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Abstract

A quantum network allows us to connect quantum
information processors to achieve capabilities that
are not possible using classical computation. Quan-
tum network protocols typically require several en-
tangled states available simultaneously. Previously,
an entanglement generation process was analysed
where, at each time step, we generate an entangled
state with success probability p. Here, we consider
adaptive entangled state generation with more flex-
ibility. At each time step, our process chooses a
protocol (p;, F;) from a discrete number of entan-
glement generation protocols. An entangled state
is generated successfully with probability p;, and
its fidelity F; defines how close the entangled state
is to an ideal Bell state. The new state is subject
to depolarising noise in the quantum memory. Be-
cause of the memory noise, states are discarded af-
ter a certain number of time steps ¢; when they are
no longer useful to our application. We model our
process as a Markov decision process and derive a
policy 7 to generate n entangled states with mini-
mal expected time E,[7]. We analyse the offered
improvement of the optimal policy of our adap-
tive entanglement generation process over the pre-
viously studied static process. We conclude that
this improvement becomes more significant as the
required number of links in memory increases.

1 Introduction

A quantum network (QN) enables quantum communication
between the participating remote parties. It allows quantum
information processors to connect and achieve capabilities
not possible with classical computation [1]. An important QN
application is secure computation on a quantum server. It can
be achieved using a Blind Quantum Computation (BQC) pro-
tocol [2] that models the communication between a client and
the server as a black box with interfaces both parties can use.
That way, the client can utilise the quantum server’s potential
while their computations remain secret to the server.

BQC is only one example of what QNs would enable us to
achieve — there are other protocols which offer an improve-
ment over classical networks [3]. However, most QN proto-
cols require multiple entangled states, or entanglement links
between the QN nodes, to be available simultaneously [4].
Therefore, we refer to an entanglement link as a quantum
resource and the protocols for generating entanglement be-
tween nodes as resource generation protocols. Here, we fo-
cus on near-term QNs. A QN in the near term may cover
short distances while using powerful end nodes capable of
implementing a large set of protocols [1].

We can define a resource generation protocol as a tuple (p, F')
where p is the probability of successful resource generation
and F is the fidelity of the generated link. The link fidelity
models how close the generated entangled state is to an ideal
Bell state [5]. Research to determine the expected time of a

process to produce a fixed number of links and characterise
the distribution of the fidelity of the generated links already
exists [4]. The previously conducted research in this direction
has focused on using a single resource generation protocol
for all links in the network [4], [6]. We define the setting for
our process similarly. The generated links reside in quantum
memory, and we model their fidelity using an exponential de-
cay defined as follows:
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This model simulates a noisy environment in which links lose
quality over time, as illustrated in Figure 1. The variables
used are defined as follows.

e F'is the link fidelity w.r.t. an ideal Bell state;

e I' is the quantum memory parameter that defines how
fast the link’s fidelity decays;

* w is the number of time steps since the link has been

generated.
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Figure 1: Entanglement links with exponentially decaying fidelity
between two nodes in a quantum network. Adapted from B. Davies
with permission.

After a link’s fidelity drops below a predefined threshold fi-
delity Finresh, the link is discarded from memory. We refer to
this event as a cutoff [6]. An optimal policy is defined as a
set of decisions specifying what protocol to use for link gen-
eration, aiming to minimize the expected delivery time of n
entanglement links. Here, we consider a process in which the
nodes in the network have information about the links already
generated. However, the previously considered process that
uses a single protocol for generating each link makes no use
of the available information about existing links in memory.

Here, we study an adaptive generation process where, at each
time step, we can choose from multiple generation protocols
(pi, F;), each having different probability p; and fidelity F;.
This makes the process more flexible than a static process that
consistently selects the same protocol from the range of pro-
tocols available to the adaptive process. An adaptive process
utilises the available information about the number of links
in memory and their fidelity. Because the adaptive process is
more flexible, the optimal policy can vary depending on the
parameters chosen, as some protocols will be more favoured
than others. We observe the changes in the optimal policy as



the number of required links in memory for the network pro-
tocol varies. We analyse those changes by looking into the
generation protocols the adaptive process uses at each time
step, the time to completion of the optimal policy, and its
variance. In addition, we compare the runtime of the opti-
mal policy to a heuristic policy that always picks the highest
probability of successful link generation that still allows for
n links to be available at the end.

