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Micromechanical validation of a mesomodel for plasticity in composites

Frans P. van der Meer∗

Delft University of Technology, Faculty of Civil Engineering and Geosciences, PO Box 5048, 2600 GA Delft, The Netherlands

Abstract

In this paper, the performance of a recent homogenized orthotropic plasticity model for fiber reinforced composites

(Vogler et al. (2013)) is investigated by comparing the model response against a micromechanical model. It is assumed

that the micromechanical model which contains a recent plasticity model for polymers (Melro et al. (2013)) offers a

realistic representation of the plastic deformation of composite materials. Under that assumption, the performance

of the homogenized model can be assessed based on the question how well it reproduces micromechanical results.

Improved consistent tangent formulations for both plasticity models are presented and a study into the representative

volume element size for elasto-plastic micromechanical analysis is performed. Micromechanical simulations of basic

load cases are used to generate input for the homogenized model. Next, the response of the two models is compared

for a range of different load cases. The loss of accuracy due to necessary simplifications in the homogenized model

is quantified in the comparison. These simplifications in the mesomodel include ignoring the stress in fiber direction,

disregarding the influence stress orientation under combined longitudinal shear and transverse loading, and the use of

a single constant plastic Poisson ratio.

Keywords: Composite laminates, micromechanics, homogenized model, plasticity

1. Introduction

Analysis of composite materials can be performed on different scales of observation. A popular scale for failure

analysis is the mesoscale, where individual plies in a laminate are modeled as homogeneous orthotropic materials. On

this scale, it is possible to distinguish between failure inside the plies and failure between the plies or delamination.

More information is available on the microscale, where fibers and matrix are modeled separately. On the microlevel, it

is possible to use constitutive models for the matrix, the fiber and the fiber/matrix interface that account for plasticity

and damage, while mesomodels have to account for these processes in a homogenized manner. When it comes to

linear elasticity, homogenization is very effective. Homogenized elasticity parameters can be extracted from simple

micromechanical simulations and the resulting homogenized elasticity model is accurate for all linear deformations.

However, when nonlinearities are present, formulating homogenized constitutive relations for the composite material

is a challenge, where one has to find a balance between accuracy under general conditions and simplicity of the

characterization. The model should be accurate for a wide range of loading scenarios but the required input should

come from a limited set of basic tests.

An important example of where this challenge is manifest for mesolevel models is in the formulation of failure cri-

teria. After many years of research, many different formulations are available to interpolate strength in general stress
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space from a limited set of basic strength values [1–5]. In recent years there is a movement towards using microme-

chanical models to generate failure envelopes [6–9]. The idea behind this trend is that the number of input parameters

for a micromodel is limited because the behavior of the constituents is relatively simple, while the micromodel can be

subjected to arbitrary stress states and histories.

Another ingredient for mesolevel failure analysis is a representation of shear nonlinearity. It has been shown that

accounting for shear nonlinearity can make a significant difference on subcritical damage development, which in turn

influences the final failure of a laminate [10, 11]. For a laminate that is loaded in-plane, the most significant plastic

deformations will occur in the in-plane shear strain component. In orthotropic elasticity there is no coupling between

shear and axial deformations, which means that shear stress is a linear scalar relation of shear strain. For that reason it

is possible to introduce nonlinear shear behavior by making this scalar relation a nonlinear relation without considering

interaction with other stress and strain components. This allows for simple formulations for shear nonlinearity that

have been used by different authors [10–13]. However, the underlying physical mechanism of plastic deformation of

the polymer matrix is a continuum phenomenon which can only be described accurately in a full three-dimensional

constitutive law. Plasticity of epoxy matrices is a pressure dependent nonlinear process [14]. Even though the fibers

and loading in a laminate often ensure that the primary direction of plastic deformation is the in-plane shear direction,

this process is never independent from hydrostatic pressure and transverse stresses that can be expected to be present.

Different formulations for orthotropic plasticity can be found in literature [15–17]. However, in case of hardening

plasticity in composite materials it is crucial to make sure that there is no plasticity in the part of the homogenized

response that represents the fibers. After all, the physical process that is represented by the homogenized plasticity

model is plasticity in the matrix material and not in the, much stiffer, fibers. Recently, Vogler et al. [18] proposed a

homogenized hardening plasticity model for orthotropic materials that is formulated in full three-dimensional space.

The invariant-based formulation in this model excludes the influence of the composite stress in fiber direction on the

plasticity and the corresponding flow rule prevents any plastic strain in fiber direction.

An alternative to homogenized constitutive methods can be found in multiscale analysis or FE2 [19]. Multiscale

analysis connects to the idea that nonlinear processes in a material with a specific microstructure can be described

accurately with a micromechanical numerical model without loss of generality. More basic constitutive models can

be used for the different phases in the microstructure and the complexity of the composite material behavior follows

from the micromechanics. In FE2 a finite element model on the higher scale is coupled in every integration point

to a microlevel finite element model. Downside of this approach is that it is computationally very heavy. Therefore,

good homogenized constitutive models will remain important. In order to be able to make a justified choice between

the simplified homogenized approach and the expensive FE2 approach, the central question is to what extent the

homogenized model can reproduce micromechanical results for arbitrary load cases.

In this paper, the performance of the plasticity model by Vogler et al. [18] is examined against micromechanical

results. The micromodel is used to generate input for the mesomodel. Subsequently, the question is answered to

what extent the mesomodel accurately represents the micromechanical response for non-calibrated cases. For matrix

plasticity on the microlevel, the recent pressure dependent plasticity model by Melro et al. [20] is used. Minor changes

to the formulation of the mesolevel and microlevel constitutive models are proposed. Furthermore, a study into the

size of representative volume element (RVE) that is needed for micromechanical plasticity analysis is presented. This

paper is purely concerned with plasticity. In complete analysis of composite materials, damage and fracture will at

some point take place. For a pure assessment of the performance of the plasticity models, damage is excluded from

both micro and mesolevel models in the current study.
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2. Model formulation

In this section, the plasticity models by Melro et al. [20] and Vogler et al. [18] are presented in slightly revised

form. The aim is to be complete, so that the reader can reproduce the exact implementation used for the current

investigation, without providing motivation for all the underlying choices. For more background on the constitutive

models, the reader is referred to the original publications [18, 20]. Differences with the original version of the models

will be mentioned explicitly.

