underexplored.

Structural encodings have been proved essential in many
global attention models [17]. While some approaches propose
using pairwise shortest paths, others claim that eigenvectors
of the Laplacian Matrix are also a good option [18]]. However,
the caveat with most of these options is that they do not scale
well with graph size, limiting their viability to small graphs.
Random Walks-based encodings could solve this problem,
as the walk length can be chosen in advance [19]. Even
so, applying these methods effectively to large heterogeneous
graphs still presents challenges.

Lastly, there is a literature gap in the context of Relational
Deep Learning and heterogeneous graphs [3]. Few Trans-
former and GNN models have been generalised to work with
heterogeneous data [20, 21]], and most implement only local
message passing solutions. In the context of RDL, Chen et al.
recently introduced RelGNN, a new architecture based on mes-
sage passing designed to learn specific patterns in relational
graphs, but with no attention mechanism [7]. Architectures
like Relphormer solve knowledge graph tasks with a hybrid
local-global mechanism [22]]. Despite the numerous published
surveys that review state-of-the-art models and architectures
[23} 24], few works actually compare a purely local message

passing architecture with one that incorporates information
from all the nodes in the graph in a standardised set of bench-
marks. It is common among these surveys to only explore
the theoretical complexity of different types of attention and
inductive biases [25]], but not to propose or evaluate models
which generalise well to different graph topologies.

III. BACKGROUND
A. Graph Neural Networks and Graph Transformers

Consider an undirected graph G = (V, £), where V is the set
of nodes and £ denotes the set of edges. The adjacency matrix
of G is represented by A € {0,1}V*N A = AT, A;; =
1¢(,j)cey - The neighbours of node i are N'(i) = {j : (4,]) €
&}. Each node ¢ € V has an associated d-dimensional feature
vector x; € R?, and each edge (i,j) € £ may also have
features denoted by e;; € R"

Graph Neural Networks are an extension of the Artificial
Neural Network model, and they aim to learn expressive node
(and edge) embeddings. For that reason, they are used for tasks
in which the data can be represented as a graph, like molecules
or transaction networks. In the traditional GNN framework, the
feature representation of each node is updated by iteratively
aggregating information from its neighbours until convergence
is reached [26]. This is known as message passing, and can
be represented as:

mgl) = AGG(l)({xgl_l) :j EN@)}), W
xgl) = UPDATE® (xgl_l), mgl))

)

where mgl) and X,El) are the message vector and the feature

representation of node ¢ at layer [, respectively. The functions
AGG® and UPDATE") aggregate information coming from
neighbouring nodes, and update the hidden representation of
each node, allowing information to propagate through the
graph. Naturally, adding k£ message-passing layers allows
information to reach nodes up to k& hops away.

While traditional GNNs rely strictly on local aggregation,
Graph Transformers have emerged as a promising alternative
due to their ability to capture long-range dependencies through
self attention. Graph Transformers are a generalisation of the
original Transformer architecture into Graph Neural Networks,
leveraging different attention mechanisms and biases to encode
the graph’s structure and node positions [11, 23]. In each
Transformer layer, multi-head attention is performed followed
by a Feed Forward Neural Network (FFN). This can be
formally defined as: let X = [z1,22,...,2,]" € R"¥% be
the node feature matrix of G, a graph with n nodes. In each
layer [(I > 0), the hidden feature matrix is H(/™Y ¢ R7xdn,
Attention linearly projects the input HY o query, key, and
value spaces with learnable projection matrices W [[10]:

Q" =H" W), @)
KO =HY W, 3)
v =HI"D W) “

where Wg%W(I?,Wg) € Rdnxdn_ The scaled dot-product is
then computed via:

Attnl(Q(Z)7 KO, V(l)) = (softmax(%) V(l)> Wg)7
4)
where Wg) € R xdn acts as an output projection. Dividing
by v/d;, prevents large dot-products from saturating softmax.
Multi-Head Attention (MHA) is then computed for h heads
via

MHA(HD) = |7 Attn(QW, KO, VD), (6)

by repeating this process for each head. Note that || represents
the concatenation operator. After MHA has been computed,
outputs are forwarded through the FFN with residual connec-
tions.

Different attention mechanisms perform either local atten-
tion or global attention. This can be seen in[Figure I| depicting
the attention computation between two nodes. In this case, A
(local message passing) shows that only direct neighbours are
attended by using techniques like a direct neighbour mask.
In contrast, global attention (B) attends every node in the
graph. A helpful analogy for global attention is to imagine the
graph as fully connected, allowing message passing between
each pair of nodes [8]. Consequently, global attention is more
computationally expensive than local message passing, with
a complexity of O(n?) for n nodes, since now every vertex
has to attend every other node in the graph. However, this
approach has the possibility to aggregate information between
distant nodes in the graph, potentially improving prediction
accuracy.

Since global models tend to disregard the edge structure,
they rely on structural and positional encodings to represent
the relative position of nodes and the overall structure of
the graph in non-Euclidean space, adding to their overall
complexity.

Finally, a prediction head is added for downstream tasks
like node classification or edge prediction. This head can be,
for example, a Multi Layer Perceptron (MLP) or a simpler
linear projection layer.

B. Heterogeneous Graphs

Consider a modified version of the graph introduced in
A heterogeneous graph contains different
types of nodes and edges. That is, G = (V, &, A, R), where
similarly to before, V is the set of nodes and £ denotes the set
of edges. Each node v € V and each edge (i,7) € £ are now
associated with type mapping functions 7(v) : V — A and
@(i,7) : € = R. In heterogeneous graphs, each node i € V of
type 7(i) has an associated d,;)-dimensional feature vector
X; € Ré-@),

C. Relational Deep Learning

Relational Deep Learning represents relational databases
as temporal, heterogeneous Relational Entity Graphs (REG).
Each row in each relation defines a node, columns define
node features, and primary-foreign key links define edges [3]].

o (o] °

Fig. 1: Comparison of local message-passing and global attention mechanisms in a Graph Neural Network. (a) Local message-
passing aggregates information only from nodes in the direct neighbourhood. (b) Global attention enables each node to attend

to all other nodes, capturing long-range dependencies.

