
Effect of Sensory Faults within Robot Swarms

Stijn Coppens
Supervisor(s): Ranga Rao Venkatesha Prasad, Suryansh Sharma, Ashutosh Simha

EEMCS, Delft University of Technology, The Netherlands
22 June 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract
Robotic swarms provide a great many uses within a world increasingly relying on au-
tonomous systems. Alas these swarms are also very vulnerable to faults, even the smallest
fault can cripple the performance of a whole swarm. Such a fault could be one of several
types; those that have to do with sensors, communication, ... This paper will try to discover
the effect that these faults have on the performance of a robotic swarm attempting to
complete a specified task, e.g. a multiple destination routing problem or a variant of a
foraging task. With the experiments concluded and the data gathered it proved possible to
observe correlations between fault and performance, but this dependency heavily changes
based on the algorithm used and fault introduced.

Keywords— Robotic Swarm, Fault Tolerance, Sensory Faults

1 Introduction
The increasing prevalence of electric and smart vehicles on the road
as well as other sentient systems that rely on autonomy and self-
driving capabilities leads to an increase in amount of possible in-
cidents with these vehicles. With even more of these on the way
as well as a growing number of autonomous heavy vehicles within
the transport industry there is a clear need for robust algorithms that
avoid accidents as much as possible. A well-coordinated Intelligent
Transportation Systems (ITS) is still an open area for research [1]
[2].

This problem can be solved through robust robot swarms with a
high amount of fault tolerance. As this is a very broad and complex
set of circumstances and problems it is beneficial to split up the issue
and tackle them individually. A very crude split can be found by dis-
tinguishing between sensory and mechanical problems. This paper
will focus on the former. Sensory issues can include anything from
e.g. a distance sensor failing all the way to malicious interference
by any number of ill-intending actors.

While the topic of robotic swarms has been researched thor-
oughly, this has mostly focused on the ways in which these swarms
can help humans. Should fault tolerance be discussed this is almost
always with regards to mechanical failures rather than sensory ones.
This paper shall try to formalise and characterise these failures so
that these sensory issues can become easier to recognise and pre-
vent.

The paper will be structured with the research methodology fol-
lowing a more formal problem description. Previous work by fellow
colleagues will be discussed together with the main contributions
from this paper. Following this the experiments and their results
will be discussed as well as the ethical implications and restrictions
of this research. Finally some general conclusions will be drawn
from the gathered data to discuss the best course of action for solv-
ing these real life swarming problems.

2 Swarming Formalised
The goal of a robot swarm is to accomplish a certain task through
the use of collaboration with other robots within the swarm. In the
purest form this should happen without any overhead or centralisa-
tion, the robots should communicate with each other and thus gain
information about the progress of the given task solely through this
process and the sensors these robots possess. This creates one of the
bigger vulnerabilities within these systems as any fault introduced
into this vital process will cause the whole swarm to either misbe-
have or completely stop functioning. As outlined by A. Winfield and
J. Nembrini in Safety in numbers: Fault tolerance in robot swarms
[3] the failure of an avoidance sensor (in this case, the front facing

distance sensor of the robot) causes the robot to collide with obsta-
cles in its way and thus losing it’s ability to do an obstacle avoidance
task (see Table 3: Summary of Failure Modes and Effects). From
this same table it can be seen that a breakdown in communication
can also cause this ability to be lost depending on the swarming al-
gorithm used. A more clear example of communication breakdown
causing the swarm to falter can be seen in a foraging task. Intuitively
communication between agents within the swarm is paramount to
the effectiveness of the swarm as a whole.

This paper will try to explore the effect of these sensory errors on
the performance of a robot swarm that performs an obstacle avoid-
ance/routing problem [4], a collaborative foraging task or attempt-
ing to maintain a delta formation. This shall be done through 2 sub
questions:

• What is the effect of sensory faults on the performance of a
robot swarm acting out a routing or foraging problem?

• How do we measure the effect of these faults accurately, taking
into account multiple types of failures?

3 Related Works
As with everything to do with swarms this particular subject has
seen an increase of research in the last decade. These contributions,
while very useful and interesting in their own right, tend to focus
on the detection of failures (both mechanical and sensory in nature)
and their prevention rather than quantifying the effect on the perfor-
mance of the swarm as a whole in its execution of a task when a
fault is introduced. A. Winfield and J. Nembrini [3] propose several
interesting ideas with regard to the different types of failures that can
occur within a robot swarm trying to perform several tasks and the
effect this might have on the swarm as a whole but alas there is no
formal quantification of performance loss caused by these faults.

An attempt at a more formal definition of the effect of a purely
mechanical failure on a robotic swarm is made by J. D. Bjerknes
and A. F. T. Winfield [5] but once again this fails to properly discuss
the effect of sensory failures. With no apparent attempts at any for-
mal definitions of the effect of sensory faults, this paper will strive to
fill that void. To that end the existence of already created swarming
simulations is very useful. A MatLab based simulation, SwarmLab
[6] attempts to accurately simulate two boid-based swarming algo-
rithms [7]. The two algorithms in question are those proposed by
Vasarhelyi [8] and Olfati-Saber [9].

4 Methodology
To carry out a fair and unbiased test it is paramount to devise a proper
method, because of the many sided nature of the problem under in-

vestigation, it is both beneficial and necessary to create separate sim-
ulations that handle all errors independently.

• Front facing sensory error:

– Path Finding: The goal of this experiment is for a swarm
to get through a ”maze” of zones where they are not al-
lowed to come. One of the agents within the swarm will
have a failing front distance sensor and will as such mis-
judge its distance to the forbidden zones. The effect of
this on the performance will be measured. The experi-
ment shall be run through SwarmLab [6], a point-mass
based simulation written in MatLab where for one agent
of the swarm a defect will be introduced [10].

– Delta Formation: The experiment consists of a swarm
trying to maintain a delta shaped formation while one of
the swarm members has a failing distance sensor. A sim-
ple solution as well as one in a damped environment shall
be discussed. The whole simulation will be implemented
from scratch in Python.

• Breakdown of communication between agents: In this experi-
ment a swarm must complete a foraging task while there is a
malicious agent spreading false information. The effect of the
malicous actor on the performance of the swarm is once again
the goal. This will be simulated through BW4T [11] with code
and ideas by Z. Chen, S. Coppens, M. Stroia and K. Zhu out-
lined in appendix A. A solution will also be discussed in the
form of the ABI [12] model and the changes of the swarm’s
performance will be discussed.

• Delay in sensor results: Utilising the same delta swarm from
before the incoming distance readings are delayed for a few
cycles for one agent. The goal is to see the effect on the swarm
and whether it can stay in formation.

5 Experimental Setup
As mentioned earlier in section 4 the experiment will be ran in sev-
eral distinct phases.

All three simulations allow for the changing of plenty of param-
eters and for the sake of clarity and repeatability these shall be in-
cluded in appendix B together with links to the code repositories.

5.1 SwarmLab Based Simulation
The first experiment with regards to the effect of a sensory error will
be ran in MatLab. An already implemented boid-esque swarm at-
tempting a path finding task was used as a base for this particular
question [6]. The swarming algorithms used are those proposed by
Vasarhelyi [8] and Olfati-Saber [9]. While both algorithms are heav-
ily based on the flocking rules outlined by Reynolds and Craig they
do both contain some key differences [7].

