
TRACEABILITY IN CYBER
RISK ASSESSMENT
A design science approach

KEVIN JOSEPH SYAUTA

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft





TRACEABILITY IN
CYBER RISK
ASSESSMENT

A design science approach

by

KEVIN JOSEPH SYAUTA

to obtain the degree of Master of Science in Management of Technology
at the Delft University of Technology

to be defended publicly on Monday August 29, 2016 at 16:00 PM.

Student number: 4414063
Project timeline: March 2016 – July 2016
Thesis committee: Prof. dr. ir. M.F.W.H.A. Janssen, Chair, Section Information and Communication Technology

dr. ir. W. Pieters, First supervisor, Section Safety and Security Science
dr. J. Hulstijn, Second supervisor, Department of Management, Tilburg University

Section Information and Communication Technology
Department of Engineering Systems and Services
Faculty of Technology, Policy, and Management

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface

The thesis project is meant to be a learning experience ,

The above quote was taken from an e-mail and was most probably not purposed to be inspirational, but it has
resonated with me through the course of authoring this thesis. What lies in front of you is a fully-grown culmination
of seeds of curiosity and hard work, organically nurtured for a few hundred days with countless cups of co�ee as
its fertiliser.

I wish to express my heartfelt gratitude to Wolter, the author of the quote who has very patiently guided me in
completing this thesis and who has gratuitously allowed me to be involved in his research project. Your expertise
and passion for cyber security have inspired me to deliver my best for this thesis, with hopes that someday and
somehow it can be of benefit to a larger group than its intended audience. The academic and moral support you
have given will never be forgotten. I would also like to thank Joris, who has been very thorough in giving his
feedback, for his confidence in me and making me aware of things that needed more of my attention. My gratitude
also goes to Prof. Marijn, whose warmth, support, and sharp eyes have helped shape this thesis the way it is written
now. Of all the teachers that have taught me, I would like to especially thank Prof. Jan van den Berg who has
instilled in me a love for cyber security; a field I have not even heard of when I first set foot in Delft. The researchers
in TRESPASS also deserve a special mention in this thesis. I thank them for having set aside a few hours from their
hectic schedule and donating their priceless ideas through verbal and non-verbal conversations. Especially to Chris,
Axel, and Dan, thank you for having spent time to respond to my many e-mails and being very supportive of my
ideas. I fully hope this work can contribute to TRESPASS beyond the way it is intended to.

More people deserve recognition for their role in making this thesis complete. First and foremost I wish to
convey my gratitude to the Justus & Louise van E�en Foundation who has provided full financial support for me
to be able to follow this Master’s programme here. My family back home in Indonesia, thank you for the trust,
prayers, endless support, and for being there (and also here) when I need you. Relatives and family members in the
Netherlands, all the way from Amstelveen to Almelo: thank you for every single thing you have blessed me with. To
all the close friends I have made in The Netherlands: thank you for all the good times; I’ll treasure every moment
we have spent together! To the close friends in Indonesia: as they say nowadays, see you at the top.

This thesis is dedicated to the memory of my late grandfathers. I wish you a good time in reading this work
and I hope you learn something new out of it.

Kevin Joseph Syauta
Delft, July 2016

...there is nothing new under the sun.

(Ecclesiastes 1:9)

iii





Summary

This Master thesis is written in partial fulfilment of requirements to graduate from the Management of Technology
(MoT) Master programme. It elaborates a design science approach to incorporate traceability in the field of cyber risk
assessment. It is done within the context of the European research project Technology-supported Risk Estimation
by Predictive Assessment of Socio-technical Security (TRESPASS), whose goal is to support European organisations in
improving their security posture in particular with respect to the socio-technical risks they are facing.

Technology has become such an integral part of our daily life. Radical technological innovations have taken
the world by storm, giving us new phenomena such as the big data regime and the uberisation of businesses.
Technologies such as cloud computing solutions, Internet of Things (IoT), temporary social media, and Apple Pay
are becoming hot items demanded by individuals and organisations. The World Economic Forum believes that
the world is standing in the front door of the so-called Fourth Industrial Revolution or Industry 4.0, when cyber-
physical systems will prevail and it will be harder to draw a line between the physical and digital realms. This
cyber dependency global trend produces risks. We call these cyber risks; those that if not managed properly could
potentially lead to events with unwanted consequences in both digital and physical realms.

The Allianz Risk Barometer indicates cyber risk as one of the top three global business risks in 2016. However,
data breaches and other cyber attacks that often colour the headlines could have been prevented had high-tech
organisations devoted more attention to addressing cyber risks. A possible trajectory to achieve this is by conducting
a thorough risk assessment as part of managing risks emanating from technologies used in the organisation.
However, a lot of processes are involved in the risk assessment process - collecting internal and external data for the
assessment (context establishment), building a model of the organisation and identifying the risks the organisation is
facing (risk identification), running the analysis (risk analysis), making sense of the analysis results (risk evaluation),
and deciding what to do to address the risks (risk treatment). A cyber risk assessment is di�cult for a few reasons.
Firstly, the socio-technical nature of cyberspace implies that the organisation needs to consider physical, digital, and
organisational realms in conducting the risk assessment and involve a chock-full of inputs from all three domains.
Secondly, due to this wide scope of risk assessment, coming to a complete understanding of the results would be
di�cult. Let us assume that the organisation has now understood the implications of the results and has formulated
a list of risk treatment decisions to be taken. The organisation eventually has to be able to return to the results of
the tedious risk assessment to prove that the decisions were made objectively based on the results and that people
had agreed on these decisions. Lastly there is the problem of dealing with changes. Can they account for the impact
of these changes to their risk posture without having to run a complete risk assessment process from scratch? Issues
like these can be addressed by incorporating traceability into the risk assessment process, which can intuitively
be translated as the capability to empower the users to understand the dependencies and connectivity of process,
data, and the model involved in the risk assessment exercise. However, this may not be an exhaustive definition of
traceability, let alone accurate. This lack of understanding - which then leads to a scarcity of traceability support
in risk assessment models - needs to be rectified. This research attempts to first fill the gap of understanding this
concept by providing a definition and specification of traceability in the field of cyber risk assessment.

Having explained these problems, we formulate our main research question (RQ) as follows:

How can the notion of traceability be incorporated in cyber risk assessment?

As mentioned in the preamble, this research is performed within the context of TRESPASS project. TRESPASS is
a risk assessment model that supports decision makers in performing risk assessment in socio-technical systems.
The TRESPASS tools achieve this by facilitating a complete risk assessment activity, starting from collecting the
data needed to perform the assessment (data collection), building a model to represent the socio-technical system
of interest (model creation), analysing the risk posture of the system (analysis), and finally visualising the analysis
results to assist decision makers prioritise their decisions (visualisation). An overview of these activities is shown in
the next page. However, TRESPASS also su�ers from the generic problem with risk assessment models not having
a support for traceability. Hence, we also aim to generate a support for traceability for TRESPASS in the form of
a trace model. The trace model is a framework that is able to provide traceability in TRESPASS by building links
spanning from the data used in the risk assessment process to the results of the risk assessment activity. In this
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thesis, di�erent models of cloud computing environment are addressed as cases of a socio-technical system viewed
from a corporate perspective.

To answer the RQ, we first investigated the notion of traceability in cyber risk assessment by referring to literature
in other domains such as food industry and requirements engineering and by interviewing experts within TRESPASS
to induce their opinions. This mixture of input led us to discover that there is an inherent duality as to what
traceability entails in cyber risk assessment; one that we conveniently refer to as static and dynamic perspective.
The static perspective construes that traceability should be able to support connection between input and output
of a risk assessment process, and that it should be compatible with the mix of data types (such as stakeholder
goals and IT infrastructure) used in the risk assessment process - among other aspects. The dynamic perspective
of traceability chiefly deals with changes that are influencing the system, such as the ability to flag changes and to
keep a detailed log of changes. Based on this dichotomy, a formal definition for traceability in cyber risk assessment
is prescribed as follows:

In the realm of cyber risk assessment, traceability is the ability to show the rationales behind risks by generating
bidirectional trace links spanning from the input to the risk treatment decisions, annotated with relevant and
meaningful contextual information at each intermediate step. In its dynamic sense, traceability supports

representation of relevant changes and its impact in the risk assessment process.

Departing from this definition, the trace model was crafted on the basis of a three-step design science approach.
In the first step, we investigate the problem by conducting a stakeholder analysis for the trace model and formulate
goals from the trace model. Goals that correlate with both the static view and the dynamic view of traceability were
identified. These goals range from enabling tracing of data used in the analysis back to the respective data sources
to supporting propagation of changes in the input data/model components throughout the analysis process. A social
engineering attack scenario and a scenario of socio-technical changes in an organisation were used as illustration
to aid the design process, taking into account the static view goals and dynamic view goals respectively. Both
scenarios were formulated in the context of a case study on a private (on premise) cloud computing environment
from TRESPASS.

The second step marks the actual design process, where we utilised the previously identified goals and results
of interviewing the experts to elicit requirements for trace model. Another important source of requirements is
Use Cases of traceability for users of TRESPASS. The Use Cases show how traceability can help users understand
analysis results, rationalise risk treatment decisions, analyse impact of changes in the system, and conduct sensitivity
analyses in TRESPASS. A total of 31 requirements for the trace model were formulated, which were then refined into
design criteria and powdered into structural specifications. Our specifications take assorted forms: metadata to
support data management process, language embeddings, and functionalities to append comments to the model
and analysis results, to name a few.
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In the third and last step, we (1) check whether the trace model has fulfilled its every requirement and (2) study
its behaviour in a di�erent context from the one in which it was designed. These were done in a set of activities
collectively referred to as validation. To achieve the former goal, verification sessions with a similar group of experts
were conducted. With the latter goal, we run select Use Cases in a single-case mechanism experiment; this time
with a case study on outsourced cloud computing environment. From the verification sessions we learned how
viable our specifications are for implementation, whether there are restrictions such as past decisions in the project
that could hinder implementation, and whether our specifications are in line with the TRESPASS tools as they are
being developed. A list of validated specifications for the trace model were then formulated. The final features of
the trace model are summarised in an overarching figure shown below.

Besides the formal definition, our contributions to state of the art on risk assessment include the application
of metadata not only to provide more context during Context Establishment, Risk Identification, and Risk Analysis
activities, but also the context of the entire risk assessment exercise; the demonstration of building linkage between
context establishment stage and risk identification stage via identifying the entities involved in the manual risk
model; and the application of text-based explanation to support linkage between context establishment and risk
identification activities, as well as risk evaluation results and risk treatment decisions. In formulating these features,
past decisions and ongoing developments made within the project were accounted for. However, implementation of
the trace model was not considered in the research due to the fact that the project is ending in a few months.

Improvements such as integration with existing metadata standards and structuring text-based explanation will
complement the trace model as it stands now. We believe our ideas for traceability are relevant with research
initiatives around the theme of digital security as put forward by Horizon 2020. We also invite researchers to explore
the notion of traceability as a value that might be inherently present in risk assessment, by making use of value
sensitive design (VSD) approach. With the ever-increasing cyber dependency trend , organisations should no longer
treat traceability in risk assessment as an option. Its role will grow to become more important to help maintain a
robust risk assessment.
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1
Introduction

In this foremost chapter, the reader can find an overview of the underlying problem statement. We first sketch a
bird’s eye view of the problem prior to explaining the practical relevance of the research. Also presented here are
the objectives of the research, as well as the corresponding research questions and sub research questions. We
briefly explain the chosen research approaches before outlining the expected contributions of this thesis. Finally a
short section that presents the overall structure of the thesis wraps this chapter up.

1.1. Problem statement
1.1.1. Scientific problem
People, things and organisations around the world are becoming more digitally interconnected. The World Economic
Forum refers to this trend as cyber dependency [223]. Consequently, cyber attacks and data fraud or theft have
landed in the list global risks in 2016 in terms of likelihood. Cyber risks have to be soundly managed to help the
world navigate towards what is often dubbed the Fourth Industrial Revolution (or Industry 4.0 according to Allianz
Risk Barometer), where boundaries between physical and digital realms are becoming more blurry [162]. The Internet
of Things (IoT) will play a huge role in increasing our cyber dependency, with an estimation of 20 to 30 billion
connected devices worldwide in 20201. Failure to manage cyber risks will lead to a significant spike in cybercrime. It
is estimated that cybercrime has cost the world USD 445 billion in 2014 [121] and will cost the world USD 2 trillion in
20192. Organisations need to be more cognisant on the importance of addressing cyber risks. Allianz Risk Barometer
places risk of cyber incidents among the top three global business risks in 2016 [9]. Verizon’s 2016 edition of Data
Breach Investigation Report (DBIR)3 identifies miscellaneous errors (“any unintentional action or mistake...”) as the
top cause of data breaches happening across industries, followed by incidents caused by insiders and misuse of
privilege, and physical theft and loss [212]. 2015 was dubbed the Year of Collateral Damage by Hewlett-Packard, as
attacks happened in organisations who thought they were bulletproof [182]. The U.S. O�ce of Personnel Management
breach in June 2015 gave away 21 million accounts and the Ashley Madison hack in July 2015 exposed almost 100
GB of data [212]. Organisations fail to implement even the most basic security controls, because if they did, four
out of five cyber attacks would not have happened [181]. The 2016 DBIR also mentions that 93% of all breaches
identified happened within only minutes or even less, while it took 83% of the victimised organisation weeks or
more to discover the breach.

Cyber dependency coupled with criminals with strong financial motivation [212] shape today’s cyber risk land-
scape [8]. Emerging technological trends, such as BYOD (Bring Your Own Device) and cloud computing can potentially
bring benefits to high-tech organisations, such as savings on corporate devices and increased productivity4. Cloud
computing in particular has gained significant popularity among organisations within the last decade because of the
benefits it o�ers compared to traditional information technology (IT) solutions, such as on-demand self service and
rapid elasticity [124]. On the other hand, the use of these technologies could create potential perils to organisations.
A disruption at a cloud provider’s physical infrastructure (e.g. power outage or data breach) could interrupt the

1http://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things-sizing-up-the-opportunity
2http://www.juniperresearch.com/press/press-releases/cybercrime-cost-businesses-over-2trillion
3Verizon distinguishes breaches from incidents. An incident is defined as a security event that compromises the CIA properties of an information
asset (cf. Section 2.1). A breach is understood as an incident that results in involuntary disclosure of data.

4http://searchmobilecomputing.techtarget.com/essentialguide/How-to-weigh-BYOD-benefits-and-risks
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business activities and incur significant loss [8]. Gartner researchers indicate a list of risks to be considered when
utilising cloud computing, such as risks on data privacy and data segregation [76]. The fact that these risks exist
should not discourage organisations from embracing cloud computing. If appropriately managed and assessed, these
risks can be transformed into opportunities.

As a way to cope with risks emanating from the use of technology, organisations can practice risk management
using standards such as those covered by ISO 31000. Three main activities are involved in risk management
process: communication and consultation with stakeholders in the organisation to interact and share information;
risk assessment; and monitoring and review of current status and continuous check-up of the risk management
process [147]. According to ISO, risk assessment is the “overall process of risk identification, risk analysis, and risk
evaluation” [93]. This definition exhibits three di�erent activities: risk identification, which seeks to discover and
describe risks in the organisation; risk analysis which explores the sources of risks, their impact, and the likelihood
that the impact actually materialises; and risk evaluation, which consists of evaluating the level of risk analysed in
the previous step against the organisation’s risk criteria. Sometimes the activities of context establishment (setting
the risk assessment objectives as well as risk criteria) and risk treatment (looking for options to deal with the
evaluated risks) are included in the risk assessment process [147].

When the risk assessment activity is specifically focused to deal with cyber risks, we call it cyber risk assessment.
This focus might bring the false illusion that cyber risk assessment is easier to be done, as the scope is supposedly
narrowed down to only assessing the risks emanating from technical infrastructure. As with any other risk assessment
activity, a cyber risk assessment exercise should never segregate the organisation’s technical infrastructure from its
physical infrastructure and its organisational context. Cyber risk assessment is a complex activity in itself. A
proper assessment requires the organisation to carefully document their information assets and the supporting
technical infrastructure, including its vulnerabilities. They also need to comprehend their network infrastructure,
make sense of the organisational context (e.g. mapping out access control policies), and build a risk model from all
this information [147]. We have not even talked about understanding adversaries with their di�erent strategies and
resources. To understand this complexity, let us examine an organisation utilising cloud computing technologies as
an example.

Cyber risk assessment for technologies such as cloud computing is di�cult for several reasons. Firstly, a
cloud computing environment along with the people interacting with it constitute a socio-technical system [133].
The socio-technical nature of a cloud computing environment demands a risk assessment model that can cover
the complex technical infrastructure, physical infrastructure and human factors [24]. An assessment of solely the
technical infrastructure, however meticulous, will produce an incomplete risk posture of the cloud computing and
brings additional risk of missing out attack vectors that are introduced from the physical realm of the organisation.
Secondly, cloud computing is essentially a form of outsourcing activity done by organisations, which introduces new
entities to be considered during the risk assessment. Other tenants that are residing in a common cloud facility
orchestrate a systemic risk [8]. Interruption experienced by one customer could produce a ripple e�ect that a�ects
other customers. Cloud customers also experience risks due to diminished control over their data. The obligations
to comply with rules and regulations will raise various new concerns (Where will the data reside? Who will take
care of it? Can confidentiality be preserved?). Lastly, the dynamic and flexible nature of an organisation may
cause a one-time o� risk assessment to be invalid. Cloud computing can easily facilitate changes [120]. Continuous
risk assessment needs to be done to reflect both internal changes (e.g. business-justified changes such as system
upgrades or changes in organisation policies) and external changes (e.g. changes in laws and regulations). In this
thesis, we address cloud computing as a case to focus on.

When all is said and done, and the risk manager has conducted a tedious cyber risk assessment activity which
generates massive results with hundreds of variables, a new problem spawns: how does the organisation come to a
complete understanding of the results? Why is their CEO marked as very susceptible to fall prey to a phone-based
social engineering attack? Why does the result indicate that the most possible person to jeopardise the virtual
machines is actually the janitor? Results that sometimes challenge common sense require full comprehension, and
traceability does have to potential to aid this. Traceability here might be translated as the capability to empower
the users to understand the dependencies and connectivity of process, data, and the model involved in the risk
assessment exercise. By explicitly showing how the data and the components of the organisation are used in the
risk assessment process, the organisation may arrive at a solid understanding of the risk assessment results and can
formulate informed decisions thereafter.

That is, however, not the entire story. After the relevant people have made the security-related decisions (risk
treatment options), how do they ensure that such decisions are defensible? In case anything goes wrong, or when
the organisation is unfortunately hit by an attack it did not anticipate in the first place, the decision makers who
determined which controls to invest in and apply may need to revisit why such decisions were made. This shows
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another instance where traceability could assist. Had the decision makers clearly stated these decisions and how
they relate to the analysis results (e.g. “Upgrade all virtual machines as they showed high level of vulnerability and
may contribute to a successful attack by competitors.” and “Put o� awareness trainings until the next fiscal year due
to lack of budget and low likelihood of fruitful social engineering attacks.” ), traceability could provide clear tracing
back to these rationales.

Finally, our risk assessment di�culties increase when we factor time into the equation. External and internal
changes may impact the overall risk posture of the organisation. Traceability would have an acute role in for
instance, understanding how organisational and infrastructural changes would a�ect the level of cyber risk that an
organisation faces. Again, the socio-technical nature of an IT-driven organisation adds insult to the injury. The
aggregated e�ects of technical and social changes are elusive and di�cult to quantify. Here, traceability might help
decision makers discover the root causes of a certain level of cyber risk that an organisation faces back to the events
of changes that have materialised in the past.

These examples are only a subset of many potential benefits o�ered by establishing robust traceability in the
cyber risk assessment process. Taking the above aspects into consideration, how can organisations ensure that the
risk assessment models they use can comprehensively address the complex nature of socio-technical system such
as a cloud computing environment? Why is there a risk of insider and privilege misuse? Why do we consider the
cloud administrator as a potential threat to the organisation? How come the organisation is vulnerable to a denial
of service (DoS) attack? The dynamic nature of cloud computing also makes it relevant to reflect and record relevant
changes such that the risk analysis result remains valid. An example of such changes is when a new vulnerability is
discovered in the access management solution. What new risks are introduced to the organisation? Are there possible
new attack vectors? Is the organisation’s overall risk posture a�ected by this discovery? Which attack scenarios and
which elements of the system model are a�ecting the change in the level of risk? A traceability-supported cyber
risk assessment model should be able to help organisations answer these questions. However, we see two problems
here: firstly, the concept of traceability itself is hardly understood in cyber risk assessment. Defining and specifying
traceability in this space remains an outstanding task. Secondly, due to this lack of understanding, a scarcity of
traceability support exists in cyber risk assessment models in general. Most of current established risk assessment
methodologies or tools do not consider traceability as a part of its standard o�er. Our research aims to first define
and specify the notion of traceability in cyber risk assessment and afterwards provide the support for traceability
in a risk assessment model. Traceability will help high-tech organisation conduct a more robust risk assessment as
part of its technology management processes.

1.1.2. Practical relevance
To cope with the ever-changing cyber risk landscape, cyber risk assessment models need to be able to assist
organisations in predicting, prioritising, and preventing attacks. Moreover, the risk model needs to be able to
visualise the results so that decision makers can take actions in a timely manner. Current established risk models
fall short of either one of these requirements. Some models can provide a very complete risk picture but do not
assist decision makers to make decisions rapidly. The TRESPASS (Technology-supported Risk Estimation by Predictive
Assessment of Socio-technical Security) project aims to develop a model with such capabilities. It supports decision
makers by building the so-called attack navigator that is capable of assessing possible attack paths, calculating
the associated risks and visualising possible attack routes in socio-technical systems, in a manner very akin to a
map [144]. This Europe-wide project is intended to “reduce security incidents in Europe and allow organisations
and their customers to make informed decisions about security investments”[198] which in turn will help enforce
trust and security as a key pillar of the Digital Single Market Strategy [56]. The project is expected to be finished
by October 2016. Within the context of an organisation, information security risk management has become an
indispensable part of risk management activities [87]. The role of a Chief Information Security O�cer (CISO) or
an Information Risk Manager becomes increasingly important in safeguarding an organisation’s information assets.
Such information-intensive organisations are the intended audience of the TRESPASS tools. Table 1.1 summarises the
di�erent contexts in which TRESPASS can be used in risk management in di�erent types of organisations, loosely
derived from [195].
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Table 1.1: Context of uses of TRESPASS (Source: [195])

User Functional goals/needs Context

Chief Information Security O�cer
(CISO)

Analyse possible attacks happening to the organisation based on TRESPASS
results and decide on appropriate security investments

Large
organisations

Auditor
Assess whether an organisation complies with a certain security threshold,

defined in a standard/referential
Large

organisations

Risk manager
Evaluate the level of cyber risk exposed to the organisation based on

TRESPASS results
Large

organisations

Small and medium enterprise (SME)
employee

Identify potential security weaknesses in product/service o�erings to
embrace security-by-design or to gain a quick scan of its security posture SMEs

The Use Cases indicated in TRESPASS outline several possible uses of the TRESPASS model, for example to decide
investments in information security in a large company, to identify potential weaknesses in product or service in
an innovative enterprise, or to evaluate the potential impact of a newly proposed product/service on the security of
the combined product portfolio in an organisation [195]. These Use Cases indicate potential usage of TRESPASS in a
(dynamic) socio-technical system. As is the case with most risk models, TRESPASS model currently has neither a tool
nor a model/framework to support traceability despite the fact that the project is approaching its maturity phase.
We have acknowledged that this is a generic problem in cyber risk assessment models. In this research we aim to
provide a support for traceability in TRESPASS after coming to an understanding of what the idea of traceability
means in cyber risk assessment.

1.2. Research objective
This practice-oriented research’s objective is twofold. Firstly, it tries to contribute to the cyber risk assessment body
of knowledge by formulating a formal definition of traceability in that domain. This is done through literature study
and garnering expert opinion.

Secondly, it seeks to contribute towards the development of TRESPASS model by generating support for trace-
ability in the form of a trace model. A trace model is a framework that is able to provide traceability in TRESPASS
by building links spanning from the data used in the risk assessment process to the results of the risk assessment
activity. The integration diagram in TRESPASS shown in Figure 1.1 helps to communicate the overall TRESPASS
process. There are essentially four di�erent stages in the TRESPASS process: data collection stage, model creation
stage, analysis stage, and visualisation stage. During the data collection stage, various types of data that are used
in the risk assessment process are collected. A model of the target of analysis (e.g. the organisation to be assessed)
is constructed during the model creation stage, in the form of the so-called TRESPASS model. The analysis stage
involves assessment of the target of analysis using information provided in the previous stages. This process is
done by means of generating attack scenarios, constructing an attack tree based on the scenarios, annotating it
with relevant quantitative parameters, augmenting the attack steps in the tree and finally analysing the attack tree
based on di�erent criteria using di�erent analysis tools. Finally results of the analysis are visualised during the
visualisation stage in the form of an attack navigator. In this thesis we do not take into account the top part of the
map (the e3 value fraud case study). Further explanation on the integration diagram is given in Appendix B.

The trace model is built with a design science approach using case studies in TRESPASS on cloud computing in
a high-tech organisation. It is intended to explicitly track and link any changes in the system that a�ect the risk
calculation of the TRESPASS model, but also enables backwards tracing: The risk analysis results can be linked to the
attack trees. The attack trees can be further traced back to the corresponding attack scenarios, and even further back
to the TRESPASS model. For example, the chance of a successful social engineering attack with the goal of stealing
employee data is given as 0.57. This number is generated from a list of attack scenarios annotated with probabilities
(Annotated Attack Trees), for instance one that involves the HR manager clicking on a spear phishing email. This
specific attack scenario is linked with elements of the TRESPASS model, including the HR manager as an Actor and
her laptop as a Device Location5. An even further step would be to trace how the TRESPASS model came into being
from the modelling process and look into data used in the calculation and how they were retrieved. It should be
noted however that this research will not consider the integration of the trace model into the overall TRESPASS tools.
This research goes to the length of only devising its specifications such that a framework is formed but will not
produce a tool support for it. In total, there are two example cases in this research: The first case tackles a private

5See Appendix A for explanation of concepts used in TRESPASS.
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cloud computing environment while the second example depicts an outsourced cloud computing environment. Both
cases are derived from the TRESPASS project library and publications and reflect a cloud computing environment in
a high-tech organisation. Using two di�erent contexts of cloud computing allow us to evaluate whether the trace
model functions well in di�erent contexts. Ultimately, this research delivers a validated trace model for TRESPASS
that can be applied for di�erent models of cloud computing.

Figure 1.1: TRESPASS integration diagram

Source: [195]

This research is done internally within the TRESPASS project through collaboration with di�erent partners. This
research is part of WP5 (Work Package 5) which focuses on process integration, including extending the TRESPASS
approach as it stands now. Results of this research will be disseminated as part of a deliverable within the TRESPASS
project on best practices for model maintenance.

1.3. Research question + sub questions
In conjunction with the aforementioned scientific and practical problems that exist as well as our research objective,
we formulate the following central research question (RQ) of this thesis as follows:

RQ: How can traceability be incorporated in cyber risk assessment?

To be able to answer this research question, we first have to be able to define the notion of traceability in the
domain of cyber risk assessment and its requirements. This brings us to the first sub-research question, namely:

SRQ1: How can the notion of traceability be defined and specified in the domain of cyber risk assessment?
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The answer to SRQ1 contributes towards existing knowledge base on traceability, which is currently dominated
by literatures from supply chain and food industry. The question is formulated in an explanatory nature since there
currently exists little to no works specifically discussing traceability in the domain of cyber risk assessment. A
formal definition of traceability in cyber risk assessment is produced by drawing references from di�erent domains
and by consulting experts that are involved in TRESPASS . With this definition and specification of traceability in
cyber risk assessment, we begin to explore and apply this notion in TRESPASS by building a support framework of
traceability named the trace model. In building this support, we utilise a case study from TRESPASS on a private
cloud computing solution in a high-tech organisation. This brings us to the second SRQ which is:

SRQ2: What are the requirements to provide a traceability support for TRESPASS in the form of a trace
model applied in a cloud computing environment?

The answer to SRQ1 is our building block in answering SRQ2. When the elements of traceability have been
clearly delineated, we can define functional requirements of the trace model. After the trace model is built, we test
it with a di�erent case to ensure that the trace model can adapt with di�erent models of cloud computing. This
finally brings us to the final SRQ as follows:

SRQ3: How can the trace model be verified and tested to see whether it fulfils its requirements and is
applicable to similar cloud environments?

Verification is understood as the process to see whether the trace model satisfies its requirements by drawing
expert opinions, and testing is understood as seeing whether the trace model works in a di�erent context of cloud
computing by conducting a single-case mechanism experiment on an outsourced cloud computing infrastructure.
The whole activity is referred to as validation process. The term validation is used to preserve consistency with the
steps involved in design science methodology according to Wieringa [221]. By answering all three SRQs, we arrive at
an answer to the main RQ.

1.4. Research approaches
In this section, the chosen research approaches are explained. Trade-o�s and justifications for the research ap-
proaches of choice are presented, followed by detailed articulation of the approaches. Further explanation is given
in Chapter 3.

1.4.1. Generic trade-o�s
The central RQ that is posed in this research is of exploratory nature. It seeks to embed a concept (traceability) that
has currently has little to no relation with the subject of interest in this research (cyber risk assessment model). To
answer this question, in-depth understanding of key concepts need to be built, which explains why the SRQs are
also prescribed in exploratory nature. According to Verschuren and Dooreward [214], there are three key decisions
that need to be made when selecting research approaches. These key decisions are:

1. Breadth versus depth

2. Qualitative versus quantitative research

3. Empirical versus desk research

The central RQ of this research implies the need for an in-depth understanding. Therefore, we decide to go
for depth instead of breadth in this research. The research approaches of choice reflect this decision. The second
and third key decisions are made by taking into consideration the overall research goals in the TRESPASS project.
There are three kinds of research goals in the TRESPASS project: design (designing artefacts), analysis (analysing a
conceptual artefact), and empirical research (studying the behaviour of objects or subjects) [222]. Our research fits
into the first goal of the TRESPASS project. Using design science methodology, we attempt to design an artefact (the
trace model) and validate it . Therefore, qualitative research is preferred as opposed to quantitative research. For
the third key decision, we choose to conduct both empirical research and desk research. Further explanation on this
decision is given in the following section.

1.4.2. Justifications of research approaches
We have explicitly stated the key decisions pertaining to the research approaches of this research. The various goals
of this research calls for a multi-method approach. These research approaches di�er according to the SRQ that we
intend to answer. An overview of the relation between SRQs and the selected research approaches is shown in Table
1.2.
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Table 1.2: Relation between SRQs and selected research approaches

No. SRQ Research approach Reference(s)/Methods

1 SRQ1 Desk research + Expert opinion
Literature analysis [218] + Semi-structured interviews

analysis [31]

2 SRQ2 Design science [213] [221]

3 SRQ3 Expert opinion + single-case mechanism experiment [221]

Desk research is needed to answer SRQ1. The process of constructing a concept of traceability that can be
applied in the domain of cyber risk assessment is done by referring to existing works of traceability in di�erent
fields, hence desk research as the method of choice. We also elicit expert opinions by conducting semi-structured
interviews with people involved in the TRESPASS project to gain more insights.

SRQ2 concerns a design problem. It seeks to revamp the TRESPASS model as it exists now, and it calls for a
solution which in turn is result of a design. Design science is the suitable research approach to answer this SRQ
because it enables us to design and evaluate a novel artefact (in this case, the trace model), and delivers a how-to
knowledge. We do not resort to grounded theory approach to explore this SRQ because it is more suitable for a
theory-oriented research, while this research is more practice-oriented. To execute the design science approach, we
refer to the methodology explained in [213] and [221] .

The third SRQ shall be answered through verification sessions with experts and a single-case mechanism
experiment, collectively referred to as the validation step. The goal of this step is twofold: to check whether the
trace model satisfies its requirements and whether it functions properly in a di�erent context in which it was
designed. Expert opinion is once again chosen not only to sieve bad design, but also to predict how the trace model
will behave [221]. The single-case mechanism experiment is intended to help observe how the trace model responses
to di�erent inputs.

1.5. Expected contributions
We envision two important contributions from our research. Firstly, we expect to enrich the risk assessment body
of knowledge by formulating a definition of traceability along with the components that constitute it for the domain
of information risk assessment based on literature research and soliciting expert opinions. Secondly, we intend to
contribute to the TRESPASS project with a trace model that provides support for traceability as we define it in cyber
risk assessment, built based on design science approach using examples of di�erent cloud computing architectures.
However, it is not our intention that the trace model is only applicable to TRESPASS - contributions of the trace
model for risk assessment practice in general will be inferred by generalisations of its features where applicable.

1.6. Thesis structure
This thesis is divided into eight di�erent chapters. An overview of how the chapters are connected with one another
is shown in Figure 1.2. The contents of each chapter is given as follows:

1. Introduction

This chapter consists of problem statements, research objectives, research questions and sub research questions,
explanation of the research approaches used in the thesis, the expected contributions of this thesis, and the
structure of the thesis.

2. State of the art

This chapter introduces the reader to principal definitions used in the research and gives an overview state of
the art researches within the related domains. Current knowledge gaps are also presented in this chapter.

3. Methodology

This chapter unravels the process of doing systematic literature analysis and design science methodology in
general and how we intend to approach the research using these approaches. All three phases of the design
science methodology are thoroughly explained here.

4. Defining and specifying traceability in cyber risk assessment
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This chapter contains the answer to SRQ1, that is the definition and specification of traceability within the
domain of risk assessment in general based on literature survey from multiple disciplines and semi-structured
interviews with experts.

5. Problem investigation

This chapter concerns the first phase of the design science methodology, containing the description of the
stakeholders, their expectation of the research and their goals, as well as the phenomena that is investigated
and how they contribute to stakeholders’ goals.

6. Treatment design

This chapter concerns the second phase of the design science methodology, containing the requirements and
context assumptions for the treatment, currently available treatments, and the design process itself.

7. Treatment validation

This chapter contains the results of verification and testing activities of the trace model, including explana-
tions on whether the trace model fulfils its requirements and whether it is applicable to other cases on cloud
computing.

8. Conclusions and discussion

This chapter contains the main findings of the thesis and the answers to the (sub) research questions. A
discussion on the implication of the findings and limitations of the thesis is also given in this chapter. Lastly,
directions and pointers for future research are also outlined in this chapter.

Figure 1.2: Overall logic of the thesis



2
State of the art

This chapter presents an overview of existing works that provide the baseline for this research, identifies existing
knowledge gap, and outlines the contributions of this thesis. It opens with elaboration of key concepts that are
relevant to cyber risk assessment. Following that is an extensive discussion around the overall process of the
TRESPASS project. Subsequently, the notion of traceability in general and in several domains are explained. Key
terminologies and principles of cloud computing are also elucidated to help readers understand the case studies
used in this thesis. We end the chapter by stating the knowledge gaps we identify and the contributions of our
research.

2.1. Cyber security, cyber risk, and cyber risk assessment
This section gives the reader a crash course on important concepts relating to cyber risk assessment. We depart
from explaining what cyberspace is and move on to arguing that information security and cyber security are two
di�erent concepts. We then explain what cyber risk is and finally provide a discourse on what cyber risk assessment
implies.

It is important to establish a common ground on what cyberspace means. We subscribe to the elaboration of
cyberspace by van den Berg et al, who conceptualise that cyberspace is made up of three layers [202]. The layer
located at the core is the technical layer, consisting of the Internet and its constituent technologies. On top of it is the
socio-technical layer, where people conduct all sorts of Internet-enabled activities ranging from watching television
series to radicalising teenagers with extreme beliefs. The outermost layer is the governance layer, where state and
non-state actors produce policies, regulation, and standards to govern the former two layers. The conceptualisation
is graphically shown in Figure 2.1. With this understanding, we advocate that cyberspace extends beyond merely the
Internet or inter-connected networks. Referring to the glossary of National Institute of Standards and Technology
(NIST), cyber security is understood as the ability to guard cyberspace from cyber attacks [107].