Our main contributions are as follows:

* We introduce a finite Markov decision process (MDP)
model for a near-term QN with memory cutoffs that se-
lects from a collection of protocols to generate n entan-
glement links;

* We find optimal policies for minimising the expected de-
livery of n entanglement links by solving the MDP via
policy iteration;

* Our optimal policies take advantage of global knowl-
edge about the expected time to generate n links for each
quantum memory state and act as a lower bound to the
expected delivery time of policies based on heuristics
that use only local state information.

Our main findings are as follows:

* The optimal policies gradually shift from actions with
lower probability to actions with higher probability as
the number of links in memory increases;

e The actions taken for states that mostly contain links
with low fidelity tend to have lower probability;

* As the number of required links increases, the gap be-
tween the optimal policy and our heuristic policy in-
creases because the heuristic fails to capture the com-
plexity of the process.

The structure of this paper is as follows. First, we describe
how we model the problem of finding an optimal policy as
an MDP in Section 2. This section also includes how we
simulate the optimal policy using a Monte Carlo simulator
[7]. We use those methods to derive the results we interpret in
Section 3. Then, we discuss the integrity of our research and
the reproducibility of the listed results in Section 4. Finally,
we conclude this paper by describing how this work might be
extended to analyse larger search spaces in Section 5.

2 Methods

In this section, we include detailed information about what
methods we have used to derive the optimal policy for an
adaptive link generation process. We model the problem of
finding the optimal policy to generate a required number of
links n as an MDP. We define what an MDP is and how we
derive the optimal policy in Section 2.1. Section 2.2 outlines
the model used for the probabilistic decision process. In Sec-
tion 2.3, we explain how the optimal policy is verified and
simulated to analyse its properties later.

2.1 Background

An MDP represents the domain of a problem via a set of
states, with actions that introduce stochastic transitions from
one state to another [8]. An agent starts from the starting state
and has to reach a target state using the set of actions. Each
action has a certain probability of successfully transitioning
to a new state. We associate a reward to each state-action pair
to guide the agent to a goal state in the search problem. The
rewards and the action probabilities define the values of every
action taken from a given state. Usually, the rewards are de-
rived from the metric we wish to optimise by the actions we
are taking in the MDP.

We can use dynamic programming (DP) algorithms to com-
pute optimal policies from a perfect model of the environment
as an MDP. There are two main algorithms used in practice
— policy and value iteration [9]. Both produce a provably
optimal policy by iteratively computing the values for each
state-action pair until convergence [9]. For each state s, there
will be one or more actions at which the maximum value is
obtained in the Bellman optimality equation [10]. We can
define an optimal policy as any policy that assigns nonzero
probability only to these actions [8].

An MDP has already been used for deriving optimal entangle-
ment generation policies in repeater chains [6]. In our adap-
tive entanglement generation process, we can model the envi-
ronment as a set of states representing the quantum memories
at a particular time step and a set of actions defined by the pro-
tocols (p;, F;) we can choose from. For each memory state,
we can either successfully generate a link with probability p;
or fail with probability 1 — p;. The transition probabilities are
defined by the chosen protocol. In addition, the fidelity of the
links in memory decreases as per the model introduced in (1).
At each time step, we wish to pick an action that minimises
the expected time to reach n simultaneously existing links in
memory.

We use a policy iteration algorithm to solve the MDP and
find an optimal link generation policy. Our algorithm starts
with a policy which assigns each action equal probability. At
each iteration k, it evaluates the current policy 7 to define a
value function V},. Then, we use the value function to select
the actions that maximise the values for each state, and a new
policy 71 is constructed. The process is repeated until the
policy has become stable, i.e. it has not changed between
two iterations. Because the MDP that we define only has a
finite number of policies, this process converges to an optimal
policy after a finite number of iterations [9]. We define the
pseudocode for the policy iteration algorithm in Appendix A.

2.2 Model

Here, we provide a formal definition of the MDP that models
our problem to generate n entangled states. Mathematically,
an MDP can be defined as a 4-tuple (S, A, P, R) [11], where:

» S is the state space;

» A is the set of actions which we can choose from;



e P:S x A— Ris the set of transition probabilities for
each state-action pair;

¢ R:S x A— Ris the set of rewards.

