2008

Computer Engineering
Mekelweg 4,
2628 CD Delft
The Netherlands
http://ce.et.tudelft.nl/

MSc THESIS

Design of a High-Performance Buffered Crossbar
Switch Fabric Using Network on Chip

Iria Varela Senin

Abstract

High-performance routers constitute the basic building blocks of the
Internet. The wide majority of today’s high-performance routers are
designed using a crossbar fabric switch as interconnect topology. The
buffered crossbar (CICQ) switching architecture is known to be the
best crossbar-based architecture for routers design. However, CICQs
require expensive on-chip buffers whose cost grows quadratically with
CE-MS-2008-19 the router port count. Additionally, they use long wires to connect
router inputs to outputs, resulting in non-negligible delays. In this
thesis, we propose a novel design for the CICQ switch architecture.
We design the whole buffered crossbar fabric as a Network on Chip
(NoC). We propose two architectural variants. The first is named the
Unidirectional NoC (UDN), where the crossbar core is built using a
NoC with input and output ports placed on two opposite sides of the
fabric chip. Because of the chip pins layout, we improved the UDN
architecture using a Multidirectional NoC (MDN) architecture, by
placing the inputs and output around the perimeter (four sides) of
the NoC-based crossbar fabric. Both proposed architectures have
been analyzed with appropriate routing algorithms for both unicast
and multicast traffic conditions. Our results show that the proposed
NoC based crossbar switching design outperforms the conventional
CICQ architecture. Our designs offers several advantages when compared to traditional CIC(Q) design:
1)Speedup, because short wires allow reliable high-speed signalling, and simple local arbitration per on-
chip router. 2) Load balancing, because paths from different input-output port pairs share the same router
buffers. 3) Path diversity allows traffic from an input port to follow different paths to its destination output
port. 4) Simpler switch design by allowing simple input memory structure such as first-in first-out (FIFO)
input queueing, as opposed to traditional design where virtual output queueing (VOQ) is required.

T U De I ft Faculty of Electrical Engineering, Mathematics and Computer Science

Design of a High-Performance Buffered Crossbar
Switch Fabric Using Network on Chip

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING

by

Iria Varela Senin
born in A Coruna, Spain

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Design of a High-Performance Buffered Crossbar
Switch Fabric Using Network on Chip

by Iria Varela Senin

Abstract

igh-performance routers constitute the basic building blocks of the Internet. The wide majority

of today’s high-performance routers are designed using a crossbar fabric switch as interconnect

topology. The buffered crossbar (CICQ) switching architecture is known to be the best crossbar-
based architecture for routers design. However, CICQs require expensive on-chip buffers whose cost grows
quadratically with the router port count. Additionally, they use long wires to connect router inputs to
outputs, resulting in non-negligible delays. In this thesis, we propose a novel design for the CICQ switch
architecture. We design the whole buffered crossbar fabric as a Network on Chip (NoC). We propose two
architectural variants. The first is named the Unidirectional NoC (UDN), where the crossbar core is built
using a NoC with input and output ports placed on two opposite sides of the fabric chip. Because of the
chip pins layout, we improved the UDN architecture using a Multidirectional NoC (MDN) architecture,
by placing the inputs and output around the perimeter (four sides) of the NoC-based crossbar fabric.
Both proposed architectures have been analyzed with appropriate routing algorithms for both unicast
and multicast traffic conditions. Our results show that the proposed NoC based crossbar switching design
outperforms the conventional CICQ architecture. Our designs offers several advantages when compared
to traditional CICQ design: 1)Speedup, because short wires allow reliable high-speed signalling, and
simple local arbitration per on-chip router. 2) Load balancing, because paths from different input-output
port pairs share the same router buffers. 3) Path diversity allows traffic from an input port to follow
different paths to its destination output port. 4) Simpler switch design by allowing simple input memory
structure such as first-in first-out (FIFO) input queueing, as opposed to traditional design where virtual
output queueing (VOQ) is required.

Laboratory : Computer Engineering
Codenumber : CE-MS-2008-19

Committee Members

Advisor: Prof.dr. K.G.W. Goossens, CE, TU Delft
Advisor: Dr. L. Mhamdi, CE, TU Delft
Member: Dr. S.D. Cotofana, CE, TU Delft

Member: Dr.ir. F.A. Kuipers, NAS, TU Delft

ii

iii

iv

Contents

List of Figures

List of Tables

Acknowledgements

1 INTRODUCTION

1.1
1.2

OVEIVIEW . . . o o
Motivation and Outline

2 Related Work

2.1
2.2

2.3
24

2.5

Introduction L
Internet Routerso
2.2.1 Architectural Evolution L.
2.2.2 Switch fabrics inuse today oo oo
NoC Basics e
Router Design«
2.4.1 Switching Architecture L
2.4.2 Buffering Architecture and Arbitration00
2.4.3 Link Level Flow Control
2.4.4 Switching modes L
2.4.5 Routing Algorithm
Conclusions L

3 Unidirectional NoC

3.1

3.2

3.3
3.4

UDN Architecture e
3.1.1 Architectural Design L
Routing in UDN and Performance Analysis
3.2.1 Routing Analysis
3.2.2 UDN Throughput Analysis with Modulo Algorithm without HoL
3.2.3 UDN Throughput Analysis with Modulo Algorithm with HoL.
3.2.4 Analytical study VS simulation results
3.2.5 Modulo Algorithm VS XY algorithm
Hardware Implementations o oo
Conclusions L

4 UDN System Analysis

4.1
4.2

4.3

Comparison with the traditional CICQ crossbar
Parameter study
4.2.1 Unbalanced Traffic
4.2.2 Bernoulli Uniform Traffic
4.2.3 Bursty Uniform Traffic. o000
Conclusions e

xi

xiii

w =

© =1~

10
13
13
14
20
22
23
26

27
28
28
31
31
33
37
40
42
46
48

5 Multidirectional NoC
5.1 MDN Architecture
5.1.1 Architectural Design
5.1.2 NIdesign
5.1.3 Router design
5.2 Routing in MDN
5.3 Hardware implementations
54 Conclusions

6 MDN System Analysis

6.1 Comparison with the traditional CICQ crossbar

6.2 Parameter study
6.2.1 Unbalanced Traffic
6.2.2 Bernoulli Uniform Traffic . . .
6.2.3 Bursty Uniform Traffic.

6.3 Conclusions

7 MDN VS UDN
7.1 Unbalanced trafic
7.2 Bernoulli Uniform traffic
7.3 Bursty Uniform traffic
7.4 Conclusions

8 MULTICAST
8.1 Implementation
8.2 Copy multicast
8.3 Modulo Multicast algorithm
8.4 Simplified Modulo multicast algorithm
8.5 Conclusions

9 Conclusions and Future Work
9.1 Summary

9.2 Main contributions
9.3 Future Work

Bibliography

A Simulation Environment
A.1 Simulator
A2 Trafficmodels
A.3 Performance parameters
A31 UDN.
A32 MDN

B Algorithms
B.1 UDN algorithm
B.1.1 MODULO UDN
B.2 MDN algorithms
B.2.1 MODULO MDN
B.2.2 MDN MODULO AND XY . .

vi

71
72
73
73
74
7
79
80

81
81
83
84
91
94
97

105
107
107
110
114
117

119
119
120
122

127

129
129
130
131
131
132

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

3.23
3.24

4.1

Example of an Internet network. L.
Elements of a routing systemo L
CICQ crossbar
High Speed routers. L

First generation of routers
Second generation of routers L L o
Third generation of routers L L
Regular Topologies e
Irregular Topology
Output queueing with a N x N2 switch
Shared queueing L
Input queueingo
Virtual Output queueingo
Possibilities to access the Arbiter Lo
Flow control L
Example of a deadlock situation L.
Virtual Channel control logico o

The proposal architecture.
The Unidirectional NoC (UDN) crossbar architecture.
UDN Network Interface o
Case of Buffer Size 1
Different kind of routers for UDN architecture
Example of XY and Balanced XY routing ina4x4 UDN
Number of bits for the header. L.
UDN packet for balanced XY.
Router types e
Router types for a 10x10 mesh
Simulation of Router types for a 10x10 mesh
Possible destinations for typea.o
Possible destinations for type b.o
Possible destinations for typed. L
Throughput of UDN switch with Modulo algorithm
Number of packets per cycle per type with Modulo algorithm
Total number of packets per cycle for the UDN switch with Modulo algorithm . .
Placement of the coordinates for the figures below.
Number of packets/cycle per link for the switch for balanced XY.
Number of packets/cycle per link for the switch for balanced flows.
Number of packets/cycle per link for the Switch for XY.
Comparison of XY and balanced XY and balanced flows in packets/cycle for
Bernoulli Uniform Traffic
Comparison of XY and Modulo Algorithm
Switch sizes for Buffer size 4.

Throughput Stability of a 32x32 Switch under Unbalanced traffic.

vii

ot W N =

© 0o oo

12
12
15
16
16
17
18
21
24
25

27
28
29
30
30
32
33
33
34
35
36
37
38
39
40
41
42
43

4.3

4.2

4.4
4.5
4.6
4.7
4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

4.17

4.18
4.19
4.20
4.21
4.22
4.23

4.24

5.1
5.2
5.3
0.4
2.5
5.6
2.7
2.8
5.9
5.10
5.11

6.1
6.2

6.3

6.4
6.5

Cell delay comparison between the UDN and a CICQ switch of size 32 x 32 each
under Unbalanced traffic (w=0.5).
Cell delay comparison between the UDN and a CICQ switch of size 32 x 32 each
under Uniform and Double diagonal traffic.
32x32 UDN Switch varying w.
UDN Unbalanced Traffic w = 0.5 for different switch sizes and SPs.
UDN varying depths for several switch sizes under Unbalanced traffic.
Unbalanced Traffic, w = 0.5.
UDN Switch performance for different buffer sizes and depths and Unbalanced
traffic. . . L L
32x32 UDN switch under Unbalanced traffic for different arbiter algorithms.
UDN 32x32 switch under Bernoulli Uniform Traffic for different speedups.

UDN under Bernoulli Uniform Traffic for different switch sizes.
UDN under Bernoulli Uniform Traffic for different depths.
UDN 32x32 switch: Cost under Bernoulli Traffic for different depths
Router Load for Bernoulli Uniform Traffic
UDN 32x32 Switch under Bernoulli Uniform Traffic modifying the buffer size.
UDN 32x32 switch: Cost under Bernoulli Traffic for different depths and buffer
sizes and SPs oL
32x32 UDN switch for different arbitration algorithms under Bernoulli Uniform
traffic. . . . L
Bursty Uniform Traffic 32x32 Switch.
32x32 UDN under Bursty Uniform Traffic for different speedups.
Router load distribution for a 32x32 UDN Switch under Bursty traffic
UDN under Bursty Uniform Traffic for different switch sizes.
Bursty Uniform traffic in a 32x32 UDN for different buffer sizes.
32x32 UDN switch under Bursty uniform traffic for different arbitration algo-
rithms. . . .o
Placement of 4x4 UDN inachip.

8x8 UDN switch twisted
Placement of 4x4 UDN twisted in a chip.
The Multi-directional NoC (MDN) crossbar architecture.
Example of the MDN crossbar architecture with multiple planes.
MDN NI . . .
4x4 MDN with VC paths
The MDN router architectures for P=1. Asymmetrical proposal.
The MDN router architectures for P=1. Symmetrical proposal.
Study of the asymmetry of buffers in MDN
The MDN Cube router architectures
MDN packet for t=0.

Performance of a 32x32 MDN and CICQ switch under Unbalanced traffic.

Cell delay comparison between the MDN and CICQ switch of size 32x32 under
Uniform traffic.
Cell delay comparison between the MDN and a CICQ switch of size 32 x 32 for
non-Uniform traffic.
32x32 MDN switch with different Unbalanced traffic.
Number of routers for UDN and MDN architecture

viii

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

7.1
7.2

7.3
7.4

7.5
7.6

8.1
8.2
8.3

8.4

8.5
8.6
8.7

8.8
8.9

8.10

8.11

8.12

Throughput performance for MDN with different switch sizes and speedup values.

Average Cell Delay for MDN with different switch sizes for Unbalanced Traffic.
Number of routers in MDN cube. oL oo
A MDN Cube with different switch sizes.
Load of each layer for a 64x64x16 MDN Cube
MDN with different planes under Unbalanced traffic with SP2.
Cost/performance of a 64x64 MDN switch for different layers and SPs
Load distribution for 64x64x4 MDN oo oL
MDN under Bernoulli Uniform Traffic for different speedups.
Load Distribution for a 32x32 MDN with Bernoulli Uniform Traffic.
MDN under Bernoulli Uniform Traffic for different switch sizes.
MDN: Cost under Bernoulli Traffic
MDN under Bernoulli Uniform Traffic for different stages.
32x32 MDN under Bernoulli Uniform Traffic for buffer sizes.
Bursty Uniform traffic in the 32x32 MDN switch with different speedups.

MDN under Bursty Uniform Traffic for different stages.
32x32 MDN under Bursty Uniform Traffic for different buffer sizes.
MDN cost/performance for Bursty Uniform Traffic and different planes and buffer
sizes for SP2 . . . L L

Cell delay comparison between the UDN and MDN architectures.
Throughput performance comparison between the UDN and MDN architectures
with different sizes.o
UDN and MDN cost/performance comparison for a 64x64 switch with different
depths/planes. L
32x32 switch with Bernoulli Uniform Traffic for different architectures.
32x32 switch with Bursty Uniform Traffic for different architectures.
UDN and MDN cost/performance for Bursty Uniform traffic.

3x4 multicast CICQ switch with FIFO queues.
NxM multicast k FIFO queues CICQ switch with.
Cell delay comparison between the UDN, MDN and CICQ for Copy multicast
under Uniform traffic. < x,SS =32, SP=2,D=32,P =1 ,BD =4, RA =
Copy Mcast, SA = FIFO:RR >
Cell delay comparison between the UDN, MDN and CICQ for Copy multicast
under Diagonal traffic. < x, SS=32,SP=2,D=32,P =1 ,BD =4, RA =
Copy Mcast, SA = FIFO:RR >,
Cell delay comparison between UDN and MDN for different switch sizes.
Bernoulli Uniform Multicast traffic in 32x32 UDN for different depths.
Bursty Uniform Multicast traffic in 32x32 MDN for different planes and buffer
SIZE. o o e e e
Example of the bitmask update in multicast.
32x32 switch under Bernoulli multicast traffic for Copy multicast and Modulo
multicast. L
32x32 switch under Bursty multicast traffic for Copy multicast and Modulo mul-
ticast. e e
32x32 switch under Diagonal multicast traffic for Copy multicast and Modulo
multicast. L e
32x32 MDN switch under Bursty traffic for different buffer sizes.

ix

8.13 Modulo multicast algorithm and Simplified Modulo multicast algorithm routing

paths in a 4x4 UDN o 115
8.14 32x32 Switch under Bernoulli traffic for different algorithms. 115
8.15 32x32 Switch under Bursty traffic for different algorithms. 116
8.16 32x32 Switch under Diagonal traffic for different algorithms. 116
8.17 32x32 Switch with different Arbiter Algorithms. 117
A.1 Architecture of SIM. 129

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5

5.1
5.2

6.1
6.2
6.3
6.4
6.5

9.1
9.2

Comparison Bus with NoC o o 10
Example of the use of switching strategies 14
Examples of buffering strategies in the market 17
Examples of buffering strategies in the market 20
Flow control mechanisms in off-chip and on-chip networks 21
Cost for Switching modes o 22
Switching modes in on-chip and off-chip networks 22
Deadlock avoidance in on-chip and off-chip networks 25
UDN architectural componentso 0oL 31
UDN hardware implementation with register-based FIFOs 47
UDN hardware implementation with dedicated hardware FIFOs 47
UDN area for different switch sizes. L. 47
Study of parameters for each type of traffic. 52
UDN parameter conclusions under Unbalanced 57
UDN parameter conclusions under Bernoulli 63
UDN parameter conclusions under Bursty Uniform Traffic 68
UDN parameter conclusions e 70
MDN architectural components Lo 7
MDN area for different switch sizes. 0oL 80
Study of parameters for each type of trafficin MDN. 83
MDN parameter conclusions under Unbalanced Traffic 91
MDN parameter conclusions under Bernoulli Uniform Traffic 94
MDN parameter conclusions under Bursty Uniform Traffic 97
MDN parameter conclusions. Lo 97
UDN performance as function of different parameters. 121
MDN performance as function of different parameters 122

x1

xii

Acknowledgements

First of all, I would like to thank my supervisor, Kees Goossens for guiding me through my MsC
project. In addition to this, I want to thank him for always having a different point of view of
my work and for taking the time to give me useful advice all along this project.

I also want to express my gratitute to Lotfi Mhamdi for his daily support, dedication, stim-
ulating suggestions and encouragement during 9 months.

Last, but not least, I would like to give my special thanks to Fernando Kuipers and Sorin
Cotofana for being part of my graduation committee.

Iria Varela Senin
Delft, The Netherlands
December 3, 2008

xiii

Xiv

INTRODUCTION

his chapter provides an overview of the necessary background to understand the purpose
T of this thesis. It also summarizes the topics covered along with the following chapters. To

start with, the motivation and objectives of this thesis are introduced. Finally, it presents
the outline and contents of the different sections.

1.1 Overview

The increasing demand of the Internet capacity is leading the network to a fast development in
the bandwidth and velocity of the transmission links. Bandwidth has become in the last years
a fundamental requirement in the communication and over all in the quality of Internet offered
services. This problem has been solved with the development of optical fibres and Wavelength
Division Multiplexing (WDM) transmission technique. Using optical carriers it is now possible
to achieve the range of multi-terabits per second inside the network. Figure 1.1 shows a typical
Internet network.

Figure 1.1: Example of an Internet network.

The routers are responsible for sending traffic on the best route through the network. Routers
can be divided in two types: edge routers and core routers. Edge routers can route between
one or more networks. Hence they have lots of logical interfaces, extensive filtering, policy and
traffic shaping and they can be asymmetrical with respect to interfaces. Core routers, on the
other hand, designed to operate in the Internet backbone, or core. They have lots of bandwidth,
but limited filtering or policy controls and limited traffic conditioning. Additionally, all their
interfaces tend to have the same general speed.

2 CHAPTER 1. INTRODUCTION

An increase in the link speed should be accompanied in performance by the routers and
switches that compose the network. If this constraint is not accomplished, these elements become
the bottleneck of the system, preventing the Internet services demands from being satisfied.

Routers must perform two fundamental tasks inside a network, routing (path determination)
and packet forwarding. Path determination decides which packets will be selected to transfer,
while packet forwarding is the actual deliver process. The routing system requires four essential
elements to implement in the routing and packet-forwarding processes: routing software, packet
processing, a switch fabric and line cards (Figure 1.2). All of these components should be equally
powerful, otherwise, performance would be restricted to the weakest element.

Routing)
software Routing
process

Switch fabric

Line Card 1 1 @ .
' ’ X ’ ’ Packet-forwarding
] e - i e

Backplane
\ J

T

Figure 1.2: Elements of a routing system

In this thesis, we will focus on the switch fabric. It provides the infrastructure for moving
packets between router line cards and transports the data from inputs to outputs. The switch
fabric is one challenge designers face when creating a system that routes data from one of many
inputs to any one of many outputs. The switch fabric is used in many types of applications,
from high-speed telecommunications to networking to storage area networks. Typical challenges
designers face when implementing switch fabrics in their system include latency, bandwidth,
queueing, backplane interfacing, scheduling algorithms, and traffic management interaction.
This topic has been covered by designers the last decades, and several solutions have been
proposed, like crossbar switches [1][2], shared buffer or shared memory.

Among them, the crossbar-based fabric switch is the dominant architecture for today’s high-
performance packet switches (IP routers, ATM switches, Ethernet switches) for at least three
reasons. First, they are more scalable than their direct competitors, shared-bus and shared
memory. This is due to the limitation in bus transfer bandwidth and/or the limitation in
the memory access bandwidth. Second, they provide simple point-to-point connections, which
means they can operate at very high-speed (up to 10Gb/s). Third, they can support multiple
I/O transactions simultaneously. This can increase the aggregate bandwidth of the system,
which can be in the hundreds of Gbps. Crossbar-based packet switches come in two flavours
depending on their fabric core: unbuffered and internally buffered crossbar fabric. These two
categories represent two extremes in a wide range or architectures depending on the number
and layout of buffers inside the crossbar fabric.

Recently, Partially Buffered Crossbars have been proposed [3] as a good alternative in packet
switching design. The similarity between these variants lies in the quadratic growth of their
cost with the number of switch ports. Additionally, these architectures require a sophisticated
input queueing structure, known as the virtual output queueing (VOQ) to achieve acceptable
performance [4].

Irrespective of whether the crossbar core is unbuffered, partially buffered or fully buffered,
a scheduling algorithm is required to configure the crossbar switch matrix, i.e. deciding which

1.2. MOTIVATION AND OUTLINE 3

input port sends to which output port by closing their corresponding (input/output) crosspoint.
A packet switch contains input line cards with big buffers as well as output buffers for packet
reassembly. Due to the big size of these input/output buffers, they usually consist of DRAM
memories and hence have high access times.

When the fabric core is unbuffered, the limitation in input/output memories access times
implies that the scheduler has to select at most one packet from each input port and send at
most one packet to each output. This process is known as the matching (or scheduling) and
is often complex to implement in hardware. The unbuffered crossbar fabric is cheaper than its
buffered counterpart since it contains no internal buffers. However, it requires a centralized
and complex scheduler to configure the crossbar matrix for cell transfer from the inputs to the
output ports of the switch [4].

1.2 Motivation and Outline

Using a partially or fully buffered crossbar (CICQ) core can relax the scheduling complexity. It
overcomes the scheduling complexity of traditional crossbars by means of parallel and distributed
schedulers, one per port of the switch [5] and by allowing multiple packets destined to the same
output port to be temporarily stored in the fabric internal buffers. Each internal buffer is usually
dedicated to packets belonging to the same input/output pairs. While this results in simplicity
in design, it has some drawbacks: first, the internal buffers are over-designed /dimensioned with
respect to the dynamic of the switch. Second, it often results in unbalanced internal buffers
utilization. Additionally, whether a crossbar switch is buffered or not, the fabric requires long
point-to-point wires to interconnect the switch inputs to its outputs. This results in long delays
and consumes high power to drive these wires.

Input
line card

Crosspoint
buffer

L

~N

Lo

g _J
voQ
> > >
Qo = Qo = Qo =
€ € ¢ €2 Qutput
83 23 83 line card
< < <

-
N <
-

>

Figure 1.3: CICQ crossbar

4 CHAPTER 1. INTRODUCTION

Buffered crossbar (CICQ) switches promise to offer scalable Internet router capacity. How-
ever, similar to traditional crossbars, they require expensive on-chip buffers, whose cost grows
quadratically with the port count. Additionally, point-to-point switching mandates the use of
long wires to connect inputs to outputs, resulting in non-negligible delays (see Figure 1.3).

In this thesis, we propose a novel design for the CICQ switch architecture. Instead of using
a dedicated internal buffer per input-output pair of ports, we design the whole buffered crossbar
fabric as a Network on Chip (NoC) . Our design offers several advantages when compared to
traditional crossbar based fabric switches. First, using on-chip routers instead of dedicated
internal buffers allows a better load balancing of the traffic passing through the switch. This is
achieved by allowing the on-chip routers to switch traffic from any input to any output, resulting
in sharing and better use of internal memory. This is in contrast to traditional CICQs that use
dedicated internal buffers. Second, the adoption of small routers and shared resources provides
path diversity, by allowing traffic from any input to follow more than one path in its way to
its destination output port. This results in further load balancing especially in the presence of
non-uniform traffic patterns and gives better fault tolerance in presence of interconnect failures.
Traditional crossbar have no path diversity, they use expensive redundant planes instead [6].

Designing the fabric as a NoC allows scalability in port count and speed per port. This is
achieved by using short wires enabling reliable high-speed signaling as opposed to long wires.
Using uniform short wires affords significant advantages in cost and performance. Additionally,
a NoC based fabric requires simpler switch design by allowing simple input memory structure
such as first in first out (FIFO) input queueing in the line cards, as opposed to traditional design
that requires sophisticated queueing structures such as the VOQ architecture.

The architecture of current generation of high-speed routers is shown in Figure 1.4(a). The
line cards contains the physical layer components necessary to interface the external data link
to the switch fabric. The forwarding engine inspects the packet headers, determines to which
outgoing line card they should be sent and rewrites the header. The forwarding engine may be
a physically separate component or may be integrated with either the line card or the network
processor. Currently, the high-end routers deploy forwarding engines directly on line cards.
The network processor runs the routing protocols and computes the routing tables that are
copied into each of the forwarding engines. Finally, the switch fabric is used to interconnect the
components of the gigabit Internet router. It is responsible for interconnecting all ports on all
the line cards in the system.

Our claims to use NoC fabrics are the advantages gathered in the following list:

e Better load balancing

Higher path diversity

Scalability in port count and speed per port

Use of shorter wires

Simpler switch design by using FIFOs in the line cards

The performance of the switch fabric is a major factor in the global behavior of the system.
This thesis presents a new design for the switch fabric of the Internet routers. Taking advantage
of on-chip characteristics, it proposes to replace the actual crossbar switch fabric by a NoC
crossbar. This new architecture is represented in Figure 1.4.

1.2. MOTIVATION AND OUTLINE 5

Network Network
processor processor

——| LlineCard |w—— 1X‘I fe——| LineCard '— —| LineCard |e——+] fe———| Line Card '—
“’ ! ! ‘— —_ X

crossg';: gwitch \ \
L]
[Kiii
Lo
I

— Li ECad

i
]
]

N
g
]

i 2 e
\ J

(a) Current Architecture (b) Proposed Architecture

Figure 1.4: High Speed routers.

To introduce this new concept, the remainder of this thesis is structured as follows: Chap-
ter 2 first makes an introduction of on-chip and off-chip networking. Then gives the necessary
background for the Internet network and on-chip network design and compares their architec-
tures.

Afterwards, the following two chapters present our fabric switching architectures based on
NoC. Chapter 3 introduces the the Unidirectional NoC (UDN) architecture. This first intu-
itive proposal does not adapt efficiently to the chip layout and it is modified in Chapter 5 to
a new architecture. This chapter introduces the Multidirectional NoC (MDN) architecture.
These two chapters describe the dynamics of these architectures and explain their properties. A
routing algorithm is proposed and analyzed for both designs. The fabric models are further op-
timize allowing different design trade-offs such as the depth of the NoC as well as input/output
ports connections to the fabric. These chapters also present a detailed performance study of
the proposed switching architecture along with its variants and compares it to the traditional
CICQ switch. Multicast traffic is tested in the new architectures in chapter 8. Three different
algorithms are implemented and compared. First of all a simple copy-multicast algorithm is
evaluated. Then the unicast routing algorithm is modified to be adapted to the characteristics
of the multicast traffic.

Finally we conclude the thesis in chapter9 gathering the conclusions of the performance of
the new architectures and pointing out possible future work.

CHAPTER 1. INTRODUCTION

Related Work

the current Internet routers. To be able to carry out this research, we first present an

introduction to the state of the art of the Internet routers and the most common switch
fabrics. Then, the emerge of NoC is explained and compared to the actual off-chip networks.
How the NoC should be built and placed in the router belong to the last part of this chapter.

r | Yhe proposal of this thesis is to replace the actual crossbar switch fabrics by an NoC in

2.1 Introduction

During the last decades, the Internet has seen an unprecedented growth. In 1981, there were
only 200-odd Internet hosts. By 1992, this number rose over one million. Reaching 2003, the
number was of 170 million hosts. This increase of users must be in relation with the increase of
the network bandwidth. The widespread use of fiber optic cables is one of the developments that
have revolutionized the networking paradigm. Fiber can support bandwidths which are much
higher than bandwidths supported by any other media. The maximum bandwidths of fiber is
in the range of gigabits. By using WDM techniques, this can be extended up to Terabits. Thus
it can be presumed that at least fiber-optic cables will not cause speed bottlenecks in the near
future. Instead the routers and switches the are current challenge for researchers when scaling
the Internet backbone.

2.2 Internet Routers

Routers architecture has evolved over the last years not to be an obstacle in the development
of high-speed networks. Here we summarized the evolution of their design distributed in three
different generations.

2.2.1 Architectural Evolution

The first generation of Internet routers was based on software implementations on a single
general-purpose central processing unit (CPU) . These routers consist of a general-purpose pro-
cessor and multiple interface cards interconnected through a shared bus as depicted in Figure 2.1.
Each Line Card performs the link layer function, connecting the system to each of the external
links. Packets arriving from a link are transferred across the shared bus to the CPU, where a
forwarding decision is made. The packet is then transferred across the bus again to its outgoing
Line card. The main drawback of this architecture is that the central processor has to process
all packets flowing through the router (as well as those destined to it). This represents a serious
processing bottleneck. For this reason, the second generation emerged.

8 CHAPTER 2. RELATED WORK

CPU

| Memory |

pocket A

| — ——
~—| LineCard Line Card [w—

<~—| LineCard LineCard |e—n8

Figure 2.1: First generation of routers

For the second generation of Internet routers, improvement in the shared-bus router ar-
chitecture was introduced by distributing the packet forwarding operations. Now there are
multiple CPUs that process packets in parallel. This parallelism among CPUs can increase
system throughput and allow the use of lower-cost CPUs (see Figure 2.2(a)). If the CPUs are
placed directly in the Line Cards, local forwarding decisions are made in these dedicate CPUs
and the packet is immediately forwarded to its outgoing interface. Packets traverse then the
bus only once, and the system throughput is further increased. The central CPU maintains the
forwarding tables in the line card CPUs an manages the system. See Figure 2.2(b). Though
now the process load is distributed, the shared bus continues to be a bottleneck in the system.
The solution lies then in modifying the communication infrastructure.

CPU CPU
et 4 e 4

—
~—| LineCard i MCPU(Line Card CPU CPU Line Card
emoty Memon Memory
[——
h cPU . o s .
<«—| LineCard Line Card U U Line Card
Memory Memory Memory

Figure 2.2: Second generation of routers

To alleviate the bottlenecks of the second generation of IP routers, the third generation of
routers were designed with the shared bus replaced by a switch fabric. This provides sufficient
bandwidth for transmitting packets between interface cards and allows throughput to be in-
creased by several orders of magnitude. Today, the highest performance routers are designed
according to this architecture (see Figure 2.3). Over the last years, researchers have focused
their effort in developing and improving this crossbar switch fabric.

2.2. INTERNET ROUTERS 9

CPU

~<—{ LineCard CcPU cPU Line Card
Memor: Memory

<——| LineCard CPU CPU Line Card
Memory Memory

Figure 2.3: Third generation of routers

The following section gives a description of the most significant architectures for switch
fabrics. During the last years, different variants of packet switch fabrics have been proposed.
This section summarizes the state of the art of these efforts and discusses the major issues from
the architectures, its scalability and cost-performance.