Since most databases have multiple tables, the graph will have
different node and edge types. Moreover, as the number of
columns changes per relation, the dimensionality of the feature
vectors will also vary.

GNNss can be applied to build end-to-end predictive tasks on
the relational entity graph. This practice comes with its own
challenges. As mentioned in heterogeneous
data differs from its homogeneous homonymous because there
are different types of nodes and edges. If we take the example
of the Rel-F1 dataset (Formula 1 statistics) [27], a node can
represent either a driver, race, circuit, constructor, etc. Because
of this, different node types will have a different number of
features with varying data types.

IV. CONTRIBUTIONS

We propose simple adaptations to well-known Graph Trans-
formers that enable performing node classification and re-
gression tasks on heterogeneous data. We start by explaining
how we added edge features to REGs. We then introduce
how relation-aware attention is calculated on the local MP
model, the adaptations for the global attention model, and in
we explain how the results support our design
choices.

A. Edge Features

When converting a database to a REG, there are no features
to add to edges. This is due to the fact that edges represent
relationships between tables via foreign-key constraints, which
do not contain data per se.

However, the majority of graph attention mechanisms rely
on edge features to compute attention weights. For that reason,
edge features need to be manually added to the graph.

We propose concatenating source and destination node
features into the edge features, so that, if e;; denotes the

features of the edge connecting nodes ¢ and j, each with hidden
feature vector h:

eij = hil|h;)

B. Local Message Passing

We use an adapted version of FraudGT [9] as our local
message passing Transformer. FraudGT’s powerful localised
attention combined with its edge-based message passing gate
offer a strong foundation for our extensions.

In order to build an attention mechanism for heterogeneous
data, we propose using relation-aware attention. This mecha-
nism learns projection matrices WQE VV)K, Wy per node type.

h,

In this case, the attention score Q;; D of attention head h

in layer [between neighbouring nodes v; and v; when type
7(i) = 7(j) is:

T
() — (DY) wikd)
qQG = (hi) Q7 (i) ®)
T
(ht) _ (1, (—1) (h,1)
k= (hj) Wk =) ©)

qgh,l) o) k;h,l) + bgl,l)
A - = s
ij /*dk

az(.?’l) = softmax (dg?”)

~ (h,1)

(10)

where h,gl_l) denotes the feature of node v;, and b,gl’l) is the
edge attention bias defined by:

(WD) t (DN Ty (D) d
by = (") Wiy) € R

(1)

where W%Zq?(z 7

compute the edge-based message passing gate via GE;L’Z) =
o((e;gl))TW(éL’(i)(ij)) with the only difference being that we

compute it separately for each edge type. Wéh’l) € Réexdn

is a learnable matrix per edge-type. We

is another learnable matrix, and o is the sigmoid function.
Finally, MHA is computed via:

() _ _(h0) (4. (I=1)\Txx7(RS1)
ﬁij = oy, (hj)WV,T(i)
- BN\ T <xr (1
MHA(! ™) = |4 (@vjeno (B5")) WEL, (2)

- N -
MHA(E] ™) = [l (657) W)

(h)
©G!

(13)

67

which applies a direct neighbour mask to only attend those
nodes connected by an edge, and where Wy are learnable
matrices. @ and © denote element-wise addition and the
Hadamard product (element-wise multiplication), respectively.

Since REGs are not directed multigraphs, in which there can
be multiple edges in both directions between two nodes, ego
IDs and port numbering [28] [29] have not been implemented
as in the original FraudGT model. In contrast, reverse message
passing [30] is already added when constructing the schema
graph during the process of converting a database into a REG.
These inverse links are added to ensure all tables are reachable
within the graph [3].

Lastly, the final prediction heads have been devised as a
two-layered MLP. In the case of the inductive node regression
head, the only change is the addition of L2 regularisation.

C. Global Attention

As discussed earlier, Graphormer’s architecture and atten-
tion mechanisms need to be adapted to work with heteroge-
neous graphs [8]]. In this case, we decided to adapt our graph
structure to work with this model. Adapting heterogeneous
graphs into a homogeneous format simplifies the architecture,
reducing complexity and computational overhead, enabling
efficient utilization of Graphormer’s existing mechanisms. This
is achieved by treating the graph as homogeneous once initial
node embeddings have been built and hidden dimensionality is
constant throughout the graph. We build a full-graph hidden
node feature matrix H € R"*% by concatenating the per-
type node features into a single matrix. In this case, n denotes
the total number of nodes in the graph (achieved by summing
over the node types) and dj is the dimension of our hidden
layers, also known as the number of channels. Then, in the
last layer, we can reconstruct the hidden per-type node matrix
for downstream tasks.

When it comes to Graphormer’s structural encodings, the
original model leverages shortest paths to encode the relative
position of nodes in a graph and edge features. However,
this quickly becomes unfeasible for larger graphs. Therefore,
finding scalable spatial encoding methods remains an active
research area. Due to computational constraints, we omitted
spatial encodings and thus edge features, which might limit
the model’s capacity to fully capture structural information in
larger relational graphs. We believe that investigation into scal-
able positional encodings for large REGs should be considered
for future work and further study.

Centrality encodings have been kept the same in order to
add a notion of node importance in the graph. More concretely,
Graphormer leverages degree centrality, defined as:

hgo) =x; + Z;eg*(vi) + z;rngr(vi), (14)
which learns embeddings for the in-degree (z%) and out-
degree (z7) of each node. In this case, we also treat the graph
as homogeneous and just sum the number of incoming and
outgoing edges without taking their type into account.