For our purpose, the action space A is the set of all generation
protocols that the process can choose from at each time step.
We assume a heralded entanglement generation process [12]
with probability of successful generation p;. The fidelity F;
with respect to the maximally entangled Bell state is defined
as follows [4]:

Fy=1—Ap;. )

In this paper, we assume A = 1. The linear relationship be-
tween p; and F; for a protocol ¢ given a parameter A allows us
to model our action space as simply the set of success prob-
abilities p; for all s number of protocols that we can choose
from:

A={pi|pic(0,1)}. 3)

We define the state space of the system S as the set of all
possible configurations of the quantum memory containing
up to the required number of entanglement links n:

S = {{t1,t2,....,tm} | t; € (0,maxt;],m € [0,n]}. (4)

The memory states contain the available links in memory.
Each link is represented by the number of time steps until
its fidelity falls below a given threshold Fiyesn and the link is
discarded. The threshold fidelity Finesn is determined by the
application of the entanglement generation process.

Following the exponential decay model in (1) and the
probability-fidelity relationship in (2), we can express the
number of steps ¢; a newly generated link lives in memory
using the action probability. We call ¢; the time-to-live (TTL)
of a newly generated link with action probability p;, € A.
We discard a link from memory when its TTL reaches zero.
There is a trade-off between higher success probability and
smaller link TTL, which is defined as follows:

1—Ap; —1/4
t{lnp /

;= X rlJ. (5)
Ehresh - 1/4

In our model, we assume that the probabilities in the ac-
tion space do not result in links that expire immediately, i.e.
t; > 1. Figure 2 presents an example transition from a given
state using one generation protocol (p;, F;). We denote the
maximum number of steps a link can live in memory given a
selection of generation protocols as max ;.

start
(2,3, 4)

fail success
(1,2,3) (1,2.3.5)

Figure 2: Transition from memory state (2, 3,4) using generation
protocol with probability p and fidelity F' of the newly generated
link resulting in TTL ¢ = 5.

The starting state is the empty memory set ). The final states
are all sets L;, |L;| = n, where n is the number of links we
want to generate. The transition probabilities p; are the suc-
cess probabilities of the chosen protocols. Appendix B out-
lines the procedure we use to derive the state space size for-
mula. The size of the state space grows with the number of
required links n and maxt; [13], [14]:

\S| _ (maxti + n) ©)
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To reach an optimal policy, we maximise the negative ex-
pected time until n links have been successfully generated.
The Bellman optimality equation we use in our policy itera-
tion algorithm is the following:

Va(s) = =14 > P(s|s,m) x Va(s),Vs € S.  (7)
s’eS

2.3 Analysis

We can solve the most basic scenario analytically. We con-
sider a situation where we want to generate n = 2 en-
tanglement links using two protocols (p1, F1), (p2, F») with
Fy > F5 and p; < ps. Let E;;[7] be the expected time to
generate two links using protocol ¢ for the first link and j
for the second link. The generation process is modelled as a
sequence of independent Bernoulli trials with the protocols’
probability p; [15]. We use the equation for the expected time
derived in [4], which we generalise for two actions as:

1 n 1 1
pi  pi(1—(1—pyt-t)

We calculate the TTL of the first link using (5). As soon as
the second entanglement link is generated, both links are used
for the particular network protocol application. Therefore,
we would always use the higher probability p, for the second
link because we do not care how long it lives in memory.
For the first link, we have to consider both protocols. For
any set of parameters, we can calculate the expected times
and determine which generation protocol to choose at each
time step to achieve the shortest expected time. We use this
analytical method to verify our policy iteration algorithm for
deriving the optimal policy in the most basic case. A more

Eijlr] = ®)



detailed solution for the expected time in this scenario can be
found in Appendix C.