It is widely agreed that information is an asset (i.e. something of value) in the cyberspace. Information security
is concerned with a triad of three notions: confidentiality, integrity, and availability (CIA) [62]. Confidentiality refers
to preserving the security and privacy of information and preventing unwanted access, integrity means preserving
the reliability of information and preventing unwanted manipulation, and availability boils down to preserving the
ability of a system to work under usual conditions. Others have tried to expand these requirements by for example
adding authenticity (proving you are who you claim to be), non-repudiation (not being able to deny an association
to something), and accountability (responsibility towards information assurance) [202]. From the NIST glossary,
information security concerns the protection of information systems [107]. Following our view on cyberspace, we see
that information systems is only a part of cyberspace. Hence, information security is not equal to cyber security,
but part of cyber security.

Pursuant to the definition of cyber security from NIST, cyberspace is prone to cyber attacks emanating from
threats to the cyberspace. This implies that there are risks in the cyberspace. We refer to these risks as cyber risks.
We agree with the view of Refsdal et al on cyber risk as risk caused by a cyber threat [147]. We refrain ourselves
from decomposing risk in this chapter. Working definitions on risk and related concepts are laid out in Appendix A.
As we use the term cyber risk, we also imply socio-technical risk due to the presence of the socio-technical layer in
the cyberspace.

As with any other risks - financial risk or environmental risk - cyber risk has to be properly managed. The

9
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Figure 2.1: Conceptualisation of cyberspace

Source: [202]

overall process to manage cyber risk in an organisation or a system is called cyber risk management. We have
mentioned in Chapter 1 that risk management consists of three activities: communication and consultation; risk
assessment; and monitoring and review. The same activities can be applied to cyber risk management, but cyber
risk management is special for two reasons [147]:

• The nature of cyberspace makes it possible that the stakeholders extend beyond the organisation; essentially
it is possible that there are stakeholders anywhere in the world; and

• The adversarial nature of cyber risk exponentially increases the attack surface of the organisation; essentially
it is possible that the organisation has adversaries anywhere in the world.

Within the broader context of cyber risk management, our focus is concentrated towards cyber risk assessment,
which is a set of activities on understanding and documenting the organisation’s cyber risk exposure [147]. Figure
2.2 shows that risk assessment should be conducted in an iterative manner. Variations exist, but a typical risk
assessment activity consists of the following five steps [90] [147]:

1. Context establishment: Understanding the context, goals, and objectives of the risk assessment activity. Also
done here are defining the scope of the risk assessment, formulating assumptions, and establishing the risk
evaluation criteria.

2. Risk identification: Documenting the possible causes of risk, starting from the source of the threat to the
incident [147].

3. Risk analysis: Estimating and determining the level of risks identified.

4. Risk evaluation: Comparing the level of cyber risks analysed to the risk evaluation criteria previously defined.

5. Risk treatment: Selecting the proper treatment for the identified risks. Usually there are four options [94]:
accept the risks as part of ‘business as usual’, avoid the risks by eliminating the activity causing the risks,
mitigate the risks by applying controls, and transfer/share the risks by for example going for cyber insurance
or outsourcing the activity related to the risk.
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Figure 2.2: Risk assessment process

Source: [147]

As mentioned in Chapter 1, ISO does not consider the first and fifth step as part of risk assessment. This,
however does not significantly a�ect our discussion.

It is not precisely known when cyber risk assessment originated, but one of the earliest information risk
assessment methods, CRAMM (CCTA Risk Analysis and Management Method) came out at 1985 1. Since then more
cyber risk assessment methodologies and tools have been launched over the past decades, for example OCTAVE
(Operationally Critical Threat, Asset, and Vulnerability Evaluation) in 1999 [6],CORAS in the early 2000s [90], FAIR
(Factor Analysis of Information Risk) in 2005 [100], and TARA (Threat Agent Risk Assessment) in 2009 [151]. There
also exist various frameworks and standards on cyber risk management, such as ISO/IEC27005:2011 on information
security risk management [94] and the NIST Guide for Conducting Risk Assessment [152]. Methodologies and tools
for information security risk assessment are well-documented in [90]. Some of these methods undergo routine
maintenance, but some have ceased to update.

Risk assessment methodologies can be classified according to several criteria. A popular manner to classify
risk assessment methodologies is to base them on the risk scales they employ: quantitative methodologies use
ratio and di�erence scales, whereas qualitative methodologies represent risk in nominal and ordinal scales [147].
Qualitative methodologies usually classify risks in categories from (Very) Low up to (Very) High. An example
of a quantitative methodology is ISAMM (Information Security Assessment & Monitoring)2. OCTAVE exemplifies
a qualitative methodology. There are also methods that combine both approaches, such as CORAS and FAIR
[90]. Houmb classifies risk assessment methods and tools into three broad categories: rule-based, risk-based,
and judgment-based [82]. Rule-based methods are characterised with extensive brainstorming sessions and regular
meetings with stakeholders, and they are normally suitable to be adopted by standards. Risk-based methods target
both known and unknown undesired events (risks) and focus on identifying and assessing the probability of these
events and are suitable for complex organisations and critical systems. Finally, judgement-based methods rely on
the subjectivity of experts’ judgements.

Other possible categories to assign to these methodologies and tools include probabilistic models, such as
Bayesian Attack Graphs (BAG) [143] that represent causal dependencies between network states; adversarial models
such as adversarial risk analysis that combines statistics and game theoretic approach [15]; and attacker models such
as TARA that places heavy emphasis on properties of attackers. The following section discusses TRESPASS as an
example of a state of the art approach to cyber risk assessment. As we are about to learn, TRESPASS can be classified
as a tool that combines both qualitative and quantitative approach.

2.2. The TRESPASS project
The TRESPASS project aims to assist humans in taking security decisions about large, complex infrastructures, by
creating an attack navigator [144]. It helps decision makers by highlighting and visualising possible and most urgent
attack opportunities and e�ective countermeasures against them [198]. TRESPASS suits the profile of a risk-based
method. Compared to the previously established methods and tools in [186], TRESPASS comes with several features,
namely [186]:

1As recorded by ENISA (European Union Agency for Network and Information Security) at https://www.enisa.europa.eu/topics/

threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-ra-tools/t_cramm.html
2https://www.itrust.lu/wp-content/uploads/2007/09/publications_TTC_2007_abstract_risk_assessment_with_

ISAMM.pdf

https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-ra-tools/t_cramm.html
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-ra-tools/t_cramm.html
https://www.itrust.lu/wp-content/uploads/2007/09/publications_TTC_2007_abstract_risk_assessment_with_ISAMM.pdf
https://www.itrust.lu/wp-content/uploads/2007/09/publications_TTC_2007_abstract_risk_assessment_with_ISAMM.pdf
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• Integration with established standards and methodologies;

• Integration with databases of common vulnerabilities and threats;

• Support for automated attack generation attacks, allowing a proactive security assessment by predicting how
changes to the model impact attack attributes; and

• Consideration of di�erent profiles of attackers using di�erent parameters (e.g. resources, goal, set of skills) to
identify attacks and countermeasures on a system model, and to predict the likelihood of success and impact
of the attack.

2.2.1. Components of the TRESPASS model
A socio-technical security model such as TRESPASS needs to be capable of abstracting the physical, digital, and social
aspects of an organisation. As outlined in [188], there are several requirements in the TRESPASS model, namely:

• Infrastructure: TRESPASS model abstracts physical, digital, and social layers of an infrastructure.

• Assets and containment: Assets are represented in TRESPASS in various ways, such as data or items.
Containment is enabled through location attributes, for example it is possible to represent a file as an asset
that is contained in another asset (a Laptop).

• Processes, Actions, and Behaviour: In TRESPASS, processes are represented as metaphoric locations, which
allows for representation of data storage in a process.

• Policies: TRESPASS policies represent a set of credentials that enable a set of actions.

• Quantitative measures: TRESPASS supports quantitative annotations (e.g. probability, cost of countermeasure,
or impact of attack) for model elements.

• Attacks, Vulnerabilities and Countermeasures: TRESPASS represents vulnerabilities and countermeasures
qualitatively.

The complete set of requirements for socio-technical security models is presented in D1.1.2 [188], while the
functional requirements are given in D6.2.2 [195]. TRESPASS consists of typical components one would expect in a
socio-technical security model, including [92]:

• Actors: persons or roles relevant to the model

• Locations: containers, including physical, network, and device locations.

• Assets: tangible items and data relevant to the model, for example a file, or an access credential.

• Relationships: including position and possession of actors, containment of network/device locations, and
connection of locations.

• Access Policies: access enablers to locations given the right credentials (in the form of item or data assets).

A glossary of the core concepts used in TRESPASS is given in Appendix A.

The focus of WP5 lies in integrating the overall TRESPASS process, including the extensibility of the TRESPASS
model. Extensibility as outlined in D1.3.2 encompasses three di�erent areas: internal embeddings, extensions to
the language, and tool support [189]. The document shall lay foundation for our research in providing support of
traceability for TRESPASS, as it contains formal requirements on how these three types of extensions can apply to
TRESPASS process. However, we first need to be able to define the concept of traceability, (specifically in the context
of risk assessment) to be able to define how the trace model should look like. This notion is unravelled in Section
2.3.
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2.2.2. The navigation metaphor in TRESPASS
One of the uniqueness of TRESPASS lies in its navigation metaphor. TRESPASS aids humans in studying socio-
technical security of a complex system, which is instantiated in the attack navigator map [144]. The ‘navigation’
process is described as follows [141] [144]:

1. Initial modelling activities helps visualise the target of analysis in a satellite view, in which an aerial, high-level
overview of the organisation is provided without revealing many bits and pieces;

2. The reality (organisation) is abstracted as a ‘map’ through what is termed a system model, which contains
components such as Actors, Assets, Locations, etc. (cf. Section 2.2.1);

3. An attacker goal (stated as a policy violation) is used to explore plausible ways to navigate through the system
model. Indeed, attacker properties are of paramount importance to devise possible navigation routes. An
attacker’s goals can follow from his/her profile, appended with assumptions on probability, resources (available
time and cost of attack), or utility for the attacker; and

4. The attack navigator derives feasible routes to the specific attacker goal and their properties based on infor-
mation on the attacker profile (skill and resources), represented as attack trees [141].

The attack navigator map helps an organisation explain and justify economic considerations regarding security
decisions [141]. It provides answers to questions such as What optimal strategies should be used to prevent a specific
attack scenario?, How e�ective is this specific countermeasure when applied in our organisation?, How does it reduce
the likelihood of success of a specific attack vector? et cetera. In short, the navigation metaphor in TRESPASS can
provide better understanding of a system’s weak links and consideration for di�erent attacker profiles with di�erent
strategies or utility functions, which in turn will support appropriate security investments [141].

The navigation metaphor has been adapted to o�er a service model in TRESPASS, with steps outlining possible
interaction between TRESPASS consultants and their clients [199]. More details are given in Chapter 6 (Section 6.3),
where we use the service model description to outline the TRESPASS processes to aid the construction of the trace
model using di�erent attack scenarios.

2.2.3. TRESPASS cloud case study
Within TRESPASS, a number of case studies have been done with di�erent socio-technical systems. These include
Internet Protocol Television (IPTV), telecommunication systems, cloud computing, and Automated Teller Machines
(ATM) [190]. As cloud computing is the domain application of this research, this section shall briefly introduce the
reader to the cloud case study used in the TRESPASS project. There are di�erent versions of cloud infrastructures
used within TRESPASS. Nidd et al [133] made use of a simplified cloud environment to show how a tool-based risk
assessment can be carried out. The restricted deliverable D7.2.1 elaborates the cloud case study in detail. An example
of outsourced cloud infrastructure is used by Ionita et al to demonstrate an argumentation-based risk assessment
approach [91]. Finally, a complete representation of a cloud infrastructure with its physical and organisational setting
has been used in the Social Engineering Challenge 2015, a competition seeking a realistic social engineering attack
scenario. This cloud setup (shown in Figure 2.3) is chosen to guide the development of the trace model because it
su�ciently articulates the physical, technical, and social dimensions of a cloud computing environment viewed as
a socio-technical system. Albeit simplified, necessary details are provided in each dimension to properly represent
a realistic cloud computing environment. Granular details on the cloud model and the corresponding scenarios are
given in Chapter 5, section 5.2. The outsourced cloud infrastructure model (shown in Figure 2.4) is used during the
testing process of the trace model and is further explicated in Chapter 7. It is chosen for its architectural di�erence
from the design case.

2.3. Traceability
Traceability as a notion is interpreted di�erently in various domains. In [11], these di�erent definitions are outlined.
For example, in computing, traceability has to do with products and development process [86]. In quality manage-
ment, traceability is more related with recorded identification of an article or an activity [89]. In the domain of food
industry, there are four di�erent contexts in which the term traceability can be used [127]:

1. Product: including its materials, its origin, its processing history, distribution and location after delivery

2. Data: including data calculations and generation generated data throughout the quality loop
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Figure 2.3: Cloud model used in the design process

Source: [187]

Figure 2.4: Cloud model used in the testing process

Source: [91]

3. Calibration: measuring equipment to standards, constants or properties, or reference materials

4. IT and programming: design and implementation back to system requirements.

Although these contexts are derived from food industry, the general idea of this typology can be applied to
other sectors. The four items are not exclusive to food industry, hence lending themselves for use in other domains.
The second and the fourth context (Data and IT and programming) will be discussed further in Section 2.3.1, as
both of these contexts can be related to TRESPASS. The second context will be elucidated by taking a look at how
traceability is defined in food industry, while the fourth context shall be elaborated by taking the example of software
development domain.

2.3.1. Traceability in di�erent domains
Most of the works on traceability is dedicated to the domain of supply chain, especially food industry. In supply
chain, traceability concerns the activities of capturing, recording, and transmitting information at each stage of the
supply chain [11]. In the food industry, traceability is viewed as a tool to “trace and follow" and retrieve information,
as well as a record-keeping system by means of recorded identification [14]. As an example, a framework for food
traceability consisting of four elements (product identification, data to trace, product routing and traceability tools)
is proposed in [149]. Moe explains that there are two types of food traceability: internal traceability (which tracks
internally in one of the steps in the chain) and chain traceability (which tracks a product batch and its history
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through a production chain) [127]. Aung and Chang classify traceability on the basis of the direction in which the
information is recalled in the chain: backward traceability or tracing (finding the origin and characteristics of a
product from one or more criteria) and forward traceability or tracking (finding the locality of products from one or
more criteria). Data traceability in food industry is mostly needed due to ethical and legal compliance [127], which
includes o�cial control of foodstu�s and liability for defect products [209]. It is made possible through item coding
and information architecture [209].

Traceability in software development has gone from the ability to trace requirements down to code (requirements
traceability) [165] to “the capability for tracing artefacts along a set of chained operations..." (software traceability)
[135]. According to IEEE Guide to Software Requirements Specification, “A software requirements specification is
traceable if the origin of each requirement is clear and if it facilitates the referencing of each requirement in future
development or enhancement documentation." [1]. Traceability in model-driven engineering, for instance, can be
established through trace links that connect di�erent sources to their respective target elements [134]. Requirements
traceability encompasses both forward traceability or the ability to trace components of a requirements specification
to components of a design or of an implementation and backward traceability, or the ability to trace a requirement
to its source that demands the requirements to be present [220]. An example of integration of traceability into
software development is the MoVE (Model Versioning and Evolution) project [183].

Definitions of traceability in food supply chain and in software development do display commonality to a
certain extent. For example, both domains acknowledge the presence of both backward-looking and forward-looking
traceability and that these two altogether are instrumental in defining an overall framework of traceability. Both
domains also view that recorded identification or documentation is indispensable in orchestrating traceability in
a system. Their di�erence lies in that food industry views traceability in the context of product and data, while
software engineering views traceability in the context of requirements, according to the definitions given in [127].

As a final remark, traceability in cyberspace was explored extensively in a dissertation written by security
researcher Richard Clayton. He defines traceability as the ability to trace events in cyberspace back to the ‘doer’ in
the physical world [40]. In this sense, traceability has a close relation with attribution, and anonymity is understood
as the absence of traceability. His work pivots on tracing back large-scale cyber crime activities, and not risk
assessment.

2.3.2. Traceability in (cyber) risk assessment
Current state of the art on traceability in risk assessment connects traceability with the concept of change. Trace-
ability can facilitate maintenance of risk models and can help preserve its validity as the target of analysis undergoes
changes and evolves [171]. In CORAS, this is also known as evolutionary risk analysis [57] [116]. According to Lund et
al, there are three di�erent perspectives with regards to changes in a system [117]. These are:

1. Maintenance perspective: Changes that accumulate over time.

2. Before-after perspective: Radical, but planned changes.

3. Continuous evolution perspective: Predictable changes as a function of time (gradual and steady evolution)3

In the maintenance perspective, both old risks (before changes accumulate) and current risks are taken into
account. In the before-after perspective, current risks, future risks, and risks that occur due to change process are
considered. Finally, the continuous evolution perspectives pays attention to evolving risks at specific points in time
until the evolution fully takes place. The CORAS approach concentrates solely on the before-after perspective [147]
[164].

In TRESPASS project, the concept of change is captured in [190]. The document assesses the dynamic features
of the TRESPASS model, which are related to circumstantial or contextual changes that are of temporal nature. This
is important because temporal changes might cause the chance of success of an attack to vary, which makes it
important for the TRESPASS model to cope with such changes. The document also lists some dynamic features in
the case studies. Concerning the cloud case study, the dynamic features are presented in Section 2.4.3. However,
the deliverable is limited to only developing support for dynamic features, but not on tracking these dynamics in
a system. Our suggestion is that TRESPASS model should focus on the maintenance perspective for the following
reasons:

• The maintenance perspective assumes that previous risk analysis is documented and relevant changes are
considered as input to derive the current risk picture [117]. This is aligned with the TRESPASS case study on

3Similar to the Plan-Do-Check-Act cycle in an ISMS (information security management system) governed by standards such as ISO 27001.
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the cloud model, in which a preliminary risk picture is already available. The many data input tools (e.g.
vulnerability databases, libraries) are beneficial in conducting an up-to-date risk assessment using existing
data.

• The before-after perspective takes into account the risks due to the change process. This is beyond our scope,
and is sometimes impossible to quantify. For example, the change process following the discovery of a new
vulnerability is fuzzy. During that period the risk of being attacked by a zero-day exploit is present. However,
by definition a zero-day exploit is unknown to the vulnerable party, hence it is not possible to quantify its
risks.

• The continuous evolution perspective is hard to envisage in our case since we cannot really predict changes
that happen at a specific point of time based on solid forecasts or planned development. One of the main
characteristics of cloud computing is rapid elasticity (see Section 2.4.2) and continuous evolution is not
associated with elasticity. Predicting how risks would evolve in such an environment is not plausible.

There exists no specific definition for traceability for risk assessment. A conceptual model for traceability
in safety systems is instantiated in [101], but it hardly mentions aspects of risk. The closest approach to embed
traceability in risk assessment is related to software development, especially to one specific methodology called
model-driven engineering. For example, there have been various attempts to infuse traceability to the CORAS
approach (which is fashioned after model-driven engineering) by building a trace model [164] [171] [148]. In CORAS
approach, a trace model is a set of pairs that include elements of the risk model and the model that contains
elements of the system of interest (target model) which was cultivated by adopting an critical infrastructure system
as an example. This is shown in Figure 2.5. Although traceability is extensively discussed in CORAS, a formal
definition for traceability is not specified.

Figure 2.5: Trace model relationship in CORAS

Source: [171]

Another attempt to integrate traceability in risk assessment is done with the Rinforzando tool, in which links
between risk models and system engineering models can be maintained [138]. A comparison between CORAS and
Rinforzando is presented in [21]. While CORAS uses an import/export relationship between its artefacts, Rinforzando
utilises dynamic links to connect them. A trace model in general needs to be able to specify traceability links
between the target model and the risk model, to trace changes and to identify risks that need to be reassessed to
preserve validity [164]. However, traceability in risk assessment is proven to still be ill-defined, and further research
is needed to formulate traceability in the domain of risk assessment to support a proper specification of a trace
model. We end our discussion on traceability here, and in the succeeding section we present cloud computing as
the field in which the research focuses on.

2.4. Virtualisation and the clouds
Up to now we have discussed cyber risk as the overarching topic of our research, TRESPASS as our object of study
to be developed further, and traceability as the central notion to be unearthed in our research. In this section we
will explore cloud computing as the application domain. We first explicate the concept of virtualisation, followed by
important concepts in cloud, and finally risks and threats of cloud computing.
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2.4.1. Virtualisation
Virtualisation is a term that is often confused with cloud computing. One has to bear in mind that virtualisation is
not cloud computing per se, but it is an integral part of a cloud computing environment. In principle, virtualising
means separating a resource for a service from the underlying physical delivery of that service [215]. NIST defines
virtualisation as “simulation of the software and/or hardware upon which other software runs” [79]. Various types
of virtualisation exist, such as application virtualisation, operating system (OS) virtualisation, and full virtualisation
[79]. Two of the most important technologies underlying virtualisation are:

• A virtual machine (VM) is a software computer that emulates the functions of a physical computer, running
with its own OS and applications;

• A hypervisor is a software that acts as a platform for VMs. Two types of hypervisor exists: Type 1 or bare
metal hypervisor and Type 2 or hosted hypervisor. A bare metal hypervisor runs on a “blank” computer (no
OS installed) and needs to work with the help of a management software, while a hosted hypervisor runs on
a computer which already has a specific OS installed in it.

The hypervisor can host multiple VMs on a single physical server, which can run multiple types of OS.
Virtualisation maximises a server’s full capacity and hence driving higher e�ciency. This is known as partitioning
[215]. Despite its benefits, organisations should weigh in the risks that come with virtualisation [73]. These risks
stretch beyond merely the technology (e.g. data protection risks) and include organisational processes, such as
asset management and patch management risks. From a security point of view, virtualisation also poses threats to
confidentiality, availability, integrity, authenticity, and non-repudation properties [201].

2.4.2. Cloud computing
According to NIST, cloud computing is defined as follows:

“Cloud Computing is a model for enabling convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management e�ort or service provider interaction. This
cloud model promotes availability and is composed of five essential characteristics, three service models,
and four deployment models.” [65]

These characteristics, service models, and deployment models as defined by NIST are briefly mentioned as
follows:

1. Essential Characteristics

• On-demand self-service

• Broad network access

• Resource pooling

• Rapid elasticity

• Measured service

2. Service Models

• Cloud Software as a Service (SaaS): Consumers can use provider’s applications that run on a cloud
infrastructure.

• Cloud Platform as a Service (PaaS): Consumers can deploy self-created or acquired applications using
languages and tools supported by the cloud provider.

• Cloud Infrastructure as a Service (IaaS): Consumers are provided fundamental computing resources
to deploy and run arbitrary software.

3. Deployment Models

• Private cloud: The cloud infrastructure is operated solely for an organisation.

• Community cloud: The cloud infrastructure is shared by several organisations.

• Public cloud: The cloud infrastructure is made available to the general public or a large industry group.
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• Hybrid cloud: The cloud infrastructure is made up of two or more clouds (private, community, or
public).

NIST also presents a three-layered framework for a generalised cloud system, given in Figure 2.6 [80] as follows:

• Service layer: Where the cloud provider provisions each of the three service models (SaaS, PaaS, and IaaS).

• Resource abstraction and control layer: Where software elements are located, such as hypervisors, virtual
machines, virtual data storage and other resource abstraction and management components.

• Physical resource later: Where physical computing resources are located, such as computers, networks, and
other physical computing infrastructure elements.

Figure 2.6: A three-layered framework for cloud

Source: [80]

2.4.3. Risks and attacks in a cloud environment
Due to the many benefits it brings [65], cloud computing has rapidly developed and become popular among
businesses computing. Taking into account its flexibility, an organisation’s cloud computing environment can
undergo di�erent changes, hence the term dynamic cloud. It “gives companies what they need, where they need it
and how and when they want it." [120]. For example, a company decides to free up resources in its cloud by deleting
a number of VMs, or it may want to develop three new softwares at a time in the cloud.

The dynamics of cloud brings forth challenges in terms of vulnerabilities and risk. Using terminologies from
FAIR, [71] indicate four areas of cloud-specific vulnerabilities as follows: core-technology vulnerabilities, essential
cloud characteristics vulnerabilities, defects in known security controls and prevalent vulnerabilities in state-of-
the-art cloud o�erings. Gartner mentions seven di�erent aspects to evaluate when assessing the security risks of
cloud computing, namely privileged user access, compliance, data location, data segregation, availability, recovery,
investigative support, viability, and support in reducing risk [76]. [108] di�erentiate risks according to the perspectives
of cloud provider (CP) and cloud customer (CC), shown in Table 2.1. Finally, [37] divides the risk according to the
di�erent layers of abstraction in cloud computing, summarised in Table 2.2.

Table 2.1: Cloud risks according to providers’ and customers’ perspective (Source: [108])

Aspect Risks

Data security and privacy

Ensure availability of customer’s data in cloud (CP)

Risks related to data security and privacy (CP), (CC)

Preventing unauthorised access to customer’s data in the cloud (CP), (CC)

Risks related to multi-tenancy (CP)

Risks related to data deletion (CP)
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Table 2.1 Cloud risks according to providers’ and customers’ perspective (continued)

Aspect Risks

Technology
Lack of standardised technology in the cloud computing system (CC)

Compatibility issue between cloud and IT systems in customer’s organisation (CC)

Organisational
Risks related to resource planning, change management (CC)

Risks related to security management (CC)

Physical security
The physical security of a cloud provider’s data centres composed of servers, storage, and network devices

(CP)

Compliance
Enforce regulatory obligations in a cloud environment (CP)

Business continuity and disaster recovery (CP)

Table 2.2: Risks at di�erent layers of cloud computing (Source: [37])

Layer Aspect Risks

Infrastructure (IaaS)

Network level
Connection pooling; Liaison attacker/eavesdropping; Interruption of

nodes

Host level Bu�er overflows; Physical theft of storage account information

Application level Brute force attacks

Data communication and storage
level

Data tampering

Platform (PaaS)

Code vulnerabilities Disclosure of confidential data; File system of registry tampering

Data storage and access Open ports listening in insecure interfaces

Auditing and logging Upgrade of a privilege

Application (SaaS)

Secrecy/privacy Dictionary attacks; Weak encryption

Identity and access management Cookie manipulation; Cookie replay attack; Information disclosure

Authentication and authorisation Cross-site Request Forgery (CSRF); Cross-site Scripting (XSS)

Application level
Request flooding; Misconfiguration of service setting or application

setting

A cloud environment is vulnerable to di�erent types of attacks. As we shall see, the types of attacks mentioned
in literature revolve around the technical layer of the cloud environment, leaving out possible attack scenarios
stemming from the physical layer or organisational layer. These kinds of attacks is documented in [167] as follows:

1. Common attacks

• Distributed Denial of Service Attacks (DDoS): Exploitation of a number of VMs as internal bots to
flood the victim’s VM(s) with malicious requests.

• Keystroke timing attacks: An attempt to measure the time between keystrokes when typing a password.

• Side-channel attacks: A cross-VM attack (information leakage due to sharing of physical resources)
through placement of malicious VM on the same physical machine as that of the target.

2. Cloud-specific attacks

• VM Denial of Service (VM DoS) attacks: Exploitation of a vulnerability in the hypervisor to consume
available resources of the physical machine on which the VM is running.

• Hypervisor attacks: Penetration into guest VMs through the hypervisor by misuse of privileged access.

• Cloud malware injection attacks: Injection of a malicious VM into the Cloud with di�erent mis-
chievous purposes.
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• VM image attacks: Risk of disclosing sensitive information, running and distributing malicious images
over the cloud network.

• VM relocation attacks: An adversary steals a victim’s VMs and copies it to another location.

• Resource-freeing attacks: Exploitation of resource sharing among VMs to modify a victim VM’s
workload to release resources for the adversary’s VM.

• Fraudulent resource consumption attacks: Exploitation of utility pricing model of the cloud through
an attack similar to a DDoS attack.

Various attempts have been done to assess specific risks in cloud infrastructure. These works encompass a wide
variety of proposed methods. For instance, an adjustable risk assessment method for cloud service providers and
users is presented in [38]. Another risk assessment framework with special focus on service life cycle is proposed
in [52]. A systematic literature review of risk assessment in cloud computing reveals that certain topics such as
data security and privacy have been widely investigated, while others, e.g. physical and organisational security,
have received less attention [108]. According to Creese et al [47], the current best practices in information security
risk controls as defined by the ISO27001/27002 standards and the NIST Recommended Security Controls for Federal
Information Systems and Organizations Special Publication 800–53 Revision 3 are inadequate for the cloud as the
controls being put in place in these standards are falling behind the necessity for appropriate protection. These
findings place forward the need for a novel socio-technical perspective in assessing risk in cloud computing.

Within the TRESPASS project, various works have been done to model risk in cloud infrastructures. For instance,
Bleikertz et al propose a comprehensive model of cloud infrastructure with emphasis on security objectives of cloud
customers and archetypes of attackers’ characteristics [24]. The model is demonstrated using a set of known scenarios
as well as counterfactuals. Bleikertz et al also put forth an automated security analysis system termed Cloud Radar,
which presents near real-time capability to detects misconfigurations and security failures [24]. Nidd et al present
a preliminary risk model on cloud infrastructure [133]. In this model not only complex technical infrastructures of
cloud computing are considered, but also the human factors and the physical infrastructure. Within TRESPASS , the
dynamic features of a cloud model have been evaluated in [190]. This includes the physical infrastructure, virtual
infrastructure, social organisational, social-technical, and the environmental status.

2.5. Knowledge gap and research contributions
The result of the literature review reveals the following knowledge and practical gaps:

• Traceability in cyber risk assessment is yet to be defined and specified;

• TRESPASS needs to be extended to support traceability.

In sum, the expected contributions of this research are:

• A definition of traceability along with the components that constitute it for the domain of information risk
assessment based on a literature research, and

• A trace model that is built based on a design science approach using examples of di�erent cloud computing
architectures to provide support for traceability for TRESPASS.



3
Methodology

This chapter picks up where we left o� at Section 1.4 and presents the reader with a detailed look on how we plan
to answer our research and sub-research questions using scientific methodologies. A detailed description on how
we address each sub-research question to arrive at an answer for our main research question is given systematically.

3.1. Answering SRQ 1
Our first sub-research question demands a definition and specification of the concept of traceability in the domain
of cyber risk assessment as an answer. To answer SRQ 1, a literature study was conducted using the methodology
presented by Webster and Watson in [218]. We also looked for expert opinions within TRESPASS on the subject.
Literature on certain topics was retrieved from reputable search engines (Scopus and Web of Science). Additional
articles were searched by both tracing back the cited papers in such articles and tracing forward towards papers
that cite the journal papers. Findings are presented in a concept-centric manner, meaning all literature on a
certain concept is discussed in one section. However, other articles germane to the notion of traceability were also
considered (e.g. articles on data provenance in the field of computer science and articles on digital chain of custody
in the field of forensics). Documents of standards (e.g. from ISO or IEEE) were perused as well. Concept matrices
that map important concepts against di�erent articles are constructed for separate disciplines. They conveniently
show which articles contribute to which concepts.

Expert opinions were distilled using semi-structured interviews. Semi-structured interview is our data collection
method of choice because it fits our purpose of looking for new insights, allowing for openness and flexibility
without diverting too far from the original topic. The relevant experts who we interviewed are:

• Wolter Pieters (Research supervisor; Delft University of Technology/TUD);

• Christian Probst (TRESPASS technical leader; Technical University of Denmark/DTU);

• Dan Ionita (TRESPASS researcher; University of Twente/UT);

• Lorena Montoya (TRESPASS project manager; UT);

• Margaret Ford (TRESPASS researcher; Consult Hyperion/CHYP);

• Jan Willemson (WP5 leader; Cybernetica/CYB);

• Miguel Martins (WP6 leader; itrust/ITR);

• Olga Gadyatskaya (D5.3.3 leader; University of Luxembourg/UL); and

• Axel Tanner (Cloud case study researcher; IBM Research Zürich/IBM).

The protocol for the interview is given in Appendix C. Each interview was designed to last for 60 minutes. We
analysed the results of these interviews using the methodology proposed by Burnard et al [31], namely thematic
content analysis. There are essentially three steps in the process, namely:

21
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1. Open coding: Summarising elements that are discussed in the transcript while weeding out deviations
(’dross’), by creating coding frameworks. Coding frameworks help with structuring the interview data, by
creating categories of ideas to be analysed.

2. Shortlisting all coding frameworks collected in the first step and listing the final coding frameworks. This is
done by deleting overlapping frameworks and grouping similar frameworks.

3. Organising the whole dataset by categorising the data according to the final coding frameworks identified in
the second step.

To validate and verify the interview results we used an approach called member checking, that is returning to
the respondents and asking them to validate the analyses. This was done by sending the individual transcripts
and analysis results to each respective respondents. Analysis results are presented by means of reporting important
findings under separate themes, accompanied by appropriate quotes when necessary. The answer to SRQ1 is a formal
definition of traceability as it concerns the activity of cyber risk assessment.

3.2. Answering SRQ 2 and SRQ 3
The trace model for TRESPASS was developed using design science methodology. The phases involved and how we
approach them are outlined as follows:

3.2.1. Problem investigation
The goal of this phase is to investigate the problem prior to designing the trace model. To do this, the following
activities were done:

Identifying the stakeholders, their expectation of the research and their goals
Possible stakeholders for development of the trace model were identified using the list given by Ian Alexander [7].
These stakeholders either interact with the artefact, are within the immediate environment of the artefact, are in the
wider environment of the artefact, or are involved in the development of the artefact. Next, we described a small set
of goals (G) to be realised with the artefact to be designed [213].

The process to gain insight into the stakeholders and their goals was done through semi-structured interviews.
The questions are given in Appendix C, and we analysed its results also using the methodology given in [31]. Goals
were formulated based on part of the interview results and subsequently evaluated against criteria proposed by
Verschuren & Hartog as follows [213]:

• Clearness;

• Stakeholders’ acceptance;

• Feasibility;

• A�ordability;

• Opportunity and opportunity cost; and

• Order of priority

Moreover, we referred to documents within the TRESPASS project to gain a complete context. Priority was given
to legal documents or work description documents. Deliverables pertinent to cloud infrastructure, dynamic features,
and extensibility of the TRESPASS model are not left out.

Identifying the phenomena, their causes and effects and their contributions to the stakeholders’ goals
In this activity, we described the phenomena relevant to the problem, recognised their causes and e�ects and
analysed their contributions (regardless of their direction) to the stakeholders’ goals. To do this, we prescribed
plausible Use Cases in TRESPASS that can be supported via traceability. Likely scenarios were devised, supported
with rationales behind them. Further details were discussed with relevant people within TRESPASS.

Finally, we also conducted an ex-post evaluation of the problem investigation stage (after it is carried out) by
referring to Verschuren & Hartog [213]:

• “Was the involvement and variety of experts well balanced against the expected impact of the design?”
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• “Is G su�ciently sharp defined in order to derive the functional requirements (Rf), user requirements (Ru),
and contextual requirements (Rc) and to give direction to the next stages in the designing process?”

• “Have standard methodological guidelines for empirical research been followed during the process that led to
the formulation of G?”