Modifying Graphormer’s prediction head allows us to use
this well-known architecture for node classification and regres-
sion rather than graph classification tasks. Therefore, similarly
to our local message passing implementation, our inductive
heads are two-layered fully connected MLPs, with a final
logistic activation function for the classification head.

V. EXPERIMENTS

In this section we present a thorough set of experiments
which evaluate our local and global message-passing imple-
mentations. We compare their performance against a set of
RelBench benchmarks, and measure their average runtime and

memory usage. states the setup used for the

experiments, describing the datasets, baselines and training;

whilst explores the results.

A. Experimental Setup

Datasets and tasks. RelBench provides a set of 7 realistic
databases from publicly available repositories which span
different orders of magnitude. Each dataset contains its own
machine learning tasks like node classification, regression and
edge prediction. Graph sizes vary between 90,000 nodes in the
smallest dataset and more than 30,000,000 in the largest one.
RelBench provides a comprehensive set of baselines against
which models can be tested. Out of the 7 available datasets,
2 of them (rel-amazon and rel-event) are too heavy to fit
in a reasonable amount of memory [31} [32, [33]. Thus, we
have chosen not to evaluate our models on these datasets.
Due to time and computational constraints, we only evaluated
a representative subset of tasks. For node classification, we
have randomly chosen driver-top3 and driver-dnf from the F1
dataset, user-churn from the HM dataset [34]], study-outcome
from the Trial dataset [35]], user-engagement from Stack [36]]
and user-visits from Avito [37]. Node regression benchmarks
will be run on driver-position from F1, ad-ctr from Avito,
item-sales from HM and site-success as well as study-adverse
from Trial. Nevertheless, the proposed architectures and meth-
ods are applicable to other heterogeneous graphs.

Splits. Train, test and validation data splits are automatically
computed using a temporal split methodology. Every dataset
contains two critical temporal demarcation points: a validation
timestamp t,,; and a test timestamp t;.s¢, Which are shared
across all predictive tasks within a given dataset.

Baselines. For each task, the original RelBench paper
published benchmark results that compares its RDL implemen-
tation against LightGBM [3} [38} 39]. We evaluate our models

Dataset Task RDL Local Message Passing Relative Gain Global Attention Relative Gain
Fi driver-top3 75.54+0.63 82.99+0.87 9.86% 76.67+2.80 1.50%
driver-dnf 72.62+0.27 73.81+0.70 1.64% 69.72+2.53 -3.99%
HM user-churn 69.88+0.21 70.30+0.30 0.60% 67.49+0.033 -3.42%
Trial study-outcome 68.60+1.01 69.28+0.32 0.99% 67.42+0.585 -1.72%
Stack user-engagement 90.59+0.09 90.52+0.10 -0.08% 87.59+1.90 -3.31%
Avito user-visits 66.20+0.10 64.92+0.20 -1.93% 63.72+0.44 -3.75%

(a) Node classification results

Dataset Task RDL Local Message Passing Relative Gain Global Attention Relative Gain
F1 driver-position ~ 4.022+0.119 3.925+0.062 2.41% 4.025+0.085 -0.07%
HM item-sales 0.056+0.000 0.052+0.003 7.14% 0.076+0.000 -35.89%
Trial site-success 0.400+0.020 0.376+0.024 6.00% 0.431+0.008 -7.75%
study-adverse 44.473+0.209 43.439+0.771 2.33% 46.596+0.549 -4.77%
Avito ad-ctr 0.041+0.001 0.037+0.001 9.76% 0.039+0.001 4.88%

(b) Node regression results

TABLE I: Node classification and regression results for different RelBench tasks. Each data point represents the mean + 1
standard deviation over 5 runs. Best results are in bold. (a) shows our classification results using the ROC-AUC metric (higher
is better). (b) is our node regression results with the MAE metric (lower is better).

against these baselines and assess the differences for statistical
significance.

Training. A Bayesian hyperparameter search [40] with 100
trials was run for each model. We then trained each model
with 1 or 2 Transformer layers, between 5 and 15 epochs to
avoid overfitting. All models were trained with the AdamW
optimiser [41]. Generally, global attention uses a lower batch
size than local message passing. This is due to the fact that
global attention’s space complexity is quadratic, so there is
a limit on the number of subgraphs we can sample for our
batches as all of them need to fit in memory at once. For each
node, we sample between 25 and 150 neighbours in two steps.
A full overview of the hyperparameters used during training
and testing can be seen under

System. All models were trained and tested on a system
with a single Nvidia A40 GPU and 64GB of RAM memory
and developed with PyTorch Geometric, a framework built on
top of PyTorch [42] 43]].

Memory and runtime tests. For these tests, we compare
the training times and GPU memory usage for our local and
global attention implementations. We train both models with
the same parameters for 10 epochs on the same machine, and
measure the average runtime and memory use over 5 runs
on the same 11 tasks. More concretely, we use 1 Transformer
layer with 32 hidden dimensions, a batch size of 32 and sample
100 neighbours per node in two steps.

B. Results

We divide our results into classification and regression tasks.
For each task, we present our best results averaged over 5 runs
for both the local and global attention implementations, as well
as the Relational Deep Learning results from the RelBench
paper (labelled as RDL). Lastly, to ensure reproducibility and
fairness, each run was performed with a different random seed
(numbered 1 to 5). Please note that the reported results corre-
spond to the best-performing configuration for each model.

Classification. presents our results of predicting a
binary label for a given entity at a given seed time. We use the
area under the Receiver Operating Characteristic curve (ROC-
AUC) metric [44], where a higher score is better than a lower
score.

