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Summary

With the transition towards renewable energy, offshore wind power farms are being constructed or planned
in many places involving placing wind turbines in the sea. The monopiles for these wind turbines are verti-
cal cylinders which are situated in a flow with high Reynolds numbers and low to intermediate Keulegan-
Carpenter numbers. The Reynolds and Keulegan-Carpenter number are dimensionless numbers for the
quantification of respectively currents and waves.

Previous research has not covered the Reynolds and Keulegan-Carpenter numbers in which energy gener-
ating devices are situated. The current research is focused on filling the gap and investigating the drag forces
on these cylinders via means of experiments. Additional simulations focussing on the free surface and end
effects were also conducted. The forces at play and the Morison equation to model these forces have been
evaluated.

It was discovered that in the investigated range, the drag and inertia coefficients depend on both Reynolds
and Keulegan-Carpenter numbers. By analyzing the results of the experiments in the time and frequency
domain, indications of vortex shedding and second-order harmonic wave forces, as well as forces from wave-
wave interaction were found. The Morison equation itself is analyzed to find that it either underestimates or
neglects these forces. By means of simulations, the effects of the free surface and the aspect ratio of the cylin-
der on the drag and inertia coefficients are found. Lastly, it is proposed to use a rewritten Morison equation
to find the drag on a cylinder in a flow with irregular waves. This equation is found to describe the drag forces
more accurately.
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Nomenclature

CD Drag coefficient [-]

FD Drag force [N]

ρ Water density [kg/m3]

U Relative velocity [m/s]

D Diameter cylinder [m]

CM Inertia coefficient [-]

FI Inertia force [N]

U̇ Relative acceleration [m/s2]

Re Reynolds number [-]

Uc Relative current velocity [m/s]

ν Kinematic viscosity water [m2/s]

KC Keulegan-Carpenter number [-]

Um Relative oscillatory water particle
velocity [m/s]

T Wave period [s]

F Force [N]

L Underwater length cylinder [m]

β Frequency number [-]

St Strouhal number [-]

fw Vortex shedding frequency [Hz]

Vr Reduced velocity parameter [-]

fn Natural frequency [Hz]

LT Total length cylinder [m]

Hs Significant wave height [m]

Tav Average wave period [s]

Uav Average current velocity [m/s]

σU Deviation in velocity [m/s]

Tp Peak wave period [s]

Hw Wave height regular waves [m]

λ Wave length [m]

Hbi Wave height bichromatic
waves [m]

γ Peak enhancement factor [-]

LS Least Squares

LSFD Least Squares Frequency Domain

R Residual [N2]

Fmeas Measured drag force [N]

Fcomp Computed drag force [N]

Tm Measured time [s]

t Time [s]

fmax Highest measurable
frequency [Hz]

f Frequency [Hz]

t0 Start time of individual wave [s]

µc Mean value coefficient [-]

σunc Variance due to uncertainty [-]

σd at a Variance found in data [-]

RMSt Root mean squared of the residual
in the time domain [N]

RMS f Root mean squared of the residual
in the frequency domain [N]

VOF Volume of Fluid

V Control volume [m3]

u Velocity vector [m/s]

n Normal at boundary [-]

p Pressure [N/m2]

∇ Gradient operator [-]

F External body force vector [N]

Fr Froude number [-]

g Gravitational acceleration [m/s2]

R2 Coefficient of determination [%]

ω Angular frequency [rad/s]

ε Phase shift [rad]

B Width tank [m]

nw Number of wheels on carriage [-]

m Mass of carriage [kg]

FMmax Estimated maximum drag
force [N]

Fg Gravitational force [N]

Fw Force on wheel [N]

c f Friction coefficient [-]

aa Acceleration [m/s2]

ad Deceleration [m/s2]

Lt ank Driving length tank [m]

tst ab Estimated stabilizing time [s]

ttestmi n Minimum test time [s]

ηmeas Measured average wave height [m]

ηl i n Linear wave amplitude [m]

ηmax Maximum measured wave
height [m]

Hm0 Spectral significant wave
height [m]
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1
Introduction

A global effort is put into transitioning towards renewable energy. This effort has pushed energy generating
devices out into the sea, to harvest the energy from waves, winds and the sun. Energy generating devices are
commonly in the shape of vertical cylinders, like monopiles, wave energy converters, or parts of offshore solar
fields [3, 11, 26, 59]. Currents and waves induce hydrodynamic forces as structures are placed in them. Much
of the area at sea can not yet be exploited with the current knowledge as methods used now to estimate the
forces lead to incorrect estimations [44, 46]. Improving the estimate of the drag of these cylinders will allow
for less conservative design, leading to an improved economic incentive to build energy generating devices
for renewable energy.

1.1. Background
A cylinder is a simple geometry, but in a flow, it creates complex phenomena.

To be able to predict forces on cylinders in flow, the drag coefficient, CD , and the inertia coefficient, CM ,
are used. They are shown in equation 1.1. CD is used to find the drag forces and CM is used to find the inertia
forces. In this equation FD denotes the drag force, ρ the water density, U the relative velocity between the
water and cylinder, D the diameter of the cylinder, FI the inertia force and U̇ the relative acceleration.

CD = FD

0.5ρU 2D
CM = FI

0.25πρU̇ D2
(1.1)

1.1.1. Reynolds (1883)
O. Reynolds studied laminar and viscous flows and the transition between them. His research introduced the
Reynolds number (Re). The quantification of the regime of the flow creates the ability to predict the boundary
layer, turbulence and possible turbulence patterns around an object, which then again lead to predictions of
CD [77]. Equation 1.2 shows the formulation of Re, in which ν is the kinematic viscosity of water and Uc the
relative current velocity.

Re = Uc ·D

ν
(1.2)

In research, it has been stated that the drag coefficient depends on only the Reynolds number, the surface
roughness and the geometry [19]. However, when research continued, it was found that the drag coefficient
also depends on oscillations in the flow.

1.1.2. Morison (1950)
The Morison equation is a semi-empirical equation developed by J.R. Morison, J. Johnson, and S. Schaaf on
the forces on a cylinder in oscillatory flow [71]. The theory was developed using experimental results and
the equations of velocity and acceleration of water particles due to waves of small amplitude. The equation
resulting from the research separates two out of phase force components: 1) a drag force proportional to the
square of the velocity and 2) an inertia force proportional to the horizontal component of the acceleration
[57]. The Morison equation, shown in equation 1.3, requires a known drag coefficient and inertia coefficient,

1



2 1. Introduction

often obtained from approximations or empirically [44]. In equation 1.3, L is the underwater length of the
cylinder.

F = 1

2
·ρ ·D ·L ·CD ·U |U |︸ ︷︷ ︸

1

+ 1

4
·π ·ρ ·D2 ·L ·CM ·U̇︸ ︷︷ ︸

2

(1.3)

A modification on the Morison equation has also been used. This modification separates the drag force into a
static and oscillatory part, leading to three terms in the Morison equation [86]. This is done to separate steady
and oscillatory fluid motion [48] or to separate the flow and the periodic movement of the cylinder [56]. The
three-term Morison equation is further discussed in paragraph 4.5.

1.1.3. Keulegan-Carpenter (1958)
Up to 1958, the oscillatory properties of the flow compared to the structure were not cohesively described.
G. H. Keulegan and L. H. Carpenter found a way to describe this while investigating the inertia and drag
coefficients of cylinders and plates in sinusoidal currents [47]. The Keulegan-Carpenter number in equation
1.4 was introduced. In this equation Um is the relative water particle velocity and T is the wave period.

KC = Um ·T

D
(1.4)

The numerator is proportional to the stroke of the motion. This means that if the KC number is small, the
orbital motion of the water particles is small, indicating low waves relative to the cylinder. This number can
predict, similar to the Reynolds number, flow patterns [8]. As Morison, Johnson, and Schaaf had previously
found, Keulegan and Carpenter also concluded that the drag coefficient indeed does not only depend on the
Reynolds number, but also the Keulegan-Carpenter number.

1.1.4. From 1960 onwards
The Morison equation can be used to find the forces on a cylinder in waves and currents. However, what
values of CD and CM should be used, how these values can be found and the flow effects that occur and their
influence is still a topic of research. Venugopal et al. [85], Sumer [77] and Sarpkaya [70] are some that research
the hydrodynamic forces on the cylinder. Bearman [6], Rockwell [66], Thorson [80] and Zdravkovich [93] are
more focused on the wakefield and simulating it. The work of Sarpkaya and Bearman is discussed as their
contributions give insight into the problem.

T. Sarpkaya
Sarpkaya [67] created an overview of CD and CM with experiments for 100 < Re < 1.44 ·106 and 0.17 < KC <
80. With this research he found a dependency of CD and CM on the frequency number, β (equation 1.5). β is
still used to evaluate CD and CM . It is inversely proportional to the Stokes number. A connection between the
Stokes number and the flow around cylinders was previously found. Now it is known that it is a representation
of the relationship between Re and KC [70].

β= Re

KC
(1.5)

P.W. Bearman
Bearman mostly focused on the flow behind cylinders in higher ranges of the Re and KC. Bearman’s research
continued on previous work. In this previous work, a coefficient for vortex shedding was found, the Strouhal
number (St) shown in equation 1.6, in which fw is the vortex shedding frequency. This is the vortex shedding
frequency in the flow around a fixed cylinder at a fixed Reynolds number [6].

St = fw D

U
(1.6)

Bearman’s work includes experiments and simulations looking into vortex shedding and vortex-induced vi-
brations (VIV). VIV is important for the fluid-structure interaction (FSI) of cylinders on springs as fluid-
induced motion (FIM) is excited. This motion drastically influences the drag (and lift) forces on the cylin-
der [8]. Previous work had found that vortex shedding can lead to resonant synchronization, influencing the
forces. It is correlated to the reduced velocity parameter (Vr ) [90], shown in equation 1.7. In this equation, fn

is the natural frequency in a vacuum.

Vr = U

fnD
(1.7)
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1.1.5. Simulations
Work has started on simulating this problem, as computational power is now available to researchers. Mod-
elling of a cylinder in high Reynolds numbers is known to be problematic [73]. Tools which use empirical and
semi-empirical solutions relying on hydrodynamic force coefficients found in experiments are developed,
such as SHEAR7, VIVA, and VIVANA. However, these methods are still subject to large uncertainties. So large
even, that safety factors of 10 to 20 are required [87].

Modelling the problem for high Reynolds numbers using computational fluid dynamics (CFD) is an active
field of research. Extensive research into the modelling methods at the critical regime of Reynolds numbers
using the turbulence models Reynolds Averaged Navier-Stokes (RANS), Detached Eddy Simulations (DES)
and Large Eddy Simulations (LES) was conducted by Qiu et al. [63]. After this research from 2017, new re-
search was conducted by Sreenivasan and Iyer [73] and [2] on (wall) turbulence models for high Reynolds
numbers between 2·104 and 1·106, and CFD predicted CD by Xiang and Guedes Soares [91]. This research
brings promising results, but despite the extensive work done, modelling of turbulent flow over cylinders at
high Reynolds numbers continues to be a challenge [73].