In Vasarhelyi’s algorithm there is a force repelling the point-
masses from each other should they be within a certain range of each
other. This is done to avoid collisions while still holding as short a
distance to its neighbours as possible without actually colliding. The
velocity of agent i is described by

vdi = ṽtrgi +
∑
j ̸=i

(vrepij)σ(rc − |dij |)

In short, the velocity of agent i is calculated based on the mag-
nitude of the target tracking velocity (the end goal) and the sum of
all neighbours within a specified range (the d parameter). Within
this first term there are the repulsion from the arena walls, blocking
objects within the arena and any agents within the neighbourhood.

The method proposed by Olfati-Saber behaves very similarly
besides the fact that the different velocities are calculated per agent

and not all at once. This causes some side effects with regards to
speed and flocking behaviour that is discussed in detail in Flocking
for multi-agent dynamic systems: algorithms and theory [9].

As both of these algorithms use the positions of the ’forbidden
zones’ obtained directly through the map without any properly sim-
ulated distance sensors introducing a fault can get slightly more
tricky. When the next velocity vector of the point-mass is calcu-
lated in the compute vel (alg name) no front method the read
distance can be manipulated while still being left as the actual dis-
tance for the purpose of detecting whether the point-mass is cur-
rently within a restricted zone and thus scoring. Because of so called
”flock centering” following the swarms boid like nature in both of
the used algorithms [7] the changing of one point-mass’ perceived
distance will lead to a performance change throughout the whole
swarm and as such this error will only be introduced for one specific
agent. This not only makes the readings slightly more interesting it
also reflects real life as the likelihood of the same sensory error oc-
curring for more than one robot within a swarm at roughly the same
time is extremely small.

As sensory failures tend to not be binary in nature (either al-
ways working to full capacity or never working at all) it is benefi-
cial to look at the effect on performance as the percentage of failure
changes together with the scale of the failure (the scale of the added
offset changes). It could also be relevant to look at the correlation
(if one should exist) between the score, the amount of agents and
the percentage of failure. Because of the random nature of the fail-
ure percentage it is necessary to run these tests a certain number of
times per setpoint. For both scale of failure and percentage of times
a failure occurs 21 values were chosen, from 0%-100% with steps
of 5%. To counteract the aforementioned randomness each different
combination of setpoint was ran 20 times and their results averaged
out.

Sadly this number is not quite enough to rule out the possibility
of any randomness causing changes within the results. It is however
impossible to run each of these permutations say 100 times due to
the long time this would take. Each of these simulations takes any-
where from 30 seconds to a minute. With a total of 20 · 212 = 8820
runs this would, worst case scenario, lead to one single complete
run taking more than 5 days. With 2 algorithms needing to be tested
and 2 tests per algorithm this is not possible within the timeframe of
this project. As a consequence of this only the experiment regarding
both the scale and percentage of the error shall be run in full. The
experiment with a changing number of agents will feature an always
failing sensor.

As there is no definitive way to score the performance of a swarm
a custom scoring function is required. It needs to take into account
all of the different heuristics that are important in this specific situa-
tion:

• Amount of collisions with obstacles (Percentage of time in
simulation) (obst collision)

• Amount of collisions with other agents (Percentage of time in
simulation) (agent collision)

• Order of the swarm staying constant (Average) (order)
• Connectivity of the swarm (Average) (connectivity)

The final scoring formula then becomes:
score = (3 · obst collision+ 0.3 · agent collision

+0.2 · order + 0.2 · connectivity)4.3

As to penalise the collisions with obstacles more its weight is multi-
plied by a scalar of 10. To achieve a better distribution the calculated
score is then scaled according to score final = score4.3. This
function achieves the goal of a low score for high amount of errors
and high score for low amount of errors for both algorithms.

5.2 Python Based Delta Formation
The simulation used for this experiment is point-mass based and
simple in nature. The swarm starts at velocity v0 in the correct delta
shape at which point one of the agents can have a failure in its dis-
tance sensing with regard to the other robots within the swarm. As
such it will lose its position within the delta. A simple solution can
be to increase the agents velocity if it’s too far away and vice versa.
As before the error is not boolean in nature. To make the experiment
more representative of the system can be seen as a group of swarm
members with springs between each other trying to keep each other
in the correct range while also going through some sort of air re-
sistance, thus causing damping. The nonlinear differential equation
can be formalised as

xi =

{
ẋi = vi

v̇i = ai =
∑

j∈neighboursi Fij − kdampv
i

Fij =
(xi − xj)

|xi − xj | − kspr(dij − d0)

kdamp damping constant of the system
kspr spring constant of the system
d0 spring length at rest

As the system is two dimensional in nature its representation is sim-
plified

xi =

[
xi
1

xi
2

]
, vi =

[
vi1
vi2

]
, ai =

[
ai
1

ai
2

]
A failed front facing distance sensor can be introduced in the calcu-
lation of Fij . The distance can be manipulated for a specific agent
along the y-axis. The full state of the system with all the different
swarm members can then be described by

Z =



x1

v1

x2

v2

.

.

.
xn

vn


, Ż =



v1

a1

v2

a2

.

.

.
vn

an


= f(Z)

The next state of the system can be found through the equation

Zt+1 = Zt +∆t · f(Zt)

This system can be further characterised as being underdamped, crit-
ically damped or overdamped. The critical damping coefficient in
this system with point-masses can be characterised as

cc = 2m

√
kspr
m

= 2 · 1
√

kspr
1

= 2
√

kspr

The distinction of the system type can then be made as follows

kdamp > cc overdamped system
kdamp == cc critically damped system
kdamp < cc underdamped system

This is an oversimplification of the physics behind this process and
as such the reader is referred to Engineering Mechanics. Dynamics
by R. C. Hibbeler and K. B. Yap [13]. With both methods formalised
there is now the need to score them. The performance of the swarm
is measured by the mean distance between the agents. It is then
scaled according to a normal distribution with (multiplied by 3 for
scaling purposes)

µ =
√
2

σ = 0.0997356

scorei = 3| 1

µ
√
2π

e−
1
2
(x−µ

σ
)2 |

The experiment shall be run over different permutations of failure
scale and probability for the basic implementation as well as an un-
derdamped system (as close as possible to being critically damped,
e.g. kspr = 101 and kdamp = 20), a critically damped system
(e.g. kspr = 100 and kdamp = 20) and an optimal system got-
ten through hypertuning of the spring and damping constants with a
constant failure.

Another experiment shall be ran with no distance error present
within the system. However all of the swarm members have de-
layed measurements coming in. They start out by receiving the
starting positions of their fellow swarm members but at some de-
layed point ’new’ measurements will start coming in. This amount
of time shall be changed to several setpoints to measure the effect of
this fault. The system will be in both critically damped and under-
damped states.

5.3 BW4T Based Simulation
The experiments pertaining to the effect of a communication break-
down were ran through a MTRX based Python simulation. MTRX
is a tool that allows for the creation of human-agent collaborative
tasks and was used by researchers all over (including a few at the TU
Delft) to create BW4T [11]. This is a framework that allows for easy
creation of some collaborative task and differing types of agents with
an already created communication protocol between these agents.
The task that the swarm must complete will be a foraging task in this
case. The level will be made up of a set of rooms each containing
several blocks. There is a goal zone where the agents must deliver
the goal blocks. Only 3 of the blocks are required, they are charac-
terised by both their shape and colour and duplicates are possible.
To add another layer of complexity the blocks must be delivered in
a certain order as otherwise the task will not be seen as completed
correctly and will require reordering. The swarm will consist of 3
separate agents, 2 ’normal’ agents and 1 ’lying’ agent.