For larger policies, we associate an action a € A to each
memory state s € S. We simulate a policy 7 using Monte-
Carlo simulation. Starting from the empty memory state
(), we make random throws at each time step to determine
whether a link has been successfully generated with probabil-
ity p; for the associated action 7. We use the same simulation
method for the baseline policies we compare to the derived
optimal policy. Repeating this simulation /N times allows us
to calculate the following estimates for the true expected run-
time E[7] and the standard deviation of the runtime o (7)
using the sample runtimes 7; [16]:

) ;N
E.[r] = N X Z T 9
i=0

G (7) = \/Nl_ - (ﬂ- fE[T])Q. (10)

Finally, we use the standard deviation estimator to calculate
the standard error in our experiments [17]:

SEL(r) = \/% X Gn(7). (11

When we make comparisons with our chosen baselines, we
plot the ratio between the optimal policy runtime and the cho-
sen baseline. To support any conclusions we make from our
comparisons, we also plot the standard error of this ratio. We
model the ratio between the optimal policy runtime and the
chosen baseline as a ratio between two independent random
variables. Calculating the standard error of a ratio of two in-
dependent random variables is more complex than the single-
variable case defined in (11).

For any two random variables X, Y, the standard error of
the ratio is a function of the standard errors of both variables
SFEx,SFEy. Propagation of uncertainty [18] is the effect of
the variables’ uncertainties on the uncertainty of a function
based on them. Appendix D includes the complete deriva-
tion of the ratio standard error using propagation of uncer-
tainty. We define the formula for this ratio, which we use for
all comparisons using the variable means px, (1y as follows:

2 2
()Y w
hx Hy
3 Results

In this section, we present and interpret the results from ex-
perimenting with the optimal policy for adaptive resource
generation. First, we list the different problem parameters
that we pass to the policy iteration algorithm in Section 3.1.
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The following sections analyse the optimal policy proper-
ties for a fixed collection of problem parameter values. Sec-
tion 3.2 takes a look at the actions that are taken by the op-
timal policy and identifies a clear pattern in the action se-
quence. In Section 3.3, we analyse the runtime distribution of
the optimal policy given the Monte-Carlo process simulator.
Following, Section 3.4 and Section 3.5 compare the optimal
policy runtime against our chosen baselines and heuristics,
respectively.

3.1 Experimental Setup

The optimal policy that the algorithm described in Section 2.2
outputs depends on the required number of links in memory
n and the selection of protocols A that we can use at each
time step. In addition, the link generation process is influ-
enced by a number of parameters. Below we provide a list of
definitions for those parameters.

* Firesh 18 the threshold fidelity where links with fidelity
smaller than this value are discarded from memory;

¢ ) defines the linear relationship between the probability
of successful generation and the fidelity of the generated
link in the heralded generation process that we assume;

 T"isused in the depolarising noise model assumed in (1).

The default values that we select for the experiments with the
optimal policy are defined in Table 1. The only parameter we
vary within an experiment is the required number of links in
memory n.

Table 1: Parameter selection for the policy iteration algorithm.

Parameter | Values

Fhresh | 0.5

A | 1.0

T | 0.1

A (actions) | {0.1,0.2,0.3,0.4}
n (required links) | {2,3,4,5,6,7}

We pick a value of Finesh > 0.5 because in practice, any QN
application would require states which have fidelity at least
0.5 compared to an ideal Bell state [19]. For A\, we select
a value of 1.0 to keep the assumed probability-fidelity rela-
tionship in [12]. The small value of I' = 0.1 allows us to
explore a larger state space because links are kept in memory
for more time steps. We also provide the algorithm a diverse
selection of generation protocols that it can pick depending
on the number of links in memory. The maximum TTL for
a link generated using these parameter values is maxt; = 9.
We increase the required number of links n as much as it is
computationally feasible. This allows us to make general con-
clusions from the patterns that we observe for small numbers
of n.



3.2 Optimal Policy Structure

We first take a look at the probabilities that the optimal link
generation process chooses as the number of links in memory
increases. For this experiment, we fix the required number of
links in memory to be n = 7. The optimal policy is complex
enough so we can see more general patterns in its structure.
The results are plotted on Figure 3.
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Figure 3: Actions picked by the optimal policy for all possible link
counts in memory when n = 7. Because there are different memory
states with the same link count, different actions are chosen for the
same link count.

As the number of links in memory increases, there is a grad-
ual trend toward actions with higher probability of success-
ful generation. This follows from the trade-off between high
probability and low link TTL described in Section 2. The
optimal policy tends to pick the action with the highest prob-
ability that still generates a link which can survive until all
of the required links have been generated. We use this intu-
ition to derive a heuristic we use as a baseline for the optimal
policy in Section 3.5.