2.1. Mathematical notations

In this section, index notation and matrix notation will be used alternately. In index notation, summation over

repeated indices is assumed. In matrix notation, boldfaced upper case roman symbols indicate second or fourth order

tensors, while boldfaced lower case symbols indicate vectors. In matrix notation, the number of dots used to denote

multiplication indicates the number of indices over which summation takes place, which implies that multiplication

without dot indicates an outer product.

2.2. Micromechanical model

The micromechanical model consists of elastic isotropic fibers and the hardening plasticity model developed by

Melro et al. [20, 21]. With respect to the original formulation, changes are proposed to the formulation of the consistent

tangent.

2.2.1. Stress evaluation

Stress evaluation for the matrix plasticity model begins with evaluation of the trial stress:

σtr
i j,n = Di jkl

(

εi j,n − εp

i j,n−1

)

(1)

where εi j,n and σtr
i j,n

are the strain and trial stress tensors at time n, Di jkl is the fourth order isotropic elasticity tensor

and ε
p

i j,n−1
is the plastic strain from the previous time step.

In tensor notation, the elasticity tensor is written as:

Di jkl = 2Gδs
i jkl +

(

K − 2

3
G

)

δi jδkl (2)

where G and K are the shear and bulk modulus of the material, δi j is the Kronecker delta and δs
i jkl

is the symmetric

version of the fourth order identity tensor, accounting for symmetry of the strain tensor:

δs
i jkl =

1

2

(

δikδ jl + δilδ jk

)

(3)

The yield function is given as:

f (σ, ε
p
eq) = 6J2(σ) + 2I1(σ)(σc(ε

p
eq) − σt(ε

p
eq)) − 2σc(ε

p
eq)σt(ε

p
eq) = 0 (4)

where J2 is the second deviatoric stress invariant and I1 is the first stress invariant. The parameters σc and σt represent

the yield stress in uniaxial compression and uniaxial tension. Both of these are not constants but rather a function of

the equivalent plastic strain ε
p
eq, which is defined as the time integral of

ε̇
p
eq =

√
kε̇p : ε̇p (5)
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where k is related to the plastic Poisson ratio νp as k = 1/(1+2νp). The expressions for σc and σt are piece-wise linear

functions extracted from uniaxial stress-strain curves for a given νp.

If f (σtr
n , ε

p

eq,n−1
) > 0, the plastic strain is increased to until

f (σn, ε
p
eq,n) = 0 (6)

From here on, the subscript n is dropped for notational simplicity. The increment in plastic strain is found in a return

mapping algorithm where the nonlinear Eq. (6) is solved iteratively. Both unknowns σ and ε
p
eq are expressed in terms

of the increment in plastic multiplier ∆γ to make Eq. (6) a function of a single scalar unknown. A non-associative flow

rule is introduced by Melro et al. [20] that defines the increment in plastic strain with Euler backward time integration

as:

∆εp = ∆γ

(

3S +
2

9
αI1I

)

(7)

where S is the deviatoric stress tensor and I the identity matrix. Note that S and I1 are expressed in terms of the stress

tensor at the end of the return mapping procedure. The parameter α is related to the plastic Poisson ratio νp:

α =
9

2

1 − 2νp

1 + νp

(8)

With this flow rule, the relation between stress and ∆γ can be written as:

σ =
Str

1 + 6G∆γ
+

1
3
Itr
1

I

1 + 2Kα∆γ
=

Str

ζs

+

1
3
Itr
1

I

ζp

(9)

Note that Str and Itr
1

in Eq. (9) are expressed in terms of trial stress and therefore constant during the return mapping

procedure. The relation between the increment in equivalent plastic strain and the increment in plastic multiplier can

be written as:

∆ε
p
eq = ∆γ

√
kM : M (10)

where M is the direction of plastic flow. In Eq. (7) the direction of plastic flow was expressed in terms of final stresses,

alternatively it can be expressed in terms of trial stress and ∆γ:

M =
3Str

ζs

+

2
9
αItr

1
I

ζp

(11)

With Eqs. (9) and (10), the yield function becomes a function of ∆γ only. This f (∆γ) = 0 is solved iteratively. Because

of the non-associative flow rule, it is possible that in exceptional cases there exists a solution for ∆γ < 0, which is

thermodynamically inadmissible. The root is found with Newton’s method starting at ∆γ = 0. If a negative root is

obtained, this solution is discarded and another root is found in a less efficient algorithm that searches only in ∆γ > 0

direction.

For robustness and efficiency of the return mapping algorithm, exact linearization of ∂ f /∂∆γ is needed. The

linearization reads:

∂ f

∂∆γ
= −

72GJtr
2

ζ3
s

−
4(σc − σt)KαItr

1

ζ2
p

+
∂ f

∂ε
p
eq

∂∆ε
p
eq

∂∆γ
(12)
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The derivatives in the final term of Eq. (12) are given by:

∂ f

∂ε
p
eq

= 2(Hc − Ht)
Itr
1

ζp

− 2(σcHt + σtHc) ≡ Ĥ (13)

∂ε
p
eq

∂∆γ
=

√

1

1 + 2(νp)2













√
A − ∆γ

2
√

A













216GJtr
2

ζ3
s

+
16α3K(Itr

1
)2

27ζ3
p

























(14)

where Hc and Ht are the hardening moduli defined as the derivatives of input functions σc and σt with respect to ε
p
eq,

while A is defined as:

A =
18Jtr

2

ζ2
s

+
4

27

(

αItr
1

ζp

)2

(15)

2.2.2. Consistent linearization

Taking the derivative of stress according to Eq. (9) with respect to strain gives:

∂σi j

∂εkl

=
1

ζs

∂S tr
i j

∂εkl

+
δi j

3ζp

∂Itr
1

∂εkl

−
S tr

i j

ζ2
s

6G
∂∆γ

∂εkl

−
Itr
1
δi j

3ζ2
p

2Kα
∂∆γ

∂εkl

(16)

In order to expand this expression, a relation between the rate in plastic multiplier and the rate in strain is needed.