1.1.6. Overview of research
With the help of overviews created by Sumer and Fredsoe [76] and Sreenivasan [73] the ranges which have
been previously researched are shown in table 1.1. In this table, it can be found that no research has been
done for high Reynolds numbers (Re > 1.4·106) and low to intermediate Keulegan-Carpenter numbers (0.17 <
KC < 3), as was also stated by Cobbin et al. [20] and Sumer and Fredsoe [76]. This is problematic as these are
the ranges in which energy generators are situated, as paragraph 1.2 shows.

Table 1.1: Researched values of Re and KC numbers. The asterisk show that the research investigated irregular waves. Note that for
Morison et al. no values for KC are known as Keulegan and Carpenter’s research had not yet been published. Dean et al. [22] used
measured forces on a monopile, without a known wave spectrum, and thus reported no KC values either

Current and oscillatory flow
Reynolds Keulegan-Carpenter

min max min max

Verley and Moe [86] 5·102 2.5·104 3.8 6.1
Sarpkaya [69] 1.75·102 1.44·106 0.17 1
Sarpkaya [68] 1·102 6 ·103 0.5 3.2

Honji [76] 5·102 5·103 1.2 2.2
Williamson [89] 1·103 7·103 4 35

Justesen [45] 1·103 2·105 7 15
Aristodemo et al. [5] 1.74·104 3.64·104 4.4 8
Høgedal et al. [76] * 1·104 5·104 2 35
Shankar et al. [72]* 3·103 3.8·104 0.5 28

End effects, current and oscillatory flow
Reynolds Keulegan-Carpenter

min max min max

Moe et al. [56]* 2.9·105 1.2·106 7.6 37
Boccotti et al. [9]* 2.5·104 2·105 4 30
Bearman et al. [7] 1.5·104 5·105 1 20

Stansby et al. [74]* 4·103 1.9·104 5 25

End effects, vertical surface piercing cylinder, current and oscillatory flow
Reynolds Keulegan-Carpenter

min max min max

Dean et al. [22]* 6·106 8·107 ? ?
Morison et al. [57] 2.2·103 1.1 ·104 ? ?
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1.1.7. Critical reflection on existing research
During the years of research, different attempts have been made to create a method to correctly estimate
the forces on a cylinder in current and waves. The discussed Morison equation is commonly used but has
received critiques over the years. Morison’s equation has proven effective in research [56]. However, the
methodology of these researches has often been: do experiments, find CD and CM from them, and then check,
with these coefficients, if the force from Morison’s equation agrees with the force found in experiments. Most
methods of finding CD and CM are based on the Morison equation, thus the coefficients have been calibrated
to the experiment and Morison equation, thus giving good results. In practice CD and CM are not known [55].
Capannelli and Gudmestad [15] stated that the CD used for North Sea Design Practice was too low and has
lead to under-estimation of design loads and unsafe structures. They proposed using a new CD , 50% higher
than the value previously used, showing the inaccuracy of prediction methods.

These problems have led to the interest of researchers. Some, like Sarpkaya [70], Iwagaki and Asano [42],
Yuan and Huang [92], Verley and Moe [86] and Lighthill [21] have made proposals to improve on the used
methods. Lighthill proposed a correction on Morison’s equation. However, as Moe and Gudmestad [56] wrote,
no attempts to replace or improve Morison’s equation has been successful [21]. Sarpkaya has proposed β and
m, Yuan and Huang VR +KCH , Iwagaki and Asano KC∗

2 , and Verley and Moe V M , all dimensionless num-
bers that correlate with CD , so a correlation may be found and better estimations of these coefficients can be
made in the future. However, a cohesive correlation for CD and CM and the many flow parameters has yet
to be found [44, 56]. To find one will be challenging, as the coefficients attempt to capture multiple hydro-
dynamic phenomena, each acting with its own amplitude, frequency and phase. Predicting the combination
and interactions and capturing it within those two coefficients is challenging.

1.2. Problem statement
The situation found in practice is investigated to find the applicability of research done.

1.2.1. Energy generators
The average dimensions of the cylinder-shaped energy generators are obtained from literature [11, 14, 52, 59].
To find the average dimensions of wind turbines, 2653 wind turbines from 30 offshore wind farms are used
[59]. In practice, these monopiles have a minimum length of 21 meters and a maximum length of 85 meters.
The diameter of the monopiles varied between 2.1 and 7 meters.

As wave energy converters are less common, three different designs and their dimensions are used to find
the average size. The lengths of the designs vary between 23 and 44.3 meters, and the diameter between 0.3
and 9.5 meters [11, 52]. The averages are shown in table 1.2. In this table LT is the total length.

Designs for a new kind of offshore energy generating device is also emerging: offshore solar fields. Some
initial designs for these consist of structures made up of buoys, shaped as vertical, surface piercing cylinders
[3, 26]. These designs are in such an early stage of development, that no dimensions are known.

Table 1.2: Average dimensions of vertical cylindrical energy generators

LT [m] D [m]
Monopile windturbine 51 4.8
Wave energy converter 33 4.2

1.2.2. Environmental conditions
Not only the dimensions of the design are of importance, but also the location is. This determines the flow
in which the device is situated. For different parts of the world, area’s where these kind of devices might be
placed are looked into [13, 18, 51, 52, 54, 62, 78]. The average over a larger area and over time is shown in
table 1.3. In this table Hs is the significant wave height, Tav the average wave period and Uav the average
current velocity.
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Table 1.3: Average parameters for various area’s at sea where energy generators might be placed

Depth
[m]

Hsmi n

[m]
Hsmax

[m]
Tavmi n

[s]
Tavmax

[s]
Uav

[m/s]
Re
[-]

KC
[-]

North Sea 51 1.3 2.7 5 7 0.38 1.4·106 0.9
South China Sea 33 0.9 3.2 5.5 7 1.6 5.8 ·106 1
U.S. Coast 75 0.6 1.6 5.7 7.9 0.35 1.3·106 0.5

The values shown are the main parameters of wave spectra. A wave spectrum is a representation of a real
sea state which is irregular and unsteady. An ocean wave spectrum will vary over time and location. Models
have been created to capture the average sea state for certain area’s. A well known and often used spectrum
is the JONSWAP spectrum, developed for the North Sea [35]. For design purposes, the JONSWAP spectrum is
applicable for many areas, such as around South-America, Australia and Africa [16]. For other area’s like the
South China Sea, research is done to find an applicable wave spectrum model [53].

For Re and KC alternative formula’s for irregular oscillatory flow are established, shown in equation 1.8
[50]. In these equations σU is the deviation in velocity and Tp the peak wave period.

Re =
p

2σU ·D

ν
KC =

p
2σU ·Tp

D
(1.8)

1.3. Objective
From the research into the energy generators and their environment, it is found that energy generators are sit-
uated in flow with high Reynolds numbers and low to intermediate Keulegan-Carpenter numbers in irregular
waves as shown in table 1.4. The energy generators pierce the surface and they can have a free end, inducing
free surface effects at the water-air interface and end effects. It is known that it is not possible to reliably
estimate the forces for this situation [15, 55]. The ranges in table 1.1 covered by previous research show that
the situation in practice is not covered by existing research, as was also found by previous researchers [9, 44].
The gap for Re and KC is visualized in figure 1.1. The efforts in this thesis are focused on finding CD and CM

and to investigate the drag forces on a cylinder in high Reynolds and low Keulegan-Carpenter numbers using
experiments.

Table 1.4: Showing the discrepancy of the ranges of Re and KC previously researched and found in practice, and showing the scope of the
current research

Re KC

In practice 1.2·106 - 6.3·106 0.2 - 3.1

Previously researched 1·103 - 1.4·106 0.17 - 80

Current research 9.7·105 - 2.0·106 0.49 - 1.9

Figure 1.1: Visualized gap in existing research. Researched values from table 1.1 in solid blue, the situation in practice in dotted red and
scope of the current researched in green vertical lines. Note that there is little overlap between the previous research and the values
found in practice

1.3.1. Goal
Investigating the variations of the drag of a vertical surface piercing cylinder in waves and current at high
Reynolds numbers and low Keulegan-Carpenter numbers
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Research questions
1. Is the drag coefficient mainly dependent on the frequency of the incoming waves?

2. How can the drag of a cylinder in irregular waves and current be modelled?

3. Do the forces on a cylinder correlate to any of the non-stochastic parameters of the flow?

1.3.2. Modelling the problem
To fulfil the stated goal experiments are conducted. The effects of current velocities are important to find the
dependency of the wave frequency on the drag, thus the current velocity has been varied as well as the wave
frequency [32]. The effects of the waves, the free surface effects and end effects depend on the dimensions
of the cylinder [12, 65, 66]. To minimize interference of surface roughness, hydroelasticity, piston-mode, or
wall effects, the cylinder will be a smooth, rigid and solid cylinder with a constant diameter in a water-filled
basin with dimensions following the ITTC guidelines [41]. The free end of the cylinder and the free surface
are of interest and thus included in the research. The experiments were scaled for Re and KC. This means
that the surface effects, which scale differently, will not be realistic. The effect this and the end effects have
on the results is investigated in paragraph 3. The flow is uniform, unidirectional, with constant current and
unidirectional waves in the same direction. Regular, bichromatic and irregular waves are tested, as there is a
gap in research for all wave types. For irregular waves, the JONSWAP model is used, as it is one of the three
models recommended by the ITTC [40]. The values tested are shown in table 1.5. The choice for them is
explained in paragraph A.1 in the appendix.

Table 1.5: Re and KC numbers considered in the current research

Re 9.71·105 1.08·106 1.19·106 1.30·106 1.41·106 1.52·106 1.89·106 2.02·106

KC 0.49 0.75 1.1 1.5 1.9



2
Experiments

To research the problem it was chosen to conduct experiments. A detailed description of the choice of
methodology, facility, and the designing of the experiments is given in appendix A. In this chapter, the ex-
periments are summarized and the data processing method is discussed.

2.1. Experimental setup
The setup adheres to the modelling of the problem as described in paragraph 1.3.2. As such, it is a stiff,
smooth, closed cylinder with a constant diameter. Due to the large forces expected on the model, the design
choice was made to use a primary lever setup. A cross-section of the test setup is shown in figure 2.1. In
the setup, the drag force and the distance of the pivot point to the application point of the drag force are
the quantities of interest. These are found using loadcells placed such that the forces in the x-direction are
measured. The positive x-direction is defined in the direction of current and waves. The design process of the
experiments and discussion on the experimental setup is shown in appendix A.

Figure 2.1: Left: photograph of the test setup, model shown in yellow. Right: 2D model of the test setup, distances are given in millimetres

7
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The setup was build using steel H-beams of 0.15 x 0.15 m cross-section, creating a stiff structure. Alu-
minium beams of 0.08 x 0.08 m cross-section were used to further stiffen the setup. Three loadcells of the
type H3-C3-200kg-3B by Zemic were used. A PVC pipe was used as the cylinder. Spray protection, not shown
in the photograph in figure 2.1, was placed on the top of the cylinder to protect the electronics. The roundness
of the cylinder was checked and a maximum difference in diameter of 0.3% was found. The measurements
can be found in appendix A. The cylinder was treated until a smooth surface was achieved.