3.2.2. Treatment design
After gaining knowledge of the problem to be treated, we moved on to designing a treatment to cure the problem.
This phase comprises the following activities:

Specifying the requirements and context assumptions
A requirement (R) is essentially a property that the treatment should possess, or the goal of the treatment. There
are three types of requirements [213]:

1. Rf : Functional requirements (functions that the artefact should be able to execute)

2. Ru : User requirements (requirements of future users)

3. Rc : Context requirements (requirements of political, economical, or social nature)

An example of a functional requirement of the TRESPASS toolchain is that it should be able to generate an
attack tree [195]. A user would expect that the TRESPASS toolchain does not consume too much storage space,
which is not necessarily concerned with the functions that the TRESPASS toolchain can execute and is therefore
identified as a user requirement. These requirements were mainly derived from the results of the semi-structured
interviews and formulation of possible Use Cases to visualise how users will interact with TRESPASS. We believe
context requirements are irrelevant to the trace model, as the impact of the trace model is very limited to solely
TRESPASS and does not extend beyond that.

Besides requirements, we also formulated assumptions (A), which are [213]:

1. Af : Assumptions about functions to be fulfilled

2. Au : Assumptions about future users

3. Ac : Assumptions about context

The Use Cases exist to provide assumptions about functions to be fulfilled and assumptions about future users.
These requirements are backed up with contribution arguments, or justifications for the choice of requirements.

The contribution arguments essentially take the form of:

(Artefact Requirements) x (Context Assumptions) contribute to (Stakeholder Goals)

These requirements were translated into measurable terms into design criteria (C ). There are also three types of
design criteria: Cf, Cu, Cc. The requirements and assumptions were generated by referring to the semi-structured
interviews as well as o�cial documents within TRESPASS, for instance those regarding the extensibility of the
TRESPASS model (D5.3.2), functional requirements of the TRESPASS model (D6.2.2) and requirements for process
integration (D5.1.2). These requirements, assumptions, and design criteria were evaluated with the following litmus
tests:

• Empirical validity, reliability, researcher independence and verifiability of the results that lead to the formula-
tion of Ru;

• Whether Rf covers G without any errors of omission or errors or commission;

• The logic of the combination of and the relations between Rf and Ru;

• The methodological guidelines in deriving Rf, and Ru and translating them to the various design criteria;

• Whether the assumptions are credible enough; and

• Whether the design criteria have been operationally defined, and whether they cover the requirements and
match the goals.
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Identifying available treatments
We believe there are yet no available treatments to support traceability for the TRESPASS model. However, we can
refer to the trace model defined in the CORAS model [171] as an example. Other notable alternatives are briefly
mentioned.

Carrying out the design process
The design process consists of defining structural specifications (S), which are characteristics and aspects that the
trace model should have to fulfil both requirements (R) and assumptions (A) [213]. S were defined based on R, A, and
C. We defined processes that the trace model should be able to execute and sculpted ]a general design depicting the
overall architecture of the trace model. We referred to documents outlining the formal requirements of the TRESPASS
model, for instance data management process (D2.1.2) and policy specification language (D1.2.2). The results of this
activity were checked against Cf, Cc, and Cu.

At the end of this phase, we conducted a plan evaluation that seeks to evaluate whether all goals, requirements,
assumptions and specifications form a tenacious whole.

3.2.3. Treatment validation
The goal of this phase is to justify that the trace model would satisfy stakeholder goals when implemented in its
intended context [221]. Essentially, we are interested in answering two questions:

• Requirements satisfaction question: Are all requirements (functional and nonfunctional) satisfied? Why (not)?

• Sensitivity question: What will happen in a di�erent context?

The term validation here is used to refer to two distinct activities: verification of requirements satisfaction (first
question) and testing the artefact in a di�erent context (second question). Wieringa lists two more knowledge
questions in validation research, namely e�ect questions (What e�ects are being conjured by the interaction between
the artefact and the context? Why?) and trade-o� questions (What will happen with a similar artefact?) [221]. We
left out these questions because we do not have a working model to study the e�ect of the interaction between the
artefact and the context, and we did not develop any alternatives of the artefact to be validated. Two approaches
were chosen to answer the knowledge questions: Expert opinion and single-case mechanism experiment. Expert
opinions were sought to answer the requirement satisfaction question, while single-case mechanism experiment was
conducted to answer the sensitivity question.

In general, the verification with experts was aimed towards digging opportunities for implementation of the
trace model and collecting opinions on how well the trace model can fulfil the goals and requirements. This
was done through means of an interactive validation session. The session was di�erent for each expert and
the focus was tailored based on the concerns and suggestions raised by each expert during the semi-structured
interview. The experts consulted include those who have participated in the semi-structured interviews during the
problem investigation phase, plus another expert who is deeply involved in the development of the user interface
and visualisation of TRESPASS tools. Results of the validation sessions were analysed using content analysis and
suggestions for improvements were distinctly highlighted.

Single-case mechanism experiment was selected because we intend to expose the trace model to controlled
stimuli in a model of the intended problem context. For this purpose, we selected a case that has a fundamental
architectural di�erence with the case used during the design phase. A detailed protocol on the single-case experiment
is given in Appendix D.
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Defining and specifying traceability in cyber

risk assessment

This chapter presents the answer to the first sub-research question, which is a definition and specification of the
notion of traceability in the domain of cyber risk assessment. This has been done through a systematic literature
study and semi-structured interviews. The semi-structured interviews were used to collect expert opinion about
traceability in risk assessment, both in generic and TRESPASS-specific context. This chapter only delineates the
opinions on the generic context of risk assessment. The processes of the literature study and semi-structured
interviews are outlined in this chapter, followed by the results and the corresponding analyses. We end the chapter
with a formal definition and specification of traceability, derived logically from a massive collection of literature and
opinions of di�erent experts.

4.1. Procedure
4.1.1. Literature study
The literature study was conducted by employing two main search engines: Web of Science and Scopus. These
search engines were chosen for their reputation and for their multi-disciplinary setting. General search terms were
used to obtain relevant articles. The initial topic explored was traceability. The search terms used for this topic and
the number of results they generated are presented in Table 4.1.

As the initial results from the search term “traceability” generated superabundant results, the search was
narrowed down by adding an AND operator and a specific domain. The results were then sorted by order of
popularity, namely by how many other articles have cited that specific article. This way, less impactful articles could

Table 4.1: Search terms used for traceability

Search term Web of Science Scopus
Number of results Saved results Number of results Saved results

Traceability 17,525 - 13,634 -
Traceability AND requirements 1,947 50 4,512 50

Traceability AND risk 720 50 1,726 50
Traceability AND review 531 50 3,756 50
Traceability AND food 1,788 50 3,021 50

Traceability AND logistics 212 50 751 50
Traceability AND supply 1,014 50 1,731 50
Traceability AND safety 1,479 50 2,725 50
Traceability AND security 728 50 1,710 50
Traceability AND health 712 50 2,041 50

Traceability AND compliance 660 50 599 50
Traceability AND accountability 61 50 144 50
Traceability AND dependency 120 50 375 50

Traceability AND cloud 83 50 236 50
Traceability AND architecture 510 50 1963 50

Total articles saved 577 509
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be weeded out. However, this approach brings the risk of producing results with little to no relevance and the risk
of missing out on recently published but powerful articles. The top 50 results from each search were then saved and
compiled into a bigger list. Some overlap occurred: one or more articles appeared multiple times using di�erent
search terms. From there, the collective top 100 results were then downloaded for further reading. This was done in
both search engines, resulting in a total of 200 articles to be analysed.

The priority of analysis was given in the following order: Articles that both appeared in the top 100 lists from
both search engines were given first priority. The following priority was given to the rest of the articles in the list,
and subsequently articles cited by publications in the first category. Last priority was given to articles that cite the
articles in the first category. All 200 articles were scanned on the basis of abstract and subsequently its content.
From a total of 200 articles, 59 were found to be relevant, including the articles that were cited in these works and
those who cite them. Relevancy means that these articles contribute formulated definitions or taxonomies that can
help in building a framework on traceability. These articles cover a multitude of di�erent domains, from food sector
to metrology. Articles on practical applications rarely make the list. Besides articles that pertain to traceability,
we also conducted systematic searches on other topics that might potentially contribute important aspects to our
definition. These topics are data provenance, digital chain of custody, and audit log.

The concept matrices are shown in Appendix E. In this chapter, two sections are exclusively devoted to discuss
works in the domains of food sector and requirements engineering respectively, as prominent works on traceability
are conceived from researches in these two areas. Results from other domains such as logistics, clinical chemistry
and cryptography are discussed collectively in one section. Results on other search terms, such as data provenance
and digital chain of custody, are shown separately.

4.1.2. Semi-structured interviews
Expert opinions were distilled using semi-structured interviews. We did the interviews with all nine experts
mentioned in Chapter 3. However, not all parts of the interviews are relevant for answering SRQ1. We only consider
the responses to the first and the third topic, namely traceability and traceability and dynamic risk assessment.
The interviews were conducted within the time range of February 29, 2016 until March 18, 2016. For confidentiality
reasons, the transcripts of the interviews will not be made public, the respondents’ names are anonymised, and
answers are not directly attached to specific respondents. In this chapter, we only go to the length of discussing the
main ideas given by the experts. Snippets of quoted sentences will be presented when necessary. The findings shall
be supported with a discussion section and closed with a concluding section.

4.2. Results from literature study
In this section we discuss our findings on state-of-the-art literature across multiple domains. The concept matrices
are presented in Appendix E and are categorised per domain.

4.2.1. Traceability in food sector
The notion of traceability in food sector spans across multiple industries, such as meat industry, co�ee industry,
and genetically modified organisms (GMOs). Several concepts hold a universal definition among these industries,
but others are interpreted di�erently. The identified articles have appeared in leading journals such as Journal
of Agricultural and Food Chemistry, Meat Science, and Trends in Food Science & Technology. The literature study
resulted in more than 60 important concepts with regards to traceability in food sector. Several of these important
concepts will be addressed in this section. We begin with tracing and tracking as a few of the most commonly
found concepts. The basic idea of tracing in food sector is being able to follow a product (food/feed/substance)
through the history of di�erent stages in production and distribution processes (e.g. [58]), while tracking amounts to
continuous monitoring from upstream (harvesting from source) towards downstream (sales to customers) (e.g. [127]).
Traceability in food industry is most commonly found in the form of product traceability, be it in the form of feed,
substance, or even the animal itself (e.g. [126] [127]). Traceability in food sector is expected to be present at all stages
of the food supply chain (production, processing, and distribution). Another recurring concept is safety, which is one
of the goals of traceability in di�erent subdomains in food sector (e.g. GMOs [126] and meat industry [78]). Di�erent
forms of identification are present to establish traceability, one of which is labeling [170]. An example of such labels
is a country of origin label, which shows where a certain food product was grown and harvested.

An important distinction is made between voluntary traceability and mandatory traceability [210]. Both forms
of traceability are supported by their own respective regulations, and are usually industry-specific [67]. As the name
implies, voluntary traceability is optional, while mandatory traceability is obligatory. The former seeks to correct
market failures due to asymmetric or imperfect information (from the customer side) regarding negative attributes
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of a certain product [77] and the latter aims mainly at product di�erentiation and is more directed towards attaining
desirable product attributes. We also observe several important classifications of data. These include static data
versus dynamic data, as well as mandatory data versus optional data [58]. Static data record product features that
cannot change, such as country of origin (COO) and expiry date. Dynamic features that might change are captured
by dynamic data, for example batch number and order ID. Mandatory data have to be collected from all parties
involved in the supply chain and needs to be communicated, while optional data do not play an equally important
role in the supply chain.

Finally, Hobbs et al [77] mention that traceability systems can di�er in breadth, depth, and precision. These
terms respectively refer to the amount of recorded information, the extent of tracking and tracing activities, and the
degree to which a product’s movement can be accurately pinpointed. [58] divides traceability information flow in
two types: one step up-one step down flow and aggregated information flow. While the former allows consumers to
receive only necessary information regarding basic features of products (e.g. origin and quality), the latter provides
consumers immediate access to information during all stages of production. This is also known as from farm to fork
flow. However, the EC Regulation 178/2002 on food sector traceability recommends the one step up-one step down
model [58].

4.2.2. Traceability in requirements engineering
Requirements engineering is a sub-discipline within the larger domain of software engineering, which studies the
relationship between software artefacts and their relationship to stakeholder requirements [41] [145]. This concept
has been explored since the 1970s and has undergone major reinterpretation [99]. As systems grow to become
more complex and interdependent, requirements engineering has widened its scope from individual systems towards
software-intensive ecosystems. The identified articles on this domain have appeared in leading journals such as
IEEE Transactions on Software Engineering. The literatures in requirements engineering reveal that traceability has
been explored for more than two decades [70], showing that this concept has received much attention and has been
recognised as an integral part of system development. Concepts in food sector such as tracing and origin recur
in requirements engineering, as well as backward traceability and forward traceability. Backward traceability traces
back a requirement from deployment back to its origins [70] and seeks to support root-cause analysis of the design of
an architecture. Forward traceability seeks to facilitate future referencing of a specific requirement [70] and conduct
an impact analysis of the architecture design [178]. The importance of certain concepts such as trace links and
stakeholder requirements are raised, which lie at the very heart of requirements engineering [145]. Trace links enable
both forward and backward traceability in a software design. We also came across attempts to build devoted methods
of traceability (e.g. event-based traceability [41] and model-driven traceability [5]). Event-based traceability allows
notifications to be sent to dependent artefacts whenever requirements are altered, while model-driven traceability
allows for propagation of small changes towards relevant parts of a target model by re-executing transformations.
Other works present e�ort to dissect traceability into meaningful taxonomies, such as pre-requirements traceability
(before requirements specifications are included) and post-requirements traceability (after requirements specifications
are included) [70], or requirements-to-object model (RTOM) and inter-requirement traceability rule (IREQ) [173]. RTOM
rules create traceability relations between requirements and elements of the object model, and IREQ rules create
traceability relations between di�erent parts of a requirement.

Some intriguing concepts that may bear similarities with cyber risk assessment are for example impact analysis,
dependencies, and evolutionary change. In this context, impact analysis assesses the e�ects of changes (mostly
in documentations) to the source code [12]. For cyber risk assessment, this is comparable to how changes in
the system would a�ect the model of reality created for the risk assessment process. Dependencies characterise
interrelationships between artefacts during development process [54]. In a complex system, tight dependencies arise
between the system components. These dependencies bring knock-on e�ects in a cyber risk assessment activity, in
the sense that these system components should not be seen in isolation, but rather holistically. Couplings between
components propagate even the smallest changes to the final risk picture being produced. Finally, evolutionary
change amounts to the constantly evolving requirements in a complex system [145]. This is analogous to the concept
of continuous evolution perspective of change in CORAS [117] except for the fact that the latter type is deemed as
foreseeable, while requirements might change radically.

4.2.3. Traceability in other domains
Other than in food sector or requirements engineering, traceability as a concept is also utilised in di�erent domains.
The literature study revealed that domains such as cryptography and metrology are also familiar with traceability,
albeit the di�erence in interpretation (for instance [18] and [159]). The articles that were identified in these domains
were also published in high-impact journals, such as Journal of Supply Chain Management and IEEE Transactions
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on Vehicular Technology. Within the various domains that fall beyond food sector and requirements engineering,
we re-encounter concepts that have been prominently used in the two aforementioned domain such as tracing
and tracking, chain traceability, and breadth, depth, and precision. However, we did not identify any prominently
featured concepts that might apply to risk assessment other than the well-known concept of tracing. The pinpointed
concepts are mostly context-specific and rather non-transferable to the domain of cyber risk assessment.

4.2.4. Standards on traceability
As traceability is widely recognised in di�erent domains, there exists a variety of standards and regulations for
traceability. Various standards’ guidelines and o�cial documents for regulations were also consulted to enrich
the results gained from literature study, which mostly produced scientific publications. The various definitions
encountered in di�erent standards documents mostly revolve around the idea of tracing and tracking, either
separately or collectively. Both tracing and tracking appear in for instance, the IEEE definition for traceability in
requirements engineering, or in GS1’s definition for traceability in supply chain. However, traceability in metrology
as defined by JCGM consists of only the tracing dimension, and Codex Alimentarius posits traceability as only having
a tracking function in food sector.

4.2.5. Other search terms: Data provenance, digital chain of custody, and audit log
Data provenance
To seek impactful articles on data provenance, we once more employed Web of Science and Scopus. The initial
search returned ample results, hence we reduced the scope to only include articles on data provenance in computer
science. A more reasonable number of results turned up, and we made a short list of these articles by limiting
the analysis to only the top 50 articles from both search engines. Further analysis brought the final list down to
28 meaningful articles. The notion of provenance is prevalently known in the domain of art. The Merriam-Webster
dictionary defines provenance as “the history of ownership of a valued object or work of art or literature”. However,
the concept of provenance has been adopted for use in the domain of computer science, particularly in the context of
the Semantic Web. The W3C Provenance Incubator Group proposes the following working definition for provenance
for the web:

“Provenance of a resource is a record that describes entities and processes involved in producing and
delivering or otherwise influencing that resource. Provenance provides a critical foundation for assessing
authenticity, enabling trust, and allowing reproducibility. Provenance assertions are a form of contextual
metadata and can themselves become important records with their own provenance.” [216]

Provenance has other aliases, including lineage, pedigree, or audit trail [49], derivation history, data set depen-
dence, filiation, or data genealogy [25]. It has to do with the derivation of an item or a data product from its source
[25] [168]. According to Moreau [128], provenance can be equated with a logbook, which contains each and every step
leading to the derivation of a certain result.

Closely related to the concept of provenance, there is the concept of workflow. There is a subtle di�erence
between the two concepts. [25] Bose and Frew argue that workflow is prospective and prescribes plans for processing,
while provenance is of retrospective nature, expounding how the data has been derived after the actual processing
has taken place.

There exist multiple types of classification for provenance. For example, Simmhan et al [168] mention the
di�erence between data-oriented provenance, where information is collected for the data product. The other side
of the story is process-oriented provenance, where provenance information is amassed specifically for the derivation
processes. A more popular classification is based on the granularity of the provenance data. Two categories of
provenance exist: coarse-grain provenance and fine-grain provenance. In the former, the complete derivation history
is kept, while the latter regards only part of the resulting data product [28]. Coarse-grain provenance is also known
as workflow.

Finally, another essential distinction is made within fine-grain provenance, namely where-provenance and why-
provenance [128]. Where-provenance pinpoints the location where a data product was copied from in the source,
while why-provenance seeks to justify the rationale of why a certain query result is present in the output [28] [128].
A further distinction is made by including how-provenance, which explains how an output tuple is derived [36] [128].

Digital chain of custody
Another concept that we deem related to traceability is chain of custody, particularly digital chain of custody that
commonly occurs during digital forensics process. However, we only came across limited number of articles that



4.3. Results from semi-structured interviews 29

contain appreciable concepts. A commonly cited definition of chain of custody is the one defined by The U.S.
National Institute of Justice, which is “a process used to maintain and document the chronological history of the
evidence.” [27] [66]. Chain of custody is deemed important to preserve the tactfulness of evidence (integrity) in a
digital forensics process. A customary way to establish integrity is by applying digital signature on the evidence [46].
Simply put, chain of custody has a lot to do with evidence handling during an investigation process.

Several authors have reiterated the importance of applying the classic 5W1H formula (What, where, who, when,
why, and how) during digital forensic investigation process. A rigorous chain of custody must be able to answer
all these questions (e.g. [16] [27] [45]). Schäler et al [160] propose that security requirements such as confidentiality,
authenticity, and reliability must also apply to chain to custody. A link between chain of custody in forensic and
data provenance in databases was drawn in the same literature.

Audit log
Ultimately, we also looked for articles that discuss the concept of audit log. Audit log involves monitoring computer-
generated information from the so-called event log regarding a process instance or a case that has multiple descriptive
attributes, such as activity (what), a performer or an originator (who), a timestamp (when) and other attributes [156]
[180] [204]. Audit logs are performed for di�erent purposes, such as conformance checking (finding a match between
recorded events that represent the real process and the process model in an organisation [154]), or process discovery
(automatic construction of a process model based on event logs [155]). Another rationale behind audit logging is
to comply with standards, such as HIPAA (Health Information Portability and Accountability Act) in the healthcare
sector [113].

We identified several techniques to perform audit logging, such as process mining which enables knowledge
extraction from event logs. An instance of this is the ProM framework [203]. Another possible technique is the
Blind-Aggregate-Forward logging scheme, which places extra emphasis on forward security (ensuring past information
is not compromised based on present information) [18].

Similar to chain of custody, we identify that to be useful, audit logs need to contain information such as:

• What is being done, or a process step. This can fall under di�erent terms, such as activity [156], task [206],
or event [180]. The aggregates of these actions also come in di�erent parlances, such as traces [156] or session
[180];

• Who performed the action, or the originator [204]/ agent [206]/ performer [156]

• When the action was performed, which is usually supported by timestamps [156]; and

• An identifier (ID) that uniquely identifies each process step [207].

4.2.6. Conclusions
The rigorous literature study helped us in identifying important themes on traceability from di�erent disciplines.
The concepts of tracing and tracking can be found in various domains. In food sector, traceability concerns
mainly food product and covers di�erent stages starting from the harvest phase up to the point where the food
product reaches end consumer. Requirements in a software development project can either be traced backward
or tracked forwards. Traceability in this domain can serve multiple purposes, such as impact analysis, showing
dependencies, or representing evolutionary change. Di�erent traceability standards posit di�erent definitions of
traceability, although to a certain extent they essentially deal with tracing and tracking. Data provenance can come
in di�erent levels of granularity (coarse-grain or fine-grain) and can take up multiple forms, such as why-provenance
and where-provenance. Finally, articles on digital chain of custody and audit log stress the importance of 5W1H
information (in a forensic investigation process or in an audit log) to facilitate meaningful analysis.

4.3. Results from semi-structured interviews
In the semi-structured interview, there are two question items that were formulated specifically to probe the experts’
thoughts on traceability and risk assessment. The first question, which is more general in nature, is posed at the very
beginning of the interview. The second question combines the notions of traceability and dynamic risk assessment,
and attempts to see how experts think these two notions are interlinked. We heard a lot of varying responses,
which can be attributed to several factors, such as the background of the expertise of each expert, past projects they
have worked on, and their current role in TRESPASS. Some opinions can be directly translated into requirements for
traceability, which will be demystified more in Chapter 5.
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Table 4.2 presents the initial coding frameworks for these two topics. The first digit of the code indicates the
associated topic in the interview (e.g: Item 1.3 is associated with the first interview topic). The sequence indicator
(second digit) does not necessarily show the order of the respondents.

Table 4.2: Initial coding frameworks for traceability in risk assessment

Code Interview transcript Initial coding framework

Interviewer: “How would you define traceability in a risk assessment process? What should it
consist of?”

1.1 “Being able to trace back the individual inputs that led to that risk assessment.”
Ability to trace back to

inputs

1.2
“Traceability is very important because there’s a lot of errors that can be introduced in the
model... and you should be able to account for that and be able to identify where the source of
that error might be...”

Identifying the source of
errors in analysis

1.3 “... but not just errors but also the sensitivity of the analysis results.” Sensitivity analysis

1.4

“I think that the manual mode of traceability is linking components to risk, especially if you’re
doing a model-based risk assessment. The higher level of traceability would be storing the
arguments by which each risk applies to a certain component, so the rationale behind that risk...
an even higher level of traceability would even have to involve the security decisions themselves,
the mitigation decisions. So first level is relating assets to risk, second level would be explaining
why those risks are there and why they a�ect those particular assets, and then a third level
would be explaining which mitigations relate to those particular risks and why they reduce them.”

Multiple levels and
purposes:

(1) Linking components to
risk;

(2) Rationale behind the
risk; and

(3) Explanation behind risk
mitigation strategies

1.5
“The ability to generate results and then to return to those results to verify that the inputs are
consistent with the outputs. . . to be able to return to the inputs from the outputs, to be able to
understand where the outputs come from.”

Verification of outputs

1.6

“Throughout the project we’ve been discussing the value of expert opinion and how very variable
it can be and how to quantify that, and in that sense traceability is very important in terms of
the source of your data, and at the same time handling that in an appropriately sensitive way if
you’re working particularly with industrial partner is extremely di�cult.”
“You’ve got the question of calibration, so you’ll get maybe four experts, they all have very valid
opinions, very di�erent kinds of experience will give you very di�erent answers. And you then
have the challenge of turning that into something reasonably meaningful in terms of
measurement.”
“There are di�erent ways to input on the di�erent opinions by di�erent experts but also the
extent to which those experts will make commitment to their particular opinion in di�erent
circumstances.”

Handling expert opinion:
calibration, reliability

1.7

“The implicit trace/tracing/traceability is always there as soon as you have some analysis based
on a system model, then you can immediately call any changes, traces if you want.”
“I’m sure implicitly it’s always there, well because implicit meaning the human has to use his
own intelligence to see the trace, I mean the human can put side by side two di�erent models
and put side by side two analyses and see what’s di�erent.”

Implicitly present in risk
analysis

1.8
“I think it should consist of linking between input and outputs most generally so that when the
input is changed you might be able to identify in the output results where it relied, where this
came from, how it influences in my change, the new output.”

Link between input and
output

1.9

“In risk analysis, it’s more about tracing risk assessment, risk values, risk calculations to initial
data that these calculations are based on. So if you have certain quantitative information that is
used in your risk analysis, then ideally you’d like to know, where in risk assessment this
information is used, and therefore also when something changes in this initial information, for
example if a new vulnerability is discovered or something, then you can figure out which part of
your risk assessment would therefore have to be updated. It’s much more about data traceability,
if you understand, in the ground of requirements engineering.”

Data traceability:
pinpointing data in risk

assessment

1.10
“This is sort of an approach that will help us to manage links between various models and
di�erent parts of the process. ...merge di�erent aspects, then establishing traceability links
between all these models to something explicit.”

Managing links and models
in a process

1.11
“...a trace from parts of the model to the answer or to the result of the risk assessment and also
the other way around. Once you have the risk assessment that you are able to go back to see
which parts of the model actually have influence to the result of your risk assessment.”

Linking model components
to risks

1.12
“I think it’s also interesting to trace how changes of the model influence changes in the risk
assessment.”

Propagating changes
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Table 4.2 Initial coding frameworks for traceability in risk assessment (continued)

Code Interview transcript Initial coding framework

Interviewer: “How do you see the role of traceability in facilitating a dynamic risk assessment? As
in, how do you see traceability could help with keeping the validity of a risk picture after changes
happened?”

3.1

“Well it would depend on your... threat spectrum I think. Only by looking at emerging threats
you could... you could decide for example on how often to update the risk assessment. It’s
always a tricky issue because it’s all... I mean you can say ‘Oh ideally I want it every week’ but
who’s going to give you the updated data?”

Dependant on threat
spectrum

3.2

“When you analyse impact then you have the concept of acceptable risk comes up. And there
you see it with insurance companies. Insurance companies will say, for that amount of impact
we don’t care, we accept it. We can pay it. We can pay out. So that threshold is very very
important and I think that threshold you need to know in order to decide, make a decision on a
dynamic risk assessment. How often do you need it? So that’s a big question mark.”

Connected to the concept
of acceptable risk

3.3

“For me the traceability will be most important to do a sensitivity analysis to see what happens
when you do slight changes in the values and of course you’re gonna tell me that’s a dynamic
risk assessment... but I think for me that is the most important part. How stable are those
twenty threats you have. Is this one that you identified as being the most important one, given
an input change of something very very small in the input value over a year going to completely
change the ranking and send you the first threat to number fifteen.”

Sensitivity analysis

3.4
“The robustness of your final ranking of threats. So if you give me a whole spectrum of
applications of traceability then I would tell you that’s the one I’m going to put my money on.”

Robustness of analysis
results

3.5
“I’m in the social data side, and I know those things can change... the picture can change
dramatically and it’s also well... even if you... where are the attacker profiles? That can change in
a nutshell. That’s so highly volatile. So that can also be very dynamic.”

Data volatility

3.6

“You want to able to store the changes that you do to the model. So exactly, I think it’s important
in order to maintain... in order to be able to have a dynamic model, to have functionality that
allows you to somehow keep a log of the changes you do. So whether these changes were done
with the purpose of just sensitivity analysis which is seeing what a change does, or whether they
were done as an update. Let’s say another year has passed and you want to update the model
with new improvements, still you should be able store the old model just to see, so you can
quickly see what changed.”

Model storage and
changelogging

3.7

“I would see you’ve got the short term things and you’ve got the long term things or probably
quite a lot in between. But if you look at the short term things, it’s everything I’ve been talking
about already. So making sure when you get your results, you know where they come from. You
know which parts you can adjust, and you can meaningfully compare the results as you adjust
things. So in that respect, that’s how I would read dynamic in that environment. Then you’ve got
the long term things which are much harder to deal with... emerging threats, organisational
changes, and traceability is more crucial then. You’ve got at least two di�erent influences there;
you’ve got the elements that will change and you know for sure they will change over time, and
you’ve got the question of how frequently you should revisit them, and so having some kind of...
just something basic that’s not far o� a reminder system wouldn’t be a bad thing. Something that
incorporates that element of time and possibly according to particular triggers.”

Customised, periodic trigger
mechanism

3.8

“Something that comes in here, which is very visible in the industry at the moment is the
question of... sharing data, sharing information on attacks, and there are di�erent schemes aimed
at encouraging people within similar industry to share relatively sensitive data but in a
reasonably anonymised way, and I see it as very important in terms of the dynamic approach, so
where you have an industry body, they can perhaps keep a watch on growing areas of
vulnerability across the industry and encourage particular attention in that area.”

Enabling industry-specific
data sharing

3.9

“. . . if we receive some kind of notification from the manufacturer, then it would pinpoint you to
revisit this part of the model, and that way you could kind of push in the new information
relating to that particular part without having to mark about too much and you’ll have to rerun
the calculations but hopefully you won’t have to mess with the rest of the model too much.”
“It’s making everything a little bit more modular, rather than a sort of a big big picture.”

Modularising risk analysis
process

3.10

“In this sense, and the reason why we do this is exactly the thing that you call traceability, but
you want to understand what will be changed in the analysis, or the backwards if I have the
analysis what should I change in the model in order to improve my analysis results to be more
favorable to me, right? So I mean these are two sides of one coin, I would say.”

Backward and forward
analysis
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Table 4.2 Initial coding frameworks for traceability in risk assessment (continued)

Code Interview transcript Initial coding framework

3.11

“...from the technical side, you would expect you can quickly, immediately do an analysis on an
exact level basically. All the social data enters of course a much lower time space...it wouldn’t
make sense to have a real-time analysis if the outcomes are something which influence things on
the scale of months.”
“Simply doesn’t really make sense to aim for real-time things.”
“So input data, changing analysis results, you look at your analysis results, you run like a what-if
scenario by changing the model by hand, and reanalyse. That’s obviously much slower cycle.”

What-if scenario instead of
real-time analysis

3.12
“"It’s a... as a bookkeeper or something like this. So you can keep the record of what changed to
arrive at such a risk scenario or risk situation.”

Bookkeeper role

3.13

“The idea with traceability would then be that if some of these data changes, so there’s a new
vulnerability, or whatever, then you would also know which parts of the risk assessment to
update. So that means rather than waiting for the next regular risk assessment exercise, you
could update the risk assessment on the fly, assuming that it would not a�ect all of the risk
assessment, because then you probably have to do it all over again anyway.”
“Ideally you wouldn’t need to redo the whole assessment, that’s the idea because you keep track
of these links, and it should be ideally possible to quickly update relevant parts of the risk
assessment without having to redo the whole exercise...”

Facilitating on-the-fly risk
assessment

3.14

“Well if it’s implemented in the right way, then actually this is what can enable this validity, so
because if you can seamlessly propagate the changes, then up to the point where the stakeholder
needs to make a decision based on the analysis result, you can maintain everything kind of in
the current state.”

Propagating changes

3.15

“What I think would make sense is to have a distinction between kind of internal changes, so
something that you decide to modify and external changes or something that happens without
you agreeing to it or not. So like a new vulnerability is discovered or a new type of attacker
emerges. So I think these two types of changes need to be distinguished.”

Distinguishing changes

3.16

“...a way to perform the risk assessment when something in the model has been changing. So
basically, traceability would allow you to see that, okay this part of the model has a certain
influence to our current risk assessment result”
“And then you hopefully would be able to select those that depend on the changed parts of the
model to recompute something.”
“So incremental analysis is quite di�cult, I don’t think... you’ll not be able to add process in
TRESPASS but on the other hand these are standard techniques, so once you have an incremental
analysis you could just apply it to the model.”

Incremental analysis of
changes

Table 4.3 assembles the di�erent coding frameworks identified in the previous step and shows the final coding
frameworks. One obvious limitation of this research is that it is only carried out by one researcher, which conse-
quently brings up the issue of lone researcher bias in analysing the content. We are inhibited from establishing
intercoder reliability, which in qualitative researches can show the objectivity of a content analysis. To bring down
subjectivity to a minimum level, the coding frameworks are put under scrutiny by the thesis supervisor.



4.3. Results from semi-structured interviews 33

Table 4.3: Final coding frameworks for traceability in risk assessment

Final coding framework Initial coding framework

Input-output relationship

Ability to trace back to inputs

Sensitivity analysis

Verification of outputs

Link between input and output

Explanation behind risk mitigation strategies

Data management

Identifying the source of errors in analysis

Handling expert opinion: calibration, reliability

Data volatility

Enabling industry-specific data sharing

Data traceability: pinpointing data in risk assessment

Connected to the concept of acceptable risk

Change management

Propagating changes

Distinguishing changes

Dependent on threat spectrum

Risk assessment process management

Managing links and models in a process

Model storage and changelogging

Customised, periodic trigger mechanism

Modularising risk analysis process

Backward and forward analysis

What-if scenario instead of real-time analysis

Bookkeeper role

Facilitating on-the-fly risk assessment

Implicitly present in risk analysis

Robustness of analysis results

Linking model components to risks

Rationale behind the risks

Incremental analysis of changes

We identified four prominent ideas on traceability and risk assessment based on the various opinions from
di�erent experts. These ideas are given in separate sections as follows.

4.3.1. Input-output relationship
Within this umbrella term, experts construe that traceability should be able to help establish a link between input
and output. The purposes of these links, however, can di�er. An example of a possible goal is tracing (items 1.1 and
1.5). Another possible goal is to perform a sensitivity analysis, that is to check how much change will be incurred
in the output given a certain measure of change in the input (items 1.8 and 3.3). This implies that according to the
experts, building a link between input and output is a necessary requirement in devising traceability. Using general
risk assessment terms, input is It is also believed that the output should encompass risk mitigation (generally, risk
treatment) decisions produced (item 1.4).

4.3.2. Data management
While the previous topic concerns the need for a connectivity between input and output, a bigger overarching topic
regarding managing the input needed for the assessment is also identified. We name this data management, which
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comes with a multifaceted interpretation, including how to identify errors in the analysis and how to pinpoint the
behaviour of certain data during risk assessment process (items 1.2 and 1.9). Regarding data sources, traceability is
viewed to have a potential role in managing the volatility of certain data types, such as expert opinions (items 1.6
and 3.5). Finally, traceability is thought as an enabler of industry-specific data sharing (item 3.8). We conclude that
experts believe that traceability may have a wide range of uses which stretch beyond the risk assessment process.

4.3.3. Change management
According to some of the experts, the relation of traceability and dynamic risk management has a lot to do with
managing changes. Traceability depends a lot on the velocity of changes happening within the environment of
interest (item 3.1). Within this context, traceability is expected to be able to show how changes propagate into the
whole pipeline of risk assessment process, such that the results accurately reflect the reality. Not only that, but
traceability should be able to explicitly show whether the changes are induced internally (from the organisation) or
externally (from the environment) (items 3.14 and 3.15).

4.3.4. Risk assessment process management
The experts posit that traceability in general is beneficial to the process of risk assessment. Some experts break
down the function into more specific characterisation, such as storing di�erent versions of model, linking model
components to their respective risks (in a model-based risk assessment) and generating logs of changes happening
to the model (items 1.4 and 3.6). Some experts also wish to have traceability portrayed as an automated support
within the risk assessment process, supporting an on-the-fly risk assessment process (items 3.7 and 3.13). This
also has to do with modularising the process (items 3.9 and 3.13). Other experts envisage even more sophisticated
functionalities, such as explicit link of specific rationales to certain risks and explanation behind risk mitigation
strategies as an output of the risk assessment process (item 1.4).