2.2.2 Switch fabrics in use today

A packet switch fabric is the key component of a large number of routers. The most common
fabric architectures in use today are bus-based [7], shared memory [8] and crossbar [4]. Among
all of switch fabric implementations and proposals, the crossbar fabric is proved to be the most
attractive choice for performance [4].

A crossbar has the properties of being non-blocking, inherently supports multicast and can
provide parallel point-to-point communication making it attractive for real time applications.
For these reasons, a lot of research has been carried on the design and optimization of crossbar
fabrics. The main challenges in designing a crossbar lies in its scalability beyond a small number
of ports or data rates. The cost of a crossbar switch grows as the square of the number of its
ports. Additionally, for a switch with a medium to large number of ports, it is difficult to achieve
a high data rate due to the dominant delay incurred by the long point-to-point wires connecting
inputs to outputs.

Several solutions have been proposed and implemented to scale the performance of crossbar
switches. To cope with high data rates, one of the most used solutions is bit-slicing [9]. Using
bit-slicing, the crossbar core consists of multiple lanes and each of them switches part of the
data in parallel. Input signals are fed to a serial-to-parallel converter, sent through a multiple
bit-slice core and serialized back at the output. However, for high data rates, using parallel
slices the core remains sometimes the bottleneck. Additionally, bit-slicing adds considerably to
the cost and die size of the whole crossbar, rendering this approach infeasible [9].

When the crossbar is buffered (e.g. CICQ switch), other constraints are imposed in addition
to the above. Aside from using long point-to-point wires, as in a traditional crossbar, a CICQ
switch contains a small amount of buffering per crosspoint of the crossbar fabric. While the
adoption of internal buffering overcomes the centralized scheduling complexity of unbuffered
crossbars, it comes at the cost of an expensive and complex fabric chip. The crossbar fabric of
an N x N CICQ switch has to maintain N? dedicated internal buffers, one per input-output
pair of ports. These buffers are dedicated and their number grows quadratically with the switch
port count, making CICQ less appealing. Recent proposals attempted to overcome these short-
comings. A CICQ switching architecture with flexible access to crosspoint buffers has been
recently proposed [10]. This approach tried to achieve better internal buffer use by sharing

10 CHAPTER 2. RELATED WORK

access to the internal buffers rather than being dedicated. However, the implementation cost of
this approach has proved prohibitive. Other solutions have been recently proposed to minimize
the internal buffer requirement by using partial internal buffering instead of dedicated buffers
per input-output pair of ports [11][3]. While these approaches present a new trend in designing
buffered crossbar switches by solving the high requirement of internal buffering, they suffer the
inherent delay of the long crossbar wires.

This collection of drawbacks lead us to propose to replace this current fabric crossbar switch
by a NoC. On-chip networks use uniform short wires that reduce the latency and simplifies the
synchronization of the switch. A NoC based fabric also requires a simple design as no VOQ are
needed. Simple FIFOs can be implemented without detriment in performance reducing the cost
and complexity of the system.

Next section presents the NoCs and their motivation. It introduces their basic concepts and
explains the advantages of their design and what makes them suitable for the internet routers.

2.3 NoC Basics

The need of NoCs emerged due to the increase of processing power and data intensive applica-
tions. The growth in performance of embedded multi-processor architectures has given a boost
of communications in a single-chip system, System-on-Chip (SoC). This scaling of microchip
technologies will soon require highly scalable interconnection architectures. As the number of
processor cores and IP blocks integrated on a single chip is steadily growing, a systematic ap-
proach to design the communication infrastructure becomes necessary. NoCs have been proposed
to support the trend for SoCs integration.

Although NoCs borrow concepts and techniques from the computer networking domain,
this features should be adapted to the on-chip architectures. Computer networks and on-chip
networks share many requirements, but there are also many differences that made impractical
to blindly reuse classical computer networks designs [12].

Currently, the most common type of on-chip communication structure is the bus. The bus
is designed to handle a small number of functional units and becomes clogged when too many
masters try to take control. This is the result of sharing a single resource, the communication
channel. Buses cannot adapt to changes in the system architecture as they do not decouple the
activities as transaction, transport and physical layer behaviors. On the other side, NoCs strive
for a modular build that can solve on-chip traffic transport and management challenges. Instead
of using buses and dedicated point-to-point links, a grid of routing nodes spread out across the
chip and connected by communications links is created, the NoC. A table with a comparison in
performance of buses and NoC is presented in table 2.1 by [13].

Criteria Bus NoC

Max Frequency 250 MHz >750 MHz

Peak Throughput 9 GB/s (more if wider bus) | 100 GB/s

Cluster min latency 6 Cycles @250 MHz 6 Cycles @250 MHz
Inter-cluster min latency 14-18 Cycles @250 MHz 12 Cycles @250MHz
System Throughput 5 GB/s (more if wider bus) | 100 GB/s

Average arbitration latency | 42 Cycles @250 MHz 2 Cycles @250 MHz

Table 2.1: Comparison Bus with NoC

Wiring is also cheaper than in the large scale networks. In Internet networks wiring cost

2.3. NOC BASICS 11

is determined by infrastructure efforts for fiber lines. The wiring of the on-chip network is
structured and IP cores are tiled on the chip in a regular manner connected via a structured
on-chip network such that the routing of wires is not an issue any more. As a result, interconnect
arbitration changes from centralized to distributed.

In bus arbitration, master modules request access to the interconnect, and the arbiter grants
the access for the whole interconnect. As there is only one arbiter, arbitration is centralized.
The arbiter can see the state of the interconnect as well as all the requests. For this reason it is
also a global arbitration.

Arbitration is also performed in NoC since it is a shared interconnect. In this case arbitration
is distributed, because it is performed in every router and only uses local information. The
different type of arbitration in on-chip and off-chip networks also affect to the different delays of
the systems. For a bus, the latency is proportional to the number of masters in the system. For
NoC, arbitration is performed router by router so it increases with the number of hops between
sender and receiver. However, as its shown in table 2.1, they can run at higher frequencies than
buses, minimizing the latency.

Since on-chip communication links are relatively short, pipeling or transmission-line effects
are absent. Hence, buffers can be smaller due to the tight synchronization between routers and
flow control can be used to prevent buffer overflow [14].

In the Internet network, retransmissions are needed since loss of packets is possible. On-chip
wires provide a reliable communication medium and no data is dropped because of errors. Then
no reordering modules are necessary if the routing algorithm manages to send the packets in the
same order they arrive.

This kind of on-chip networks provide a powerful solution to establish and manage the
communication between on-chip processing and storage components. The basic idea is borrowed
from traditional large-scale multi-processors and the wide-area networks domain. In the same
way, packetized communication takes place in on-chip router-based networks.

A NoC contains two components: routers and network interfaces (NI). By using NI, the
actual structure of the NoC can be hidden from the functional units. They are the connection
of the IP view on communication and the router view on communication. They connect all the
IP cores to the network, mapping the bus type transitions coming from the IPs into packets
that can be propagated inside the Network on chip and, on the opposite side, building the bus
transactions that correspond to packets that need to exit the NoC. Extensive research has been
done in this area to decouple computation from communication through those interfaces [15].

Routers route the data according to a chosen protocol. Their job is to deliver messages
from their source to their designated destination. Their different architectures are discussed in
section 2.4. As there are multiple routers between two functional units, there exist different
paths among them that can be used in case of failure. This characteristic gives robustness
through self-repairing systems and the designer can determine how robust or failsafe the system
should be.

The way in which routers are connected is a key factor in NoCs performance. An on-chip
network is defined mainly by its topology and the protocol implemented by it. Depending on
the connectivity among the links and the layout, several topologies are possible. A simple way
of identifying the topologies was described in [16].

Several regular topologies are grouped in the term of k-ary n-cube. In this notation, n is
the number of dimensions and k is the degree of each dimension. The 4-ary 2-cube mesh is the
most simple NoC structure. It consists of a grid of horizontal and vertical lines with the routers
placed in the intersections (Figure 2.4(a)). If the mesh connections are also wrapped around,
the topology becomes a Torus, refer to Figure 2.4(b). In this network, the routing problems at
the edge of the mesh are avoided, but the nodes must be interleaved to make sure all inter-node

12 CHAPTER 2. RELATED WORK

connections are of the same length. The k-ary tree, has a central root that is connected to other
nodes in an order of hierarchy. The number of connections is the factor k. Regular topologies
are shown in Figure 2.4.

(a) Mesh (b) Torus (c) Binary Tree

Figure 2.4: Regular Topologies

Mixing different forms in a hierarchical or asymmetric fashion leads to irregular forms. They
are usually based on the concept of clustering. This possible topology is represented in Figure 2.5.

Figure 2.5: Irregular Topology

NoC topology and characteristics are application-specific. NoCs are mainly developed for
consumer products so the constraints in area and cost are higher than in computer networks.
On-chip routers and NI have to be designed with the minimum number of buffers, a with a fast
and simple arbitration. These constraints are partially reduced thanks to the short links used
by on-chip networks. Short links allow tight synchronization between routers and buffers can be
smaller and their overflow controlled by using flow control techniques. Many researchers think
that quality of service is more important in SoCs for consumer electronics than for Internet
services due to the real time constraints of many of the applications in which they are used [17].
Contrary to traditional networks, NoC topology is static and cannot be modified once it is built.
Conditions on-chip are more stable than off-chip and NoC routers are considered just faulty or
correct.

Researches have been working on NoC for the last few years. Several models showed up
motivated by the demand for well structured designs in large scale SoCs. Here, just some of
those solutions are shown to have a global guideline and vision about the direction this field is
moving to.

2.4. ROUTER DESIGN 13

In the Athereal model, proposed by Philips [18], the guaranteed services pervade as a re-
quirement for hardware design and also as a foundation for software programming. They argue
that guaranteed services are essential to provide predictable interconnects that enable com-
positional system design and integration. And that combining these services with best-effort
(BE) solutions, the typical inefficiently use of the resources produced by guarantees is overcome.
Therefore, routers provide both guaranteed throughput (GT) and BE services. All the routers
in the network are synchronized with a single, centralized synchronous clock. Input queueing is
implemented for buffering and custom-made hardware FIFOs to keep the area costs down [19].

The Nostrum Network-on-Chip, developed by the Royal Institute of Technology (KTH) in
Sweden [20], is based on a 2D structure that also provides guaranteed services. The guaranteed
bandwidth is accessed via Virtual Circuits (VC). It is a simple architecture and can achieve both
GB and BE performance.

Other architectures are Xpipes [21], Intel 80 core research processor [22], Wolkotte [23] or
Mango [24]

The basic needs to design the architecture of a NoC are summarized in the following section.
As on-chip and off-chip networks have different characteristics, the trade-offs in their design
are different. The architectural options classically used in Internet routers are summarized and
compared to those that are used in on-chip networks.

2.4 Router Design

The new crossbar fabrics presented in this thesis are designed as a NoC. Inside a NoC, routers
constitute the most important part. As explained in section 1.1, router performance is a key
factor for the global response of the whole system. Therefore their design should be carefully
studied to understand their characteristics and how they work. This section explains the existing
architectural components of Internet networks and which of them are suitable for NoC, like
different switching architectures, buffering architectures, or flow control. At this point, there
is an analysis of the routing algorithms that can be implemented. This study will help decide
which options best fit the constraints of the new design in the following chapters.

2.4.1 Switching Architecture

When a communication is established between two routers, two possibilities arise in networks
in the way the messages are sent. Messages can be routed using Circuit switching or Packet
switching:

Circuit switching

In Circuit switching, the communication lines are dedicated to passing messages from the
source to the destination. Circuit switching uses a fixed amount of bandwidth between the
source and the destination for all the communication, and the channels remain inaccessible for
other connections though it has a “dead time”. This is ideal when data must be transmitted
quickly, must arrive in sequenced order and at a constant arrival rate. Thus, Circuit switched
networks are appropriate when transmitting real time data, such as audio and video.

Different kind of techniques for circuit switching exist: Frequency division multiplexing
(FDM) and Time division multiplexing (TDM).

In FDM the bandwidth is divided in individual channels. Each user is assigned a different
frequency. The signals are sent at the same time through the same communication channel but

14 CHAPTER 2. RELATED WORK

they are divided in frequency.
TDM appeared after FDM. In TDM, bandwidth is assigned to each channel during a
fraction of the total time (slot).

Packet switching

Packet switching breaks up messages into small packets to retransmit them. Each packet
is individually transmitted across the network, and may even follow different routes to the
destination. A header information about source, destination or packet numbering is then needed
to be able to route the packet in each router. This allows statistical multiplexing for the packets
in the network and the resources are available as soon each packet is sent. Packet switching
is more efficient and robust for data that is bursty in nature, and can withstand delays in
transmission, such as e-mail messages and Web pages.

Some researches [25] [26], have shown that circuit switching is not appropriate for computer
communications due to their type of traffic. So packet switching is the most used technique for
off-chip networking.

NoCs use packet switched architectures in order to fully utilize the network bandwidth.
Some proposals also include the circuit-switched network to support guaranteed communication
service between IPs on the chip [27]. Other proposals, like Ethereal [28] use TDM of circuit
switching to provide GT. They use time division multiplexing connections over pipelined circuits,
that additionally offers bandwidth allocation.

Packet Switching

Circuit Switching

X.25
Off-chip networks Frame Relay ISDN
ATM
Athereal Mthereal
On-chip networks Nostrum Nostrum

(BE services)

(GT services)

Table 2.2: Example of the use of switching strategies

Table 2.2 gives some examples of networks with different switching strategies. Both Athereal
and Notrum can work with packet switching or circuit switching architectures. They argue
Quality-of-Service is a need for NoCs and combine both architectures to exploit the network
capacity that is left over.

A generic packet switched network contains inputs, an interconnection crossbar and outputs.
An arbitration algorithm is used to resolve output port contention among the input ports. There
are many issues concerning to the design of a packet switched network that have a huge impact
in the optimal use of the resources of the network. For example, the size of the buffers in the
routers are limited in size. If the queue of packets increases without any bound, the packets must
be discarded or queued. In the following section, we describe the basic architectural components
of a packet switched network. Its design is a key factor in the network performance.

2.4.2 Buffering Architecture and Arbitration

Most of the issues in an Internet router design pertain to two important aspects: buffering and
internal routing. The first aspect relates to the placement of buffers in the router, while the

2.4. ROUTER DESIGN 15

second relates to the design of the switching fabric. These two are, however, not independent
concepts, because fixing one of them imposes constraints on the other. In fact, there are two ways
of designing a router. Either one can choose a particular buffering technique and then decide
from one of the possible interconnection structures. Alternatively, one can choose a particular
interconnection structure and then decide upon the buffering technique that best suits. Section
2.4.2.1 and 2.4.2.2 explain both the buffering architecture and the internal routing or arbitration
inside the router.

2.4.2.1 Buffering Architecture

When two or more packets have to go through the same link at the same time, network
contention occurs. As only one packet can traverse the link, the rest of the packets must be
queued or dropped. This contention can lead to network congestion resulting in a deterioration
of the system performance.

Preferably, data should not be discarded when congestion happens. This would imply
retransmissions after a possibly lengthy time-out period, further contributing to network
congestion and the delay seen by the user. One of the most common solutions involves buffer
memory in which a switch can temporarily queue data directed at overloaded outputs. Several
buffering architectures are possible, like output queueing (OQ), shared memory, input queueing

(IQ) and VOQ.
Output queueing

OQ architectures place the buffering at the output ports to where packets are immediately
forwarded once they arrive. Though it is the ideal switching architecture due to its optimal
performance, it requires a speed up of N for a N port switch and then no arbitration scheme
is used. The N time case occurs when N input ports all simultaneously forward a packet to a
single output port. Therefore, for a limited memory speed, the size of such routers is restricted
to a small number of ports as link rates increase. For this reason OQ architecture is generally
considered unfeasible. Another option is to increase the size of the switch to have a N x N?
switch (see Figure 2.6).

Input Output

Switch ﬁ"
iy
=iy

Figure 2.6: Output queueing with a N x N? switch

16 CHAPTER 2. RELATED WORK

Shared-buffer

In Shared-buffer switches input buffer memories are shared by all the switch output ports
and are allotted to one particular input as the occasion demands. Pure shared memory is not
able to provide the necessary amount of buffering space to support bursty traffic and suffer from
packet losses at asymmetric load patterns due to limited speed-up capabilities.

Input Output
Switch

— -

[RE—— -

Figure 2.7: Shared queueing

Input queueing

Input Buffering stores each arriving packet in buffers allocated in the input ports, can operate
at the speed of the input lines and can be implemented up to arbitrary buffer sizes, making these
techniques attractive. However 1Q routers need to perform matching between input and outputs
to resolve input and output contentions. Two buffering schemes are mainly used: dedicated input
buffer [29] and shared-memory input buffer [30] [31]. The dedicated buffering scheme is simple
and easy to implement, but the memory utilization is not as high as that for the shared-memory
scheme, provided that the total memory size of both schemes is the same. Some inputs can be
more heavily loaded while others have empty places in their buffers. The shared-memory scheme
can complement this unevenly used memory problem, so that it can achieve the optimal buffer
utilization. Its drawback is that it requires extra hardware complexity and speedup.

Input Output
Switch
— (I —
—{I— -
—{— —
— (M

Figure 2.8: Input queueing

The problem of this Input queueing is that its performance is considerably reduced due to
the Head of Line (HoL) blocking problem [32].

In FIFO input queueing, when a packet reaches the head of the FIFO, it is considered by
the scheduler. The packet contends for its output with packets destined to the same output

2.4. ROUTER DESIGN 17

but currently at the HoL of other inputs. The scheduler should then decide which packet will
be the next. This method entails that packets can be held up by frames ahead of them that are
going to a different output. This phenomenon is called HoLl. blocking. The scheduler only deals
with the packet at the head of the FIFO queue, and so the HolL packet blocks packets behind
it that need to be delivered to different outputs. Hol blocking can decrease performance to
58.6% of the aggregate bandwidth for fixed of variable length packets [32]. This problem can
be solved using VOQ [33].

Virtual Output Queues

At each input, a separate FIFO queue is maintained for each output. HolL is eliminated
because each arriving packet is classified and queued in the corresponding VOQ according to its
destination port. No packet can be held up by a packet ahead of it that is destined to a different
output. When VOQs are used it has been shown possible to increase the throughput of an
input-queued switch from 58.6% to 100% for both uniform and nonuniform traffic [34], [35].The
input buffer memory does not need to have speed up since the queues are internally implemented
within a single memory module. Fig 2.9 shows the architecture for VOQ input buffering.

Input Output

voqll
—»{ voq12
voq13

voq21
— ->< voq22
voq23
voq31
— ->< voq32
voa33 m

Switch

Figure 2.9: Virtual Output queueing

The following table (see table 2.3) gather some examples of the use of this architectures in
different switch fabrics in the market, both for Internet routers and NoCs. For the following
tables a / represents that that technology is used for the type of network where is marked.

Output queueing

Shared Buffer

Input queueing

VOQ

Off-chip networks

A

A

A

On-chip networks

vV

v

Table 2.3: Examples of buffering strategies in the market

An example of NoC that uses shared buffer is the Intel’s 80 research core. For Input queueing
the most representative is Athereal.

Neither on-chip nor off-chip routers use Output queueing architecture because of its unaf-
fordable cost. Athereal uses input queueing for both GT and BE services. They argue VOQ

18 CHAPTER 2. RELATED WORK

are not necessary in NoCs as they strive for a small router and, therefore, they use small mem-
ories and preferably no RAMs . Hence, they design FIFOs with few overhead to use in their
architecture. Nostrum implements deflective routing to avoid the use of buffers.

2.4.2.2 Arbitration

Packets of different input ports may have to go to the same output. This election is made by
the arbiter, that decides in which order the packets will be served and it is necessary when
input buffering, shared buffer or VOQs are implemented. In general, the performance of packet
switches are constrained by the efficiency of the arbitration scheme used to select the packets
that will traverse the switch at a given time. It must be decided first which packets of each
queue will have access to the arbiter. There are several possibilities for this choice both for
off-chip or on-chip routers:

e FIFO.

e Multiport RAM.

Arbiter e —E__ Arbiter -

—{— == —

—[m— == -

—{[T— L~ —1x4 :_ —
(a) FIFO - _(b) Multiport RAM

Figure 2.10: Possibilities to access the Arbiter

In the FIFO model, FIFO queues are implemented and no multiplexors are needed, as only
the head packets of each buffer can enter the arbiter. Those packets that are not in the head
of the queues can be retained by the heads, leading to more congestion and causing the known
HoL blocking. In Multiport RAM each packet of the buffers enter the arbiter and entails bigger
routers as there are multiplexors that avoid HoL blocking leading to better performance.

Once the packets are examined by the arbiter, among all the packets that want to go to each
exit, only one is chosen. This can be modeled as parallel matchings, where N input and output
arbiters perform the parallel selection and communication among them to decide the matching
results. This communication adds overhead time to the matching process. This matching process
can be divided in three phases: request, grant, and accept [36]. Therefore, the resolution time
is the time spent in each of the phases plus the transmission delays for the exchange of the
information.

Several algorithms have been proposed by researchers, all of them looking for a high through-
put, starvation free, fast and simple to implement method. They can be divided in two major
groups, Maximum Size Matching (MSM) and Maximum Weight Matching (MWM) algorithms.

MSM algorithms, find the largest size matching between input and outputs, for example,
maximizing the number of connections made in each packet time.

2.4. ROUTER DESIGN 19

In the MWM algorithms, a weight is assigned to each packet from inputs to outputs.
This weight can be the waiting time, the number of packets in the queue, etc. This kind of
algorithms maximize ZSZ’JWZ’J' Where S; ; is a service indicator (a value of 1 indicates that

i,J
input i is match to output j), and W; ; is the attached weight to the packet.

MSM algorithms
e Random

e Round Robin

e ISLIP

e Priority

MWDM algorithms
e LPF
e OCF
o Weighted priority

If the packets are chosen randomly, the election of the port by the arbiter is uniform and
no starvation happens in the long term. Random values are complex to obtain hardware wise.
Round Robin (RR) is an easier method in hardware. RR and its variants is commonly used in
Buffered Crossbar Switches, achieving a 100% throughput [37]. ISLIP has been proved to be
simple to implement and to be able to achieve 100% throughput for uniform traffic when the
round-robin pointers are carefully controlled [36]. In priority arbitration, the arbiter selects the
packets have different priorities. The arbiter selects the one with the highest priority.

Longest Queue First (LQF), takes the number of packets in each queue as weight. Hence, the
algorithm picks a packet such that the sum of served queues’ lengths is maximized. It can lead
to starvation as it does not consider the waiting time of the packets. Oldest Cell First (OCF)
chooses the packet that has been more time inside the router. Unlike the LQF algorithm, it
does not starve any queue. Other possible solution is to elect the packet that has the longest
remaining path. This election can cause starvation in the system.

More complicated solutions can be given, as i.e. giving preference to those buffers that are
full or the more congested ones on average. The router must arbitrate traffic when more than
one packet arrives concurrently destined for the same output port. They must provide sufficient
buffering to handle situations where the packet input rate is greater than the routerss throughput
capability. Scheduling algorithms cannot easily exit a packet of each buffer per cycle. In this
case, there will be no free space for new packets in the buffers in the next cycle. Instead of
dropping packets, some kind of mechanism between routers can be implemented. Flow control
is the process of managing the rate of data transmission between two nodes to prevent a fast
sender from over running a slow receiver. This process is explained in the next section.

Table 2.4 summarizes the use of the different strategies in on-chip and off-chip networks.

20 CHAPTER 2. RELATED WORK

Random | RR | ISLIP | LPF | OCF | Priority | Weighted priority

Off-chip networks Vv
On-chip networks Vv V vV

Table 2.4: Examples of buffering strategies in the market
Hthereal uses RR in the BE architecture to arbitrate the packets.

2.4.3 Link Level Flow Control

In the longer term, no amount of buffering is sufficient: instead, sources should be indicated
not to send more data until the congestion is solved. This indication should be done based
on the amount of buffer space available or in use in the router. Then, the sources can control
how much data they send. This control loop has a delay since the control signal is sent until
the router stops receiving packets. When this delay is minimized, elastic buffering is avoided.
Also, links between routers should be used at full capacity whenever possible. The flow control
mechanism should be robust; loss or delay of control messages, for instance, should not cause
increased congestion. This is called link level flow control (LLFC). For this thesis, three
different mechanisms were considered.

ON/OFF

In ON/OFF flow control, the upstream node communicates through a pin with the
downstream node. It sends a signal each clock cycle; if it has space in its buffer, an ON signal
is sent and an OFF signal otherwise. This flow control method forces to use elastic buffers due
to its delay. The timing diagram is shown in Fig 2.11(a).

ACK/NACK

In ACK/NACK flow control, the transmitter does not keep any state for the buffers
of the downstream node. It is the downstream node who sends back to the transmitter
acknowledgments (ack) or negative acknowledgments (nack) depending on the state of the
buffer when receiving a packet. If there is enough space in the buffer for the arriving packet,
an ack is sent, otherwise a nack is sent. Then the upstream node has to hold the packet until
it receives an ack. If it receives a nack, it retransmits the packet. Due to this behavior, it is
also known as optimistic flow control. This method avoids the round-trip delay between the
time a buffer becomes empty, triggering a credit or an ON signal, and when a packet arrives to
occupy the buffer. Its drawback is that the transmitter has to hold for an additional delay time
waiting for an acknowledgment, turning this method into inefficient in terms of use of buffer
and bandwidth as it sends flits when even no buffer could be available. When flits and not
packets are being sent, the downstream node has to wait for all of them to arrive to maintain
the order.

Credit based
In credit based flow control, the upstream node decreases a counter each time it sends a

packet. That counter starts with the value of the buffer size of the downstream node. When
the downstream node releases a packet, it sends a credit back to the upstream node. When the

2.4. ROUTER DESIGN 21

credit is received, the transmitter node increments the counter again. Credit provides precise
control over buffer use , and can stop transmission automatically to avoid buffer overrun. This
has been shown to be a fair flow control method, that minimizes the delay and uses links
efficiently, guarantying no packet loss due to congestion [38].

ACK/NACK is rarely used due to its inefficient use of buffers and bandwidth. ON/OFF
is typically used in systems with large number of buffers and credit based in those with small
number of buffers. This types of flow control are used in NoC.

Internet routers use protocols like High-Level Data Link Control (HDLC), where the con-
gested receiver block transmission from the sender using an Receiver Not Ready command.
After the congestion is cleared, the receiver issues an Receiver Ready command to reopen trans-
missions. In the simplest case, the node is congested if it has no free buffers. Thus, packets
are indiscriminately accepted until all buffers are full. Another solution consists of introducing
a selective definition for congestion. The Ethernet networks use the ”pause frame” to stop the
sender from transmitting packets during a period of time that is indicated inside the frame.

transmiter receiver transmiter receiver
t=0 Buffer = MAX-1 t=0 Credits =1 Buffer = MAX-1
t=1 Buffer = MAX-1 t=1 Credits =0 Buffer = MAX
t=2 >@£ Buffer = MAX t=2 Credits =1 / Buffer = MAX-1
t=3 Buffer = MAX+1 t=3 Credits=0 Buffer = MAX
t=4 Buffer = MAX+1 t=4 Credits =1 Buffer = MAX-1
(a) ON/OFF (b) Credit based
transmiter receiver

t=0 Buffer = MAX-1

t=1 Buffer = MAX

t=2 Buffer = MAX

ack
t=3 Buffer = MAX-1
rtx
t=4 Buffer = MAX

(c) ACK/NACK

Figure 2.11: Flow control

ON/OFF | ACK/NACK | Credit based | Pause Frame HDLC
ATM
Off-chip networks Ethernet Frame Relay
X.25

On-chip networks | Wolkotte Xpipes Hthereal

Table 2.5: Flow control mechanisms in off-chip and on-chip networks

22 CHAPTER 2. RELATED WORK

Table 2.5 gathers the use of the different flow control mechanism in the different networks.

2.4.4 Switching modes

There are three basic approaches to routing packets, based on what a switch does with a packet
as it begins to arrive: cut-through, store and forward and wormbhole.

Store and Forward

This kind of switches wait for the whole packet to arrive before switching it to the
output port. While the packet is in the buffer the error correction and filtering table
look-ups are performed. If everything is correct, the packet can be forwarded. In Networks
on Chip no correction error is needed as the mean time between failure is very large [15].
This method causes a delay in packet forwarding that is dependent upon the length of the packet.

Cut-through

In cut-through, the packet starts to be sent as soon as the header arrives and the resources
are acquired. The difference with store and forward is that each hop is started as soon as
possible, without waiting for the whole packet to arrive. Latency penalty is then overcome [39].

Wormbhole

Wormbhole combines packet switching with the data streaming quality of circuit switching to
attain a minimal packet latency. Packets are divided in flits that follow the same path. First,
the node looks at the header of the packet, determines the next hop and immediately forwards
it. The subsequent flits are forwarded once they arrive. The latency within the router is not
that of the whole packet.

Protocol Latency | Buffering
Store and Forward | packet packet
Cut-through flit flit
Wormbhole flit flit

Table 2.6: Cost for Switching modes

Table 2.6 summarizes the differences in latency and buffering per router of the switching
modes.

Store and Forward | Cut-through | Wormhole
Off-chip networks v/ vV vV
On-chip networks v/ v/

Table 2.7: Switching modes in on-chip and off-chip networks

Table 2.7 represents what methods are implemented in the different networks. Aithereal
employs the wormhole switching mode, meanwhile for example, Nostrum uses Cut-through.

2.4. ROUTER DESIGN 23

2.4.5 Routing Algorithm

When routing a packet, a path among all the possible paths has to be elected. The routing
algorithm has to find the best path for each packet. To achieve this purpose, first it should be
defined what is a “best path” and how to measure its cost. The cost of the path can be for
example, the number of jumps needed to go from one node to the next one. Though this is not
an optimal metric, as it is supposed “1” for all the links, it is a simple technique and can offer
good results. Another kind of measure is the delay between neighbor nodes; here the metric is
time and its values are not constant but depend on the traffic of the network.

A path is considered a “best path” if it accomplishes the following conditions:
e It has the minimum average delay
e [t achieves a high performance in throughput.

The easiest criterion is to choose the shortest path, that is, the route that has to pass through
the least number of nodes. A generalization of this criterion is the “minimum cost”. Generally
speaking, the concept of cost in a link is a measure of the quality of the link based on the defined
metric. In practice, several metrics are simultaneously used.

When the network uses virtual circuits, usually the routing algorithm establishes a path that
is not changed during the time of life of this VC. In this case, the routing algorithm is elected
per session. When it is a datagram network, it does not have to keep the order of sequence of
the packets. In this case, if it is not necessary to keep the sequence of packets in order, the
routing criterion can be changed per packet. If the order of the packets has to be kept, other
solutions, such as routing per flow, are possible.