2.2. Test plan
The velocity, wave period, wave height and wave type are varied. As the ranges of KC are well researched, the
choice was made to have a larger range of Reynolds numbers. Thus for the current velocity and wave period,
respectively eight and five different data points are tested. All tests are repeated between two to four times
to evaluate the consistency of the results. The values that are tested are chosen to achieve the goal of the
research while being within the limits of the test facility, as discussed in appendix A. The values are shown in
table 2.1. In this table Tp is the peak wave period of a wave spectrum.

Table 2.1: Values of U , T , Tp and wave types tested and the resulting Re and KC values

U [m/s] 3.00 3.34 3.68 4.02 4.36 4.70 5.04 5.38
T or Tp [s] 1.0 1.24 1.48 1.72 1.96
Wave type Harmonic Bichromatic Regular

Re 9.7·105 1.1·106 1.2·106 1.3·106 1.4·106 1.5·106 1.9·106 2.0·106

KC 0.49 0.75 1.1 1.5 1.9

2.2.1. Wave modelling
The research investigates regular, bichromatic and irregular waves for the reasons discussed in paragraph
1.3.2. The waves are created using a flap-type wavemaker in the towing tank. The wave parameters are shown
in table 2.2. In this table Hw is the wave height of regular waves, λ the wavelength, Hs the significant wave
height of a wave spectrum, and Hbi the wave height of bichromatic waves.

The regular waves are modelled with a constant Hw /λ of 1/25. This allows for stable waves during ex-
periments and larger values of KC, as opposed to using less steep waves. The irregular waves are modelled
according to the JONSWAP spectrum as described in the literature and the ITTC guidelines [33, 40, 61]. The
JONSWAP spectrum is modelled to be dependent on Tp and the peak enhancement factor (γ). Spectra are
created with Tp equal to the regular wave period tested, γ is kept constant at the typical value of 3.3, which
resembles an intermediate wind-wave growth state.

Table 2.2: Parameters of the waves used during tests. The bichromatic waves are a combination of T = 1.24 & 1.72 s, and T = 1.24 & 1.96 s

T or Tp 1.0 s 1.24 s 1.48 s 1.72 s 1.96 s
Hw 0.055 m 0.094 m 0.14 m 0.19 m 0.24 m
λ 1.6 m 2.4 m 3.4 m 4.6 m 6.0 m

Hs 0.06 m 0.1 m 0.14 m 0.18 m 0.24 m
Hbi 0.05 m 0.09 m 0.12 m
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2.3. Data processing
For this research CD and CM have to be obtained from the force data as these give insight into the forces and
their dependency on KC and Re. There are many methods to find CD and CM , such as method of moments,
Fourier series approach, Fourier average approach, weighted least squares, least squares (LS) method and
least-squares frequency domain (LSFD) method [39, 64]. Each method will yield different values for CD and
CM , as none of these methods can determine exact values for CD and CM [44]. However, literature shows
that the LSFD method is the most reliable [64]. Still, because of the variance between methods, both the LS
method and LSFD method are chosen to determine the coefficients to compare. These can both be used for
irregular waves and both use the entire time record which will give more accurate results.

Least Squares method (LS)
The LS method uses equation 2.1, with which CD and CM can be determined. By minimizing the residual,
coefficients are found. In this equation Fmeas is the measured drag force in the time domain, Fcomp the
computed drag force and Tm the measured time and t indicates time.

R =
∫ Tm

0
(F (t )meas −F (t )comp )2d t (2.1)

The LS method is stated to be reliable and accurate [39], and it can be applied to irregular waves [85]. However,
with this method, small phase shifts can lead to large inaccuracies in the estimated coefficients. Also, as
shown in equation 1.3, particle velocity and acceleration for the irregular wave field need to be known. This
is found using the method described by Donelan et al. [24] in his second chapter. This method is only valid
within a certain time window due to the limited time observation of the spectrum [58]. It should be noted
that this method uses the dispersion relation and thus assumes the waves to be fully linear, which they are
not completely. This, combined with measuring errors, can lead to a phase shift between the estimated and
actual velocity and acceleration of the particles. This, in turn, will lead to inaccurate results when using this
method.

Least Squares Frequency Domain method (LSFD)
The LS method can also be performed in the frequency domain. This can be computed using equation 2.2. In
this equation f indicates frequency and fmax the highest measurable frequency, for these experiments that
is 100 Hz.

R =
∫ fmax

0
(F ( f )meas −F ( f )comp )2d f (2.2)

As the residuals are calculated in the frequency domain, more importance is given to accurately representing
the frequency of the force.

A problem with the LS methods is that a small phase shift can cause inaccurate results [64]. That does not
occur when applying the LSFD method.
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2.4. Error analysis
The results from the experiments after data processing have been evaluated using error analysis.

First, the error that occurs due to known measuring deviations is estimated and an uncertainty interval
(σunc ) is identified. To find this uncertainty, the data processing steps were repeated with the uncertain
variables changed to include the perceived level of inaccuracy, discussed in appendix A. For each run, the
maximum variance of the values was used, and then the average of the variance for all the runs was obtained.
The results are shown in table 2.3, showing the mean value µc as well. A large difference in µc for CM is found,
as the LS method estimates CM to be zero if there are phase shifts between the measured and computed
forces.

Secondly, the spread of data is calculated, using the variance of all the tests that were repeated. The
average of all the runs was used. Tests were repeated two to four times. The overall average variance is used.
The variance of the spread of data (σd at a) can be found in table 2.3.

The root mean squared (RMSt ) of the residual from equation 2.1 should show the accuracy of the esti-
mated coefficients. However, first, note that noise and phase shifts will increase the RMSt values. The RMSt

method will thus favour the LS method as it compensates for a phase shift by tuning the coefficients. This is
why this method is also implemented for the frequency domain by using the root mean squared of the resid-
ual from equation 2.2 (RMS f ). RMSt and RMS f were normalized to compared to literature using formula
2.3. The normalized values in previous research are in the range of 0 to 0.05 for KC < 2 [48]. The results in
table 2.3 show that in the frequency domain the results are as accurate, but in the time domain they are not.

∆FRMS = 2 ·RMS

max(Fmeas )−min(Fmeas )
(2.3)

Table 2.3 shows the results of the error analysis. The spread in the data is slightly larger than the expected
spread in data due to uncertainty. However, the difference for the LSFD method is limited and thus deemed
acceptable.

The error analysis showed that the LSFD method gives more consistent results for the coefficients, which
is in line with literature [64]. This method is thus used. For the additional experiments without waves, this
method is not applicable so the LS method is used.

Table 2.3: Error analysis for both the LS and LSFD method, shown are the averages for all experiments

µc σunc σd at a RMSt RMS f ∆FRMSt ∆FRMS f

LS CD 0.45 0.0034 0.0045 150 8.1 0.30 0.024
CM 1.01 0.26 0.30

LSFD CD 0.46 0.0024 0.0048 167 7.5 0.31 0.023
CM 2.47 0.15 0.14



3
Simulations

As stated in paragraph 1.1.5, research is currently focused on improving simulation methods for the problem
at hand. A need for simulations is there as scaling combined with a focus on the Reynolds numbers in the
experimental research leads to the experiments mostly being conducted at high Froude number, larger then
is expected for true scale energy generating devices. Also, end effects dependent on the length over diameter
ratio influence on CD , making it difficult to apply experimental results to realistic cases with different geome-
tries. Using simulations these aspects are further investigated. The objective is to evaluate the free surface
effects and end effects on a vertical surface piercing cylinder, using simulation methods to examine experi-
mental results. Simulations should include viscosity to simulate the Reynolds dependent effects. ComFLOW
is used as it is specifically designed for viscid flow simulations including free surface.

In this chapter, ComFLOW and the setup of the simulations are discussed. In paragraph 4.4 the results
from the simulations are shown.

3.1. ComFLOW
ComFLOW is a numerical method for the simulation of fluid flow with a free surface, based on the Navier-
Stokes equations [83]. It employs a finite volume discretization. The Volume of Fluid (VOF) method is used
to displace the free surface. It can deal with run-up, wave breaking and water-on-deck situations [36].

Governing equations
The one-phase flow model is used. It assumes that the effect of air can be neglected and models it as a
vacuum. Conservation of mass is described by the continuity equation and conservation of momentum by
the Navier-Stokes equation. The conservative form of the equations are shown respectively in equation 3.1
and 3.2. The incompressible form of the equations are used as water is modelled as an incompressible viscous
liquid, which is realistic for the expected conditions. In these equations ∂V is the boundary of the control
volume V , u is the velocity vector in the x, y and z directions: (u, v, w), the normal at the boundary is indicated
with n, p is the pressure, ∇ the gradient operator and F = (

Fx ,Fy ,Fz
)

the external body force [79].∮
∂V

u ·ndS = 0 (3.1)∫
V

∂u

∂t
dV +

∮
∂V

uuT ·ndS =− 1

ρ

∮
∂V

(pn −νρ∇u ·n)dS +
∫

V
F dV (3.2)

Numerical discretization
The equations are discretized for time and space. The time derivative is discretized using the forward Euler
method, leading to the first-order accuracy. Space derivatives are discretized on a fixed Cartesian grid with
staggered variables [82]. A staggered grid stores the scalar variables at the cell centres, and the velocity or
momentum variables at the cell faces [34].

VOF is an efficient free surface modelling method for complicated free boundary configurations [37]. The
VOF method consists of a scheme to locate the surface, an algorithm to track the surface, and a means of
applying boundary conditions at the surface [27].

11
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The nonlinear convective term is discretized with an upwind method. The method is only first-order ac-
curate, and thus can not capture all flow phenomena well [43]. For flow around cylinders, vortex shedding
will most likely not be accurate, or vortex shedding might not occur at all in simulations using this scheme
[28]. Due to this, the simulated resistance can be inaccurate. This inaccuracy is dependent on the grid size,
with smaller grid sizes, more accurate results are expected to be found. The advantage of first-order upwind
discretization is that it is stable for convection dominated flows.

3.2. Simulation setup
The basic experimental setup is modelled in ComFLOW, with a cylinder of 0.4 m diameter and an under-
water length of 0.5 m. The domain is smaller than the towing tank to minimize computing time, but still
large enough to simulate the wake, the flow around the end, and the flow in front of the cylinder and to the
sides of the cylinder. The simulations are 3D, without a turbulence model. The choice is made to not use
a simulations method with turbulence model as these are still problematic, as discussed in paragraph 1.1.5.
Table 3.1 shows the number of cells, domain dimensions, the discretization method for the convection term
and the simulated length of time of the simulations. ComFLOW modifies the time step to conform to the
Courant-Friedrichs-Lewy (CFL) limit, this timestep is thus not constant and will be smaller for finer grids.
The grid used for the simulations is shown in figure 3.1. At the inflow, a velocity boundary condition (52
in ComFLOW) is used. At the outflow, a generating and absorbing boundary condition (11 in ComFLOW)
based on the Sommerfeld boundary condition is implemented [88]. In ComFLOW an object is modelled by
determining if cells of the Cartesian grid are solid, partially filled or empty.