The normal agents are capable of picking up 1 block at the time
and will always relay relevant information as they discover it to ease
the process for the other agents. The agents will send messages to
other agents in the following cases:

• A goal block with colour a, shape b was found at location (x,
y)

• A goal block with colour a, shape b was picked up at location
(x, y)

• A goal block with colour a, shape b was dropped of at goal
location (x, y)

• A door was opened at (x, y)

• A room with name a was searched

• The agent is moving to a room with name a
In short, the swarm works together by opening and searching rooms
for goal blocks. Once a goal block is found it can be picked up and
delivered next to the goal zone. Then finally one agent will drop
off the blocks in the correct order at the drop zone and the task will
be completed. The reader is referred to appendix A to gain a better
understanding of the whole algorithm and the different phases in-
volved. As the performance of the swarm is very much dependent
on the quality of the communication and exchanged information it is
this that shall be tested. The lying agent has a certain probability of
providing faulty information to its fellow swarm-mates. When the
agent lies it will provide a faulty location, colour, shape, name or any
other permutation that might be possible within that specific mes-
sage. The agent specifically avoids using the correct information and

can thus very much be seen as a malicious actor trying to drag the
performance of the whole swarm down. To avoid the process devolv-
ing into a 2 agent foraging task a basic trust model is implemented
following the Ability, Benevolence and Integrity system as proposed
by Mayer, Davis and Schoorman [12]. As this experiment will only
deal with the effects of a lying agent the only relevant metric is that
of Integrity. Explained in a very intuitive manner this comes down
to an agent losing Integrity through the eyes of another agent that
finds out that given information is demonstrably false (important to
note that these trust values are not centralised and every agent stores
their own trust dictionary). Based on that Integrity score an agent
can decide to ignore information received from another agent with a
score below a certain threshold.

With this basic trust model now implemented 2 different experi-
ments shall be run; one where there is no inter-round trust buildup
and one where there is. In the first case, that of only intra-round trust
buildup, the experiment is ran 440 times (to try and achieve a Monte
Carlo simulation [14] and remove all randomness) and the trust val-
ues reset between every round. This shall be done for 21 different
lying probability setpoints between 0 (never lying) and 1 (always
lying). These values are then averaged out to get a representative
result despite the inherent randomness of the lying probabilities. To
see the effect of inter-round learning and the possibility of tolerance
against this type of attack the experiment will once again be run but
this time the trust values will not be reset between every round, only
between setpoints of the lying probability. Once again, values are
averaged out.

It might be noted here that this is not entirely the correct man-
ner as during the learning the trust values continue to develop and
as such the score of the runs will increase until at some point they
plateau because the agents no longer learn anything. It was decided
to still take this course of action as opposed to pre-training the agents
before running the experiment as this would skew values and would
make any conclusions with regards to building fault-tolerance null
and void.

For this experiment there is an easier score available and there is
no need for heuristics; the amount of time (measured in ticks) that it
takes for the swarm to complete the assigned foraging task.

6 Results
Due to several different experiments being ran over three simulators
it is beneficial to discuss them all separately. Experiments ran with
two changing variables are displayed in a scatter plot. These plots
were made using the graphing software Datylon [15].

Figure 1: Effect of the fault probability on the score for the Vasarhe-
lyi algorithm.

6.1 SwarmLab: Vasarhelyi
Fault Probability - Score Relation
Observable in figure 1 is the nearly linear fashion in which the score
drops as the probability of fault occurrence increases. There does
appear to be some squared error or sigmoid present in the data.

Fault Probability - Fault Scale - Score Relation

Figure 2: Effect of the scale and probability of a sensor failure on the
score for the Vasarhelyi algorithm. Score shown as size of marker.
It is apparent in graph 2 that the scale of the fault is not as influential
on the probability of the occurrence of a sensor failure. It can also
be noted that there seems to be some inconsistency or randomness
in the data. This might be due to the aforementioned long running
time and thus the lack of performing a proper Monte Carlo simu-
lation. Noticeably the effect of the sensor failure probability is not
linear; the score seems to drop of a ’cliff’ at around 50% probability
regardless of failure scale.

Swarm Size - Fault Effect

Figure 3: Effect of the swarm size on score for the Vasarhelyi algo-
rithm.
Apparent in plot 3 is that there is lot of noise and that the results do
not allow for any conclusions to be drawn. The only useful, notice-

able trend is that the score decreases as the number of agents within
the swarm increases.

6.2 SwarmLab: Olfati-Saber
Fault Probability - Score Relation

Figure 4: Effect of the fault probability on the score for the Olfati-
Saber algorithm.
Contrary to the Vasarhelyi algorithm the score does not go down
linearly as the probability of a sensor failure increases as seen in
figure 4. Rather the score goes up a bit before going on a steep
decline.

Fault Probability - Fault Scale - Score Relation

Figure 5: Effect of the scale and probability of a sensor failure on
the score for the Olfati-Saber algorithm. Score shown as size of
marker.
From a first glance at plot 5 it becomes clear that the score loss for
this algorithm is less dramatic than that for Vasarhelyi. Once again
the effect of the failure scale seems to be less impactful than that of
the probability of an error occurring. The point at which the ’cliff’

occurs also appears to be slightly later on in the experiment.

Swarm Size - Fault Effect

Figure 6: Effect of the swarm size on score for the Olfati-Saber al-
gorithm.
Unlike the resulting data from this same experiment on Vasarhelyi
the data in graph 6 seems to be more useful and representative. For
the full scale failure the data once again drops quite linearly but the
more interesting result comes from the no failure experiment. There
the relation between score and number of agent follows the score
and fault probability; staying constant or even slightly increasing
until the score hits the ’cliff’ at around 12 agents within the swarm.

6.3 Delta Formation: Basic Implementation

Figure 7: Effect of the probability of sensory failures and failure
scale on the score within a delta formation swarm. Score shown as
size of marker.
Clear in plot 7 is that this simple algorithm keeps the score up as long
as possible as the probability of a failure increases. More interesting
is the fact that the score slightly increases as the scale of the error
increases for the same probability of a failure. Also noticeable is the
dramatically low score on the very highest of failure probabilities.

6.4 Delta Formation: Damped System
Critically Damped System

Figure 8: Effect of the probability of sensory failures and failure
scale on the score within a delta formation swarm in a critically
damped system. Score shown as size of marker.
Plot 8 shows a clear linear decrease in score for the higher combi-
nations of both failure probability and scale. It is however apparent
that the failure probability has slightly more effect on the score but
this can be considered negligible.

Underdamped System

Figure 9: Effect of the probability of sensory failures and failure
scale on the score within a delta formation swarm in an under-
damped system. Score shown as size of marker.

The data of graph 9 follows a very similar pattern as that in plot 8.
The overall scores are lower but no new conclusions can be drawn
from this data.

Optimally Tuned System
System came into its optimal state at a very low spring constant with
a very high damping constant. This leads to a severely overdamped
system that has barely any performance drop-off regardless of fault
probability or fault scale; the only loss of performance is in the high-
est echelons of both fault probability and scale and even then it only
loses less than a percent of performance.

6.5 Delta Formation: Information Delay

Figure 10: Effect of the delay of information gathering on the score
of a swarm attempting to maintain a delta formation.
Graph 10 shows a clear parabolic relation. Depending on the damp-
ing coefficient (discussed in section 5.2) the gradient of the function
also changed where a more underdamped system leads to a lower
score.