Classifying the routing algorithms in terms of how they select between the set of possible
paths R, from source node x to destination y, there are three types.

e Deterministic
e Oblivious
e Adaptive

Deterministic routing programs the path of each packet in advance of transmission. This kind
of algorithms allow a simple and in-order packet delivery routing. The problem with existing
deterministic routing algorithms is that they cannot make the best use of the network.

In oblivious routing, a system of optional paths is chosen in advance for every source-
destination pair, and every packet for that pair must travel along one of these optional paths.
Thus, the path a packet takes only depends on its source-destination pair (and maybe a random
choice to select one of the options).

In adaptive routing, however, the path taken by a packet may also be on other packets or
events taking place in the network during its travel. This events can be based on local or on
global information. Load distribution turns to be one of the most important parameters for
adaptive routing [40].

2.4.5.1 Deadlock

Algorithms for routing messages should have low latency and high network throughput. A main
features contributing to those characteristics is freedom from deadlock.

Deadlock occurs when a packet waits for an event that cannot happen. For example, two or
more packets are waiting for the other to finish, and thus neither ever does. This circular wait

24 CHAPTER 2. RELATED WORK

condition shown in Figure 2.12 causes deadlock because a packet holds resources while waiting
and excludes other packets from using those resources. The packets that want to go East are
blocked by all the packets that want to go South. In the same condition, the packets willing
to go South are blocked by those that want to go West. This last packets cannot move neither
because of the packets that try to move to North. To end the circular blocking, the packets that
want to go North are blocked by those that want to go East.

The routing algorithm should take into account these situations to avoid them. Deadlock
prevents a packet from moving inside the network. It rapidly spreads over the network unless
the routing algorithm includes preventive or recovery measures.

- Full buffer
m]]] Empty buffer

want to go East

—m— [

1

H

want to go South

want to go North 14 want to go West

E__i.

Figure 2.12: Example of a deadlock situation

Two possibilities for solving the deadlock problem exist. Deadlock recovery and deadlock
avoidance. Most deadlock avoidance schemes [41] [42] prevent deadlocks by enforcing routing
restrictions, e.g., dimension-order restrictions and turn restrictions, resulting in low routing
adaptiveness and low network performance. However, these routing restrictions can increase
router speed by simplifying router designs.

In contrast, deadlock recovery routing schemes [43] [44] maximize routing adaptiveness by re-
laxing routing restrictions enforced by deadlock avoidance schemes to prevent deadlock. This in-
creased routing adaptiveness, however, can compromise router speed by complicating the design
of router components, i.e., crossbar, channel selection logic, routing and arbitration logic [45].
Preserving the increased routing adaptiveness by implementing the router in this way not only
increases router delay but also limits the ability to optimize the router design to reduce router
delay.

2.4. ROUTER DESIGN 25

2.4.5.2 Deadlock Avoidance

Flow Control

Using flow control across the switch will eliminate the possibility of creating deadlocks.
Flow control can forbid to have full buffers in scenarios where deadlock could occur.

Virtual Channels

This technique allows adaptiveness in the network at the expense of buffer space and control
logic so that the virtual channels can share the physical channels. It also entails more bits for
the link flow control [46], [47].

— Arbiter

NORTH NORTH
I

o
_—

EAST _H
WEST _k | —— WEST

SOUTH

EAST

Figure 2.13: Virtual Channel control logic

Turn model

This model is not based on adding physical or virtual channels to network topologies.
Instead, it analyzes the directions in which packets can turn in a network and the cycles that
the turns can form. It can be applied to adaptive and nonadaptive algorithms.

Partially Adaptive routing in 2D meshes.
e West-First Routing Algorithm

e North-Last Routing Algorithm

e Negative-First Routing Algorithm
XY routing is a turn model algorithm. In this algorithm, a packet is first routed along the

x dimension and then along the y dimension. The XY algorithm prevents the deadlock by
prohibiting four of the turns. It doesn’t allow adaptiveness with detriment of performance.

Dropping A possible solution to avoid deadlock is discarding packets that are already in
the buffers.
The following table differs what methods are used in on-chip and off-chip networks.

Flow Control | Virtual Circuits | Turn Model | Dropping
Off-chip networks Vv Vv Vv Vv
On-chip networks Vv Vv vV

Table 2.8: Deadlock avoidance in on-chip and off-chip networks

26 CHAPTER 2. RELATED WORK

An example of flow control to avoid deadlock in NoC is Aithereal for BE and GT. For BE
Athereal also uses the turn model.

2.5 Conclusions

The advantages of on-chip communications, and of NoCs in particular, allow us to claim a
new vision of fabric crossbar switches. Our work differs from previous art by addressing both
issues of optimizing the crossbar delay as well as the internal buffer use and requirement. This
is addressed by adopting a multi-hop buffered NoC-based paradigm for the design of buffered
crossbar switches. Designing the fabric as a NoC permits to use short wires instead of the long
wires used in traditional CICQ crossbars. This allows scalability in port count and speed per
port and enables reliable high-speed signaling. Using uniform short wires affords significant
advantages in cost and performance. Additionally, a NoC based fabric requires simpler switch
design by allowing simple input memory structure such as FIFO input queueing, as opposed to
traditional design that requires sophisticated queueing structures such as the VOQ architecture.

Next, we summarize the characteristics of the NoCs that we think can enhance the high-speed
routers performance:

e short wires = tighter synchronization = smaller buffers.
e local arbitration vs global arbitration = less delay.

e higher frequencies = speedup.

Unidirectional NoC

he previous chapters have explained the existing proposals for crossbar switches and how
T they are not scalable and cannot follow the explosive growth of the Internet. They illustrate

how the scaling of microchip technologies opens a new door for on-chip communications.
And they summarize how the advantages of NoCs in scalability, its robustness thanks to the
multi-route possibility and its support to redundancy can solve the current problems of crossbar
switches.

This thesis proposes to use a buffered crossbar switch fabric based on NoC for moving packets
between router line cards. This novel design is depicted in Figure 3.1. The NoC should be
designed to accomplish the needs of a high-performance Internet router. The main requirements
of the new switch fabric will be based on its performance, cost and area.

Routing
| software DI
Switch fabric
L 1><1 -
_, - il e I

|\ J

Figure 3.1: The proposal architecture.

Routers and Nls are the main components of the NoC switch fabric. First, the topology
of the network should be chosen. Then, the NIs and routers are designed. The study of the
different possibilities to build the NoC routers in section 2 will be the base of their layout.
Afterwards, a routing algorithm is presented for the new architecture.

In this chapter, we first introduce the simulation environment used in this thesis to evaluate
the proposal architectures performance. A simulator of Stanford University was used [48] and
modified to fulfill the desired objectives: test the NoC architectures. This simulator is used to
test the architectures proposed in this thesis. The behavior of the system is based on its through-
put, average cell delay and distribution of the load in the mesh. This simulation environment,
the models of traffic employed and the parameters to measure in the following simulations are
explained in appendix A.

27

28 CHAPTER 3. UNIDIRECTIONAL NOC

3.1 UDN Architecture

The proposed architecture is shown in Figure 3.2. We will call it the Unidirectional NoC (UDN)
crossbar. It is a two-dimensional mesh of packet-switched routers, with network interfaces (INI)
on two opposing sides of the mesh. The mesh is scalable in the number of stages M between
the N inputs and outputs. Where N is the number of rows of the mesh and M the number
of columns. This scalability allows to play with the number of routers that compose the mesh
to obtain the best cost-performance architecture. Packets contain an ATM cell (including the

header), and flow in one direction through the mesh.
o |
oo 1
. 2
.. %g 3
: {jD N
\NI

— /@ o

Router

NI M

N

1 —

Inputs
Outputs

Figure 3.2: The Unidirectional NoC (UDN) crossbar architecture.

3.1.1 Architectural Design

Based on chapter 2 the architectural components of the UDN router are elected. Constraints in
size, simplicity and performance are the factors that may lead us to choose the different options
for building the new architecture.

3.1.1.1 NI design

The switch is connected to the outside through the NI. As packets flow only in one direction,
there are two types of NIs in the UDN architecture. Those of the East side, simply unwrap the
packet to send it to the Line cards of the router. The packets are sent in order through the
network, so this NIs do not have to reorder them.

The NIs of the West side are more complex. These NIs are based on [15]. Their architecture
is shown in Figure 3.3. When a message arrives, the remote queue id is taken from the table.
Then, they include the header for the packet, with the destination port. We implement flow
control using credit based LLFC between the routers and the NIs using credits. The NI has a
counter (credit) that is initialized with the remote buffer size. This counter tracks the empty
buffer space of the router. When the router sends a packet, it generates a credit back to the
NI to indicate that more empty space is available. Then the counter of the NI is incremented.

3.1. UDN ARCHITECTURE 29

Whenever a queue contains data, the request generator issues a signal specifying that queue can
be scheduled.

message

— {1111}

[

request .
generator credit

Figure 3.3: UDN Network Interface

3.1.1.2 Router design

Firstly, it should decided what kind of communication is using in the network . In this case,
the packets received in the inputs are sent through the network by packet switching, as it is
the most appropriate for computer communications and we are implementing only BE (section
2.4.1).

For the buffering architecture, input queueing is implemented. Shared buffer has a more
efficient use of the buffer space, but it needs extra hardware. As it needs speedup, shared buffer
architecture is not considered (refer to section 2.4.2.1). Though HoL blocking is caused, it is
proved in section 3.2.3 that it is negligible due to the routing algorithm elected. Then, the use
of input queues simplifies and reduces the size of the switch.

RR is implemented for the arbitration as it is a fair (starvation free) scheduling policy. This
is the also the scheduling policy because of its performance in Buffered Crossbars (see section
2.4.2.2) and its simplicity in hardware. Therefore, comparisons between both architectures will
be done with this type or arbitration.

Packets are received entirely by a router before being forwarded to the next router, also
known as store and forward. Though as explained in section 2.4.4 wormhole is more efficient, in
terms of simplicity it is not tested.

Buffering credit flow control is performed to avoid elastic buffers. This implies that buffer
size (also called buffer depth) should be at least 2 cells to avoid the delay generated by the flow
control. The delay of the credit sent back by the receiver makes it impossible to have 100%
throughput when the transmitter sends 1 packet per cycle. This effect is shown in Figure 3.4.
In architectures like Athereal, this handshake in the flow control is minimized because it only
has the delay of one flit instead of one packet.

In most NoC architectures, buffers account for the main part of the router area. As such,
it is a major concern to minimize the amount of buffering necessary under given performance
requirements. In [49] it is shown that increasing the buffer size is not a solution towards avoiding
congestion, though it is useful to absorb bursty traffic. So a compromise between area and
performance should be achieved.

30 CHAPTER 3. UNIDIRECTIONAL NOC

transmiter receiver

Buffer=0
I~

Figure 3.4: Case of Buffer Size 1

Packets advance at a maximum rate of one packet per cycle. For simplicity, we show syn-
chronous implementation but mesochronous or asynchronous are possible. Because packets do
not flow from right to left, the router is asymmetric, and no deadlock can occur. The routing
algorithm elected is explained in the next section.

Figure 3.5 shows the router architecture. Where: u =[un us ue uw| means input; y=[yn ys
ye yw] means output of the router; o=[on os oe ow| means output of the input ports; a=[an
as ae aw| means pin flow control of the input ports; c=[cn cs ce cw| means pin flow control
of the neighbors For reasons of cost, area and performance, buffer size is 4 in each input port.
In section 3.3 we calculate the size of the switch fabric with this amount of buffering. Routers
belonging to the first and last row differ from the rest of the routers in their degree. Then, fewer
buffers are required in those cases. For credit based flow control, special pins for communications
are needed on each router.

i 11

un n
aw o] aw] i L1
—_— W —_— W an
aw —|
on

Crossbar ye Crossbar ye
o [T o ST Crossbar "
o =+ {[TT}—r| ow
! 1 ! 1
o w o w
(a) Center Router (b) Router for 1st row (c) Router for last row

Figure 3.5: Different kind of routers for UDN architecture

3.2. ROUTING IN UDN AND PERFORMANCE ANALYSIS 31

Architectural component UDN
Switching Modes Packet Switching
Buffering Architecture Input queueing
Access to the Arbiter FIFO
Arbiter Algorithm RR

LLFC Credit-Based
Switching mode Store and Forward

Table 3.1: UDN architectural components

Table 3.1 collects all the architectural decisions for UDN routers. Once the architecture of
the fabric is chosen, a routing strategy should be decided. Here we proposed a new algorithm,
that achieves a good load balance making the most of the multi-hop characteristics of the UDN
mesh. The next section explains this routing election and makes an analytical and simulation
study of its performance.

3.2 Routing in UDN and Performance Analysis

This section first proposes two routing algorithms for UDN. They are the traditional XY routing
algorithm and a new algorithm called Modulo algorithm. It presents and makes an analytical
study of the Modulo algorithm. This study first calculates the number of packets per cycle
the system can egress based on the assumption that there is no HoL blocking. Thereafter, the
calculations are done with HoL blocking presence. Both values of are compared to obtain the
throughput of the switch. The following section compares the Modulo algorithm analysis with
the simulation values to estimate the validity of the mathematical model. Finally, there is a
comparison of the Modulo algorithm with other existing routing algorithms.

3.2.1 Routing Analysis

The UDN packet consists of the ATM cell that is now the payload and a new header. ATM
stands for Asynchronous Transfer Mode (ATM). Is a transmission mode that encodes data traffic
into small fixed-sized cells. The goal of Asynchronous Transfer Mode (ATM) is to integrate the
transmission of various type of data (e.g. video, IP-traffic) into one high-speed network. An
ATM cell is comprised of 53 bytes. Five of the bytes make up the header field and the remaining
48 bytes form the user information field.

The ATM cell is now wrapped with a new header. This packet routing header contains the
path from ingress to egress, and is shifted at every router.

Packets follow deterministic minimal paths through the NoC, using one of three different
routing algorithms: XY, balanced XY, and balanced flows . In standard XY (see Figure 3.6(a))
routing, packets travel East to the right column (X) and then to the correct row (Y). This
results in a very unbalanced NoC usage because all vertical traffic occurs in the column of egress
routers.

32 CHAPTER 3. UNIDIRECTIONAL NOC

0O 03d H:_’:_’:_‘Eh %

004

004 0O 0O DDDE
==& DE—B—E%DDG—EFDDDEL
Dg[]] DDD? -
0O 4O o0OB =E=E== 40
O O O O O0-8-8- ==t

) Balanced XY

Figure 3.6: Example of XY and Balanced XY routing in a 4x4 UDN

Balanced XY, illustrated in Figure 3.6(b), remedies this by introducing an extra turn in
one of the earlier columns. A packet for output (z,y) turns South/North when x mod M =
(N —i+j+t) mod M, and East when y = j, where i, j indicate the current router position in
the mesh, t the location of the extra turn, N the number of inputs/outputs, and M the number
of stages of the mesh. Hence, we refer to this as the Modulo routing algorithm as described in
Algorithm 1. It can be set for both balanced XY, balanced and balanced flows . If =0 then it
is set for balanced XY.

The following algorithm is performed by Router/i,j/ that receives a packet whose desired exit
is output.

Algorithm 1 Modulo UDN
Switch(Packet Buffer Input)
case(North):
if (i == output) then East
else South
case(South) :
if (i == output) then East
else North
case(West):
if ((output%M) == (N-i+j+t)%M) then
if (output > j) Down
else North
else East

In balanced XY, each input-output pair has a fixed t. As a result, all packets of an
input-output pair follow the same path. In balanced flow routing, ¢ increases modulo M for
every new flow. A flow is defined here as the group of packets that arrive in consecutive time
slots and that have the same input-output pair. Hence, for a given input-output pair, all
packets (cells) of one flow follow the same path, but packets of different flows take different
paths. Hence successive flows from one input-output pair may be interleaved at the output,
although they were not interleaved at the input. This is not an issue as all the packets of each
flow follow the same path and FIFO scheduling is used.

3.2. ROUTING IN UDN AND PERFORMANCE ANALYSIS 33

UDN packet
If the path is fixed since the beginning, the number of bits of the header is determined by the
size of the mesh. For this architecture, the router degree is 2 x 2 or 3 x 3. Hence the longest
path requires (N + M — 1) = [2log 3] bits, e.g. (32 +8 — 1) x 2 = 78 bits. Whether this is less
than the width of a link depends on serialization.

In UDN architecture, with the Modulo Algorithm 1, only [2log M bits are needed if balanced
XY is performed. Then, for a 32x8 Switch, this field has a size of 3 bits. If balanced flows is
elected, the number of bits needed are 2x [2log M]

‘AEthereal . 1000
[Modulo Algorithm

1200

1000

Number of bits

300

Figure 3.7: Number of bits for the header.

Figure 3.7 shows the different number of bits needed depending on the way the path is elected.
Mthereal, i.e., fixes the whole path since the beginning meanwhile the Modulo Algorithm calcu-
lates in each router the next step.

Figure 3.8 represents the UDN the packet for balanced XY:

ATM Cell

Header Payload

[Log:Mbits | 53 bytes |

Figure 3.8: UDN packet for balanced XY.

3.2.2 UDN Throughput Analysis with Modulo Algorithm without HoL

In this section, we study the throughput of an N x N UDN-based crossbar switch using the
Modulo routing algorithm described above. We assume that the input traffic is random, the

34 CHAPTER 3. UNIDIRECTIONAL NOC

arbitration used is random, the switch speedup is one and the number of ports of the switch
is even. We use random traffic, that performs as Bernoulli Uniform traffic, and for terms of
simplicity, random arbitration is used though UDN really uses RR . The buffer depth is consid-
ered infinite to avoid dependencies among the routers. An N x N UDN-based crossbar switch
contains four types of routers based on the kind of flows that pass through them. The pos-
sible kind of flows are: West—East, West—South, West—North, South—FEast, South—North,
North—South. These types of routers are illustrated in Figure 3.9.

y

‘ﬁ‘ ia
K
(1 : ‘
V?’ il Vg’ v
(a) Type a (b) Type b (c) Typec (d) Type d

Figure 3.9: Router types

e Type a: To this type belong those routers that do not have packets that go West-South
nor South-East or West-North nor North-East.

Router type a = R]i][2imodM]|i € 0.M —1

The number of flows that can go North-South (that is the same that go South-North)
depends on the position of the router in the matrix.
N -2
=0.——
Y 2
Where y is the number of flows for North-South and South-North. For each y there are 2
routers. Then there are N routers of type a.

e Type b: A router is a type b router if the packets can travel West-East or West-South and
South-East.

Router type b= R[i + 1][i]|i € 0..N —2U R[i][0]|s € 0..N — 1
There are 2N — 3 of these routers.

o Type c: These routers have packets that can go West-East, West-North and North-East.
There are 2N — 3 of these routers. It is the symmetrical case of type b.

Router type ¢ = RJi][i]li € 1.N —1U R[N — 1][i]|i € 0..M — 2

e Type d: To this type belong the routers that have the same kind of packets that type b
or ¢ plus packets that can travel from North-South or South-North.

Router type d = R]i][j] ¢ (Router type aU Router type b U Router type c)

The number of flows that can go in those directions depend on the position in the matrix.

N -2
r=1.——

2

3.2. ROUTING IN UDN AND PERFORMANCE ANALYSIS 35

Where x is the number of possible flows for North-South and for South-North. For each
number of flows there are 2(2/N — 4z — 3) routers. The number of routers in total for this
type is:

71+(N_3)(N—3)—(N—2):N2

Now the types of routers are identified, their throughput is studied. Firstly, we calculate it
for the ideal case, where the router is capable to exit all the packets that enter in each cycle
Then, we calculate the average throughput for each type in case of HoL blocking presence is
calculated. Then . Finally both cases are compared, to obtain the throughput of the switch.

The placements of each type in a 10 x 10 mesh is shown in Figure 3.10. Type a and type d
are divided in subtypes. This subtypes depend on the value of y for type a and of x in type d.

N—-2

2
In this case, for example, for a 10 x 10 mesh, there are Z = 10 routers of type a, but as there
y=0
are 2 routers per subtype, there are 5 subtypes of type a. This case is analog to type d.

Typea
A Typea
@ Typebc

® Typed
Typeb

Type ¢

=3
el
o
a

) 5 =) = I - R Y R Y =
© @ @ @ @ @ @ ¢ @ @
S =)) I = <
e @ @ @ @@ @@ @
~ P @O DPE @ EDE @
Be e e e e @
© @ @ @ @ @ @ @ @
D@ @ @ o M B @ @ @
© @ @ @ @@ @[¢ @ @
e0o0ce €6 PPPPD>
@ @ @ P @ @ @@ M
)) O)
2 = I) O) I =
o e @ @ P @@ @ @ @
© e o @ @ @ @ @ @
D e @e @ > e e @
o o @ @ @ @ @ @ @
© e @ @ D> @ @ @ @
© @ @ @ @ @ @ @ @

O]
@
7Y
@
O]
]
@
7Y
@
O]

O]

@ o @ @ A @
outer types (b) Router types simplified

Figure 3.10: Router types for a 10x10 mesh

36 CHAPTER 3. UNIDIRECTIONAL NOC

ow

(a) Router types front vision (b) Router types 3D vision

Figure 3.11: Simulation of Router types for a 10x10 mesh

Figure 3.11 is the result of a simulation of a 10x10 mesh for Bernoulli Uniform traffic. The
environment of this simulation and the model of traffic employed is explained in appendix A.
This graph shows the number of packets per cycle for each router in the mesh. We can see,
that each type of router, deals with the same average of packets per cycle. Figure 3.10(a) that
showed the analytical placement of the routers, draws the same shape as the simulation. We
can conclude our analytical study of each type or router is close enough mathematically and
simulation wise.

In the next calculations, NOP means the number of packets per cycle of a router of the
corresponding type. ANOP means the average number of packets per cycle for all the routers
of that type.

To calculate the throughput of each type of routing, the different probabilities should be
taken into account.

P(packet going from input i to output j) = P(i — j) = PA)P(i/j) = 1+

As t = 0 in this study for the modulo Algorithm, the different probabilities are as follows:

P(West—South) =

P(North—South) =

P(South—East) = +

P(West—East) = 1

First, it is calculated the ideal number of packets the switch should exit to have 100%
throughput.

If the ideal throughput happens when each router is able to deal with each packet that enters:
Average ideal throughput per type:

1
N
P(South—North) = § or %

e Type a:

3.2. ROUTING IN UDN AND PERFORMANCE ANALYSIS

37

e Type b,c:

e Type d:

ANOP =

2
NOP =1+ —
+N

2
ANOP =1+ —
+N

2z 2
NOP=—+ —+1
N+N+

N—-2

8

2

> <2(2N—4m—3) <%+%+1>>

I
—

14+(

o=

N

1+(N-3
J(N —2) + %(N _
8N3—27TN2—14N+72
6N

3)— (N —2)

N— N—
AW -2+ (N -3) - (V- 2)
8N2 — 11N — 36

6N (N — 3)

The average desired throughput in the switch, is then:

ATSwitch =

3N—2 2 8N3—27TN2—14N+72
W24 (14 F) 4N —6) + (G) N gy g

3.2.3 UDN Throughput Analysis with Modulo Algorithm with HoL

N2 3N?

Next, the Average Throughput per type taking into account HoL blocking is calculated. For
the calculation of the analytical response of the mesh, to simplify the calculations, it is assumed
that we flush all HoLL blocked packets at the end of every time slot. Then, only the actual time

slot has to be taken into account.

e Type a:

NOP = 3% P(3 diff dest) + 2 x P(2 diff dest) + 1 * P(1 dest)

Figure 3.12 represents the possible destinations for type a.

A A

>

v

v
v

vy

—

y

(a) 3 destinations

Figure 3.12:

vy

y

(b) 2 destinations (c¢) 1 destination

Possible destinations for type a.

38 CHAPTER 3. UNIDIRECTIONAL NOC

e Type b,c:

NOP = 2x P(2 diff dest) + 1 x P(1diff dest)

Figure 3.13 represents the possible destinations for type b.

\4 v

(a) 2 destinations (b) 1 destination

Figure 3.13: Possible destinations for type b.

1 1 1 1 1

The 4N — 6 routers are the same, so the average throughput (AT) for type a is

1

+1

e type d:

NOP = 3% P(3 diff dest) + 2 P(2 diff dest) + 1% P(1 diff dest)

This possible destinations are gathered in Figure 3.14.

3.2. ROUTING IN UDN AND PERFORMANCE ANALYSIS 39

A A

D R

v v v v

(a) 3 destinations (b) 2 destinations

=t

(c) 1 destination

vy

—>
>

4 v

Figure 3.14: Possible destinations for type d.

)(uH) (%) () (%) (7))

+2<1—%> <1—%> +<%> (%>+<%> <%)}
+1:<1—%>(1_%><1_%_%>}
(- DR e () R0 (5]
NOP:(Q*N—113[€+N2+1
Ni; 2(2N — 42 — 3) (2% N -1z + N2 +1
ANOPIL((]QH)(N 2)+1§“2V:”(NN32)(N23> _ 16N? I;ﬁév(jvtiiv_%

The average throughput of the switch, is then:

SN—-2 1
+ (AN —6) (= +1
ANOP Switch = 2 e)z +1)

(168 s TN s) (LHN2) (g 4 O (y 3) - (V - 2))
N2

16N3 — 14N? + 29N — 22
B 12N3
Once we have the ideal throughput in number of packets and the throughput taking into
account the HolL blocking, we can calculate the ratio of all the packets that are indeed egressed
by the system. Figure 3.15 represents the final throughput of the system.

40 CHAPTER 3. UNIDIRECTIONAL NOC

AN243N—4
3N?
16 N3 —14N2429N —22
12N3

Throughput =

Throughput

0.75

Figure 3.15: Throughput of UDN switch with Modulo algorithm

The throughput of the switch is always above 0.775 and it rapidly improves as the mesh
increases. The reason is that as N has a greater value, the probability P(i — j) decreases. The
blocking caused by packets coming South—FEast and West—South is reduced in each router.
Only type a has to deal with more packets per cycle because the packets North—South and
South—North increase with the number of inputs of the Switch. Though type a has more
packets per cycle, this type of routers, because of the possible direction of their packets, never
have HoL blocking.

UDN throughput is better that in the traditional CICQ buffered crossbar switch (see sec-
tion 2.4.2.1). Then it can allow FIFO input queues both at line cards and routers, instead of
VOQ as the HoLL occurred is shown to be insignificant.

Conclusion 3.1. Modulo algorithm allows to use FIFO queues in both line cards
and routers of the UDN architecture instead of VOQ. The HoL blocking caused is
shown to be negligible.

In the following section we analyze the behavior of the system by simulation and compare
it with the mathematical study.
3.2.4 Analytical study VS simulation results

The following graphs represent the simulation results compared to the analytical values obtained
in the previous sections.

3.2. ROUTING IN UDN AND PERFORMANCE ANALYSIS 41

Figure 3.16(a) collects the number of packets for different switch sizes for each type or router.
Then, the formula used for the analytical values is:

16N3 — 14N?2 4+ 29N — 22
12N3

ANOPSwitch =

For the system simulations, Bernoulli Uniform traffic was tested with an input load of 1
packet per cycle. The parameter measured is also the number of packets per cycle per type of
router.

0.4

031

oo B3 < = =

o
N
]

° —&— Analytical type a
O+ Simulation type 4 |
—— Analytical type b
-+ Simulation type b
—<— Analytical type ¢
&+ Simulation type
11k —#— Analytical type d |
= Simulation type 0.15

Euclidean Error

Number of packets per cycle
-
S
(o}
°
N

-
f
'S
o> 3
Eo 3
> 3

i o1}

0 2‘0 4‘0 6‘0 8‘0 150 1%0 140 0 2‘0 4‘0 6‘0 8‘0 160 12‘0 140
(a) Packets/cycle (b) Euclidean error

Figure 3.16: Number of packets per cycle per type with Modulo algorithm

Type a is the less accurate as it has the least number of routers inside the mesh. That is
why its analysis improves as N increases. The Euclidean error is shown in figure 3.16(b) for
each type of router. It also shows how the analysis becomes more accurate when the number of
input/output ports is higher.

Conclusion 3.2. The analytical model is a good approximation. Its accuracy in-
creases with the switch size.

42 CHAPTER 3. UNIDIRECTIONAL NOC

1.35

1.3

1.25

=
)

1.15

Number of packets per cycle

1.1 R
1.05F R
1 - -
0.95f —©— Analytical |

O- - Simulation

09 1 1 1 1 1
0 50 100 150 200 250

N

Figure 3.17: Total number of packets per cycle for the UDN switch with Modulo algorithm

The global number of packets per cycle for the simulation and the analysis study is in figure
3.17. The model is calculated for an infinite buffer size. Simulations are done with a buffer size
of 500. This value is big enough to be considered infinite in the simulations.

3.2.5 Modulo Algorithm VS XY algorithm

In this section, Modulo algorithm is compared with XY routing algorithm under simulation.
First it compares the number of packets/cycle each link of the mesh can exit in a 32x32 UDN
switch under Bernoulli Uniform traffic. Modulo algorithm is tested for both balanced flows and
balanced XY .

3.2. ROUTING IN UDN AND PERFORMANCE ANALYSIS 43

Figure 3.18: Placement of the coordinates for the figures below.

Following graphs have a 3D representation (see Figure 3.18). The switch mesh is represented
in the X and Y planes by its rows (N) and columns (M). Each crosspoint is a router or a link
depending on the simulation study. In the Z axis, the number of packets/cycle egressed by the
router or the link of belonging to that coordinate (X,Y) is displayed. The axis position is shown
in Figure 3.18.

(a) East (b) North (¢) South

Figure 3.19: Number of packets/cycle per link for the switch for balanced XY.

W Ny
i \\\3\\&\\\\
\ \\\\\\\\\\\\\

Figure 3.20: Number of packets/cycle per link for the switch for balanced flows.

44 CHAPTER 3. UNIDIRECTIONAL NOC

(a) East (b) North (c) South

Figure 3.21: Number of packets/cycle per link for the Switch for XY.

Graphs 3.19 and 3.21 show the load of the East, South and North links in packets per cycle in
the UDN mesh. West links are not represented as there are no packets flowing in that direction.
The characteristics of this simulation are explained in appendix A.

For Modulo algorithm, figures 3.20 and 3.19 show that East links have a good load balance.
With this algorithm, the network is able of egressing nearly 1 packet/cycle in these links with
a maximum variance of less than 0.018 packets/cycle. North and South links are distributed
differently for balanced XY and balanced flows . The fact that balanced flows varies the path
for each flow, distributes better the load in the mesh. balanced flows has a maximum variance
of 0.25 packets/cycle meanwhile balanced XY has a maximum variance of 0.45 packets/cycle.

In XY algorithm, packets are directed first in the horizontal direction and then in the vertical
direction. Then, only the links that belong to the routers of the last row of the mesh, will have
packets travelling along their North and South links (Figure 3.21). In contrast all the East links
of the routers of the mesh will have to deal with packets. Because of the congestion caused
in the last row by all the cells that want to go North or South, East links are asymmetrically
distributed. The reason is that the links of the middle have greater probability of being able
to send their packets North and South (i.e. those routers of the corners will only try to send
packets to the North or only to the South). Then, the rows of the middle will also have less
congestion and their load will be higher.