However, because the plastic multiplier is computed in an iterative procedure, there is no explicit relation from which

the derivative ∂∆γ/∂ε can be evaluated. Instead, use is made of the consistency condition, which states that the

condition ḟ = 0 must hold from one iteration to the next, because f remains equal to zero. If f is written as a function

of independent unknowns ε and ∆γ, one obtains:

δ f =
∂ f

∂ε
: δε +

∂ f

∂∆γ
δ∆γ = 0 ⇒ ∂∆γ

∂ε
=

1

η

∂ f

∂ε
(17)

with

η = − ∂ f

∂∆γ
(18)

The expression for ∂ f /∂∆γ is already given in Eq. (12). The derivative ∂ f /∂ε is expressed as:

∂ f

∂ε
=

6

ζ2
s

∂Jtr
2

∂ε
+

2(σc − σt)

ζp

∂Itr
1

∂ε
+

∂ f

∂ε
p
eq

∂ε
p
eq

∂ε
(19)

with

∂Jtr
2

∂εkl

= S tr
i j

∂S tr
i j

∂εkl

= 2GS tr
i jδ

s
i jkl −

2

3
GS tr

i jδi jδkl = 2GS tr
kl (20)

∂Itr
1

∂εkl

= 3Kδkl (21)

The final term in Eq. (19), which originates from the dependence of σc and σt on ε through the presence of the trial

stress in Eqs. (10) and (11), was ignored by Melro et al. [20]. Nevertheless, is was found to be relevant for good

convergence in the present work. The final term is completed with the following expressions:

∂ε
p
eq

∂εi j

=
(∆γ)2k

∆ε
p
eq

Mkl

∂Mkl

∂εi j

≡ Ei j (22)
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with

∂Mi j

∂εkl

=
6G

(

δs
i jkl
− 1

3
δi jδkl

)

ζs

+

2
3
αKδi jδkl

ζp

(23)

Substituting relations from Eqs. (17), (20) and (21) into Eq. (16) gives:

∂σi j

∂εkl

=
2G

ζs

(

δs
i jkl −

1

3
δi jδkl

)

+
K

ζp

δi jδkl

−
72G2S tr

i j
S tr

kl

ηζ4
s

−
36KG(σc − σt)S

tr
i j
δkl

ηζ2
s ζp

−
8KGαItr

1
δi jS

tr
kl

ηζ2
s ζ

2
p

−
4K2αItr

1
(σc − σt)δi jδkl

ηζ3
p

−
6GS tr

i j
EklĤ

ηζ2
s

−
2KαItr

1
δi jEklĤ

3ηζ2
p

(24)

where Ekl is the shorthand notation for the tensor introduced in Eq. (22) and Ĥ for the derivative from Eq. (13). The

consistent tangent can be reordered to an expression in the notation adopted by Melro et al. [20]:

∂σ

∂ε
= βIs

4 +

(

φ − β
3

)

II − ρStrI − χStrStr − ψIStr − ωStrE − ξIE (25)

where Is
4

is the fourth order tensor from Eq. (3) and the different coefficients are defined as:

β =
2G

ζs

(26)

φ =
K

ζp

−
4K2αItr

1
(σc − σt)

ηζ3
p

(27)

ρ =
36KG(σc − σt)

ηζ2
s ζp

(28)

χ =
72G2

ηζ4
s

(29)

ψ =
8KGαItr

1

ηζ2
s ζ

2
p

(30)

ω =
6GĤ

ηζ2
s

(31)

ξ =
2KαItr

1
Ĥ

3ηζ2
p

(32)

Note that for φ the order of ζs in the denominator is one order higher than in the original paper. Furthermore, the terms

with E are new. These are related to the dependence of ∆ε
p
eq on σtr.

2.3. Mesomechanical model

For the mesomechanical model, the constitutive model by Vogler et al. [18] is used. Also in this model small

changes are proposed and therefore the formulation is briefly presented here.
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2.3.1. Stress evaluation

Vogler et al. [18] have derived their yield function from a set of stress invariants. In the end of the presentation

of the model, they state that the yield function can be written down in simplified form and this formulation will

be followed here. All expressions below are given in local coordinate frame with the first stress component in fiber

direction. In a finite element implementation the evaluation of the constitutive law is preceded by a transformation of

strain to the local frame and followed by a transformation of stress and stiffness to the global frame.

The yield function is written in Voigt notation as:

f =
1

2
σ · A · σ + a · σ − 1 (33)

with

A =































































0 0 0 0 0 0

0 1
2
α1 + 2α32 − 1

2
α1 + 2α32 0 0 0

0 − 1
2
α1 + 2α32

1
2
α1 + 2α32 0 0 0

0 0 0 2α1 0 0

0 0 0 0 2α2 0

0 0 0 0 0 2α2































































(34)

and

a =
{

0 α3 α3 0 0 0
}T

(35)

The αi coefficients are piecewise linear functions of equivalent plastic strain ε
p
eq obtained from stress-strain curves

from basic cases. For α32 and α3 there are two versions, one for compression and one for tension. The decision of

which of these two versions is used depends on the sign of σ2 +σ3. Continuity in f (σ, ε
p
eq) is ensured by the fact that

both α32 and α3 do not contribute to f when σ2 + σ3 = 0.