Table 3.1: Computational details of the simulations

Program
Number

of cells (x, y, z)
Grid type

Domain
(L, W, H) [m]

Waterdepth
[m]

Convection
Term

Run time
[s]

Wave
model

ComFLOW 300 x 75 x 63 Cartesian 12 x 3 x 2.5 1.5 Upwind 2.5 Airy

Figure 3.1: Top and side view of grid with dimensions, black indicates the location of the cylinder within the grid

Simulations with a varying number of cells, underwater length of the cylinder, flows and height of the
upper boundary are conducted. The values are shown in table 3.2. These variations allow for a study into
grid refinement, end effects and free surface effects. By placing the upper boundary of the flow below the
free surface, effectively no free surface will be simulated. Similarly, an underwater length of the cylinder of
1.5 meters until the bottom of the domain will lead to no free end and thus no end effects being simulated.
The results of the simulations after 1 second were used, to allow the simulation to initially stabilize. The
simulation starts with an approximated velocity field that does not satisfy the boundary conditions yet. This
causes a disturbance that needs to settle before the output can be trusted. As stated in paragraph 4.4.1, it is
found that a time of more than the simulated time is needed to eliminate all start-up effects.

Table 3.2: Grid sizes, lengths, flows and free surface effects tested with simulations

Number of cells 90 000 307 800 1 417 500 3 880 800 8 237 700
Underwater length cylinder [m] 0.5 0.75 1 1.25 1.4 1.5

Current [m/s]
Wave period [s]

Wave height [m]

0.88
-
-

4.02
1.48
0.14

Free surface effects yes no



4
Results

The goal of this research is to find CD and CM of a surface piercing cylinder in flow with high Reynolds and
low Keulegan-Carpenter numbers and to investigate the drag force on such a cylinder. The results of the
experiments are evaluated and discussed in this chapter.

4.1. Comparing to previous research
A deliberate overlap with existing research was made to be able to compare to previous research. Figure
4.1 shows data from previous research, compared to the results of experiments in a steady current. When
evaluating the results it is found that the data is similar to that of previous researchers, but not identical.

Firstly, the values for CD found in the current research are lower for subcritical ranges of Re. Chaplin et al.
and Hay’s [17] research was conducted with a vertical surface piercing cylinder with a length over diameter
ratio of 2 and Fukuoka et al. [29] with a ratio of 1.25, both larger than the 1.21 in the current research. It is
likely the cause of the difference, as the cylinder is short for its diameter, and this is found to lead to lower
values of CD in a similar range of Reynolds numbers [29].

A second difference between previous research and the current research can be found when observing
the trend of the data. The value for CD from the current research seems to decrease at 7·105, where for the
previous research, this happens between Reynolds numbers of 2·105 to 4·105. When comparing this to liter-
ature [67], it is found that this could indicate the cylinder in the current research being smoother than the
cylinders in the previous research, as the transition period is found at higher Reynolds numbers. This could
not be verified.

Figure 4.1: Additional measurements of current research compared to previous research [17, 29, 49]. The dependency of CD on Re in a
steady current is shown
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Next, we compare the results from tests in flow and waves to previous research. Due to the size of the
cylinder, an overlap with previous research could not be made. In figure 4.2 a comparison is made with
previous research also on surface piercing cylinders [60, 92]. However, this research is at different Reynolds
numbers. There is also no overlap for KC, so evaluating the current research in this figure is difficult. However,
the results from the experiments are in line with the previous research, especially since for a Reynolds number
closer to the previous research, the drag coefficient becomes more similar.

It is thus concluded that the results from the experiments be trusted.

Figure 4.2: Current research compared to previous research [60, 92] at Re < 1.1 ·104. The dependency of CD on KC is shown. Note the
different values of Re. One run is conducted at a Re = 1.6·105 to bridge the gap with previous research

4.2. Coefficients
Figures 4.3 and 4.4 show the resultant CD and CM for the experiments conducted for the values shown in table
2.1. Evaluating the results, it is found that CD varies between 0.4 and 0.5 for all combinations of KC and Re.
CM varies between 0 and 3.5. The values of CD and CM set out against KC are for various Re values, and vice
versa for the right figure. As the spread of data is larger when plotted against KC compared to it being plotted
against Re for CD it can be concluded that CD is more strongly dependent on Re than KC for the given range.

Figure 4.3: CD found from the experimental data, its correlation to KC and Re shown

Figure 4.4: CM found from the experimental data, its correlation to KC and Re shown
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The values of CD and CM for all three wave types have also been set out againstβ, shown in figure 4.5. This
visualization allows for the dependency of CD and CM on both KC and Re to be evaluated in one figure. The
figure shows that for lower values of β, thus for relatively larger values of KC compared to Re, CD increases.
For CM a large spread is found. The results also show an increase for lower values of β.

To find more detailed results, the different types of waves have been separated and the different values of
KC are differentiated. The results are shown in figure 4.6. Firstly, it shows a repetitive pattern for the various
values of KC. As this pattern is found at constant KC, it must indicate the effect of Re. Secondly, it can be
found that for regular waves, CD increases with KC. This is not found for irregular waves. It is thought that as
it is a wave spectrum, the effect of increased wave height is lost in the great variety of wave components.

For CM it is found in figure 4.4 that its values strongly dependent on KC and Re for regular waves, as CM

increases for both. For irregular waves, similar to CD , no such clear conclusion can be made. Interesting about
the values of CM is that values larger than the theoretical maximum of two are found [44]. This theoretical
maximum is determined without free surface effects and does not include the difference in the water column
at the cylinder due to waves. The moment the cylinder is between a peak and through, there is a difference
in height of the water between the front and back of the cylinder. This is in phase with the acceleration in the
wave and is thus included in CM . For the largest wave tested with a period of 2 s and a height of 0.24 m, it is
calculated that the theoretical maximum for this specific setup is 6.6. These are estimations but show that a
value of 3.5 is not unreasonable when free surface effects are included.

Due to the chosen experimental setup, the application point of the drag force is also known. The results
are shown in figure 4.7. dF is the application point measured from the bottom of the cylinder. dF was found
to be on average 0.29 m above the bottom of the cylinder. This is above the middle of the underwater length
of the cylinder, indicating that the average force is not spread equally over the length. For Reynolds numbers
below 1.5·106, the application point is at the middle of the cylinder. This means that the forces that act in the
top half of the cylinder are probably negated by a force on the lower half of the cylinder. For higher Reynolds
numbers, dF increases tot 0.33 m from the bottom, 69% of its underwater length. No clear dependencies on
KC were found.

Figure 4.5: CD and CM found from the experimental data, plotted for β. Note the different scale of the y-axis

Summary
It is concluded that CD varies between 0.4 and 0.5 in the range tested including waves. For CM values between
0 and 3.5 were found. Both depend on both Re and KC. Regular waves showed a stronger dependence on KC
compared to their irregular counterparts with a peak frequency equal to the regular wave frequency. This, as
well as the values of the coefficients being different, shows that the coefficients found for regular waves are
not applicable for irregular waves for the same KC and Re. The application point of the drag force is in the
middle of the underwater length of the cylinder for Re < 1.5·106, and for larger values above the middle.
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Figure 4.6: CD and CM found from the experimental data, plotted for β. Wave types are shown separately and different KC values are
made identifiable, showing the dependencies on Re and KC more clearly. Note the different scale of y-axis

Figure 4.7: Distance to the application point of the drag force (dF ) measured from the bottom of the cylinder for Re and KC. The spread
shown in both is due to a variation over the range of respectively KC and Re
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4.3. Analysis in frequency domain
By evaluating the measured forces in the frequency domain, a better understanding of the different hydrody-
namic phenomena can be obtained. The sampling rate during testing was 1000 Hz and the data is filtered at
100 Hz.

Sources of periodic forces
The vortex shedding frequency is estimated using the Strouhal number (St). St of 0.2 and 0.5 is expected for
Reynolds numbers in the tested range for a smooth cylinder in a steady flow. The effects of waves on these
values are difficult to quantify due to flow reversal [76].

The load cells through which the cylinder is fastened are practically stiff springs. Natural frequencies of
the system can influence the data due to resonance with periodic forces and frequency lock-in. Through
excitation tests, the natural frequencies are found to be 10 to 11 Hz and at 15 to 16 Hz.

Previous research has shown that higher harmonic forces might occur during the experiments [31, 65].
Ringing has been found to affect surface piercing cylinders in waves. These ringing responses occur during
high sea-states. At these high sea states, the wavelength is longer than ten times the diameter and the wave
height is comparable to the cylinder diameter. In experiments with similar values [31], a second-order har-
monic suction force due to free surface effects was found. Ghadirian and Bredmose [30] found that secondary
load cycle is confined from just above still water level to 1.5 times the cylinder diameter below the still water
level. This is the range in which the cylinder in the experiments is situated.

The test setup is placed within a larger setup: the towing tank carriage. In the force measurements at
velocities below 1 m/s, a periodic force equal to a rotation of the wheels of the carriage was found, implying a
possible imperfection on the wheels. The effect of this during higher velocities is not clear, but no frequency
equal to the frequency of the rotations of the wheels was found when analyzing the test data.

Data analysis
Figures 4.8, 4.9, 4.10 and 4.11 show the frequency components found using a Fourier transform of the

force measurements. In these figures also the expected frequencies of possible sources of the periodic forces
are indicated. Possible sources in figure 4.8 are the double vortex shedding frequency and the natural fre-
quencies. The vortex shedding frequency is shown as twice as high as the vortex shedding cycle includes two
vortexes, 180◦ out of phase, thus inducing double the periodicity in the drag direction.

In figure 4.8 it is shown that it is likely that vortex shedding occurs and that the effect is intensified by the
natural frequencies of the experimental setup. This is most prominent at Reynolds numbers above 1.5·106

and frequencies of 7 to 10 Hz.
In the figure frequencies with a significant force amplitude between 12 and 20 Hz were found. These

frequencies were found for all flow types. The source is unknown, but it is most likely caused by the carriage
of the towing tank and is thought to not be a hydrodynamic effect.