Modulo algorithm achieves a better performance thanks to a more efficient distribution of
the load. For each column j in which a row 7 has to turn to row k, row k turns to row 7. In this
way, links are better balanced all over the network. If a performance comparison is done between
the XY and Modulo Algorithm, it is again proved that our algorithm, with its both variants
(balanced XY and balanced flows) outperforms the typical XY algorithm. Figure 3.22 shows the
load in number of packets of each router of the mesh for SP1 for the routing algorithms. This
values are the same as the addition of the three previous graphs. That is, i.e, Figure 3.22(a)
is the addition of Figure 3.21(a) and Figure 3.21(b) and Figure 3.21(c). Figure 3.23 shows a
comparison in average cell delay and throughput of both algorithms for SP1. Both cases, reflect
how the Modulo Algorithm outperforms XY thanks to its better load balance.

Conclusion 3.3. Modulo algorithm distributes the load per link more efficiently
than the XY algorithm.

The following study compares traditional XY with balanced XY and balanced flows in terms
of average cell delay and throughput.

3.2. ROUTING IN UDN AND PERFORMANCE ANALYSIS

45

“ 0“"
A0 n‘o‘o‘o‘o‘ o
0

XXX

Packetsicycle

packetsicycle

SRR
“‘:“‘\“ RS \\‘\“‘
\\‘\:“
R \‘

Column

Row

(a) XY

13

Packetsicycle

Column

(c) Balanced flows

Figure 3.22: Comparison of XY and balanced XY and balanced flows in packets/cycle

Bernoulli Uniform Traffic

8
i

! ! ! ! ! ! ! | 1 ! ! ! ! ! —
i | R i
A I - @,
=k XY I 09
i I __o— ,
wh —&— Modulo Flows XY | N ,
i —— Modulo Balanced XY I *
I 08 /
i | /
| \‘\ /
, /
: | ’ :
/
>
K 06 /
a8 | =
= 2 /
3
O 1 o5 !
S g *
o 8
&2 = ’
o 0L S5O = /
z H— < 041 ,
,
o
03 .
*
0.2} % L ¥ XY
.- %" -+ —5— Modulo Flows XY
0FF — —57— Modulo Balanced XY
101 L L L L L L L 0 L L L L L L L L L
0.1 02 03 04 05 06 0.7 08 0.9 o 01 02 03 04 05 06 07 08 09
Input Load Unbalanced probability, w

(a) Bernoulli Traffic

(b) Unbalanced Traffic

Figure 3.23: Comparison of XY and Modulo Algorithm

for

46 CHAPTER 3. UNIDIRECTIONAL NOC

Conclusion 3.4. Modulo algorithm has better performance than XY algorithm.

We conclude, then, that Modulo algorithm is a good option to be performed in UDN archi-
tecture. Because it achieves a better load balance, balanced flows is elected.

In the next section we synthesize the UDN architecture to have a clue of the area and
frequency of the switch.

3.3 Hardware Implementations

To assess the cost and performance of our proposed architectures we synthesized a NoC in an
ASIC 65 nm CMOS technology. We use the Athereal NoC [18], with input-queued worm-hole
routers, flit size three, two VCs, and a non-blocking crossbar. Static-priority arbitration is
used between the two VCs, and round robin per VC. This router and the UDN router will
not differ significantly in terms of area and speed. The area of a router is dominated by the
number of registers, which is the same for both routers. The arbitration of the Athereal router
is more complex than that of the UDN router and hence will be slower. The Athereal Nls are
more general than required here because they implement shared-memory transaction semantics,
resulting in response buffers that are unused here. They also implement end to end flow control
and they have 4 queues instead of 1. Two for semantics and two for input and output packets.

We generated a 3 x 3 UDN topology, RTL VHDL, and SystemC models of the NoC from a
high-level specification [50]. This instance contains all different router degrees, and allows us to
compute the area of any size UDN crossbar. Synthesis for a 65 nm CMOS technology, without
any optimizations, achieved 413 MHz with a total network area of 4.8 mm? for a buffer depth
of 4 packets. Routers of degree 3 and 4 occupy 0.29 and 0.38 mm? respectively, and NIs 0.32
mm?. The area of a crossbar with N ports and M stages is 33 RouterM x 2 + 44 RouterM x
(N —2)+ NI*N 2, then 0.29 + M %2+ 0.38 x M x (N —2) +0.32 * N *2 mm?, e.g. 411 mm?
for N = M = 32. The registers that are used for FIFO buffers dominate the area. By using
dedicated hardware ripple-through FIFOs, described in [15], the area drops significantly. In a
90 nm CMOS process a 48-word 37-bit FIFO occupies a third of a register-based FIFO. Using
the same scaling factor for all FIFOs in 65 nm, an N port crossbar would occupy approximately
0.10 x M %2 +0.20 x M * (N —2) +0.11 * N * 2 mm?, e.g. 210 mm? for N = M = 32.

The data path of the router is 32 bits. Each ATM cell is 53 bytes, hence the cycle time

53bytesx 8 Lis . . .
is ———22< cycles. The maximum sustainable throughput of an N x N crossbar (diagonal

cycle

traffic with no contention), is therefore N/(14 % 2.4 ns) = 30 * N % 10? cells/second, or 95 * 10°
cells/second for N = 32. The minimum cell latency is 3x M +14 cycles, or (3xM +14)%2.4 = 0.26
milliseconds for M = 32. Doubling the data width of the NoC would double the throughput, at
limited area cost because the number of registers remains the same.

Table 3.2 shows the area values and the frequency for a switch using dedicated hardware
register-based FIFOs.

3.3. HARDWARE IMPLEMENTATIONS

47

Table 3.2: UDN hardware implementation with register-based FIFOs

Bulffer size 1 2 4

Frequency (MHz) 526 | 413
3x3 Router (mm?) 0.043 | 0.143 | 0.289
4x4 Router (mm?) 0.059 | 0.195 | 0.388
NI (4 buffers) (mm?) | 0.047 | 0.151 | 0.321

Table 3.3 shows the different sizes for different buffer depths for a switch implemented with

ripple-through FIFOs. Areas are now significantly smaller than in the previous case.

Table 3.3: UDN hardware implementation with dedicated hardware FIFOs

Buffer size 1 2 4

Frequency (MHz) 526 | 413
3x3 Router (mm?) 0.020 | 0.057 | 0.106
4x4 Router (mm?) 0.036 | 0.109 | 0.205
NI (4 buffers) (mm?) | 0.015 | 0.041 | 0.108

The total area for different switch sizes are depicted in table 3.4 both for register-based
FIFOs and dedicated hardware ripple-through FIFOs.

| Switch size 3 16 | 32 64
Register FIFOs mm? | mm? mm? mm?
Buffer size 1 0.714 | 16.062 62.291 245.250
Buffer size 2 2.350 | 53.030 | 205.749 | 810.256
Buffer size 4 4.822 | 106.347 | 411.165 | 1616.214
Dedicated HW FIFOs | mm? | mm? mm? mm?
Buffer size 1 0.319 | 9.195 36.829 174.415
Buffer size 2 0.916 | 27.528 | 110.792 | 444.525
Buffer size 4 1.894 | 52.673 | 210.134 | 839.425

Table 3.4: UDN area for different switch sizes.

Figure 3.24 shows the variance of the switch area as N and M is increased for a buffer size 4.
In Figure 3.24(a) N=M and in Figure 3.24(b) both parameters can be modified independently.

48

CHAPTER 3. UNIDIRECTIONAL NOC

3500

3000

2500

2000

mm

1500

1000

500

3500

3000

2500

2000

1500

1000

500

150

3.4 Conclusions

L L L
80 100 120 140

Figure 3.24: Switch sizes for Buffer size 4.

The goal of this chapter was to present a new architecture to use as switch fabric in the high-speed
routers. Its architectural components were designed based on the information of chapter 2 about
NoC and Internet routers. A routing algorithm was proposed to be implemented and analytical
and simulation studies were performed. Once the architectural components and the routing
algorithm of the NoC are elected next chapter studies the UDN architecture under different

conditions.

UDN System Analysis

he main part of the Internet traffic is unicast traffic. In unicast traffic each packet is sent
T to a single destination. This section presents the experimental results of the proposed

UDN-based. The experiments are carried for different switch sizes and different internal
stages of the UDN crossbar. Each point in the resulting figures is obtained after a simulation
duration of one million time-slots and we gather the data when tenth of the simulation time has
elapsed. The performance evaluation is carried under various traffic conditions, including: i)
Bernoulli uniform and bursty uniform with different burst sizes; ii) The double diagonal traffic
as defined in [51] and; iii) The Unbalanced traffic model as defined in [52]. The motivation of
these traffic models and the parameters used during the simulations are in appendix A.

Firstly, UDN is compared to traditional CICQ buffered crossbar switch. Then, the architec-
tural parameters are modified to see the response of the switch. This parameters are: switch size,
speedup (SP), depth of the system, buffer depth, routing algorithm and scheduling algorithm.
Some graphs represent the cost/performance study of the simulations. Where Cost = SPx area
and Performance = 1/delay. Area is calculated according to data of table 3.3. Some simulations
have buffer depth 20 and 6. Though we do not have the area for those routers, we estimate a
router with buffer depth 20 is at least 4 times a router with buffer depth 4. Buffer depth 6 is
estimated as 1.5 a router of buffer depth 4 (table shows that buffer depth 4 is ~twice buffer
depth 2).

In each figure, a vector represents the value of each parameter: switch size (SS), speedup
(SP), depth (D), buffer depth (BD), routing algorithm (RA), and scheduling algorithm (SA).
When a x is represented, it means that parameter has several values in the graph. When there
are two or more subfigures, a | separates the values for each figure if they are different. The
first parameter represents what architecture is simulated. We show an example of this vector:

<UDN,SS=z,SP=2,D=2,BD=2, RA=2,SA =2 >

4.1 Comparison with the traditional CICQ crossbar

First, UDN is compared to traditional CICQ crossbar in terms of throughput and average cell
delay.

Figure 4.1 studies the throughput stability of the UDN and CICQ switch. We can see
that even with SP1, the UDN outperforms the fully buffered CICQ switch. As the unbalanced
probability increases, UDN improves its behavior.

49

50 CHAPTER 4. UDN SYSTEM ANALYSIS

Throughput

—O— UDN: SP1
—H— UDN: SP2
—<— Buffered Crossbar

0.8 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Unbalanced Probability, w

Figure 4.1: Throughput Stability of a 32x32 Switch under Unbalanced traffic.
<UDN, SS = 32, SP =z, D = 32, BD = 4, RA = Modulo, SA = FIFO:RR >

Conclusion 4.1. UDN performs better than CICQ under Unbalanced traffic.

Figure 4.3 depicts the average cell delay of the proposed UDN architecture and compares it
to that of a fully buffered crossbar. The UDN architecture employs a SP1 and SP2. We can
see that our proposed UDN architecture outperforms the CICQ switch under heavy unbalanced
traffic loads (see Figure 4.1). When traffic load is light (< 90%), the CICQ performs better.
This is due to the multi-hop delay of the UDN. Each packet has to cover at least M routers
to achieve its destination in UDN meanwhile in CICQ, only one hop is necessary to exit the

crossbar. Similarly, under uniform (Figure 4.2(a)) and double diagonal (Figure 4.2(b)) traffic,
the CICQ performs better.

4.2. PARAMETER STUDY ol

—©6— UDN: SP1
—8— UDN: SP2
—— Buffered Crossbat

Average Cell Delay

.
05 055 06 065 07 075 08 08 09 095 1
Input Load

Figure 4.3: Cell delay comparison between the UDN and a CICQ switch of size 32 x 32 each
under Unbalanced traffic (w = 0.5).

<x,55 =32, SP =z, D =32, BD =4, RA = Modulo, SA = FIFO:RR >

10°

—6— UDN: SP1
—&— UDN: SP2
—— Buffered Crossbar

Average Cell Delay
Average Cell Delay
.

5

—6— UDN Bernouili: SP1
- & - UDN Bernouili: SP2
- - %= - Buffered Crossbar Bermouil
- ~ += " UDN Bursty: SP1
- —+—— UDN Bursty: SP2
— *— Buffered Crossbar Bursty

0.4 05 06 0.7 0.8 0.9 1 05 055 06 065 07 075 08 08 09 095 1
Input Load Input Load

(a) Uniform Traffic (b) Double diagonal traffic

Figure 4.2: Cell delay comparison between the UDN and a CICQ switch of size 32 x 32 each
under Uniform and Double diagonal traffic.

< 2,88 =32, SP =2, D =32, BD = 4, RA = Modulo, SA = FIFO:RR >

Conclusion 4.2. UDN employing SP2 has less average cell delay than CICQ under
heavy loads under Unbalanced traffic.

4.2 Parameter study

This section, studies the UDN architecture under different traffic patterns and architecture
parameters. Varying the architectural parameters we try to achieve the best relation in

52 CHAPTER 4. UDN SYSTEM ANALYSIS

cost/performance. Three patters of traffic are simulated: Unbalanced, Bernoulli Uniform and
Bursty Uniform traffic. The SP, switch size, depth, buffer size and scheduling algorithm are
adjusted to increase the performance and reduce the cost of the switch. Each variation can be
done individually, or by couples. Varying i.e. the depth of the system with a determined buffer
depth may have no impact in the system. But if this buffer depth is reduced, the depth of the
system can be critical.

Table 4.1 summarizes the parameter variations for each type of traffic. Each crosspoint in the
table represents that an analysis of the system varying those parameters together is performed
in the next sections for that model of traffic.

Three models of traffic are tested: Unbalanced traffic is evaluated in section 4.2.1, Bernoulli
Uniform traffic, in section 4.2.2 and Bursty traffic in section 4.2.3.

For the calculation of the area for the cost/performance graphs of the switch we use the
values of table 3.3.

Parameter Switch Size Speedup Depth Buffer depth | Sched. Algorithm
Unbalanced | Unbalanced | Unbalanced | Unbalanced
Switch Size Bernoulli
Bursty
Unbalanced | Unbalanced
Speedup Bernoulli Bernoulli Bernoulli Bernoulli
Bursty Bursty
Unbalanced Unbalanced | Unbalanced
Depth Bernoulli Bernoulli Bernoulli
Unbalanced Unbalanced | Unbalanced
Buffer depth Bernoulli Bernoulli Bernoulli
Bursty Bursty
Unbalanced
Sched. Algorithm Bernoulli
Bursty

Table 4.1: Study of parameters for each type of traffic.

4.2.1 Unbalanced Traffic

The simulations for several values of the unbalanced parameter w and SP1 are illustrated in
Figure 4.4. It shows that UDN architecture, performs better under higher values of w, this is,
when the traffic tends to be more unbalanced. The position of the inputs/outputs in the mesh,
simplify the balance of the load when the traffic goes directly from input i to output ¢ that
means going straight forward in the mesh, causing less congestion.

4.2. PARAMETER STUDY

53

Average Cell Delay

—5-SPLw=0.0
—E-SPL:w=05
—*%—SP1:w=1.0

e = S S - St S~ 5,510

L L L L L L L L
.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1

Input Load

Figure 4.4: 32x32 UDN Switch varying w.

<UDN, SS = 32,SP = 1, D = 32, BD = 4, RA = Modulo, SA = FIFO:RR >

in UDN

Conclusion 4.3. The more unbalanced is the traffic, the less congestion is caused

Unbalanced traffic already has a good performance with SP2. This is shown in Figure 4.5.
This figure shows how SP affects the average cell delay of the switches. SP has the effect of
modifying the switch size by a factor of the SP. A 16x16 UDN switch with SP1 has the same
average cell delay than the 32x32 UDN switch with SP2 and that a 64x64 switch with SP4. This
fact holds meanwhile the mesh is not congested.

Average Cell Delay

4|| — = -64x64: SP2

—5—16x16: SP1
—H—32x32: SP1
—+— 64x64: SP1
~© - 16x16: SP2
— 3 -32x32: SP2

* - 64x64: SP4

@ m

@ ®

S O ® ®
® ®

D ® m

05 06
Input Load, w = 0.5

Figure 4.5: UDN Unbalanced Traffic w = 0.5 for different switch sizes and SPs.
<UDN, SS =z, SP =2, D = N, BD = 4, RA = Modulo, SA = FIFO:RR >

54 CHAPTER 4. UDN SYSTEM ANALYSIS

Conclusion 4.4. SP2 is sufficient to provide 100% throughput for Unbalanced Traf-
fic in UDN.

As 100% performance is achieved employing SP2, we try modifying the numbers of columns
(depth) of the mesh to save cost. We can see that when the depth is more than 3 columns
in the 16x16, 6 columns in the 32x32 and 12 in the 64x64, the UDN achieves full throughput.
This is a saving in the interconnect cost by a factor of 5. Once that decrease factor is more
than 5, performance becomes significantly worse. The number of hops is then not enough to
distribute the load in the mesh. For small switch sizes, this deterioration is more noticeable
because the factor N/N?, that is the number of switches removed, is higher as N decreases.
Modulo algorithm distributes now N different destinations in M routers. The turn position of
some input/output pairs is now the same, incrementing the load of the routers (see Figure 4.14
for Bernoulli Uniform traffic).

0.9 !

a
®
&

Throughput
o
>
N i

0.75

0.7F

—6— 16x16

—— 16x7
16x4

——16x2

—5—16x8 ||

—* —16x3 ||

0 0.1 0.2 03 0.4 05 0.6 0.7
Unbalanced probability, w

08 0.9

Throughput

- o]

0.7

—6—32X32 |

-8 -32X15
X 32X7

—=32X6 |

—+— 32X5

- % -32X4 ||

0 0.1 0.2 03 0.4 05 0.6 0.7
Unbalanced probability, w

(a) 16x16 (b) 32x32
®
091
0.8
g
s
3 %% —O—64x64 |]
£ - B -64X32
X 64X12
U»(—e- 64X11 -
—— 64X10
64X9
oY - 6axs
<7 64X7
4 —A— 64X6
04

L L L
0.1 02 03

L L L
0.4 0.5 0.6

L L L
0.7 08 0.9 1

Unbalanced probability, w

0.8 0.9

(c) 64x64

Figure 4.6: UDN varying depths for several switch sizes under Unbalanced traffic.
<UDN, SS = 16/32|64, SP = 2, D = N, BD = 4, RA = Modulo, SA = FIFO:RR >

4.2. PARAMETER STUDY 95

Conclusion 4.5. Employing SP2 in UDN under Unbalanced traffic, the depth can
be reduced by a factor of & keeping throughput performance. Above that factor,
degradation is more significant for small switches.

Figure 4.7 shows that reducing buffer size to 2 is not a drawback if SP2 and maximum depth
(N=M) are employed. Delay is not significantly different with buffer size 2 or with buffer size
4. So a buffer size of 2 is more appropriate as the area of the switch is reduced. Buffer size of 4,
slightly improves the delay, but it becomes negligible when the number of inputs in the system
increases. This study is reflected in Figures 4.7(b), 4.7(c), 4.7(d)).

104
10°
2 2
a a
- eaEd -
8§ B—8—8—8—8—8—8 3
o @
g g
] o
2 2
B —©5— 16x16 Buffer Size 2 13
—E—32x32 Buffer Size 2 0
—><— 64x64 Buffer Size 2
- -16x16 Buffer Size 4
— 3 -32x32 Buffer Size 4 —O—16x16 Buffer Size 2
|2 - 64x64 Buffer Size 4 —© -16x16 Buffer Size 4
10 : : - . . . n T . . .
0.2 03 0.4 05 0.6 0.7 08 0.9 0.86 0.88 0.9 0.92 0.94 0.96
Input Load, w = 0.5 Input Load, w = 0.5
(a) Different Switch Sizes (b) 16x16
10°F
101
—H— 32x32 Buffer Size 2
— Bl - 32x32 Buffer Size 4
—<— 64x64 Buffer Size 2
B 7 — X — 64x64 Buffer Size 4
[o
a)
3]
O O
@ @
g g
o o
s s
< <
el — _—
10 - ="
e
0.86 0.88 0.94 0.96 0.86 0.88 0.94 0.96

0.9 0.92
Input Load, w = 0.5

(c) 32x32

0.9 0.92
Input Load, w = 0.5

(d) 64x64

Figure 4.7: Unbalanced Traffic, w = 0.5.
<UDN, SS =z, SP =2, D = N BD = 2, RA = Modulo, SA = FIFO:RR >

56 CHAPTER 4. UDN SYSTEM ANALYSIS

Conclusion 4.6. Decreasing buffer size does mot deteriorate performance under

Unbalanced Traffic for UDN with full depth and SP>1.

If the depth of the mesh is reduced, then buffer size plays an important role in performance.
A 32x32 UDN switch is tested varying the depth and the buffer. With buffer size 2, the switch
does not achieve 100% throughput if the depth is just reduced a factor of 2 (depth of 15 columns)
though it is working with SP2 (see Figure 4.8). Performance deteriorates mainly for low values
of w, that is, when the traffic tends to be more balanced.

0.8F i
/
/
N4 —O— 32x32 Buffer size 2

‘g 0.7 —H— 32x15 Buffer size 2 B
5 —>— 32x7 Buffer size 2
3 —+— 32x6 Buffer size 2
£ o6 —57— 32x5 Buffer size 2 | -

32x4 Buffer size 2
(O~ - 32x32 Buffer size 4
[+ 32x15 Buffer size 4 1
—X—-32x7 Buffer size 4
—f— 32x6 Buffer size 4
-/ - 32x5 Buffer size 4

32x4 Buffer size 4

051"

! ! ! ! ! ! ! ! !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Unbalanced probability, w

Figure 4.8: UDN Switch performance for different buffer sizes and depths and Unbalanced traffic.
<UDN, SS =32, SP =2, D = z, BD = 2, RA = Modulo, SA = FIFO:RR >

Conclusion 4.7. Buffer size strongly impact performance when depth is reduced for
Unbalanced traffic.

Performance does not improve significantly for the UDN switch if the arbiter algorithm is
modified due to the small number of ports in the routers. Multiport RAM is explained in
section 2.4.2.2.

4.2. PARAMETER STUDY o7

1 T T T T T e

I T T T T
—=2— FIFO: Round Robin Arbitration
—k— Multiport RAM: OCF Arbitratiol

0.95 _

09fF —
S
3

0.851

Throughput
o o
o > o t o
(2] (9] ~ ol o<

o
3
@

o
3

.
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Input Load

Figure 4.9: 32x32 UDN switch under Unbalanced traffic for different arbiter algorithms.
<UDN, SS = 32, SP =2, D = 32, BD = 4, RA = Modulo, SA =z >

Conclusion 4.8. The arbiter algorithm does not have a significant impact in UDN
under Unbalanced traffic.

Table 4.2 summarizes different options to improve the response of the UDN fabric for Un-
balanced traffic.

Performance Average Cell Delay | Area | Cost
Tw 1 ! = | =
TSpeedup 1(SP2 enough) ! = 1
TSwitch Size T 1 T T
| if SP1 1 I)
|Depth ~ if SP2 and &% < 5 ! ! !
| if SP2 and 7 > 5 1 ! !
|Buffer Size | ~ if SP>1 and N =M ~ l 1
else | 1 ! 1

Table 4.2: UDN parameter conclusions under Unbalanced

Comparison in term of sizes is relative. A 32x32 switch has a higher number of packets per
cycle than a 16x16 switch due to the higher number of ports. To make the a relative comparison

we relate the throughput of both switches.

4.2.2 Bernoulli Uniform Traffic

The following study is focused in the performance of UDN architecture under Bernoulli Uniform
traffic. Figure 4.4 (with w = 0) already depicted that this kind of traffic has a worse behavior

58 CHAPTER 4. UDN SYSTEM ANALYSIS

than the Unbalanced traffic. Figure 4.10(a) shows that increasing the speedup can lead the
switch to improve its performance to manage 100% throughput. The behavior is again shown
to be worse than that for Unbalanced traffic in Figure 4.10(b).

:
—&—UDN: SP1
10° || —E— UDN: SP2
—%— UDN: SP3
—X— Buffered Crossbar
10°
>
S B—=B = 585 —e05858 X
o + X kR /
] X
(8}
[} 1 /
2 10 X
o ¢
k4 « X
e
X
X
10° b _- X7
_-xT
- x -
10'1 L L L L L
0.4 0.5 0.6 0.7 0.8 0.9 1
Input Load

(a) UDN vs CICQ under Bernoulli Uniform Traffic

—G— Bernoulli: SP1
10° H —=—Bernoulli: SP2 Q 4
-G - Unbalanced w=0.5: SP1 I
-3 - Unbalanced w=0.5: SP2 /

Average Cell Delay

.
05 055 06 065 07 075 08 08 09 095 1
Input Load

(b) Bernoulli Uniform vs Unbalanced Traffic

Figure 4.10: UDN 32x32 switch under Bernoulli Uniform Traffic for different speedups.
<UDN, SS =32, SP =z D = 32, BD = 4, RA = Modulo, SA = FIFO:RR >

4.2. PARAMETER STUDY 59

Conclusion 4.9. Bernoulli Traffic has good performance running at SP2 in UDN.
Awverage cell delay is higher than for Unbalanced Traffic.

According to the analytical study (see section 3.2.3), under this traffic, increasing the switch
size should enhance the behavior of the network. Figure 4.11(a) shows that average cell delay
becomes lower when the load is high for meshes with higher number of ports. Small switches
have lower delay with SP2. Figure 4.11(b) represents the cost/performance of this conclusion.

10°

—O— SP1: 16x16 | ‘;“/ —Boske

—5— SP1: 32x32 |
1°L | ¢ SP1:64x64 ‘\ /] q\lzsxlza

—+— SP1: 128x128 [‘
~[> sP2: 32x32 | / © 128128 \

[\
~¥ SP2: 64x64 | 10'H

\
—+— SP2: 16x16 . . - o = , B 6464
—£— SP2: 128x128 ’ I !

Cost

\
' [32x32
|

=
S

Average Cell Delay
P "“‘

\
1 o 16x16

et & 16x16

>
. 10

0.1 02 0.3 04 05 06 07 08 09 10° 10" 107 107 10"
Input Load Performance

(a) Performance (b) Cost-performance

Figure 4.11: UDN under Bernoulli Uniform Traffic for different switch sizes.
<UDN, SS =2, SP =2, D = N, BD = 4, RA = Modulo, SA = FIFO:RR >

Conclusion 4.10. UDN is scalable in performance and the switch size under
Bernoulli Uniform traffic. Bigger switches reach congestion with higher loads but
have higher average cell delay for light loads.

Once we are employing SP2 and throughput is 100%, depth can be reduced to save routers.
Figure 4.12(a) depicts a 32x32 switch for different depths. The value for which the average cell
delay does not tend to infinite coincide with that of Figure 4.6(b) for w=0. This is, when a
factor of 5 in number of routers reduced. SP2 has a better response than SP1 for all the ranges
of depth. Increasing SP by a factor z entails reducing the average cell delay by the same factor
if the network is not congested. When the system becomes highly congested, this equation does
not apply. For SP2, a depth of 6 is enough for dealing with all the traffic. For SP1, they should
be necessary then, just 12 columns, but in this case, not even a depth of 32 manages with all
the input load. If the switch is running with SP3, then more routers can be saved, now, only
4 columns are necessary. For low input loads, it is always preferable to decrease the number
of columns of the fabric. When the load is higher, two solutions are possible: either the depth
should be increased, or the speedup of the system is raised.

60

CHAPTER 4. UDN SYSTEM ANALYSIS

- O -SP2: 32x5
- B - SP2: 32x6
—<— SP2: 32x10
SP2: 32x11
- & -sP2: 32x12
10°F SP2: 32x13
-< -spP2: 32x14
- >-sP2: 32x15
— &2 - SP2: 32x32

Average Cell Delay

. .
05 06
Input Load

(a) SP2

01 [—o—spPrzas
—B— SP1: 32x6
—— SP1: 32x10
—k— SP1: 32x11
—&— SP1: 32x12
SP1:32x13
—<—sP1:32x14
a| | —P—sp132xs
—£— SP1: 32x32
—© - SP2:32x5
- B - SP2:32x6
—— SP2: 32x10
SP2: 32x11
- & —sp2: 32x12
SP2: 32x13
—< - sP2: 32x14
- B-spP2:32x15
— %2 - SP2: 32x32
V- SP3:32x3
[> sP3:32x4
% SP3:32x7
77 SP3:32x15

©)

(- SP3: 32x32

Average Cell Delay

0.2 03

(b) SP1,SP2,SP3

Input Load

Figure 4.12: UDN under Bernoulli Uniform Traffic for different depths.
<UDN, SS = 32, SP = 2|z, D = 2, BD = 4, RA = Modulo, SA = FIFO:RR >

traffic.

Conclusion 4.11. Increasing the speedup allows saving routers in the mesh by re-
ducing its depth without deteriorating performance in UDN under Bernoulli Uniform

The different cost of each layer and speedup is represented in Figure 4.13.

- SP1 73232
-O- sP2
< sP3 i
32x32 Q“
|), 32x15
| 32114
|
32x32 Y
n s2as (310
- I
g ; | p32x7
B 32x10 O
1 1.
327 %326
W [32x15 6 -G
32x13 O O 32x4
: 32x3
i
32x8
1
]
32x6
32x5_
L L
10° 10" N 107
Performance

10° T T T T T T T 1
-O- 64x64
£ 32x32
64x64
o
3 N
wr b £64x32
32x32
5 [64xil ,,,,,7,77}17\964x12
S Heaxio - Nl
64x9
Heaxe 32x15°Q
32x10Q
T S [,
32x6 32x7
10"
0 0.002 0004 0006 0.008 0.01 0012 0014 0016
Performance

Figure 4.13: UDN 32x32 switch: Cost under Bernoulli Traffic for different depths

The following Figure 4.14, shows how the load is equally distributed along the mesh, even
In this way, Figure 4.14(a) with a 32x15 switch

when the number of columns is reduced.

4.2. PARAMETER STUDY 61

and 4.14(b), with depth 32, have the same shape for the distribution of the packets. This
distribution is thanks to the Modulo algorithm, that takes into account the number of columns
in the mesh to equally distribute the packets in the routers.

S
R 12
,@“\\\‘\\“\\
SRR
RO

11

packets/cycle
packets/cycle

column column

(a) Depthlb (b) Depth32

Figure 4.14: Router Load for Bernoulli Uniform Traffic

The following experiment varies the buffer size of each router. As it happened under Un-
balanced traffic, decreasing the buffer size deteriorates performance when the SP1 or when SP2
and the depth of the mesh is reduced. These data are collected in Figure 4.15. When buffer
size 4 is used, a 32x7 switch performs 100% throughput, meanwhile if buffer size 2 is used, the
switch should be 32x25 to have full throughput.