Stress update is based on:

σ = σtr − De · ∆εp (36)

where De is the orthotropic elasticity matrix and

∆εp = ∆γng (37)

where ng is the derivative of the flow potential with respect to stress defined as:

ng = B · σ (38)

where B has the same shape as A in Eq. (34), except that constants βi replace the variables αi. Substitution of (37) and

(38) into (36) gives:

σ =
[

I + ∆γDe · B
]−1 · σtr ≡ F · σtr (39)

With this expression, σ becomes a function of a single unknown, ∆γ. The yield function can be written as a function

of this one unknown after the dependence of the αi variables on ∆γ through the equivalent plastic strain is taken into

account. The equivalent plastic strain rate is defined in Voigt notation with engineering strain as:

ε̇
p
eq =

√

ε̇
p · J · ε̇p ≡

∥

∥

∥ε̇
p
∥

∥

∥

J
(40)
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with

J = diag
{

1
2
, 1

2
, 1

2
, 1

4
, 1

4
, 1

4

}

(41)

Note that the difference in shear and axial terms in the J matrix is a consequence of the use of Voigt notation and

engineering strain. The unconventional norm ‖ε̇p‖J is equivalent to the tensor notation expression used in the original

paper
√

1
2
ε̇

p

i j
ε̇

p

i j
. Euler backward time integration of the evolution of ε

p
eq gives:

∆ε
p
eq = ∆γ

∥

∥

∥ng

∥

∥

∥

J
(42)

Now, the yield function is a function with only one unknown, ∆γ. The value of ∆γ for which f = 0 is found iteratively

with Netwon’s method. This procedure requires an expression for the derivative ∂ f /∂∆γ. For robustness and efficiency

of the iterative procedure, care is required to include all dependencies in this linearization. Here, f is first considered

a function of independent unknowns σ and ε
p
eq and subsequently the chain rule is applied to account for dependence

of both of these on ∆γ:

∂ f (∆γ)

∂∆γ
=
∂ f (σ, ε

p
eq)

∂σ
· ∂σ
∂∆γ

+
∂ f (σ, ε

p
eq)

∂ε
p
eq

∂ε
p
eq(∆γ)

∂∆γ
(43)

with

∂ f (σ, ε
p
eq)

∂σ
= A · σ + a ≡ n f (44)

∂ f (σ, ε
p
eq)

∂ε
p
eq

=
1

2
σ · ∂A

∂ε
p
eq

· σ + ∂a

∂ε
p
eq

· σ (45)

The derivatives of A and a with respect to ε
p
eq follow from the hardening functions for the coefficients αi which directly

depend on ε
p
eq. The derivative of stress with respect to ∆γ is obtained from Eq. (36). Taking the derivative of Eq. (36)

after substitution of Eqs. (37) and (38) gives:

∂σ

∂∆γ
= −∆γDe · B · ∂σ

∂∆γ
+ De · B · σ ⇒ ∂σ

∂∆γ
= −F · De · B · σ (46)

The derivative of ε
p
eq with respect to ∆γ is given by:

∂ε
p
eq(∆γ)

∂∆γ
=
∂ε

p
eq(σ,∆γ)

∂∆γ
+
∂ε

p
eq(σ,∆γ)

∂σ
· ∂σ
∂∆γ

(47)

with

∂ε
p
eq(σ,∆γ)

∂∆γ
=

∥

∥

∥ng

∥

∥

∥

J
(48)

and

∂ε
p
eq(σ,∆γ)

∂σ
= −∆γ

J · ng
∥

∥

∥ng

∥

∥

∥

J

· B (49)
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2.3.2. Characterization

The constitutive law is characterized by filling the parameters αi in the yield function (Eq. (33)) and parameters βi

in the flow rule (Eq. (38)). Relations between the αi values and the stress values measured from basic tests are:

α1 =
1

Y2
TS

(50)

α2 =
1

Y2
LS

(51)

αt
32 =

1 − YUT

2YBT
− α1

Y2
UT

4

Y2
UT
− 2YBTYUT

(52)

αt
3 =

1

2YBT

− 2αt
32YBT (53)

αc
32 =

1 − YUC

2YBC
− α1

Y2
UC

4

Y2
UC
− 2YBCYUC

(54)

αc
3 =

1

2YBC

− 2αc
32YBC (55)

where YTS refers to transverse shear stress, YLS to longitudinal shear stress, YUT to uniaxial tensile stress, YBT to

biaxial tensile stress, YUC to uniaxial compressive stress and YBC to biaxial compressive stress. All Y.. stress histories

are expressed as a function of equivalent plastic strain. The computation of equivalent plastic strain histories from

stress and strain histories will be discussed in Section 3.2.

Regarding the plastic potential and the βi parameters, a constant plastic Poisson ratio is assumed to exist. For a

given value of νp, the ratio between β1 and β32 is given as:

β32 =
1 − νp

4(1 + νp)
β1 (56)

The ratio between β1 and β2 has to be determined from a test with combines transverse and longitudinal shear. In the

present work, the two parameters are assumed to be equal. Then the B-matrix is known apart from a constant factor,

which will be canceled by the plastic multiplier γ. Setting β1 = 1 + νp results in the following simple notation for the

B-matrix:

B =































































0 0 0 0 0 0

0 1 −νp 0 0 0

0 −νp 1 0 0 0

0 0 0 2(1 + νp) 0 0

0 0 0 0 2(1 + νp) 0

0 0 0 0 0 2(1 + νp)































































(57)

Note that the optimization procedure described by Vogler et al. [18] is not present in this implementation. The concept

followed here is that measurement of strain in unloaded direction in a uniaxial test allows to estimate νp directly from

test data. With the additional assumption β2 = β1, νp completely defines the B-matrix.

2.3.3. Consistent linearization

For deriving the consistent tangent, the procedure by Van der Meer and Sluys [17, 22] for a similar orthotropic

plasticity model is followed. The variation in stress is expressed in terms of independent variations in strain and plastic
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multiplier as:

δσ = H · δε −H · ngδ∆γ (58)

with H = F · De. With the consistency condition δ f = 0, it is possible to eliminate δ∆γ from this relation. The

dependence of ε
p
eq on σ through ng has to be accounted for:

δ f =
∂ f (σ, ε

p
eq)

∂σ
· δσ +

∂ f (σ, ε
p
eq)

∂ε
p
eq













∂ε
p
eq(σ,∆γ)

∂∆γ
δ∆γ +

∂ε
p
eq(σ,∆γ)

∂σ
· δσ













=













n f +
∂ f (σ, ε

p
eq)

∂ε
p
eq

∂ε
p
eq(σ,∆γ)

∂σ













· δσ +
∂ f (σ, ε

p
eq)

∂ε
p
eq

∂ε
p
eq(σ,∆γ)

∂∆γ
δ∆γ

(59)

Equating the variation in f to zero gives:

δ∆γ =
1

λ
n̄ f · δσ (60)

with

n̄ f =
∂ f (σ,∆γ)