4.4. Specifying traceability in cyber risk assessment
Based on the literature study in various domains and the extracted opinions, we highlight elements that need to
be captured by traceability when it comes to cyber risk assessment. They are selected on the basis of frequency
(the concepts commonly recur in assorted domains in the literature and were also mentioned frequently during the
interview). These elements or requirements include:

• Traceability needs to support a connection between the input and output of a risk assessment process.
Moreover, this connection needs to be present in two directions: backward and forward. Traceability then
needs to be able to support both tracking or a prospective analysis from the input towards the output and
tracing or a retrospective analysis from the output back to the input. Trace links that show these connections
will have to be present.

• With regards to input, traceability must be able to support and handle di�erent data types that are fed in
the risk assessment process. More ‘static’ data that do not frequently change should be treated di�erently
from ‘dynamic’ data that might be highly volatile. Quantitative data that deal with risk calculations should
be set apart from qualitative data such as expert opinions. Traceability, however, should be able to help
risk assessors trace back these di�erent types of data back to their respective sources and show how these
di�erent types of data will a�ect the output of the risk assessment process.

• With regards to output, traceability should be able to point out and trace back errors in the risk analysis
results all the way to the data source(s) that contribute(s) to the errors.

• Traceability needs to be able to help risk assessors in performing an impact analysis or sensitivity analysis by
showing how much the risk analysis result will change given a certain measure of change in the input.

• Traceability should be able to help risk assessors distinguish di�erent changes that might happen to the model
(e.g. internal changes versus external change, or radical change versus continuous change) by showing how
di�erent types of change will a�ect the risk analysis result di�erently.

• Traceability should be able to help risk assessors explicitly see dependencies in the system model and
dependencies between di�erent risk assessment process through the presence of trace links.

• Traceability should be able to generate a detailed log of change process in a recurring risk assessment process
for an identical target. A coarse-grain log might be kept at the back end of the risk assessment process, while
a fine-grain log can be brought to the front end to inform the users.
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• At the bare minimum, traceability should be able to link components of the system model (e.g. assets) with
risks that are relevant to them.

• Traceability should come with an automated support to flag changes (trigger mechanism) or a reminder
system for relevant issues such as emerging threats or new vulnerabilities that require attention over time.
This trigger mechanism should be able to highlight elements of the system model that will potentially be
impacted by the changes. Traceability should be able to support a rapid risk assessment as opposed to a
complete reassessment.

• Traceability log data should contain essential information such as a unique identifier of the change instance,
who performed the changes, what entities were changed, when the changes were made, why changes were
made (arguments behind the changes), and the description of the changes. These data are necessary to
perform meaningful checks or audits in the future.

4.5. Defining traceability in cyber risk assessment
Based on the requirements identified, we propose the following definition for traceability in cyber risk assessment:

In the realm of cyber risk assessment, traceability is the ability to show the rationales behind risks by
generating bidirectional trace links spanning from the input to the risk treatment decisions, annotated
with relevant and meaningful contextual information at each intermediate step. In its dynamic sense,
traceability supports representation of relevant changes and its impact in the risk assessment process.





5
Problem investigation

This chapter marks the start of TRESPASS-specific discussion in this thesis. It discusses the first step of the design
science methodology which is used to specify the trace model. In this chapter, we explain the stakeholders that
are involved with the trace model (from conception to use) in TRESPASS, along with their expectations and goals.
Part of this discussion will be derived from the semi-structured interviews mentioned previously. In the latter half
of this chapter, we formulate two di�erent scenarios to explain the phenomena that we will explore further. The
outcome of this chapter serves as building blocks for Chapter 6, in which we formulate di�erent requirements and
assumptions necessary for building the trace model.

5.1. Identifying the stakeholders, their expectation of the research and their
goals

To identify the stakeholders, we refer to the onion model of stakeholder taxonomy by Alexander [7]. This taxonomy
was chosen because it was proposed in a similar context to our research (i.e. system development/ requirements
engineering). The onion model is given in Figure 5.1.

The onion model includes a wealth of potential stakeholders that could be involved in a system development
project, according to di�erent subsets of entities (‘Circles’). Each Circle contains ‘Slots’ which are classes of ’Roles’. A
Role is a class of stakeholder with a unique relationship to the product being developed. We give a short explanation
on di�erent Roles and Slots on the four circles of the onion model as follows [7]:

1. The Product or the Kit: the artefact being developed.

2. The System: The Product, its human operators, and its operating procedures. There are three types of
operator Slots, including:

• Normal Operators: Those who give commands and monitor Product outputs. They interact directly with
other Operators and Functional Beneficiaries.

• Maintenance Operators: Those whose roles are to maintain the Product. They interact with the Product
and with Normal Operators. In an outsourcing context, maintenance operators may include contractors
or service providers.

• Operational Support: Those who provide support to Normal Operators of the Product on how to operate
it. Simply put, they are ’maintenance’ for involved humans.

3. The Containing System: Our System and its human beneficiaries. Beneficiaries can be further di�erentiated
into:

• Functional Beneficiary: Those who benefit from the results provided by the Product. They interact with
Operators by giving them instructions and receiving information from Our System.

• Interfacing System: Roles which are responsible for adjacent systems that have interfaces with the
Product. They interact with Operators and the Product.

• Purchaser: Those who are responsible for having the Product developed, such as a Product Manager for
a mass-market product.

37
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Figure 5.1: Onion model of stakeholder relationships

Source: [7]

• Product Champion (Sponsor): Those who pioneer the development of the Product.

4. The Wider Environment: The Containing System and other relevant stakeholders, including:

• Negative Stakeholder: Any roles that could be tarnished by the Product, or conversely try to harm the
Product.

• Political Beneficiary: Any roles that can benefit from the Product’s success (e.g. in terms of power or
influence).

• Financial Beneficiary: Any roles that can gain financial benefits from the Product’s success.

• Regulator: Any roles that are responsible for regulating the di�erent aspects of the Product (e.g. legal,
quality, safety etc.)

• Developer: Any roles involved directly in the development of the Product.

• Consultant: Any roles from outside the organisation that support di�erent aspects of the Product
development.

• Supplier: Roles that are involved in the provisioning and procurement of the Product components.

Our preliminary indication of the stakeholders includes the European Commission as the principal source of
financing of the TRESPASS project, members of the TRESPASS consortium directly involved in WP5, as well as intended
end-users. The Product in our case is the trace model. To consider expectations of the di�erent stakeholders of
the trace model, we again resort to the responses of semi-structured interviews, in particular the TRESPASS-specific
question: What do you think are the opportunities for traceability in TRESPASS? How do you think the traceability
feature can bring added value to TRESPASS?. Inputs from both researchers and industry practitioners were treated as
empirical data to paint a picture of stakeholders’ expectation of the trace model. The initial coding frameworks and
final coding frameworks are presented respectively in Table 5.1 and Table 5.2.
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Table 5.1: Initial coding frameworks for opportunities of traceability in TRESPASS

Code Interview transcript Initial coding framework

Interviewer: “What do you think are the opportunities for traceability in TRESPASS? How do you
think traceability feature can bring added value to TRESPASS?”

2a.1
“I suppose even on the attack tree... you can use traceability to find whether trace back the
formulas that were used in the nodes of the attack tree”

Trace back risk calculation

2a.3

“With any decision support system, traceability is important because you want to be able to
defend your decisions...especially in security where if things go right then nothing happens but if
things go wrong, that’s when you have to be able to defend your assessment and your decisions.”
“It should give the decision makers support for deciding to mitigate one risk and not the other,
and traceability is part of this support...The basic level of traceability, you need to be able to
show in case the risks you decided not to mitigate do happen...It should provide data or... well
data to support comparing one risk to the other, okay this is more serious, this is less serious,
and this should be mitigated, and this should not be mitigated”

Provide support for security
decisions

2a.4
“It’s the links between each of those... the means to be able to get back to the previous stage and
to understand where the results come from and through that to be able to adjust the previous
stage so that you get new results.”

Understanding the
connection between
di�erent TRESPASS

processes

2a.5

“You probably need some kind of process whereby the modelling decisions are recorded.”
“It’s between data collection and model creation...My feeling is quite a lot of the model creation
is reasonably manual, it’s supported by tools but it requires... it depends a lot on professional
expertise and experience. That’s necessary, I don’t think there’s any other way, but if there were a
means of recording the underlying decision making process behind that, that could add a huge
amount of value.”

Understanding the
modelling decisions in the

model creation stage

2a.6

“Equally the transition from the model creation stage to the analysis stage. Model creation is
quite clean, you have the TRESPASS model come out there, and it’s very well-defined. The
analysis stage... potentially you’ve got lots and lots of di�erent analysis tools there. And that is
mostly I’m guessing where the iterative process will come in, because you will feed in the model
into associated values to the analysis to perhaps just one analysis tool initially. But you’ll get
some kind of result back and chances are you’ll look at it and think, ‘Hmm okay, what does that
actually mean?’ And you may well want to feed in either new values, so that’s e�ectively at the
data collection stage, or you may think that a di�erent tool will actually give you a more
meaningful result, or you may look at the analysis result and think, ‘Oh God the model’s not
looking quite right’ and actually have to readjust the model. So in that sense at the analysis
stage, traceability is crucial...”

Supporting iterative analysis

2a.7
“The visualisation could be a very good way of encouraging or enforcing traceability in that once
you’ve got a result, it could give you clear pointers as to where the information has come from,
what the previous stages look like and where you could potentially go to readjust that picture.”

Tracing visualisation results
back to previous stages

2a.8
“The forward direction would be from the system model... we change something in the system
model and then we see what’s happening in the outcome”

Propagating model changes

2a.9

“The backward traceability, if you want to see or to point something in the analysis results, and
see for instance which component contributes to this unpleasant result the most, that’s far more
non-trivial... our tools will tell you for instance that the system is not su�cient to protect it, and
the evidence of that is that the attack game that the attacker will be playing will be more terribly
profitable for him. This is basically what the TRESPASS tools will be able to tell you, but they will
not tell you which component in the model is, so to say, the most guilty one, or which
component in the model you will need to fix in order to improve the situation. With backward
traceability, it also relies on the human judgement and human experience that the human sees
what (inaudible) we have or the human can take a look at the intermediate attack tree and see
which branches of the attack tree are the ones that give rise to this profitable outcome for the
attacker and then see which components or mention in the leaves of the attack tree for instance
and then make conclusions regarding which components in the original system model will need
to be protected more. So at this level, the traceability will be there but again it involves a lot of
human judgement or expert knowledge and in this sense it’s not really tool-supported traceability
I would say.”

Supporting human
judgment on tracing critical

components from the
results

2a.10
“... so especially what was the time... point of time where this analysis was done, and what was
the state of the cloud this specific case the cloud that point of time. If I wouldn’t have this kind
of traceability, yeah that would make my analysis result somewhat more vague, right?”

Tracing back the context of
the analysis
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Table 5.1 Initial coding frameworks for opportunities of traceability in TRESPASS (continued)

Code Interview transcript Initial coding framework

2a.11

“And basically, the analysis result should be understandable in terms of the model files in the
beginning of the input. So I think we need also traceability that the terms which end up in the
analysis results can be uniquely identified back to the data, otherwise we don’t really know if you
spot a certain risk we wouldn’t know to which piece of the infrastructure so to say is it related,
and where do we need to fix something or what would be the context to fix something.”

Linking analysis results to
model components

2a.12
“...in TRESPASS it would be nice to be able to know which parts of the TRESPASS risk model
would be a�ected if something changes in the input data. That, I think is the primary concern.”

Propagating input changes

2a.13

“...through all these stages, you’d like to be able to trace certain value back to the input where it
came from, which means traceability from the input data, through the model, through the attack
scenarios, to the outputs that are presented to the user. I think in this sense the traceability
would follow the stages of what we’ve called a navigation metaphor. So, the maps, and the
routes, and those kinds of things.”

Tracking forward input data
throughout TRESPASS

process

2a.14

“you could have traceability for... even which part of the map you could trace that back to the
maybe a tag in a picture in the LEGO model, that would be another...we haven’t even discussed
that, but if you would have a picture of the LEGO model, and somebody would add a node to the
formal map, he could basically pinpoint on the page of the LEGO model where that thing is
located. That would be again another form of traceability.”

Tracing model components
back to data

2a.15

“But quantitative data, if it’s some data about social engineering based on a scientific paper, then
it could be a link to the scientific paper where it came from. It could all kinds of link... or a link
to a vulnerability database, if the classification changes in the vulnerability database, you’d want
to update something.”

Tracing data back to data
sources

2a.16

“... it would be very nice to be able to link some of these types of models, and to be able for
instance to propagate modifications or to propagate interesting results from one model to
another. So for instance, if socio-technical model changes, how the generated attack tree changes,
this is a big question.”

Propagating model changes

2a.17
“I think to the way I define traceability, it allows you to connect parts in the model with parts of
your results. So for example, it would tell you which parts are especially important for risk
assessment or which parts have high influence on the outcome of the risk assessment.”

Linking analysis results to
model components

2a.18
“...for many of the visualisations it would be very interesting to be able to trace this back to the
model.”

Tracing visualisation results
back to previous stages

Table 5.2: Final coding frameworks for opportunities of traceability in TRESPASS

Final coding framework Initial coding framework

Static view (cross-sectional risk assessment)

Tracing back model components to input data

Trace back risk calculation

Provide support for security decisions

Understanding the connection between di�erent TRESPASS processes

Understanding the modelling decisions in the model creation stage

Tracing visualisation results back to previous stages

Tracing back the context of the analysis

Linking analysis results to model components

Supporting iterative analysis

Tracking forward input data throughout TRESPASS process

Tracing data back to data sources

Dynamic view (longitudinal risk assessment)
Propagating model changes

Propagating input changes

To briefly clarify used nomenclatures, input and data should not be confused with data sources. The Common
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Vulnerability & Exposures list 1 (CVE), for example, is a data source that provides vulnerability data of a certain
software. An organisation chart document is a data source that provides input of the organisation structure that is
represented in the TRESPASS model.

In the final coding frameworks, we recognised two emerging themes out of the many initial coding frameworks.
The first theme belongs to the static view of traceability, which acknowledges the function of traceability in a cross-
sectional sense of analysis. This view encompasses among others, the functions of tracing back risk calculation and
the function of tracing back the context of the risk analysis activity. The second theme falls under the dynamic
view of traceability, in which traceability is asserted as an enabler to propagate model-related or input changes in
risk analysis.

We acknowledged the presence of surrogacy during the interviews, in which a stakeholder’s viewpoint is repre-
sented by other person. More often than not the respondents assumed the role of ‘project intermediary’ [7] and tried
to envisage how traceability in TRESPASS could help target users in achieving certain goals. Although often regarded
as a dangerous obstacle [7], we believe surrogacy is necessary evil that needs to be carefully weighed in, in order to
formulate plausible expectations and goals of stakeholders that we may not have access to.

To ensure alignment with overall intended impact of TRESPASS, we referred to the o�cial Description of Work
document (not publicly available) and derive the trace model’s potential contribution to the TRESPASS project. This
is conveniently presented in Table 5.3.

Table 5.3: Contribution of trace model to TRESPASS

Seventh Framework
Programme impact

TRESPASS contribution Trace model contribution

“Improved European industrial
competitiveness in markets of
trustworthy ICT, by facilitating
economic conditions for wide
take-up of results; o�ering clear
business opportunities and
consumer choice in usable
innovative technologies; and
increased awareness of the
potential and relevance of
trustworthy ICT”

Security of planned ICT systems
“Organisations developing ICT systems or services
themselves may apply the method to the planned
system in its intended operational context. This
process will improve the security properties of
the ICT systems o�ered to the public, by early
identification and quantification of the
information security risks associated with the
socio-technical system around the technology to
be designed. The method will increase the
transparency of security decisions made, raise
trust in such technologies, and therefore increase
market value.”
“... An organisation using TRESPASS methods and
tools will therefore be (1) better prepared for any
eventuality, (2) it will be able to make better
judgements about the risks it is willing to take,
and (3) it will be more capable of justifying the
costs of the risks that it wishes to mitigate.”
(emphasis added)

Increased transparency will be supported by the
presence of traceability links from analysis results
to model components, provisioned by the trace
model. The traceability links will be able to show
which model components carry the highest risks
(e.g. administrator workstation which still runs
legacy applications). Security decisions such as
countermeasure application (e.g. update to newer
OS) can be justified by explicit links showing that
indeed the countermeasure will bring highest
impact to improve the security measure. These
links will be also support risk acceptance and
mitigation decisions, namely which risks not to
mitigate and which risks to mitigate, based on
budget or other considerations. In a cloud
computing context, this can apply to both cloud
service providers (e.g. Microsoft Azure) or
high-tech organisations utilising cloud.

“Adequate support to users to
make informed decisions on the
trustworthiness of ICT. Increased
confidence in the use of ICT by
EU citizens and businesses.
Increased usability and societal
acceptance of ICT through
understanding of legal and
societal consequences.”

Organisational security
“The methods provided will be used by our
consultancy partners to analyse and improve
information security in organisations o�ering
services to the public, thereby establishing best
practices for such risk management, and
increasing the trustworthiness of the information
handling by these organisations... the method
may allow the public to choose between di�erent
organisations and di�erent services based on the
quantitative risk level calculated by TRESPASS.
Governments will be able to choose between
di�erent implementation options of a system
based on such an analysis.”
“The main purpose... is for organisations to make
well informed decisions on the risk posture of
the organisation itself.”

Traceability links will enable consultancy
companies to easily compare multiple scenarios
of countermeasures application to its clients,
which is in essence equal to performing
sensitivity analysis. This functionality is of course
not limited to consultancy companies, but also to
organisations who independently perform risk
assessment. The capability to perform sensitivity
analysis with TRESPASS will indeed lead to more
informed security decisions.

1https://cve.mitre.org/

https://cve.mitre.org/
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Table 5.3 Contribution of trace model to TRESPASS (continued)

Seventh Framework
Programme impact

TRESPASS contribution Trace model contribution

“Demonstrable improvement (i)
of the trustworthiness of
increasingly large scale
heterogeneous networks and
systems and (ii) in protecting
against and handling of network
threats and the reduction of
security incidents.”

“Application of the method will lead to better
prediction of possible attacks, as well as
optimisation of investments in countermeasures.”

See first contribution.

In a more dynamic sense, the trace model will aid propagation of input/data changes or model changes. This
will be demonstrated well in our chosen scenario for the cloud case study. Dynamism is in the heart of cloud
computing. Demand changes, to mention one instance, can easily happen due to seasonal fluctuation (e.g holiday
season sales promotion). Other change drivers include migration of VMs between multiple physical hosts or quick
reconfiguration due to disrupted physical infrastructure [190]. The second scenario described in Section 5.2 will
reflect examples of the dynamism.

We now discuss the di�erent Slots and Roles in the development of the trace model along with their viewpoints
in the following sections.

5.1.1. The System
In this Circle, the Normal Operator is the only human stakeholder slot we consider. The Maintenance Operator
slot and Operational Support slot are irrelevant as we do not intend to design an independent tool for the trace
model. The Normal Operator slot is highly relevant, as it contains the possible di�erent Roles of end users. As
shown in Table 1.1, these end users can vary from an auditor to a Chief Information Security O�cer (CISO) of an
organisation. However, we believe that the suitable role in a high-tech organisation is an information security o�cer.
The Normal Operator role only deals with the ‘raw’ output of the Product (e.g traceability links between analysis
results in TRESPASS and the model components involved), and not the processed information. The latter output will
be beneficial to (Functional Beneficiary) roles to evaluate the security posture of the organisation and consequently
support security investment decisions. One of the main requirements of Normal Operators is operability [7]. This
can be translated to for instance easy interpretation of output. For example, the traceability links should be shown
in a form of presentation that enables easy perusal (e.g. plain text information or diagram that shows dependencies
between analysis results and data).

5.1.2. The Containing System
In a high-tech organisation, Functional Beneficiary roles are security decision makers. These roles could be
represented by risk managers, or CISO. By providing clear links, the trace model can provide clear justifications on
for example, why certain risks should be mitigated and why certain risks may be left ‘as is’. Typically such decisions
would be made by a CIO (Chief Information O�cer) or a CISO. These decisions can also be cascaded down into
selecting the right countermeasures to be introduced into the organisation (by consulting the links between analysis
results and model components), or to check whether certain countermeasures actually improve the organisation’s
security posture (by running a sensitivity analysis and seeing whether the analysis results are a�ected).

Roles that are responsible for Interfacing System include TRESPASS researchers involved in WP5 (Process
Integration) and WP6 (Tool Integration). They will have to ensure seamless fit of the trace model with the overall
TRESPASS process and with the rest of TRESPASS tools. Details are presented in Chapter 6, in which we outline the
design process by also considering how the trace model can support flawless execution and not hinder the existing
TRESPASS process. Tools that potentially should integrate with the trace model in order to produce the desired
traceability links are also considered.

Ultimately, the roles of Purchaser and Product Champion are taken up by members of TRESPASS consortium.
These roles are ofttimes crucial in advocating and securing su�cient financial support throughout a project. We
will not pay great attention to these roles, as we do not consider financial support as a monumental requirement in
developing the trace model.
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5.1.3. The Wider Environment
Based on the responses from interviewees, we do not foresee any potential Negative Stakeholder that might
be harmed with the presence of a trace model in TRESPASS. The general impression we received from di�erent
respondents is rather positive, agreeing that traceability can bring added value to TRESPASS. With regards to
beneficiary, we believe that shareholders in high-tech organisations can become Financial Beneficiaries given the
trace model. With enhanced transparency on the TRESPASS process and results, shareholders can make informed
choices on appropriate security investments (cf. Table 5.3). The trace model can improve TRESPASS’ role as a decision
support system in these organisations. We do not see any Political Beneficiary of the trace model. There is no
direct Regulator for the trace model, but those who fill in Regulator roles in TRESPASS might be considered indirect
regulators, as the trace model will also be restricted by regulations that bind TRESPASS. The European Commission
who supports the majority of the TRESPASS financing and the TRESPASS coordinator are examples of Regulator roles.
Developer roles are taken up by the student and researchers involved in this research, and Consultant roles are
assumed by other TRESPASS researchers who contribute to the development of the trace model (e.g. interviewees).

5.1.4. Goal formulation
Based on the final coding frameworks compiled in Table 5.2, we formulate two dimensions of goals G to be fulfilled
by the trace model as follows:

1. Static view goals (G1)

The static view goals are formulated based on the static view coding frameworks shown in Table 5.2, which
acknowledges the function of traceability in a cross-sectional/one-time o� risk assessment process. These
goals are:

The trace model should enable tracing of data used in the analysis back to the respective data sources;

The trace model should enable tracing of model components to the (recorded) decisions behind the mod-
elling decisions (e.g. which components are included and which are abstracted out for what reasons; who
made what decisions; what the context of the analysis is: when it was conducted, under what conditions and
assumptions, etc.);

The trace model should enable users to pinpoint data throughout the TRESPASS process;

The trace model should enable tracing of analysis results back to the attack tree calculation, further back
to the model components, and finally to see what data are involved; and

The trace model should support accountability in the risk assessment process and enable decision makers
to defend security decisions made based on the risk assessment results.

2. Dynamic view goals (G2)

The dynamic goals are formulated based on the roles of traceability in a longitudinal view of risk assessment,
which includes:

The trace model should be able to support propagation of changes in the input data/model components
throughout the analysis process. The analysis results should reflect the changes made.

The traceability from visualisation results to previous stages is given less priority at the moment, as visualisation
processes are still under active development and are subject to change.

Clearness
A large number of the formulated goals have been derived directly from direct speeches of the interviewees. The
interviewees have been clear in stating their preferences, which are mostly supported with examples and additional
explanation.

Stakeholders’ acceptance
Essentially, the goals are derived from the stakeholders’ wishes (including those who are indirectly involved through
surrogacy), hence it would logically follow that these goals are accepted by the stakeholders.

Feasibility
The biggest constraint in developing the trace model is the time constraint of TRESPASS project, which will be
finalised by October 2016. In order to meet this time constraint, the researchers have explicitly stated that it is best
that the trace model will not be constructed as a tool, but rather as a set of frameworks with guiding principles.
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Affordability
The research is designed to be carried out without incurring additional cost from what has been budgeted in the
TRESPASS project. We do not foresee any unexpected overhead cost.

Opportunity and opportunity cost
An obvious opportunity cost that could fulfil (parts of) this research’s objective is to extend the existing tools to
embed capabilities of traceability. However we were informed that another research in parallel has attempted to
program an extension of the Tree Maker analysis tool. We believe our research can complement that work by pleading
the needs for traceability in a more high-level view in cyber risk assessment, which is technically demonstrated by
the other research.

Order of priority
Our decision in ordering priorities for developing the trace model moves according to the level of di�culty. We first
prioritise the static view of traceability, as it is inherently present in the process as it stands now. We move one
level up by deploying traceability in its dynamic sense, namely by taking care of changes. The lowest priority would
be given to development of traceability from the visualisation stage back to the previous stages, as the visualisation
stage is still under active development and is under constant redefinition.

5.2. Identifying the phenomena, their causes and e�ects and their contri-
butions to the stakeholders’ goals

In this section, we elaborate the phenomena relevant to the problem and recognise their causes and e�ects. This
boils down to devising possible (attack) scenarios. The scenarios are derived to illustrate possible phenomena that
can happen in the cloud and to make the process of designing the trace model less abstract.

5.2.1. The cloud case study
The cloud case study we use in this thesis is derived from the TRESPASS project, which was used in the 2015
TRESPASS Social Engineering Challenge

2. It involves the fictional company International Traders Ltd (ITL). Details of
the case study is presented in an ‘as is’ format from the flyer as follows:

International Trading Ltd. (ITL)
Imagine the medium sized company called International Traders Ltd. (ITL). ITL is a commodity trader – they buy and sell oil and gas related
investments around the world for an international set of clients. They own an o�ce with a co-located datacenter.

Much of their trading is automated and they have a large IT department. The key company asset fileX is a list of international clients with
the following details:

1. The clients names and address

2. Bank Account details

3. Clients Investment portfolio

4. Details of investment transactions dating back 5 years

ITL has a number of departments including:

• A marketing and sales department that is responsible for developing investment packages

The marketing data is informational in nature and not considered sensitive

The marketing and sales data is stored with all other non sensitive data on the marketing computer system

• A trading department that handles all transaction with clients

The client data and financial transactions are considered sensitive information and are stored on a separate trading computer system

• An IT department that is responsible for the companies computing infrastructure. This includes:

Networks, switches, routers etc.

Servers

Applications

Some key people in the company are:

2http://trespass-project.eu/sites/default/files/Deliverables/TREsPASS_SEAward2015_0.pdf

http://trespass-project.eu/sites/default/files/Deliverables/TREsPASS_SEAward2015_0.pdf
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Table 5.4: Actors in the cloud case study

Actor Job/Role Department Physical Access Logical Access

Ethan Fraud investigator Trading department Up to Open O�ce To VM1

Finn Finance manager Marketing department Up to Open O�ce To VM3

Terry Technician IT department Everywhere No access

Sydney IT system administrator IT department Everywhere Full access

Cleo Cleaning personnel External contractor Everywhere No access

Grey External visitor N/A No access No access

Big CEO N/A Up to Open O�ce Read access

Their main o�ce building is located in an engaged industrial area and consists mostly of an open o�ce space and the data centre room,
shown in Figure 5.2.

Figure 5.2: ITL o�ce (exterior view)

Source: [187]

The o�ce is open plan. On the ground floor is front door access to the o�ce space. All employees have a badge access through the front door
[Security Class RC2].

An internal door leads directly into the data center. This door is access controlled and only data center sta� has access [Security Class RC1].
The bottom floor of the open o�ce has a number of large windows [Security Class RC1].
The data center is directly attached to the o�ce space from where it is accessible through an internal door. This door is access controlled and

only data center sta� has access [Security Class RC1].
There is a separate external door directly into the data center. This door is used to bring in computer supplies. It is a secure door that can

only be opened from the inside [Security Class RC4].
The data center has two large windows [Security Class RC2].
The cloud infrastructure is running on two physical servers, both located in the Data Center. On each server, two virtual machines, a virtual

switch and a virtual firewall are running on top of a Hypervisor. These virtual components are connected to physical network components, namely
switch SW2 and a Gateway. Through this connection it is possible to reach the physical and virtual infrastructure from the Laptop.

The sensitive document fileX is located in the storage of VM1. This is currently stored together with the trading solution. The marketing
department has a separate solution. Both systems are on physically separate host systems within the data centre.

To provide a more realistic scenario, doors and windows are classified according to their security class as follows:
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Figure 5.3: O�ce plan setup

Source: [187]

Table 5.5: Doors and windows security classifications

Security class RC Burglary type Use

1 Basic protection against burglary by the use of physical force Premises without increased risk of burglary

2 Occasional burglar uses basic burglary tools Increased protection for normal housing security

3 Experienced burglar uses heavy duty drilling and hammering
tools

High level of security for the premises in view of increased risk of
burglary

4
Experienced burglar additionally uses electric saws and power
drilling tools

Extra high level of housing protection in view of high risk of
burglary

5
Experienced burglar additionally uses power cutting and heavy
duty drilling tools

Extremely high protection for military and industrial premises.
Minimum door weight- 300 kg

6
Experienced burglar additionally uses power cutting and heavy
duty drilling tools

Extremely high protection for military bunkers, etc. Minimum
door weight- 500 kg

We now proceed with describing the scenarios that complement the cloud case study. The first scenario
is used to describe the static view of traceability, and the second scenario the dynamic view. In order to be
able to successfully represent an attack scenario that spans the physical, digital, and social domains of a cloud
computing environment, we choose a social engineering attack scenario for the former, and a scenario involving
various plausible socio-technical changes for the latter. This distinction will be made crystal clear in Chapter 6 with
necessary explanation, but in this chapter we limit ourselves to only describing the scenarios. We demonstrate these
scenarios using Use Cases applied to the cloud case study.

5.2.2. Scenario 1: Social engineering attack
According to Hadnagy, social engineering is “the act of manipulating a person to take an action that may or may not
be in the ‘target’s’ best interest.” [72]. The chosen scenario is the winning scenario of the 2015 Social Engineering
Award written by David Kelm of IT Seal 3. It consists of several underlying assumptions and two steps needed to
launch the attack. Similar to the cloud case study, the scenario is presented as follows in its ‘as is’ format. Other
strong motivations behind the selection of this scenario for this thesis are its feasibility and ‘realisability’, which was
acknowledged by the panel of judges composed of experts in cyber security.

3http://trespass-project.eu/sites/default/files/Deliverables/SecEngAward2015-Winner.pdf

http://trespass-project.eu/sites/default/files/Deliverables/SecEngAward2015-Winner.pdf
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Assumptions
• ITL employees are assumed to know one another and are able to communicate easily.

• None of the involved persons is liable to bribery.

• ITL has a safe technical environment. Deploying a Trojan file or a similar malicious file to obtain the target file is not possible.

• There is only one Laptop to access the VMs and one is able to access fileX just in combination with the correct login credentials of Big,
Ethan or Sydney (to access VM1). The badges authorise the owner to enter the respective area without restrictions.

• Ethan and Sydney are aware of frauds (as fraud investigator and IT system administrator).

• Big as CEO is less aware and more customer-oriented. Because he is concentrating on running the business, Big is susceptible to a social
engineering attack.

• The attacker(s) has only one shot. Once access to Laptop is gained, passwords are harvested from Big in multiple attempts.

The attack consists of two parts: Obtaining correct login credentials and getting physical access to the laptop (since it is in general
considered safe).

Part I: Gathering login credentials
To obtain Big’s login credentials there are several options:

1. Call Big and pretend to organise an Investment-Conference (creating a background story, setting up a webpage) and have him considered
as a keynote speaker. Big would be one of the main candidates, which provides reasons to fish for his CV to be placed on the web and on the
flyer. To do so, Big needs to register himself on the conference webpage and uploads the file (led to webpage during call). (GOT EMAIL, GOT
PASSWORD1, GOT CV). Together with the CV information and crawling from social media sites, the attacker can attempt a personalised
password guessing (brute-force) attack and try to break into an e-mail or other accounts (may be reused for business purpose). (GOT
PASSWORD2)

2. In case the attacker can figure out what the intranet looks like, the login page might be cloned. When Big is on travel, the attacker
can send a spoofed E-Mail in Sydney’s name and ask to check some critical issue with a customer. To do so he needs to login with his
company-account on the cloned webpage. After submitting he is redirected to the real intranet. (GOT PASSWORD3)

3. O�er to install a video surveillance component in the open o�ce (creating a background story, setting up a webpage), at a competitive
price. The attacker can then use our backdoor access to observe the employees (not just Big) using the Laptop and entering their login data
- a technical form of shoulder surfing. (GOT PASSWORD4)

Several of these options can be executed since they are all designed not to be identified as attacks.

Part II: Gaining Laptop access
To gain physical access to the laptop, the attacker makes use of the business relationship with the external contractor (EC). Shortly after obtaining
the login credentials (credentials could be changed, if waited too long), EC is called in the afternoon by spoofing Big. The attacker claims not to
need Cleo this week (due to some renovation of the Open O�ce) and asks EC to inform Cleo directly. Moreover, the attacker gives an alternative
phone number for callbacks, since Big is travelling to a conference this week.

Secondly, the attacker calls Big by spoofing EC and claim that Cleo is sick for about a week. To satisfy customer, the attacker promises to send
a replacement: Henry. Since he has no badge to access the area and Cleo’s badge is not available, Big is asked whether the IT department could
grant a temporary badge to be able to enter the building freely. Once Henry (background story and costume are prepared) gets his badge he can
enter the building, particularly the open o�ce. To access the Laptop, Henry enters the building at night. In case the badge just works in the o�ce
hours, Henry comes in late and stays longer, until everybody has left. Thus, Henry can have access to the Laptop, login and access fileX when the
room is empty.

5.2.3. Scenario 2: Changes
The cloud environment can be very dynamic, with changes happening in its physical infrastructure (servers, switches,
etc.), virtual infrastructure (virtual machines), and its socio-technical space (the employees of cloud providers and
their access control) [190]. Through a more generic lens, changes that bring impact to organisations may concern
the following items [195]:

• The enterprise architecture;

• Known vulnerabilities;

• Asset values;

• Attacker profiles;

• Attacks or attack attempts occurring in the organisation;

• Attacks or attack attempts occurring in similar organisations;

• Organisational culture; and

• Standard map components used in the model.
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In this scenario, we intend to show changes that might bring notable impact to the organisation. Due to the
limited access to the TRESPASS tools for the time being, we select changes that are not cloud-specific. The first
of these is changes in known vulnerabilities. This is chosen because it concerns the external environment and
is very likely to happen in real world as well. Online vulnerability databases such as CVE and NVD (National
Vulnerability Database)4 are being updated on a daily basis, clearly showing that more and more vulnerabilities are
being discovered. For this type of change, we focus on new vulnerabilities discovered for Windows 10, as most of
the managers recently had an upgrade to Windows 10.

To represent internal changes, we choose to take into account changes in asset values. The first is exemplified by
the fact that ITL has recently secured a series of deals with fantastic figures in the last two months. Coincidentally,
these transactions happen after the organisation performed its most recent risk analysis. Of course, these transactions
get recorded in fileX. According to Finn’s estimation, the value of these recent transactions inflates the value of fileX
by roughly 20%. Another internal change is brought about by the arrival of Liam, a new IT system administrator
that works alongside Sydney. This is ITL’s attempt to exercise the four-eyes principle. Liam is a fresh hire who is in
still in training and is still working his way around to understand ITL’s IT infrastructure. However, he already has
experience working for two years as an administrator in a small university. He was hired as a backup for Sydney,
remembering that ITL’s IT infrastructure has grown into a complexity that is too di�cult to be managed by one
person.