Figure 4.8: Frequencies found during tests without waves with likely sources of periodic forces indicated. Brighter red indicates a higher
amplitude compared to the maximum amplitude per value of Re
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Figure 4.9: Frequencies found during tests with regular waves with likely sources of periodic forces indicated. Brighter red indicates a
higher amplitude compared to the maximum amplitude per value of Re. The colour of the amplitudes is enhanced by a factor two. Wave
frequencies are adjusted for the Doppler effect

Figure 4.10: Frequencies found during tests with bichromatic waves with likely sources of periodic forces indicated. Brighter red indi-
cates a higher amplitude compared to the maximum amplitude per value of Re. The colour of the amplitudes is enhanced by a factor
two. Wave frequencies are adjusted for the Doppler effect

In figure 4.9 the frequency components found from the force measurements using a Fourier transform
are shown. The figures show, in addition to the possible sources shown in figure 4.8, the wave frequency
and the double wave frequency, both adjusted for the Doppler effect, leading to the slopes found in figures
4.9, 4.10 and 4.11. The double wave frequency indicates second-order effects. It should be noted that slight
non-linearity in the waves, due to the wave steepness, might have increased the force with double the wave
frequency. After analysis, it is concluded that the non-linearity does not account for the majority of the found
force amplitude, as discussed in paragraph A.5.1.

Figure 4.9 shows, as expected, that the waves are the dominant source of periodicity. The figures again
show that vortex shedding occurs and is amplified when closer to the natural frequencies, signifying fre-
quency lock-in. For the longer wave periods, this becomes less significant compared to the maximum force
amplitude, as the maximum force amplitude increases.

The frequencies for bichromatic waves have similarly been analyzed, shown in figure 4.10. In the results
the wave encounter frequency is again found for the bichromatic waves, but no clear evidence of higher-
order harmonic forces of the waves are found. There is, however, a small force component with the combined
frequency of the two waves.
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Figure 4.11: Frequencies found during tests with irregular waves with likely sources of periodic forces indicated. Brighter red indicates a
higher amplitude compared to the maximum amplitude per value of Re. Wave frequencies are adjusted for the Doppler effect

Lastly, the periodic forces found for the irregular wave experiments are analyzed and visualized in figure
4.11. The figures show a spread of frequencies around the peak frequency, as is expected for a wave spectrum.
No higher-order harmonic wave forces were found. Frequencies between 8 and 10 Hz were found similar to
those in figures 4.8, 4.9 and 4.10, making it likely that these frequencies are indeed due to vortex shedding.

Force amplitudes as a percentage of the average total force are shown in table 4.1 to quantify what is
shown in the previous figures. Shown is the sum of amplitudes found within the range of frequencies where
certain effects are expected. It should be noted that this is thus the maximum possible amplitude, so for
sources spread over a range of frequencies, the amplitude is overestimated. Vortex shedding is close to the
natural frequency for Re > 1.5 ·106, thus the amplitude of the force due to vortex shedding could be increased
due to frequency lock-in.

Table 4.1: Average maximum amplitude of the forces due to identified sources of periodic forces, as a percentage of the average total
force

Regular Bichromatic Irregular
First-order wave 49% 44% 321%

Second-order wave 7% - -
Vortex shedding 32% 34% 37%

Wave-wave interaction - 23% -

Summary
From analyzing the forces in the frequency domain it is observed that for Reynolds numbers above 1.2 ·106

vortex shedding occurs for all flow combinations. The results indicate that the vortex shedding has locked-
in with the natural frequency. For regular waves, second-order harmonic wave forces were identified. For
bichromatic waves, a periodic force with a frequency equal to the summation of the wave frequencies is
found.
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4.4. Simulations
The results of the simulations discussed in chapter 3 are analyzed to evaluate the simulation methods capa-
bility of accurately simulating the problem. After this, results with regards to the effects of the free surface
and end effects of the cylinder on the drag are discussed.

Figure 4.12: Simulated free surface in blue and cylinder in yellow at t = 2 s, with U = 4.02 m/s and regular waves with T = 1.48 s and H =
0.14 m

4.4.1. Simulation quality
Figure 4.12 shows a realistic-looking simulated free surface. However, when looking at figure 4.13, it becomes
clear that there are some problems with the simulations. These figures show the pressures in the flow. In the
experimental results, periodic forces in the force measurements indicated vortex shedding occurring [10].
Looking at these pressure distributions it is clear that vortex shedding is not simulated, and this was verified
by analyzing the results in the frequency domain. This is because the simulated time is too short. A simu-
lation with a simulated time of 30 seconds with a flow velocity of 4.02 m/s and a wave period and height of
respectively 1.48 s and 0.14 m was run. This simulation does simulate vortex shedding. This vortex shedding
has a lower amplitude and frequency as was found in experiments. For the simulation a Strouhal number of
0.25 was found, while for the experiments numbers for the same flow a Strouhal numbers of about 0.42 are
found. The difference between simulated and actual vortex shedding is expected and explained in chapter 3.
Simulations long enough to simulate vortex shedding take over five times the calculation time. CD and CM

found from the simulation including vortex shedding are 5% higher than CD and CM found from simulations
without vortex shedding. This is likely because the boundary layer is not fully formed for the shorter simula-
tions, also causing the lack of vortex shedding. The simulations of 30 s take 5 times the calculation time, while
leaving a systematic error as viscous effects are still not accurately modelled. Because of this, the choice was
made to not lengthen the simulation time.

Figure 4.13: Pressures at z = 1.25 m and t = 2 s. On the left an underwater length of the cylinder of 1.5 m, with U = 0.88 m/s and no waves.
On the right an underwater length of the cylinder of 0.5 m, with U = 4.02 m/s and regular waves of T = 1.48 s and H = 0.14 m. Flow in
positive x-direction

In general, it is found that for finer grids, more accurate results are obtained. However, this is not always
the case. For the grid refinement study in figure 4.14 results varying greatly from results with coarser grids
are found. When calculated force and free surface were analyzed it was found that this grid leads to unstable
simulations. This can be caused by numerical damping being small for such a fine grid, thus the spatial
discretization is not stabilized as much as for courser grids, leading to unstable simulations [84].
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4.4.2. Surface and end effects
Figure 4.14 shows a grid refinement at Re = 2.8 ·105, the first flow described in table 3.2. A grid refinement
study is conducted for a cylinder with a length of 1.5 m, and thus no end effects are included. The figure also
shows simulations with the upper boundary below the free surface, eliminating free surface effects. These
simulations are compared to a grid refinement study which includes both surface and end effects, as was also
the case in the experiments. It is compared to literature [17, 49]. It is found that end effects decrease CD .
Free surface effects slightly increase CD . For all the grid refinements in figure 4.14, CD goes to a value slightly
lower than the values of CD found in previous research. This is surprising as it is known that most modelling
methods overestimate the drag on a cylinder [2]. It can be caused by the underdeveloped boundary layer,
as paragraph 4.4.1 shows that if vortex shedding is simulated CD can increase with 5%. The results from the
finest computed grid, with 8.2 million cells, does show a higher CD . However, when calculated force and free
surface were analyzed it was found that this grid leads to unstable simulations. This is explained in paragraph
4.4.1.

Figure 4.14: Results for CD from simulations with and without free surface effects and with and without end effects compared to previous
research [17, 49], for U = 0.88 m/s or Re = 2.8 ·105

Estimations based on literature
As stated previously, free surface and end effects will influence the results of the experiments. Using literature,
their influence is estimated. The goal is to investigate how these effects influence the results.

Due to scaling and the focus on the Reynolds numbers, the experiments were conducted at high Froude
numbers of 1.5 to 2.4, while for energy generating devices Fr = 0.05 - 0.24. This large discrepancy is a point of
interest, as it will influence CD .

The free surface estimations are made based on the research by Chaplin and Teigen [17], which considers
surface piercing cylinders with a length over diameter of 2 in a flow with only current, up to Reynolds over
Froude number (Re/Fr) of 3·105. This Re/Fr is lower than the values found in the current research (Re/Fr =
6.47 ·105 - 8.4 ·105). These results are used due to a lack of other options. As there are numerous differences
between the previous and current research, the estimations are not expected to be accurate. The results are
shown in figure 4.4.2, which shows the average measured force for all experiments dependent on the Reynolds
number, and the estimated average force if there was no free surface.

Figure 4.15: Estimated based on literature [17, 29] for the influence on free surface and end effects on CD
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The influence of the end effect depends on the length over diameter ratio. For a length over diameter
ratio of around 1.25 or larger, CD will increase for larger values of Re, as is discussed in paragraph 3. Using the
results found in Fukuoka et al. [29] an increase of 7.7 % in CD at a five times increase in length over diameter
ratio is found, from 0.25 to 1.25. These length over diameter ratio’s are smaller than those of the cylinder from
the simulations, and thus these estimates are not expected to be accurate.

Including both the estimations for the influence of the free surface, as well as the influence of the end
effects, CD without free surface and end effects is estimated and shown in figure 4.4.2. As there was no re-
search found at similar ranges as the current research, the results of the estimations shown in figure 4.4.2
could not be validated. The results are compared to the results from the simulations in figure 4.16. They both
show that free surface effects cause CD to increase while eliminating end effects causes an increase in CD .
However, the estimation based on literature shows a much larger decrease when eliminating surface effects
than the simulations shown in figure 4.16. Likely, the values used from previous research are not usable due
to the differences between the current and previous research. Thus, the simulations should be considered as
the more accurate results. Note however that, as was stated in paragraph 3, these do not accurately model
viscous effects which can influence the results.

4.4.3. Free surface
Another grid refinement study for the second flow in table 3.2, is shown in figure 4.16. Here CD gets close
to a value slightly above the value found in experiments. The simulations were with a modelled cylinder
underwater length of 0.5 m, as were the experiments of which the results are shown in the figure. The figure
also shows simulations without free surface effects. It is found that without free surface effects, CD decreases
slightly. This is because free surface effects allow for wave making and breaking resistance to occur, increasing
the drag.

The right figure of figure 4.16 shows that CM is somewhat accurately modelled when the free surface
is taken into account. Without the free surface effect, however, it is found that the forces are lower. This
is expected as the difference in free surface elevation is maximum in the phase with the horizontal wave
acceleration thus the forces due to the free surface elevation are captured in CM , as is explained in paragraph
4.2. Without free surface effects, CM should not go above the theoretical value of 2, which it indeed does not
do.

Figure 4.16: CD and CM obtained from grid refinement study with U = 4.02 m/s and regular waves with T = 1.48 s and H = 0.14 m,
simulated with and without free surface

Froude scaling
Free surface effects can be considered to scale differently than the viscous effects as they scale with the Froude
number (Fr), shown in equation 4.1, in which g is the gravitational acceleration.

F r = U√
D · g

(4.1)

Due to scaling and the focus on the Reynolds numbers, the experiments were conducted at high Froude
numbers of 1.5 to 2.4, while for energy generators Fr = 0.05 - 0.24. This large discrepancy is a point of interest,
as it can influence CD . Previous research has found that the free surface effects increase CD [17], as was found
with the simulations. By keeping U ·D constant by multiplying the D with a value and dividing U by the same
value, a constant Reynolds number and a varying Froude number can be found. The used values are shown
in table 4.2. The simulations did not include waves.
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Table 4.2: Simulated diameters and velocities and the resulting values for Reynolds and Froude numbers tested

D [m] 0.4 0.8 1.6
U [m/s] 0.88 0.44 0.22 4.02 2.01 1.01

Re 3.3 ·105 1.5 ·106

Fr 0.055 0.156 0.44 0.253 0.718 2.03

The results are shown in figure 4.17. The results from the simulations are in a similar range to the experi-
mental results from the previous research by Ducrocq et al. [25]. In paragraph 3 it is found that viscous effects
are not correctly modelled by the simulations, and it is possible that because of this, even though the Reynolds
number is kept constant, the viscous effects are not constant. The results can thus not on themselves be used
to conclude the effects of the free surface.