∂σ
= n f +

∂ f (σ, ε
p
eq)

∂ε
p
eq

∂ε
p
eq(σ,∆γ)

∂σ
(61)

and

λ = −
∂ f (σ, ε

p
eq)

∂ε
p
eq

∂ε
p
eq(σ,∆γ)

∂∆γ
(62)

Substitution of Eq. (60) into (58) gives:

δσ = H · δε − 1

λ
H · ngn̄ f · δσ (63)

or

δε =

[

H−1 +
1

λ
ngn̄ f

]

· δσ (64)

This relation is inverted with the Sherman-Morrison formula to give:

δσ =

[

H −
H · ngn̄ f ·H
λ + n̄ f ·H · ng

]

δε (65)

Note that the difference with the tangent formulation by Vogler et al. [18] lies in the usage of n̄ f from Eq. (61) instead

of n f from Eq. (44). Furthermore, a different expression for λ is used: Vogler et al. [18] propose to use the derivative

from Eq. (43) which includes dependency of σ on ∆γ. This dependency only exists for constant trial stress inside the

return mapping algorithm. In Eq. (59), which is where λ originates from, δσ and δ∆γ are independent.

3. Results

The fundamental input for this study is the input used for the micromodel. All input for the mesomodel is extracted

from micromodel results. In the micromodel, the fibers are represented as isotropic elastic continuum with Young’s

modulus 74000 MPa and Poisson’s ratio 0.2. For elastic behavior of the matrix, a Young’s modulus of 3760 and Pois-

son’s ratio of 0.3 are used. For plasticity, a plastic Poisson ratio of 0.39 is used and the fundamental hardening curves

are given in Figure 1. The input data is based on that given for epoxy by Melro [21] except that the secondary hard-

ening tail given for the compressive behavior is removed. In the current plasticity-only investigation, the combination

of a second rising branch in the compression hardening curve with a plateau for the tension hardening curve leads to

softening in tension for large strain values. In real life, failure would take place before such strain values are reached,

but in the current investigation of purely plastic behavior, these strain values will occur.
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Figure 1: Input hardening curves for micromechanical plasticity model.

3.1. RVE size study

Before the comparison between the micro and mesolevel models can be done, the geometry of the micromodel

must be defined. A representative volume element (RVE) with a random fiber distribution is used to simulate the com-

posite response. First, the size of the RVE should be determined. The micromodel is only representative if increasing

its size does not affect its averaged response.

Melro et al. [23] have investigated the influence of the size of the micromodel on the elastic response. Gonzalez

et al. [24] have shown that for transverse compression the results from an elasto/plastic RVE of 70 fibers is similar

the averaged response from different RVEs with 30 fibers each. Canal et al. [25] found that the statistical variation

for transverse tension and shear for different RVEs of 30 fibers to be limited. In this section, a statistical study into

the influence of RVE size on the elasto/plastic response for transverse tension and longitudinal shear is presented

with a large number of different RVEs of different sizes. Random fiber distributions are generated with the discrete

element simulation package HADES. Initial conditions for these simulations consist of a specified number of equally

spaced discs in two dimensional space with pseudo-random velocities. The discs, representing the fibers, are located in

two-dimensional periodic box which shrinks over time. A contact model with predefined minimum spacing between

the fibers ensures that fibers do not overlap as the fiber density increases. When the desired fiber volume fraction is

reached, the discrete element simulation is ended and the resulting geometry is meshed with Gmsh[26]. For three-

dimensional simulations, the mesh of three-node triangles is extruded to generate a single layer of six-node wedge

elements. This means that a full three-dimensional deformation state can be represented. However, the single layer of

elements in implies that strain does not vary in fiber direction and that all fibers are assumed to be perfectly straight

and aligned.

For the mesh generation, a finite minimum distance between the fibers is needed, although in reality it is possible

that fibers are in immediate contact. Geometric parameters for the generation of fiber distributions are a fiber diameter

of 5 µm, fiber volume fraction of 0.6 and minimum spacing of 0.2 µm. Meshes are generated with typical element

length of 0.5 µm in the matrix, coarsening up to 2 µm in the center of the fibers.

At first, two-dimensional plane strain simulations of uniaxial tension are performed. The micromodel is subjected

to periodic boundary conditions. The mesh itself is also periodic, which means that periodic boundary conditions can

be applied on the micromodel with linear constraints between degrees of freedom. The relative displacement between

two matching nodes on opposite faces is constrained to be equal to the relative displacement of a master node with

11



respect to the origin:

u(∆x, y, z) = u(0, y, z) + u(∆x, 0, 0) − u(0, 0, 0)

u(x,∆y, z) = u(x, 0, z) + u(0,∆y, 0) − u(0, 0, 0)

u(x, y,∆z) = u(x, y, 0) + u(0, 0,∆z) − u(0, 0, 0)

(66)

where u(0, 0, 0) is prescribed to zero to eliminate rigid translations and u(∆x, 0, 0), u(0,∆y, 0) and u(0, 0,∆z) are three

master corner nodes. Averaged deformations can be defined by prescribing the displacements of these master nodes.

Averaged stresses (including zero stress condition) can be applied by keeping associated master node displacements

unconstrained and applying an external force (or zero external force) on the master node. The periodic boundary

constraints are equivalent to those described by Melro et al. [23], except for the option to prescribe certain averaged

stress components instead of strain components, which is an option that was not given in [23]. The special constraints

that exist along edges and in corners as given by Melro et al. [23] are not explicitly prescribed but automatically found

when resolving newly added constraints to prevent a single degree of freedom to be slave and master at the same time.

The resolved constraint for the corner node opposite to the origin, for instance, becomes:

u(∆x,∆y,∆z) = u(∆x, 0, 0) + u(0,∆y, 0) + u(0, 0,∆z) − 2u(0, 0, 0) (67)

For the final formulation of the constraints, it does not matter in which order the three lines of Eq. (66) are applied.

Averaged stress values are obtained through division of the sum of nodal forces along one of the faces over by area

associated with that face. The averaged deformation gradient is obtained from the displacements of the three master

corner nodes divided by the length of the unit cell in the associated direction. Strain is defined as the symmetric part

of the deformation gradient. For shear strains engineering strain values are used.