= i
= 10

"
10°f — © — SP2: 32x5 Buffer Size 4 ! |

Average Cell Delay

O~ SP1: Buffer Size 20
-0- SP1: Buffer Size 4
X~ SP1: Buffer Size 2 [}
—O— SP2: Buffer Size 2 ,
—=— SP2: Buffer Size 4
—/— SP2: Buffer Size 20

10°;

Average Cell Delay

— 8 — SP2: 32x6 Buffer Size 4
—— SP2: 32x10 Buffer Size 4
— & — SP2: 32x15 Buffer Size 4
— % — SP2: 32x32 Buffer Size 4
—#— SP2: 32x7 Buffer Size 2
10°F | —¢— SP2:32x11 Buffer Size 2
SP2: 32x15 Buffer Size 2
—x—-SP2: 32x23 Buffer Size 2
—4- SP2: 32x24 Buffer Size 2
—#— SP2: 32x25 Buffer Size 2
—0—- SP2: 32x32 Buffer Size 2

10

A% A% vV
; D — — i
S S S
10" L L L L L L L L 10" L L L L L L L L
0.2 03 0.4 05 06 0.7 08 0.9 1 0.1 02 03 04 05 0.6 0.7 0.8 0.9
Input Load Input Load

(a) Buffer Size for different speedups (b) Buffer Size for different depths and SP2

Figure 4.15: UDN 32x32 Switch under Bernoulli Uniform Traffic modifying the buffer size.
<UDN, SS = 32, SP = z|2, D = 32|z, BD = 4, RA = Modulo, SA = FIFO:RR >

Conclusion 4.12. Buffer size can be reduced if depth is not reduced and SP is >2
without resulting in worse behavior of the system in UDN under Bernoulli Uniform

traffic.

CHAPTER 4. UDN SYSTEM ANALYSIS

62

It is better to increase speedup than buffer size. This can be seen in Figure 4.16(a). It has
a better performance buffer size 2 with SP2 than buffer size 20 with SP1. Figure 4.16(b) shows

the cost/performance for different buffer sizes and SP2.

10°+
Buffer Size 20
0

T

I
1
1
I

O~ SP1)

- SP2 Buffer Size 20
|
|
|
|
|
|
|
|
|
|
bt
I

19}
8 ,/ Buffer Size 4
I
1
’ 1
! . |
1 Buffer Size 4 Buffer Size 2 7z
/
/
/
/
m/ Buffer Size 2
&t ° - = 2 1
10° 10" 107 0 o
Performance
(a) Speedup and Buffer size
as0f T T
—&+— Buffer Size 4 32%32
—O— Buffer Size 2
400+
32x15
350
300
g
O 250
32x32
200
150 32x25 “
32x10 O
100 F 7777777777777777777757
32x7
0 5 10 15
Performance © 107

(b) Switch depth and Buffer size

Figure 4.16: UDN 32x32 switch: Cost under Bernoulli Traffic for different depths and buffer

sizes and SPs

4.2. PARAMETER STUDY 63

Conclusion 4.13. It is a better cost/performance option to increase SP than buffer
depth in UDN under Bernoulli Uniform traffic.

Modifying the scheduling algorithm might improve the performance of the system. This is
tested in Figure 4.17. The ideal case is the Multiport RAM arbitration with OCF (refer to
section 2.4.2.2). The current FIFO arbitration with RR manages only 0.2% less load than the
ideal one and it performs better than FIFO arbitration with OCF. The number of ports of the
system has no significant impact on the variance in performance of the different arbitration
algorithms.

T T T T
—&— SP1: FIFO: Round Robin Arbitration
—&— SPL: FIFO: OCF Arbitration

—*— SP1: Multiport RAM: OCF Arbitratiol

Average Cell Delay

=
S

0.1 02 03 0.4 05 06 0.7 0.8 0.9
Input Load

Figure 4.17: 32x32 UDN switch for different arbitration algorithms under Bernoulli Uniform
traffic.

<UDN, SS =32, SP = 1, D = 32, BD = 4, RA = Modulo, SA = 2 >

Conclusion 4.14. Modifying the scheduling algorithm in UDN does not modify
significantly the switch performance under Bernoulli Uniform traffic.

The conclusions for Bernoulli Uniform traffic are the same than those for Unbalanced traffic.
They are summarized in table 4.3

Performance Average Cell Delay | Area | Cost
TSpeedup 1(SP2 enough) 1 = 1
TSwitch Size T 1 T T
1 if SP1 1 1 1
|Depth ~ if SP2 and &% <5 l l l
| if SP2 and 57 > 5 7 ! !
| Buffer Size ~ if SP>1 and N = M ~]]
else | T ! !
FIFO OCF Arb. 1 1 1 1
Multiport RAM OCF Arb. T 1 T T

Table 4.3: UDN parameter conclusions under Bernoulli

64 CHAPTER 4. UDN SYSTEM ANALYSIS

4.2.3 Bursty Uniform Traffic

Figure 4.2(a) already showed that UDN has no good performance under Bursty Uniform traffic.
Now we will study how burst size affects the behavior of the network. As the burst size increases,
the response of the system gets worse. This is shown if Figure 4.18. Even with SP2, the
throughput achieved does not reach the 100%. The mesh is loaded with 1 packet per cycle and
the burst size varies from 1 to 500.

0.95

0.9

0.85]

0.8

0.751

Throughput

0.7

0.65F b

0.6 R

0.55 | | | | |
0 100 200 300 400 500 600

Burst Size

Figure 4.18: Bursty Uniform Traffic 32x32 Switch.
<UDN, SS = 32, SP = z, D = 32, BD = 4, RA = Modulo, SA = FIFO:RR >

Conclusion 4.15. UDN does not perform well under Bursty traffic with high aver-
age burst flows.

The following experiments are done with an average burst size of 16 packets. Running at SP1,
a 32x32 switch cannot manage more than ~50% of the traffic. SP2 improves the throughput to
achieve the behavior of the traditional CICQ (see Figure 4.19).

65

4.2. PARAMETER STUDY

Average Cell Delay

\
\

\

[
%

*
*
Sk

bt ¥
7// /* -
N
- - —<—UDN Bursty: SP1
e —+— UDN Bursty: SP2
- - % - Buffered Crossbar Bursty

. . .
0.7 08 0.9 1
Input Load

Figure 4.19: 32x32 UDN under Bursty Uniform Traffic for different speedups.
<UDN, SS = 32, SP = 2z, D = 32, BD = 4, RA = Modulo, SA = FIFO:RR >

Conclusion 4.16. Burst sizes of average 16 packets with SP2 in UDN perform as

CICQ. Average cell delay is high.

The distribution of the load is similar for both SP1 and SP2. They differ on the number
of packets per cycle that the fabric is able to deal with. For SP2, the load is more balanced
because the system is not congested. The simulation is done with a load of 0.9 packets/cycle

and a burst size of average 16 packets. This is represented in Figure 4.20.

Packets/cycle
°
2
Packets/cycle

o 5 0.55
40 0 Column

(b) SP2

(a) SP1

Figure 4.20: Router load distribution for a 32x32 UDN Switch under Bursty traffic

66 CHAPTER 4. UDN SYSTEM ANALYSIS

Increasing the size of the switch, once again, improves the performance of the fabric. The
values of average cell delay for different switch sizes is represented in Figure 4.21 for SP1.

10°H —5— SP1: 16x16
—=— SP1: 32x32
—x— SP1: 64x64
—— SP1: 128x128

=
o
w
T
|

Average Cell Delay
[

10 5 .

101 | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Input Load

Figure 4.21: UDN under Bursty Uniform Traffic for different switch sizes.
<UDN, SS=2z,SP =1,D = N, BD =4, RA = Modulo, SA = FIFO:RR >

Conclusion 4.17. Increasing the size of the switch improves the performance of the
system with bursty traffic in UDN.

In this case, reducing the depth of the mesh when working at SP2, will just decrease the
behavior of the system. The UDN switch already becomes congested with a NxN switch for high
loads. Another solution to improve the performance is increasing the buffer size. As it is said in
section 3.1.1 though buffer size does not help avoid congestion, it does help absorb burstiness.
Figure 4.22 shows how a buffer size of 20 significantly outperforms the result of the simulation
of buffer size 4 for SP1. The cost of this improvement is, however, very high. Running the fabric
at SP2, gets a better response for buffer size 4 than for buffer size 20 with SP1.

4.2. PARAMETER STUDY

67

10 ‘ . —
| /

—O— SP1: Buffer Size 20

—+— SP2: Buffer Size 20 / %
—H— SP1: Buffer Size 4 !
—k— SP2: Buffer Size 4
—<— SP1: Buffer Size 2 |

10°L | O~ sP2: Buffer Size 2 ! 7%

Average Cell Delay

. .
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Input Load

Figure 4.22: Bursty Uniform traffic in a 32x32 UDN for different buffer sizes.
<UDN, SS = 32, SP = 2, D = 32, BD = 2, RA = Modulo, SA = FIFO:RR >

Conclusion 4.18. Increasing speedup is a better choice than increasing the buffer
size.

Figure 4.2.3 shows this conclusion in terms of cost/performance.

—%= SP2

10°

—O—sP1 Buffer Size 20
I
|
|
|
Buffer Size 20 !
|
I
|
|
|

Cost

Buffer Size 4 _k

EiufferSiieé
Buffer Size 4

Buffer Size 2

10

Performance x10™

68

CHAPTER 4. UDN SYSTEM ANALYSIS

Varying the arbiter algorithm affects the systems as is shown in Figure 4.23. The ideal case
of Multiport RAM with OCF has only 0.05% more throughput than the current arbitration with

FIFO and OCF .

—C— FIFO: Round Robin Arbitration ||
10°H{ —=— FIFO: OCF Arbitration | 1
—#¥— Multiport RAM: OCF Arbitration | |

.
S

Average Cell Delay

103k
&

.
0.1 0.2 03 04 05 06
Input Load

L
0.7 08

Figure 4.23: 32x32 UDN switch under Bursty uniform traffic for different arbitration algorithms.
<UDN, SS =32, SP =2, D = 32, BD =4, RA = Modulo, SA =z >

Conclusion 4.19. Modifying the scheduling algorithm does not modify significantly
the switch performance under Bursty Uniform traffic.

Performance Average Cell Delay | Area | Cost

1Speedup 1(SP2 enough) 1 = 1
TSwitch Size T 1 T T
|Depth ! 1 1 !
| Buffer Size ~ if SP>1 and Depthmax ~ 1]

else | 1 ! !
FIFO OCF Arb. 1 1 1 1
Multiport RAM OCEF Arb. T i} T T

Table 4.4: UDN parameter conclusions under Bursty Uniform Traffic

4.3 Conclusions

This chapter gathers the system simulations of UDN architecture. First, its performance was
first compared to CICQ. Finally, its architectural parameters were modified to test the different

responses of the system.

In the introduction of this thesis, we argued our reasons to propose this new NoC architecture
as a crossbar fabric. Those claims where the following:

4.3. CONCLUSIONS 69

Better load balancing

Higher path diversity

Scalability in port count and speed per port

Use of short wires

Simpler switch design by using FIFOs

The aim of the performance evaluation of the new architecture is to conclude if those claims
are satisfied and if our architecture outperforms the CICQ crossbar switch. Summarizing this
chapter we can conclude the following characteristics of the UDN architecture:

Better load balanced is achieved with the Modulo Algorithm 1 and the multi-hop structure
of the mesh. This is depicted in Figures like 3.19 and 3.20 and in Conclusion 3.3.

Path diversity is enforced by varying the path of each flow. Modulo Algorithm 1 can
modify the path per flow reaching a higher load balance (see Figure 3.20).

It was proved analytically and by simulations that increasing the switch size does not
deteriorate the performance of the system (see Figures 4.11(a), 4.21) and that delay is
increased linearly with the size of the switch (Conclusions 4.10, 4.17). Short wires connect
the routers and they are not lengthened with the switch size.

Analysis study of section 3.2.3 and Figure 3.15 shows how Hol. blocking is not an issue
in UDN mesh and the routing algorithm employed so FIFOs can be used avoiding to use
VOQ both in the line cards and in the routers (see Conclusion 3.1). Section 3.3 refers to
the size of these FIFOs and the saving in area.

Simulations showed how UDN outperforms CICQ if is employing SP2 for Unbalanced traffics.
For Uniform traffics, like Bernoulli UDN performs better when for heavy loads (>90%) and with

SP2.

Bernoulli Uniform traffic has higher delays in the UDN architecture due to the multi-hop

routing. We can conclude after this experiments, that UDN is a feasible architecture that
outperforms CICQ in performance and delay. Its drawback is the physical distribution of its
inputs and outputs, than make it unsuitable for the chip layout. NIs of UDN are disposed in the
West and East side of the architecture and the pins of a chip are placed all around its perimeter.
Three solutions are then possible, using bigger chips, using longer wires to connect the NIs or
to modify the UDN architecture.

Table 4.5 summarizes the concepts to achieve the best cost/performance with the UDN
architecture.

70 CHAPTER 4. UDN SYSTEM ANALYSIS

Performance Average Cell Delay | Area | Cost
TSpeedup 1(SP2 enough) 1 = 1
TSwitch Size 7 ! 7 1
1 if SP1 1 1 1
|Depth (not for Bursty) ~ if SP2 and % <5 l l 1
| if SP2 and 57 > 5 7 ! !
| Buffer Size ~ if SP>1 and N=M ~]]
else | T | !
FIFO OCF Arb. 1 1 1 1
Multiport RAM OCF Arb. T l T T

Table 4.5: UDN parameter conclusions

Gathering conclusions 4.12,4.13, 4.14, 4.18 it is shown that the importance of the parameters
is as follows:

—_

. Speedup.

2. Depth.

3. Buffer size.

4. Scheduling algorithm.

Short wires are used to interconnect the routers and the NIs. The main drawback of UDN is
the way the NIs should be connected to the pins of the chip. This is shown in Figure 4.24. The
layout of the chip has its pins all around its perimeter meanwhile UDN architecture has them
only on the sides. Either a bigger chip is used, or longer wires should be used to connect the
switch to the chip. Though UDN is a logically nice architecture, it is not physically appropriate.
For this reason, we propose a second architecture in chapter 5 in which these issues are solved.

0 0 0 0
= —
O —
= —
O —
I

Figure 4.24: Placement of 4x4 UDN in a chip.

Multidirectional NoC

hapter 3 presented a new NoC architecture for a crossbar switch fabric. Alongside all the

advantages of this architecture, there exist several drawbacks related to the pin distribution

that should be taken into account. As it was tested, one of the advantages of the UDN
architecture is the use of short wires. This allows scalability in the port count and speed per
port and enables reliable high-speed signaling.

UDN fabric does not have the inputs/outputs all around the perimeter. Then, when con-
necting them to the pins of the Chip, long wires should be used. To be able to wrap the
inputs/outputs around the mesh, the connections should be twisted. With several foldings and
unfoldings, we get to the next result.

Figure 5.1: 8x8 UDN switch twisted

Now, all the links do not have the same length, augmenting complexity and reducing the scala-
bility of the chip. To overcome this problem, his chapter introduces a new NoC architecture in
line with the pin distribution inside the chip. This is depicted in Figure 5.2 for a 4x4 twisted
UDN switch.

01 0 0

I N

U0 U0

Figure 5.2: Placement of 4x4 UDN twisted in a chip.

71

72 CHAPTER 5. MULTIDIRECTIONAL NOC

5.1 MDN Architecture

The Multi-directional NoC (MDN) crossbar architecture, shown in Figure 5.3(a), takes advan-
tage of the fact that I/O pads (and NIs) are placed on the perimeter of the chip layout, and
not on two sides as in the UDN architecture. The mesh is now (N/4) x (N/4), with packets
traveling in all directions.

I/ON I/0N-1 1/0N-2 1/0 3N/4+1

! !

NI i e t
\
/01 = s < 1/0 3N/4
/02 ~— cee ~— /0 3N/4-1
/03 < <o < /O 3N/4-2

I/ON/4 «%—D«— /O N/2+1
/ TN
! ! ! !

Router

I/ON/4+1 1/ON/4+2 1/ON/4+3 1/0 N/2
(a) MDN

0 00 a
- —
[— —
|— 1
[— —

o o o O

(b) 4x4 MDN placement

Figure 5.3: The Multi-directional NoC (MDN) crossbar architecture.

The placement of MDN in a chip is shown in Figure 5.3(b). Now, the distribution of the NIs
is according to the layour of the pins in a chip.

To make the architecture scalable, we allow multiple (P) planes (also called layers) that are
vertically connected only at the edges (i.e. @ or j is 0 or N/4 — 1). Routers then have degree

5.1. MDN ARCHITECTURE 73

4, except the borders in planes 1 and P — 2, where it is 6. In planes 0 and P — 1 the routers
of the borders have degree 3. NIs are placed centrally, in plane |N/2]| (this will be referred as
P,,). Figure 5.4 shows an example of the MDN architecture with 4 planes and N=4.

) v)

(a4 J/ﬁ
AJ/ {%H/ |[\ @
Qe 2
A4 14 |

4>.
ﬁl/LI/LI/L

Figure 5.4: Example of the MDN crossbar architecture with multiple planes.

A

In this chapter, when we refer to a NxN switch it is a MDN switch with N inputs and N
outputs and 1 plane. When more planes are used this architecture it is referred as NxNxP.

5.1.1 Architectural Design

5.1.2 NI design

All the NIs of the MDN architecture have the same design. Unlike UDN, they all act now as
input and output interfaces (see Figure 5.5)

message
Input

request -
generator credit

Figure 5.5: MDN NI

74 CHAPTER 5. MULTIDIRECTIONAL NOC

5.1.3 Router design

The main design of MDN routers is based on UDN architecture. As in UDN, packet switching is
implemented with buffering credit based flow control and store and forward for packets delivery.
Input queuing is the buffering architecture and Round Robin is the arbitration algorithm. It
differs now from UDN because packets flow in all directions and deadlock can occur. We avoid
this by using two virtual channels (VC) at North and South inputs of the router. Routers at
the East and West edges of the mesh additionally have the VCs at their East and West inputs,
respectively. The use of VCs entails more pins for the flow control. Packets use VC 1 if their
destination is Fast of their starting position, and VC 2 otherwise. West and East links only
requires VC 1 and VC 2 respectively. In this way, the network is virtually divided in two UDN
networks and deadlock cannot occur. Figure 5.6 is an example of the VC distribution in a 4x4
mesh.

—— Channel 0
1/0 1 /0 2 /03 Vo4 e Channel 1
i (iéw (i A :i\
/01 <~ STIRE SR ~~1/0 1
i Rl G ool bbb bbb & J L 4 J >

"

I/0 1 I/0 2 I/0 3 1/0 4

Figure 5.6: 4x4 MDN with VC paths

Note that the total amount of buffering is equal to that of the UDN router. West and East
routers have asymmetrical buffer sizes in their virtual channels. In this way a better balance
of the load is achieved as the probability of a packet to belong to channel 1 is different to the
probability of belonging to channel 2 in those routers for Uniform traffic. Then West routers
have % of the buffer depth for VCO and % for VC1. East routers % for VCO and % for VC1. In
the following figures we compared that proposal with the symmetrical proposal, that is when all
the VC have the same depth.

5.1. MDN ARCHITECTURE 75

a
L1 { t { it
a an an
— aw — aw — aw
W — W —| W —|
0
yw enoent oe q—‘ [ue w enoent oe 4—‘ = ue yw onoom o:] :__D]H:j}@ ue
grossbar Crossbar Crossbar
[Ej tow
uw = owl 050 osl e uw -'E_' " 050 ost e uw -'E_' 60 os1 e
l— < l— b— «
— — ae |
as as as
Tt t T t T)
cs ys us s ¥s us s s s
(a) West (b) Center, North, South (c) East

Figure 5.7: The MDN router architectures for P=1. Asymmetrical proposal.

Where: u =[un us ue uw| means input; y=[yn ys ye yw| means output of the router; o=[on
os oe ow| means output of the input ports; a=[an as aec aw] means pin flow control of the input
ports; c=[cn cs ce cw| means pin flow control of the neighbors.

If the switch only has 1 plane, the architecture of the routers is shown in Figure 5.7. This
Figure represents the asymmetrical proposal for MDN routers. Simulations in Figure 5.9 show
that this option, is better than the symmetrical one (see Figure 5.9) when the fabric is employing
SP2. For SP1, and for unbalanced traffic, performance is worse with the asymmetrical buffers
because of the pipeline stall caused by the handshake of the credit based flow control when
buffer size is 1 (refer to Figure 3.4).

@ un @
i Lt i it { It
an an
— aw —) aw — aw
w —f W — W |
0 onl 0 oni 0
" ondon e » ondom e T » on0 on1 ::1 j ;:j -
OCrossbar Crossbar Crossbar
ow
o ->{t:%’.::o 1 050 os1 v o][] F——ro 050 os1 e w = [T T 050 os1 e
f— ce b— ce b— ce
ae ae [+ .
as as as
T 1 T t T)
cs ys s o ysus <] 5o
(a) West (b) Center, North, South (c) East

Figure 5.8: The MDN router architectures for P=1. Symmetrical proposal.

We are going to implement the asymmetrical proposal since one of our claims is that with

NoC we can have higher clock frequencies and SP2 is achieved.

76 CHAPTER 5. MULTIDIRECTIONAL NOC

1 ?S /
—O— Asymmetrical Buffers: SP1 il
-~ Symmetrical Buffers: SP1
—H&— Asymmetrical Buffers: SP2
10°F | [+ Symmetrical Buffers: SP2 n| E
>
k)
[
a
o)
(8] |
Q
&
& i
2 /
I /
/
I /
géj
=N
[%—M“E‘*‘;EJJE
100 L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input Load
(a) Bernoulli Uniform Traffic
1[15 T 15 T 5 T T T 15 S
2o B %28 B %28 B %28 B %28
L s
v
0.9F I B
p
-
.
5
Q
<
[=2]
3
S
=
=

05 - —O— Asymmetrical Buffers: SP1 [
- —>— Asymmetrical Buffers: SP2
- —+— Symmetrical Buffers: SP1
—k— Symmetrical Buffers: SP2

. . n N T N
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Unbalanced Traffic, w

(b) Unbalanced Traffic

Figure 5.9: Study of the asymmetry of buffers in MDN

When there is more than one plane constituting the mesh, the routers at the perimeter have
a higher degree. Those routers belonging to the outer layers have degree 3x3 and 4x4. The
routers of the other layers have degree 4x4 and 5x5.

5.2. ROUTING IN MDN 77

(d) North, South

Figure 5.10: The MDN Cube router architectures

Table 5.1 summarizes the characteristics of the MDN architecture.

Architectural component MDN
Switching Architecture Packet Switching
Buffering Architecture Input queuing
Access to the Arbiter FIFO
Arbiter Algorithm RR

Flow Control Credit-Based
Switching mode Store and Forward
Deadlock Avoidance VCs

Table 5.1: MDN architectural components

5.2 Routing in MDN

In MDN we implement an algorithm based on the Modulo algorithm 1 of UDN. Now the I/O
are connected in a different way so some modifications should be applied to that algorithm.
First, the routing algorithm inside each horizontal plane of MDN is explained. Then we
study how the load is distributed along the different planes.
Inside each plane, this architecture uses the Modulo Algorithm 1 for the packets which input
port is physically in front of the output port (i.e. North to South, West to East) and the XY

78 CHAPTER 5. MULTIDIRECTIONAL NOC

algorithm for the packets whose origin is perpendicular to the exit. Each router checks the input
port of the packet, then based also on its desired output port, the path is elected. Below there
is an example of how the router performs this election. The complete code can be found in
appendix B.

Router in coordinate < 7,5 > receives a packet whose destination is in coordinate < z,y >
in the mesh.

Algorithm 2 MDN Modulo and XY for each Stage

Switch(Packet Input Port)
case(North):
Switch(Packet Output Port)
case(North):
Switch(Packet Buffer Input):
case(North):
if(j == y) then North
if(j < y) then East
if(j > y) then West
case(East):
if(j == y) then North
if(j > y) then West
case(West):
if(j == y) then North
if(j < y) then East
case(South):
Switch(Packet Buffer Input)
case(West):
if(j == y) then South
else East
case(East):
if(j == y) then South
else West
case(North):
if(j == y) then South
else if (((y)%M) == (N-i+j+t)%M) then East/West
else then South
case(East):
Switch(Packet Buffer Input)
case(West):
Bast
case(North):
if (x ==1) then East
else South
case(West):
Switch(Packet Buffer Input)
case(East):
West
case(North):
if (x ==1) then East
else South

The algorithm shows how depending on the position of the input port with respect to the
output port, the path is computed differently. How the router decides to what plane send the
packet is explained in the next algorithm.

5.3. HARDWARE IMPLEMENTATIONS 79

When a packet enters the NoC it is first decided through which plane is going to be routed.
Packets enter through the plane that is in the middle of the switch. Depending on its desired
output they will be distributed to the upper or the lower layers using a modulo algorithm .

Algorithm 3 Modulo MDN

Switch(packet condition):
case(new packet || packet going to its destined plane):

case(output even):
case(# planes even):
if (N—j+P+t)%Py)+ Py = (output%P,,) + P, then algorithm 2
else Up
case(# planes odd):
if ((N—j+P+t)(%Pn +1))+ Pp, = (output(%Py, + 1) + P, then algorithm 2
else Up
case(output odd):
if (N—j+4+P+t)%(Pn +1) = (output)%(Py, + 1) then algorithm 2
else Down
case(packet inside a plane):
if (ledge of the plane) algorithm 2
else
if(P < P,,) then Up
if(P > P,,) then Down
if(P = P,,) then algorithm 2
case(packet going back to the center plane):
if(P < Pp,,) then Up
if(P > P,,) then Down
if(P = P,,) then algorithm 2

MDN packet
Like in UDN architecture, Modulo Algorithm 3 only need [2log M bits if t=0 in the routing
algorithm. Otherwise, 2x [2log M| bits are needed. Those bits contain the information of the
destination port and the value of the ¢ parameter. Figure 5.11 shows the MDN packet for t=0.

ATM Cell

Header Payload

[Log;Mbits [53 bytes |

Figure 5.11: MDN packet for t=0.

5.3 Hardware implementations

The area of MDN is not synthetised, so we used the values of UDN from table 3.3. Like in
UDN cost/performance graphs, we estimate buffer depth 20 as 4 times buffer depth 4 and buffer

80 CHAPTER 5. MULTIDIRECTIONAL NOC

depth 6 as 1.5 times buffer depth 4. Now the formula to calculate the switch size is different:
3r3 Router(N — 4) 4+ 4z Router (% - 2))2 + NIxN.

Table 5.2 shows some values for different switch sizes.

| Switch size | 16 | 32 64
Register FIFOs mm? mm? mm?
Buffer size 1 1.5040 | 4.8320 | 17.1520
Buffer size 2 4.9120 | 15.8560 | 56.4640
Buffer size 4 10.1560 | 32.3320 | 113.9320
Dedicated HW FIFOs | mm? mm? mm?
Buffer size 1 0.624 2.336 9.216
Buffer size 2 1.776 6.832 27.408
Buffer size 4 3.820 13.804 53.452

Table 5.2: MDN area for different switch sizes.

5.4 Conclusions

This chapter proposed a new NoC architecture for the crossbar switch fabric. It solves the
disadvantages of the proposal architecture of chapter 3. Those disadvantages were the position
of the NI in relation to the pins of the chip. Log wires had to be used to interconnect them
or bigger chips should be employed. The architectural components of MDN are designed based
in the previous architecture plus some new features to take into account like deadlock. Virtual
channels were added to solve this issue. The routing algorithm proposed is based in Modulo
algorithm.

MDN System Analysis

new architecture with the traditional CICQ and with the previous UDN. The experiments

are carried varying different parameters of the mesh and under different traffic conditions.

Like in the UDN simulation analysis, Bernoulli Uniform traffic, Bursty Uniform traffic, Double

diagonal traffic and Unbalanced traffic are tested. The simulation environment is also the same

as the one explained in appendix A. For the simulations the architecture of asymmetrical buffers
are used.

Some cost-performance study is done for this architecture. Where Cost = SP * area and

r | Vhis chapter presents the performance analysis of MDN for unicast traffic. It compares this

Per formance = 1/delay.

In each figure, a vector represents the value of each parameter: switch size (SS), speedup
(SP), number of planes (P), buffer depth (BD), routing algorithm (RA), and scheduling
algorithm (SA). When a x is represented, it means that parameter has several values in the
graph. When there are two or more subfigures, a | separates the values for each figure if they are
different. The first parameter represents what architecture is simulated. We show an example
of this vector:

<MDN, SS =32, SP =2, P = 1, BD = 4, RA = MDN Modulo, SA = FIFO:RR >

6.1 Comparison with the traditional CICQ crossbar

First we compare the base MDN architecture with CICQ. We simulate a 32x32x1 switch with
buffer size 4.

E
ic|
ie|
ie|
ic|
ic|
ic|
ie|
!

091

Throughput
° °
3 o

o
>

osp —&— MDN: SP1
—H&— MDN: SP2
—*— Buffered Crossbar

04

.
0 01 02 03 04 05 06 07 08 09 1
Unbalanced probability, w

Figure 6.1: Performance of a 32x32 MDN and CICQ switch under Unbalanced traffic.
<z,58 =32, SP=2,P =1, BD =4, RA = MDN Modulo, SA = FIFO:RR >

81

82 CHAPTER 6. MDN SYSTEM ANALYSIS

Figure 6.1 compares the current CICQ with MDN in terms of throughput. Only for SP1,
and due to the asymmetrical use of the buffers of the VC, CICQ outperforms MDN. This is
due to the delay caused by the handshake of the flow control. The buffer depth is 4 in total,
so VCs of West and East sides of the switch have on 1 packet per buffer. For SP2, our new
architecture performs better for all the ranges of w. This new fabric, like UDN, outperforms
CICQ for unbalanced patterns of traffic.

For uniform traffic (Figure 6.2), CICQ outperforms MDN both for Bursty Uniform and
Bernoulli Uniform traffic . Though the MDN switch runs at SP2, CICQ has lower average
cell delay. Figure 6.3 depicts the average cell delay for the MDN architecture and the tradi-
tional CICQ. MDN performs better with Unbalanced traffics. For heavy unbalanced loads (see
Figure 6.3(b)) and double diagonal traffic (Figure 6.3(b)) MDN outperforms CICQ when it is
employing SP2. For light loads, due to the multi-hop delay, our proposed architecture is defeated
by the CICQ.

7]
—O— Bursty Uniform: MDN: SP1
—&— Bursty Uniform: MDN: SP2
—<— Bursty Uniform: Buffered Crossbar
—e—Bernoulli Uniform: MDN: SP1
—*—Bernoulli Uniform: MDN: SP2
~()- Bernoulli Uniform: Buffered Crossbar

Average Cell Delay

100 | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input Load

Figure 6.2: Cell delay comparison between the MDN and CICQ switch of size 32x32 under
Uniform traffic.
<z, SS=32,SP=2z, P=1,BD =4, RA = MDN Modulo, SA = FIFO:RR >

6.2. PARAMETER STUDY 83

10*

10' b .
—&— MDN: SP1

—H&— MDN: SP2
—<— Buffered Crossbar

—&— MDN: SP1

—=&— MDN: SP2

—— Buffered Crossbal
|

10° |
10° b

I

[

/
% J
—EEEEEBE]QF
]

)

=
<
T
=
S

Average Cell Delay
Average Cell Delay

=

.
=
E3

o
10° b] 100k

_—

K
107 . . . X . . . 1
01 0.2 03 04 05 06 07 08 0.9 1 05
Input Load

.
065 07 075 08 08 09
Input Load, w = 0.5

(a) Double Diagonal Traffic (b) Unbalanced Traffic w = 0.5

Figure 6.3: Cell delay comparison between the MDN and a CICQ switch of size 32 x 32 for
non-Uniform traffic.