Figure 4.17: CD found through simulations at various Froude numbers for constant Reynolds numbers compared to experimental results
from previous research [25]

4.4.4. Geometry and end effects
In the figure 4.18 the results for lengthening the cylinder are shown for a flow with Re = 2.8 ·105, the first
flow described in table 3.2, making it comparable to previous research. The figure shows that for a longer
length cylinder, CD increases. This is in line with previous research [29], which indicates that lengthening of
the cylinder causes a reduction of pressure recovery from flow around the end of the cylinder. CD from the
simulations seems to get closer to 1: the coefficient found in previous research of Chaplin and Teigen [17] and
Hay [49], which tested a length over diameter ratio of 2. When the cylinder is made longer than the modelled
domain, and thus no end effects are taken into account, CD becomes larger than 1. This underlines the theory
of Fukuoka et al. [29], that CD will increase for larger length over diameter ratio’s, as pressure recovery from
re-circulation is reduced.

Figure 4.18: Influence of aspect ratio of the cylinder on CD , with U = 0.88 m/s and no waves, grid of 1 417 500 cells, compared to previous
research [17, 49]

Summary
It is concluded that the simulations do not accurately model vortex shedding within the modelling time used
in this research, but do accurately model the forces from free surface effects. From grid refinements studies
it is found that they do give results for CD and CM accurate enough to be able to find some conclusions. It
is found that a longer cylinder length increases CD . Eliminating free surface effects decrease it. This is also
found from estimations based on literature. Simulations show that CM increases due to free surface effects.
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4.5. Evaluating Morison equation
The Morison equation is used for force calculations. This also includes calculations for fatigue limit states
[23]. This is why in this paragraph the Morison equation is assessed in the time and frequency domain.

Time domain
As shown in table 2.3, the Morison equation does not perfectly simulate the measured force. As was discussed
in paragraph 2.4, this can be caused by small phase shifts in estimating the flow velocities, as well as additional
frequencies being measured which are not caused by hydrodynamic effects. However, a difference between
Morison and measured force was also found in the frequency domain. In paragraph 4.3 it is revealed that an
additional frequency was measured that was likely caused by the carriage of the towing tank, and thus not
a hydrodynamic effect. Forces with this frequency are filtered from the measurements for the results in this
paragraph, using frequency selective filtering in the frequency domain [4]. The coefficient of determination
(R2) in the time domain is used to find how well the Morison equation fits the measurements.

Figure 4.19 shows that the accuracy of the Morison equation depends strongly on the KC value. On average
an R2 value of 59% was found between the Morison result and the measured force, meaning that a variance
of 41% is not accounted for. It is more accurate for regular waves with an averages R2 of 72%. For bichromatic
waves (R2 = 57%) and irregular waves (R2 = 48%) it isn’t as accurate. This could be because the description of
the flow is less accurate for irregular and bichromatic waves. For values of R2 it should again be noted that
phase changes, as the evaluation is in the time domain, and higher frequencies due to noise can decrease the
R2 value. Noise will have more influence for lower waves as these cause smaller force amplitudes, possibly
explaining the dependency of R2 on KC. Figure 4.19 shows that for KC > 1, R2 > 50%, compared to R2 ≈ 30% for
KC = 0.44. Equation 1.3 is also significantly better at modelling forces resulting from regular waves compared
to those in irregular waves. By analyzing the flow components an understanding of the inaccuracies of the
Morison equation can be obtained.

Figure 4.19: Accuracy of Morison equation compared to the measured force for all experiments, represented by R2 and shown for Re and
KC

Frequency domain
As discussed, the accuracy with which the Morison equation models various periodic forces is of importance
for fatigue calculations. The periodic forces measured are discussed in paragraph 4.3. It is found that the
Morison equation underestimates second-order wave forces and wave-wave interaction and Morison does
not model vortex shedding. This is visualized in figure 4.20.

Figure 4.20: Difference between force found with Morison equation and measured force, shown in the frequency domain. Note the
different scale of y-axis. Left: regular waves with T = 1.48 s and U = 4.36 m/s, Middle: bichromatic waves with T = 1.24 and 1.72 s and U
= 4.36 m/s, Right: irregular waves with Tp = 1.24 s and U = 4.7 m/s. The values at 0 Hz are not shown
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To quantify this inaccuracy the modelling of the forces for bichromatic waves is set out for the identified
periodic forces, as discussed in paragraph 4.3. Figure 4.21 shows the relative error between the measured
force and the force estimated with the Morison equation. f1 and f2 indicate the frequencies of the two waves
in the bichromatic wave. The figures show that constant drag force due to current is accurately estimated,
but the first-order wave forces less so. Wave-wave interaction and second-order wave forces are modelled
between 50 to 100% lower than their measured values. This is most likely due to the current being the main
source of drag, and thus the coefficients being tuned to model it correctly, and as the same coefficients are
used to model all other sources of forces, these are not estimated as well.

Figure 4.21: Error between the measured force amplitude and the force amplitude calculated with the Morison equation for the identified
force frequencies for bichromatic waves

Three-term Morison equation
As stated in paragraph 1.1.2, a three-term Morison equation can also be used in research. The three-term
Morison equation can not be used for bichromatic and irregular waves, and thus the classical Morison equa-
tion is used in this research.

For regular waves, the three-term Morison equation is evaluated. This is to find if the inaccuracies found
can be solved with this equation. The equation is shown in equation 4.2. In this equation, ω is the angular
wave frequency.

Fcomp = 1

2
·ρ ·D ·L ·CD ·Uc |Uc |+ 1

2
·ρ ·D ·L ·CD ·U 2

m · cos(ω · t )|cos(ω · t )|+ 1

4
·π ·ρ ·D2 ·L ·CM ·U̇ (4.2)

The coefficients used in the three-term Morison equation are obtained from the experimental runs including
either regular waves or current. In previous research, it has been the case that the LS or LSFD method was
applied using the three-term Morison equation. The extra variable lead to improved fitting to the force and
thus better results. This method is thought to be problematic as it does not lead to results which can be used to
predictive modelling of the forces, as discussed in paragraph 1.1.7. This is why previously found coefficients
are used in this research.

It is found that the three-term Morison equation models with an average accuracy of R2 = 59%, a lower
value than the R2 = 72% from the classical Morison equation. As the classical Morison equation is used in the
LS and LSFD method, the results are optimized for this equation and not the three-term Morison equation,
possibly explaining the large difference. However, it is shown that the three-term Morison equation is not
preferable for this experimental setup.

Summary
The Morison equation can model flows with regular waves fairly well. However, problems arise for different
flows. This is thought to be mainly caused by the Morison equation using only one CD and CM for all flow
components, as well as not including vortex shedding and underestimating second-order wave forces and
wave-wave interaction.
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4.6. Rewritten Morison equation
In paragraph 4.5 problems are found with the Morison equation for flows with bichromatic or irregular waves.
Irregular wave patterns are of interest as structures placed in oceans are subject to them. Paragraph 4.2 states
that the coefficients found for regular waves are not applicable to wave spectra with a peak period equal to the
wave period, making it more difficult to find the forces due to irregular waves. Besides this, it is theorized that
the problems found are likely caused by using only one CD and CM for all flow components. It is theorized that
the Morison equation can be rewritten, as shown in equation 4.3. The equation proposes using a different CD

and CM for every wave from an irregular spectrum. In this equation Utot =∑n
i=1 Ui and U̇tot =∑n

i=1 U̇i . CDi

and CMi are the corresponding coefficients to the flow described by Ui and U̇i .

F = 1

2
ρDL ·CD tot ·Utot |Utot |+ 1

4
πρD2L ·CMtot U̇tot =

1

2
ρDL · si g n(

n∑
i=1

Ui ) · (
n∑

i=1

√
CDi ·Ui )2 + 1

4
πρD2L ·

n∑
i=1

CMi ·U̇i

(4.3)

Time domain
An irregular wave pattern is a summation of multiple regular waves. A bichromatic wave is a summation of
two regular waves, and can thus be seen as a simple irregular wave pattern. The rewritten Morison equa-
tion is tested using bichromatic waves, as it has a more accurate and clear flow description. The coefficients
for the combined flow are needed, as well as those for the current and waves separately. As the bichromatic
waves have been modelled with wave components of a steepness half that of the regular waves, no direct cor-
responding coefficients are known. However, it is known that the coefficients depend on KC, thus coefficients
are found by interpolating for coefficients of regular waves at similar KC values.

As is discussed in paragraph 4.5, the frequencies likely caused by the towing tank carriage are filtered from
the data. Using the filtered data it is found that the rewritten Morison equation correlates with R2 = 61%, with
a variance of 0.6%, to the filtered measured data, and the classical method with R2 = 57% with a variance
of 1%. It should again be noted small phase shifts and higher frequencies will cause R2 to be lower. It is
promising that a higher value of R2 is found, as the LSFD method is used with the classical Morison equation,
thus optimizing the results, in contrast to the rewritten equation. The results agree with the theory that the
forces in irregular waves can be better modelled using the rewritten Morison equation.

Frequency domain
The rewritten Morison equation is also analyzed in the frequency domain. Using the knowledge of the pe-
riodicity of the flow effects, combined with the written out rewritten Morison equation, allows for the for-
mulations in equation 4.4. In this equation Fa is a force amplitude, the subscript c indicates current and
subscripts 1 and 2 indicate either the first or second wave in a flow with bichromatic waves. A flow with
bichromatic waves is written as: Utot =Uc +Ua1 cos(ω1t +ε1)+Ua2 cos(ω2t +ε2) in which ε is the phase shift.

Fa(0) = 0.5 ·ρ ·D ·L ·CDc ·U 2
c +

2∑
i=1

(0.25 ·ρ ·D ·L ·CDi ·U 2
ai

)

Fa( f1) = ρ ·D ·L ·
√

CDc ·CD1 ·Uc ·Ua1 +0.25 ·ρ ·π ·D2 ·L ·CM1 ·U̇a1

Fa( f2) = ρ ·D ·L ·
√

CDc ·CD2 ·Uc ·Ua2 +0.25 ·ρ ·π ·D2 ·L ·CM2 ·U̇a2

Fa(2 f1) = 0.25 ·ρ ·D ·L ·U 2
a1

·CD1

Fa(2 f2) = 0.25 ·ρ ·D ·L ·U 2
a2

·CD2

Fa( f1 + f2) = ρ ·D ·L ·
√

CD1 ·CD2 ·Ua1 ·Ua2

Fa( f1 − f2) = ρ ·D ·L ·
√

CD1 ·CD2 ·Ua1 ·Ua2

(4.4)

Using the coefficients found for the regular waves and interpolating from them and the same for the current,
the force amplitudes are found. In figure 4.22 the difference between the force amplitude estimated with
equations 4.4 and the measured force amplitude is shown. From this figure, it is clear that the first-order wave
forces and the constant drag force are modelled quite accurately. More accurately compared to the accuracy
of the classic Morison equation shown in figure 4.21. It is important to note that with the rewritten Morison
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equation the second-order wave forces, as well as wave-wave interaction are still not accurately taken into
account. This is caused by a single coefficient still being used both for wave-wave interaction, first-order and
second-order wave forces.