6.6 BW4T: Intra-Round Learning

Figure 11: Effect of the probability of lying within a foraging task
without inter-round learning.
Apparent in figure 11 is the near linear manner in which the amount
of ticks the task takes goes up as the probability of lying increases.
There are however several outliers along the path and it is clear that
these outliers occur more as the probability of lying increases.

6.7 BW4T: Inter-Round Learning

Figure 12: Effect of the probability of lying within a foraging task
with inter-round learning.
Although figure 12 is similar in the linear fashion as figure 11, with-
out learning, there does seem to be a bit of a change in slope around
0.4 probability. There are again still some outliers caused by noise.

7 Responsible Research
As there is no private or real world data involved in this research
there is no need for anonymising. The notion of robot swarms used
in real life situations does bring with it the repercussions of possible
use cases of divided swarms. There are a plethora of possibly bad
scenario’s such as extensive surveillance of individuals which would
be eased through the use of a swarming system. As this is very much
out of scope for this article the reader is encouraged to read The
upside and downside of swarming drones by Lachow [16].
More pressing concerns might be those regarding the repeatability of
the performed experiments. Due to the innate randomness of some
of the experiments performed it was paramount that they were re-
peated enough times to reduce the susceptibility of the data to out-
liers within the dataset. Sadly due to time constraints it is not always
feasible or possible to run as many simulations as would be strictly
necessary to achieve a Monte Carlo simulation [14] but with a rel-
atively low standard deviation it is presumed that this gathered data
is sufficient to draw some first conclusions.

8 Discussion
The data collected during the experiments show mixed results. Some
show apparent trends, but others are more difficult to interpret and
as such will not be further considered to draw conclusions from.

8.1 SwarmLab: Vasarhelyi Results
Fault Probability - Score Relation
Clear nearly linear relation between the probability of a fault oc-
curring and the resulting score of the run in graph 1. This can be
explained by the nature of the Vasarhelyi algorithm and how its ve-
locity vectors are computed. With the agents calculating said ac-
celerations/velocities all at once utilising last rounds’ velocities and
positions the algorithm is less sensitive to outliers. This causes the
more linear drop off in performance that can be seen.

Fault Probability - Fault Scale - Score Relation
As in the graph 1 above the same result can be concluded from the
x-axis of figure 2. Noticeable however is the seemingly ineffective-

ness of the scale of the error. This can be explained by the fact that if
the scale of the error is small, the error might fall inside of the range
of the point-mass and as such the result will be ignored in a sense.
At some point the probability becomes great enough that almost re-
gardless of the scale the score drops off the aforementioned ’cliff’.
Also noticeable is that a failure scale smaller than 0.1 is almost com-
pletely inconsequential to the score of the run.

Swarm Size - Fault Effect
As noted in the section ”Vasarhelyi Swarm Size - Fault Effect”, the
results seen in plot 3 seem rather noisy. This can possibly be caused
by an oversight within the design of the scoring function and how
it handles outliers. It is unclear why this does not happen for the
Olfati-Saber algorithm. Due to the amount of noise within the graph
the only conclusion that can be drawn is the performance loss with
more agents within the swarm due to less swarm coherence.

8.2 SwarmLab: Olfati-Saber Results
Fault Probability - Score Relation
Apparent in figure 4 is the non-linear relation between the fault
probability and the score. As the algorithms work in contrary fash-
ions (calculating velocities using info gathered agent by agent/all
agents at once, Olfati-Saber using the former) it stands to reason
that the gathered results are contrarian as well. The slight increase
in score as the probability of a fault increases can be explained by
this. The higher susceptibility to outliers can cause the agent to fol-
low a nearby agent that has had an error and as such is going a lot
faster because it is not stopping for an obstacle ahead of it. When
this failure doesn’t occur often the agent with the failure will not
collide with the obstacle and as such will not drop the score. Due
to this fact the other agents will also speed up to try and follow the
faulty agent and thus keep higher swarm cohesion and order. How-
ever once the faulty agent starts colliding with obstacles (due to a
higher probability of a failure) this effect starts to work in the oppo-
site manner; the agents try to follow an agent with a failure and will
thus also collide with the obstacle.

Fault Probability - Fault Scale - Score Relation
It is immediately clear from plot 5 that for the Olfati-Saber algorithm
the fault scale appears to have almost no impact on the score. Other
than that the results are very similar to the fault probability - score
relation graph found above.

Swarm Size - Fault Effect
The immediately clear trend in graph 6 is that of the score dropping
as the number of agents within the swarm increases. Interestingly
the score almost follows the same trend as for the fault probability
- score relation when there is no fault within the algorithm; staying
constant and even increasing for some time before finally dropping
drastically.

8.3 Delta Formation: Basic Implementation
The slight increase of score as the fault scale increases seen in graph
7 can be explained by the thresholds chosen. At some point the
distance between robots within the swarm becomes large enough
that there shall be some acceleration/deceleration for the lagging/en-
croaching agent. As the failure scale increases the possibility of the
agent getting into these thresholds so does the probability of a cor-
rection in the speed of the agent. The noticeably low scores for the
upper echelons of sensor failure probability can be explained by the
normal distribution used for scoring.

8.4 Delta Formation: Damped System
Critically Damped System
The overall higher scores seen in figure 8 compared to that of graph
7 can be explained by the added dampening in the system; when

a sensor failure occurs the ”springs” between the swarm members
will cause an acceleration to compensate for the perceived change in
distance. As the dampening effect by very definition counteracts any
acceleration, the effect of the sensory fault will therefore be lessened
if not completely counteracted.

Underdamped System
The slight decrease in minimum score seen in graph 9 can be ex-
plained the same way as in the section above, 8.4; as the system is
in an underdamped state the damping constant has decreased and as
such its dampening effect is less effective. This then causes the ac-
celerations caused by the ”springs” to have more effect and as such
reduce swarm coherence.

Optimally Tuned System
The near perfect score seen here is due to the fact that both param-
eters were tuned together. If the spring constant decreases its effect
will lessen and vice versa, same for the damping constant; a low
spring constant then means that there is nearly no force keeping the
agents together once a small distance forms up. This coupled to-
gether with a high damping constant (effect explained in section 8.4)
causes the system to be immune to outliers as they don’t cause any
reaction in their neighbours nor can the accelerate quickly due to the
strong dampening effect. This coupled together leads to basically
neutralising the sensory fault. A more real-world representative ex-
periment would be to tune these parameters independently.

8.5 Delta Formation: Information Delay
From the parabolic functions seen in graph 10 the conclusion can
be gathered that the swarm does still function up until some delay
from which it cannot recover. This seems to be between 50-100 ms
depending on the system configuration. The lesser score depending
on the system state has been explained earlier in section 8.4 and it
stands to reason that seen relation also follows from this.

8.6 BW4T: Intra-Round Learning Results
These outliers seen in the data in figure 10 can be explained by the
failure of the agents to complete the task should enough misinforma-
tion (or in another few, rare set of circumstances) be present. Should
the swarm fail to complete the task this will be seen as a timeout and
the run will return a result of a 1000 ticks. The large number of runs
serves to smooth out this value to try and avoid large spikes such as
those appearing at a lying probability of 0.85. Why this particular
spike still appears is not immediately apparent but it can be pre-
sumed that at this setpoint of lying probability the trust system fails
to discover quickly enough whether some agents are completely un-
reliable in the information that they share. This causes some agents
to still assume the correctness of false information and as such act
in an incorrect manner.