ITL’s policy requires a risk assessment activity to recur every six months. However, important changes have been
taking place only two months after the last TRESPASS-assisted risk assessment. These important changes might be
too crucial to neglect, and therefore ITL plans to conduct yet another risk assessment activity now. The plan is not
to conduct a full-scale assessment from scratch, but rather to work incrementally from the results of the previous
assessment.

5.3. Ex-post evaluation of problem investigation phase
We end this chapter by performing checks on whether the problem investigation phase has been correctly carried
out, using a set of questions proposed by Verschuren and Hartog [213]. The first question is “Was the involvement
and variety of experts well balanced against the expected impact of the design?”. This question probes whether there
is a relation between the design e�ort and its expected impact. We believe such a relation exists. Experts with
various backgrounds have been involved in the data collection stage (the semi-structured interviews). The experts did
not only express their own views and wishes, but also those of the end users of TRESPASS. Out of the nine experts,
five are currently engaged in academia and four are employed in various industries (e.g. research, consultancy). This
mix of experts have been carefully selected, and the interview results reflect that these experts view the traceability
design problem from di�erent angles.

The second sanity check is “Is G su�ciently sharp defined in order to derive the functional requirements (Rf), user
requirements (Ru), and contextual requirements (Rc) and to give direction to the next stages in the designing process?”.
We believe this is the case, as already demonstrated by formulation of two distinct classes of goals in Table 5.2.
Further requirements are devised later in Chapter 6, but the goals have been clearly formulated in order to easily
derive the requirements and assumptions.

Lastly, we reflect on the question “Have standard methodological guidelines for empirical research been followed
during the process that led to the formulation of G?”. We indeed conducted the interviews following common
methodological guidelines. Limitations have also been clearly explicated in Chapter 4. Validity of the interview
questions have been checked by the research supervisor to avoid mistakes such as leading questions or double-
barrelled questions. Reliability of the interview data processing is established by following a certain methodology
that is fashioned after grounded theory [31]. Researcher-independence is ensured without any vested interests
shadowing the interviews, and finally verifiability is achieved by providing the transcripts both to the interviewees
and the graduation committee of the thesis.

5.4. Summary of problem investigation phase
This phase has resulted in important items that serve as building blocks for the design of the trace model, namely:

• Identification of important stakeholders, including operators and beneficiaries of the trace model;

• Formulation of static view goals (G1) and dynamic view goals (G2); and

• Formulation of scenarios that represent both types of goals.

4http://nvd.nist.gov/

http://nvd.nist.gov/
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Treatment design

This chapter is a continuation of the TRESPASS-specific discussion we began in the previous chapter and largely
concerns the second step of the design science methodology used to develop the trace model. In this chapter,
we explicate the process of designing the trace model, starting from how we come up with the requirements and
how they become involved in the design process of the trace model. There are three main steps in designing the
trace model: requirements and assumptions specification, available treatment identification, and designing the trace
model itself. We begin with showing the process of eliciting di�erent types of requirements that the trace model
has to satisfy and continue with defining criteria based on these requirements. We finally decompose the criteria
into less abstract specifications. At the end of this chapter, an evaluation encompassing the requirements, criteria,
and specifications is explicated.

6.1. Specifying the requirements and context assumptions
As pointed out in Chapter 3, requirements are properties that the treatment/artefact should possess, which in this
case is the trace model. We elicit requirements from di�erent sources, namely:

1. Goals

The desired goals for traceability have been outlined in Chapter 5 (Table 5.2). We further break down these
goals into requirements to be fulfilled by the trace model. By nature, these requirements would mostly be
functional requirements (Rf), as they are inferred from functional goals.

2. Interview results

In the semi-structured interview, the second question regarding traceability in TRESPASS (cf. Appendix
C) specifically inquires the interviewees regarding requirements that they would like to see in order for
traceability to be seamlessly supported in TRESPASS. We use the answers to these questions to complement
the requirements that are deduced from the goals in the first point.

3. Use Cases

Use Cases will help us in formulating requirements based on possible interaction between the user and the
TRESPASS tools.

Each source of requirements will be individually analysed in the subsequent sections.

6.1.1. Goals and interview results
We first begin by revisiting the goals from Section 5.1.4, wherein the static view goals (G1) and dynamic view goals
(G2) of the trace model are presented. These goals are given as follows:

1. Static view goals (G1)

The trace model should enable tracing of data used in the analysis back to the respective data sources
(G1.1);
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The trace model should enable tracing of model components to the (recorded) decisions behind the
modelling decisions (e.g. which components are included and which are abstracted out for what reasons; who
made what decisions; what the context of the analysis is: when it was conducted, under what conditions and
assumptions, etc.) (G1.2);

The trace model should enable users to pinpoint data throughout the TRESPASS process (G1.3);

The trace model should enable tracing of analysis results back to the attack tree calculation, further back
to the model components, and finally to see what data are involved (G1.4); and

The trace model should support accountability in the risk assessment process and enable decision
makers to defend security decisions made based on the risk assessment results (G1.5).

2. Dynamic view goal (G2)

The trace model should be able to support propagation of changes in the input data/model components
throughout the analysis process. The analysis results should reflect the changes made (G2.1).

We now decompose these goals into requirements. At this stage, the process is done by first looking for
important elements enveloped in these goal statements (e.g. ‘data’, ‘model components’, ‘analysis results’) and
subsequently consulting documents (especially deliverables) that might contain additional information on these
terms. Information from these documents aids us in delivering more concrete requirements. Where necessary,
references to these documents are appended in footnotes.

1. The trace model should enable tracing of data used in the analysis back to the respective data sources1

The trace model should be compatible with di�erent types of data used in TRESPASS (e.g. physical data,
social data, commercial data, etc.);

The trace model should be able to discriminate di�erent types of data used in TRESPASS (e.g. vulnerability
data, stakeholder goals, technical data, etc.);

The trace model should be able to discriminate multiple sources of data (e.g. data retrieved from data
collection stage; data retrieved from databases such as vulnerabilities or scenarios, etc.); and

The trace model should be integrated with the knowledge base as the “central data repository” and the
TRESPASS model.

2. The trace model should enable tracing of model components to the (recorded) decisions behind the
modelling decisions (e.g. which components are included and which are abstracted out for what
reasons; who made what decisions; what the context of the analysis is: when it was conducted, under
what conditions and assumptions, etc.2

The trace model should be able to incorporate di�erent types of modelling tools in the modelling process
(e.g. ArgueSecure, LEGO model, manual drawing + meeting notes, etc.);

The trace model should enable annotation in the manual modelling process leading up to the final
model (e.g. place tags in drawings, insert actors in meeting notes, etc.); and

The trace model should be integrated with the di�erent libraries used in the model creation process (e.g.
Model Pattern Library Attacker Profile Library, etc.).

3. The trace model should enable users to pinpoint data throughout the TRESPASS process

The trace model should be able to uniquely identify data used in the risk assessment process.

4. The trace model should enable tracing of analysis results back to the attack tree calculation, further
back to the model components, and finally to see what data are involved

The trace model should be integrated with the whole TRESPASS process (from the data collection stage
up to the visualisation stage); and

The trace model should be able to store intermediate parameters generated during the risk assessment
process that are not currently stored in any of the TRESPASS tools.

1D2.1.2 [191] lists all data sources and required data types in TRESPASS.
2D5.3.2 [194] lists di�erent model creation strategies available in TRESPASS.
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5. The trace model should support accountability in the risk assessment process and enable decision
makers to defend security decisions made based on the risk assessment results

The trace model should enable explicit reasoning behind security decisions taken and risk assessment
results; and

The trace model should be capable of storing the arguments behind security decisions to enable future
reference.

6. The trace model should be able to support propagation of changes in the input data/model components
throughout the analysis process. The analysis results should reflect the changes made

The trace model should be able to identify changes made in input/model components in an analysis as
compared to a prior analysis;

The trace model should be able to store di�erent analysis results to enable comparison; and

The trace model should be able to show the di�erences between multiple analyses.

After the decomposition of goals into requirements from relatively passive sources, we once again take a look
at the results of the interview pertaining the wishes of the researchers regarding the traceability support to dig
empirical insights and identify requirements, as shown in Table 6.1.

Table 6.1: Requirements based on interview results

Code Interview transcript Identified requirements

Interviewer: “What do you think are the necessary requirements to support
traceability in TRESPASS? What features should a traceability support for TRESPASS
have?”

2b.1
“... one of the things that I think in TRESPASS is very important is to be able to
trace back what the levels of aggregation of di�erent datasets are.”

Trace back data aggregation level

2b.2
“Other issues that we should be able to trace back is how the recent the datasets
are.”

Trace back how recent the
datasets are

2b.3

“...another useful requirement is being able to do a sensitivity analysis or
something like what you say, if I change something in the model well how does
that influence my result? This is already sort of possible because you can always
change the model and rerun the analysis, but it would be nice if the tool could
maintain a sort of log or history of these changes, right?”
“A log or an archive of previous analyses would also be useful for traceability
reasons, I think.“

A log of previous analyses

2b.4
“...for me the most crucial thing is to be able to take the results of the analysis
and get back to the model and I think even that is quite di�cult, so for me that’s
the bottom line.”

Linking analysis results to the
model

2b.5

“So to go back from the analysis results to the TRESPASS model, which means you
would need all the intermediate tools to support this, right? You’ll need the Attack
Tree Analyzer to support for this information. You would most notably need the
Attack Tree Generation by the Tree Maker to support this. Attack tree augmenting
and annotation is not that critical, they’re pretty small tools. But yes, the Attack
Tree generation is the most notable component that would need to support this
sort of going backwards. It should somehow record the back links because the
Attack Tree Generation sees the system model and also the attack tree, so it
somehow should annotate the leaf of the attack tree saying that this leaf is here
because the model has a component x y z . So the most critical component in this
context would be the Tree Maker.”

Integration with the TRESPASS
tools

2b.6

“the visible central component, when he creates a new model, he creates an
identifier, and with that identifier all information will be stored in the knowledge
base. . . .with this kind of versioning, we would have the opportunity to see what’s
going on and keep track of the di�erent states of the system, so that you can also
afterwards see what you changed and so on....all required information at that point
and state is kept at that point and state in the context of this model ID.”

Generation of unique identifier
for data

2b.7

“I think we would need an additional database to store data from di�erent steps
that we are currently not doing...we need to store all this data or intermediate
parameters that we are not storing at the moment. It can be probability of attack,
it can be risk, it can be cost, it can be attack time.”

Storage for intermediate
parameters
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Table 6.1 Requirements based on interview results (continued)

Code Interview transcript Identified requirements

2b.8

“Of course it needs to be aligned with the di�erent stages that we have in
TRESPASS which I already mentioned. I think that is the most important... of
course it also needs to be aligned with the TRESPASS concepts, so the actors, the
locations, the policies.”

Alignment with TRESPASS
concepts and processes

2b.9
“I think the really necessary thing that we need is the link between the
socio-technical model and the attack trees, or attack models.”

Link between TRESPASS model
and attack trees

2b.10

“... in theory you can have many links, so for instance attacker profile and the
TRESPASS model, because the attacker for us is also an actor in the model, so to
be able to kind of precisely identify which is this actor or vice versa we have an
actor how do we create an attacker profile for him, knowing that he is for
instance, an employee in this organisation.”

Link between TRESPASS model
and attacker profile

Based on the interview results, we come across explicitly stated requirements in the form of wishes conveyed
by the interviewees. These requirements can be mapped against the goals we identified earlier. For example, the
requirements identified in item 2b.1 (Trace back data aggregation level) and 2b.2 (Trace back how recent the datasets
are) support the fulfilment of G1.1 (The trace model should enable tracing of data used in the analysis back to the
respective data sources). The requirement to keep a log of former analyses (2b.3) helps satisfy G1.2 (The trace model
should be able to support propagation of changes in the input data/model components throughout the analysis process.
The analysis results should reflect the changes made.). Requirements 2b.6 (Generation of unique identifier for data)
and 2b.7 (Storage for intermediate parameters) contribute to G1.3 (The trace model should enable users to pinpoint data
throughout the TRESPASS process). Finally, requirements 2b.4 (Linking analysis results to the model), 2b.5 (Alignment
with TRESPASS concepts and processes), 2b.8 (Integration with the TRESPASS tools), 2b.9 (Link between TRESPASS model
and attack trees), 2b.10 (Link between TRESPASS model and attacker profile) collectively lend themselves to G1.4 (The
trace model should enable tracing of analysis results back to the attack tree calculation, further back to the model
components, and finally to see what data are involved).

Moreover, we also asked the interviewees to show the trace links they would like to see being established in the
TRESPASS process with the aid of a superimposed integration diagram. The interviewees indicated that some links
are more important than others and that priority should be given to these links during the development of the trace
model. These links include:

• Link between visualise results process (with Attack Navigator Map/ANM) and visualise attack tree process
involving the ADTool;

• Link between visualise attack tree process with ADTool and the TRESPASS model;

• Link between analysis results and visualise attack tree process with ADTool;

• Link between the analysis results and the generate attack trees process with Tree Maker;

• Link between the analysis results and the annotated attack trees;

• Link between analyse attack tree process done with ATtack Tree Evaluator, Attack Tree Analyzer, and ATCalc
and the knowledge base;

• Link between the annotated attack trees and the Attack Pattern Library;

• Link between the annotated attack trees and the knowledge base;

• Link between the annotated attack trees and the generic attack trees;

• Link between the annotated attack trees and the TRESPASS model;

• Link between the augment and annotate process involving the Attack Pattern Library Tool (APLTool) and the
knowledge base;

• Link between generate attack trees process with Tree Maker and the TRESPASS model;

• Link between the knowledge base and the Attacker Profile Library;
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• Link between the knowledge base and the Entity Type Library;

• Link between the knowledge base and online vulnerability databases;

• Link between the knowledge base and the binary technical data;

• Link between the generic attack trees and the TRESPASS model;

• Link between the TRESPASS model and the Model Pattern Library;

• Link between the TRESPASS model and the Attacker Profile Library; and

• Link between the TRESPASS model to the LEGO model or other modelling tools used in the data collection
stage.

The desired trace links based on the interview are presented in Figure 6.1 as follows.

Figure 6.1: Desired trace links

Note: Integration diagram is adopted from [190], green arrows are added.

Onwards, we shall take into account these suggested links into the design process instead of the exhaustive links
we provided during the interview (shown in Appendix C). Next, plausible Use Cases are provided to devise more
requirements based on possible user interaction with the TRESPASS tools.

6.1.2. Use Cases
Use Cases are devised to understand how the goals can satisfy the wishes of the stakeholders through interaction
with the system. The Use Cases can also be used to formulate credible assumptions regarding the functions and the
future users. These Use Cases are formulated both from documents on TRESPASS functions and from the interview
results. With Use Cases, all required system behaviours can be defined, and essential functionalities can be derived
[195]. Use Cases for the complete TRESPASS toolkit are documented in D6.2.2. Functions (F) of TRESPASS are also
described in the same deliverable, which are further decomposed into Services (S). A number of these Services can
be supported by traceability, namely:

• Impact assessment (S1.5);

• Data extraction (S2.1);

• Risk analysis (S3.3);
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• Root cause analysis (S3.4);

• Sensitivity analysis (S3.5); and

• Dynamic (re-) analysis (S3.7)

In this section, we limit our scope to Use Cases for traceability support. From the aforementioned functions,
existing Use Cases in D6.2.2, and the interview results, four possible Use Cases identified for traceability are
identified, namely:

1. Use Case 1: Understanding Analysis Results

This Use Case presents a possible scenario in which traceability can act as a support for linking analysis
results to model component and provide explicit justification for current state risk.

2. Use Case 2: Security Investment

In this Use Case, traceability is regarded as a support to justify security investment decisions based on analysis
results.

3. Use Case 3: Change Impact Analysis

For this Use Case, we frame traceability as a support to analyse the impact of propagated changes in input
data (e.g. data sources) or system changes (represented in the model).

4. Use Case 4: Sensitivity Analysis

Lastly, we introduce traceability as a support to perform sensitivity analysis, namely to see how much
influence a certain change in the input brings to the analysis result.

More comprehensive explanation on each Use Case is given as follows. Functional goals or needs and the
workflow for each Use Case is described, as well as the required functionalities3. Most of the processes in the
workflow have already been described in D6.2.2. Additional processes will be printed in bold typeface. For all Use
Cases, we assume the same type of regular user.

Use Case 1: Understanding Analysis Results
Functional goals/needs

The user has run a risk assessment using TRESPASS tools, but the user wants the analysis results to be described
in terms of the model components. Which assets are the ‘weakest links’ [140]? Which assets are most likely to be
compromised? Which controls are least e�ective and might need replacement?

Description (workflow)

1. The user opens the interface, which shows an empty map of the organisation. The user inserts several
standard elements onto the map and draws the relevant connections. If an Archimate model already exists,
this may be used as a basis instead.

2. The user clicks on the items to select the corresponding properties, which may consist of asset values,
potential damage upon failure, access control mechanisms and an estimation of their strength. Default values
can be used if information is unavailable.

3. The user answers a number of general questions about the organisation in survey style (e.g. organisational
culture). The answers are used to set properties of the items of the map, in particular the people/employees.

4. The user inserts additional information regarding the modelling decisions in plaintext format (in
submenu ‘Comments’ for a more generic description, and in each model component for specific
explanation). This information could be the context of the organisation when the model was created,
the purpose of the analysis, important assumptions, components exclusion and inclusion decision,
etc.

5. The user answers a number of general questions about the threat environment. Based on the answers, the
system suggests relevant attacker profiles. The user can select the attacker profiles of interest, and adapt these
if necessary.

3additional to the ones already described in D6.2.2. Existing functionalities will be indicated.
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6. The user starts the analysis. A prioritised list of scenarios/attack trees is presented.

7. The user selects the scenarios/attack trees to understand which components are linked to a specific
scenario/attack tree. Upon clicking on a certain leaf node, the model shows model components
that are involved, such as assets (annotated with their quantitative values), control mechanisms, and
actors.

8. The model can be saved for future adjustments.

Required functionalities

• Creation of an empty model [U1.3]

• Conversion of model from ArchiMate [U1.4]

• Drag and drop of model elements (from library) [U1.5]

• Properties menu associated with model elements/entities (available upon click) [U1.6]

• Support for additional submenu to insert plaintext input during model creation (for Step 4) [TR1]

• Survey mode or menu for general project properties (e.g. organisational culture) and attacker properties [U1.8]

• Selection of attacker profiles (based on survey) [U1.9]

• Menu for adaptation of attacker profiles [U1.10]

• Ranking of attack scenarios [U1.11]

• Support for generating unique identifier for every model elements (for Step 7) [TR2]

• Linking of model components as unique entities in di�erent processes (for Step 7) [TR3]

• Functionality to export and/or save model [U2.15]

Use Case 2: Security Investment
Functional goals/needs

The user uses the TRESPASS suite to decide on investments in information security. The user wants to finds
out which countermeasures are most cost-e�ective and therefore decide on the most suitable investment. Another
possible goal is to measure Return on Security Investment (ROSI) [33] by using TRESPASS suite to calculate the
e�ectiveness of certain countermeasures.

Description (workflow)

1. The user opens the interface, which shows an empty map of the organisation. The users inserts several
standard elements onto the map and draws the relevant connections.

2. The user clicks on the items to select the corresponding properties, which may consist of asset values,
potential damage upon failure, access control mechanisms and an estimation of their strength. Default values
can be used if information is unavailable.

3. The user inserts additional information regarding the model components in plaintext format (submenu
’Comments’ or something similar). This information could be the context of the organisation when
the model was created, the purpose of the analysis, important assumptions, components exclusion
and inclusion decision, etc.

4. The user answers a number of general questions about the organisation in survey style (e.g. organisational
culture). The answers are used to set properties of the items of the map, in particular the people/employees.

5. The user answers a number of general questions about the threat environment. Based on the answers, the
system suggests relevant attacker profiles. The user can select the attacker profiles of interest, and adapt these
if necessary.
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6. The user starts the analysis and selects one or more of the following results:

A list of possible attack scenarios, ordered by their risk;

A list of possible countermeasures, ordered by their cost-e�ectiveness; or

A visualisation of the map, showing ‘the weakest links’, for example by increasing their size, or changing
their colour.

7. The user annotates explanations of security decisions next to the analysis results in plaintext format.
For example, the user can type in one or more security decisions that will be made in the next three
months (or any time period) which corresponds to preventing a specific attack step/scenario. This
explicitly shows couplings of decisions and the danger to be mitigated. Alternatively, the user can
also provide a general list of possible countermeasures, among which the user selects a few to be
applied within the next six months (or any time period).

8. The model can be saved for future references or adjustments.

Required functionalities

• Suggestion for countermeasures [U2.10]

• Ranking of countermeasures sorted by RO(S)I [U2.11]

• Navigator map visualisation (that can reflect analysis results) [U2.13]

• Support for flagging and manual annotation in the analysis results in plaintext format (for Step 7)
[TR4]

Use Case 3: Change Impact Analysis
Functional goals/needs

The user works in an organisation with a policy to run periodical risk assessments. The user has run a risk
assessment with TRESPASS tools in the previous period. Although the next cycle is yet to come, the user observes
substantial changes in many input sources, both internally and externally (e.g. new network configuration, or new
emerging threats). The user now wants to run another analysis before the next cycle arrives.

Description (workflow)

1. The user receives push notifications from one of the available data extraction tools or requests
automated data extraction4. The push notifications inform the user that there have been updates in
the data based on changes detected by the input tools (see Step 3).5

2. The user opens the file containing the model used in the previous assessment. The file also contains the
previous analysis results.

3. Following up on the push notifications, the user adapts the model where needed to represent the changes
observed, by moving, deleting, or adding elements and changing properties. Updates are needed under the
following conditions:

Changes in the enterprise architecture;

Changes in known vulnerabilities;

Changes in asset values;

Changes in attacker profiles;

Attacks or attack attempts occurring in the organisation;

Attacks or attack attempts occurring in similar organisations;

Changes in the organisational culture;

Changes in the standard map components used in the model.

4A tool for data extraction from virtualised environments is explained in D2.2.2 [192]
5Note that this is not limited to only technical data. The Geographical Information System (GIS) in the ATM case study can provide automated
extraction of heat maps in a certain area, which falls into the category of social data [193].
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4. Alerts will be issued to the user when important updates have been made, or when user action is required to
assist in the updates.

5. The user re-runs the analysis to identify any di�erences in the analysis results given the new conditions.

6. Alerts are issued when changes in the underlying data lead to significant changes in risk.

7. The model can be saved for future references or adjustments.

Required functionalities

• Support for automatic updates and alerts or ‘dashboard’ (for Step 1) [U1.1]

• Support for automatic updates or ‘news feed’ (for Step 1) [U1.13]

• Support for manual updates [U1.14]

• Support for alerts based on (manual or automatic) updates [U1.15]

• Model editing window: move, delete, and change properties of components [U2.4]

• (Re-)run analysis button [U2.14]

Use Case 4: Sensitivity Analysis
Functional goals/needs

The user wants to compute the e�ect of di�erences in the model on the risk values by making simulated
modifications to the model or some of its parameters. The intended outcome is the di�erence in the outcome of
the risk analysis that simulated changes would bring.

Description (workflow)

1. The user runs an analysis in TRESPASS.

2. The user prepares for the sensitivity analysis. The user simulates modifications to the model where
needed by changing properties of the desired model components.

3. (optional) The user saves di�erent types of modifications (excluding the results) made for later com-
parison.

4. The user re-runs the analysis in TRESPASS.

5. The system determines to what extent the result depends on changes in particular items.

6. The system keeps track of the di�erent versions of the map, the changes (di�) between them, and the results
of the analysis in terms of risk. The user can open a menu to select previously used maps/analyses, and
select them to view the stored results.

Required functionalities

• Sensitivity analysis (changes in output based on changes in a particular parameter) [U1.12]

• Summary of modifications simulated (for step 2 and 3) [TR5]

• Support for saving maps (for Step 6) [TR6]

• Support for automated generation of di� between di�erent maps (for Step 6) [TR7]

We have successfully identified seven additional requirements (TR1 up to TR7) for the trace model in order to
support seamless interaction between user and TRESPASS tools in conducting traceability-related activities. Similar to
the requirements from the interview results, these Use Case-generated requirements can also be mapped against the
goals. TR1 (Support for additional submenu to insert plaintext input during model creation) is closely related to G1.2
(The trace model should enable tracing of model components to the (recorded) decisions behind the modelling decisions
(e.g. which components are included and which are abstracted out for what reasons; who made what decisions; what
the context of the analysis is: when it was conducted, under what conditions and assumptions, etc.)). TR2 (Support for
generating unique identifier for every model elements) supports G1.3 (The trace model should enable users to pinpoint
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data throughout the TRESPASS process). TR3 (Linking of model components as unique entities in di�erent processes)
corroborates G1.4 (The trace model should enable tracing of analysis results back to the attack tree calculation, further
back to the model components, and finally to see what data are involved), and TR4 (Support for flagging and manual
annotation in the analysis results in plaintext format) promotes the consummation of G1.5 (The trace model should
support accountability in the risk assessment process and enable decision makers to defend security decisions made
based on the risk assessment results). Ultimately, the dynamic view goal (G2.1) is advocated by U1.1 (Support for
automatic updates and alerts or ‘dashboard’ ), U1.13 (Support for automatic updates or ‘news feed’ ), TR5 (Summary of
modifications simulated), TR6 (Support for saving maps), and TR7 (Support for automated generation of di� between
di�erent maps).

6.1.3. List of requirements
Thus far we have generated a number of requirements from di�erent processes, which may have resulted in
overlap between one or more requirements. In this section, we produce a final list of requirements, classified
into two di�erent types: functional requirements (Rf) and user requirements (Ru). However, we also realise that
there might be non-functional requirements that the trace model needs to possess. According to Wieringa, these
requirements may include utility, usability by a stakeholder, and interoperability with other systems [221]. The final
list of requirements is compiled by grouping several (overlapping) requirements under their common goal. This is
shown in Table 6.2 as follows. Sources of these requirements are also given for clarity.

Table 6.2: Final list of requirements

Code Requirement Type of requirement
Associated

goal Source

TRM1
The trace model should be compatible with di�erent types of data
used in TRESPASS (e.g. physical data, social data, commercial data,
etc.).

Non-functional
requirement
(compatibility)

G1.1 Goals

TRM2
The trace model should be able to discriminate di�erent types of
data used in TRESPASS (e.g. vulnerability data, stakeholder goals,
technical data, expert judgement, etc.).

Functional
requirement

G1.1 Goals

TRM3
The trace model should be able to discriminate multiple sources of
data (e.g. data retrieved from data collection stage; data retrieved
from databases such as vulnerabilities or scenarios, etc.).

Functional
requirement

G1.1 Goals

TRM4
The trace model should be integrated with the knowledge base as
the “central data repository” and the TRESPASS model.

Functional
requirement

G1.1 Goals

TRM5
The trace model should be able to trace back data aggregation level
used in the analysis.

Functional
requirement

G1.1 Interviews

TRM6
The trace model should be able to trace back how recent the
datasets used in the analysis are.

Functional
requirement

G1.1 Interviews

TRM7
The trace model should be able to incorporate di�erent types of
modelling tools in the modelling process (e.g. ArgueSecure, LEGO
model, manual drawing + meeting notes, etc).

Functional
requirement

G1.2 Goals

TRM8
The trace model should enable annotation in the manual modelling
process leading up to the final model (e.g. place tags in drawings,
insert actors in meeting notes, etc.).

User requirement G1.2 Goals

TRM9
The trace model should be integrated with the di�erent libraries
used in the model creation process (e.g. Model Pattern Library,
Attacker Profile Library, etc.).

Functional
requirement

G1.2 Goals

TRM10
the trace model should support insertion of comments in plaintext
format during model creation.

User requirement G1.2 Use Case 1

TRM11
The trace model should be able to uniquely identify data used in the
risk assessment process by means of generating unique identifier.

Functional
requirement

G1.3
Goals &

Use Case 1

TRM12
The trace model should be able to store intermediate parameters
generated during the risk assessment process that are not currently
stored in any of the TRESPASS tools.

Functional
requirement

G1.3
Goals &
interviews
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Table 6.2 Final list of requirements (continued)

Code Requirement Type of requirement
Associated

goal Source

TRM13
The trace model should be integrated with the whole TRESPASS
process (from the data collection stage up to the visualisation stage).

Non-functional
requirement

(interoperability with
other systems)

G1.4 Goals

TRM14
The trace model should be aligned and enable support for di�erent
TRESPASS concepts (e.g. Actors, Policies, Locations, etc.).

Non-functional
requirement

(interoperability with
other systems)

G1.4 Interviews

TRM15
The trace model should enable linkage between the TRESPASS model
and attack trees used in the analysis stage (both generic and
annotated).

Functional
requirement

G1.4 Interviews

TRM16
The trace model should enable linkage between the TRESPASS model
and tools that generate, visualise, and analyse the attack trees.

Functional
requirement

G1.4 Interviews

TRM17
The trace model should enable linkage between the TRESPASS model
and its inputs (social data, physical data, and model templates).

Functional
requirement

G1.4 Interviews

TRM18
The trace model should enable linkage between the TRESPASS model
and attacker profiles used.

Functional
requirement

G1.4 Interviews

TRM19
The trace model should enable linkage between the knowledge base
and its input sources (Attacker Profile Library, Entity Type Library,
online vulnerability databases, and binary technical data).

Functional
requirement

G1.4 Interviews

TRM20
The trace model should enable linkage between the knowledge base
and the tools that augment, annotate, and analyse the attack trees.

Functional
requirement

G1.4 Interviews

TRM21
The trace model should enable linkage between the knowledge base
and the annotated attack trees.

Functional
requirement

G1.4 Interviews

TRM22
The trace model should enable identification of attack patterns used
in the annotated attack trees.

Functional
requirement

G1.4 Interviews

TRM23
The trace model should enable linkage between analysis results to
the tools that generate and visualise the attack trees.

Functional
requirement

G1.4 Interviews

TRM24
The trace model should enable linkage between the visualised
results back to the tool that visualise the attack trees.

Functional
requirement

G1.4 Interviews

TRM25
The trace model should be able to explicitly show how a unique
entity is used in di�erent TRESPASS processes.

Functional
requirement

G1.4 Use Case 1

TRM26

The trace model should enable explicit reasoning behind security
decisions taken and risk assessment results by providing support for
flagging and manual annotation in the analysis results in plaintext
format.

User requirement G1.5
Goals &

Use Case 2

TRM27
The trace model should be capable of storing the arguments behind
security decisions to enable future reference.

Functional
requirement

G1.5 Goals

TRM28
The trace model should be able to automatically identify changes in
the input data, alert the user, and trigger a re-analysis based on
these changes.

Functional
requirement

G2.1 Goals

TRM29
The trace model should be able to identify changes made in
input/model components in an analysis as compared to a prior
analysis and produce a summary of simulated changes.

Functional
requirement

G2.1 Use Case 4

TRM30
The trace model should be able to store di�erent analysis results to
enable comparison and provide a log thereof.

Functional
requirement

G2.1

Goals,
interviews,
and Use
Case 4

TRM31
The trace model should be able to show the di�erences between
multiple analyses.

Functional
requirement

G2.1
Goals &

Use Case 4

One may encounter some of the requirements devised above in a di�erent expression in previous deliverables
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in various work packages. Such requirements include R17, R43, R48, and R91 in D1.1.2 (Final specifications and
requirements for socio-technical security models), R65 in D2.1.2 (Final requirements for the data management
process), R68, R69, and R87 in D6.1.2 (Final requirements for tool integration), as well as R64, R113, R115, R116, and
R119 in D6.2.2 (Final refinement of functional requirements). This overlap demonstrates that the idea to embed
traceability has over time appeared in various work packages in TRESPASS but it needs more substantiation, which
is precisely the goal of this thesis in general and this chapter in particular.

6.1.4. Assumptions and contribution arguments
The requirements listed above need to be backed up with necessary assumptions to contribute to the stakeholder
goals. In this section we list the necessary assumptions a�liated with each requirement and express how the
combination will contribute to the enactment of the stakeholder goals (in the form of contribution arguments). The
assumptions vary according to the type of respective requirements they support. The contribution arguments are
presented for each requirement in Table 6.3 according to the following formula:

(Artefact Requirements) x (Context Assumptions) contribute to (Stakeholder Goals)

Table 6.3: Contribution arguments

Requirement Contribution argument

TRM1
If the trace model is compatible with di�erent types of data used in TRESPASS and there is more than one type of data
used in a typical risk assessment using TRESPASS, then the trace model enables tracing of data used in the analysis back
to the respective data sources.

TRM2
If the trace model is able to discriminate di�erent types of data used in TRESPASS and there is more than one type of
data used in a typical risk assessment using TRESPASS, then the trace model enables tracing of data used in the analysis
back to the respective data sources.

TRM3
If the trace model is able to discriminate multiple sources of data and there is more than one type of data source used
in a typical risk assessment using TRESPASS, then the trace model enables tracing of data used in the analysis back to
the respective data sources.

TRM4
If the trace model is integrated with the knowledge base and the TRESPASS model and the majority of data used for the
risk assessment is stored in the knowledge base, then the trace model enables tracing of data used in the analysis back
to the respective data sources.

TRM5
If the trace model is able to trace back data aggregation level used in the analysis and TRESPASS engages with di�erent
levels of data aggregation, then the trace model enables tracing of data used in the analysis back to the respective data
sources.

TRM6
If the trace model is able to trace back how recent the datasets used in the analysis are and TRESPASS engages with
types of data that can be superseded with more recent data (‘live’ databases), then the trace model enables tracing of
data used in the analysis back to the respective data sources.

TRM7
If the trace model is able to incorporate di�erent types of modelling tools in the modelling process and the modelling
process in TRESPASS can be recorded and can be done with the help of modelling tools, then the trace model enables
tracing of model components to the (recorded) decisions behind the modelling decisions.

TRM8
If the trace model enables annotation in the manual modelling process leading up to the final model and the models
used in the modelling process can be ‘digitised’ with the help of appropriate tools, then the trace model enables tracing
of model components to the (recorded) decisions behind the modelling decisions.

TRM9
If the trace model is integrated with the di�erent libraries used in the model creation process and the modelling process
in TRESPASS involves the use of di�erent libraries available in TRESPASS toolkit, then the trace model enables tracing of
model components to the (recorded) decisions behind the modelling decisions.

TRM10

If The trace model supports insertion of comments in plaintext format during model creation and additional information
that cannot be captured with existing tools is needed during model creation to give additional explanation on the
modelling decisions and their context, then the trace model enables tracing of model components to the (recorded)
decisions behind the modelling decisions.

TRM11
If the trace model is able to uniquely identify data used in the risk assessment process by means of generating unique
identifier and each data used in a risk assessment activity in TRESPASS is unique (no duplicate), then the trace model
enables users to pinpoint data throughout the TRESPASS process.

TRM12

If the trace model is able to store intermediate parameters generated during the risk assessment process that are not
currently stored in any of the TRESPASS tools and there are intermediate parameters generated during the risk
assessment process (e.g. probability of attack, risk, attack time), then the trace model enables users to pinpoint data
throughout the TRESPASS process.
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Table 6.3 Contribution arguments (continued)

Requirement Contribution argument

TRM13
If the trace model is integrated with the whole TRESPASS process (from the data collection stage up to the visualisation
stage), then the trace model enables tracing of analysis results back to the attack tree calculation, further back to the
model components, and finally to see what data are involved.

TRM14
If the trace model is aligned with di�erent TRESPASS concepts (e.g. Actors, Policies, Locations, etc.) and is able to
support them, then the trace model enables tracing of analysis results back to the attack tree calculation, further back to
the model components, and finally to see what data are involved.

TRM15

If the trace model enables linkage between the TRESPASS model and attack trees used in the analysis stage (both generic
and annotated) and in a typical risk assessment using TRESPASS the attack trees use information from the TRESPASS
model, then the trace model enables tracing of analysis results back to the attack tree calculation, further back to the
model components, and finally to see what data are involved.