In Figure 2 the stress-strain response for 50 different fiber distributions with micromodels consisting of 25 fibers

are plotted. It is observed that there is much more scatter in the plastic response than there is in the initial stiffness. The

response approaches a perfectly plastic response, although the curve remains slightly increasing because no complete

plastic mechanism is found. The final distribution of equivalent plastic strain is visualized for three different fiber

distributions in Figure 3. The exact strain field depends strongly on the particular fiber distribution. Plastic strain tends

to localize under an angle between 45 and 90 degrees with the load direction. Periodic boundary conditions do not

support a single localization band under an arbitrary angle. For localization under perfectly plastic conditions, the

influence of this artificial constraint on the global response is expected to remain limited.

The fact that there is significant scatter in the micromodel response can be taken to mean that a single model of

25 fibers is not big enough to be statistically representative. The same procedure is repeated for different micromodel

sizes. For each of a different number of fibers nf with
√

nf ∈ {2, 3, . . . , 9}, 50 different micromodels are generated

and subjected to uniaxial transverse tension with plane strain in fiber direction. A unit cell model with single fiber

centered in the domain is also included. For each micromodel size, the mean and variation in stress level at a strain

of 0.03 is plotted in Figure 4. The unit cell gives significantly higher final stress level than the larger micromodels.

For increasing micromodel size, the mean response converges to stable value, while the amount of scatter decreases

very slowly. The fact that there is still significant scatter in the response from the largest micromodels means that the

response of any given micromodel of that size not yet truly representative. Error bars show the standard deviation and

the shaded area indicates the 95% interval of confidence for the mean stress based on the data from the micromodels

with 9 × 9 fibers. Variations in the mean are statistically insignificant from a micromodel size of 5 × 5 fibers.

The exercise is repeated for longitudinal shear. This requires a three-dimensional micromodel, because the primary

deformations are oriented in fiber direction. In Figure 5, it is observed that the localization zone in which the strain

develops in the plastic mechanism has a more simple shape as it is aligned with the boundaries of the micromodel.
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Figure 2: Stress strain response from 50 different micromodels with 25 fibers.
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Figure 3: Final equivalent plastic strain distribution from three different micromodels with 25 fibers under tension (loaded in horizontal direction).
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Figure 4: Predicted stress level at 0.03 strain as a function of micromodel size for uniaxial tension (plane strain); mean and standard deviation for

different sizes and 95% confidence interval for nf = 9 × 9 (shading)
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Figure 5: Final equivalent plastic strain distribution from three different micromodels under longitudinal shear with 25 fibers.
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Figure 6: Predicted stress level at 0.04 strain as a function of micromodel size for longitudinal shear; mean and standard deviation for different sizes

and 95% confidence interval for nf = 9 × 9 (shading)

Nevertheless, the scatter in the micromodel response remains. In Figure 6 the statistics of the final stress level (at 0.04

strain) are plotted for different micromodel sizes. A similar trend as for the tensile case is observed with decreasing

but not vanishing scatter and a limited variation in mean value. The scatter in results with 9 × 9 fibers is smaller than

for uniaxial tension. Mean final stress values from micromodels with 5 × 5 or 8 × 8 fibers are not inside the 95%

interface of confidence for the mean final stress from the micromodels with 9 × 9 fibers, but still close.

Based on the statistical analysis, a single micromodel with 5×5 fibers is chosen as optimal in the trade-off between

representativeness and efficiency for the following comparison between micromodel and mesomodel. This is a model

size for which the representativeness of the results cannot be improved significantly within the investigated range of

model sizes. The chosen fiber distribution had a global response close to the average from 50 specimens for for both

tension and longitudinal shear.

3.2. Calibration

One micromodel with a given distribution of 25 fibers is used for the comparison between micromodel and meso-

model response. The three-dimensional version of the micromodel with periodic boundary conditions is used for all

load cases. First, the model is subjected to six different basic load cases to generate hardening curves that are input for

the mesomodel: uniaxial and biaxial tension, uniaxial and biaxial compression, and transverse and longitudinal shear.

Stress-strain curves are computed from averaged global load-displacement data. For the uniaxial simulations the

axial strain in unloaded directions is also monitored. This gives information on the Poisson ratios. Transversely

isotropic elasticity parameters are obtained from the first time step of the relevant load cases. The resulting values

are: E1 = 45653 MPa, E2 = 13403 MPa, G12 = 5381 MPa, ν12 = 0.231 and ν23 = 0.339.
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Figure 7: Plastic contraction in micromodel under uniaxial transverse tension and compression.

With the complete stress and strain vectors and the initial stiffness, it is possible to compute homogenized plastic

strain vectors. From these, the plastic Poisson ratio νp for the mesomodel is extracted. In a uniaxial test with load in

x2-direction, νp can be computed as νp = −εp

33
/ε

p

22
. However, in the micromodel simulations, this ratio is not constant

(see Fig. 7). Under uniaxial tension, the homogenized plastic contraction in the micromodel increases until it stabilizes

at a value slightly above 0.40. Under uniaxial compression, the plastic contraction starts out very high, then drops and

eventually stabilizes around 0.62. In the mesomodel, only one constant value can be assigned. In what follows a value

of νp = 0.40 will be used as input for the mesomodel. Only when contraction is specifically investigated, additional

simulations will be performed with νp = 0.60 as input.

With the computed homogenized plastic strain histories, the homogenized equivalent plastic strain history can be

evaluated according to the definition of Vogler in Eq. (40). Alternatively, it is possible to express the plastic strain

history of unloaded components by assuming a constant plastic Poisson ratio, as is done in Vogler’s model. For load

in 2-direction, this means:

ε
p
eq = ε

p

22

√

1 + ν2
p

2
(68)

Because the assumption of constant νp is not in agreement with the micromodel response, the two alternative proce-

dures do not give the same result. In order to get an optimal match between mesomodel and micromodel results on

calibrated cases, the relation from Eq. (68) is used in the calibration procedure. The relation between thus computed

equivalent plastic strain history and stress history from the basic load cases is input for the mesomodel through the αi

variables in the yield function.