8.7 BW4T: Inter-Round Learning Results
The expectation would be that this experiment performs better for
the lower probabilities of lying with trust buildup over multiple
rounds the lying nature of agents is uncovered/known earlier and
as such the swarm will not lose performance by trusting said agents.
The nearly equal results in the higher lying probability reaches can
be explained due to fact that with such a high probability these
agents will be caught soon and as such not be included in the pro-
cess regardless. However this cannot be accurately seen in the data
in figure 11. There is a slight hint of a sigmoid (as described above)
but it is not visible enough to be distinguished from a linear function
affected by noise. This result could be specified more by running
more epochs per setpoint of lying probability and thus filter out out-
liers. Another possibility could be to make the agents within the

swarm recognise when they are in a hard lock and handle this better
or terminate sooner.

9 Conclusions and Future Work
This paper endeavored to discover the relation between introduced
sensory faults within a robotic swarm and whether or not this rela-
tion can be quantified for different types of errors. Multiple exper-
iments were conducted on multiple types of sensory faults within
different custom written simulations. It was discovered that while
usually quantifiable, it is hard to create a definitive function that de-
scribes the effect of any given type of sensory error.
While multiple different types of sensory failures were discussed it
is by no means a comprehensive list and in the future this could be
a good subject for further research into this topic. It could also be
beneficial to run tests with more epochs; this was not doable in the
scope of this research paper, due to time constraints.

References
[1] J. Zhao, H. Xu, H. Liu, J. Wu, Y. Zheng, and D. Wu,

“Detection and tracking of pedestrians and vehicles using
roadside LiDAR sensors. Transportation research part C:
emerging technologies.” March 2019, Accessed on: 5-May-
2022. [Online]. Available: https://www.sciencedirect.com/
science/article/abs/pii/S0968090X19300282?via%3Dihub

[2] R. Abbasi, M., K. M., and M. et al., “An efficient paral-
lel genetic algorithm solution for vehicle routing problem
in cloud implementation of the intelligent transportation sys-
tems.” Journal of Cloud Comp, vol. 9, no. 1, pp. 1–14, Decem-
ber 2020.

[3] A. Winfield and J. Nembrini, “Safety in numbers: Fault tol-
erance in robot swarms,” International Journal of Modelling
Identification and Control, vol. 1, pp. 30–37, 01 2006.

[4] Y. Leung, G. Li, and Z.-B. Xu, “A genetic algorithm for the
multiple destination routing problems,” IEEE Transactions on
Evolutionary Computation, vol. 2, no. 4, pp. 150–161, 1998.

[5] J. D. Bjerknes and A. F. T. Winfield, On Fault Tolerance and
Scalability of Swarm Robotic Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 431–444. [Online].
Available: https://doi.org/10.1007/978-3-642-32723-0 31

[6] E. Soria, F. Schiano, and D. Floreano, “Swarmlab: a matlab
drone swarm simulator,” in 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2020, pp.
8005–8011.

[7] C. Reynolds, “Flocks, herds, and schools: A distributed behav-
ioral model,” ACM SIGGRAPH Computer Graphics, vol. 21,
pp. 25–34, 07 1987.

[8] C. Virá gh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai,
T. Nepusz, and T. Vicsek, “Flocking algorithm for autonomous
flying robots,” Bioinspiration & Biomimetics, vol. 9,
no. 2, p. 025012, may 2014. [Online]. Available: https:
//doi.org/10.1088%2F1748-3182%2F9%2F2%2F025012

[9] R. Olfati-Saber, “Flocking for multi-agent dynamic systems:
algorithms and theory,” IEEE Transactions on Automatic Con-
trol, vol. 51, no. 3, pp. 401–420, 2006.

[10] MATLAB, version 9.12.0.1884302 (R2022a). Natick, Mas-
sachusetts: The MathWorks Inc., 2022.

[11] M. Johnson, C. Jonker, M. Riemsdijk, P. J. Feltovich, and
J. Bradshaw, “Joint activity testbed: Blocks world for teams
(bw4t),” 11 2009, pp. 254–256.

https://www.sciencedirect.com/science/article/abs/pii/S0968090X19300282?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0968090X19300282?via%3Dihub
https://doi.org/10.1007/978-3-642-32723-0_31
https://doi.org/10.1088%2F1748-3182%2F9%2F2%2F025012
https://doi.org/10.1088%2F1748-3182%2F9%2F2%2F025012

[12] R. C. Mayer, J. H. Davis, and F. D. Schoorman, “An
integrative model of organizational trust,” The Academy of
Management Review, vol. 20, no. 3, pp. 709–734, 1995.
[Online]. Available: http://www.jstor.org/stable/258792

[13] R. C. Hibbeler and K. B. Yap, Engineering mechanics. Dynam-
ics. Pearson, 2017, ch. 22, pp. 631–670.

[14] P. Bonate, “A brief introduction to monte carlo simulation,”
Clinical pharmacokinetics, vol. 40, pp. 15–22, 02 2001.

[15] Datylon, version R49.2. Antwerp, Belgium: Datylon, 2022.
[16] I. Lachow, “The upside and downside of swarming drones,”

Bulletin of the Atomic Scientists, vol. 73, no. 2, pp. 96–101,
2017. [Online]. Available: https://doi.org/10.1080/00963402.
2017.1290879

http://www.jstor.org/stable/258792
https://doi.org/10.1080/00963402.2017.1290879
https://doi.org/10.1080/00963402.2017.1290879

Collaborative AI BW4T Practical Assignment

Zhiyi Chen , Stijn Coppens , Marco Nicola Stroia and Kevin Zhu
TU Delft

Abstract
Automated agents that can operate by themselves
or in tandem with humans are an important domain
of collaborative AI development. These agents can
facilitate human tasks or replace part of human
workload, potentially improving efficiency and day
to day life of the users.
In this paper we are tackling an introductory ap-
proach to developing collaborative agents. These
agents will perform simple tasks in a game-like
environment named BW4T (Blocks World for
Teams), based on the Collaborative Artificial Intel-
ligence course curriculum given at TU Delft.

1 Introduction
Interaction between intelligent agents and between humans
and such agents is an important field of research in collab-
orative AI, and it paves the way for easing the workload
of humans in environments where tasks can be partially or
even fully automated by AI. Studying the interaction between
these automated agents is important since it provides insight
on how to further optimize their behaviour when cooperating
with different (and sometimes uncooperative) agents.

This paper will focus on the interaction between different
kinds of automated agents, and offers a general description
of how they collaborate in a specific environment, what their
purpose is, what are the strategies and algorithms that they
each implement, and how we tested and evaluated them in
order to achieve the best results.

The environment in question is named BW4T (Blocks
World for Teams), a game-like world where the objective is
to cooperate with the other agents (either AI or human) and
deliver a sequence of blocks in a particular order as fast as
possible. Our implementation extended the MTRX frame-
work for BW4T.

2 High level description of the agent and the
code structure

This section will include a high-level description of the over-
all architecture of our agents, and the steps they take in order
to complete the given task.

For this assignment, we were tasked with developing four
agents that have to cooperate in order to deliver a certain set
of blocks to a destination, and order them in a predefined or-
der. Generally, agents have the same goal of delivering the
blocks to the destination. Each of the four agents had to be
implemented with a specific characteristic: one agent has to
be lazy, one agent has lie about their actions and observa-
tions, one agent can not distinguish colors and one agent has
the ability to carry two blocks at once. The general algorithm
and the particularities of each agent will be described in the
following subsections.