< 2,88 =232 SP =g P=1,BD =4, RA = MDN Modulo, SA = FIFO:RR >

The results for the MDN can be improved if some of the parameters of the architecture are
modified. This research is done in the next section.

6.2 Parameter study

In this section, we will study the response of the MDN architecture for different traffic patterns.
In the same way we did for the UDN architecture, we will adjust the switch size, speedup,
number of planes and buffer depth of the system to enhance its response to heavy loads. Table 6.1
summarizes the different experiments for each type of traffic. Each crosspoint of the table means
that both parameters are varied and studied together.

Parameter Switch Size Speedup # Planes | Buffer depth
Unbalanced | Unbalanced | Unbalanced
Switch Size Bernoulli Bernoulli Bernoulli
Bursty Bursty
Unbalanced | Unbalanced
Speedup Bernoulli
Bursty
Unbalanced | Unbalanced | Unbalanced
Planes Bernoulli
Bursty Bursty Bursty
Bernoulli Bernoulli
Buffer depth Bursty Bursty Bursty

Table 6.1: Study of parameters for each type of traffic in MDN.

84 CHAPTER 6. MDN SYSTEM ANALYSIS

6.2.1 Unbalanced Traffic

First, we test how the system reacts to unbalanced traffic and how this behavior can be altered
by modifying the architectural parameters.

Figure 6.4 shows how like in UDN, Unbalanced traffic helps to improve the performance of
the switch. For higher values of w cells have higher probability of going from input 4 to output
i. The I/O distribution of this architecture makes of this an advantage thanks to the full duplex
ports.

—©—SP1: w=0.0

—+H—SP1l:w=0.5
—%—SP1l:w=1.0

N

=
o

Average Cell Delay

10°

*
¥
*
*
¥
*
*
*

10 E

1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Input Load

Figure 6.4: 32x32 MDN switch with different Unbalanced traffic.
<MDN, SS =32, SP=1,P =1, BD =4, RA = MDN Modulo, SA = FIFO:RR >

Conclusion 6.1. MDN architecture performs better for Unbalanced Traffic.

The size of the switch becomes a drawback in MDN with 1 plane because of the number of

ports versus number of routers. This ratio is depicted in Figure 6.5 and compared to that of
UDN.

6.2. PARAMETER STUDY 85

x 10"

Number of Routers

L L
0 50 100 150 200 250 300
Switch Size

Figure 6.5: Number of routers for UDN and MDN architecture

If in UDN the number of routers grows quadratically with the number of ports but in
MDN grows with a factor Jf—g, that is, there are 16 times fewer routers for the same number of
inputs/outputs. The performance of the fabric for different sizes is shown in Figure 6.6. Bigger
switches have worse performance as the number of routers to manage the traffic is not enough.
Only employing SP3, full throughput is achieved for a 64x64 switch. The 128x128 and 256x256
MDN meshes cannot get to the 100% throughput for w<0.3 and w<0.7 respectively though they
are employing SP3.

081

0.7
N4
06| W
=1 1
2
2 i
Sos
o
g
04 * “
* * !
03 / . —O—SP2: 16x16x1 ||
¥ S —5— SP2: 32x32x1
. v —<— SP2: 64x64x1
0.2 BV O~ SP3:16x16x1]
v - SP3: 32x32x1
o - - - X~ SP3:64x64x1 ||
V —f— SP3:128x128x1
</~ SP3: 256x256x1

=)

. T T T
0 01 02 03 04 05 06 07 08 09 1
Unbalanced probability, w

Figure 6.6: Throughput performance for MDN with different switch sizes and speedup values.
<MDN, SS =z, SP =z, P = 1, BD = 4, RA = MDN Modulo, SA = FIFO:RR >

Conclusion 6.2. MDN architecture with only 1 plane is not scalable in performance
for switch sizes under Unbalanced traffic.

86 CHAPTER 6. MDN SYSTEM ANALYSIS

The average cell delay of MDN with 100% throughput increases with the switch size because
of the multi-hop architecture. Figure 6.7 shows how the 16x16 switch like in the UDN, has half
of the cell delay of the 32x32 switch and one forth of the 64x64 switch.

45

T
—O— 16X16
—H—32X32
4 o
Ol —sc— paxe4 ;
35- H
30+ E
g
[
O a5t i
©
O
]
g 20 |
[
>
z 1]
15} D
10t E
5t i
i = = = B
® S S S © o
0 N . . L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input Load

Figure 6.7: Average Cell Delay for MDN with different switch sizes for Unbalanced Traffic.
<MDN, SS =2z,SP =2, P =1, BD = 4, RA = MDN Modulo, SA = FIFO:RR >

Conclusion 6.3. Small switch sizes have smaller delay due to the multi-hop routing
when 100% throughput is achieved in MDN under Unbalanced traffic.

The low ratio of routers to inputs can be solved increasing the number of planes of the mesh.

Figure 6.9 shows how the cube architecture (& x % X %) can manage all the input load with
SP2 even for a 64x64 switch.

In this case, the number of routers is incremented by %. This is represented in Figure 6.8.
Compared to the number of routers of the NxN UDN architecture has now 4ﬂ3 more routers. To
have the same number of routers in both UDN and MDN, 16 layers are needed for any size of

MDN switch.

The equation of number of routers in the cube makes that bigger sizes of the switch perform
better, similar to UDN. As the number of layers is reduced, it first affects to big switches.

4

6.2. PARAMETER STUDY

87

x10°

—&— MDN 1 Plang
—FH— MDN Cube

UDN ﬁ

Number of routers

Switch Size

Figure 6.8: Number of routers in MDN cube.

0971

RS
=]
(=)
>
IS
=
F 095
0.94f
093l —O— 16x16x4
—H—32x32x8
—%— 64x64x16
0.92 | |
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

Unbalanced probability, w

Figure 6.9: A MDN Cube with different switch sizes.
<MDN, SS = z, SP =2, P = N/4, BD = 4, RA = MDN Modulo, SA = FIFO:RR >

Conclusion 6.4. The Cube Architecture performs 100% throughput with SP2 even
for big switches.

88 CHAPTER 6. MDN SYSTEM ANALYSIS

The distribution of the packets in the routers in the different planes for the 64x64x16 switch is
represented in Figure 6.10. The inputs and outputs are connected to the routers of the perimeter
of the P, plane. For this reason, this plane has the higher peaks of load. In this case, this is
Plane 8. The routers of the corners are connected to two inputs/outputs instead of only to one
and, therefore, they have twice the load of the other routers of the perimeter.

The modulo algorithm 3 is employed to distribute the packets in the mesh. It achieves a
very good balance of the load distributing in the different planes as is shown in the graphs.

Plane 1 Plane 2 Plane 3 Plane 4

k)
&
2 0.5 05
Q
2
g
= 28 - 20
10 10 20
00
Plane 5 Plane 6 Plane 7 Plane 8
15 15 2
1 1
1
0.5 05
0. - 0. - 0
20 - 20 - 20
20 20 20
10 10 10 10
00 00 00
Plane 9 Plane 10 Plane 11 Plane 12
4 2 2
2 1 1
2™ - 8- = 20
20 20
10 10 10 10
00 00 00 00

Plane 13 Plane 14 Plane 15 Plane 16

10 10 10 10
00 00

Figure 6.10: Load of each layer for a 64x64x16 MDN Cube

N
o

N o
So 3

20 20

00

Making a cube is too expensive. The number of planes can be reduced to get to the best
cost/performance option. Figure 6.11(a) shows the throughput of a 32x32xP switch for 1, 2,
and 3 planes with SP1 and SP2. For SP1, throughput is never 100% due to the handshake of
the link level flow control. With SP2, it already has full throughput with 2 layers for any value
of w.

In Figure 6.11(b) we represent the performance of a 64x64xP MDN in which the number of
planes P goes from 1 to 7 for SP2. It is also tested the performance of a 64x64x1 MDN with
SP3. Only 3 layers instead of the 16 of the cube are needed with SP2 to have 100% throughput
for unbalanced traffic. This is saving a factor of 5 in number of routers, that is 53248 routers

6.2. PARAMETER STUDY 89

in a 64x64 switch. If SP3 is employed, 1 layer is enough to deliver full throughput in a 64x64
switch.

& 2 = F~ 52 F~ 52 FoN 52 =
a/@* = = Ay Ay Ay Ay Ly Ay A
0.9§ F B
0.9
0.85
- 0.8 >7 < < < <
5 Y < < <
£ e
%’ 0.75 TR o
£
=
0.7
0.65
—H— SP2: 32x32x1
0.6 —— SP2: 32x32x2 [
—5— SP2: 32x32x3
055 —£x— SP1: 32x32x1 ||
’ —<}—SP1: 32x32x2
—5— SP1: 32x32x3
05 : ; :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Unbalanced probability, w

(a) 32x32

0.951

0.9

0.85]

o
©

Throughput
o
o

0.7
0.65
—O— SP2: 64X64X1
-3 - SP2: 64X64X2
0.6 X - SP2: 64X64X3 [
—e— SP2: 64X64X4
055- —+— SP2: 64X64X6 ||
q SP2: 64X64X7
—%:— SP3: 64x64x1
0'50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Unbalanced probability, w

(b) 64x64

Figure 6.11: MDN with different planes under Unbalanced traffic with SP2.
<MDN, SS = 32|64, SP = z, P = 2, BD = 4, RA = MDN Modulo, SA = FIFO:RR >

Conclusion 6.5. 3 planes are enough to perform 100% throughput in MDN for
Unbalanced traffic and SP2 in a switch smaller or equal than 64x64.

90 CHAPTER 6. MDN SYSTEM ANALYSIS

Figure 6.12 represents the cost/performance ratio for a 64x64 switch with different layers
and SPs. In this case, performance = throughput It shows that it is a better option to increase
SP than to increase the number of planes.

350

SP2: 64x64x3 o

300

250

Cost

SP2:64x64x2 g
200

[]
150 SP3: 64x64x1

SP2: 64x64x1
[
100 -

0.5 0.6 0.7

08 0.9 1 11
Performance

Figure 6.12: Cost/performance of a 64x64 MDN switch for different layers and SPs

Conclusion 6.6. It is better a better cost/performance option to increase SP than
the number of planes in MDN under Unbalanced traffic.

The load distribution for the 64x64x4 MDN switch is represented in Figure 6.13. The shape
is the same as the distribution of packets for the 64x64x16 cube. This means the Modulo
algorithm 3 distributes the load well over the available planes.

15

Layer0
15
1
05
0. . 0
20
20
10 o
)
Layer 2

Figure 6.13: Load distribution for 64x64x4 MDN

Conclusion 6.7. MDN Modulo algorithm keeps load balanced independently of the
number of planes.

6.2. PARAMETER STUDY 91

Performance Average Cell Delay | Area | Cost
T w 1 ! - | =
TSpeedup 1(SP2 enough if switch size <64x64) 1 = 1
TSwitch Size l T T T
1Planes 1(3 enough) ! 7 1

Table 6.2: MDN parameter conclusions under Unbalanced Traffic

6.2.2 Bernoulli Uniform Traffic

The following graphs test MDN architecture for Bernoulli Uniform traffic. As was already shown
in Figure 6.4 with w = 0, this traffic has a worse response in the system than the Unbalanced
traffic. Next graph (see Figure 6.14) shows the average cell delay of a 32x32 MDN for different
speedups and compares it with the average cell delay under unbalanced traffic for w = 0.5.

10" ¢
|

=
o
N

Fooego W 5 —eeei
RS

e
Ou

Average Cell delay
& %\}
o

10" ¢

—O— SP1: Bernoulli

—H— SP2: Bernoulli

=/~ SP1: Unbalanced w=0.5

» —*- SP1: Unbalanced w=0.5

'y 0.5 0.6 0.7 0.8 0.9 1
Input Load

Figure 6.14: MDN under Bernoulli Uniform Traffic for different speedups.
<MDN, SS =32, SP =x, P =1, BD = 4, RA = MDN Modulo, SA = FIFO:RR >

The distribution of the load in the mesh is represented in Figure 6.15 for SP1 and SP2.
Employing SP1, the switch manages half of the load per cycle. Both shapes are similar and
have lower load in the routers of the corners. Though those routers have 2 I/O instead of only
1, they have less probability of being in the path of other flows. On the other side, the routers
of the middle of each side have higher load because they are in the way of many flows.

92 CHAPTER 6. MDN SYSTEM ANALYSIS

packets/cycle

(a) SP1

Figure 6.15: Load Distribution for a 32x32 MDN with Bernoulli Uniform Traffic

The scalability for the switch size in performance is not kept for the MDN with only 1 plane.
As it is shown in Figure 6.16, average cell delay increases for bigger switches. This is the same
case as for the Unbalanced traffic as the number of routers in the mesh is not enough to manage
all the input load.

—O— SPL: 16x16
—E— SP1: 32x32
—%— SP1: 64x64
—<J—SP1: 128x128 :
-O- SP2: 16x16 i

.
S

-} SP2:32x32
—%— SP2: 64x64

Average Cell Delay
=

0.1 02 03 04 05 06 0.7 08 0.9 1
Input Load

Figure 6.16: MDN under Bernoulli Uniform Traffic for different switch sizes.
<MDN, SS =2, SP =2, P =1, BD =4, RA = MDN Modulo, SA = FIFO:RR >

Conclusion 6.8. MDN architecture with only 1 plane is not scalable in performance
for switch sizes for Bernoulli Uniform traffic.

Some cost-performance study is done in Figure 6.17 for the scalability in the switch size.

6.2. PARAMETER STUDY 93

—5-sP1
—H-sP2

H128x128

10°r(P128X128

[[184X64

|

64X64
|

‘ 32X32

s E\

[B2X32 \

16X16

Qex16

.
0 2 4 6 8 10 12 14 16 18
Performance X107

Figure 6.17: MDN: Cost under Bernoulli Traffic

To solve the scalability problem, the number of planes is incremented for fabrics employing
SP2. Now, full throughput is achieved in the 64x64 switch with 3 planes (see Figure 6.18). To
increase the number of planes when the mesh already has good performance leads in an increase

of the delay. This fact can be seen in the average cell delay of the 16x16x3 switch that has
higher delay than the 16x16x2 switch.

—5—32x32x1
—E—32x32x2
—%— 32x32x3
—A— 16x16x2
—:— 16x16x3

10— 64x64x2
—<J—64x64x3

Average Cell Delay

.
02 03 04 05 06 07 08 0.9 1
Input Load

Figure 6.18: MDN under Bernoulli Uniform Traffic for different stages.
<MDN, SS =z, SP =2, P = 2, BD = 4, RA = MDN Modulo, SA = FIFO:RR >

Conclusion 6.9. 3 layers are enough to manage Bernoulli Uniform traffic employ-
ing SP2 in MDN.

94 CHAPTER 6. MDN SYSTEM ANALYSIS

We continue our study of the MDN architecture under Bernoulli Uniform traffic modifying
the buffer size. This parameter has an important effect on the system performance. Simply
increasing it to 6 cells, the behavior of a 32x32 switch under SP2 reduces the average cell delay
by a factor of 52 when the system is heavy loaded (100%). Bigger depth buffer, i.e. 20 in the
figure, does not help reducing the delay of the fabric as it is already working in its best possible
performance. This is shown in Figure 6.19.

—&— sP2: Buffer Size 4
—¥— SP2: Buffer Size 20
10° | | —E&— SP2: Buffer Size 6

=
S

=
CR

Average Cell delay

10° b

0.4 05 0.6 0.8 0.9 1

0.7
Input Load

Figure 6.19: 32x32 MDN under Bernoulli Uniform Traffic for buffer sizes.
<MDN, SS =32,SP =2, P =1, BD = 2, RA = MDN Modulo, SA = FIFO:RR >

Conclusion 6.10. MDN architecture is done well under Bernoulli Uniform traffic
with larger buffers.

Performance Average Cell Delay | Area | Cost
ISpeedup 1(SP2 enough if switch size <64x64) 1 = 1
Switch Size 1 1 1 1
{Planes 1(3 enough) ! 1 7
{Buffer Size 1(6 enough) ! 1 7

Table 6.3: MDN parameter conclusions under Bernoulli Uniform Traffic

6.2.3 Bursty Uniform Traffic

Bursty Uniform traffic is the traffic pattern with the worse performance. SP2 is not enough
to outperform the traditional CICQ. In Figure 6.20 Bursty Uniform Traffic of average size 16
is tested. Another enhancement appart from speedup should be done to the switch to have a
better performance than the buffered crossbar.

6.2. PARAMETER STUDY 95

Average Cell Delay

—©—sP1

—=—-SsP2

—*— Buffered Crossbar

. e e

0.1 02 03 04 05 06 07 08 0.9 1
Input Load

Figure 6.20: Bursty Uniform traffic in the 32x32 MDN switch with different speedups.
<MDN, SS =32, SP =z, P =1, BD = 4, RA = MDN Modulo, SA = FIFO:RR >

Conclusion 6.11. MDN with 1 plane does not perform well under Bursty Uniform
traffic for SP2.

Adding planes to the mesh improves the performance of the switch. This is shown in Fig-
ure 6.21. The 32x32x3 has less than 100 time slots of average cell delay for input loads <90%
meanwhile the 32x32x1 switch was in that range of delays for loads <60%.

—O—32x32x1
—B—32x32x2
——32x32x3
=/ 64x64x1
| O eaxeax2
107}~ 64x64x3

Average Cell Delay
.
5

e
il
[

=
S
&

32x32x3
64x64x3

.
0.1 0.2 0.3 04 05 06 07 08 0.9 1
Input Load

Figure 6.21: MDN under Bursty Uniform Traffic for different stages.
<MDN, SS =2, SP =2, P =z, BD =4, RA = MDN Modulo, SA = FIFO:RR >

Figure 6.22(a) shows the performance of a 32x32 MDN switch employing SP2 for different
buffer sizes. A buffer size of 20 is needed to reduce significantly the average cell delay of the

96 CHAPTER 6. MDN SYSTEM ANALYSIS

crossbar. However, in Figure 6.22(b) it can be seen how adding 4 planes to the switch we get
to the same behavior as in the case of the buffer size 20 with a significant save in area.

o

o'k . —5—32x32x1: Buffer Size 4
—5— SP2: Buffer Size 4 4 —E5—32x32x2; Buffer Size 4
-O- - SP2: Buffer Size 20 ! —*—32x32x3: Buffer Size 4
—£+— SP2: Buffer Size 6 / —£:—32x32x4: Buffer Size 4
] ; | —¥— 32x32x1: Buffer Size 6

I :

/ '

F| —*— 32x32x1 Buffer Size 20

I

5 | %
© ! ©
= o =
8 ’ 8 10 1
@ @
g g
o o
g g
< <
1
10° 10°
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1
Input Load Input Load
(a) Buffer Size (b) Buffer Size and Planes

Figure 6.22: 32x32 MDN under Bursty Uniform Traffic for different buffer sizes.
<MDN, SS = 32, SP = 2, P = 1|z, BD = z, RA = MDN Modulo, SA = FIFO:RR >

Conclusion 6.12. It is better to increase the number of planes than buffer size for
cost/performance ratio in MDN under Busty Uniform traffic.

Figure 6.23 represents this conclusion in a cost/performance graph.

60 1

50

N
3
L

Performance
@
8
.

20 !
I

32x32x1 Buffer Size 6 7
!

%
1ol 32x32x1 Buffer Size 4 |

02 04 06 08 1 12 14 16 18 2 22
Cost x 10~

Figure 6.23: MDN cost/performance for Bursty Uniform Traffic and different planes and buffer
sizes for SP2

6.3. CONCLUSIONS

97

Table 6.4 summarizes the conclusions for Bursty traffic under MDN.

Performance Average Cell Delay | Area | Cost
TSpeedup 1(SP2 enough if switch size <64x64) 1 = 1
Switch Size 1 7 1 7
{1 Planes 1(3 enough) ! 1 7
{+Buffer Size 1(20 enough) ! 1 7

Table 6.4: MDN parameter conclusions under Bursty Uniform Traffic

6.3 Conclusions

Of all the claims summarized in the introduction, the only one that was not accomplished with
the UDN architecture was the use of short wires of the same length. With this new architecture,
this aim is finally reached.

e Better load balancing

e Higher path diversity

Scalability in port count and speed per port

e Use of short wires

e Simpler switch design by using FIFOs

The previous are accomplished:

e Load balanced is kept as it is shown in Conclusion 6.7.

e Higher path diversity is maintained as MDN Modulo algorithm allows to modify the path

per flow.

e Scalability, is now higher because fewer number of routers are needed to have full through-
put (Conclusion 6.9).

e No VOQs are used neither in the line cards nor in the routers.

Moreover, the position of the input/output pins allow to have less average cell delay. This
becomes a problem for heavy loads since less routers are employed. The number of routers can
be incremented adding new planes to the system and solving the problem of scalability of the
switch for bigger sizes (see Conclusion 6.5). CICQ is outperformed for all kind of traffics if SP2
is employed and the number of planes is adapted.

The following table gathers the parameters variations in MDN.

Performance Average Cell Delay | Area | Cost
TSpeedup 1(SP2 enough if switch size <64x64) 1 = 1
MSwitch Size 1 T T T
{Planes 1(3 enough) ! 1 7
{+Buffer Size 1(20 enough) ! 1 7

Table 6.5: MDN parameter conclusions.

98 CHAPTER 6. MDN SYSTEM ANALYSIS

Many parameters were varied along the simulations. Which of them is has a bigger effect
in performance can be withdrawn from the conclusions. Conclusions 6.6 and 6.12 shows that in
terms of cost/performance: 1) it is better to increase the speedup than the number of planes,
2) it is better to increase the number of planes than the buffer depth. Then, if we order the
parameters in terms o which causes a major enhancement in the switch:

1. Speedup.
2. Number of planes.

3. Buffer depth.

MDN VS UDN

his chapter compares both MDN and UDN. They are studied togheter under Unbalanced,
T Bernoulli Uniform and Bursty Uniform traffic. We will consider the best cost/performance

of UDN and MDN architecture. Both MDN and UDN employ SP2 and the minimum
number of depth/planes to achieve 100% throughput. The buffer size is kept 4 for both ar-
chitectures. Routing algorithm is Modulo algortihm for UDN and MDN Modulo algorithm for
MDN, both for balanced flows. The scheduling algorithm elected is FIFO with RR.

7.1 Unbalanced traffic

We first compare the average cell delay of the UDN to its MDN counterpart under Unbalanced
traffic conditions (unbalanced probability, w = 0.5), as depicted in Figure 7.1. The MDN
architecture achieves lower delay than UDN because packets traverse fewer hops to reach their
destinations. This in contrast to the UDN where every packet has to cross at least N on-chip
routers before reaching its destination, therefore increasing its likelihood to get congested. Both
new architectures outperform CICQ crossbar for loads >90%.

I
N
S

: :
—©— UDN 16X16
—H&— UDN 32X32
—*— UDN 64X64
[| —+— MDN 16X16
—+— MDN 32X32
=¥~ MDN 64X64
L[| -« Buffered Crossbar

e
]
S

=
S
3

®
3

Average Cell Delay
3

IS
S

1

¥/
*+

Foxoopoaoaoromd

01 02 03 04 05 06 07 08 0.9 1
Input Load

§
—r

Figure 7.1: Cell delay comparison between the UDN and MDN architectures.
<zr,SS=2z,SP=2,D=N,P=1,BD =4, RA = Modulo&MDN Modulo, SA = FIFO:RR
>

Conclusion 7.1. MDN has smaller average cell delay than UDN for Unbalanced
Traffic.

99

100 CHAPTER 7. MDN VS UDN

We wish to study the effect of the internal buffer requirement. To this end we studied the
throughput performance of both UDN and MDN. For the UDN architecture, we varied the depth
of the mesh (number of columns) for a 64 x 64 UDN switch. As illustrated in Figure 7.2(a),
when the depth is small (< 12) the throughput is low due to the highly congested NoC. However,
as the depth goes beyond 11, we can achieve a throughput comparable to that of a CICQ that
uses a depth of 64. This is equivalent to a saving worth of more than 3500 crosspoints while
sustaining the same switching throughput. With the MDN architecture the performance is even
better, as depicted in Figure 7.2(b). MDN uses stages (planes) instead of depth (column), and
we can see from the Figure that increasing the number of planes has a significant impact on the
switch throughput. With just 3 stages, we can achieve a full throughput.

,
0.9+

o
®

Throughput
o
I
Throughput

—o— 64X64
- 8 - 64x32
X 64X12
—--eaxi1| 7
—+— 64X10
64%9

O 64x8
—V- - 64X7
—A— 64X6

0.6¢

—O—64X64X1
—B -64X64X2 [
X 64X64X3
—*— 64X64X4 ||
—+—64X64X6
64X64X7
. T T
0.4 . 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1
Unbalanced probability, w Unbalanced probability, w

(a) A 64 x 64 UDN with different depths (b) A 64 x 64 MDN with different planes

Figure 7.2: Throughput performance comparison between the UDN and MDN architectures
with different sizes.

<UDN|MDN, SS =64, SP =2, D =2, P = 2, BD = 4, RA = Modulo|MDN Modulo, SA =
FIFO:RR >

Conclusion 7.2. Both 64264x3 MDN and 64212 UDN are the minimum size needed
to perform full throughput under Unbalanced traffic. Then, MDN employs 3500 fewer
routers to achieve 100% throughput. MDN is a best cost/performance option.

Figure 7.3 shows the cost/performance comparison of a 64x64 switch both for UDN and
MDN under Unbalanced traffic. In this case performance = throughput. Performance in this
case is measured in terms of throughput, maximum performance is then 1. We see that MDN
is a better option than UDN.

7.2. BERNOULLI UNIFORM TRAFFIC 101

10*
—%z— UDN
MDN
64x64.
10°F .
2 64x64%6
© 64x64%5
64x6
2 64x64x3
10°F .
64x64x1
101 l l l l l l
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Performance

Figure 7.3: UDN and MDN cost/performance comparison for a 64x64 switch with different
depths/planes.

Conclusion 7.3. MDN is a better cost/performance option than UDN for Unbal-
anced traffic.

7.2 Bernoulli Uniform traffic

Figure 7.4 makes a comparison of both architectures and CICQ for a 32x32 switch for Bernoulli
Uniform traffic. Several parameters of UDN and MDN are changed. Now UDN is using 7
columns and employing SP2 meanwhile MDN has 3 planes and also employs SP2. The 32x7
switch is the optimized mesh for Bernoulli Uniform traffic in UDN. This means 224 crosspoints
in UDN and 192 crosspoints in MDN saving 32 routers in the switch. MDN not only uses less
routers, but it has a lower average cell delay as it is shown in the figure, though it does not
outperform CICQ this is due to the multi-hop routing. As both MDN and UDN can run at
higher clock frequencies compared to CICQ they are the best option for switching Bernoulli
Uniform traffic in comparison with the traditional CICQ crossbar.

102 CHAPTER 7. MDN VS UDN

—X— Buffered Crossbar
10° 1 —%— MDN: 32x32x3 i
—&— UDN: 32x7
10° | E
g
(]
[a)
ol
(@]
% 10*
(]
>
<
10°
10'1 1 1 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9 1
Input Load

Figure 7.4: 32x32 switch with Bernoulli Uniform Traffic for different architectures.
<x,85=32,SP=2,D=7P=3,BD =4, RA = Modulo&MDN Modulo, SA = FIFO:RR
>

Conclusion 7.4. MDN outperforms UDN and CICQ for Bernoulli Uniform traffic.
They outperform CICQ as they run at higher frequencies.

7.3 Bursty Uniform traffic

The advantage of MDN over UDN does not always hold, especially under heavy loads where
MDN cannot cope due to its small number of hops compared to UDN. This is the case of
Figure 7.5(a), where different burst sizes are used for a 32 x 32 switch. Here, UDN outperforms
MDN both with speedup values of 1 and 2. As a conclusion, when both architectures can deliver
100% throughput, MDN has a lower delay. However, in the presence of high congestion UDN
performs slightly better. For lower sizes of bursts like 16, UDN performs better than MDN for
light-medium loads (<95%) and becomes worse for high loads. For this simulation, the UDN
switch is made out of 32x32 routers meanwhile MDN has only 8x8x3 crosspoints. This is 1024
routers in UDN against 192 routers in the MDN mesh. Then UDN uses 5 times more routers
than MDN and only outperforms MDN for loads higher than 95% (see Figure 7.5(b)). Hence,
in a cost/performance comparison, MDN outperforms UDN for bursty uniform traffic. MDN

7.3. BURSTY UNIFORM TRAFFIC 103

outperforms CICQ in the range of loads 0.5—0.92. Then average cell delay becomes higher for
MDN though it should be again taken into account that MDN works with higher frequencies.

1 T T T 10*
—O— UDN: SP1 32x32

T T
—E— MDN: SP1 32x32x] S—UDN: SP2 32x32

asl —— UDN: SP2 32x32 —B— MDN: SP2 32x32x3

—x~ Buffered Crossbar 32x32

MDN: SP2 32x32x1|

10°F

Throughput
o
>
Average Cell Delay
.
5

4 - -
0.4 q 10} PRts
-
03f 1 -

0.2
0

100 200 300 400 500 600 0.1 02 03 04 05 06 0.7 08 0.9 1
Burst Size Input Load

(a) Different burst sizes (b) Burst size of 16

Figure 7.5: 32x32 switch with Bursty Uniform Traffic for different architectures.

< 2,88 =232 SP =22, D=32,P = 1|3, BD = 4, RA = Modulo&MDN Modulo, SA =
FIFO:RR >

Though UDN has better performance than MDN for high loads (> 90%), it is 5 times more
expensive. This is depicted in Figure 7.6.

UDN: SP232x32 @

100f MDN: SP2 32x32x3
[}

1 2 3 4 5 6 7 8 9
Performance x10™

Figure 7.6: UDN and MDN cost/performance for Bursty Uniform traffic.

Conclusion 7.5. MDN is a best cost/performance option than UDN and CICQ for
Bursty Uniform traffic with burst of average size 16.

104 CHAPTER 7. MDN VS UDN

7.4 Conclusions

This chapter compared UDN and MDN architectures in terms of performance and
cost/performance. Conclusions 7.3, 7.4 and 7.5 show that MDN is a better cost/performance
option than UDN for all kind of traffic. Figures also show that if, as expected, MDN runs at
higher frequency than CICQ it also outperforms CICQ.