TRM16

If the trace model enables linkage between the TRESPASS model and tools that generate, visualise, and analyse the attack
trees and in a typical risk assessment using TRESPASS the attack trees make use of information stored in the knowledge
base, then the trace model enables tracing of analysis results back to the attack tree calculation, further back to the
model components, and finally to see what data are involved.

TRM17

If the trace model enables linkage between the TRESPASS model and its inputs (social data, physical data, and model
templates) and in a typical risk assessment using TRESPASS the tools that involve attack trees calculation make use of
information stored in the knowledge base, then the trace model enables tracing of analysis results back to the attack
tree calculation, further back to the model components, and finally to see what data are involved.

TRM18

If the trace model enables linkage between the TRESPASS model and attacker profiles used and in a typical risk
assessment using TRESPASS, the TRESPASS model uses information from Attacker Profile Library, then the trace model
enables tracing of analysis results back to the attack tree calculation, further back to the model components, and finally
to see what data are involved.

TRM19

If the trace model enables linkage between the knowledge base and its input sources (Attacker Profile Library, Entity
Type Library, online vulnerability databases, and binary technical data) and in a typical risk assessment using TRESPASS
the attack trees make use of information stored in the knowledge base, then the trace model enables tracing of analysis
results back to the attack tree calculation, further back to the model components, and finally to see what data are
involved.

TRM20

If the trace model enables linkage between the knowledge base and the tools that augment, annotate, and analyse the
attack trees and in a typical risk assessment using TRESPASS the tools that involve attack trees calculation make use of
information stored in the knowledge base, then the trace model enables tracing of analysis results back to the attack
tree calculation, further back to the model components, and finally to see what data are involved.

TRM21

If the trace model enables linkage between the knowledge base and the annotated attack trees and in a typical risk
assessment using TRESPASS the annotated attack trees make use of information stored in the knowledge base, then the
trace model enables tracing of analysis results back to the attack tree calculation, further back to the model components,
and finally to see what data are involved.

TRM22

If the trace model enables identification of attack patterns used in the annotated attack trees and in a typical risk
assessment using TRESPASS the annotated attack trees make use of attack patterns (either stored in Attack Pattern Library
or custom-made), then the trace model enables tracing of analysis results back to the attack tree calculation, further
back to the model components, and finally to see what data are involved.

TRM23

If the trace model enables linkage between analysis results to the tools that generate and visualise the attack trees and
in a typical risk assessment using TRESPASS the analysis results logically follow from the attack trees generated with Tree
Maker and visualised by ADTool, then the trace model enables tracing of analysis results back to the attack tree
calculation, further back to the model components, and finally to see what data are involved.

TRM24

If the trace model enables linkage between the visualised results back to the tool that visualise the attack trees and in a
typical risk assessment using TRESPASS the visualised results logically follow from the attack trees visualised by ADTool,
then the trace model enables tracing of analysis results back to the attack tree calculation, further back to the model
components, and finally to see what data are involved.

TRM25

If the trace model is able to explicitly show how a unique entity is used in di�erent TRESPASS processes and in a
typical risk assessment using TRESPASS a unique data entity is visible/identifiable from the data collection stage up to
the analysis stage, the visualised results logically follow from the attack trees visualised by ADTool, then the trace model
enables tracing of analysis results back to the attack tree calculation, further back to the model components, and finally
to see what data are involved.

TRM26

If the trace model enables explicit reasoning behind security decisions taken and risk assessment results by providing
support for flagging and manual annotation in the analysis results in plaintext format and the security decisions
logically follow from the risk assessment results, then the trace model supports accountability in the risk assessment
process and enable decision makers to defend security decisions made based on the risk assessment results.
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Table 6.3 Contribution arguments (continued)

Requirement Contribution argument

TRM27

If the trace model is capable of storing the arguments behind security decisions to enable future reference and the
security decisions may need to be defended in the future in case things go in an unexpected direction, then the trace
model supports accountability in the risk assessment process and enable decision makers to defend security decisions
made based on the risk assessment results.

TRM28
If the trace model is able to automatically identify changes in the input data, alert the user, and trigger a re-analysis
based on these changes and a pre-specified condition of changes to trigger re-analysis is configured, then the trace
model is able to support propagation of changes in the input data/model components throughout the analysis process.

TRM29
If the trace model is able to identify changes made in input/model components in an analysis as compared to a prior
analysis and produce a summary of simulated changes and the changes made are valid, then the trace model is able to
support propagation of changes in the input data/model components throughout the analysis process.

TRM30

If the trace model is able to store di�erent analysis results to enable comparison and provide a log thereof and one
analysis result does not render the previous ones invalid and analysis results do not overwrite one another, then the
trace model is able to support propagation of changes in the input data/model components throughout the analysis
process.

TRM31
If the trace model should be able to show the di�erences between multiple analyses and the changes made are valid,
then the trace model is able to support propagation of changes in the input data/model components throughout the
analysis process.

6.1.5. Design criteria
Design criteria are results of unravelling and operationalisation of requirements into more measurable terms [213]. As
we only have two types of requirements, we also expect only two types of design criteria although the distinction of
the two may not be crystal clear. Operationalisation in this sense is defined as specifying involved tools, concepts,
and processes that are attached to each requirement. From this operationalisation, more precise and design-oriented
imperatives are formulated, which we name design criteria. They can be found in Table 6.4 below.

Table 6.4: Design criteria

Requirement Design criterion/criteria Criterion
code

TRM1
The trace model should implement TRESPASS data management process, which includes data
transformation and data manipulation. CR1

TRM2 The trace model should support metadata of data type, its value, and its domain (e.g. technical or social). CR2

TRM3
The trace model must contain metadata elements used to classify data to allow identification of the data
source, creator of the data and who modified the data

CR3

TRM4
The trace model should support (1) consolidation process of di�erent data types onto the knowledge base
(e.g. data extracted from virtualised infrastructures [192] and socio-technical data) and (2) transformation
of data into the TRESPASS base model6

CR4

TRM5
The trace model should support data classification by providing metadata of data levels of measurement
(e.g. nominal, ordinal, interval, or ratio). CR5

TRM6
The trace model should support control metadata of creation and last updated timestamps and status
(Active, Inactive, Removed).

CR6

TRM7
The trace model should support transformation/embedding of the output of non-formalised modelling
tools, such as ArgueSecure arguments, pictures of LEGO models, and pictures of tangible models. This
can be achieved for instance by enabling a feature to upload pictures or text files.

CR7

TRM8

The trace model should be able to especially identify elements of non-formalised model development
tools such as ArgueSecure (Assets), LEGO (rich picture of Actors, infrastructure, data, data flow, and
Locations) and the tangible modelling toolkit (Actor, Assets, Location, Access policy, and Relationship)
through tagging.

CR8

TRM9
The trace model should be able to identify model elements derived from libraries (template and model
elements from Model Pattern Library, attacker profiles from Attacker Profile Library, and annotated attack
trees from Attack Pattern Library).

CR9

6Part of this is currently already supported. When a user creation creates a model in ANM, the tool interacts with knowledge base to establish a
model context with a modelID [199].
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Table 6.4 Design criteria (continued)

Requirement Design criterion/criteria Criterion
code

TRM10
The trace model should be integrated with the ANM as the central tool in the model creation stage and
should support (1) insertion of generic comments for the model as a whole and (2) annotation of the
model’s nodes and edges for additional explanation.

CR10

TRM11 The trace model should allow unique identification for each unique piece of data. CR11

TRM12
The trace model should have a data staging area that stores parameters into a local persistence data
model.

CR12

TRM13
The trace model should implement TRESPASS data management process, which includes data
transformation (mapping and transformation modules) and data manipulation (input, manipulation, and
output modules).

CR13

TRM14
The trace model should be aligned with the TRESPASS base model which includes the base concepts used
in TRESPASS

7 CR14

TRM15
The trace model should support XML format as the main format used in TRESPASS model and attack
trees. It should be able to identify Locations, Edges, Assets, Actors, Predicates, Policies, and Processes in
the model. 8

CR15

TRM16
The trace model should be able to link Locations, Edges, Assets, Actors, Predicates, Policies, and Processes
in the attack trees generation and analysis back to the model. The trace model should be able to connect
visualised attack paths to the parameters generated during the analysis (di�culty, cost, time, probability).

CR16

TRM17
The trace model should be linked with the ANM as the main tool in creating the TRESPASS model and
help generate IDs for data imported into the tool or library elements imported into the model. CR17

TRM18 The trace model should generate unique Actor IDs for attacker profiles imported into the ANM. CR18

TRM19
The trace model should be able to provide logger for the knowledge base that stores original data
received and its associated metadata (timestamps, origins, version, etc). CR19

TRM20
The trace model should support leaf expansion in APLTool by linking Actors and Assets in the attack tree
with knowledge base data. The trace model should also further be able to link these Actors and Assets
with quantitative attack properties such as attack di�culty, skill level, or likelihood.

CR20

TRM21 See criterion of TRM20. CR20

TRM22
The trace model should be able to generate unique identification for attack patterns used in the
annotated attack trees.

CR22

TRM23
The trace model should enable linkage of quantitative properties resulting from the analysis of attack
trees (e.g. attack di�culties, cost of attack, etc.) to the original attack trees generated with Tree Maker
and visualised in ADTool.

CR23

TRM24
The trace model should be able to link nodes in the navigator map to the leaves of the attack tree as
visualised in the ADTool.

CR24

TRM25
The trace model should enable callback of any piece of data by recalling its identifier and show where it
shows up in the risk assessment process. CR25

TRM26 The trace model should support plaintext format input in the navigator map in the ANM. CR26

TRM27
The trace model should enable storage of the plaintext input in the navigator map in the ANM (in .txt
format).

CR27

TRM28
The trace model should be able to notify users based on push notifications of updates on external data
sources or automated data extraction tools (facilitated through the knowledge base) and prompt the user
whether to conduct a re-analysis or not.

CR28

TRM29
The trace model should be able to show di�erences across di�erent model components in terms of
TRESPASS concepts (e.g. Locations, Assets, Policies, etc.) and show the identifier of the di�erent elements
to enable easy comparison.

CR29

TRM30
The trace model should enable storage of analysis results and generate metadata that enables unique
identification of each analysis result (e.g. timestamp, owner, version, etc.) CR30

7According to D2.1.2, TRESPASS base model consists of base concepts, attack definitions, and attacker goals and profiles [191].
8According to D3.4.1, an attack is an act of policy invalidation which involves a Policy to be invalidated, the Actor who performs the attack, the
actions to perform, the Location in which the attack is carried out, and the Assets to be compromised in the attack. [185]. The same deliverable
also features descriptions of these components in XML format.
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Table 6.4 Design criteria (continued)

Requirement Design criterion/criteria Criterion
code

TRM31
The trace model should be able to show the di�erences across analyses in terms of quantitative
properties (e.g. di�culty, cost, time, likelihood). CR31

The current integration e�ort in TRESPASS includes placing the knowledge base as the ‘data center’ in TRESPASS,
meaning that a large part of the information system in TRESPASS will reside in the knowledge base [199]. Some of
the design criteria for the trace model can already be supported by this campaign.

6.1.6. Evaluation of requirements, assumptions, and design criteria
At this stage, we evaluate whether the outputs of the current process are still aligned. We follow the evaluation
procedures (plan, process, and product) as put forth by Verschuren & Hartog [213] by running checks on the following
items:

• Empirical validity, reliability, researcher independence and verifiability of the results that lead to the formula-
tion of Ru;

• Whether Rf covers G without any errors of omission or errors or commission;

• The logic of the combination of and the relations between Rf and Ru;

• The methodological guidelines in deriving Rf, and Ru and translating them to the various design criteria;

• Whether the assumptions are credible enough; and

• Whether the design criteria have been operationally defined, and whether they cover the requirements and
match the goals.

As mentioned early in this chapter, the formulation of requirements essentially involved three primary sources:
the goals as have been formulated in Chapter 5, parts of the interview results, and Use Cases of traceability-supported
TRESPASS . We trust that this was a manifestation of the triangulation principle which in turn ensured the empirical
validity and the reliability of the requirements. The empirical dimension was embodied in the interviews, in which
opinions of experts and researchers who have had hands-on experience with developing various parts of TRESPASS
were collected. This guaranteed a high level of relevance with our research. Researcher independence and verifiability
in deriving the requirements were iteratively examined by the research supervisor.

Another important aspect to evaluate is whether there is coherence between the functional requirements and the
goals. This is important since goals and functional requirements should form a goal-subgoal relationship to guarantee
a correct cascading process until the design idea is substantiated in the form of a final product. Common errors
at this phase include errors of commission (adding more than necessary) and errors of omission (leaving out the
necessary) [213]. We have tried to avoid the occurrence of these errors by systematically connecting each requirement
to its associated goal. This was also done to help the reader understand the links between the requirements and
the goals. For the same reason, we grouped relevant functional requirements and user requirements under their
common goal.

We also examine the contribution arguments, namely the logic behind every requirement and its underlying
assumption towards the fulfilment of the goal. At least one assumption exists for every functional requirement and
user requirements. Non-functional requirements are not accompanied with assumptions. The credibility of these
assumptions are once again scrutinised by the research supervisor. Lastly, operationalisation of design criteria are
done by specifying the tools and processes that would be involved in the e�ort of fulfilling a certain requirement.
This has been done by referring to both internal and public deliverables that describe the various processes TRESPASS.
We deliberately did not make the choice of expressing the design criteria in modalities or scores, because that would
make the design even more abstract. For instance, expressing the requirement to ‘enable linkage between X and Y ’
in numerical values would result in a vague design criteria. It would be more useful to decompose it into the tools
that are involved and the processes that contribute to the fulfilment of the requirement.
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6.2. Identifying available treatments
As TRESPASS is a state-of-the-art approach towards assessing socio-technical risks, we do not expect any readily
available treatments from other approaches that can be applied to TRESPASS to handle the need for traceability.
However, in this section we evaluate current approaches to handle traceability from various risk assessment methods.
To facilitate an apples-to-apples comparison, the reach of evaluation here is exclusively kept to tool-based approaches.
Readers should not expect to find discussion on OCTAVE or FAIR, as both of them are not tool-assisted and are fairly
driven by manual e�orts.

Perhaps the closest attempt to maintain traceability in a risk assessment process is manifested in CORAS trace
model. However, to begin with, CORAS does not have an explicit formulation of the idea of the traceability. Instead,
CORAS places heavy emphasis on the idea of change [117] and evolution [116]. Following our definition in Chapter
4, traceability is implicitly interpreted solely in its dynamic sense. To the best of our knowledge, the idea of
traceability in CORAS does not account for the static view. CORAS however extensively discusses dependencies [115],
which amounts to the documentation and reasoning of assumptions in the CORAS process. According to Solhaug
and Seehusen, establishing traceability with regards to changes in CORAS assisted by the trace model is done by
conducting the following activities [171]:

1. First iteration (initialisation): Conducting the initial risk analysis, constructing the target model (or the system
model) and the risk model, and compiling the trace model that captivates the relationship between the target
model and the risk model. These processes are captured in two core CORAS activities: establishing the context
and identifying risks; and

2. Continuous risk analysis: Capturing the changes in the context of the analysis and the target of analysis, and
identifying and documenting changes to the risk model as aftermath of the changes in the target of analysis.
These processes involve slightly modified CORAS activities: establishing the changed context and identifying
the changed risks.

The paper further explicates the highlights of the trace model-assisted approach to support traceability in CORAS
as follows [171]:

• It is based on international standards, namely ISO 31000 standard on risk management;

• It o�ers a complete package, ranging from processes and guidelines to the necessary tool support;

• It allows for on-the-fly modelling of changes;

• It facilitates di�erent languages for target modelling;

• It grants traceability between target model and risk model;

• It helps users to identify changes in the target of analysis speedily;

• It supports change-impacted risks in the target system;

• It can identify and solve inconsistencies in the analysis; and

• It enables rapid risk re-analysis.

The primary artefacts involved in this approach can be found in Figure 6.2. The rest of the CORAS process is
indi�erent with regards to the continuous risk analysis. Only the first two steps reflect the involvement of the trace
model in giving traceability a foothold in CORAS. The trace model itself serves to relate the elements of a generic
target model in CORAS to elements of the risk model. A trace model is formally defined as a set of pairs containing
an element of a risk model r and an element of the target model t (r,t).

Seehusen and Solhaug also mention other instances of tool-supported e�orts to model dependencies in risk
analysis [164], for example ProSecO, dependent CORAS, Rinforzando, and SOA Modelling Suite (SMS). ProSecO empha-
sises heavily on enterprise architectures as the basis of the risk analysis and peruses the dependencies of the system,
but not dependencies between the processes involved [88]. Our notion of traceability seeks to explore the latter (cf.
the definition given at the end of Chapter 4). Moreover, the approach is more qualitative and consequently does
not involve calculations of risk. Risk is rather only depicted in a bird’s eye view as the combination of either low,
medium, or high likelihood times impact. Dependent CORAS is more focused towards interdependencies between
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Figure 6.2: Primary artefacts in the CORAS traceability approach

Source: [171]

di�erent risk models. Our proposed trace model for TRESPASS contributes by providing an ambidextrous9 view on
traceability, encompassing both a static view (commonly known as dependencies) and a dynamic view (commonly
known as evolution or changes) of traceability in a risk assessment process.

6.3. Carrying out the design process
According to the interview results, an ideal representation of the trace model would take the form of a tool support.
However, the available time does not allow us to develop a fully mature tool support that is ready to be embedded
into TRESPASS toolchain. A more feasible solution is to specify the processes that the trace model would be able to
execute to fulfil its function and demonstrate how it would fit in within the already existing TRESPASS tools. The
goal of this section is to transparently show how design criteria (C ) can be translated into structural specifications
(S).

Because developing a tool support is out of the question for this thesis, we look at other options to extend
TRESPASS such that traceability can be supported. More possible forms of extension include language extension,
tool extension, and internal embeddings. These choices were consciously made by levering the existing features of
the integrated TRESPASS process, including:

1. TRESPASS has a data management process and requirements that can be used as touchstones [191]. These
processes/ requirements are, for instance:

Addition of metadata elements to support data elements during storage operation, especially control
metadata;

Extracted data should be worked into a database model which has a standard section (fixed) identification,
for example particular fields; and

Data consolidation requires the identification of the data source domain and the origin of each piece of
data.

The limiting part of these processes/requirements is that not all (control) metadata can be automatically
manufactured, especially when it comes to social data. A quick example is when the user relies on expert
judgement for a specific piece of data. The user will need to clearly identify the source of this data (Who
is the expert? Where is the data recorded? etc.) User e�ort is mandatory to have a comprehensive control
metadata.

2. The Attack Navigator Map (ANM) is positioned as the main user interface and central tool in the TRESPASS
toolchain. All the tools are integrated and accessible through the ANM [196]. TRESPASS model components
also work in terms of the ANM interface. Traceability can be supported by adding user-facing features into
the ANM (tool extension).

3. There are a few options to extend TRESPASS: tool support, language extension, and internal embeddings.
Some of the proposed approaches suggest extension through internal embeddings and language extension,
especially low-level embeddings (translating model extension to elements that exist in the original modelling
language) [189].

Another possible alternative is to have high-level embeddings in which the language is enlarged with new
constructs. However, there is a strong trade-o� that must be made. With low-level embeddings, the model
does not preserve any information. In turn, analyses and visualisations will not be able to work with them.

9An ambidextrous person is able to utilise both his/her left and right hand equally well.
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As with high-level embeddings, many changes have to be made including specification for semantic rules and
enhancement of model representations with new elements [189]. An example of this is to add new actions for
the Actors or add new properties to the objects. In our specifications, we utilise low-level embeddings with
the consideration that our specifications do not require further analyses and visualisations. What we propose
is to simply connect existing elements in the current modelling language to form a tighter bond between
processes.

4. The attack tree in TRESPASS has its own schema definition (adtree.xsdfrom ADTool), which allows explicit
reasoning [184]. Every node in the attack tree contains a string sub-element label which acts as a label for
the node. A number of specifications we outline involve modification of the label. Modification of label as
a string variable that allows parsing for identification of model elements is investigated further in Chapter 7.

5. Knowledge base is positioned as the central repository within the TRESPASS process that interacts with most
of the tools. This o�ers an advantage for storage of new data that come along with the specifications. For
consistency, we advise that every generated traceability-related information (metadata, label, timestamp etc.)
is stored altogether with the related instance (e.g. model persistence, TRESPASS Model File, Attack Tree, etc.).
More information will be available in D2.4.1 which extensively discusses the TRESPASS Information System.

6. TRESPASS uses XML as a common language for the tools to communicate with. This minimises the risk of
language incompatibility after addition of extensions.

We now run the attack scenarios depicted in Chapter 5 to exposit the processes that have to be executed by
the trace model in TRESPASS in order to establish traceability in the TRESPASS process. To do this, selected Use
Cases will be demonstrated to display the tasks that will have to be performed by the user. Whenever possible,
we show actual screen captures of the TRESPASS tools. Following the illustration of the processes, we can derive
the structural specifications of the trace model. Where applicable, we link the processes in the Use Cases to the
navigation metaphor or the service model as explained in D5.4.2 [199] to provide better context. There are four steps
involved in the service model as follows:

1. Satellite view

Creating an informal/semi-formal pictorial visualisation of the system of interest, accompanied with possible
attacker profiles. This is done through among others, LEGO modelling activity or other tangible modelling
interaction. In the integration diagram, this would correspond to the data collection stage.

2. Map

Transforming the satellite view representation into a map containing elements of the TRESPASS concepts, such
as Actors, Policies, and Locations. The map should also already able to depict the attackers’ formal properties,
such as the budget they have in hand to perform attacks. The integration diagram captures this stage in the
model creation stage.

3. Routes

Calculating the possible routes that the attacker might take in order to arrive at their ‘destination’ by making
use of TRESPASS analysis tools. The analysis stage and visualisation stage in the integration diagram are
covered in this stage.

4. Optimisation

Incorporating defensive measures into the initial map and re-running the analysis to examine the e�ectiveness
of countermeasures in the system. This would be an example of a dynamic risk assessment as laid out in
Chapter 4.

Readers should bear in mind that not all steps in the navigation metaphor can be explained in the Use Cases, as
every Use Case is intended to draw focus towards di�erent support capabilities of traceability. To help readers better
understand Scenario 1, we choose to combine Use Case 1 (Understanding Analysis Results) and Use Case 2 (Security
Investment) in order to demonstrate the static view functionalities of traceability. This choice was made because the
first five steps of both Use Cases are identical and therefore we only need to incorporate the latter halves. However
it is very likely that the Optimisation stage is excluded in this demonstration, as this concerns reanalysis which
would fit better in a dynamic view Use Case. We first explain Scenario 1 from Chapter 5 in the combined Use Case
while also drawing references from the navigation metaphor, and subsequently Scenario 2 in Use Case 3.
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6.3.1. Scenario 1 applied to Use Case 1 and 2
In this section, the steps describing how Use Case 1 can be carried out will be explained in detail. We also draw
references to actual TRESPASS tools and concepts.

The user opens the interface, which shows an emptymap of the organisation. The user inserts several
standard elements onto the map and draws the relevant connections. If an Archimate model already
exists, this may be used as a basis instead.
Before starting, we assume that there already exists a model of the organisation. In other words, the satellite
view representation has been already constructed through one of the many available modelling tools and processes
o�ered in TRESPASS [194]. This also means that the TRESPASS model is not spontaneously created from scratch in
the ANM. The integration of the modelling processes with the model creation stage in TRESPASS should be done by
considering several design criteria we have previously distinguished, namely CR7 and CR8. We proceed by giving
their specifications as follows.

• CR7: The trace model should support upload of the output of the non-formalised modelling tools,
such as ArgueSecure arguments10, pictures of LEGO models, and pictures of tangible models).

Specification: During the model creation in ANM, there should exist an additional option that enables
upload of attachments to allow users to enclose the results of the manual modelling process. This option
should be embedded within the sub-wizard11 Import, which currently only has two options: Import model
(to import an XML format model) and Import floorplan (to import the floorplan of the target of analysis). A
third option called Import manual model could be appended to this sub-wizard. The attachment should be
stored together with the TRESPASS model with which it is linked.

Example: Users can upload the spreadsheet containing the ArgueSecure arguments, for instance as
shown in Figure G.1 or a photo of the tangible modelling activity.

• CR8: The trace model should be able to especially identify elements of non-formalised model de-
velopment tools such as ArgueSecure (Assets), LEGO (rich picture of Actors, infrastructure, data, data
flow, and Locations) and the tangible modelling toolkit (Actor, Assets, Location, Access policy, and
Relationship) through tagging.

Specification: In the case of a picture attachment, ‘tagging’ is made possible by (right-)clicking on an
element of the picture and associating it with a specific TRESPASS model element (very similar to photo
tagging feature in social media platforms such as Facebook or Instagram). Upon import of the model through
the Import manual model option, user will be prompted to tag the picture as necessary. This can be done
ex-ante after all model elements in the TRESPASS model have been spawned. For ArgueSecure arguments (see
Appendix G.2, annotations could be made by inserting the ID and Name of Assets involved in the rightmost
column of the ArgueSecure template (again, after the TRESPASS model components have been generated so
that their id and label become known). In this case, modifications to the attachment should be a default
feature in the ANM (within the Import manual model sub-wizard). The attachments should also be stored
in the knowledge base, preferably with an automatically-generated file name that allows easy corresponding
to the TRESPASS model. This way, tracebility between the TRESPASS model and the results of the manual
modelling process can be established.

Example: An example of a tagged picture of the tangible model is given in Figure 6.3.

Results of such modelling activities may grow into a high-level model of the organisation as provided in Figure
5.3. After the high-level overview has been agreed upon, the model is transformed into a map of the organisation
in the ANM, wherein every elements involved and every relevant connections are included. This demarcates the
transition to creating the map from the satellite view. As of now, there is no o�cial document yet that visualises the
map view of the cloud case study. For solely illustration purposes, a preliminary map view of the model components
is shown in Figure 6.4. Readers should keep in mind that this is not the final version. The key takeaway from this
figure is that within the map, every possible connection should be included to be fed forward into calculation of the
routes.
10Interested readers may wish to get their hands on the first version of ArgueSecure at http://arguesecure.ewi.utwente.nl/login.
A stepwise guide to use it is available at https://github.com/hitandyrun/arguesecure-online. Ionita also discusses this in a
scientific paper [91].

11To maintain consistency with the terminologies used for the ANM, we use the term ‘wizard’ to describe an interactive walkthrough of the tool
during which the user receives guidance on how to complete the map [196]. The wizard is composed of di�erent sub-wizards with specific
functionalities. The list of sub-wizards is displayed in Appendix F

http://arguesecure.ewi.utwente.nl/login
https://github.com/hitandyrun/arguesecure-online
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Figure 6.3: Example of a tagged attachment

Source: modified from [92]

Figure 6.4 shows that there exist various types of connections, for example access (has_physical_access_to
and has_logical_access_to), working relationships and hierarchy (contracted_by and manager_of), or
containment (is_at and contained_in). This naturally depends a lot on the types of elements that are included
in the model. Note that the connections depicted here are limited to normal conditions. For example, of course
Mr. Big can also have logical access to the Laptop if he asks Sydney to provide one, but it is excluded here as Mr.
Big does not work with the Laptop on a daily basis. These kinds of assumptions are important to record, and the
third step shows how such decisions can be recorded for traceability purposes. The attachments uploaded should
be stored in the knowledge base along with the TRESPASS Model File instance.

The user clicks on the items to select the corresponding properties, which may consist of asset val-
ues, potential damage upon failure, access control mechanisms, and an estimation of their strength.
Default values can be used if information is unavailable.
After the map is constructed in the ANM, the user should decorate the entities with relevant parameters. An initial
suggestion of all the parameters that are attached to each entity is given in Figure 6.5. During the course of the
project development several decisions to simplify these parameters have been made. However, there exists no o�cial
documentation for this yet. Similar to Figure 6.4, this is shown solely for illustration purposes only and not to be
literally taken as the final version as the entities’ parameters in TRESPASS. Some parameters might not end up in the
final version of the entity description and there could be new parameters added in the final version.

Almost all of the components are equipped with the capability to store a unique id and a unique label. This is
of paramount importance in facilitating traceability. The unique id and label allow the system to keep track of each
entity as they travel along the TRESPASS process. We give examples for some of the components as follows. Other
examples can be found in Appendix G.

• actor

id: defender-big
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Figure 6.4: Map of ITL with relevant connections

Source: The TRESPASS project repository (modified)

label: Big

susceptibility_se12: High13

value_system14: N/A

age: 57

gender: Male

nationality: British

damage_reputation: Very high

personal_situation15: Unknown

• file

id: fileX

label: File X

value: $ 500,00016

size: 250 MB

damage_financial: $ 500,000

damage_reputation: Very high

• laptop

12This parameter denotes the susceptibility of the actor to a social engineering attack
13See assumptions of Scenario 1
14This parameter captures the possible values a person could have: for example being rule-abiding or would compromise corporate rules for
friendship, or being open to the highest ‘bidder’. Since it would be very complex to represent these kinds of values that a person could have,
the current development excludes this parameter.

15This parameter captures a situation that a person experiences right now, for example in need of money or having a relative in jail. Due to its
complexity, this parameter has been dropped from the current model.

16This is an estimation.
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Figure 6.5: Attributes and parameters of the TRESPASS model components

Source: The TRESPASS project repository

id: laptop-admin

label: laptop

value: $ 500,00017

portability: Limited18

OS: Windows 10

damage_financial: $ 500,000

damage_reputation: Very high

These parameters can be treated as data that can be used to support traceability. However, control metadata
can be added to install even greater level of traceability [191]. These metadata would reside within the data record
level, enabling the user to trace back how the value for each parameter has been derived. Revisiting the criteria
on data management (CR2, CR3, CR4, CR5, CR6, and CR19) from Table 6.4 brings us to the following yardstick for
structural specifications involving metadata:

• CR2: The trace model should support metadata of data type, its value, and its domain (e.g. technical
or social).

Specification: Additional metadata field to identify the type (data_type) and domain (data_domain)
of data can be added to relevant elements. As there are limited types of data, input to the data_domain field
could be provided in a dropdown menu style. However, it is advised to provide a free text field to indicate the
data_type field, as there could be endless possibilities to what the data type would be in di�erent elements.

17At the very minimum, as fileX resides in this laptop.
18This is a company laptop assigned to Sydney, and only Sydney has the rightful privilege of carrying it around.
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Example: As a running example, we will zoom into the susceptibility_se data embedded in
component actor. We incrementally add the metadata fields as we progress through the ensuant criteria.

susceptibility_se: High

data_domain: Social data

data_type: Experiment data

• CR3: The trace model must contain metadata elements used to classify data to allow identification of
the source data domain, creation and last updated owner, and from where each single piece of data
came.

Specification: Additional metadata fields to identify the source of data (data_source) that allows
free text input; owner of the data as well as its modifier (created_by and last_updated_by). The
created_by field should be non-modifiable, and the last_updated_by field should not overwrite the
previous entry to allow full tracking of edit history. If the TRESPASS toolchain allows association with a
unique user (through a unique username or login ID), the created_by and last_updated_by fields may
be filled in automatically. These metadata fields should be added to every data field that requires user input.

Example:

susceptibility_se: High

data_domain: Social data

data_type: Experiment data

data_source: Brighton experiment 16/09/2015

created_by: ethanitl19

last_updated_by: ethanitl

• CR4: The trace model should support (1) consolidation process of di�erent data types onto the
knowledge base and (2) transformation of data into the TRESPASS base model

Specification: Metadata of TRESPASS model components should be stored in local database, which is the
knowledge base, to later empower callback process from the analysis tools. This callback will help association
of model components in analysis process.

• CR5: The trace model should support data classification by providing data levels of measurement

Specification: Additional metadata field to indicate data aggregation level measurement_type, which
can contain any of the four measurement levels, nominal, ordinal, interval, or ratio. This metadata should be
automatically programmed to the relevant data field.

Example:

susceptibility_se: High

data_domain: Social data

data_type: Experiment data

data_source: Brighton experiment 16/09/2015

created_by: ethanitl

last_updated_by: ethanitl

measurement_type: Ordinal

• CR6: The trace model should support control metadata of creation and last updated timestamps and
status (Active, Inactive, Removed).

Specification: Additional non-modifiable metadata fields to indicate timestamp of creation created_on

(format: DD/MM/YYYY) and last_updated_on to indicate timestamp of saved modifications made (format:
DD/MM/YYYY). Higher granularity could be added by adding the exact hour (format: HH/MM/SS). The recorded
timestamp is the timestamp when the user saves an ongoing model creation process. It is important that
these two metadata fields are intertwined with the metadata fields created_by and last_updated_by to

19Ethan’s username in the TRESPASS system.
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answer both who and when questions. These metadata fields should be added to every data field that requires
user input. Additionally, a status field that informs the validity of the component data as a whole should
be added to every component, with three possible options to choose from: Active (the data is still valid and
contributes to the analysis), Inactive (the data is valid but irrelevant to the analysis), or Removed (the data is
no longer valid and used). The option Removed prevents the user from physically deleting obsolete data to
allow future reference when needed.

Example:

susceptibility_se: High

data_domain: Social data

data_type: Experiment data

data_source: Brighton experiment 16/09/2015

created_by: ethanitl

last_updated_by: ethanitl

measurement_type: Ordinal

created_on: 27/10/2015 15:17:29

last_updated_on: 30/11/2015 11:57:21

status: Active

• CR19: The trace model should be able to provide logger for the knowledge base that stores original
data received and its associated metadata (timestamps, origins, version, etc).

Specification: For every data imported into the knowledge base, there should be automatically generated
fields timestamp that indicates when the data was imported into the knowledge base, origin to allow the
source of the data to be identified, and version to show the current version of the data as well to allow
tracking should there be multiple versions of the same data expected.

Example: Suppose that the user wishes to look up vulnerabilities that might be present in his computer.
He seeks to find out whether his favourite browser, Firefox 20.0 and the subversion (SVN) software he
regularly uses have potentially harmful vulnerabilities. To do this, he uses the tool Software Checker (available
via https://trespass.itrust.lu/tools). The software works by means of installation in the machine
to be checked. It supports XML formatted output. It turns out that the browser su�ers from a number of High
severity vulnerabilities, as reported by CVE (Common Vulnerabilities & Exposures), while the SVN software has
relatively very few vulnerabilities. An excerpt of the finding is shown as follows.

< ? xml v e r s i on = " 1 . 0 " e n c o d i n g = " UTF−8 " ? >
< S o f t w a r e s >
< S o f t w a r e e x i s t = " t r u e " >
<name > f i r e f o x < / name >
< v e r s i o n > 2 0 . 0 < / v e r s i on >
< V u l n e r a b i l i t i e s >
<CVE CVE= " CVE −20 16 − 1 946 " s e v e r i t y = " H igh " / >
<CVE CVE= " CVE −20 16 − 1 935 " s e v e r i t y = " H i gh " / >
<CVE CVE= " CVE −20 1 6 − 1 9 3 1 " s e v e r i t y = " H i gh " / >
<CVE CVE= " CVE −20 16 − 1 930 " s e v e r i t y = " H igh " / >
<CVE CVE= " CVE − 20 1 6 − 1 5 2 1 " s e v e r i t y = " H igh " / >
.
.
.
< / V u l n e r a b i l i t i e s >
< / S o f t w a r e >
< S o f t w a r e e x i s t = " t r u e " >
<name > s u b v e r s i o n < / name >
< v e r s i on > 1 . 6 . 2 3 < / v e r s i o n >
< V u l n e r a b i l i t i e s >
<CVE CVE= " CVE −20 15 −3 187 " s e v e r i t y = " Medium " / >
<CVE CVE= " CVE −20 15 −025 1 " s e v e r i t y = " Medium " / >
<CVE CVE= " CVE−2015 −0248 " s e v e r i t y = " Medium " / >
< / V u l n e r a b i l i t i e s >
< / S o f t w a r e >
< / S o f t w a r e s >

https://trespass.itrust.lu/tools
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After the checking has been done, the user exports this finding to the knowledge base by in its XML format.
Upon import, the following metadata are spawned:

timestamp: 30/11/2015 14:00:39

origin: Software Checker

version: 1

Similar to the fields id and label, the non-automatically generated additional metadata fields above ought
to be set as mandatory fields to fill in whenever a user inserts a model component. One may regard this as an
implementation of techno-regulation20 [111]. By imposing such rules, we may move towards ‘traceability by design’
or ideally ‘traceability by default’. The information provided for each model component should be associated only
with the TRESPASS model that contains them, meaning that although the model elements can be obtained from
component palettes or Model Pattern Library, the system should prohibit multiple usage of an id and label. The
libraries/palettes should be configured such that they spawn fresh id everytime a new component is added. Similarly
at a higher level, the system should prohibit multiple assignment of the same model ID, although this setting should
already be configured (for example, by suggesting users to select Save As or to give warning for duplicating names).
These data should be stored in the knowledge base along with the TRESPASS model.