Figure 4.22: Error between the force amplitude found with equation 4.4 and the measured force amplitude for the identified force fre-
quencies

Irregular waves
The rewritten Morison equation is found to be a viable method of finding the forces in a flow with bichromatic
waves and current. The bichromatic waves were used as a simple irregular wave pattern. Now, the rewritten
equation is used to find the drag forces in a wave spectrum and current.

To be able to do this, CD and CM are needed for every regular wave of which the irregular wave pattern
consists. The experimental range in this research is too limited to be used, and the previous research could
not fill the gap. Instead, the values recommended by SNAME are used: CD = 0.65 and CM = 2 [44]. It must be
noted that these values are based on experiments which do not include free surface effects. CD and CM for the
current are obtained from the experimental results. As only the steady and oscillatory part are separated the
rewritten Morison equation effectively becomes the three-term Morison equation for irregular waves. Using
these values the accuracy of the rewritten Morison equation is compared to the classical Morison equation.
The rewritten Morison equation models the forces more accurately, with R2 = 56 % on average, compared to
the classical use of the Morison equation, with R2 = 47%. The values of R2 are thought to be relatively low
as phase differences and noise decrease the values, but also the flow description of the irregular waves is less
accurate, decreasing the R2 value.

Figure 4.23: Accuracy of the classic Morison equation and the rewritten Morison equation for irregular waves, represented by R2, shown
for Re and KC. The spread shown in both is due to a variation over the range of respectively KC and Re
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The results for the separate experiments are shown in figure 4.23. The figure shows that the accuracy does
not strongly depend on Re, but does depend on KC. The rewritten Morison is more accurate up to a KC value
of 1.5, after that the accuracy decreases. This could be due to the free surface effects and their influence on
CM (discussed in paragraph 4.2) not being taken into account in the used coefficients.

Only the current and waves are considered separately with different CD and CM but already show im-
provement. This thus gives promise that the method can improve estimates of drag forces, and should be
investigated in future research.

Summary
It is concluded that using the rewritten Morison equation results in similar or better results compared to the
classical method of using the Morison equation. Data from regular wave experiments can be used to find
the drag forces in irregular waves and can lead to more accurate predictions of the forces. More research
providing better estimates for CD and CM for the various waves in a wave spectrum might further improve
the estimate of the drag force.



5
Conclusion

In the transition towards renewable energy, energy generating devices in the shape of vertical cylinders are
placed offshore. Currents and waves induce hydrodynamic forces on these cylinders, for which the model
to date remains incomplete. This research aims to find CD and CM and to investigate the drag of a surface
piercing cylinder in flow with high Reynolds and low Keulegan-Carpenter numbers. Utilizing experiments
in which the current velocity, wave and peak period, wave height and wave type were varied, the research
goal was fulfilled. Simulations were conducted focussing on the free surface and end effects. This led to the
following conclusions.

1) CD and CM are found to depend on both KC and Re for 9.7·105 < Re < 2.0·106 and 0.49 < KC < 1.9. CD

varies between 0.4 and 0.5 and CM between 0 and 3.5. CM goes above values of 2 due to free surface effects.
The coefficients of irregular waves are found to not be equal to the coefficients of regular waves with a period
equal to the peak period of the waves spectrum. For irregular waves, CD showed little dependency on KC but
did show dependency on Re. For CM a dependency on KC was found, but not as strong as the regular wave
counterpart.

2) For the researched range, evidence was found of second-order harmonic wave forces, wave-wave inter-
action and vortex shedding inducing periodic forces on the cylinder. Second-order wave forces were found
for regular waves, wave-wave interaction for bichromatic waves. Vortex shedding was identified for all flows
with Reynolds numbers above 1.2 ·106, becoming more significant above 1.5 ·106. It should be noted that this
can be due to frequency lock-in. The Morison equation underestimates the second-order wave forces and
the wave-wave interaction and does not include vortex shedding. This leads to inaccurate modelling of flows
including current and waves.

3) The free surface effects and end effects are found to influence CD and CM . The free surface effects
are found again to increase CM . The influence of the free surface and end effects on CD are opposite, as
the free surface effect increases CD and end effects decrease it. Increasing the length over diameter ratio
increases drag coefficient, with the maximum increase when there is no free end. Estimations indicate that
when both free surface effects and end effects are eliminated CD will decrease. These are estimations and
further research is needed.

4) It was found that the coefficients found for irregular waves were not equal to or in the same way de-
pendent on Reynolds and Keulegan-Carpenter compared to their regular counterparts. However, a method
of estimating the drag force in irregular waves with data from regular waves is investigated. By rewriting the
Morison equation the separate flows of which a total flow consists, and their known coefficients, the drag
forces are found to be more accurately modelled compared to the classical use of the Morison equation.

It is recommended to further investigate the modelling capabilities of the rewritten Morison equation
for various wave spectra. Secondly, further research into free surface and end effects is needed to create a
better understanding of the dependency of the drag on the Froude number and the length of diameter ratio
of the cylinder. Thirdly, the vortex shedding frequency is thought to have locked in with the natural frequency.
Additional experiments in similar ranges of Re and KC and different natural frequencies are needed to find
the true force amplitude caused by vortex shedding. Lastly, it is advised to conduct more experiments for the
range of Re and KC in which energy generating devices are placed, as there is still a gap in research.
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A
Designing of and discussion on

experiments

The experiments were designed to adhere to the description given in paragraph 1.3.2. The design process
consisted of choosing a facility and designing a test setup within the limits of the facility. The experiments
and the expected inaccuracies are discussed afterwards.

A.1. Methodology choice
In the field of hydrodynamics, there are three main methods of modelling a problem: experimentally, ana-
lytically, or using simulations. Experiments have problems but are proven to be successful at obtaining the
required results, as can be seen in the research of Boccotti et al. [9] and Sarpkaya [67]. Due to the high ranges
of Reynolds in which the problem exists combined with waves and free surface effects, analytical methods
such as using potential theory or the linearized Navier-Stokes equation are not viable options [75]. As dis-
cussed in paragraph 1.1.5, simulations are not yet capable of accurately simulation the whole problem.

As experiments can give the most accurate results, these are chosen as the main method.

A.2. Facility choice
The available test facilities have been evaluated. To obtain the required results, the test facility will have to
be able to generate waves, simulate current, allow for free surface effects, and have the correct dimensions
to allow for high Reynolds numbers and the required waves. Three test facilities with these specifications
available at the department Maritime and Transport Technology at the Technical University of Delft were
looked into: the flume tank, towing tank no. 1, and towing tank no. 2 [81]. Their specifications are shown in
table A.1. For the flume tank, no data of the waves that can be generated is available as the wavemaker would
have to be built.

Table A.1: Limitations of the different test facilities for respectively the maximum velocity, wavelength, water depth and tank width

Umax [m/s] λ [m] max depth [m] B [m]
Flume tank 0.9 - 0.3 2

Towing tank no. 1 7 0.3 - 6 2.5 4.22
Towing tank no. 2 3 0.4 - 6.5 1.25 2.75

The specifications of the tanks dictate the maximum and minimum values of Re and KC at which can
be tested. Not only the wavelength that can be generated but also the water depth limits the wavelength
as unwanted shallow water effects can occur. The width of the tank should be 2.4 times the diameter of
the cylinder according to ITTC [41], as wall effects will influence the results if there is not enough distance
between the cylinder and walls. The maximum speed limits the current velocity that can be simulated and
dictates thus the maximum Reynolds number. The other limitations are due to maximum forces allowed on
the carriage of the towing tanks. Conservative estimates are made for the designing of the experiments.
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Taking these limits into account, the test facilities have been evaluated. The resulting values for which
can be tested in each tank are shown in table A.2. From this table, it can be concluded that towing tank no.1
is preferred as it is the only one that allows tests within the range of interest. The limitations of this tank are
shown in appendix A.3.

Table A.2: The possible ranges for each test facility for a certain diameter of cylinder

D [m] L [m] Re KC Relative depth
Flume tank 0.003 0.03 240 - 2200 0.86 - 1.9 0.05 - 0.05

Towing tank no. 1 0.4 0.5 2.8 ·105 - 1.5 ·106 0.25 - 2.8 1.6 - 0.42
Towing tank no. 2 0.2 0.25 8.1 ·104 - 3.2 ·105 0.28 - 2 0.80 - 0.19

A.3. Limitations of the test facility
The experiments are conducted using towing tank no. 1. This towing tank is 142 meters long, 4.22 meters
wide, and 2 - 2.5 meters deep. It is equipped with a wavemaker which can generate waves between 1.5 and
6 meters long [81]. From ing. C. P. Poot additional information was obtained. The weight of the carriage of
towing tank no. 1 is 6000 kg, the maximum force in x-direction is 6 kN, the maximum arm from the suspension
to the wheels is 8 meters, the maximum upwards force per wheel is 15.4 kN, and the minimum wave period
that can be generated is 1 second. Through ComFLOW simulations (described in paragraph 3), it was found
that the minimum length of the cylinder above water should be 0.7 m. The sampling frequency used at towing
tank no. 1 is 100 Hz for the displacements. The waves and forces are sampled at 1000 Hz, but before saving
they are filtered with a second-order analogue filter at 100 Hz, damping all frequencies above 100 Hz. These
limits all influence the allowable test range.

A.3.1. Calculations for the designing of experiments
Using the values obtained, a design and test ranges which fall within the limits are calculated. In these calcu-
lations, the diameter of the cylinder, underwater length of the cylinder, and maximum current velocity were
chosen such that boundary conditions are satisfied. As there are various assumptions within the calculations,
they are shown in detail. The results are shown in table A.3.

Keulegan-Carpenter and Reynolds number
The Keulegan-Carpenter number has been calculated using equation A.1. In this equation Ummax is the max-
imum velocity amplitude of the wave (0.39 m/s), T is the maximum wave period (2 s), and D is the cylinder
diameter (0.4 m).

KC = Ummax ·T

D
= 1.9 (A.1)

The velocity amplitude does not include the current velocity and is calculated using deep water wave theory,
in which the path of a particle is assumed to be a circle. The wave period is calculated in the same way. The
relative water depth will be at least 0.42, which is just intermediate. It is thus assumed that the deepwater
assumption will not lead to large errors. This is further discussed in the last paragraph of this chapter.

The Reynolds number is calculated using equation A.2. In the equation Umax is the maximum current
velocity (4.7 m/s) and ν the dynamic viscosity. The dynamic viscosity of freshwater at a temperature of 12◦ C.
This gives a value of ν = 1.24 ·10−6 [1].