In the last chapters, we discussed the capabilities of MDN and UDN under unicast traffic. It
is not the only type of traffic of the Internet. The use of multicast traffic is increasing with the
new applications. The performance of the proposal architectures is studied for multicast traffic
in the next chapter.

MULTICAST

hough the main part of the Internet traffic is unicast, the development of new applications
T has lead to an increasing demand of switches with multicast capabilities. In multicast

traffic, an input packet can have more than one destination. The first multicast switches
were based on copy networks and a point-to-point routing networks. Buffer overflow is partic-
ularly likely to occur in this kind of communications [53]. If several sources transmit packets
to the same destination at the same time over a network, that destination might be unable to
process fast enough to avoid buffer overflow. When overflow happens, fairness is another serious
problem. It is related to providing equal access to all the input ports.

Many studies have tried to develop new suitable architectures [54] for this kind of traffic.
Copy networks have a simple way to service the packets of the input queues, that is to replicate
as many times as the number of outputs it goes to. Copying cells involve two disadvantages:
increasing the require bandwidth and making the packets contend for access multiple times. For
that reason, most of the studies are now focused on the performance of the crossbar switches
for multicast traffic. Its natural multicast capability [55] avoid copying the packet to all the
destinations. It has the ability to transfer simultaneously, a packet to multiple outputs using
simultaneous switching paths.

The number of destinations of a packet is known as the fanout of the packet. When scheduling
multicast traffic, two different service disciplines can be used. The first is called no fanout-
splitting, in which all the copies of a packet must be sent in the same packet time. If any of the
output packets loses contention for an output port, none of the output packets are transmitted
and the packet must try again in the next packet time. The second discipline is called fanout-
splitting, in which output packets may be delivered to output ports over any number of packet
times. Only those output packets that are unsuccessful in one packet time continue to contend
for output ports in the next packet time. Research has shown that fanout-splitting enables a
higher switch throughput for little increase in implementation complexity [56].

In a NxM router with multicast capabilities, a packet arriving to any of the N input ports can
have any set of destinations between 2 and M. To avoid HoL blocking would imply to maintain
up to 2V — 1 separate FIFO queues per input. This architecture, known as the multicast
VOQ (MC-VOQ) switching architecture [57], is considered unfeasible due to the high number
of queues required. Most of the the multicast scheduling research work, is based in this FIFO
queue architecture [56]. This architecture has a similar HoLL blocking problem as in the unicast
case. Figure 8.1 shows an example of an 3x4 multicast CICQ with FIFO queues.

105

106 CHAPTER 8. MULTICAST

Figure 8.1: 3x4 multicast CICQ switch with FIFO queues.

In this example we consider fanout splitting. For the first input, packets to output port
1 have no contention to exit. In the second input, the packet to output 4 is also free to exit.
Packets with destination 2 and 3 have to compete to exit. There are three options: the first input
exit both packets, the second input exit both packets or each of them exits only one packet. The
set of packets that lose contention for output ports and remain at the HoL of the input queues
at the end of each time slot is called residue. The residue can either be concentrated on the
input ports or it can be distributed over the input ports depending on the policy used. For this
example, in concentrated policy, the remaining packets would be only in one of the input ports.
This policy leaves the unsent packets in the minimal number of ports. On the other hand, if a
distributed policy is used the residue will be distributed in the maximal number of ports, then
both ports would have remaining packets.

It is proved, however, that crossbar switches could never reach a 100% when it is increased
the number of ports [58]. For this reason, it was proposed to use a small number of queues per
input, though maximal throughput is not achieved [59]. This solution is to find a compromise
to use k FIFO queues per input (1< k < 2M —1). In this architecture, as the number of
queues is smaller than the possible fanout set, a placement strategy is necessary to enqueue each
incoming cell to its corresponding queue. Figure 8.2 shows an example of a multicast k FIFO
architecture for an NxM buffered crossbar switch.

ma,,
1
3
HEEN)
1 "
Maw L L -
1 2
3|3
4|4
ma,,
1
3
2
IEH
N » .
Mou Lam- L
1 2
3|3
4| 4
. J

Figure 8.2: NxM multicast k FIFO queues CICQ switch with.

8.1. IMPLEMENTATION 107

In this chapter, multicast traffic is tested for UDN and MDN architectures. Three different
algorithms are implemented and compared. In the first algorithm the NIs are in charge of
copying the multicast packets into unicast packets for the network. In the other two algorithms,
they are the NoC routers who make the copies of the multicast packets.

8.1 Implementation

The multicast destinations are coded in the header of a packet with a bit mask. This field has
as many bits as the possible number of destinations in the switch. A bit set to “1” means that
the packet wants to go to the output port indexed by that bit.

The following analysis will be done using fanout-splitting in the multicast scheduling algo-
rithms because of its simplicity, and performance benefits. FIFO queues are implemented both
for the UDN and MDN architecture and the CICQ crossbar.

8.2 Copy multicast

In the first algorithm tested, the NI are responsible of copying the packets and converting them
into unicast packets for the network. The copy network generates the copies requested by
incoming packets, and the switch routes the replicated copies to their final destinations. The
behavior of the routers is then not modified. UDN and MDN use the same algorithms as in the
unicast case. The NI converts each packet to a unicast packet and the routers do not have to
access the bit mask.

Like in the unicast case, the CICQ performs better under light load (<95%) under Bernoulli
Uniform traffic as it does not have multihop delay (Figure 8.3(a)). With bursty traffic, the
longer size of the flows causes even more HoLi blocking and UDN and MDN perform better than
the CICQ above 60% load. This is shown in Figure 8.3(b). Under Diagonal traffic, the new
architectures only perform better than CICQ for loads above 95% and when they are employing
SP2 (see Figure 8.4).

T r T T T T T
—&—UDN: SP1 4
. [| —=—MDN: sP1 o
10" Fl- =k~ UDN: SP2 7;
—X— MDN: SP2
—&— Buffered Crossbar T é
3

Average Cell Delay
Average Cell Delay

—6— UDN: SP1
—E&— MDN: SP1
—¥— UDN: SP2
—>— MDN: SP2
% Buffered Crossbar

0.1 02 03 04 05 06 0.7 08 0.9 1 0.1 0.2 03 0.4 05 0.6 07 08 0.9 1
Input Load Input Load

(a) Bernoulli Uniform Traffic (b) Bursty Uniform Traffic -b 16

Figure 8.3: Cell delay comparison between the UDN, MDN and CICQ for Copy multicast under
Uniform traffic. <z, SS =32, SP =2, D =32,P =1 ,BD =4, RA = Copy Mcast, SA =
FIFO:RR >

108

CHAPTER 8. MULTICAST

10*

10°

Average Cell Delay

10° |

107

=
%

N
E3

T T
FH —©— UDN: SP1

——MDN: SP1
—k— UDN: SP2
~Z= MDN: SP2
—&— Buffered Crossbar

*

T

_—
o7

01

0.2 0.3 0.4

05 06 0.7 08 0.9
Input Load

Figure 8.4: Cell delay comparison between the UDN, MDN and CICQ for Copy multicast under
Diagonal traffic. < x, SS =32, SP=2,D =32, P =1 ,BD =4, RA = Copy Mcast, SA =

FIFO:RR >

Conclusion: Both MDN and UDN outperform CICQ for Uniform and Non-Uniform
multicast traffic for loads>95% when they employ SP2.

10°

T T
—5—SP1: 16x16
—H— SP1: 32x32
—*— SP1: 64x64
= SP2: 16x16
<]~ SP2:32x32
—*— SP2: 64x64

X

Average Cell Delay
5
r—\""

0.3 0.4

0.2

05 06
Input Load

(a) UDN

0.7

0.8 0.9

10*

T T
—5—SP1: 16x16
—H— SP1: 32x32
—*— SP1: 64x64
—+— SP2: 16x16
—— SP2: 32x32
|| —=— SP2: 64x64

10

Average Cell Delay

0.2 0.3

05 06 0.7
Input Load

0.4

(b) MDN

Figure 8.5: Cell delay comparison between UDN and MDN for different switch sizes.
<UDN,MDN, SS =2, SP=2,D =32, P =1 ,BD =4, RA = Copy Mcast, SA = FIFO:RR >

In the previous experiment we test the scalability of the new architectures when the switch
size is increased. Figure 8.5 shows the different response of UDN and MDN under Bernoulli

8.2. COPY MULTICAST 109

Uniform traffic . For SP1 and SP2 UDN improves its behavior as the switch size increases
(Figure 8.5(a)) thanks to a lower HoL blocking (section 3.2.3). On the other hand, the rate
of input-output ports of the MDN architecture related to the number of routers, leads this
architecture to a worse performance (Figure 8.5(b)).

‘ Conclusion: UDN is more scalable when MDN only has 1 plane.

When UDN is employing SP2 under Bernoulli Uniform traffic, its depth can be reduce to
have a better cost/performance relation. Figure 8.6 shows that like under unicast traffic, UDN
can be reduced a factor of 5 in depth until it becomes congested.

10
g
[¢]
[a)]
>
O
S 0
o
e
<
ko
—O—32x32
—=— 32x15
—X— 32x6
—%—32x5
101 Il Il Il Il Il Il Il Il
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input Load

Figure 8.6: Bernoulli Uniform Multicast traffic in 32x32 UDN for different depths.
<UDN, SS =32, SP =2, D =z ,BD = 4, RA = Copy Mcast, SA = FIFO:RR >

Conclusion: UDN depth can be reduced by a factor of & without performance degra-
dation for Bernoulli Uniform multicast traffic when it employs SP2.

On the other side, MDN architecture should increase its number of planes for Bursty traffic.
Increasing the planes does not improve the performance of the system significantly This is shown
in Figure 8.7(a). Other solution is increasing the buffer depth of each router. Figure 8.7(b) shows
the performance of MDN with a buffer depth of 20. Though it improves the behavior of the
switch, it is not a good cost/performance option.

110 CHAPTER 8. MULTICAST

—O—32x32x1 —C— Buffer Size 4: 32x32x1
—H—32x32x3 —H— Buffer Size 4: 32x32x3
—— Buffer Size 20: 32x32x1
~£x— Buffer Size 20: 32x32x3

Average Cell Delay
Average Cell Delay

S o S
0.1 0.2 03 0.4 05 06 07 08 0.9 1 0.1 02 03 04 05 06 07 0.8 0.9 1
Input Load Input Load

(a) Planes (b) Planes VS Buffer Size

Figure 8.7: Bursty Uniform Multicast traffic in 32x32 MDN for different planes and buffer size.
<MDN, SS = 32, SP = 2, P = 2 ,BD = 4|z, RA = Copy Mcast, SA = FIFO:RR >

Conclusion: Increasing the buffer depth and/or the number of planes odes not in-
crease the performance of MDN under Bursty Uniform multicast traffic.

8.3 Modulo Multicast algorithm

The Modulo Multicast algorithm, is based on the modulo algorithm of unicast traffic. In this
case, the NI sends the multicast packet to the router without replication. It is the router itself,
who decides when a copy of the packet should be made. The algorithms used for UDN and
MDN architecture are the same as in sections 3 and 5, the Modulo Algorithm 1 and Modulo
MDN Algorithm 3. When a router applies the Modulo algorithm, as a packet can have now
several directions, copies of the packet should be done. The router access the bit mask and
makes as many copies as the number of directions the packet wants to go to. Then, it updates
the correspondent bit mask of the new packets. An example of this situation is represented in
Figure 8.8.

T3
O

Figure 8.8: Example of the bitmask update in multicast.

8.3. MODULO MULTICAST ALGORITHM 111

It is a 2x2 switch in which a multicast packet enter in time 0 (T0) input port 0. The packet
has two destinations, output 0 and output 1. These destinations are market in the bitmask with
“117. In T1 it reaches Router[1][1]. This router makes a copy of the packet to send one packet
to the East and another packet to the South. Each copy of the packet has an updated bitmask,
and now the bit is set to 0 to the destinations to which there where the packet is split.

—E— Copy Mcast: UDN: SP1

. || =% Copy Mcast: UDN: sP2
10" H —— Buffered Crossbar
—#—Modulo Mcast: UDN: SP1
——Modulo Mcast: UDN: SP2

10° ¢

Average Cell Delay

10

.
0.1 0.2 0.3 04 05 06 07 08 0.9 1
Input Load

(a) UDN

T T T T
—H— Copy Mcast: MDN: SP1
—X— Copy Mcast: MDN: SP2
—&— Buffered Crossbar

10° F| —#—Modulo Mcast: MDN: SP1
—=—Modulo Mcast: MDN: SP2

10° b

>
&
8 a5
® “i,—,‘ﬁjﬁ’r»fﬁrffﬁﬁ
O 10" % . _
@ - DO T
>
o
o
2
z

10° b

107’%

10’2 L L L L L L L L

0.1 02 03 0.4 05 06 07 0.8 0.9 1
Input Load

Figure 8.9: 32x32 switch under Bernoulli multicast traffic for Copy multicast and Modulo mul-
ticast.

<2,88=32SP=2,D=32,P=1,BD =4, RA = 7, SA = FIFO:RR >

Figure 8.9 shows that employing the Modulo Multicast algorithm, UDN improves its behavior
significantly. Now, both for Bernoulli Uniform and Bursty Uniform running at SP1 it becomes

112 CHAPTER 8. MULTICAST

closer to the CICQ performance. MDN has ~20% more capability to manage Bernoulli traffic
and ~10% for Bursty traffic for SP1. With SP2, both MDN and UDN have less average cell
delay than the CICQ for loads >95% in Bernoulli traffic. Under Bursty traffic , UDN performs
better than CICQ when load>55% and MDN when load>35%.

MDN outperforms the UDN using 64 routers instead of the 1024 routers of UDN. Therefore
is a better choice in terms of cost/performance.

Average Cell Delay

—O— Copy Mcast: UDN: SP1
e —— Copy Mcast: UDN: SP2
—#— Buffered Crossbar

~<4>— Modulo Mcast: UDN: SP1
—%#— Modulo Mcast: UDN: SP2

. . . . n
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Input Load

(a) UDN

Average Cell Delay

—O&— Copy Mcast: MDN: SP1
- —— Copy Mcast: MDN: SP2
—k— Buffered Crossbar

—<—Modulo Mcast: MDN: SP1
—%z— Modulo Mcast: MDN: SP2

. . . . n
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Input Load

(b) MDN

Figure 8.10: 32x32 switch under Bursty multicast traffic for Copy multicast and Modulo multi-
cast.

<2,88=32,SP=2D=32,P=1,BD =4, RA = z, SA = FIFO:RR >

8.3. MODULO MULTICAST ALGORITHM

113

Uniform multicast traffic.

Conclusion: Modulo multicast improves the performance of both architectures for

For Non-Uniform traffic diagonal traffic is tested. UDN and MDN do not improve in perfor-
mance. when they are employing SP2 compared to when they use the Copy multicast algorithm.
This is shown if Figure 8.11. UDN has less average cell delay than MDN for both SP1 and SP2

when MDN only has 1 plane.

T T T T

10" H{ —©— Copy Mcast:UDN: SP1
—¥— Copy Mcast: UDN: SP2
—&— Buffered Crossbar

—*— Modulo Mcast: UDN: SP1

5 || —5—Modulo Mcast: UDN: SP2

z
[
a
g B e =
@
g
3 10"
s
<
10 e
e
K
/&/Q
-
10"
01 02 03 04 o5 06 o7 08 09 1
Input Load
(a) UDN

10° ¢

Average Cell Delay

10° b

107F

=
Q

=
a

i

—O&— Copy Mcast: MDN
~Z= Copy Mcast: MDN
—&— Buffered Crossbar

—>— Modulo Mcast: MDN: SP1
—H— Modulo Mcast: MDN: SP2 |

>

:SP1
:SP2

—=

-

01

02 03 04 05 06
Input Load

(b) MDN

0.7 0.8 0.9 1

Figure 8.11: 32x32 switch under Diagonal multicast traffic for Copy multicast and Modulo

multicast.

<2,88=32SP=2,D=32,P=1,BD =4, RA = 7, SA = FIFO:RR >

Conclusion: For Non-uniform multicast traffic, Modulo multicast does not perform
better than Copy multicast when SP2 is employed.

The buffer size of MDN is increased to try to enhance its performance under Bursty traffic.
Figure 8.12 shows that this modification does not reduce the average cell delay of the system.

114 CHAPTER 8. MULTICAST

10

—— Buffer Size 4

—o— Buffer Size 20

Average Cell Delay
=
o

Il
0.4 0.5 0.6 0.7 0.8 0.9 1
Input Load

Figure 8.12: 32x32 MDN switch under Bursty traffic for different buffer sizes.
<MDN, SS =32,SP =2, P =1 ,BD = 2z, RA = Modulo Mcast, SA = FIFO:RR >

Conclusion: Increasing the buffer size does not improve performance of MDN under
Bursty multicast traffic.

8.4 Simplified Modulo multicast algorithm

The Modulo algorithm can be simplified if we only allow for each input one column of its row to
turn. All the packets from input 4 to any output, will turn in the same column j. In this way, the
number of packets that can have the maximum destination is augmented. This path selection
is reflected in Figure 8.13. Figure 8.13(a) shows the paths for the Modulo multicast algorithm,
were each flow input/output selects a different row to turn. On the other hand, Figure 8.13(b)
shows how in the Simplified Modulo multicast algorithm, all the flows turn in the same row.
For MDN, the same algorithm is applied when the input port is in front of the output port in
the mesh. To check the performance of this new algorithm we will compare it with the previous
simulations.

8.4. SIMPLIFIED MODULO MULTICAST ALGORITHM 115

O oD o0 OO0 oOoo- 00 0O 00 -
O OO0 5500 00 %Dﬁﬁﬁ
0O 0 OO0 DDD@WW []%@43_
DDD@B%%D%DD 1
(a) Modulo multicast

oo 0D oot 0385858 00 00
O00 @O 99000t 0638858 00 00
O00@0C B a--L8aa00 00

o000 0849 06085585 5538

(b) Simplified Modulo multicast

Figure 8.13: Modulo multicast algorithm and Simplified Modulo multicast algorithm routing
paths in a 4x4 UDN

This new algorithm is studied under Bernoulli traffic in Figure 8.14. It improves the behavior
of UDN when it employs SP1. For the other cases, its enhancement is not considerable.

10*

10° |

10° £

o = = !
> > o)
e g _ o2
8 8 -0 -
= = h 7 = = E—
81 BEE S i i A
X [C W
o o
o o
s S
< <
10° b = 10° b
] —G—Modulo Mcast: UDN: SP1 5 —H— Modulo Mcast: MDN: SP1
— —%—Modulo Mcast: UDN: SP2 /8”// —</— Modulo Mcast: MDN: SP2

10" //
e

—=+— Buffered Crossbar

—+— Copy Mcast: UDN: SP1

—— Copy Mcast: UDN: SP2

—7— Simplified Modulo Mcast: UDN: SP1
=

Modulo Mcast: UDN: SP2

0.1 0.2 03 0.4 05 0.6
Input Load

(a) UDN

0.7 0.8 0.9

1

107 /

107

—=+— Buffered Crossbar

-O0- Copy Mcast: MDN: SP1

=/~ Copy Mcast: MDN: SP2

—<}— Simplified Modulo Mcast: MDN: SP1
—+#— Simplified Modulo Mcast: MDN: SP2

0.1 0.2 0.3 0.4

05 06 0.7 08 0.9
Input Load

(b) MDN

Figure 8.14: 32x32 Switch under Bernoulli traffic for different algorithms.
<z,88=32,SP=2,D=32,P=1BD =4, RA =z, SA = FIFO:RR >

1

Under Bursty traffic , the Simplified modulo multicast algorithm does not perform better
than the previous Modulo Algorithm. Figure 8.15 depicts how both for UDN and MDN, the new
algorithm does not reduce the average cell delay of the system neither for SP1 or SP2 compared

to the Modulo algorithm.

116 CHAPTER 8. MULTICAST

Average Cell Delay
Average Cell Delay

—E&— Copy Mcast: UDN: SP1 —&— Copy Mcast: MDN: SP1
—E+ Copy Mcast: UDN: SP2 10— —E— Copy Mcast: MDN: SP2
—k— Buffered Crossbar —*— Buffered Crossbar
ss/ —&—Modulo Mcast: UDN: SP1 N <4 Modulo Mcast: MDN: SP1
—=#—Modulo Mcast: UDN: SP2 —#— Modulo Mcast: MDN: SP2
-/~ Simplified Modulo Mcast: UDN: SP1 -/~ Simplified Modulo Mcast: MDN: SP1
) ‘ ‘ ‘ %‘> Simp‘lified Mo‘dulo Mc‘as!: UDN: SP2) ‘ ‘ ‘ 4‘> Simp!ified Mo‘dulo Mc‘asl: MDN: SP2
%1 02 03 0.4 05 06 07 08 0.9 %1 02 03 04 05 06 07 0.8 09 1
Input Load Input Load
(a) UDN (b) MDN

Figure 8.15: 32x32 Switch under Bursty traffic for different algorithms.
<x,8S9S=32,SP=2,D=32,P=1,BD =4, RA ==z, SA = FIFO:RR >

Figure 8.16 compares the three algorithms for Diagonal traffic. The Simplified Modulo
multicast algorithm does not improve considerably the performance of the switch. It is only

remarkable the reduce in average cell delay in UDN employing SP1, and in MDN employing
SP2.

T T T T T T T T T T T T T T T
10" H -5 Copy Mcast:UDN: SP1 J
—¥— Copy Mcast: UDN: SP2 —G— Copy Mcast: MDN: SP1 [
—&— Buffered Crossbar ~Z= Copy Mcast: MDN: SP2 é
—>— Modulo Mcast: UDN: SP1 5 |
. || —= Modulo Mcast: UDN: sP2 10 < Bufered Crossbar ‘\‘
1078~ simplified Modulo Mcast: UDN: SP1 —¥— Modulo Mcast: MDN: SP1 |
—=— Simplified Modulo Mcast: UDN: SP2 —A— Modulo Mcast: MDN: SP2 ‘\‘
—{>— Simplified Modulo Mcast: MDN: SP1
E‘ 10 o - i 5 10° —Z= - Simplified Modulo Mcast: MDN: SP2 9
2 0% 2 = A ¢ 2 [7]
R e i 3 ;
S [} %2
@ @
o 10 o
s s
< <
10° b - i
e
)@/@///e/
-
107 107F E
01 0.2 03 0.4 05 06 07 08 0.9 1 01 02 03 04 05 06 0.7 08 0.9 1
Input Load Input Load
(a) UDN (b) MDN

Figure 8.16: 32x32 Switch under Diagonal traffic for different algorithms.
<x,8S9=32,SP=2,D=32,P=1,BD =4, RA ==z, SA = FIFO:RR >

Conclusion: Simplified Modulo multicast and Modulo multicast have a similar per-
formance in both UDN and the MDN fabrics.

8.5. CONCLUSIONS 117

In the next figures, we vary the arbitration algorithm of the switch employing SP1. Previously
RR was implemented. Now the arbiter selects the packet that has the higher number of bits to
the desired output port of the switch. If two packets are trying to exit through the North port,
the arbiter will select the packet that has more bits to “1” for that port. Figure 8.17(b) shows
the results under Bernoulli Uniform traffic and Figure 8.17(b) under Bursty Uniform traffic.
They show that under Bernoulli traffic, performance does not vary. Under Bursty traffic , to
select the maximum fanout improves slightly the average cell delay. The few number of ports of
the switch does not make a big difference between these two algorithms.

10*

10° T

T T T T T T T T T T
—G-RR “OR
—=— Max Fanout —=— MAX Fanout

10'F

10°H

Average Cell Delay
Average Cell Delay
.

5

10°k

10}

101 L L L L L L L L L L L L L L L L
0.1 0.2 03 0.4 05 0.6 07 08 0.9 1 0.1 02 03 04 05 06 0.7 08 0.9 1
Input Load Input Load

(a) Bernoulli Uniform Traffic (b) Bursty Uniform Traffic

Figure 8.17: 32x32 Switch with different Arbiter Algorithms.
<x,55=32,SP=x,D=32,P =1 ,BD =4, RA = Simplified Modulo Mcast, SA = x >

8.5 Conclusions

In this chapter we tested the proposed architectures under multicast traffic and compared their
performance to the traditional CICQ crossbar. Several algorithms were tested for all the archi-
tectures. Simulations suggest that when MDN and UDN are employing SP2, they outperform
CICQ for Uniform and Non-uniform traffic. Modulo algorithm and Simplified Modulo multicast

algorithm have similar performance. This performance is better than the one showed by the
Copy Multicast.

118 CHAPTER 8. MULTICAST

Conclusions and Future Work

his chapter presents the conclusions for the performed research. First, a summary of this
thesis is presented. Then, the main contributions of our work are discussed. Finally,
suggestions for future work are proposed.

9.1 Summary

The subject of this thesis was to propose the use of NoC for the crossbar switch fabrics in the
high-speed routers. The development of new transmission techniques in the Internet increased
data-rate to the range of multi-terabits per second. Routers inside the network must be capable
of reaching these speeds to avoid bottlenecks.

The architecture of routers has evolved along the years, but their basic function remains
unchanged. These basic tasks are scheduling and data forwarding. Data forwarding is the pro-
cess of delivering the packets from inputs to outputs. Switch fabrics are usually responsible of
this assignment. Compared to shared buffer and shared memory switches, the buffered crossbar
switch fabrics is the most popular design. Its scalability in relation to its predecessors and its
higher speed made of them the favorite election for high-speed routers. This switch fabrics, how-
ever, have several drawbacks that should be taken into account. Firstly, they require expensive
on-chip buffers, whose cost grows quadratically with the port count. Moreover, point-to-point
switching commands the use of long wires to interconnect inputs and outputs that result in
non-negligible delays.

In this thesis we proposed two different NoC architectures to overcome the disadvantages of
current CICQ crossbars. We claim that NoCs have the necessary characteristics to enhance the
performance of the current switch fabrics. They use short wires leading to a tighter synchro-
nization. Global arbitration is replaced by a local arbitration entailing less delays. As no errors
happen in the transmission, reordering modules are not necessary if packets are sent in order
through the mesh.

Using a network allows different paths per flow in the system, achieving a higher load bal-
ancing and path diversity. HoL blocking is reduced and no VOQ are needed. Instead, simple
FIFOs can be implemented.

This thesis begins with an introduction that gives a general view of our research. We present
the actual switch fabrics and show their limitations, that motivate our thesis. Chapter 2 provides
the background of the work and explains the differences between NoCs and Internet networks.
Chapter 3 presents the first of our two proposed architectures. In this chapter, we analyze a
possible solution for a NoC switch fabric. This new architecture, referred as UDN, is analyzed
analytically and by simulations. Simulations conclude that it has better performance than the
traditional CICQ crossbar and it accomplishes the reasons we argued in the beginning of this
thesis to use NoCs. Those were: 1) Better load balancing; 2) Higher path diversity; 3) Scalability
in port count and speed per port; 4) Use of short wires; 5) Easier synchronization; 6) Simpler
switch design by using FIFOs

Finally, we conclude that this architecture is not suitable for the layout of the fabric chip.
Some modifications should be done to this architecture to better fit the pin distribution and

119

120 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

avoid the use of long wires to connect the switch.

In Chapter 5 another architecture is proposed. Now the distribution of the pins is around
the perimeter of the switch. This fabric, called MDN, is studied by simulations. It results in
outperforming both UDN and CICQ when it employs SP2. Our study shows that MDN is a
better cost/performance option than UDN. It requires less crosspoints and its size does not
increase quadratically with the number of ports. Using NoC reaches higher frequencies and
average cell delay is reduced for both UDN and MDN.

Finally, Chapter 8 addresses the problem of multicast traffic flows. Three algorithms are
proposed for UDN and MDN. They are all based on fanout-splitting policies. In the first
algorithm, the packets are converted to unicast packets in the NIs. The other algorithms make
the copies of the cells inside the network. This results in a better use of resources as less packets
are spread in the mesh.

9.2 Main contributions
We presented two different NoC architectures to perform as a switch fabric in high-speed routers.

In the introduction of this thesis, we aimed to prove that the following characteristics were part
of a buffered crossbar based on NoC.

e Better load balancing

Higher path diversity

Scalability in port count and speed per port

Use of short wires

Simpler switch design by using FIFOs

UDN: we designed a unidirectional mesh scalable in its number of columns. Its NoC
characteristics make of it a promising architecture in terms of speed and performance.
Its architectural parameters were adjusted to find the best cost/performance solution.

After the experiments done all along this thesis in UDN, we concluded:

e Better load balancing was achieved with the Modulo Algorithm 1 and the multi-
hop structure of the mesh. This was depicted in Figures like 3.19 and 3.20 and in
conclusion 3.3.

e Path diversity was enforced by varying the path of each flow. The Modulo Algo-
rithm 1 could modify the path per flow reaching a higher load balance (see Fig-
ure 3.20).

e [t was proved analytically and by simulations that increasing the switch size does
not deteriorate the performance of the system (see Figures 4.11(a), 4.21) and that
delay increases linearly with the size of the switch. These facts were shown in
conclusion 4.10, and conclusion 4.17. The inter routers wires are kept of short
length, independently of the switch size.

9.2. MAIN CONTRIBUTIONS 121

e The Analytical study of section 3.2.3 and Figure 3.15 showed how Hol. blocking was
not an issue in UDN mesh and the routing algorithm employed FIFOs queues could
be used avoiding to use VOQ both in the line cards and in the routers. This was
shown in conclusion 3.1.

The trade off of the UDN parameters is shown in table 9.1.

Performance Average Cell Delay | Area | Cost
1Speedup 7(SP2 enough)] = 1
TSwitch Size 1 1 1 1
] if SP1 1 1 1
|Depth (not for Bursty) ~ if SP2 and % <5 1 1 1
| if SP2 and §7 > 5 1 ! !
|Buffer Size ~ if SP>1 and N=M ~ 1 1
else | 1 ! !
FIFO OCF Arb.) 1 1 1
Multiport RAM OCF Arb. T i} T T

Table 9.1: UDN performance as function of different parameters.

After the simulations, we concluded that these parameters do not have the same
importance in affecting the performance of the system. Their weight in the system was
obtained by the conclusions. Gathering conclusions 4.12, 4.13, 4.14 and 4.18:

We concluded that the weight of the parameters is: 1)Speedup; 2)Depth; 3)Buffer
Size; 4) Scheduling algorithm.

Finally, we found that though UDN was the logical first architecture to implement,
its physical placement in the chip layout was not appropriate. Then, we introduced our
second proposal, MDN.

MDN: we enhanced our first architecture in terms of port scalability and distribution
of the pins in the chip. A N/4 x N/4 architecture variable in the number of planes was
presented.

The MDN has the following properties:

e Load balanced was kept as it was shown in conclusion 6.7.

e Higher path diversity was maintained as MDN Modulo algorithm allows to modify
the path per flow.

e Scalability, was now higher because fewer number of routers were needed to have
full throughput. See conclusion 6.9.

e No VOQs are used neither in the line cards nor in the routers.