Taking this further, we plot the exact actions that the pol-
icy takes for each memory state. That way, we can observe
for which particular states the optimal policy picks a differ-
ent probability action and when the transition towards actions
with higher probability happens. Figure 4 shows a plot of the
complete policy structure for n = 3 required links in mem-
ory. For this experiment, we fix I' = 0.2 to get a smaller state
space with max ¢; = 4 that is easier to interpret.
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Figure 4: Probabilities picked by the optimal policy for all possible
quantum memory configurations when n = 3. The red lines separate
states with a different number of links in memory.

The chart on Figure 4 deviates from our assumption of a
global upward probability trend. For the state {1, 1} with two
links in memory, the optimal policy picks a probability lower
than the highest probability 0.3 chosen for one link in mem-
ory. However, we can see a pattern in the chosen probability.
If we divide the plot where the number of links in memory
increases, we can see that a jump occurs at the same spot for
m = 1 and m = 2 links in memory.

The first states when m = 2 are equivalent to the first states
when m = 1. For m = 2, some of the links will expire
after exactly one step and the memory would transition to an
equivalent state when m = 1. Because the process will not
reach the required m = 3 links after one step, those states
are interchangeable. If we exclude the equivalent states, we
only observe a gradual trend toward higher probabilities as
the number of links in memory increases. This is shown on
the plot of the trimmed policy on Figure 5. Note that we are
only examining the probability differences between sections
with different numbers of links, not between individual states.

3.3 Optimal Policy Runtime Distribution

In this experiment, we simulate the optimal policy to observe
the distribution of its runtime. Studying the properties of
our simulation allows us to perform meaningful comparisons
with baseline policies later on. Figure 6 plots the distribution
of the process runtime until four links are generated in mem-
ory. The runtime is measured for N = 100000 number of
policy runs. The expected time is estimated using the Monte
Carlo method described in Section 2.3. More policy runs are
unnecessary because the runtime variance does not change.
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Figure 5: Probabilities picked by the optimal policy for a reduced
set of memory configurations when n = 3. The red lines separate
states with a different number of links in memory.
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Figure 6: Distribution of the runtime of an optimal policy simulated
N = 100000 times using our Monte Carlo simulator for n = 7.

The plot of the optimal policy runtime closely resembles the
density of a geometric distribution. If we ignore the cutoff,
our process can be defined as a negative binomial distribution
since we model the number of failures until we have success-
fully generated n links [4]. The introduction of the cutoff
policy as described in Section 1 alters the probability struc-
ture of generating links and makes the distribution inherently
more complex. We look at a precise definition of the sim-
ple case when n = 2 and we have s = 2 possible actions in
Appendix E.
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Figure 7: Estimated mean runtime [, [7] and standard deviation
& (7) of the optimal policy 7 for different required numbers of links
in memory.

In Figure 7, we plot how the standard deviation of a simulated
policy runtime changes as the number of required links in
memory n increases. In this experiment, we analyse up to
n = 5 required links since after that the values of the mean
runtime become very large. For the examples observed, the
standard deviation of our simulator increases proportionally
to the mean time to generate 7 links in memory. This makes
it hard to perform comparisons on large policies.

3.4 Runtime Against Baseline

First, we compare the derived optimal policy with one that
picks a random action at each time step. Figure 8 plots the ra-
tio Eop([7]/Erandom [7]. The standard error of the plotted ratio
is calculated as defined by (12) in Section 2.3. As expected,
we see a notable decrease in the ratio and convergence to zero
as the number of links increases. This is because the ran-
dom policy does not use any available information about the
quantum memory and fails to capture the complexity of the
optimal policy.

In addition, we compare the optimal adaptive policy with the
best static policy, which selects only one action from the set
of actions available to the adaptive algorithm. The adaptive
optimal policy will never choose an action that makes the ex-
pected runtime longer than any static policy. Otherwise, it
will no longer be optimal. However, it may select a different
action that outperforms the static policy’s choice. Therefore,
the runtime of the adaptive optimal policy serves as a lower
bound for the runtime of any static policy that uses the same
set of possible actions. A comparison with the best static
policy allows us to quantify the improvement offered by the
adaptive optimal policy.