Re = Umax ·D

ν
= 1.52 ·106 (A.2)
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Force per wheel
One of the limits is the maximum force on the wheels. To check if this limit is not exceeded, the gravitational
force and the forces on the test specimen are considered. For calculating the gravitational forces, it is assumed
that the test set-up is weightless, as its weight will be small compared to the weight of the carriage. Equation
A.3 shows the calculation. Here m is the mass of the carriage (6000 kg), g is the gravitational acceleration
(9.81 m/s2), and nw is the number of wheels (4).

Fg = m · g

nw
= 14.7 kN (A.3)

The forces on the test specimen in flow are difficult to predict, as a correct CD and CM are needed. As dis-
cussed in chapter 1, this is not available. To ensure that the maximum forces are not exceeded, the conserva-
tive estimates of CD = 1.2 and CM = 2.0 were used [44]. Using the Morison equation A.4, the maximum force
(FMmax ) is estimated. In this equation L is the underwater length of the cylinder (0.5 m), ρ the water density
(997 kg /m3), U̇mmax the maximum flow acceleration (6 m/s2).

FMmax = L · (0.5 ·CD ·ρ · (Umax +Ummax )2 ·D +0.25 ·CM ·ρ ·U̇mmax ·D2) = 2.87 kN (A.4)

This force is not applied at the wheel. By finding the moment due to the force and then dividing it by the arm
to the wheel, the force at the wheel is found. It is assumed that the clamping point of the cylinder in the sus-
pension will be 0.75 meter above still water level and that the force is evenly distributed over the underwater
area of the cylinder. Using equation A.5, the force per wheel is found. The found value is exactly within limits.
In this equation l is the distance from the suspension to the wheel (8 m).

Fw = Fg +
FMmax (0.5 ·L+0.75)

0.5 ·nw · l
= 15.3 kN (A.5)

Test time
The test time is of importance to the quality of the tests as more data will minimize errors. To find the test
time, the maximum acceleration is found, using equation A.6. In this equation c f is the estimated friction
coefficient (0.1).

aa = (m · g · c f )−FM

m
= 0.5 m/s2 (A.6)

The deceleration is calculated as well as breaking will take time at high speeds. It is calculated using equation
A.7

ad = (m · g · c f )

m
= 1.0 m/s2 (A.7)

The minimum test time is calculated in equation A.8. In this equation Lt ank is the driving length of the tank
(116 m), ttestmi n is the minimum test time, and tst ab is the estimated stabilizing time of the flow (2 s).

ttestmi n = Lt ank

Umax
− Umax

aa
− Umax

ad
− tst ab = 8.8 s (A.8)

Conclusion
All the boundary conditions are met. The resulting maximum test values according to the initial, conservative
calculations are shown in table A.3.

Table A.3: Maximum test values according to conservative design calculations.

KC Re D [m] L [m] ttestmi n [s] Fw [kN]

0 - 2 9.71 ·105 - 1.52 ·106 0.4 0.5 8.8 15.3
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A.4. Final design
The detailed design was made by ing. C. P. Poot and ing. J. G. den Ouden. It is shown in detail in figure A.1
The overall setup is discussed in paragraph 2.1.

To house this relatively large setup, a superstructure was built on the towing tank. This was made up of
0.15x0.15 m steel H-beams, shown in light green in figure 2.1, and 0.08x0.08 m aluminium beams, shown
as light grey. This created a stiff structure in which the setup was placed. The setup itself was placed in
the superstructure using linear slide bearings and rotation bearings. This connection allowed the cylinder
to move freely in the direction of the flow, and around the axis perpendicular to the flow and length of the
cylinder. These movements were prohibited by steel rods of the length of 1 m at the top of the cylinder, and
0.85 m at the top of the setup. The rods were divided into two and H3-C3-200kg-3B loadcells by Zemic were
placed in between. This allows for the forces in the direction of current to be measured.

Figure A.1: Perspective view of the test setup

A.5. Discussion of experiments
As experiments are conducted in the physical world, imperfections and effects which are not of interest affect
the results. These are discussed in this paragraph.

Measurements
The first inaccuracies to discuss are within the measurements of the setup. Using multiple measuring tools
and measurements, it was attempted to minimize the error. However, the measurements were found to vary,
thus leaving room for inaccuracies. This means that the water depth, all distances and underwater length of
the cylinder can have a centimetre variance. For the measurements of the forces and the wave amplitudes,
respectively loadcells and wave probes were used. The loadcells have found to have a maximum measuring
error of 0.8% in the range of 0 to 200 kg. The wave probes have a maximum measuring error of 2.44% in a
range of 0 to 0.2 m. These inaccuracies were used in paragraph 2.4.
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Time variance
The experiments were conducted over four weeks. During this time, the water temperature varies, water
evaporates, and changes in the setup can occur. This was anticipated, and thus every other day the water
temperature and water level were checked and if deemed necessary, water was added. It was found that
the water temperature varied between 17.8 and 17.3◦C. The water depth is estimated to have varied half a
centimetre over the course of the experiments.

Before every run, a zero run was conducted to check variance over time. Over the course of the experi-
ments, tests were repeated. It was concluded that the changes that occurred during the four weeks did not
influence the results of the experiments.

Test setup
The imperfections in the test setup could also have influenced the results.

Firstly, the cylinder was designed to be stiffly mounted in the setup. However, to be able to measure
the forces, loadcells were used. These act as stiff springs, and thus allow some movements, influencing the
results.

The cylinder used in the experiments has been through multiple processes to create a smooth surface.
This was deemed to be successfully done, except for 2 imperfections found on the surface. On the outflow
side of the cylinder, at about 400 mm below the waterline seven indents in a horizontal row, each indent
about 5 mm long, 2 mm high and 0.5 mm deep. On the port side of the cylinder, at about 350 mm below the
waterline, another indent of approximately 5 mm long, 2 mm high and 0.5 mm deep was identified. Other
than these imperfections, the cylinder was found to be completely smooth. Measurements of the cylinder
were taken to determine if it was round and straight. The results are shown in figure A.2. It is found that the
diameter of the cylinder varies 0.3%.

Figure A.2: Measurements of the cylinder. On the radial axis are degrees, on the tangential axis the measured radius in metres with a total
range of 0.02 m. The legend shows the measurement on different distances from the bottom of the cylinder

To protect the equipment during testing, spray protection was placed on the cylinder, 0.54 m above the
waterline. This spray protection did deflect water during the experiments, especially at higher velocities. To
evaluate the influence, tests were done with and without the spray protection, and the force and arm to the
force were compared. It was theorized that if the spray protection induced forces, this would influence the
arm to the application point of the forces due to its location. It was concluded that the spray protection did
not influence the results.

A.5.1. Non-linearity waves
It was attempted to generate the linear waves described in paragraph 2.2. However, as the experiments were
conducted in a physical test facility, errors are introduced. Before the tests were conducted the wavemaker
and the waves have been calibrated. Two wave probes were used, placed 3.72 m apart before the cylinder was
placed.

The waves were made using the flap-type wavemaker and they were found to have a slightly non-linear
quality, as the wave peaks were slightly higher and the wave troughs were slightly flattened when compared
to a sinusoidal wave. As shown in table A.4, this non-linearity is largest for the waves with a shorter wave
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period. This is thought to be the result the flap-type wavemaker creating waves in the whole water column,
thus creating waves low in the water column, which is unrealistic for linear waves with a shorter wave period.
The data seems to support this, as shown in table A.4.

Table A.4: Error between the measured and model waves for each wave period and the wave spectra

Tp [s] 1.00 1.24 1.48 1.72 1.96
1. (ηmeas −ηl i n)/ηl i n 11% 8.4% 4.7% 3.7% 1.6%
2. (ηmax −ηmeas )/ηmeas 5.9% 0.026% 7.0% 3.6% 5.6%
3. (Hm0 −Hs )/Hs -1.4% -15% -20% -21% -30%

The table also shows the error between the mean wave height and the maximum wave height. This dif-
ference is caused by both the wave flap-type deviating between waves, as well as the water in the towing tank
being disturbed by previous tests. In the table ηmeas is the measured average wave height, ηl i n is the linear
wave amplitude, ηmax is the maximum measured wave height, Hm0 the spectral significant wave height and
Hs the significant wave height.

To find the accuracy of the modelling of the JONSWAP spectrum, long runs of 1200 seconds were tested.
From this, the Hm0 was found and compared to the Hs that was attempted to be modelled. There are various
problems with the reliability of the found results. Firstly, Hm0 is compared to Hs . These are not the same
values, as Hm0 is generally slightly larger. The second cause of inaccuracy is due to the length of the tests,
as reflections of the waves in the towing tank are added to the spectrum. The reflections can also influence
the spectrum since waves can start breaking, leading to dissipation of energy. Lastly, it was found that for
the spectra with longer wave periods, the wave probe was not large enough to measure all wave heights, thus
the large wave heights were not accurately measured, leading to a decrease in the estimated Hm0. All in all,
the errors shown in table A.4 are large, but this does not necessarily mean that there are problems with the
modelling of the spectra but are more likely a result of problematic estimation of Hm0.

Second-order Stokes theory
In literature, it is found that the waves used are expected to have a non-linear quality due to the wave steep-
ness. It is found that the waves are best modelled using the second-order Stokes theory [38].

This theory uses the linear wave theory and adds a second-order Stokes correction. This second-order
Stokes correction has a frequency twice that of the linear wave, but a phase speed equal to the linear wave,
binding them. The Stokes second-order theory models waves with a higher peak and flatter troughs com-
pared to linear wave theory, which is also what was found to be the case in paragraph A.5 for the regular
waves in the experiments.

Stokes second-order theory was implemented in the calculations of the research and compared to the
results obtained using linear wave theory. It was found that the second-order Stokes correction has an am-
plitude of 7% of the amplitude of the linear wave. The overall modelling accuracy of the Morison equation is
checked with also new coefficients found using the second-order Stokes theory in the least squares methods.
With the second-order Stokes theory an increased from R2 = 72% to R2 = 73% for regular waves and from R2

= 48% to R2 = 53% for irregular waves. The bichromatic waves used a steepness of 0.02 and thus fall in the
range where the linear wave theory is the best model for the waves. The modelling accuracy is found to only
increase slightly, which is expected as it is found that the inaccuracy of the Morison equation comes from
phase shifts, noise in the measurements, and the Morison equation not taking vortex shedding into account
and underestimating second-order wave forces and wave-wave interaction.

An important note should be made, however. Using linear wave theory it is found that the Morison equa-
tion underestimates second-order wave forces. However, the second-order wave forces have the same fre-
quency as the second-order Stokes correction. It is possible that the second-order wave forces found are
partially caused by the non-linearity of the used waves. Using the nonlinear wave theory increased the esti-
mated second-order wave force. But, as the second-order wave forces were previously underestimated with
almost 100%, as shown in figure 4.22, an almost unchanged discrepancy is still found between the modelled
force using the Morison equation and the measured force.
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