Our local message-passing Transformer consistently outper-
forms the baseline RDL implementation on most evaluated
tasks. On tasks like user-engagement, both models show the
same performance within statistical significance. Our FraudGT
implementation underperforms RDL in the user-visits task,
with multiple experiments showing that learning plateaus at
around 64% AUC. This could likely be due to high class
imbalance (90.5% of positives). On the other hand, the global
attention implementation is able to reproduce RDL’s results in
some tasks. However, in general, it conveys signs of unstable
learning, as shown by the high standard deviations. Addi-
tionally, global attention is more sensitive to random weight
initialisation and demonstrates inferior data-driven learning
compared to our local message-passing model.

Regression. showcases our results of predicting
full numerical labels for nodes of a graph at a given seed

time. We use the mean absolute error (MAE) metric, where a
lower score is better.

Our local message passing Transformer is generally able
to outperform the Relational Deep Learning implementation
of Robinson et al. in regression tasks. It is also clear that
global attention performs better in node regression than node
classification tasks, as experiments have generally lower stan-
dard deviations, suggesting a more stable training. In addition,
global attention is able to reproduce the baseline scores in two
tasks, indicating room for improvement in the rest.

Trainable Parameters. During the runtime and memory
tests, the parameter count per model was recorded in
(note that we only record parameters per-datasets, as tasks
from the same datasets are trained with the same data).

Dataset Local Message Passing Global Attention

F1 968,293 517,698
HM 313,689 2,217,810
Trial 1,640,369 13,831,394
Stack 884,705 4,773,362
Avito 705,347 76,348,674

TABLE II: Number of trainable parameters for the local mes-
sage passing and global attention models across five datasets:
F1, HM, Trial, Stack and Avito.

FraudGT shows a different parameter count on different
datasets because attention is computed per node and edge type.
If K denotes the number of node types in a graph (or tables
in a database), our model will have to learn more attention
matrices as K increases (Equation 8)), the same applies for
edges. Despite this, the number of parameters for Graphormer
tends to be larger than FraudGT due to the increased layer
complexity and computationally expensive encoding schemes.
A more detailed insight into the number of parameters can be
found under

Runtime. Training 10 driver-top3 epochs on Graphormer
is, on average, over 2 times slower than on FraudGT as seen
on This is even more notable on ad-ctr, being over
18 times slower. Results show how global attention is indeed
much more complex and expensive, which makes Graphormer
slower on training and inference.

7000

B | ocal Message Passing
EEm Global Attention

6000

5000

I
=3
S
S

3000

Runtime (s)

2000

1000

Fig. 2: Mean training time for 10 epochs of our local mes-
sage passing model (FraudGT) and global attention model
(Graphormer) across all evaluated tasks; error bars represent
one standard deviation over five independent runs.

Memory usage. As with runtime, shows how
Graphormer has a much higher average memory usage than

FraudGT often even filling up the memory on our 48GB GPU.
Graphormer’s memory footprint shows a much higher standard
deviation, likely due to a combination between increased
complexity and variation in subgraphs due to random batch
sampling. Looking at both runtime and memory, we can see
that the highest memory spikes are related to the slowest
Graphormer trainings.

B | ocal Message Passing
EEm Global Attention

[w N
S IS o

GPU memory usage (GB)

Fig. 3: Mean GPU memory allocated during a 10-epoch
training run of our local message passing model (FraudGT)
and global attention (Graphormer) across all evaluated tasks;
error bars denote 1 standard deviation over five independent
runs.

VI. DISCUSSION

Our results highlight that local message passing models
like FraudGT can outperform GNN-based Relational Deep
Learning implementations. Their relatively low complexity
and memory usage, as well as fast training times make it
a good option for a variety of scenarios. The use of purely
local self-attention allows FraudGT to efficiently focus on the
important nodes, since it is not uncommon that relevant nodes
are close together.

In contrast, our findings have shown that naive implementa-
tions of global attention Graph Transformers like Graphormer
cannot simulate the expressive power of purely local message
passing models. Moreover, even with reduced batch sizes and
a limited number of neighbours, training Graphormer demands
the maximum memory capacity of even the latest GPUs.
This limitation requires significantly smaller batch sizes, and
combined with higher per-layer complexity, results in notably
longer training and inference times. All of this leads us to
conclude that global attention could be better suited for graph
classification rather than node classification or regression. This
is due to the fact that attending all nodes at the same time may
dilute the individual details that allow local message passing
to predict unseen node labels with higher accuracy.

Even though our results suggest that global attention may
not justify the additional computational resources required
over local message-passing methods, there exists the possi-
bility that this could be due to our model choice. Graphormer
was originally designed to perform graph classification tasks
on small graphs, not individual node inductive tasks on large
graphs. In addition, the lack of scalable positional encodings
for heterogeneous graphs could also hinder Graphormer’s
performance on these tasks. For that reason, this and other
extensions have been devised as future work.

Lastly, during our analysis, we observed unexpectedly stable
baseline performance. Most baselines were easily reproducible
with small adaptations basic models like GIN [45], yet
difficult to improve upon. To investigate this phenomenon,
we conducted a comprehensive exploratory data analysis to
inspect label distributions, feature correlations and temporal
sampling. We find that temporal splits, inherent to RDL lead
to distribution shifts due to natural changes in the data; and
that most regression tasks show skewed distributions, making
true learning hard. A complete overview of this analysis can
be seen under

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed adaptations to popular
Graph Transformers in order to use them for end-to-end
Relational Deep Learning. We have then compared these
implementations against RelBench baselines across a variety
of node classification and regression tasks.

We have demonstrated how local message passing has the
potential to produce state of the art results on some of these
tasks, and how current developments in global attention biases
for Graph Transformers are unable to match RDL results.
Finally, we show that even if global attention was capable
of matching local attention’s representational power, choosing
it over local message passing would not be a trivial decision
due to its increased computational costs.