To select the best static policy, we simulate all policies that
select only one action from the ones available to our adap-
tive process. The optimal static policy is the one with the
smallest mean runtime. In our case, this is the policy that
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Figure 8: Ratio between the mean runtime of the optimal policy for
generating n links and a policy that picks a random action at each
time step. The vertical lines plot the standard error of the ratio. We
sample N = 1000 policy runs for each policy.
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Figure 9: Mean runtime of the optimal policy 7 for generating n
links against the best static policy that picks p = 0.2 at each time
step. The vertical lines plot the standard error of the ratio. We sam-
ple N = 1000 policy runs for each policy.

picks the action p = 0.2 at each time step. Figure 9 shows
that the best static policy is a much better baseline for the
adaptive policy than the random one. The change in the ratio
Eopt[7]/Estatic[7] is more gradual. However, we still observe
the expected downward trend and convergence to zero as the
number of links increases and the adaptive optimal policy be-
comes more complex.

3.5 Maximum-Probability Heuristic

Finally, we define a heuristic to compare to the optimal policy.
The heuristic is defined as follows. For each memory state,
we pick the maximum probability from the provided selection
that would still generate a link which would live long enough
for the process to complete. Algorithm 1 formally defines
how our chosen heuristic selects an action based on a given
state.

Algorithm 1 Heuristic picking the maximum probability that
still allows the generation of n links.

function GETACTION(state)
actions < all possible actions a; € A
I <— remaining links to generate
min_diff < Inf
best_action < 0
for action in actions do
ttl «— TTL of new link generated by action
if ttl > r and ttl - r < min_diff then
min_diff < ttl - r
best_action < action
return best_action

This heuristic utilises the available information about our
quantum memory. However, it does not completely capture
the complexity of the optimal policy. That is why there is still
a considerable difference between the runtimes of the optimal
policy and the heuristic policy.

Figure 10 shows that the mean ratio for the chosen heuristic
decreases slower than the one against a random policy. The
plotted ratio also stays higher than the best static policy for
the chosen values of n. It is still decreasing because some-
times the optimal policy picks a lower probability to generate
a link with a higher TTL that outperforms the heuristic’s ac-
tion. Still, we have derived an intuitive heuristic from the
properties of the optimal policy that serves as a sensible base-
line.
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Figure 10: Ratio between the mean runtime of the optimal policy for
generating n links in memory and a policy that picks the maximum
allowable probability at each time step. The vertical lines plot the
standard error of the ratio. We sample N = 1000 policy runs for
each policy.

4 Responsible Research

This research work was conducted by Boris Goranov, a stu-
dent at Technische Universiteit (TU) Delft, under the super-
vision of Bethany Davies, MSc., and Prof. Gayane Vardoyan.
The development of our analysis has closely followed the
principles introduced in the Netherlands Code of Conduct for
Research Integrity [20]. Namely: honesty, scrupulousness,
transparency, independence, and responsibility.

Honesty. The code for the Policy Iteration algorithm used
to derive an optimal entanglement link generation policy is
publicly available in a GitHub repository as specified in Sec-
tion 6. Therefore, all the findings here can be verified. We
adhere to the FAIR principles [21] and thus our research has
the Apache License 2.0 so that others can reuse our findings
and modify our code with ease.

Scrupulousness and transparency. The code for our Pol-
icy Iteration algorithm is meticulously developed and vali-
dated through peer review. All experiments were conducted
through simulations distributed in the GitHub repository as
Jupyter notebooks. This ensures that our experiments are
fully transparent, facilitating open access to our methodolo-
gies and results.

Independence. Our research is conducted independently
without any external influences that could bias our results
or conclusions. The project has received no funding from
external organizations, and there are no conflicts of interest
that could compromise the objectivity of the work. Our con-
clusions are based purely on the empirical evidence obtained
through simulations.

Responsibility. When showcasing improvements, we plot
the standard error of our experimental results, which is cal-
culated using (12) defined in Section 2.3. This allows us to

quantify the variability within our results and the consistency
of our findings. Ultimately, this helps us determine whether
our conclusions are reliable and generalisable. The source
code has been carefully documented to allow researchers to
obtain and validate our findings. In this way we address the
existing reproducibility crisis in science [22].