Moreover, the system makes it possible for the user to fabricate models using pre-defined templates and generic
model components from the available libraries, namely the Model Pattern Library (for model templates, such as a
sample model for a cloud company) and Entity Type Library (for generic entities, such as Actors). This is linked to
CR9 as described in Table 6.4, which can be decomposed to the following specification:

• CR9: The trace model should be able to identify model elements derived from libraries (template
and model elements from Model Pattern Library, attacker profiles from Attacker Profile Library, and
annotated attack trees from Attack Pattern Library)

Specification: Each template/pattern from library used in the creation of the TRESPASS model must be
easily identified, be it from the Model Pattern Library, Entity Type Library, or Attacker Profile Library. The
metadata should be generated automatically upon import to the ANM and could be denoted by either of these
fields: templatemodel, genericattacker, or genericentity, filled with Yes. The ANM should be able
to mark and store this ID as a metadata in the TRESPASS model. In case the user does not make use of any
pattern/template, this metadata should not be generated, making it easy to distinguish generic components
from custom-made components.

Example: Suppose to build the ITL model, the user utilises the pre-specified cloud company model in
the Model Pattern Library. Besides the unique ID assigned to the TRESPASS model by the user, a metadata
field templatemodel : Yes should be visible.

CR17 implies that the TRESPASS model should be able to generate unique IDs for data imported into the tool or
library elements imported into the model. The specification for CR9 already encompasses the latter. The following
specification concerns the first part of the criterion.

• CR17: The trace model should be linked with the ANM as the main tool in creating the TRESPASS
model and help generate IDs for data imported into the tool or library elements imported into the
model.

Specification: Each data used in the components of the TRESPASS model must have a specific data_ID.

Example:

susceptibility_se: High

data_ID: susceptibility-defender-big

data_domain: Social data

data_type: Experiment data

data_source: Brighton experiment 16/09/2015

created_by: ethanitl

last_updated_by: ethanitl

20Leenes defines techno-regulation as “deliberate employment of technology to regulate human behaviour”.
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measurement_type: Ordinal

created_on: 27/10/2015 15:17:29

last_updated_on: 30/11/2015 11:57:21

status: Active

Following the currently defined TRESPASS process, these metadata should be written in RDF statements (more
information will be available in the forthcoming D2.4.1). These metadata will be stored in the TRESPASS Model File
instance in the knowledge base and can be utilised by the knowledge base using the ’types’ call. This is important
because the TRESPASS Model File is required as input for the Tree Maker to generate the attack trees (using ’getData’
calls). We later show that the metadata data_ID will be extensively used in the attack trees.

The user answers a number of general questions about the organisation in survey style (e.g. organ-
isational culture). The answers are used to set properties of the items of the map, in particular the
people/employees.
Information from this step can help fill in missing fields for the actor information, such as personal_situation.
However, we skip this step as the information provided in the last step would already su�ce to illustrate the rest of
the Use Case.

The user inserts additional information regarding the model components in plaintext format (submenu ‘Com-
ments’ or something similar). This information could be the context of the organisation when the model was
created, the purpose of the analysis, important assumptions, components exclusion and inclusion decision,
etc.
At this point, the TRESPASS model is more or less finished, but upon closer inspection there might be additional
memos necessary to shed light on the context or other unwritten decisions leading to the finalisation of the model.
Not all components in the TRESPASS model can be traced back to the tagged manual model. It might also be the
case that clarifications need to be made at the components level, which demands extra explanation attached to the
nodes and edges. The trace model should provide this feature, as outlined in CR10. CR10 can be specified further
as follows:

• CR10: The trace model should be integrated with the ANM as the central tool in the model creation
stage and should support (1) insertion of generic comments for the model as a whole and (2) annotation
of the model’s nodes and edges for additional explanation.

Specification: Two additional features are needed to support this criterion. To enable the user to
comment on the model as a whole, a model-wide sub-wizard is essential. This additional sub-wizard could
be added to the ANM under the title Comments or something similar (see Figure 6.6). Under this sub-
wizard there could be categories of comments that the user wishes to add, for example Context, Purpose,
Assumptions, Abstraction Level, and Others. Under each subheading, a text field of arbitrary length is
provided.

The other essential feature is the ability to put comments into edges and nodes when needed, much like the
ability to add comments to a specific part of a manuscript in .pdf format in Adobe Acrobat Reader®. To add
comments, the user can simply right-click on the desired model nodes or edges, upon which a textbox will
appear and user can type notes in.

Example: In Figure 6.6 we show a superimposed screen capture of how the cloud model would look
like in the ANM, originally presented in D6.3.1 to demonstrate the prototype of the interface. In this doctored
screen capture, we add the additional sub-wizard Comments alongside other existing sub-wizards. We also
show an example of a node-level comment on the model itself.

Again, the comments are stored in the TRESPASS Model File instance in the knowledge base.

The user answers a number of general questions about the threat environment. The user can select
the attacker profiles of interest, and adapt these if necessary.
To incorporate attackers as Actors in the model, the user may choose one of these two avenues: choose from the
available 22 pre-defined threat agent profiles based on Threat Agent Risk Assessment (TARA) [151] using the Attacker
Profile Library and adjust the parameters as necessary, or manufacture a custom threat agent and add it to the
library. Here, we suppose that the user wishes to model Henry (the replacement for Cleo) in the model (see Section
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Figure 6.6: Sub-wizard Comments in Attack Navigator Map

source: modified from [196]

5.2). To do this, the user may select from the following plausible threat agent profiles: Thief21 or Vendor22 from the
library to represent Henry.

This step correlates with CR18, in which we intend to have unique actor IDs specifically for attacker profiles
to build linkage from the ANM to the Attacker Profile Library. Assuming that the profile Thief is selected, the
specification for this criterion would look like the following:

• CR18: The trace model should generate unique Actor IDs for attacker profiles imported into the ANM.

Specification: A parameter that denotes the unique ID for attacker should be defined. This is already
contained in the current set of parameters for attackers (id).

Example:

actor

id: attacker-henry

label: Henry

skill_burglar: None

skill_se: None

time: Days

budget: £50

motivation: Acquisition/Theft

risk appetite: High

genericattacker: Yes

21An “opportunistic individual with simple profit motive.” [151]
22A “business partner who seeks inside information for financial advantage over competitors.” [151]
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The user starts the analysis and selects one or more of the following results (1) A list of possible at-
tack scenarios, ordered by their risk; (2) A list of possible countermeasures, ordered by their cost-
effectiveness; or (3) A visualisation of the map, showing ‘the weakest links’, for example by increasing
their size, or changing their colour.
At this point the TRESPASS toolchain helps the user to transform the map into routes, showing possible attack paths
that the attacker may select from in order to successfully reach the goal.

It goes without saying that the majority of the design criteria we have devised concerns the process behind the
analysis stage. To better illustrate the processes that happen during this stage, we give a visualisation of Scenario
1 in the tool used to visualise attack trees, ADTool. We also annotate the likelihood of success for necessary steps.
Attack-defence trees are a formalism that allows attack generation in TRESPASS [185]. The visualisation and the
modelling language behind this attack-defence tree is given in Appendix G.23

We now begin to dissect criteria that are related to the analysis stage. In CR11, we formulate that each unique
piece of data generated during the analysis process should have an unique identification. The listing shown above
does not distinguish likelihoods between di�erent attack steps (identified by parameter domainId="ProbSucc1"

category="basic", which corresponds to the domain Probability of success in the ADTool). To improve this,
we propose the following specification for CR11:

• CR11: The trace model should allow unique identification for each unique piece of data.

Specification: Each unique piece of augmentation and annotation data must have a di�erent identifica-
tion, be it likelihood, time, or cost. In practice, this is the task of APLTool that performs callback of data from
the knowledge base. Having said this, we give an example using the APLTool.

Example: Based on the APLTool demo available in https://trespass.itrust.lu/tools, we gen-
erate the following example using the provided input data for the IPTV case study. This does not bother our
cloud case study that we have used so far, as the parameters shown (cost, di�culty, likelihood, and time)
would also be the same for attack steps in the cloud case study. The output file is given in the following
listing:

< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > im p e r s o n a t e somebody t r u s t e d by Ma r g r e t h e < / l a b e l >

< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > Imp e r s o n a t e c a r e r < / l a b e l >
< p a r ame t e r name= " c o s t − s u c c e s s − r a t i o " c l a s s = " nume r i c " >0 < / p a r ame t e r >
< p a r ame t e r name= " c o s t " c l a s s = " nume r i c " >0 < / p a r ame t e r >
< p a r ame t e r name= " d i f f i c u l t y " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name= " l i k e l i h o o d " c l a s s = " o r d i n a l " >V< / p a r ame t e r >
< p a r ame t e r name= " t ime " c l a s s = " o r d i n a l " >MT< / p a r ame t e r >
< / node >

< node r e f i n em e n t = " d i s j u n c t i v e " > < l a b e l > Imp e r s o n a t e IPTV t e c h n i c i a n < / l a b e l >
< p a r ame t e r name= " c o s t − s u c c e s s − r a t i o " c l a s s = " nume r i c " > 1 4 2 . 8 6 < / p a r ame t e r >
< p a r ame t e r name= " c o s t " c l a s s = " nume r i c " > 50 < / p a r ame t e r >
< p a r ame t e r name= " d i f f i c u l t y " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name= " l i k e l i h o o d " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name= " t ime " c l a s s = " o r d i n a l " >MT< / p a r ame t e r >
< / node >

< / node >

We propose to modify the identification of data by attaching the label of each node to its parameters,
with the goal of having the parameters uniquely connected to their labels. Our proposal works under the
assumption that label parsing is made available in APLTool, and therefore the labels embedded within the
parameter names can be identified.

< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > im p e r s o n a t e somebody t r u s t e d by Ma r g r e t h e < / l a b e l >

< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > Imp e r s o n a t e c a r e r < / l a b e l >
< p a r ame t e r name = \ t e x t b f { " c o s t − s u c c e s s − r a t i o _ I m p e r s o n a t e c a r e r " } c l a s s = " nume r i c " >0 < / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " c o s t _ I m p e r s o n a t e c a r e r " } c l a s s = " nume r i c " >0 < / p a r ame t e r >

23The TRESPASS socio-technical security modelling language (TPL) is explained in D1.3.3 [190]

https://trespass.itrust.lu/tools
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< p a r ame t e r name = \ t e x t b f { " d i f f i c u l t y _ I m p e r s o n a t e c a r e r " } c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " l i k e l i h o o d _ I m p e r s o n a t e c a r e r " } c l a s s = " o r d i n a l " >V< / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " t i m e _ I m p e r s o n a t e c a r e r " } c l a s s = " o r d i n a l " >MT< / p a r ame t e r >
< / node >

< node r e f i n em e n t = " d i s j u n c t i v e " > < l a b e l > Imp e r s o n a t e IPTV t e c h n i c i a n < / l a b e l >
< p a r ame t e r name= " c o s t − s u c c e s s − r a t i o _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " nume r i c " > 1 4 2 . 8 6 < / p a r ame t e r >
< p a r ame t e r name= " c o s t _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " nume r i c " > 50 < / p a r ame t e r >
< p a r ame t e r name= " d i f f i c u l t y _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name= " l i k e l i h o o d _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name= " t i m e _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " o r d i n a l " >MT< / p a r ame t e r >
< / node >

< / node >

We could also establish a robust link from the APLTool to the knowledge base data. Currently the APLTool can
be configured to perform ‘callback’ to the knowledge base (with the ’getAnnotations’ call). CR20 seeks to establish
this link by connecting data of Actors and Assets stored in the knowledge base to be called into the APLTool. We
specify this criterion as follows:

• CR20: The trace model should support leaf expansion in APLTool by linking Actors and Assets in the
attack tree with knowledge base data. The trace model should also further be able to link these Actors
and Assets with quantitative attack properties such as attack di�culty, skill level, or likelihood.

Specification: Part of this has already been exercised in the specification of CR11. We could enhance
this by linking Margrethe, IPTV technician, and carer as Actors stored in the knowledge base.

Example: In the knowledge base these actors would be declared as follows:

< a c t o r s >
< a c t o r i d = " M a r g r e t h e " >
< a t L o c a t i o n s > " Unknown " < / a t L o c a t i o n s >
< / a c t o r >

< a c t o r i d = " IPTV t e c h n i c i a n " >
< a t L o c a t i o n s > " Unknown " < / a t L o c a t i o n s >
< / a c t o r >

< a c t o r i d = " c a r e r " >
< a t L o c a t i o n s > " Unknown " < / a t L o c a t i o n s >
< / a c t o r >
< / a c t o r s >

The Actors shown in the listing of CR11 can be connected to the knowledge base data by parsing the node
labels in order to extract the actor id of the Actor from the declaration. This way, actors included in the
label are recognised as specific elements that have already been included in the TRESPASS model.

< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > im p e r s o n a t e somebody t r u s t e d by Ma r g r e t h e < / l a b e l >

< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > Imp e r s o n a t e c a r e r < / l a b e l >
< p a r ame t e r name = \ t e x t b f { " c o s t − s u c c e s s − r a t i o _ I m p e r s o n a t e c a r e r " } c l a s s = " nume r i c " >0 < / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " c o s t _ I m p e r s o n a t e c a r e r " } c l a s s = " nume r i c " >0 < / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " d i f f i c u l t y _ I m p e r s o n a t e c a r e r " } c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " l i k e l i h o o d _ I m p e r s o n a t e c a r e r " } c l a s s = " o r d i n a l " >V< / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " t i m e _ I m p e r s o n a t e c a r e r " } c l a s s = " o r d i n a l " >MT< / p a r ame t e r >
< / node >

< node r e f i n em e n t = " d i s j u n c t i v e " > < l a b e l > Imp e r s o n a t e IPTV t e c h n i c i a n < / l a b e l >
< p a r ame t e r name= " c o s t − s u c c e s s − r a t i o _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " nume r i c " > 1 4 2 . 8 6 < / p a r ame t e r >
< p a r ame t e r name= " c o s t _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " nume r i c " > 50 < / p a r ame t e r >
< p a r ame t e r name= " d i f f i c u l t y _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name= " l i k e l i h o o d _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name= " t i m e _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " o r d i n a l " >MT< / p a r ame t e r >
< / node >

< / node >
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To preserve consistency, we could also first assign a node_ID for each node, from which the parameter naming
would follow. This is what we aim to achieve with CR22.

• CR22: The trace model should be able to generate unique identification for attack patterns used in
the annotated attack trees.

Specification: For every node generated in the tool, there should be a unique node id. This would
happen in the APLTool. Naming could be done on an arbitrary basis to avoid confusion with numbers
(node001, node002, etc.)

Example:

< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > im p e r s o n a t e somebody t r u s t e d by Ma r g r e t h e < / l a b e l >
< node i d = " I m p e r s o n a t e t r u s t e d " >

< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > Imp e r s o n a t e c a r e r < / l a b e l >
< node i d = " I m p e r s o n a t e c a r e r " >
< p a r ame t e r name = \ t e x t b f { " c o s t − s u c c e s s − r a t i o _ I m p e r s o n a t e c a r e r " } c l a s s = " nume r i c " >0 < / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " c o s t _ I m p e r s o n a t e c a r e r " } c l a s s = " nume r i c " >0 < / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " d i f f i c u l t y _ I m p e r s o n a t e c a r e r " } c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " l i k e l i h o o d _ I m p e r s o n a t e c a r e r " } c l a s s = " o r d i n a l " >V< / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " t i m e _ I m p e r s o n a t e c a r e r " } c l a s s = " o r d i n a l " >MT< / p a r ame t e r >
< / node >

< node r e f i n em e n t = " d i s j u n c t i v e " > < l a b e l > Imp e r s o n a t e IPTV t e c h n i c i a n < / l a b e l >
< node i d = " I m p e r s o n a t e I P T V t e c h n i c i a n " >
< p a r ame t e r name= " c o s t − s u c c e s s − r a t i o _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " nume r i c " > 1 4 2 . 8 6 < / p a r ame t e r >
< p a r ame t e r name= " c o s t _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " nume r i c " > 50 < / p a r ame t e r >
< p a r ame t e r name= " d i f f i c u l t y _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name= " l i k e l i h o o d _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name= " t i m e _ I m p e r s o n a t e I P T V t e c h n i c i a n " c l a s s = " o r d i n a l " >MT< / p a r ame t e r >
< / node >

< / node >

This modification also contributes to the materialisation of CR23. Upon trying out the demo of Attack Tree
Analyzer in https://trespass.itrust.lu/tools, we noticed that the nodes and the a�liated parameters
previously defined in APLTool take on di�erent forms of representation. An excerpt of the input file is shown below:

# Imp e r s o n a t e IPTV t e c h n i c i a n
X 1 1 4 50 0 . 3 5 0 0 M MT

# Imp e r s o n a t e c a r e r
X 1 1 5 0 0 . 9 0 0 0 M MT

where x114 would correspond to the attack node that we have previously defined as ImpersonateIPTVtechnician.
It is also used in the representation of the formula used to analyse the attack tree. Furthermore, the parameters
do not come with explanation (although the user could make an educated guess of what they mean based on the
language used in APLTool). This inconsistency would cause confusion to the user and break the traceability chain.
We propose to rectify this by devising a specification for CR23 as follows:

• CR23: The trace model should enable linkage of quantitative properties resulting from the analysis
of attack trees (e.g. attack di�culties, cost of attack, etc.) to the original attack trees generated with
Tree Maker and visualised in ADTool.

Specification: The Attack Tree Analyzer should reuse node id and the a�liated parameter name

defined in APLTool.
Example:

# a t t a c k s t e p s
.
.
.
# Im p e r s o n a t e IPTV t e c h n i c i a n
I m p e r s o n a t e I P T V t e c h n i c i a n
c o s t _ I m p e r s o n a t e I P T V t e c h n i c i a n : 50

https://trespass.itrust.lu/tools
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l i k e l i h o o d _ I m p e r s o n a t e I P T V t e c h n i c i a n : 0 . 3 5
d umm y v a r i a b l e 1 _ I m p e r s o n a t e I P T V t e c h n i c i a n : 0
d ummy v a r i a b l e 2 _ I m p e r s o n a t e I P T V t e c h n i c i a n : 0
d i f f i c u l t y _ I m p e r s o n a t e I P T V t e c h n i c i a n : M
t i m e _ I m p e r s o n a t e I P T V t e c h n i c i a n : MT

# Imp e r s o n a t e c a r e r
I m p e r s o n a t e c a r e r
c o s t _ I m p e r s o n a t e c a r e r : 0
l i k e l i h o o d _ I m p e r s o n a t e c a r e r : 0 . 9 0
d ummy v a r i a b l e 1 _ I m p e r s o n a t e c a r e r : 0
d ummy v a r i a b l e 2 _ Im p e r s o n a t e c a r e r : 0
d i f f i c u l t y _ I m p e r s o n a t e c a r e r : M
t i m e _ I m p e r s o n a t e c a r e r : MT

Establishment of the node id aids the linkage between the visualisation of the results (navigator map) and the
attack trees, which is what we attempt to design through CR24.

• CR24: The trace model should be able to link nodes in the navigator map to the leaves of the attack
tree as visualised in the ADTool.

Specification: When visualisation results are shown, the user can hover over a specific node to under-
stand where it is coming from in terms of the attack tree. This is done by showing the node id.

On a related note, we also consider the storage of these parameters as formalised in CR12.

• CR12: The trace model should have a data staging area that stores parameters into a local persistence
data model.

Specification: To achieve CR12, the augmentation and annotation parameters that are generated by the
APLTool stem from the knowledge base through ’getAnnotations’call. When the node-specific parameters have
been generated, they are stored in the Attack Tree Augmented & Annotated instance in knowledge base.

The user selects the scenarios/attack trees to understand which components are linked to a specific scenar-
io/attack tree. Upon clicking on a certain leaf node, the model shows model components that are involved,
such as assets (annotated with their quantitative values), control mechanisms, and actors.
After the analysis process is finished, the user wants to deep dive into the corresponding results in order to
understand how the analysis results can be understood in terms of the model components built earlier. In complex
organisations with tens of actors and multiple layers of technologies involved, understanding such analysis results
may take a substantial amount of time. Although TRESPASS allows generation of ranking of most plausible threats
and attack paths, sometimes such system-generated ranking may seem counter-intuitive (especially to the C-suite)
and therefore deep understanding is needed, at least to explain why the analysis results show attack paths X, Y,
and Z are shown to be the most prominent and not A, B, C as the CEO had expected. Traceability towards (1)
the model components involved and (2) the parameters attached will seamlessly help the user make sense of the
analysis results.

We consider the need for the trace model to support such activities in CR15, CR16, and CR25. Dissection of
these criteria into specifications is outlined as follows:

• CR15: The trace model should support XML format as the main format used in TRESPASS model and
attack trees. It should be able to identify Locations, Edges, Assets, Actors, Predicates, Policies, and
Processes in the model.

Specification: Part of this is already demonstrated in CR11, in which we show traceability can be infused
at the node-level in XML format. However, we also need to embed components in the language of the
attack-defence tree.

Example: Examples for how <assets> and <actors> can be embedded into the attack representation
in XML will be presented using an excerpt of the attack-defence tree of Scenario 1.

< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Ga in a c c e s s t o l a p t o p < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Ge t t empo r a r y badge < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > S p o o f B i g < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 3 5 < / p a r ame t e r >
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From the above excerpt we see that the laptop and the temporary badge are not identified as <assets>, and
Big himself is not considered an <actor>. To link these components, naturally they need to be declared first
(laptop and temporary badge in <assets> and Big in <actors>) in the TRESPASS model. The declaration
would be shown as follows:

< l o c a t i o n s >
< l o c a t i o n i d = " R o om I n t e r n a l " domain = " p h y s i c a l " / >
< l o c a t i o n i d = " O u t s i d e " domain = " p h y s i c a l " / >

< / l o c a t i o n s >
< a s s e t s >

< i t em name = " L ap t o p " i d = " l a p t o p −admin " >
< a t L o c a t i o n s > " R o om I n t e r n a l " < / a t L o c a t i o n s >

< \ i t em >
< i t em name = " Tempora r y Badge " i d = " badge − t empo r a r y " >

< a t L o c a t i o n s > " R o om I n t e r n a l " < / a t L o c a t i o n s >
< / i t em >

< / a s s e t s >
< a c t o r s >

< a c t o r i d = " d e f e n d e r − b i g " >
< a t L o c a t i o n s > " O u t s i d e " < / a t L o c a t i o n s >

< / a c t o r >
< / a c t o r s >

Although this example was taken from an ADTool file that is not linked with any TRESPASS model, in reality
the TRESPASS toolchain currently does not support such linkage. The reworked language would look like the
following:

< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Ga in a c c e s s t o l a p t o p −admin < / l a b e l >
< node i d = " l a p t o p a c c e s s " >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Ge t badge − t empo r a r y < / l a b e l >
< node i d = " g e t t emp o r a r y b a d g e " >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > S p o o f d e f e n d e r −b i g < / l a b e l >
< node i d = " s p o o f b i g " >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 3 5 < / p a r ame t e r >

• CR16: The trace model should be able to link Locations, Edges, Assets, Actors, Predicates, Policies,
and Processes in the attack trees generation and analysis back to the model. The trace model should
be able to connect visualised attack paths to the parameters generated during the analysis (di�culty,
cost, time, probability).

Specification: The principle behind this criterion has already been demonstrated in the specification of
CR15. However, it is equally important that this linkage can be explored at the user interface. We envisage
this as the ability to click on the components in a leaf of an attack-defence tree and show the underlying
(meta)data associated with them during analysis stage.

Example:

A beneficial feature that could help the user understand the analysis results in a holistic way is the ability to
search and see how a specific entity/data shows up in the entire TRESPASS process. A prerequisite of this feature is
to have an entity uniformly represented throughout the whole TRESPASS process. The specifications we have elicited
thus far support such uniform representation, enabling seamless ‘callback’ of any piece of data specified as follows:

• CR25: The trace model should enable callback of any piece of data by recalling its identifier and show
where it shows up in the risk assessment process.

Specification: In the interface that shows the analysis results to user, a feature that allows global
searching (similar to a search bar) is enabled. The user can type in a specific entity according to its unique
ID and the result will show the locations in which the specific entity is used during the entire process.

Example: Suppose that the user wants to look up where Mr.Big shows up in the process. He types in
id: defender-big in the search bar, and the following result will show up:

id = "defender-big" appears in:
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location id = "Outside"

node id = "spoofbig"

(and other places in the attack-defence tree.)

The user annotates explanations of security decisions next to the analysis results in plaintext format. For
example, the user can type in one ormore security decisions that will bemade in the next threemonths (or any
time period) which corresponds to preventing a specific attack step/scenario. This explicitly shows couplings
of decisions and the danger to be mitigated. Alternatively, the user can also provide a general list of possible
countermeasures, among which the user selects a few to be applied within the next six months (or any time
period).
After the user has arrived at a complete understanding of the analysis results and has communicated these results
to relevant parties, the logical next step that would be taken by the organisation is to act upon these results. This
trickles down to preventing possible attacks, translated into deciding upon appropriate security investments for a
particular time period. As we have explained in Chapter 1, these decisions have to be carefully documented as future
references might be necessary in case unexpected events occur, or simply for periodical control. A feature for this
purpose must be assembled. The pertinent criteria for this purpose are CR26 and CR27, and their specifications are
posed as follows.

• CR26: The trace model should support plaintext format input in the navigator map in the ANM.

Specification: For this criterion, we envisage a very similar feature to the one specified for CR10. Within
the user interface environment of the navigator map, the user is allowed to collate comments on a specific
attack path, or compose a general comment for the whole navigator map. However, we do not yet have access
to visualise how the final interface would look like, but it would look almost identical to the example for
CR10. A textbox would appear upon clicking on a node, and a sub-wizard for general comments (Comments)

Example: Suppose that based on the results, the organisation wants to focus on heightening the
employees’ overall awareness by deploying an awareness training program in the next 6 months. The rationale
behind this is the high likelihood of social-engineering based attack paths. The user can type this in either
separately at any attack paths that correspond with elements of social engineering attacks, or insert this in
the Comments sub-wizard. Details may also be filled in, such as next steps to be taken, project champion to
be held in charge for the deployment of the program, and next cycle to control the decision.24

• CR27: The trace model should enable storage of the plaintext input in the navigator map in the ANM
(in .txt format).

Specification: To enable easy reference, the collated comments should be stored in .txt format altogether
with the visualisation results. Whenever the user opens the saved visualisation results, the comments will still
be incorporated (both the node-level and the general comments).

24Requirements regarding reminders for scheduled analysis at certain intervals have been discussed in D6.2.2 [195].
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Ideally these information should be stored altogether with the visualisation results. However, we do not have
any information yet whether the visualisation results shall be treated as a separate instance - which would solve
the storage problem were it true. Judging from the current development of the TRESPASS Information System, we
propose to store these information along with the Analysis Results instances.

Themodel can be saved for future references or adjustments.
This step is self-explanatory.

6.3.2. Scenario 2 applied to Use Case 3
To articulate how support for traceability can also help in coping with organisational dynamics, we now demonstrate
Scenario 2 (see Section 5.2.3) in a piecemeal approach to Use Case 3. The case will still revolve around ITL, only
modified with the changes we have described in Scenario 2. The goal of this explanation is to devise specifications
of criteria pertaining to the dynamic view of traceability, namely CR28 up to CR31.

The user receives push notifications from one of the available data extraction tools or requests automated
data extraction. The push notifications inform the user that there have been updates in the data based on
changes detected by the input tools (see Step 3).
The user receives a push notification from CVE via Software Checker, mentioning that a number of high severity
vulnerabilities have surged. Remember that because the user has installed the Software Checker that is connected
to the internal network, Software Checker can regularly verify the vulnerability state of the software used.25. Within
the trace model, this is governed by CR28.

• CR28: The trace model should be able to notify users based on push notifications of updates on
external data sources or automated data extraction tools (facilitated through the knowledge base) and
prompt the user whether to conduct a re-analysis or not.

Specification: All data-flowing tools connected to the knowledge base should be able to generate
notifications on important updates, including the Attacker Profile Library (via ANM), the Entity Type Library (via
ANM), online vulnerability databases (via Software Checker), or technical data (from virtualised environment
data extraction tools). These notifications should not be bound to a regular interval, but rather spontaneous
whenever new updates are available.

Example:

The user opens the file containing the model used in the previous assessment. The file also contains
the previous analysis results.
The user revisits the results of the most recent risk assessment activity (as presented in Use Case 1 and 2). The file
contains the TRESPASS model as well as the analysis results and the visualisations. The user prepares to modify
the TRESPASS model to represent changes that were informed to him automatically, and changes that happen in the
physical realm and need to be translated into the model.

25more info is available at https://www.itrust.lu/wp-content/uploads/2014/07/products_software_checker_flyer.pdf

https://www.itrust.lu/wp-content/uploads/2014/07/products_software_checker_flyer.pdf
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Following up on the push notifications, the user adapts the model where needed to represent the
changes observed, bymoving, deleting, or adding elements and changing properties.
The user adapts the model from the previous analysis. There are three major changes made, two of them directly
concerning the model:

1. The newly unearthed vulnerabilities are incorporated into the knowledge base, although this is done automat-
ically;

2. The value of fileX is changed to $ 600,000 (increased by 20%); and

3. A new actor is added to the organisation (Liam).

The updated data fields look as follows:
file

id: fileX
label: File X
value: $ 600,000
size: 250 MB
damage_financial: $ 600,000
damage_reputation: Very high

The user has to be aware that the damage_financial will also have to be changed to reflect this new asset
value. Under value, the metadata should look as follows. The metadata for damage_financial will also reflect
an update.

value: $ 600,000
data_ID: value-fileX
data_domain: Technical data
data_type: Asset value
data_source: Estimation from trading department
created_by: ethanitl
last_updated_by: ethanitl
measurement_type: Ratio
created_on: 27/10/2015 15:48:11
last_updated_on: 15/01/2016 09:42:43
status: Active

Finally, the user has to update every estimated value that is based on the the estimated value of fileX, for
example the value of the Laptop, as well as damage_financial of Sydney’s account, the Laptop, and VM1. The
next important update is the creation of new Actor, Liam.

actor

id: defender-liam
label: Liam
susceptibility_se: Low
value_system: N/A
age: 28
gender: Male
nationality: British
damage_reputation: Low
personal_situation: Unknown

The model of the organisation also changes based on the addition of Liam, which is presented in Appendix G.4.
Although Liam is hired as an administrator, he is not yet granted full privilege to the cloud infrastructure during
his first three months of training. Such notes that concern important modelling decisions can be inserted in the
general comments sub-wizard (see Figure 6.6). The user can also insert a reminder to rerun the analysis once Liam
is granted full access to the organisation’s IT infrastructure.
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Alerts will be issued to the user when important updates have been made, or when user action is re-
quired to assist in the updates.
The user has altered the model according to the changes. He would like to save the new model, but the trace model
has noticed some changes made to the model. This is a specification of CR29.

• CR29: The trace model should be able to show di�erences across di�erent model components in
terms of TRESPASS concepts (e.g. Locations, Assets, Policies, etc.) and show the identifier of the
di�erent elements to enable easy comparison.

Specification: A notification to confirm changes made to the model appears when the save model
command is triggered. The changes are shown in terms of their ID or Label to help easy identification.
Previous values (if available) are also shown to aid easy comparison.

Example:

The user re-runs the analysis to identify any differences in the analysis results given the new condi-
tions.
If all changes are accepted by the user, then he can proceed by rerunning the analysis to compare how the changes
a�ect the risk posture of the organisation. We attempt to achieve this through CR30.

• CR30: The trace model should enable storage of analysis results and generate metadata that enables
unique identification of each analysis result (e.g. timestamp, owner, version, etc.)

Specification: The analysis results from di�erent models should be uniquely tied to their respective
models. This could be done by means of metadata that establishes the timestamp (when the analysis was run
and saved), ownership (who ran the analysis), or the version (which of the analyses is the most up-to-date).
The easiest way to achieve this is to link the analysis results to the name of the file that contains the model,
as two models cannot co-exist under the same name. Versioning works by the fact that the new analysis is
based on an updated version of the old model.

Example: Suppose that for consistency reasons, the previous analysis was named ‘ITL November 2015’
and the current analysis is named ‘ITL January 2016’. To easily identify which analysis results belong to which
model, metadata such as given as follows can be generated:

Filename: ITL November 2015

timestamp: 30/11/2015 16:37:22

owner: ethanitl

version: 1

Filename: ITL January 2016

timestamp: 15/01/2016 10:25:49

owner: ethanitl

version: 2
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Alerts are issuedwhen changes in the underlying data lead to significant changes in risk.
The user receives an alert mentioning that the changes generated a significant di�erence in risk. This is achieved
through a side-by-side comparison and represented through CR31.

• CR31: The trace model should be able to show the di�erences across analyses in terms of quantitative
properties (e.g. di�culty, cost, time, likelihood).

Specification: Results from previous analysis and the current analysis can be shown side-by-side,
enabling easy comparison. The user can select which files and what type of results he wishes to compare.

Example:
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Themodel can be saved for future references or adjustments.
This step is self-explanatory.

6.3.3. Summary of specifications
We have addressed design criteria that needed to be further extracted into structural specifications. These are criteria
derived from functional requirements and user requirements. Design criteria of non-functional requirements (CR1,
CR13, and CR14) have not been considered in the Use Cases, but will be given a small portion for discussion here.
The specifications are summarised in Table 6.5.

Table 6.5: Summary of specifications

Criterion Specification Code

CR2 Metadata data_domain and data_type for model components. SP2

CR3 Metadata data_source, created_by, and last_updated_by for model components. SP3

CR4 Storage of model components metadata in knowledge base. SP4

CR5 Metadata measurement_type for model components. SP5

CR6 Metadata created_on, last_updated_on, and status for model components. SP6

CR7 Functionality to import manual model during model creation. SP7

CR8 Functionality to tag pictures during model creation. SP8

CR9
Metadata templatemodel, genericattacker, or genericentity for generic elements or
templates. SP9

CR10
Sub-wizard Comments during model creation and functionality to add comments to model
components. SP10

CR11 Unique label for parameters in APLTool. SP11

CR12 Parameters for augmentation and annotation are pushed back to the knowledge back for storage. SP12

CR15 Linkage of model components in XML format to attack tree nodes. SP15

CR16 Functionality to show metadata fields of model components in attack tree nodes. SP16

CR17 Metadata data_id for model components. SP17

CR18 Metadata id for attacker profiles. SP18

CR19 Metadata timestamp, origin, and version for data imported into the knowledge base. SP19

CR20 Linkage of Actors or Assets to unique parameter labels in APLTool. SP20

CR22 Metadata node id for nodes generated in APLTool. SP22

CR23 Linkage of parameter name defined in APLTool to analysis tools. SP23

CR24 Functionality to show node id in visualisation results. SP24

CR25 Functionality for global search of entity. SP25

CR26
Sub-wizard Comments in visualisation interface for general comments and functionality to attach
comments to individual nodes visualised.