2.1 General Algorithm
All of our agents were developed on top of a common base
implementation, which we called the “Normal Agent”. This
agent performs the tasks at hand correctly and efficiently, and
provides an idea of an ideal way to solve the problem. All
the implemented agents change certain aspects of the normal
agent in order to fit their defining characteristics.

Most of the logic of our agents is performed in two meth-
ods “filter observations” and “decide on bw4t action”. “fil-
ter observations” is used to process information received
from the other agents in the team, updates the understanding
agents have about the task at hand and the world state, and
change the level of trust each agent has in the other agents.

The “decide on bw4t action” method is used to decide the
behaviour of an agent for the current turn. This behaviour
depends on the phase the agent is currently in. These phases
are:

• FOLLOW PATH TO CLOSED DOOR: in this phase
agents will look for the closest unexplored room, send
a message, and then move towards that location. The
process will continue even after all rooms have been ex-
plored. This phase also possesses a bidding aspect to
prevent multiple agents from going to the same room.
The bidding aspect will be explained in more detail in
section 2.3.

• OPEN DOOR: the agents will open the door (if closed)
and send a message.

• SEARCH ROOM: agents will explore the room they
visited and send the corresponding message. While ex-
ploring they will search for blocks matching their objec-
tive. If such a block is found, another message will be

A BW4T Collaborative Agents

Figure 1: Simplified flow of actions assuming a single, normal agent.

sent and the agent will proceed to pick up the block.

• PICK UP: the agents will pick up the target block and
send the corresponding message.

• DELIVER OBJ: in this phase, agents will move towards
the drop location of the block they picked up. After
reaching the destination, they will drop the block and
send the corresponding message.

• REORDER OBJ: when all blocks have been delivered
but in the wrong order, agents will attempt to reorder
the object. If a missing (or wrong) block is found in the
drop-zone, a message is sent and agents will continue
exploring. This phase possesses a bidding aspect to pre-
vent multiple agents from reordering at the same time.

• DEAD: agents reach this phase when all blocks have
been delivered, and will not perform any further action.
It is possible to get out of this phase if any agent notices

As seen in Figure 1, these phases flow into each other, but
this flow can be altered by an agent characteristic or infor-
mation received from other agents. For example, the lazy
agent can decide to change it’s phase without finishing it, or
an agent could go straight to the pick up phase if it receives
a message stating that a block has been dropped outside the
drop-zone.

2.2 Communication protocol and coordination
The actions the agents perform are affected by the actions of
their team-members, and this information is shared through
messages they send to each other. The default messages de-
fined by the assignment itself are: communicating the room
they are currently moving to, which door they open, which
room they are searching, when they find a goal block, what
block they have picked up and where they have dropped it
(with the last three messages containing information about
the block’s visuals and location).

Besides these default messages, our bidding algorithm
makes use of additional custom messages, used to assign and
prioritize the best agent for the job. All of these messages are

important for planning the actions that are required to com-
plete the objective, and they contribute greatly in regards to
the overall efficiency and building trust images of each other
agents.

When messages parsed at the beginning of each turn,
they update the knowledge an agent has about the state of
the world and what tasks have been accomplished by other
agents. This allows agents to infer the next best course of ac-
tion, better distribute the tasks and cooperate with each other.
The parsing of messages is also affected by trust, which will
be explained in section 3.3.

2.3 Bidding
Our bidding algorithm is used to enforce better collaboration
between agents by preventing multiple people from perform-
ing the same task. It is used in different phases of the pro-
gram, such as deciding who is going to explore which room
and who is going to perform the reordering action. This bid-
ding applies when two separate agents declare the same ac-
tion during the same turn: in such a scenario a bid will be
created and agents will append additional messages contain-
ing their distance to the objective, a random roll (between 1
and 100) and their trust image (more details in section 3.1. In
the following turn, each agent will compare their own bid to
the opponents, with the bidder closest to the objective being
the winner (with the random roll being used to break up ties).
The winner will get to perform the declared action, while the
losers will move on to a different unexplored door (in the case
of room exploration) or go into the dead phase (in the case of
reordering).

The bidding algorithm is also influenced by the trust val-
ues, which will be explained in section 3.3

2.4 Colorblind Agent
The colorblind agent follows the standard implementation of
the normal agent but differs in one key aspect; it’s inability to
see colors. For our implementation, we interpreted this char-
acteristic as the agent not having direct access to the color
related fields in the visuals of both the blocks and the drop-
zone. As a result, he is unable to complete the objective by
himself. He will still attempt to explore rooms and send mes-
sages when finding a block that match any of the goal blocks
on all characteristics but the color, but these messages will be
usually ignored by himself and other agents (although it will
decrease how much he is trusted). When possible, the color-
blind agent will try to be helpful by delivering blocks found
by other agents (if the color field is present in the message)
but will be unable to confirm whether said block is correct,
making him a bad match for liar agent.

2.5 Strong Agent
The strong agent is a version of the normal agent that can
carry two blocks at the same time, making him a direct im-
provement in terms of efficiency. It performs all of its actions
correctly and will never lie in its messages. After picking up
a block, if there are still goal blocks left to be delivered and he
is able to carry more blocks, he will continue exploring until
the last missing block is picked up (by him or others). Due to
his high efficiency, he will be easily trusted by other agents,

and said trust will tend to rise in a faster manner compared
to others, giving him better odds at receiving jobs through
bidding.

2.6 Liar Agent
The liar agent is characterised by it’s dishonesty about shared
information. It will still complete all tasks as the normal
agent would but any messages it sends out with information
regarding his actions or observation will have a 80% chance
of containing false information. It will not lie with regards
to the type of action it’s taking (for example if the agent says
that they’re picking up a block, they are actually picking up
a block). It can however lie about the location and/or ap-
pearance of the block it’s picking up. Thus any messages
pertaining to blocks (finding a block, picking up a block and
dropping a block) will have an 80% chance of containing a
lie with regards to the location where this happened or what
the exact block was.

Note that the false locations and visual information about
the blocks that will be used in these lies will always be
within the confines of the map (excluding walls) or actual
goal blocks. The other messages with information regard-
ing doors/rooms (moving to room, opening door of room and
searching through room) will lie about which room the agent
is interacting with, but will still use an existing door/room in
the map. In short, the liar agent will always complete it’s de-
clared action but the information it gives out while doing said
action has an 80% chance of being a lie.

2.7 Lazy Agent
The main trait of the lazy agent is its lack of willingness to
complete tasks that it started. This is implemented in a way
that allows the agent to give up on the task it is currently
performing 50% of the time. This is done by calculating the
number of turns required to perform the task, for example
the number of steps needed to move from A to B, and giving
each step an equal chance of being lazy and changing task.
The sum of the probabilities of being lazy in each step will
sum up to 50%, meaning that while the agent will complete
the task half the time, in the other half it could be interrupted
in any stage of the process.

The tasks are prioritized in such a way that the agent will
always give up on tasks in order to perform easier or just as
hard tasks, if they are available and necessary. For exam-
ple, the lazy agent could stop searching a room and look for
another room to search, if there are unsearched rooms left, in-
stead of going to pick up and deliver a block. The lazy agent
can finish the task by itself given enough time, but does so in
an very inefficient manner. Despite this, it always provides
truthful information and will also declare it’s change of ac-
tion. For example, if it is in the middle of delivering a block
and decides to switch task, it will first drop the block that is
currently being carried and notify the other agents of its loca-
tion.