Further experiments would involve running tests on the
remaining tasks and other relational databases to evaluate how
local and global attention mechanisms perform on a broader
set of tasks. Additionally, the models could be extended to run
edge prediction tasks by designing a new link prediction head.
This would allow us to determine whether our implementations
are as effective at predicting edges as they are in node
classification and regression.

Combining local and global attention layers could allow
the model to learn the specific node details to perform node
inference while keeping a global overview of the graph.

Improving Graphormer. Our global attention model has
potential to improve. Looking for ways to make the model
less sensitive to random initialisation and investigating towards
more stable learning are interesting research directions. This
could be achieved, for example, by finding more efficient
positional and spatial encodings, or by modifying or even
eliminating the existing centrality encodings. These positional
biases would likely enhance Graphormer’s performance by
adding a notion of structure and position to the model, this
is needed as nodes are arranged in a non-Euclidean space
rather than a sequence. However, this task poses challenges in
itself, as graphs tend to be large and heterogeneous, and often
the task of computing these encodings is too computationally
expensive. Adding a node-type bias should also be considered.
This embedding could be computed and introduced in the form
of an extra node feature, which would allow the model to keep
a notion of heterogeneity. Lastly, training the model with batch
accumulation would allow for training the model with a larger
batch size, potentially improving results.

VIII. RESPONSIBLE RESEARCH

This project aims to contribute to the ongoing research
on Graph Neural Networks, Graph Transformers and end-to-
end Relational Deep Learning in a safe, fair and ethical way.
The end goal is always to help progress the field of machine
learning.

LLM tools (04-mini-high |')) were used exclusively for the
following tasks: summarising and explaining text, generating
plotting scripts and aiding in the snowballing process to find
related work.

A. Research Ethics

We are committed to the principles of integrity, diversity,
and engagement as outlined in the TU Delft’s Code of Conduct
and the Netherlands Code of Conduct for Research Integrity.
Specifically, integrity involves conducting research in a trans-
parent, honest, and responsible manner. To achieve this, we
have meticulously documented our methodologies and clearly
report all findings, including negative or inconclusive results,
to maintain scientific rigour and reliability.

B. Reproducibility

To ensure our experimental setup is reproducible, model
hyperparameters have been made public in By
running each experiment 5 times with different random seeds
(1, 2, 3, 4 and 5), we ensure that our results are not based on
lucky initialisations of learnable parameters.

The code used to develop the models is also publicly
accessible, and required dependencies can be installed via
standard package managers like pip El Lastly, all datasets used
come from publicly available repositories licensed for research
use.

IX. ACKNOWLEDGMENTS

Research reported in this work was partially or completely
facilitated by computational resources and support of the Delft
Al Cluster (DAIC) [46] at TU Delft (RRID: SCR_025091), but
remains the sole responsibility of the authors, not the DAIC
team.

REFERENCES

[1] C. Sanford, B. Fatemi, E. Hall, A. Tsitsulin, M. Kazemi,
J. Halcrow, B. Perozzi, and V. Mirrokni, “Understanding
transformer reasoning capabilities via graph algorithms,”
2024.

[2] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl, “Neural message passing for quantum chem-
istry,” Proceedings of the 34th International Conference
on Machine Learning (ICML), 2017.

[3] M. Fey, W. Hu, K. Huang, J. E. Lenssen, R. Ranjan,
J. Robinson, R. Ying, J. You, and J. Leskovec, ‘“Rela-
tional deep learning: Graph representation learning on
relational databases,” 2023.

104-mini-high: https://openai.com/index/introducing-03-and-o4-mini/
2Pip: https://pypi.org/project/pip/

[4] G. Katz, E. C. R. Shin, and D. Song, “Explorekit:
Automatic feature generation and selection,” in 2016
IEEE 16th International Conference on Data Mining
(ICDM), pp. 979-984, 2016.

J. Adamczyk and F. Malawski, “Comparison of manual

and automated feature engineering for daily activity

classification in mental disorder diagnosis,” Computing

and Informatics, vol. 40, p. 850-879, Dec. 2021.

J. Robinson, R. Ranjan, W. Hu, K. Huang, J. Han,

A. Dobles, M. Fey, J. E. Lenssen, Y. Yuan, Z. Zhang,

X. He, and J. Leskovec, “Relbench: A benchmark for

deep learning on relational databases,” 2024.

T. Chen, C. Kanatsoulis, and J. Leskovec, “Relgnn:

Composite message passing for relational deep learning,”

2025.

C.Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen,

and T.-Y. Liu, “Do transformers really perform badly for

graph representation?,” in Advances in Neural Informa-
tion Processing Systems (M. Ranzato, A. Beygelzimer,

Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), vol. 34,

pp- 28877-28888, Curran Associates, Inc., 2021.

J. Lin, X. Guo, Y. Zhu, S. Mitchell, E. Altman, and

J. Shun, “Fraudgt: A simple, effective, and efficient graph

transformer for financial fraud detection,” in Proceedings

of the 5th ACM International Conference on Al in

Finance, ICAIF *24, (New York, NY, USA), p. 292-300,

Association for Computing Machinery, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin,

“Attention is all you need,” 2023.

[11] V. P. Dwivedi and X. Bresson, “A generalization of
transformer networks to graphs,” 2021.

[12] D. Q. Nguyen, T. D. Nguyen, and D. Phung, “Universal
graph transformer self-attention networks,” 2022.

[13] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim,
“Graph transformer networks,” 2020.

[14] D. Reisenbiichler, S. J. Wagner, M. Boxberg, and T. Peng,
“Local attention graph-based transformer for multi-target
genetic alteration prediction,” 2022.

[15] G. Mialon, D. Chen, M. Selosse, and J. Mairal, “Graphit:
Encoding graph structure in transformers,” 2021.