For biaxial compression, the micromodel simulation was aborted before perfect plasticity was reached due to non-

convergence of the global Newton’s method.The biaxial compression input curve was based on an extrapolation of

the incomplete micromechanical curve.

3.3. Biaxial transverse stress states

For comparison, a single element mesomodel with the calibrated Vogler plasticity model is subjected to the same

load cases. Stress-strain curves from the micro and mesomodels are shown in Figures 8 and 9. In the calibrated cases,

the agreement is perfect, except for the transverse shear case, which is due to the fact that the transverse shear
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Figure 8: Stress strain curves from calibrated transverse biaxial stress states.
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Figure 9: Stress strain curves from uncalibrated transverse biaxial stress states.

The micromodel is subjected to a series of biaxial transverse load cases. A constant averaged stress ratio (σ22/σ33)

is applied with zero averaged stress in fiber direction σ11. Stresses and strains are monitored in both principal trans-

verse directions. For comparison, a single element mesomodel with the calibrated Vogler plasticity model is subjected

to the same load cases. Stress-strain curves from the micro and mesomodels are shown in Figures 8 and 9. In the

calibrated cases, the agreement is perfect, except for the transverse shear case, which is due to the fact that the trans-

verse shear input is related to a different orientation of the stress. The small difference here points at less than perfect

transverse isotropy of the micromodel. For the uncalibrated cases, the difference is larger, especially for the case that

is close to biaxial tension where the final stress level in the mesomodel is 6% higher than that in the micromodel. Also

for the case close to biaxial compression, a difference is visible for intermediate strain levels.

It is possible to compare the final stress levels from both models and generate the final yield envelope. For each

biaxial simulation the stress level at final strain of

√

ε2
22
+ ε2

33
= 0.04 is recorded for both micro and mesomodel

and the resulting envelope is visualized in Fig. 10. Symmetry along the (σ22 = σ33)-line is indicative for transverse

isotropy. In the compression-compression regime some points are missing for the micromechanical model, which is

due to non-convergence of the simulations before a strain level of 0.04 was reached.

The uniqueness of the plastic Poisson ratio νp was already discussed in the section on calibration. In order to

get more insight in the actual contraction behavior predicted by both models, the strain history in the micromodel is
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Figure 10: Envelope of final stress for different biaxial stress states.
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Figure 11: Strain path for different biaxial loading cases: comparison between micromodel and mesomodel with two different values for νp.
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compared to the homogenized model response for the complete range of biaxial load cases in Fig. 11. Mesomodel

results are shown for two different values of νp. It is observed that for uniaxial transverse compression the value of

νp = 0.6 gives a better match while for the case of transverse tension, νp = 0.4 works better, which is in agreement

with earlier observations in Fig. 7. However, for biaxial tension with σ22/σ33 =
√

3 a better match is obtained with

the uniaxial compression value of νp, which means that a simple switch between compression and tension dominated

behavior in the flow rule is not sufficient to repair the discrepancy. Interestingly, for pure shear, the plastic Poisson

ratio does not affect the strain path in the mesomodel in which zero pressure always gives zero volumetric strain, while

the micromodel does show volume increase. This volumetric strain under shear cannot be achieved with the flow rule

in Eq. (38) unless the B-matrix is allowed to become asymmetric as a function of stress. It is concluded that the

assumption of a single plastic Poisson ratio does not do justice to the complexity of the micromodel response. At the

same time it is not easy to improve the mesomodel on this point in a reliable manner without excessively increasing

the complexity of collection of required input.

3.4. Longitudinal shear and axial transverse stress

The most relevant scenario for plasticity in composite materials is longitudinal shear. The pure longitudinal shear

behavior is an input curve. Its interaction with other plasticity inducing stress components is postulated in the way

the invariant-based yield criterion is formulated in Vogler’s model. A consequence of the invariant formulation is that

the directionality of transverse stress and of longitudinal shear are not accounted for in their interaction. In Vogler’s

model it does not make a difference whether longitudinal stress component σ12 is combined with transverse stress σ22

or with transverse stress σ33 (see Fig. 12), while for the actual composite material these two scenarios do give rise to

different stress states.

In Figure 13, the envelope of final stress values under combined longitudinal shear and uniaxial transverse stress

with constant stress ratio is shown. The stress values correspond to a strain level of

√

ε2
12
+ ε2

22
= 0.04, for which

the behavior is very close to perfect plasticity. It is observed that the overall agreement is fair. Especially in the

tensile domain when the micromodel is loaded with σ22 and σ12 agreement is very good. In the compressive part,

the (σ22, σ12)-micromodel overpredicts the final stress. The difference between the (σ22, σ12)-micromodel and the

(σ33, σ12)-micromodel is significant, while the possibility of such difference is ignored in the mesomodel. It should be

noted that the envelope visualization is a very forgiving visualization. Although the lines are visibly close, differences

of up to 8% between (σ22, σ12)-micromodel and mesomodel and up to 14% between (σ33, σ12)-micromodel and

mesomodel are significant. These relative differences are larger than those found for biaxial transverse stress states

(Fig. 10).

The direction of plastic strain for combined longitudinal shear and transverse loading is characterized in the

mesomodel when β2 is assumed equal to β1 in Eq. (57). In order to validate this assumption, the averaged strain
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Figure 13: Final stress envelope for combined longitudinal shear and transverse axial loading.
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Figure 14: Strain path for combined longitudinal shear and transverse axial loading, showing results for σ22/σ12 ∈ [0,±1,±3.7,±∞].

history in the micromodel responses is compared to the strain history from the mesomodel for combined longitudinal

shear and transverse axial loading. In Figure 14, the strain path for a select number of stress ratios is visualized. The

strain history in the pure shear and pure transverse cases does not show coupling in any of the models. The mixed

cases, however, show a more challenging picture. First of all, (σ22, σ12)-micromodel corresponds quite well to the

mesomodel response. In general, shear strain grows faster in the micromodels than in the mesomodel. The picture

could be improved here by choosing a higher value for β2 in the mesomodel. Also in the strain histories, there is a

significant difference between the response of the (σ22, σ12)-micromodel and that of the (σ33, σ12)-micromodel. If

one were to improve the agreement between the mesomodel and the (σ22, σ12)-micromodel by changing the value of

β2 in the mesomodel, this would for some stress combinations make the agreement between (σ33, σ12)-micromodel

less favorable.