3 Trust
Trust is an important aspect in collaboration between humans,
but it also applies to human-agent and agent-agent collabora-

tion. Because of this, our agents implement a trust mecha-
nism that relies on the information from received messages
and knowledge about the world in order to decide how trust-
worthy other agents are.

3.1 Trust Model
In order to include trust mechanisms into our agents, we de-
cided to implement an algorithm following the ABI model,
described in [Mayer et al., 1995]. This model is built upon
three main ”factors of perceived trustworthiness”: Ability,
Benevolence and Integrity. These three factors are influenced
by the perception of each agents in regards to events that
happen in the world, and the declared actions and observa-
tions of the other agents. Together they contribute towards
deciding on a level of trustworthiness to be attributed to these
agents. Additionally, this trustworthiness can be used to in-
fluence which actions will be designated to each agent in a
team, which also affects the amount of contribution that an
agent can provide in a round.

Trust levels of an agent towards others can be influenced
by different factors, such as direct experiences of the agent,
or indirect knowledge learned from others. According to
[Weiss, 2013] direct experiences are considered the most re-
liable since ”they come form a direct perception without in-
termediaries”. The book also mentions that ”almost every
multi-agent trust model uses the agent’s direct experiences as
a source for image calculation”. Because of these aspects,
we based a majority of our trust calculations on direct expe-
riences of the agent, which in the case of this project were
represented by the messages agents sent to a public channel
of communication.

Another important aspect of the way agents build trust, is
the reputation the other agents build for themselves. A sim-
ple way to tackle this problem is having agents communicate
their trust images of all the other agents in the team. This way,
every agent has access to the perception each team member
has, and these perceptions can influence the decisions made
while performing tasks. An example of such an implementa-
tion is our bidding algorithm, explained in section 2.3.

3.2 Trust Implementation
This subsection will cover the ways in which the trust images
of agents are used while solving the given tasks and how their
usage optimizes the problem solving process.

On an individual level, agents build trust by interpreting
messages sent by the other team member and using this in-
formation to form a trust image on them. The main method
we used to derive this information is by reading the messages
received from each agent, and looking for different patterns
in order to draw conclusion in regards to their activity and
trustworthiness. This way, different patterns target different
aspects of trust defined in the ABI model. For example, if
an agents notices that another agent picked up and success-
fully delivers two of the goal blocks, it will increase the per-
ceived level of Ability for that agent. Conversely, if the agents
notices someone declaring they picked up a block and then
dropped it at the wrong location, it will decrease the Benevo-
lence and Integrity of that agent.

These trust parameters are also affected by the quality of
the received information, as they provide insight on the char-
acteristics of the sender. This is done for example by detect-
ing and punishing misleading or impossible observations by
decreasing Integrity, punishing lacking or useless information
by decreasing Ability, but also rewarding correct behaviour
and truthful messages.

These trust values persist between rounds played, so team
members can start working more efficiently with each other
after more rounds in the same team. This information is
stored in a memory file that each agent has. At the begin-
ning of a round, it gets imported from the file and is further
modified throughout the round. In the case in which the files
are not there, the program will initialize the trust image to de-
fault values and create the file at the end, in order to be used
in the next iteration.

3.3 Influence of Trust on Agent Actions
In our implementation there are two aspects that are directly
affected by the trust images that are built up by our agents:
the bidding algorithm and the communication protocol.

The bidding algorithm uses the trust value akin to a repu-
tation system. The more trusted you are by your team mem-
bers, the more positively your bid will be considered by the
algorithm. Different tasks will take into consideration differ-
ent trust parameters (integrity, ability, benevolence), and the
amount of trust that each participating agent has towards a
particular member determines the member’s trustworthiness
value. This value is then subtracted from their distance value.
As such, an agent that is highly trusted by its team members
will have a positive value that will effectively decrease the
distance taken into consideration by the bidding algorithm,
making them more likely to win the bid.

The addition of trust in the algorithm provides us a way
to optimize the task solving process by designating tasks to
agents which are more likely to complete said task in an op-
timal manner, either more efficiently or without the need of
other agents to fix their mistakes.

The communication protocol on the other hand, mainly
uses the trust image to determine how reliable the informa-
tion received are, and avoid trusting messages that have a high
chance of being misleading or wrong. This does not only take
into account Integrity, but also ability and benevolence: for
example if an agent with very low ability explores a room,
the truthfulness of his action won’t be questioned, but his ca-
pability of exploring the room correctly will be. As such his
room will still be considered as an option for exploration.

4 Testing the agent and the analysis of results
In the following section, the performance of our implementa-
tion will be discussed in several different configurations in re-
gards to the agents participating in the world and the number
or type of goal blocks that need to be delivered. The perfor-
mance was be measured through the amount of ticks it takes
to complete a round on average, if completion is possible in
the given configuration. Finally, to analyse the agents in their
role as collaborative with human agents, an interdependence
analysis was conducted.

4.1 Strong Points
In this section we will present some of the aspects that we
believe are the strong points of the implementation of our
agents.

Trust Algorithm
A wide variety of cases and scenarios have been taken into
consideration to increase and decrease the trust value in our
three categories of trust (integrity, ability and benevolence).
This allows the trust images to be built accurately and effi-
ciently, providing insight on the behaviour of the other agents
in a relatively quick manner, and showing in what areas they
can or cannot be trusted.

Utilization of trust images
We incorporated the trust images in our implementation in
different places to improve the robustness and efficiency of
our agents. This can be seen in our bidding algorithm, which
uses reputation to assign the most optimal agent to different
tasks, and in our parsing algorithm, to offset the negative in-
fluence that some agents can have based on which category
of trust they’re considered not trustworthy.

Fidelity to the given specifications
While the implementation of the characteristic of some of
the agents were open to interpretation (namely the liar and
lazy agent), the way we decided to implement these features
was heavily focused on how accurately we believed their be-
haviour would match their given title. This meant not taking
shortcuts such as making our agents conduct in a manner that
would too easily expose their identity or that could be easily
taken advantage of for better efficiency.

Examples of this are: our liar agent being able to only make
plausible lies that could not be directly detected without con-
text, our lazy agent being able to interrupt a task at any point
during the course of said task with equal chances, and, if in-
terrupted, to only switch to a task that is considered easier (or
with comparable difficulty).

Collaboration between less performant agents
While working on our implementation, we also considered
how to make the agents make up and cover for each other’s
deficiencies, even without the presence of a strong agent. A
prime example of this is the behaviour of our blind and lazy
agents, which individually are unable to complete the given
objective efficiently, but together can collaborate and finish
the round with a relatively quick pace.

4.2 Weak Points
Our algorithm performs well in many metrics but there is still
room for improvement. Below we shall discuss three differ-
ent fields in which we feel performance would benefit from
further optimization the most.

Lack of robustness in certain edge cases
While in general we believe our implementation to be quite
robust, this becomes less true when the liar agent comes into
play. Due to the highly random nature of its behaviour, a few
relatively rare edge cases are present and still unaccounted,
partly due to a lack of testing and difficulty in replicating the
issues.

For example when there are duplicate goal blocks together
with a lazy and liar agent it is possible for the agents to be-
come confused and take much longer than strictly necessary
to finish the task.

Room for further optimization of agents behaviour
Due to time restriction within the project, we had to put
more focus on developing a stable, working implementation
of the agents and had to forego more complex optimizations
that could’ve potentially increased overall efficiency. This
includes adding heuristic optimization in room exploration,
better subdivision of tasks between agents and improving
the path finding algorithms. Additionally, we could have
also taken more advantage of the characteristics of individ-
ual agents through the use of trust values.