[16] K. Kong, J. Chen, J. Kirchenbauer, R. Ni, C. B. Bruss,

and T. Goldstein, “GOAT: A global transformer on large-

scale graphs,” in Proceedings of the 40th International

Conference on Machine Learning (A. Krause, E. Brun-

skill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett,

eds.), vol. 202 of Proceedings of Machine Learning

Research, pp. 17375-17390, PMLR, 23-29 Jul 2023.

F. Grotschla, J. Xie, and R. Wattenhofer, “Benchmarking

positional encodings for gnns and graph transformers,”

2024,

[18] L. Rampéasek, M. Galkin, V. P. Dwivedi, A. T. Luu,
G. Wolf, and D. Beaini, “Recipe for a general, powerful,
scalable graph transformer,” 2023.

[19] V. P. Dwivedi, A. T. Luu, T. Laurent, Y. Bengio, and
X. Bresson, “Graph neural networks with learnable struc-

(5]

(6]

(7]

(8]

(9]

[10]

[17]

tural and positional representations,” 2022.

X. Yang, M. Yan, S. Pan, X. Ye, and D. Fan, “Simple
and efficient heterogeneous graph neural network,” 2023.
Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous
graph transformer,” 2020.

Z. Bi, S. Cheng, J. Chen, X. Liang, F. Xiong, and
N. Zhang, “Relphormer: Relational graph transformer
for knowledge graph representations,” Neurocomputing,
vol. 566, p. 127044, Jan. 2024.

A. Shehzad, F. Xia, S. Abid, C. Peng, S. Yu, D. Zhang,
and K. Verspoor, “Graph transformers: A survey,” 2024.
C. Yuan, K. Zhao, E. E. Kuruoglu, L. Wang, T. Xu,
W. Huang, D. Zhao, H. Cheng, and Y. Rong, “A sur-
vey of graph transformers: Architectures, theories and
applications,” 2025.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-
Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti,
D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre,
F. Song, A. Ballard, J. Gilmer, G. Dahl, A. Vaswani,
K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li,
and R. Pascanu, “Relational inductive biases, deep learn-
ing, and graph networks,” 2018.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 61—
80, 2009.

F1DB Contributors, “FIDB.” https://github.com/f1db/
f1db, 2025. Data from February 2024.

J. You, J. Gomes-Selman, R. Ying, and J. Leskovec,
“Identity-aware graph neural networks,” 2021.

R. Sato, M. Yamada, and H. Kashima, “Approximation
ratios of graph neural networks for combinatorial prob-
lems,” 2019.

G. Jaume, A. phi Nguyen, M. R. Martinez, J.-P. Thiran,
and M. Gabrani, “edgnn: a simple and powerful gnn for
directed labeled graphs,” 2019.

J. Ni, “Amazon review data.” https://cseweb.ucsd.edu/
~jmcauley/datasets/amazon_v2/, 2018.

J. Ni, J. Li, and J. McAuley, “Justifying recommen-
dations using distantly-labeled reviews and fine-grained
aspects,” in Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP) (K. Inui, J. Jiang, V. Ng,
and X. Wan, eds.), (Hong Kong, China), pp. 188-197,
Association for Computational Linguistics, Nov. 2019.
A. Carroll, Avalon, B. Hamner, eventsdyou,
glhf, and G. Melton, “Event recommendation
engine challenge.” |https://kaggle.com/competitions/
event-recommendation-engine-challenge, 2013. Kaggle.
C. G. Ling, ElizabethHMGroup, FridaRim,
inversion, J. Ferrando, Maggie, neuraloverflow,
and xIsrln, “H&m personalized fashion
recommendations.” https://kaggle.com/competitions/
h-and-m-personalized-fashion-recommendations, 2022.

https://github.com/f1db/f1db
https://github.com/f1db/f1db
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://kaggle.com/competitions/event-recommendation-engine-challenge
https://kaggle.com/competitions/event-recommendation-engine-challenge
https://kaggle.com/competitions/h-and-m-personalized-fashion-recommendations
https://kaggle.com/competitions/h-and-m-personalized-fashion-recommendations

Kaggle.

[35] Clinical Trials Transformation Initiative (CTTI), “Aggre-
gate Analysis of ClinicalTrials.gov (AACT) Database.”
https://aact.ctti-clinicaltrials.org/, 2025.

[36] S. E. Community, “Stack exchange data dump.” https:
/larchive.org/details/stackexchangel 2024.

[37] 1. Guz, night_bat, and W. Kan, “Avito context ad clicks.”
https://kaggle.com/competitions/avito-context-ad-clicks,
2015. Kaggle.

[38] W. Hu, Y. Yuan, Z. Zhang, A. Nitta, K. Cao, V. Kocijan,
J. Sunil, J. Leskovec, and M. Fey, “Pytorch frame: A
modular framework for multi-modal tabular learning,”
2024.

[39] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gra-
dient boosting decision tree,” in Advances in Neural In-
formation Processing Systems (I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[40] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and
efficient hyperparameter optimization at scale,” 2018.

[41] 1. Loshchilov and F. Hutter, “Decoupled weight decay
regularization,” 2019.

[42] M. Fey and J. E. Lenssen, “Fast graph representation
learning with pytorch geometric,” 2019.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[44] J. Hanley, “A method of comparing the areas under
receiver operating characteristic curves derived from the
same cases,” Radiology, vol. 148, pp. 839—43, 10 1983.

[45] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How
powerful are graph neural networks?,” 2019.