3.5. Influence of stress in fiber direction

The stress in fiber direction is intentionally kept out of consideration in Vogler’s plasticity model for the composite

material. Nevertheless, the actual plasticity taking place in the matrix material is a three-dimensional process that is

influenced by loading in all directions. To investigate the influence of stress in fiber direction on plasticity in transverse

and longitudinal directions, the meso and micromodels are subjected to stress histories that include stress in fiber

direction. Constant stress ratio simulations are performed which combine stress in fiber direction, σ11, with stress

in a matrix dominated direction. Firstly, σ11 is combined with longitudinal shear σ12 and secondly with transverse

uniaxial stress σ22.
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Figure 15: Shear stress-strain curve for combined longitudinal shear and longitudinal axial tension (σ11/σ12 ∈ [57, 29, 11, 6, 0]).

The stress-strain curve in fiber direction remains nearly linear because the linear elastic fibers dominate the re-

sponse. Therefore, the influence of stress in fiber direction is assessed by examining the stress-strain curves in matrix

dominated directions. In Figures 15 and 16 the shear response for combined longitudinal shear and longitudinal axial

loading is shown; in the first image for tension in fiber direction and in the second for compression in fiber direction.

For the mesomodel only one curve is visible. In fact, all curves for the mesomodel coincide as the shear response is

completely independent of the longitudinal stress. In contrast, the micromodel results show a clear influence of longi-

tudinal stress on the shear response. The more the composite material is loaded in fiber direction, the lower the shear

stress is for the same shear strain level. Plasticity becomes significant for much lower shear stress levels. Eventually,

the same final shear stress level is reached for the perfectly plastic tail, but the rate with which this value is approached

is strongly dependent on stress in fiber direction. Note that the stress ratios are high, but that values close to 3000 MPa

are reported for the tensile strength of carbon/epoxy [27] (depending on the loaded volume) which means that with

the highest stress ratio considered of σ11/σ12 = 57, a shear stress of about 50 MPa can still be attained prior to fiber

failure.

In the matrix material in the micromodel, the direction of plastic strain is a combination of ε
p

12
and ε

p

11
. However,

the effect of these two plastic strain components on the stress distribution is different, because in 11-direction fibers

and matrix are loaded in parallel, while in 12-direction they are loaded approximately in series. The plastic strain in the

matrix in 11-direction causes a redistribution of stress from the matrix to the fibers. While the σ11 component in the

matrix reduces, the influence of the applied total σ11 on the matrix plasticity disappears. This explains the observation

that the final shear stress level is independent of the applied stress ratio. In the localization band that forms the plastic

mechanism, the stress state eventually becomes such that plastic strain only keeps growing in 12 direction, irrespective

of the globally applied stress ratio.

For compression in fiber direction (Fig. 16) the influence of σ11 on the longitudinal shear response is less pro-

nounced. In fact, for moderate longitudinal compression, the shear stress increases slightly, similarly to what happens

for moderate transverse compression (see Fig. 13). Only for extreme stress ratios a strong effect is observed. Here

it should be noted that the compression strength in fiber direction of the considered composite is generally lower

than the tensile strength, and that this compression strength is further reduced in presence of longitudinal shear. As a

consequence, the influence of compression in fiber direction on longitudinal shear remains limited for realistic stress

values.

For combined longitudinal stress and transverse uniaxial stress, transverse stress-strain curves are shown in Fig-
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Figure 16: Shear stress-strain curve for combined longitudinal shear and longitudinal axial compression (σ11/σ12 ∈ [−57,−29,−11,−6, 0]).
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Figure 17: Transverse stress-strain curves for transverse/longitudinal biaxial stress states (σ11/σ22 ∈ [−11, 0, 11]).

ure 17. Here, the mesomodel curves also differ from one another, which is due to the coupling between the axial

stresses and strains in elasticity. The elasticity effect is well-captured, which should not come as a surprise, because

homogenization works very well when it comes to elasticity in orthotropic materials. For the plastic part of the curves,

there is some difference between the mesomodel and micromodel responses, especially for the cases where the two

active stress components have an opposite sign. The case with transverse compression and longitudinal tension has

the most significant difference, which is troublesome because under transverse compression plasticity is more likely

to become significant prior to failure than it is under transverse tension.

4. Conclusions

A detailed comparison between a micromodel based on Melro’s plasticity model and a homogenized mesomodel

based on Vogler’s plasticity model has been performed. First, the size of micromodel needed for representativeness of

the response of a micromodel with elastic-plastic matrix was investigated. It was found that the mean response stress-

strain curve converges with an RVE size of 5 × 5 fibers. However, the statistical scatter did not vanish for RVE sizes

with up to 9 × 9 fibers, which means that a single RVE of that size can still not be taken as completely representative.

The mesomodel was calibrated based on basic stress-strain curves obtained from a single micromodel with 5 × 5

fibers. The same micromodel was subsequently subjected to a range of different stress states and differences with
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the homogenized model response were investigated. Stress strain curves for biaxial transverse loading agree well.

However, when inspecting the plastic contraction for different biaxial stress states it was found that using a single

plastic Poisson ratio in the mesomodel does not allow for an accurate reproduction of the micromechanically observed

plastic contraction under general load conditions.

Concerning combined longitudinal shear and transverse loading, it was observed that a significant difference in

micromodel response is obtained depending on whether the transverse and longitudinal shear loading are in the same

plane or not. This distinction is lost in the invariant-based formulation of the mesomodel.

Influence of the stress in fiber direction on plasticity was deliberately left out of the mesolevel plasticity model.

However, the micromodel with three-dimensional pressure dependent matrix plasticity law did predict influence of

stress in fiber direction on the transverse or longitudinal shear behavior. This influence was most strong for the com-

bination of longitudinal shear with tension in fiber direction. Longitudinal shear is the scenario for which plasticity is

most relevant in laminates, while laminates are optimally designed when they carry load in fiber direction. Therefore,

lack of accounting for this interaction is considered the most serious shortcoming of the mesomodel.
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