Lack of indirect experiences and reputation
Currently the trust images of our agents are mostly built
up through direct experiences, by parsing messages that are
shared globally and contextualizing it with the previous mes-
sages and the state of the world. This results in agents having
the same direct experiences and trust images between differ-
ent agents being unsurprisingly similar. As such, sharing of
indirect experiences and reputation isn’t quite necessary.

What we could benefit from, is a way for agents to per-
sonally infer trustworthiness, and a communication protocol
that includes the sharing of this information as indirect expe-
riences and reputation.

Inefficient code
In our implementation, a bigger emphasis was put on the effi-
ciency of agents in completing their task, and a lesser priority
to the efficiency of our algorithms. As such, part of our code
is still unoptimized and run-time tends to slow down notice-
ably after 400 ticks. Possible reasons behind this are the
way we parse messages and build trust (with run-time slow-
ing down as the number of messages stored increase), and the
way we pre-calculate distances (an issue highly relevant to
the lazy agent).

4.3 Interdependence Analysis
In this selection we will discuss the interdependence between
different types of agents and how they affect the OPD require-
ments.

Interdependence between between different types of
agents
As shown in the IA tables, each agent has different capa-
bilities and can accomplish the task of “Fill the drop zones
with the correct objects in the predefined order” by itself to
a different extent. The liar and the strong agents have the
capacity of accomplishing all sub-tasks by themselves. In the
meantime, the assistance of the supporter agents can be some-
times useful and enables the performer agents to finish the
task more efficiently. For instance, for the sub-task ”Locate
Object”, the liar and strong can explore the world and find
out the correct location of the target by themselves. However,
this process will take much less time with the assistance of
other agents. These supporter agents can help the performer
agent explore the world and locate the target blocks faster.

The same applies to the sub-task ”Recognize successful de-
liveries” (identifying which blocks have already been deliv-
ered). The supporter agents can ease this sub-task by sending
correct messages to notify the performer agent that some tar-
get blocks have already been located and delivered.

On the other hand, the lazy agent also has the capacity of
finishing all tasks and sub-tasks, but it is as reliable. For in-
stance, it might stop in the midway while exploring the world
or delivering the block to the correct location. Under such
situations, the supporter agents can assist the lazy agent to
enhance its reliability. The colorblind agent is the only type
of agent, which does not have enough capacity to finish ev-
ery task and sub-task by itself. As it cannot see the color of
the blocks, it only receives limited information regarding the
world while exploring. Thus, it cannot completely verify the
correctness of target blocks when passing by. This also af-
fects its ability to check the correctness of blocks dropped in
the target locations during the re-ordering phase. Therefore,
for all sub-tasks involving colors, it requires the assistance of
supporter agents.

OPD requirements
From the interdependence analysis of the different types of
agents, we can conclude the OPD requirements. Since the
colorblind agent requires assistance from other agents on the
tasks “Locate object” and ”Recognize successful deliveries”
and all other types of agents can perform more efficiently with
such assistance, there are observability requirements to make
the blocks found or delivered to the drop zone by one agent
known to all the other agents. As the lazy agent has a 50%
chance of giving up the delivery of the picked-up block, it
cannot accomplish the task reliably. Thus, it needs the di-
rectability over other agents to ask them to finish the delivery
process. Meanwhile, due to its laziness, it requires a longer
period of time for reordering, which can be remedied by other
agents taking over this job. The predictability requirement, in
this case, is to enable the other agents to know that the lazy
agent will start reordering the blocks.

There are other OPD requirements that are not explicitly
shown in the IA tables. Whereas, we have added them to
add efficiency to the agents. In order to avoid collision of
tasks between agents, we have added the predictability re-
quirement to inform the agents which rooms will be explored
by the team members. This is done to avoid, for example, two
agents exploring the same room, which might lead to a waste
of searching power.

References
[Mayer et al., 1995] Roger C. Mayer, James H. Davis, and

F. David Schoorman. An integrative model of organiza-
tional trust. The Academy of Management Review, 20:709,
1995.

[Weiss, 2013] Gerhard Weiss. Multiagent systems. Cam-
bridge ; London The Mit Press, 2013.

B Default Parameters
• SwarmLab, source code available at GitHub.

1 {
2 ’inter_agent_distance ’: 10,
3 ’agent_speed ’: 6,
4 ’sim_end_time ’: 100
5 }

• Delta formation swarm, source code available at GitHub.

1 {
2 ’mu’ = sqrt(2)
3 ’omega’ = 0.0997356
4 ’d_0’: sqrt(2)
5 }

• BW4T, source code available on request due to copyright con-
straints.

1 {
2 ’deadline ’: 1000,
3 ’tick_duration ’: 0.0,
4 ’random_seed ’: 5,
5 ’room_size ’: (6, 6),
6 ’nr_rooms ’: 6,
7 ’rooms_per_row ’: 3,
8 ’average_blocks_per_room ’: 4,
9 ’block_shapes ’: [0, 1, 2],

10 ’block_colors ’: [’#0008ff’, ’#ff1500’
, ’#0dff00’],

11 ’room_colors ’: [’#0008ff’, ’#ff1500’,
’#0dff00’],

12 ’wall_color ’: "#8a8a8a",
13 ’drop_off_color ’: "#878787",
14 ’block_size ’: 0.5,
15 ’nr_drop_zones ’: 1,
16 ’nr_blocks_needed ’: 3,
17 ’hallway_space ’: 2,
18 ’agent_sense_range ’: 2,
19 ’block_sense_range ’: 1,
20 ’other_sense_range ’: np.inf,
21 ’agent_memory_decay ’: 5,
22 ’fov_occlusion ’: True
23 }

https://github.com/sdd-coppens/rp_2022_repo
https://github.com/sdd-coppens/rp_2022_repo

	Introduction
	Swarming Formalised
	Related Works
	Methodology
	Experimental Setup
	SwarmLab Based Simulation
	Python Based Delta Formation
	BW4T Based Simulation

	Results
	SwarmLab: Vasarhelyi
	Fault Probability - Score Relation
	Fault Probability - Fault Scale - Score Relation
	Swarm Size - Fault Effect

	SwarmLab: Olfati-Saber
	Fault Probability - Score Relation
	Fault Probability - Fault Scale - Score Relation
	Swarm Size - Fault Effect

	Delta Formation: Basic Implementation
	Delta Formation: Damped System
	Critically Damped System
	Underdamped System
	Optimally Tuned System

	Delta Formation: Information Delay
	BW4T: Intra-Round Learning
	BW4T: Inter-Round Learning

	Responsible Research
	Discussion
	SwarmLab: Vasarhelyi Results
	Fault Probability - Score Relation
	Fault Probability - Fault Scale - Score Relation
	Swarm Size - Fault Effect

	SwarmLab: Olfati-Saber Results
	Fault Probability - Score Relation
	Fault Probability - Fault Scale - Score Relation
	Swarm Size - Fault Effect

	Delta Formation: Basic Implementation
	Delta Formation: Damped System
	Critically Damped System
	Underdamped System
	Optimally Tuned System

	Delta Formation: Information Delay
	BW4T: Intra-Round Learning Results
	BW4T: Inter-Round Learning Results

	Conclusions and Future Work
	BW4T Collaborative Agents
	Default Parameters