We also concluded that this was a better architecture. Its input/output pins allowed
to have less average cell delay and it fit with the chip layout. The number of planes could
be incremented to solve the problem of the low ratio routers/input ports.

Table 9.2 gathers the best cost/performance values for the MDN architectural param-
eters.

122 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Performance Average Cell Delay | Area | Cost
TSpeedup 1(SP2 enough if switch size <64x64) 1 = 1
TSwitch Size ! 7 7 1
TPlanes 1(3 enough) ! 7 1
1Buffer Size 1(20 enough) ! 7 1

Table 9.2: MDN performance as function of different parameters

Many parameters were varied along the simulations. From conclusions 6.6,and 6.12,
we can see which of these parameters had a higher effect.

Then, if we order the parameters in terms of which causes a major enhancement in
the switch: 1) Speedup; 2) Number of planes; 3) Buffer depth.

UDN VS MDN: we compared our two proposed architectures in terms of
cost/performance. MDN outperforms UDN as it needs fewer routers to achieve the same
behavior as UDN. The position of the inputs/outputs facilitates the communication
between the NIs and the placement in the chip.

MULTICAST: we tested both UDN and MDN under multicast traffic. We concluded
that their performance was at least as good as that of CICQ crossbar. Both proposed
architectures responded well under multicast traffic due to the few Hol. blocking of the
system. We implemented three different algorithms for routing the multicast traffic. We
concluded that Copy multicast had the worse performance and that Modulo multicast
algorithm and Simplified Modulo multicast algorithm had a similar response.

To summarize the research done in this thesis we can conclude that the proposed two
novel architectures to use as switch fabrics in high-speed routers are feasible. Simulations
suggest that their area and performance are better than the ones presented by the CICQ
crossbar architecture. MDN outperforms UDN in scalability and cost for unicast and
multicast traffic. It was shown to have smaller average cell delay when the system is not
congested. For high loads, MDN needs to add planes to behave as well as UDN.

9.3 Future Work

Some features require further study to have a deeper knowledge of these architectures.
End-to-end flow control: First of all, End-to-end flow control should be imple-
mented to have a control of the load in the network when NIs are not considered infinite.

Improved performance: Bursty traffic is the kind of traffic with the worse perfor-
mance in our system. New methods to improve it can be studied. For example, adding
VOQ to the NIs or to allow the disorder of packets. Also a deeper research in multicast
traffics and combining it with unicast flows.

Guarantees: the way to provide Guaranteed Throughput or Quality of Services is a
main factor in nowadays networks and this kind of traffic was not taken into consideration
during this thesis. For this purpose, recovery to failure can be included as future work in
these architectures.

Bibliography

[1] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M. Horowitz, “The Tiny
Tera: A Packet Switch Core,” IEEE Micro, pp. 26-33, January/February 1997.

[2] F. Abel, C. Minkenberg, P. Luijten, M. Gusat, and I. Iliadis, “A Four-Terabit Packet
Switch Supporting Long Round-Trip Times,” IEEE Micro, vol. 23, no. 1, pp. 10-24,
January /February 2003.

[3] L. Mhamdi, “A Partially Buffered Crossbar Packet Switching Architecture and Its
Scheduling,” in Proceeding of IEEE International Symposium on Computers and
Communications (ISCC), July 2008.

[4] N. McKeown, “Scheduling Algorithms for Input-Queued Cell Switches,” Ph.D. dis-
sertation, University of California at Berkeley, May 1995.

[5] L. Mhamdi and M. Hamdi, “MCBF: A High-Performance Scheduling Algorithm for
Buffered Crossbar Switches,” IEFEE Communications Letters, vol. 07, no. 09, pp.
451-453, September 2003.

[6] R. R. Cessa, “Design and Analysis of Reliable High-Performance Packet Switches,”
Ph.D. dissertation, Plytechnic University, April 2001.

[7] T. Aramaki, H. Suzuki, S. Hayano, and T. Takeuchi, “Parallel '"ATOM’ Switch Ar-
chitecture For High Speed ATM Networks,” IEEFE International Conference on Com-
munications (ICC), pp. 250-254, 1992.

[8] M. Devault, J. Y. Cochennec, and M. Servel, “The Prelude ATD Experiment: Assess-
ments and Future Prospects,” IEEE Journal on Selected Areas in Communications,
vol. 06, no. 09, pp. 1528-1537, December 1998.

9] K. K. Chang, S. Chuang, N. McKeown, and M. Horowitz, “A 50 Gb/S 32x32 CMOS
Crossbar Chip Using Asymmetric Seriallinks,” Symposium on VLSI Circuits, pp. 19
~ 22, 1999.

[10] R. Rojas-Cessa and Z. Dong, “Combined Input-Crosspoint Buffered Packet Switch
with Flexible Access to Crosspoint Buffers,” IEEFE International Caribbean Confer-
ence on Devices, Circuits and Systems, Playa del Carmen, April 2006.

[11] N. Chrysos and M. Katevenis, “Scheduling in Switches with Small Internal Buffers,”
IEEFE Globecom, pp. 614-619, November 2005.

[12] B. Vermeulen, J. Dielissen, K. Goossens, and C. Ciordas, “Bringing communication
networks on chip: Test and verification implications,” IEEE Communications Mag-
azine, vol. 41, pp. 74-81, 2003.

[13] Arteris, “A comparison of Network-on-Chip and Busses,” White Papers, 2005.

[14] A. Radulescu and K. Goossens, “Samos, ii(),communication services for networks on
chip,” pp. 275-299.

123

124 BIBLIOGRAPHY

[15] A. Rdulescu, J. Dielissen, S. G. Pestana, O. P. Gangwal, E. Rijpkema, P. Wielage, and
K. Goossens, “An efficient on-chip ni offering guaranteed services, shared-memory
abstraction, and flexible network configuration,” IEEFE Trans. on CAD of ICs and
systems, vol. 24, p. 2005, 2005.

[16] W. J. Dally, “Performance analysis of k-ary n-cube interconnection networks,” IEEE
Trans. Computers, vol. 39, no. 6, pp. 775-785, 1990.

[17] A. Jantsch and H. Tenhunen, Networks on Chip. Kluwer, 2003.

[18] K. Goossens, J. Dielissen, and A. Radulescu, “Aethereal network on chip: Concepts,
architectures, and implementations,” IFEFE Des. Test, vol. 22, no. 5, pp. 414-421,
2005.

[19] P. Wielage, E. Marinissen, M. Altheimer, and C. Wouters, “Design and dft of a high-
speed area-efficient embedded asynchronous fifo,” Design, Automation and Test in
Furope Conference and Exhibition, vol. 0, p. 160, 2007.

[20] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed Bandwidth using
Looped Containers in Temporally Disjoint Networks within the Nostrum Network
on Chip,” Design, Automation and Test in Furope Conference Proceedings, IEFE,,
February 2004.

[21] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh, and G. D. Micheli, “Design, synthesis,
and test of networks on chips,” IFEE Des. Test, vol. 22, no. 5, pp. 404-413, 2005.

[22] T. G. Mattson, R. V. der Wijngaart, and M. Frumkin, “Programming the intel
80-core network-on-a-chip terascale processor,” in SC' ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing. — Piscataway, NJ, USA: IEEE Press,
2008, pp. 1-11.

(23] N. Kavaldjiev, G. J. M. Smit, P. G. Jansen, and P. T. Wolkotte, “A virtual channel
network-on-chip for gt and be traffic,” in ISVLSI "06: Proceedings of the IEEE Com-

puter Society Annual Symposium on Emerging VLSI Technologies and Architectures.
Washington, DC, USA: IEEE Computer Society, 2006, p. 211.

[24] T. Bjerregaard, “The MANGO clockless network-on-chip: Concepts and
implementation,” Ph.D. dissertation, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, Richard Petersens Plads, Building 321,
DK-2800 Kgs. Lyngby, 2005, supervised by Assoc. Prof. Jens Sparsg, IMM. [Online].
Available: http://www2.imm.dtu.dk/pubdb/p.php?4025

[25] L. G. Roberts, “Data by the Packet,” vol. 11, no. 2, pp. 43 —51, February 1974.

[26] B. Leiner, V. Cerf, D. Clark, R. Khan, L. Kleinrock, D. Lynch, and J. Postel, “The
Past and Future History of the Internet,” vol. 40, no. 2, pp. 102-108, February 1997.

[27] H.-C. Chi, C.-M. Wu, and S.-T. Wu, “A switch supporting circuit and packet switch-
ing for on-chip networks,” in DDECS, 2006, pp. 226-227.

28] E. Rijpkema, K. G. W. Goossens, A. Rdulescu, J. Dielissen, J. V. Meerbergen,
P. Wielage, and E. Waterl, “Trade offs in the design of a router with both guar-
anteed and best-effort services for networks on chip,” 2003, pp. 350-355.

BIBLIOGRAPHY 125

[29] Chang and L. C-J, “Overflow controller in copy network of broadband packet switch,”
Electron. Lett, vol. 27, no. 11, pp. 937-939, 1991.

[30] J. Bianchini, R.P. and H. KIM, “Design of a nonblocking shared/memory copy net-
work for ATM,” Proceedings of IEEE Infocom 92, pp. 876-885, 1992.

[31] w. Zhong, Y. Onozato, and J. Kaniyil, “A copy network with shared buffers for
larte/scale multicast ATM switching,” IEEE/ACM Trans. Networking, vol. 1, no. 2,
pp. 157-165, 1993.

[32] M. Karol, M. Hluchyj, and S. Morgan, “Input Versus Output Queuing on a Space-
Division Packet Switch,” IEEE Transactions on Communications, vol. 35, no. 9, pp.
1337-1356, December 1987.

[33] Y. Tamir and G. Frazier, “High performance multi-queue buffers for VLSI communi-
cation switches,” Proc. 15th Annyu. Symp. comput. Arch., pp. 343-354, June 1988.

[34] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100%
Throughput in Input-Queued Switch,” [EEE Transastions On Communications,
vol. 47, no. 08, 1999.

[35] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm for achieving
100San Francisco, vol. 2, pp. 117-129, 1998.

[36] N. McKeown, “iSLIP Scheduling Algorithm for Input-Queued Switches,” IEEE/ACM
Transactions On Networking, vol. 07, no. 02, pp. 188-201, April 1999.

[37] R. Rojas-Cessa, “High-Performance Round-Robin Arbitration Schemes for Input-
Crosspoint Buffered Switches,” pp. 19-21, April 2004.

[38] H. T. Kung and R. Morris, “Credit-Based flow control for ATM Networks,” IEEE
Network Magazine, March 1995.

[39] P. Kermani and L. Kleinrock, “ Virtual cut-through: A new computer communication
switching technique ,” Computer Networks, vol. 3, no. 4, pp. 267-286, 1979.

[40] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch, “Load distribution with the
Proximity congestion Awareness in a Network on Chip,” Proceedings of th eDesign,
Automation and Test in FEurope Conference and FExhibition, pp. 1530-1591, 2003.

[41] W. Dally and C. Seitz, “ Deadlock-free message routing in multiprocessor intercon-
nection Networks,” IEEE Trans. Comput., pp. 547-553, May 1987.

[42] J. Duato, “ A necessary and sufficient condition for dead lock-free adaptive routing in
wormhole networks,” IFEFE Trans. Parallel Distrib. Systems, pp. 1055-1067, October
1995.

[43] J. Kim, Z. Liu, and A. Chien, “ Compressionless routing: A framework for adap-
tive and fault-tolerant routing,” Proceedings of the 21st International Symposium on
Computer Architecture,” IEEE Computer Society, Los Alamitos, CA, pp. 289-300,
April 1994.

126

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[56]

[57]

K. V. Anjan, T. M. Pinkston, and Disha, “ A deadlock recovery scheme for fully
adaptive routing,” Proceedings of the 21st International Symposium on Computer
Architecture,” IEEE Computer Society, Los Alamitos, CA, pp. 201-210, June 1995.

A. A. Chien, “ A cost and speed model for k-ary n-cube wormhole routers,” Proceed-
ings of the Symposium on Hot Interconnects, August 1993.

D. Xiang, Y. Zhang, Y. Pan, and J. Wu, “ Deadlock-Free Adaptive Routing in Meshes
Based on Cost-Effective Deadlock Avoidance Schemes,” International Conference on
Prallel Processing, 2007.

X. Liu, S. Zhang, and T. J. Li, “A cost-effective load balanced adaptive routing
scheme for mesh-connected networks,” Proc. of 8th Int. Symp. on Modeling, Analysis
and Simulation of Computer and Telecommunications Systems, pp. 532-538, 2000.

“SIM,” High-Performance Networking Group, Stanford University
http://klamath.stanford.edu/tools/SIM/.

S. Kumar, R. Venkatesh, J. Philip, , and S. Shukla, “Implementing parallel packet
buffering.”

K. Goossens, J. Dielissen, O. P. Gangwal, S. G. Pestana, A. Radulescu, and E. Ri-
jpkema, “A design flow for application-specific networks on chip with guaranteed
performance to accelerate soc design and verification,” in DATE '05: Proceedings of
the conference on Design, Automation and Test in Europe. Washington, DC, USA:
[EEE Computer Society, 2005, pp. 1182-1187.

P. Giaccone, D. Shah, and B. Prabhakar, “An implementable Paraller Scheduler
for Input-Queued Switches,” IEEE Micro, vol. 19, no. 01, pp. 1090-1096, Jan-
uary /February 1999.

R. Rojas-Cessa, Z. J. E. Oki, and H. J. Chao, “CIXB-1: Combined Input One-Cell-
Crosspoint Buffered Switch,” IEEE Workshop on High Performance Switching and
Routing (HPSR), pp. 324-329, 2001.

X. Liu and H. T. Moufath, “Overflow control in multicast networks,” Proc. of Cana-
dian Conf. on FEleectrical and computer Engineering, pp. 542-545, 1993.

M.-H. Guo and R.-S. Chang, “Multicast atm switches: survey and performance eval-
uation,” SIGCOMM Comput. Commun. Rev., vol. 28, no. 2, pp. 98-131, 1998.

L. Mhamdi and M. Hamdi, “Scheduling Multicast Traffic in Internally Buffered Cross-
bar Switches,” IEEE International Conference on Communications (ICC), pp. 1103—
1107, June 2004.

B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast Scheduling for Input-Queued
Switches,” IEEE Journal in Selected Areas in Communications (JSAC), vol. 15, pp.
855-866, June 1997.

M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Multicast traffic in
input-queued switches: optimal scheduling and maximum throughput,” IEEE/ACM
Trans. Netw., vol. 11, no. 3, pp. 465-477, 2003.

BIBLIOGRAPHY 127

[58] P. Giaccone and E. Leonardi, “Asymptotic Performance Limits of Switches with
Buffered Crossbars Supporting Multicast Traffic,” IEEE Infocom, pp. 1-10, April
2006.

[59] Andrea Bianco, Paolo Giaccone, Chiara Piglione, Sonia Sessa, “Practical Algorithms
for Multicast Support in Input Queued Switches ,” IEEE, High Performance Switch-
ing and Routing, June 2006.

128 BIBLIOGRAPHY

Simulation Environment

his appendix describes the simulation environment in which the proposed architec-
T tures and the CICQ crossbar are tested. It introduces the software simulation tool

and the traffic models to run the experiments. Finally it describes the parameters
we use to value the performance of the switch.

A.1 Simulator

For the simulations of the architectures, a simulator of Stanford University was used [48].
It is a slotted time simulator, a fixed-length packet switch simulator written in ANSI C.
It can be used to evaluate the performance of a variety of switching architectures using
different queuing, scheduling or transmission schemes, as specified by the user. The new
architectures, routing algorithms and types of traffic where included in this simulator to
perform the UDN and MDN architectures.

Packets Input Queues Output Queues

\‘I — Fabric —
M| < —{1TTT] $
F=1 i
S m— {1717 5
Tz HE 10 2
= >
BT s

L mmmm— {1117

Scheduling Algorithm

Figure A.1: Architecture of SIM.

Figure A.1 represents the schematic of the switch architecture assumed by the simu-
lator. Packets arrive to the Input Action module that decides whether to accept them
and in which input queue place them. Note that packets arrive (depart) at most one per
input (output) per time slot . Input queues are one FIFO per input port. The fabric
interconnects input and output ports. Here, we add our MDN and UDN architectures.
The scheduling algorithm decides what packet is transmitted each time slot. For UDN
and MDN architectures it is not used, because each router makes the scheduling locally.
However, it is used when simulating the CICQ crossbar. The fabric transmits the packets
to the output queues, that are implemented as simple FIFOs. Finally, the Output Action
removes the packets from the system.

129

130 APPENDIX A. SIMULATION ENVIRONMENT

A.2 Traffic models

Next, we describe the traffic models used to test the crossbar fabrics ant their motivation.
Throughout the simulations, we used both uniform and non-uniform traffic models as de-
scribed below.

Uniform traffic is represented by Bernoulli and Bursty traffic. Diagonal and Unbal-
anced traffic are the non-uniform traffic tested.

Bernoulli Uniform traffic
Bernoulli Uniform traffic is commonly used to test the performance of switches. In
each time-slot a cell is generated with probability p. As it is uniform traffic, this load is
equally distributed among the N destinations.

Bursty Uniform traffic
Bursty traffic is closely related to real Internet traffic. Cells are highly correlated in the
internet [4] and they arrive in bursts.

The transmission of the voice signals constitutes a big part of the bandwidth in the
Internet. During this transmissions there are intervaled periods of silence with periods of
speech. This periods make the bursty traffic. Studying this type of traffic is then essential
in Internet networks.

Bursty traffic is generated from one source with alternating series of “ON” and “OFF”
periods. During the “ON” state, cells are generated each time-slot. During the “OFF”
periods, no traffic is generated. The average number of cells generated in the “ON” state
follow a geometric distribution known as the burst size and denoted by b.

Non uniform traffic varies its distribution of the probability of sending one cell from
one input port to a determined output port. Client-server applications follow this kind of
traffic. There is a small number of clients that are connected to a determined server. In
this thesis we are using two kinds of non-uniform traffic: unbalanced traffic and diagonal
traffic.

Unbalanced traffic
The Unbalanced traffic is defined by using an unbalanced probability, w. For a N x N
switch, the traffic load at each input port is defined by p. Then, for each input port s and
output port d, the traffic load, ps 4, is given by:

w+ 122
psvd{p()

p PT“’ otherwise

When w is fixed to 0 it is uniform traffic and when it is fixed to 1, traffic is completely
unbalanced.

Double Diagonal traffic
The Diagonal traffic is defined as in the following example:

20 p 0 0
LT 0 2 p 0
0 0 20 p

A.3. PERFORMANCE PARAMETERS 131

In this kind of traffic, input i only sends packets to output i and i+1. It sends % of the
load to i and % to i+1.

A.3 Performance parameters

The main part of this thesis is constituted by the simulation experiments of UDN, MDN
and CICQ architectures. In this section, we explain the different parameters to meassure
and the variables used to quantify its behavior.

Speedup
The speedup of a switch is defined as the speed ratio at which the switch fabric can run
with respect to the input/output ports. A switch with speedup S can remove up to S
packets from one input and send up to S packets to one output per time slot.

In our simulations, we refer to the speedup as SP, where SP1 refers to S=1 and SP2
to S=2.

Through the simulations two parameters of the network are obtained: average cell
delay and throughput.

Average cell delay
The average cell delay is the time spent by every cell entering the switch, averaged over
all cells. The cell delay includes the time spent by the cell inside the switch queues until
it reaches its output port. This time includes the waiting in the NIs and the time it
needs to travel through the switch.

Throughput

The throughput is the ratio between the input load and the output load. It is a meassure
of the percentage of traffic that the network can manage. The maximum throughput
is the value for which the network becomes congested. Congestion happens when the
input load is higher than the throughput of the switch. Then, queues grow indefinitely.
If the value of that saturation is 1, that means the switch achieves 100% throughput.
When comparing two systems with 100% throughput, the one with lower average cell
delay is better. A scheduling algorithm is considered stable if it provides 100% throughput.

In the following sections we describe the main performance parameters of both UDN
and MDN.

A.3.1 UDN

We present the architectural parameters that constitute the UDN architecture and we
motivated why we study them in our simulations.

e N: number of rows in the UDN mesh. It coincides with the number of input and
output ports.

e M, depth: number of columns in the UDN mesh. Depth is a trade off factor. Re-
ducing it helps to reduce the cost of the switch.

132 APPENDIX A. SIMULATION ENVIRONMENT

e Buffer depth, size: capacity in number of packets of each input buffer of each UDN
router.

During the simulations these parameters are varied to find the best cost/performance
option for UDN. N is increased to test if switch size affects the performance of the system.
When N = M, the ratio inputs/routers is kept though the switch size increases. Reducing
the depth of the system, less routers are needed, reducing the cost of the switch. Buffer
depth also plays an importante role in the design of the crossbar. Having higher depths
entail more area and better performance.

A.3.2 MDN

MDN parameters are listed below:

e N: number of inputs/outputs of the switch. The mesh is then a N/4 x N/4 square.

e Planes, layers: number of N/4 x N/4 interconnected in MDN. Adding layer increases
the ratio inputs/routers in the mesh and helps to improve performance.

e Buffer depth, size: capacity in number of packets of each input buffer of each UDN
router.

Throughout the simulations we modify N to check the switch stability under bigger
switch sizes. MDN has fewer routers compared to UDN for the same number of inputs,
hence, the number of planes can be increased. A NxN MDN mesh with 16 planes has
the same number of routers than a NxN UDN switch. Here, as in UDN, buffer depth is
another trade off. Finding the most appropriate size for the buffer is very important in
terms of area and performance.

Algorithms

In this appendix we show the complete code of the algorithms for UDN and MDN.

B.1 UDN algorithm

B.1.1 MODULO UDN

The following algorithm is performed by Router[i, j] that receives a packet whose desired
exit is output.

Switch(Packet Buffer Input)
case(North):
if(i == output) then East
else South
case(South):
if(i == output) then East
else North
case(West):
if ((output%M) == (N-i+j+t)%M) then
if(output ; j) Down
else North
else East

B.2 MDN algorithms

B.2.1 MODULO MDN

The following algorithm is performed by Router[i, j] that receives a packet whose desired
exit is output.

Switch(packet condition):
case(new packet || packet going to its destined plane):
case(output even):
case(# planes even):
if ((N—j5+P+t)%P,,)+ P = (output%P,,) + P, then algorithm 2
else Up
case(# planes odd):
if ((N—j+P+t)(%Pn +1))+ Py, = (output(%Py, + 1) + P, then algorithm 2
else Up
case(output odd):
it (N—j+4+P+t)%(Pn +1) = (output)%(Py, + 1) then algorithm 2

133

134 APPENDIX B. ALGORITHMS

else Down
case(packet inside a plane):
if (ledge of the plane) algorithm 2
else
if(P < P,,) then Up
if(P > P,,) then Down
if(P = P,,) then algorithm 2
case(packet going back to the center plane):
if(P < P,,) then Up
if(P > P,,) then Down
if(P = P,,) then algorithm 2

B.2.2 MDN MODULO AND XY

Router in coordinate < 4,5 > receives a packet whose destination is in coordinate
< x,y > in the mesh.

Switch(Packet Input Port)
case(North):
Switch(Packet Output Port)
case(North):
Switch(Packet Buffer Input):
case(North):
if(j ==y) then North
if(j < y) then East
if(j > y) then West
case(East):
if(j == y) then North
if(j > y) then West
case(West):
if(j ==y) then North
if(j < y) then East
case(South):
Switch(Packet Buffer Input)
case(West):
if(j ==y) then South
else East
case(East):
if(j ==y) then South
else West
case(North):
if(j == y) then South
else if (((x)%M) == (N-i+j+t)%M) then
if(j > y) then West
if(j < y) then East
else South

B.2. MDN ALGORITHMS

135

case(East):
Switch(Packet Buffer Input)
case(West):
East
case(North):
if (i == x) then East
else South
case(West):
Switch(Packet Buffer Input)
case(East):
West
case(North):
if (i == x) then West
else South

case(South):
Switch(Packet Output Port)
case(North):
Switch(Packet Buffer Input):
case(South):
if (j ==y) then North
else if (((x)%M) == (N-i+j+t)%M) then
if (j <y) then East
if (j > y) then West
else North
case(East):
if (j ==y) then North
else West
case(West):
if (j ==y) then North
else East
case(South):
Switch(Packet Buffer Input):
case(South):
if (j == y) then South
if (j < y) then East
if (j > y) then West
case(East):
if (j == y) then South
if (j > y) then West
case(West):
if (j ==y) then South
if (j < y) then East
case(East):
Switch(Packet Buffer Input):
case(South):
if (i == x) then East

APPENDIX B.

136

ALGORITHMS

else North
case(West):
East
case(West):
Switch(Packet Buffer Input)
case(South):
if (i == x) then West
else North
case(East):
West

case(East):
Switch(Packet Output Port)
case(North):
Switch(Packet Buffer Input):
case(East):
if (j == y) then North
else West
case(South):
North

case(South):
Switch(Packet Buffer Input):

case(East):
if (j ==y) then South
else West

case(North):
South

case(East):
Switch(Packet Buffer Input):

case(East):
if (i == x) then East
if (i < x) then South
if (i > x) then North
case(North):
if (i == x) then East
else South
case(South):
if(i == x) then East
else North
case(West):
Switch(Packet Buffer Input)
case(East):
if (i == x) then West
else if (((y)%M) == (N-i+j+t)%M) then
if (i < x) then South
if (i > x) then North

else West

B.2. MDN ALGORITHMS

137

case(North):
if (i == x) then West
else South
case(South):
if (i == x) then West
else North

case(West):
Switch(Packet Output Port)
case(North):
Switch(Packet Buffer Input):
case(West):
if (j ==y) then North
else East
case(South):
North
case(South):
Switch(Packet Buffer Input):
case(West):
if (j == y) then South
else East
case(North):
South
case(East):
Switch(Packet Buffer Input):
case(West):
if (i == x) then East

else if (((y)%M) == (N-i+j+t)%M) then

if (i < x) then South
if (i > x) then North
else East
case(South):
if (i == x) then East
if (i > x) then North
case(North):
if (i == x) then East
if (i < x) then South
case(West):
Switch(Packet Buffer Input)
case(West):
if (i == x) then West
if (i < x) then South
if (i > x) then North
case(South):
if (i == x) then West
else North
case(North):

138 APPENDIX B. ALGORITHMS

if (i == x) then West
else South

Nomenclature

ACK
ANSI C
ASIC
AT
ATM
BE
CICQ
CMOS
CPU
DRAM
FDM
FIFO
GT
(HDLC)
HoL

IP

1Q
ISDN
ISLIP
(LLFC)
LPF
LQF
MC-VOQ
MDN
MSM
MWM
NACK
NI

NoC
OCF
0Q
RAM
(KTH)
RR

Acknowledgement

American National Standards Institute for C programming language

Application-Specific Integrated Circuit
Average Throughput

Asynchronous Transfer Mode

Best Effort

combined input-crosspoint queueing
Complementary metaloxidesemiconductor
Central Processing Unit

Dynamic random access memory
Frequency Division Multiplexing
First in first out

Guaranteed Throughput

High-Level Data Link Control
Head of Line

Internet Protocol

Input Queuing

Integrated Services Digital Network
[terative Round Robin matching with Slip
Link Level Flow Control

Longest Path First

Longest Queue First

Multicast VOQ

Multidirectional NoC

Maximum Size Matching

Maximum Weight Matching
Negative acknowledgement

Network Interface

Network on Chip

Oldest Cell First

Output Queuing

Random-Access Memory

Royal Institute of Technology
Round Robin

139

140

RTL
SoC
SP
TDM
UDN
VC
VC
VHDL
VHSIC
VOQ
WDM

Register transfer language

System on Chip

Speedup

Time Division Multiplexing
Unidirectional NoC

Virtual Channel

Virtual Circuits

VHSIC hardware description language
Very-High-Speed Integrated Circuits
Virtual Output Queueing
Wavelength Division Multiplexing

Index

ACK/NACK, 20
Arbitration, 18

ATM, 2, 28, 31, 46
Average cell delay, 27, 131

Balanced flows, 31, 32, 42, 44, 46

Balanced XY, 31-33, 42, 44

BE, 13

Bernoulli Uniform traffic, 49, 52, 57, 81,
82, 91, 107, 109, 130

Buffer depth, 29, 34, 46, 74, 132

Bursty Uniform traffic, 49, 52, 64, 81, 82,
94, 107, 112, 115, 117, 130

Circuit switching, 13
CMOS, 46

CpU, 7

Credit based, 20
Cut-through, 22

Deadlock, 23

avoidance, 25
Double diagonal traffic, 49, 50, 81, 82, 130
DRAM, 3

End-to-end flow control, 122

Fanout, 105
splitting, 106
FDM, 13
FIFO, 4, 10, 13, 16, 18, 40, 46, 68, 97,
105

GT, 13

HDLC, 21
HoL, 16, 18, 29, 35, 69, 121

Input queueing, 16
ISLIP, 19

LLFC, 20
LPF, 19

MC-VOQ, 105

MDN, 5, 72, 81, 107, 121, 132
hardware, 79
NI, 73

141

packet, 79

planes, 72, 132

router, 74

routing, 77
MDN Modulo algorithm, 78, 79
Modulo algorithm, 31-33, 37, 42, 44, 77
Multicast, 105

copy, 107

modulo algorithm, 110

simplified modulo algorithm, 114
Multicast traffic, 5, 9
Multiport RAM, 18

NI, 11
NoC, 4, 10
Hthereal, 12, 46
arbitration, 11
Intel 80 core processor, 13
Mango, 13
NI, 11
Nostrum, 13
router, 11, 13
synchronization, 10, 12, 26
asynchronous, 30
mesochronous, 30
synchronous, 30
topology, 11
wires, 10
Wolkotte, 13
Xpipes, 13

OCF, 19, 68
ON/OFF, 20
Output queueing, 15

Packet switching, 14

RAM, 18
Random, 19
Router, 1, 13
High-speed, 4
Internet, 7
first generation, 7
second generation, 8
third generation, 8
line card, 2, 4, 8, 27

142 INDEX

MDN;, 74

NoC, 11

UDN, 29
Routing algorithm, 23
RR, 19, 34, 77

Shared buffer, 16, 29
SoC, 10
SP, 16, 26, 29, 34, 98
Speedup, 131
Store and Forward, 22
Switch fabric, 2, 9
bus-based, 9
crosshar, 2, 9, 105
buffered (CICQ), 3, 9, 26
shared memory, 9

TDM, 14
Throughput, 27, 131
congestion, 131
maximum, 131
stability, 131
time slot, 129

UDN, 5, 28, 107, 121, 131
depth, 131
hardware, 46
NI, 28
packet, 33
router, 29
routing, 31
Unbalanced traffic, 49, 50, 52, 82, 84, 130
Unicast, 105
Unicast traffic, 49

VHDL
RTL, 46
VOQ, 2, 17

WDM, 1, 7
Weighted priority, 19
Wormbhole, 22

XY algorithm, 25, 31, 42, 44, 77