5 Conclusions and Next Steps

Our work presents how we can derive an optimal policy to
generate a required n number of entanglement links in a near-
term quantum network. We can use the generated links for
quantum network protocols such as BQC and Quantum Key
Distribution (QKD) that achieve capabilities impossible with
classical computing. We have shown that the optimal pol-
icy outperforms our chosen baselines. In addition, we have
identified a clear pattern in the optimal policy structure that
allows us to reduce the search space of our policy iteration
algorithm.

In the process, we have found a suitable heuristic for selecting
an action for a given memory state. This heuristic can be
used as a baseline for our optimal policy. In addition, we can
use it to efficiently generate sub-optimal policies with lower
expected runtime than a static policy.

In this work, we have assumed a heralded entanglement gen-
eration protocol where we can immediately verify that an en-
tanglement link has been generated [12]. In addition, we have
not considered any differences in the process time steps. For
example, a successfully-generated link may need to get pro-
cessed before the next attempt can commence [23]. Hence,
our optimal policies may become sub-optimal when a suc-
cessful link generation is slower than a failed one.

Also note that we have restricted our analysis to quantum net-
work protocols that require up to seven links. This is due
to the exponentially large computational cost of solving the
MDP for larger search spaces. In addition, it becomes unfea-
sible to analyse the generated policies by hand and make any
conclusions about their structure. Having more required links
in memory would limit the achievable fidelity of the genera-
tion process. Therefore, we consider the analysis of smaller
near-term networks more relevant.

An interesting addition to this work would be to extend the
definition of the identified heuristic that picks the maximum
allowable probability. We believe this heuristic can be further
tuned to generate sub-optimal policies closer to the provably
optimal policy. For example, it can provide a good bench-
mark if we use other methods like Machine Learning to ap-
proximate optimal policies for large search spaces.

As a final remark, our algorithm assumes the probabilities
the generation process can select from are fixed. In the prob-
lem setup, we could also consider a more realistic model of
a quantum network where the success probability decreases
over time because of increased noise. However, this makes
the model inherently more complex and solving the MDP an-
alytically might be unfeasible.



6 Code Availability

Our code can be found in the following GitHub repository:
https://github.com/Bggoranoff/optimal-gn.git.

7 Funding Sources

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

A Policy Iteration Algorithm

Figure 11 presents the pseudo code for a generic Policy It-
eration algorithm for solving an MDP. First, we initialise a
random policy. In our case, we use a policy that assigns equal
probability to each action. We continue by repeatedly per-
forming the following steps until the policy has not changed.

1. We calculate the value for each state s € S using (7)
in the policy evaluation step until the values have con-
verged within some predefined tolerance.

2. For each state, we pick the actions that have maximal
values and define this as the optimal policy.

1. Initialization
V(s) € R and n(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A+0
For each s € 8:
v V(s)
V(s) « Zs,v,, p(s',r|s, 7w (s)) [r + 'yV(s’)]
A+ max(A, v — V(s)])
until A < @ (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € §:
a + 7(s)
m(s)  argmax, >, . p(s',7]s,a) [r+V(s)]
If a # 7(s), then policy-stable < false
If policy-stable, then stop and return V and =; else go to 2

Figure 11: Policy iteration algorithm for solving the Markov deci-
sion process. Couresy of [9].

B State Space Size

In this section, we derive the size of the state space for the
MDP that we define in Section 2.2. Each memory state has
m € [0, n] number of links where n is the required number of
links for the network application. We can group the memory
states by size, so S, is a subset of S that contains only the
memory states of size m like so:

STYL = {LZ = {thtz, ---7t7n} ‘ ti € (O,maxti}}. (13)

The number of states in S,,, is max t;-choose-m with replace-
ment because we can have multiple links with the same TTL.
The size of S,,, is defined as [13]:

S| = ((math)) _ (maxti—i-m—l)' (14)
m m

Therefore, the size of S is a sum of sizes of all S,,,:

n n t 1
1= 18ml =Y (max ;m ) (15)

m=0 m=0

We can calculate a sum of binomial coefficients using the
Hockeystick identity [14] defined as:

SO-(7)

=7

Finally, we rewrite (15) to make it compatible with the def-
inition of the Hockeystick identity in (16). We then use this
identity to remove the summation and get a simplified for-
mula for |S| as follows:

- maxt; + m—1
5= 3 (M

m=0

maxt;+n—1 .
= (1) -
maxt; — 1

i=maxt;—1

_ (maxti—l—n) (17)

maxt;

C Optimal Policy Analytical Solution

Here, we analyse the case where we have s = 2 available gen-
eration protocols to generate n = 2 required links in memory.
The protocols we can choose from are (p1, F1) and (pa, F»)
where F; > F5 and p; < ps. Generating a link is a stochas-
tic process which can be modelled as independent Bernoulli
trials with success probability p; [15]. The expected time to
generate a link with success probability p is inversely propor-
tional to p:

E[r] = - (18)

Let us call py the probability of failing to generate the second
link after the first within the TTL of the first link and p; =
1 — py the success probability of this event. Therefore, for
a protocol selecting first action ¢ € {1,2} and then action
J € {1, 2} we have a recursive definition for E;;[]:

1 1
Eij[r] = o +(1 —Pf)]jj + psEij(r]. (19)


https://github.com/Bggoranoff/optimal-qn.git

Rearranging (19) to solve for E;;[7], we get the following
analytical solution for the expected time to completion for
some policy ij:

1 1 1
Eylr]= —+ —— =
a7l p;  pi (1—py)
1 1 1
= — 20
PR e ey 20)

Note that the TTL of the first link is ¢; which we calculate us-
ing p; (5). We want to maximise the probability of generating
the second link. Therefore, we would always use the higher
probability ps for that link. So the optimal expected time is
either E12[7] or Eoo[7], depending on the success probability
values. We use a program to determine the values of the ex-
pected times and verify the optimal policy generated by the
MBDP solver for the basic case.

D Ratio Standard Error

In this section, we calculate the standard error of the ratio
of two independent random variables X,Y using propaga-
tion of uncertainty as described in [18]. We use the standard
errors of both variables SEx, SFEy and their sample means
[x, by . The ratio of two random variables is a function of
both random variables defined as follows:

X

Z=fX)Y)==. 2n
Y

The propagation of uncertainty formula in [18] can be used to

describe how the standard error of the two random variables

influence the standard error of the function f(X,Y):

YA 2 YA
E, ~
bz \/(3ﬂx ) N (5 fiy

For Z = “—"f the partial derivatives w.r.t. the sample means
[ix, iy are defined as follows:

2
SEY) .2

0z 1 9z

iy Oy

9z _hix
Ofix

2. 23
i3 )

We combine (22) and (23) to obtain the closed form of the
standard error of the ratio Z we use in Section 2.3:

SEZ%(;YSEX)Z (ixsn,)
Jissor (rom )
JEE) - (22,

1

Hy

SEx
fix

SEy
fiy

_|Ax
fry

(24)
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E Optimal Policy Runtime Distribution

In this section, we provide a closed form of the optimal policy
runtime. We look at the simple case when n = 2 and we
have s = 2 actions. Suppose that we have an ordered policy
7w = (p1,p2) where it is possible that p; # ps. Then, we
can use a similar model for the process runtime 7 as the one
described in [4]:

tl,TL—Z + L.

ZT (M=)t -1)+L Q)

Below we explain the role of the different parameters in (25).

* T; ~ Geom(p) is the number of attempts to generate
the first link with probability p;;

* M ~ Geom(1 — (1 — p;)*~1) is the number of times
the first link needs to be generated with probability p;;

¢ t1 € N is the time until the first link is discarded from
memory;

o L ~ Geom(py) | M is the number of attempts to gen-
erate a second link with probability p, after the first one
has been generated.

Therefore, the process runtime is a sum of geometric distri-
butions with different probabilities. Geometric distribution is
a special case of Negative Binomial distribution (NB) [24].
The distribution of a sum of independent and ideally dis-
tributed (i.i.d.) NB random variables is a mixture Negative
Binomial distribution [25]. Appendix B of [4] provides a for-
mal proof that an upper bound for this sum is a Geometrically
distributed random variable.
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