[46] Delft AI Cluster (DAIC), “The delft ai cluster (daic),
rrid:scrg25091,” 2024.

https://aact.ctti-clinicaltrials.org/
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://kaggle.com/competitions/avito-context-ad-clicks

APPENDIX A

HYPERPARAMETERS
A. FraudGT
Dataset Task Layers Epochs Learning Rate Batch Size Channels Neighbours Dropouts (Local, Global, Attn.)
driver-top3 1 15 0.005 256 32 [128,128] [0,0,0]
fl driver-dnf 1 5 0.001 256 32 [128,128] [0.1, 0.2, 0.3]
driver-position 1 10 0.003 1028 32 [150,150] [0.1, 0.2, 0.1]
hm user-churn 2 15 0.001 256 32 [128,128] [0,0,0]
item-sales 2 10 0.001 256 32 [128,128] [0,0,0]
study-outcome 2 10 0.001 512 32 [128,128] [0.1,0.1,0.1]
trial site-success 2 4 0.001 256 64 [150,150] [0.2,0.1,0.1]
study-adverse 2 5 0.001 256 32 [150,150] [0,0,0]
stack user-engagement 1 10 0.001 2048 32 [128,128] [0.1, 0.1, 0.1]
avito user-visits 3 10 0.001 1028 64 [128,128] [0,0,0]
ad-ctr 2 10 0.001 256 64 [150,150] [0.3,0.1,0.15]

TABLE III: Task-specific optimal hyperparameter configuration for our local message-passing implementation.

B. Graphormer

Dataset Task Layers Epochs Learning Rate Batch Size Channels Neighbours Dropouts (Dropout, Attn., Activation)

driver-top3 1 10 0.001 128 32 [25,25] [0.1,0.1,0.1]
fl driver-dnf 1 5 0.002 32 32 [100,100] [0.2,0.2,0.2]

driver-position 1 4 0.001 128 32 [25,25] [0.15,0.15,0.15]

hm user-churn 1 15 0.0005 32 32 [100,100] [0.15,0.15,0.15]
item-sales 1 5 0.0005 64 32 [50, 50] [0.2,0.2,0.2]
study-outcome 1 5 0.001 64 64 [50, 50] [0.2,0.2,0.2]
trial site-success 1 10 0.001 32 32 [100,100] [0.0,0.0,0.0]
study-adverse 1 10 0.001 32 32 [100, 100] 10.0,0.0,0.0]
stack user-engagement 2 10 0.001 64 32 [40,40] [0.2,0.2,0.2]
avito user-visits 1 10 0.001 64 64 [50, 50] [0.1,0.1,0.1]
ad-ctr 1 5 0.001 64 32 [50, 50] [0.2,0.2,0.2]

TABLE IV: Task-specific optimal hyperparameter configuration for our global attention implementation.

APPENDIX B
TRAINABLE PARAMETERS

This section introduces some insights into how the number
of parameters grows with the number of dataset tables and
total columns.

shows how the number of parameters grow with
the total number of tables in the database. Relation-aware
attention, used by the local MP model computes attention per
node type, so it is normal that its total number of parameters
has a strong correlation with the number of tables. In this
case, a Pearson Correlation Coefficient of 0.98 was found.
This is not the case, however, with Global Attention, where
there seems to exist no correlation between the number of
tables and parameter count. As graphs are more densely con-
nected, the size of Graphormer’s centrality encodings increases
exponentially, making the total number of parameters explode.

10 Avito
.4 ® Local Message Passing
® Global Attention

4
2
15}
=] Trial
. °
210
L
= Stack
E] o
s
=]
LS HM
5 ° .Tnal
—g Fl

o Stack
2 10 ° Avito

[]
Fl
L]
HM
°
4 6 8 10 12 14

Number of tables in the database

Fig. 4: Scatter plot showing how the number of trainable
parameters grows with the number of tables in the training
database for the Local Message Passing (red) and Global
Attention (blue) models. The y-axis is shown on a log scale
to accommodate the wide dynamic range of parameter counts.

This pattern would hold if we were to examine how model
size varies with the total number of columns (i.e., the sum of
columns across all tables). A similar trend would appear for
FraudGT, but of course correlation does not imply causation:
sorting the databases by total number of columns or by
total number of tables produces the same ordering. Moreover,
when taking into account that hidden dimensionality was kept
constant during the experiments, it is easy to notice this
relationship would not make sense.

APPENDIX C
EXPLORATORY DATA ANALYSIS

This section presents a comprehensive overview of the data-
analysis workflow applied to each task and dataset used. Our
goal is to describe the challenges that make learning from this
data particularly difficult by highlighting the key insights we
found.

For each task, we plot the class balance if its a binary
classification task. In the case of regression, we plot the
distribution of labels to gather further insights. Due to the
relational nature of the data, investigating the correlation
between features is not always possible due to the presence of
text columns.

A. Fl

driver-top3 show a similar class distribution between the
negative and positive classes, allowing the models to learn
meaningful representations and therefore achieving a consid-
erable gain with respect to the baselines.

Test Set Validation Set

Train Set
o 600 iz 600 ey

Negative (0) Positive (1) Negative (0) Positive (1) Negative (0) Positive (1)

Fig. 5: driver-top3 class distribution

This is not so much the case for driver-dnf. A significant
distribution shift can be seen in between train, test
and validation sets.

Validation Set

Train Set Test Set

10000 g 500

8000 400
E 6000 S 300
5 g
5 2
© 4000 © 200

2000 e 100 100

Negative (0) Positive (1) Negative (0) Positive (1) Negative (0) Positive (1)

Fig. 6: driver-dnf class distribution

Finally, driver-position is where the biggest distribution
shift can be seen (Figure 7). Training data from this task goes
from 19-06-1950 all the way to 03-09-2004. During this period
(specially at the beginning), there were races with up to than
39 drivers on the grid. Training and validation data, however,
are much more recent, having a maximum of 24 drivers.
Validation Set

Train Set Test Set

500
400 60

€ 300

=

3

O 200

100

0 10 20 30 40 0 5 10 52 25 0 5 10 15 20
Position Position Position

Fig. 7: driver-position label distribution

Simple calculations tell us that over 9.4% of all drivers of
the training set finished after 24th place or worse. Models
will have to learn that only past races had such a large
number of drivers. Examining the distribution of predicted test
labels of our best performing model against the ground truth
(Figure 8) and comparing it agains train labels distribution
reveals that our model just learned to predict the two most
common positions from the training set (8 and 15).

Predictions Ground Truth

10 15 2 25
Position

H 10 15 20 0 H
Position

Fig. 8: driver-position predicted test labels distribution against
ground truth

This essentially leaves us us with two options: (1) our
models and Relational Deep Learning architectures tested so
far are not powerful enough, (2) the features in the data are
not rich enough to predict average driver finishing positions
accurately.

From this information, we can derive that temporal data
splits often lead to non-identically distributed subsets due
to potential changes in the data distribution over time. This
phenomenon is more noticeable as the timespan increases.

B. HM
The label distribution of item-sales is extremely skewed as

showed by the violin plot in

801
60
w2
=
<]
wn 40
201
0 4
Traiﬁ Set Tes£ Set Validafion Set
Split

Fig. 9: item-sales violin plot displaying label distribution

The training data from this task consists of a whole year’s
worth of sales data for different articles, whilst the test and
validation splits consist of predicting the total sales for an
article for a week in September. This dataset is particularly
hard, as coincidentally, the test week had record-low sales out
of all the weeks in the train, test and validation sets (last bar

in [Figure 10). Examples like this demonstrate the importance
of having rich features and powerful models.

C. Trial

site-success shows a very similar distribution of train, test

and validation labels as shown in This leads to a
decent improvement with the local attention model from the

baseline.

15000

10000

5000

Sold Amount

5 o o N & < g Q 3 o o A
> \“P- > o S S ’L“,\ o i v v >

S Nl
& @‘ &S
Month

2
2,

9
2,

Fig. 10: Weekly sales from the transactions table in the HM
dataset

Success Rate

<
o
)

e
=}
"

Test Validation

Set

.
Train

Fig. 11: site-success violin plot displaying label distribution

Nevertheless, on a task where labels range from O to 1,
and where most are clustered in the extremes, a MAE of
0.400 (baseline) or 0.376 (ours) is not an indicator of good
performance. This again arises the question of whether the
data is not good enough or the models not powerful enough.

In contrast, study-adverse is a collection of rare events,
with most training labels clustered around O (75th train quan-
tile is only 15 events and the train maximum 28085). This
distribution shows again extreme skewness.

&

g 25000 1

>

84

o 200001

7]

=

2

-5 15000

<

G

© 10000 1

=

O

O

£ 5000+

=]

Z 0{ ———— 4

Trélin Tést Valiciation
Set

Fig. 12: study-adverse violin plot displaying label distribution

Once again, the distribution shift between train and test
data is due to the temporal cut-off. Whilst training samples
are approximately evenly distributed between 2001 and 2019,
test samples are from 2021. A decrease in the number of
rare events could be due to, for example, advances in general
medicine which are out of scope for the input features of the
model.

D. Stack

user-engagement’s class imbalance is probably the most
pronounced out of all the tasks. Moreover the large number of
important text features in this database means that the results
are also dependent on the embedding model used.

Train Set Test Set Validation Set
Eiin i i

o o
Negative (0) Positive (1) Negative (0) Positive (1) Negative (0) Positive (1)

Fig. 13: user-engagement class distribution

Switching from GloVe to BERT would reshape the feature
space: BERT’s context-aware vectors would allow the model
capture more details in the dataset’s text features. However, if
the downstream Transformer is shallow, an embedding that is
too sophisticated may add unwanted cost and latency without
contributing to significant accuracy gains.

E. Avito

Lastly, we found user-visits to be the hardest baseline to
reproduce. Despite trying multiple combinations of hyperpa-
rameters, we could not reproduce the results achieved with
the RDL implementation. This task also has a considerable
imbalance between the positive and negative classes as shown

in Figure T3]

Train Set Test Set Validation Set
s 20000 gy i

80000

60000
20000
40000

Count
Count

10000
20000

0 0
Negative (0) Positive (1) Negative (0) Positive (1) Negative (0) Positive (1)

Fig. 14: user-visits class distribution

The dataset itself is characterized by an almost vanishing
linear signal (nearly all features correlate with click-through at
lp| < 0.03), coupled with strong redundancy among hierarchi-
cal and ID fields (e.g. SearchLocation]D <= AdLocationID
at p ~ 0.81). This redundancy could cause representations
to collapse and washing out rare but informative connections.
Clicks are rare and redundant, thus it is important to have a
powerful model which can learn this.

100
SearchD .
UserlD-
SearchIPID -
IsUserLoggedOn - 07
SearchLocationID - .
SearchCategoryID- . .
AdID- . 50
Position-
ObjectType -
HistCTR - 025

IsClick -

Prce- B

IsContext - -0.00

AdLocationID - .
AdCategoryID- .
AdCategoryLevel -

ParentCategorylD - .

SubeategoryID -

--025

AdLocationLevel -
ocationLevel | 050

AdRegionID -

AdCitylD -
UserAgentID-
075
UserAgentOSID -

UserAgentFamilyID -

UserDevicelD -
~1.00

SearchID-

AdID-

Position -
el

D-

SearchCategorylD-
ParentCategory!

AdCategoryLevel -

5 5
<
3

el
a9

.
W

: user-visits numerical labels correlation

	Introduction
	Related Work
	Background
	Graph Neural Networks and Graph Transformers
	Heterogeneous Graphs
	Relational Deep Learning

	Contributions
	Edge Features
	Local Message Passing
	Global Attention

	Experiments
	Experimental Setup
	Results

	Discussion
	Conclusions and Future Work
	Responsible Research
	Research Ethics
	Reproducibility

	Acknowledgments
	Appendix A: Hyperparameters
	FraudGT
	Graphormer

	Appendix B: Trainable Parameters
	Appendix C: Exploratory Data Analysis
	F1
	HM
	Trial
	Stack
	Avito