SP26

CR27 Storage of comments in navigator map in .txt format. SP27

CR28 Push notifications of updates from external data sources or automated data extraction tools. SP28

CR29 Functionality to generate summary of changes made to the model. SP29

CR30 Metadata timestamp, owner, and version for analysis results. SP30

CR31 Functionality for comparison of di�erent analysis results file. SP31

CR1 and CR13 concern the implementation of data management process in TRESPASS for the trace model, which
is a principle in itself within Work Package 2 on data management [191]. The data management process essentially
consists of two main processes: data transformation and data manipulation [191]. Within data transformation, two
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activities exist: data mapping and data transformation. We proposed to connect di�erent data schemas through
creation of several metadata fields, as shown in the specification for CR2, CR3, CR5, CR9, and CR17. Such metadata
fields, created early during model creation phase, will help form seamless connection between processes. For data
manipulation, we have proposed to support data input module by providing logger (CR6 and CR19) whenever new
data are being stored. Moreover, we also tried to build data query capability through the trace model (CR25). In sum,
the core of the specifications mainly revolves around TRESPASS data management process. With regards to CR14, we
have repeatedly shown through the examples that the trace model works on the basis of the TRESPASS base model.
Citing D2.1.2, the base model is required to represent location, actor, behaviour data, and social vulnerabilities [191].
Di�erent examples of the specification have shown how the trace model works by utilising TRESPASS concepts
instead of creating new concepts, by tinkering with the metadata behind them.

To evaluate, we acknowledge a few implementation challenges in substantiating the specifications, including:

• Risk assessment process will take more time due to completion of metadata fields;

• The file size of the results could be large due to all attachments and added metadata;

• Limitation of the artificial language (XML). It might be the case that the adaptation we propose are not
implementable; and

• Compatibility between tools, albeit the common language they share.

To tackle the first challenge, we suggest automating the completion of the metadata fields whenever possible.
The second challenge seems to be inevitable. A trade-o� between compactness and complete traceability is present,
and it is up to the user to establish the granularity of the traceability. He could, for instance, disregard attachments
of manual modelling to save space. The third challenge could be combated by reconfiguring the data XML schema
that has been defined as deemed necessary. Some elements (elements, attributes, types, or groups) might need
reworking to accommodate a valid structure, valid data content, and default relationships between types of XML
data [191]. Finally, compatibility between tools are not inherently a traceability problem, but the e�ort to constitute
traceability might have impacts on tool compatibility. Extra attention must be devoted to solving such potential
issues, especially during tool integration tasks.

6.4. Evaluation
In this section, we evaluate the design process as a whole, starting with how we process the requirements all the
way to arriving at specifications. In whole, this includes a separate test of su�ciency for:

1. The goals;

2. The requirements, the assumptions, and the specifications; and

3. The relationship between (1) and (2).

Point (1) has been covered in Section 5.1.4, and parts of point (2) in Section 6.1.6. This section then extends
the evaluation to include the specifications and point (3). According to Verschuren and Hartog, evaluating speci-
fications take three dimensions: plan (evaluating possible structural alternatives), process (methodological check of
specifications), and product (checking compliance with design criteria and the adequacy of the specifications to feed
forward subsequent stages) [213]. We begin by looking at structural alternatives. We believe that there are no better
structural alternatives, because what we have proposed are based on currently available processes and best practices
in TRESPASS. Whenever possible, we align these structural specifications with actual requirements already devised in
TRESPASS within various work packages. A complete structural alternative - for example one using a totally di�erent
modelling language - would demand a complete redesign of the process, and would very likely render three and
half years worth of progress useless. In other words, we considered ‘infrastructural circumstances’ [213] by making
our proposed specifications adjustable to current TRESPASS processes. We believe such choices would not receive
much resistance from stakeholders of the project, as opposed to a completely ‘destructive’ structural alternative.

Moving on to process evaluation of the specifications, we now look at how we have arrived at the specifications.
As demonstrated with the Use Cases, we formulated the specifications based on possible interaction between the
user and the system to achieve a certain goal. This means that the specifications that we have created will not exist
in vain. A point we have repeatedly alluded to is that traceability is a support for the activities carried out using
TRESPASS. With this end in mind, the specifications we have outlined exist for one reason: to support the user with
achieving their goal of using TRESPASS. More importantly, we also align this with the navigation metaphor and the
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service model. This ultimately implies that the traceability support would not disrupt interactions between a client
and the consultants but would render them more meaningful.

Finally, the hierarchical cascade from design criteria to structural specifications guarantees that the specifications
comply with the criteria they are attached to. This way, we reduced the risk of committing both under-specifying
and over-specifying. Naturally non-functional requirements were not specified further. Although we do not consider
building a prototype for this thesis, we believe the examples we provided for the specifications can provide enough
guidelines were they to be translated into a tool support.

Now we peruse the relationship between (1) and (2) by assessing the fitness of these aspects. As (1) and (2) should
form a goal-sub goal relationship, point (3) can then be evaluated by referring to three facets [213]:

1. Are lower demands in the hierarchy adequate to achieve the next higher demand?;

2. Do lower demands achieve more than intended?; and

3. Are the sub goals logically consistent with the goals?

We believe all three aspects are already satisfied. Our approach of closely decomposing the ‘higher’ demands
prevents the lower demands from sidetracking and achieving ‘non-goals’. E�ectiveness is achieved by having one
specification for each criterion, and one criterion for each requirement. This way, we ensure that implementation
of a specification will ultimately contribute to the requirement linked to it. Given adequate and suitable resources,
translating these relationship into a prototype is a feasible option. However, we are constrained with the closely
approaching project deadline which prevents us from doing so.

The relationship between goals, requirements, criteria, and specifications is summarised in Figure 6.7. In
Chapter 7 we shall investigate whether the requirements, criteria, and specifications can satisfy the goals, through a
single-case mechanism experiment.
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Figure 6.7: Relationship between goals, requirements, design criteria, and structural specifications



7
Treatment validation

This chapter closes the design science cycle we have started in Chapter 5. The main aim of this chapter is to validate
the trace model that has been designed, with two goals in mind: to see whether the trace model has fulfilled its
every requirement and to study its behaviour in a di�erent context from the one in which it was designed. As
explained earlier in Chapter 1, the term validation refers to both verification of requirements satisfaction and testing
in a di�erent context. We first present the results from the verification sessions with the experts and then explain
the case study for the testing, followed by the results of the single-case mechanism experiment according to the
protocol. We conclude the chapter by listing the validated specifications based on verification with experts and
single-case mechanism experiment.

7.1. Expert opinion
As mentioned in Section 3.2.3, the focus of verification with experts is drawn towards evaluating the opportunities
for implementation and whether the trace model successfully fulfilled its requirements. To achieve this, we contacted
the experts that were involved in the semi-structured interviews and set up individual verification sessions. During
the sessions, we presented the current design and exchanged views on how it currently stands. Notwithstanding
the fact that not all experts were available for such sessions, we ensured that each requirement and design criterion
received attention. Each verification session is unique; we focused on di�erent requirements based on the expert’s
concerns and suggestions during the semi-structured interview. We also consider their expertise and their respective
roles within the project.

The discussions were centred around practicality issues, namely how the design criteria could be implemented
(given adequate resources) and how the current technical specifications (e.g. language of the tools, data storage
arrangements) could support implementation (and what necessary adjustments would need to be made). In total,
eight experts participated in the verification sessions, namely:

• Christian Probst (Technical University of Denmark/DTU);

• Axel Tanner (IBM Research Zürich/IBM);

• Frederic Brodbeck (Lust/LUST);

• Wolter Pieters (Delft University of Technology/TUD);

• Margaret Ford (Consult Hyperion/CHYP);

• Lorena Montoya (University of Twente/UT);

• Dan Ionita (UT); and

• Olga Gadyatskaya (University of Luxembourg/UL).

Some of the discussion touched upon very technical details, such as how the information system is built, how
the logic for the knowledge base is ordered, and other issues. We also learned that some of our specifications have
actually been implemented. Nevertheless, discussions with a bird eye’s view on the overall process also existed.

91
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This provides us balanced inputs on the feasibility of the implementation for the trace model. As is the case with
semi-structured interviews, transcripts are not included for confidentiality reasons. In the subsequent sections, we
distinguish the opinions for specifications of static view goals requirements (G1.1 up to G.1.5) and the specifications
of dynamic view goal requirements (G2.1) for easy comprehension. Because the discussion revolves a lot around
TRESPASS Information System, we advise the reader to start with an overview of the TRESPASS Information System,
shown in Figure 7.1.

Figure 7.1: Overview of the TRESPASS Information System

Source: [200]

7.1.1. Opinions on the specifications of static view goals requirements
G1.1
We begin by zooming into the specifications listed under G1.1. This goal states that the trace model should enable
users to trace data used in analysis back to the respective data sources. During the verification sessions, the
specifications on metadata (SP2, SP3, SP4, SP5, and SP6) were grouped under one cluster. An expert especially
saw this as a worthwhile feature to register expert opinions, which is one of the main sources of social data in
TRESPASS . There were also suggestions to provide additional metadata for recording the date of data collection
activity (for SP3) and also data aggregation level (SP5) to indicate the level of granularity within which the data was
collected. According to experts of the information system, these metadata entries can be inserted as N3 types which
allows arbitrary input. Configuration of data types in the knowledge base essentially allows multiple files for call
operations, allowing as many input files as needed. If needed, the social engineering probability could be separated in
an independent file (not in a domain specific file as currently set up). The parameter susceptibility_se shown
in the example in Chapter 6 exists under the name soc_eng_probability in the knowledge base. A text editor
interface would have to be created for metadata fields that require manual input, and it was also advised that they
come with necessary background information and explanations of the possible values (e.g. measurement_type,
with explanation on di�erent types of scales.)

G1.2
G1.2 requires that model components included in the TRESPASS model can be traced back to the modelling decisions,
which often occur manually. SP7 and SP8 both deal with the ability to upload the manual model leading to the
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TRESPASS model and annotate them with the ID of the model components. The experts agreed that this is a
potentially beneficial feature which could be supported by an intuitive user interface and API calls. They were also
leaning towards the possibility of having the model components declared through the tagging activity, rather than
doing an ex-ante approach of first building the TRESPASS model then returning to the attachment for tagging (cf.
Section 6.3.1). The implementability is however yet to be explored (e.g. how to connect the tagging process with the
model building process). An expert inquired the possibility of uploading the meeting notes (without the need for
tagging them), which we think would be possible. The TRESPASS Model File instance is seen as a fitting location to
store these attachments and tags.

SP9 aims to identify generic model components (library templates) explicitly. It was advised that instead of
only providing Yes as a value, two more values should exist: No to identify custom-made components added by
the user, and Modified to distinguish customised template components. Similar to the metadata specifications in
G1.1, the metadata to identify generic model templates/components could be stored in another N3 file (that stores
all libraries’ data) and called during the data type call. Finally, SP10 mandates that users should be able to append
both node-level comments and generic comments to the TRESPASS model. A concern was raised with respect to the
decision to provide free text input versus a structured input with specified headings. The rationale to opt for more
structured input format (especially in the general comments) would depend on how often the user would examine
the comments. There is risk of overusing free text, although it is argued that this would be more usable from the
user’s perspective. Implementation of this specification should focus on developing the user interface (e.g. creation
of the sub-wizard) and back-end call to knowledge base. An expert argued that this should be an optional thing
instead of a mandatory step before running the analysis, to allow a quick scan without having to provide extensive
comments.

A noteworthy observation is that di�ering opinions were raised with regards to the storage location of the
comments. Some experts argued that conceptually the comments should be persisted in the same set of files in
which the model components are stored. For example, a comment on an actor should be stored in the N3 file of the
parameters. Although theoretically both types of commments can be stored in the TRESPASS Model File instance, the
parties responsible for maintaining the knowledge base would prefer not to flood the TRESPASS Model File instance
with information that do not contribute to generation of the attack tree (such as these comments). A solution to
this would be to devise a new container for storage purposes.

G1.3
G1.3 refers to the ability to pinpoint data throughout the TRESPASS process, which is decomposed into SP11. There
have been di�erent opinions regarding how SP11 should be substantiated. One opinion voiced the need to connect
the parameters within an annotated attack tree node with its label: similar to how we specify SP11. However, a
suggestion to improve the label format was given by proposing not to have strings as labels to avoid conflicting
names, but to use a structured alphanumeric format (e.g. APL001 for APLTool). Consequently its parameters would
look like cost_APL001, difficulty_APL001 and so forth. This could be achieved by creating templates to assign
IDs with the help of XSLT (eXtensible Stylesheet Language Transformations) to transform the XML files. Another
opinion suggested a form of complex searching mechanism and not complicate the indexing of the parameters, for
the reason that the parameters are already implicitly contained in a specific node. This could be achieved with the
help of search and index tool software Lucene.

G1.4
The bulk of the verification sessions was focused at specifications related to G1.4, which seeks to enable user to trace
analysis results basically to the steps that precede the analysis. With SP12, we intend to regulate the storage the
intermediate parameters that are generated during the annotation and augmentation by pushing back to the XML
file of Attack Tree augmented & annotated. It turned out that the current information system already exercises this.
These parameters are stored because the ANM will need to call them later on for analysis. Besides, they are also
checked into the Git system. In SP15, we propose embedding of model components in attack tree labels. Again,
it turned out that the Tree Maker already implements this embedding in construction of the labels of attack tree
nodes. These labels would stay intact until the annotation process in APLTool, but not in augmentation process,
where di�erent nodes will be combined to form attack steps. This automatically also reasserts SP20. However,
care must be paid to ensure labels of the nodes in subleaves still contain the correct IDs of model components.
Identification of attack patterns is addressed in SP22. We propose to add to a node ID to the leaves of the attack
tree. This is argued as a redundancy because the node labels are already considered to be unique enough to act as
an identifier to the node.

SP16 concerns the ability to view parameters of a specific model component when it is visually shown in an attack
tree through interaction with a node’s label. It is however hard to achieve this as currently the standard TRESPASS
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process does not show visualised attack trees to the user, at least until the visualisation stage arrives. During the
analysis stage, the attack tree can potentially be visualised via the Java-based ADTool before it gets annotated and
augmented by APLTool. Instead, some experts vote that this should be done in ANM during visualisation stage. ANM
has an advantage in that is integrated with the knowledge base. This is discussed in SP24, where users can view
the ID of each node in the visualisation results (albeit arguments that labels are already unique enough to serve
as identifiers). The labels are designed such that their structure is retained until the visualisation stage. Care must
be taken to provide an interface that doesn’t add complication to the visualisation, such that it requires deliberate
user action to display the parameters (hovering/clicking), as the visualisation results could be “very busy in itself"1.
Further development of this feature could involve link to the quantitative properties attached to a node (e.g. showing
the calculation/expansion operation in APL that leads to the likelihood value in a node).

SP17 concerns the assignment of unique identifier to every specific data instance in the TRESPASS model.
However, our assumption that such specific data instance exists is untrue: most parameters are described in classes
with predetermined instance-specific values. It then makes little sense to have a very specific, instance-level identifier
when uniqueness only exists at class level. If this specification is to be vetted, then the label of the component
containing the parameter data plus the ID of the component would already su�ce to construct a unique identifier.
Another specification that proposes unique identifier is SP18, meant for attacker profiles. Such unique identifier
apparently already exists at multiple levels. The standard process in ANM generates unique node ID for every
model component dragged into the map (e.g. id-r1mzEPE7-node). Actors have their own identification under the
format of actor_class, plus their labels which are assumed to be unique. Finally, attacker profiles have their own
identifier (APxxxx). To add another identifier would be very voluminous and the user can make use of one of these
identifiers.

Data timestamp, origin, and version history are proposed through SP19. The knowledge base currently already
supports automated generation of timestamps for imported data, for example cloud-specific vulnerabilities (which
is kept in the domain-specific Treebank Attack Patterns & Annotation Logic instance). Data origin is not explicitly
stated, but it could be identified by looking at the type of data contained in the file. In the case of vulnerabilities,
this is rather straightforward as the vulnerabilities have a prefix of CVE- to indicate the source. However, it was not
revealed during the verification sessions how the origin of other data sources can be identified, for example from
binary technical data. Versioning is also not explicitly stated (and occasionally argued as less relevant than the other
metadata), but can be explored as every data stu�ed into the knowledge base is checked into a Git system which
implictly keeps track of version history. Other valuable suggestions include making explicit the command line or the
instructions needed to generate the same type of data in the future in the Python scripts and adding the metadata
that denotes the permission to share specific data (Restricted/Public).

SP23 discusses the possibility to modify the parameters of an attack step in Attack Tree Analyzer (ATA). It
was revealed that the input language has been transmuted into standard XML, which provides more clarity in
understanding the values used in the calculation (an example of this is shown in Appendix G.5.2. A functionality of
a search bar to enable intelligent searching of model components is proposed in SP25. Experts see this as a feasible
and beneficial feature when coupled with a powerful visualisation of the search result, for instance a split-screen
view of the model and visualisation results, with capabilities to highlight the components that are being looked up.
Another suggestion is to give a ‘clean’ interface by showing only relevant visualisation results and filter out the rest.
The Lucene-assisted complex searching previously hinted at could be employed in this search bar. Although actors
can move between locations, these movements are not manifested in the attack tree. Therefore, an actor would
remain in the original location in the TRESPASS model and not show up in more than one locations when being
searched.

G1.5
Ultimately G1.5 aims to increase accountability in the risk assessment process by enabling users to a�x security
investment decisions based on the analysis results. The feasibility to attach comments to multiple nodes in an attack
path will have to be evaluated (e.g. with regards to how would the underlying language for the comments look like),
but a feature for general comment text field and a node-specific text field is plausible. Possible uses of this feature
may include reference to known vulnerabilities that are a�ecting the system to provide a more solid rationale as to
the selection of the countermeasure and context explication: that at the moment the analysis was run only these
vulnerabilities were known and not the others. The user can also include the person who would be responsible
for the implementation and the next period to control the implementation of the countermeasures. It could be the
case that a fresh instance would have to be generated to store these comments. Experts however emphasised the

1For samples of visualisation results, the reader is invited to explore D4.1.2, publicly available in http://trespass-project.eu/sites/

default/files/Deliverables/D4_1_2_0.pdf.

http://trespass-project.eu/sites/default/files/Deliverables/D4_1_2_0.pdf
http://trespass-project.eu/sites/default/files/Deliverables/D4_1_2_0.pdf
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importance of a powerful user interface so that users can fully leverage this feature. It was also advised to go for
HTML or RTF format (instead of plain text) for the comments to allow formatting for users (for example, adding
bullet points or giving emphasis in bold typeface)

7.1.2. Opinions on the specifications of dynamic view goal requirements
The dynamic view goal is captured in G2.1, which ideally would equip TRESPASS with the ability to propagate changes
in the input to the analysis process correctly. Di�ering opinions surfaced during the discussion. We start with SP28,
which seeks to identify changes in the input data and provide push notification in order for a re-analysis to be
done. Some experts argued that this would be too di�cult to implement given the current status of the TRESPASS
project. Automated update capabilities are not yet supported and manual requests of data update would still have
to be made. However, this is theoretically achievable by programming the ANM and knowledge base, for example
in the case of virtualised infrastructure data in which latest updates of a network configuration would be imported
automatically. With vulnerabilities, it was mentioned that it is possible to write an automated script that would
command the Software Checker to periodically run and possibly notify the user for vulnerabilities whose severity
reaches a certain threshold. Still, the bulk of the work if this were to be implemented remains in designing the GUI
that would conveniently notify the user.

With SP29 we propose a notification of a summary of changes made to a specific TRESPASS model file. Implicitly
this information is available and saved in the background, thanks to the Git system which allows generation of
di�erences (di�)2. The capability to commit changes to the Git system is an important enabler of this feature.
However, translating the di�erences into an attractive pop-up menu is a di�erent story that involves further user
interface development, possibly in the form of a list of changes as we envisaged. It was also suggested to enable
the system to highlight nodes in the attack tree that would be a�ected by changes in the model before the changes
are registered into the system; somewhat more directed towards a sensitivity analysis. However, this is currently not
supported by the system as the Git can only compute di� when the changes is committed into the system. A less
ambitious suggestion given is to at least present a warning to the user that changes have been made to the model
(without specifying the changes) and hence the analysis result is invalid, requiring the user to run another analysis.

The Git system proves to be useful again if SP30 were to be implemented. Timestamp is produced in every
version updates and version control is conveniently kept. A caveat could be that it might not be possible to have
file owner updated as the Git does not recognise di�erence in user names, although an expert has vetted this
feature to support accountability for changes. It was posited that a metadata that keeps track of the tools used in
the toolchain would be worthwhile, although currently the Git system does not retain this information. Eventually,
implementation of SP31 that shows comparison between analysis results is seen as very complicated. This is firstly
due to the di�erent analysis results that can be generated and the calculation of some metrics is still shaky (for
example maximum attacker outcome). Secondly, no such mechanisms to reach this currently exist, which implies a
call for a new tool. There were also varying opinions regarding TRESPASS ’ capability of generating a rank of most
likely attacks: some believe this feature exists but some doubt that the project has a clear decision on this feature.
Were such comparisons of analyses made possible, some experts have expressed their wish to see comparison of
top countermeasures and their associated costs, and comparison of visualisation results as well.

As a concluding remark, the general comment with regards to the implementation of the specification was
positive. With su�cient time and resources, the experts believe that most of the specifications can be implemented,
unless when stated that it is very di�cult given the current status of the project or when there are past decisions
that force us to be path-dependent. When asked to prioritise specifications for implementation, varying answers
came up. Some believed that prioritisation is unlikely as the specifications depend on one another, but some also
came up with ranks as to which specifications to prioritise, for example the ability to generate unique identifier
and the mapping between analysis results and the attack tree plus the model components being placed high in
the list. We found the verification sessions to be particularly insightful in checking whether our design is aligned
with the current TRESPASS process and whether the two have overlaps. Time was an apparent limitation during
the verification sessions (we set a limit of one hour per session), which disallowed us to extensively discuss every
requirement with each expert. Our decision to only verify requirements based on the concerns of each expert might
have also introduced bias during the verification sessions and restricted the variety of inputs. To avoid this bias,
we ensured that each requirement was adequately addressed by di�erent experts in di�erent verification sessions so
that multiple perspectives were considered.

2https://git-scm.com/docs/git-diff

https://git-scm.com/docs/git-diff
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7.2. Single-case mechanism experiment
The case study for the single-case mechanism experiment is adopted from Ionita et al [91], which essentially depicts
a generic IaaS infrastructure shown in Figure 7.2. It is originally used to explore the possibility of conducting an
argumentation-based risk assessment. The infrastructure consists of a physical layer owned by the Cloud Provider
and a virtual layer owned by the Cloud Customer (in this case, ITL). The physical layer has several physical servers.
A Hypervisor is running on top of each server, on top of which several virtual machines are running. A Cloud
Administrator manages the whole physical infrastructure. The Administrator has access to the virtual machines
(that belong to the customer). The virtual layer consists of a number of virtual machines, networks, and databases.
Every cloud customer has control over a subset of virtual machines based on the server it utilises. For each cloud
customer, a customer administrator is responsible for the configuration and management of virtual machines. All
four virtual machines (VM1, VM2, VM3, and VM4) are now located in one virtual server and are connected via two
virtual switches (VSW1 connects VM1 to VM2, and VSW2 connects VM3 to VM4). A virtual firewall (VFW) safeguards
connections from the Internet. fileX still resides in VM1.

Figure 7.2: Cloud architecture for the test case

Source: [91]

Behind the selection of this case for the testing lie a few fundamental reasons besides the methodological
consideration (cf. Appendix D). Firstly, the case has an outsourced cloud setting and assumes that ITL is utilising a
public cloud. Consequently, it introduces a new entity into the picture, namely the cloud provider. In reality this
is a very common situation, in which a company shares its cloud resources with other cloud tenants in a public
cloud. We believe that providing a fundamentally di�erent context allows for a more interesting analysis and deeper
evaluation of the trace model in a di�erent setting. This way, suggestions for improvements can be formulated in a
more generic approach when we consider two entirely di�erent contexts. The second reason is practicality: the case
is publicly available and is presented in a simple manner, allowing room for adjustments for the testing purpose.

To make the example more relevant to our situation, some assumptions and adjustments are made, namely:

• The cloud infrastructure is a public cloud o�ered by a third-party provider. ITL is sharing resources with
other cloud customers. The number of co-residing customers is unbeknownst to ITL: a realistic situation that
also happens in real life;

• Focus is drawn towards the virtual DB (database) server that ITL puts in the cloud. Virtual Web server and
virtual App server are abstracted out; and

• The room Data Center no longer exists in ITL’s o�ce, as they have migrated the physical IT infrastructure
into a virtual IT infrastructure. As an IT administrator, Sydney still has full access to ITL’s entire virtual
infrastructure through his Laptop.

Similar to Chapter 6, we will employ Use Case 1 and 2 to guide the testing process of the static view goals, and
Use Case 3 for the dynamic view goals. ITL’s situation for Use Case 1 and 2 is the same as demonstrated in Chapter
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6 (i.e. changes in Scenario 2 in Chapter 5 are not considered). In the demonstration of Use Case 3, di�erent changes
are formulated. The subsequent section presents a description of the scenarios.

7.3. Use Cases and Scenarios
We first demonstrate Use Case 1 and 2 with Scenario 1, followed by Scenario 2 applied to Use Case 3. Explanation of
each step of the Use Case will not be as thorough as Chapter 6. Focus will be drawn towards processes/components
that might di�er from the context in which the trace model was originally designed.

7.3.1. Scenario 1 exercised in Use Case 1 and 2
The scenario for Use Case 1 and 2 is loosely adapted from the argumentation game explained in [91]. Since the
main asset to protect is customer data contained in fileX, the scenario is focused towards an attempt to invalidate
the confidentiality of fileX . The attack scenario spans across organisational and virtual domains and is described as
follows:

Scenario 1: VM image attack
AIC, a fierce competitor of ITL, has just learned that ITL has migrated to a public cloud provided by a renowned
cloud provider. It is assumed that AIC already possesses some crucial information regarding ITL’s IT infrastructure,
most important of which is that fileX is located in ITL’s VM1. AIC masterfully sculpts a plan to be able to have access
to fileX, which starts with creating a malware-containing image. When run, the malware is capable of producing a
backdoor to the virtual machine it is run on. The malicious image is then put on sale on an e-commerce platform
(e.g. AWS Marketplace). To make it look more convincing, AIC hires people and uses automated bots to fake the
amount of downloads of the image and write counterfeit reviews. AIC also launches a spoof campaign on behalf
of the cloud provider encouraging tenants to adopt the new image. This is done by creating a fictitious newsletter
promoting the image, targeted to Mr. Big, among other customers. Since Mr. Big has the final say regarding
purchases, the plan is to lure him into deciding to place this image in ITL’s virtual machines in an e�ort to reduce
expenses. To increase the chance of success, AIC could also launch a resource exhaustion attack (assuming that its
infrastructure resides within the same physical server that houses ITL’s infrastructure) to make sure that the image
is placed in either VM1 or VM2 (the two are connected via VSW1). Once the image sits in either VM1 or VM2, the
malware can be run to create a backdoor for AIC. AIC can then have unlimited access to fileX.

This point forward describes the steps in Use Case 1 and 2, with occasional references to Scenario 1. The attack
tree for this scenario is given in Appendix G.5.1.

The user opens the interface, which shows an emptymap of the organisation. The user inserts several
standard elements onto the map and draws the relevant connections. If an Archimate model already
exists, this may be used as a basis instead.
During this step, traceability can be achieved by uploading the results of the manual modelling process and tagging
model components that are present there. An example can be given by uploading the ArgueSecure argument sheet
which contains the claim for Scenario 1 as follows.

Figure 7.3: ArgueSecure argument for Scenario 1

Source: The TRESPASS project repository

The example shows that it is likely that not all model components can be traced back to the manual model
process. According to the integration diagram, ArgueSecure arguments contribute to formulation of stakeholder
goals, which are later used to construct attacker goals and formulate scenarios. However, we see this as another
potential to extend the use of the trace model. Although the tagging feature might not seem very beneficial for
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this purpose, the upload function can help users track back where attacker goals stem from. The upload function
can also be used to attach the Service Level Agreement (SLA) of the cloud solution. We see this as a potential
way to build traceability between organisational cloud-specific policies and its source; however this is not explicitly
captured in the TRESPASS integration diagram. Nevertheless, this could be of added-value to the TRESPASS process.

The user clicks on the items to select the corresponding properties, which may consist of asset val-
ues, potential damage upon failure, access control mechanisms, and an estimation of their strength.
Default values can be used if information is unavailable.
The TRESPASS model for Scenario 1 is shown in Figure 7.4 as follows. In the model we see the Customer_Admin for
ITL added as a new actor. Since a cloud adminstration has access to the customer’s entire virtual infrastructure, an
organisation should always consider the cloud adminstrator as an actor for the analysis. Whether the administrator is
regarded as a threat agent is left to the modeller. There are indeed published works that assume cloud adminstrators
as a malicious actor [24] [39], being particularly dangerous because of their high skills and high access privilege
to the infrastructure. Currently the ANM demo supports classifying actors into one of the following categories:
Actor Management, Actor Employee in IT, Actor Employee (trained in social engineering awareness), Actor Employee
(untrained), and Actor Other.

Figure 7.4: TRESPASS model for validation case, Scenario 1

We learned that from all the actor-specific parameters shown in Figure 6.5, only the parameter susceptibility_se
is accounted for analysis (soc_eng_probability in the knowledge base). The decision within the project is to
keep the parameter not instance-specific, but instead attached to a class where a certain value is associated with it.
However, the metadata based on SP2, SP3, SP4, SP5, and SP6 can still provide more context as to why an actor is
categorised under a certain class. For example, if an actor is marked as a trained employee in social engineering,
data_type and data_source could indicate when and where the training took place. With regards to assets
such as laptop, only the operating system is being taken into account. The metadata can still help understand its
properties (e.g. data_type: Technical data and data_source: System administrator archive). It is a good idea
not to make every field mandatory to be filled in, as some might only apply to specific components.

Because the current demo environment does not take many asset-specific parameters into account, it is hard
to demonstrate the di�erence between an outsourced cloud context and a private one. However, should the
project decide to add more specific parameters with regards to the virtual infrastructure, we see the SLA, or the
contract between the customer and the provider as a valuable source of data to provide technical information. In
a typical SLA, technical issues such as availability, performance, data security, disaster recovery expectation, etc.
are addressed3. The metadata fields we have devised can be used to register these technical information and help
clarify the source of specifications of the virtual infrastructure. However, the customer will still lack knowledge of
the physical infrastructure, as there is little information on their side with respect to the storage location of their
data, which is a typical problem with outsourced cloud infrastructure. This will create problem if the customer has
to include specifications of the Server.

3http://www.wired.com/insights/2011/12/service-level-agreements-in-the-cloud-who-cares/

http://www.wired.com/insights/2011/12/service-level-agreements-in-the-cloud-who-cares/
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With regards to SP19 where we seek to establish a logger, a metadata in the form of timestamp is generated as
part of a standard process in registering all vulnerabilities that are identified in a specific asset. An investigation
into the knowledge base reveals that vulnerabilities, instance parameters, and model persistence files are equipped
with logging information. They are presented in Appendix G.5.3.

Identification of library elements is currently being done di�erently from how we proposed in SP9. The demo
assigns special IDs to attacker profiles with the format of APxxxx. There currently exist 11 di�erent attacker profiles.
With regards to actor archetypes, the identification mechanism works under the assumption that labels are unique,
eliminating the need to assign another specific metadata for identification. The labels of categories of actor provided
also act as identifiers (e.g. Actor Employee (untrained)). For model templates such as building patterns or
cloud rooms, there also exists a unique, automatically-generated ID, for example id-SyOlmwhKQ-group. The su�x
-group indicates that this template involves a group of di�erent components.

Finally, discussion sessions with experts reveal that SP17 would not be very necessary and therefore might need to
be reconsidered. Such specific instance-based values as we provided in the design example (susceptibility_se)
currently are not supported. This value is based upon the class that an actor is assigned to. For instance,
Actor Management is associated with a probability of 0.6 of falling prey to a social engineering attack. With
higher availability of social data, more actor categories could be added with more precise values of likelihood, but
it is the current decision within the project to keep these values simplistic and class-specific instead of instance-
specific.

The user answers a number of general questions about the organisation in survey style (e.g. organ-
isational culture). The answers are used to set properties of the items of the map, in particular the
people/employees.
We skip this step for the testing as there are no specific criteria derived from this step.

Theuser inserts additional information regarding themodel components in plaintext format (submenu
‘Comments’ or something similar). This information could be the context of the organisationwhen the
model was created, the purpose of the analysis, important assumptions, components exclusion and
inclusion decision, etc.
The discussion with experts yielded some suggestions to improve the feature of a�xing comments to the TRESPASS
model, for example to give headings under the general comment sub-wizard to guide the user in including important
notes. So far we have devised the following sub-headings: Context, Purpose, Assumptions, Abstraction Level, and
Others.

Under Assumptions, the user can input general assumptions on the physical infrastructure or attach them to the
nodes, should he wish to. The Abstraction Level section may contain rationales leading to inclusion/exclusion of
parts of the infrastructure, for example the modelling decision that only takes into account the user’s infrastructure
and not other tenant’s because there is no visibility towards other tenants. The user may also explicitly state the
types of assessments left out in the analysis, for example privacy assessments. In Context, the user can include
information from the SLA that can help other people in the organisation to understand the modelling context, for
instance the location of the virtual infrastructure and access to the data. Finally, the user may wish to explicitly
mention the expected ‘validity period’ of the model under Others due to constant changes that happen to the virtual
infrastructure, or mention that the assessment is focused towards possible attack scenarios from the competitor (AIC).

The user answers a number of general questions about the threat environment. The user can select
the attacker profiles of interest, and adapt these if necessary.
It is not a far-fetched consideration to assume that the Customer Administrator is an ‘insider threat’, in the sense
that he/she is already knowledgeable of ITL’s infrastructure. As mentioned, currently the identification of actors are
done on a class level, meaning that there exists no specific identification of an instance-level. The combination of
the class ID and the label is the unique identifier of each actor node. This also applies with attacker profiles. A
unique ID as we propose in SP18 does not exist in ANM. In this case, we could classify Customer Administrator
under the class of Outsider Trained which has the ID of AP0009. When needed, the user can provide the
reasons behind this selection in the node-level comment (previous step).

Aside from the customer administrator, the usual threat environment that ITL faces still applies: competitors,
cyber criminals, etc. Our takeaway here is that in an outsourced cloud context, the threat environment gets
potentially wider with the addition of the cloud administrator, who may or may not be perceived as a dangerous
entity.
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The user starts the analysis and selects one or more of the following results (1) A list of possible at-
tack scenarios, ordered by their risk; (2) A list of possible countermeasures, ordered by their cost-
effectiveness; or (3) A visualisation of the map, showing ‘the weakest links’, for example by increasing
their size, or changing their colour.
Based on verification with experts, the unique identification for the parameters in the APLTool would now include
the ID of the node in which they are contained. This is shown in Appendix G.6. These node IDs would also be
shown in the visualisation results (SP24), so that users can understand the results in terms of the attack tree. From
verification with experts we also realise now that Tree Maker has already enabled the embedding between model
components and attack tree as we propose in SP20. A mock attack tree generated from the ANM demo4 shows this
embedding as follows. This labelling pattern is retained until the attack tree gets annotated by the APLTool.

As the augmented and annotated attack tree enters the analysis stage, ATA analyses the attack tree in order
to look for the optimal attack vector combination. During the verification sessions, it was revealed that the input
format of ATA has been changed so that the parameters associated to di�erent values are crystal clear (cf. Appendix
G.5.2). Finally, the storage of the parameters resulting from augmentation and annotation of the attack tree is done
during the call of the toolchain. These parameters are checked into the Git system for later usage by the ANM.

In sum, processes involved in this step remain the same both in a private cloud context and an outsourced
cloud context.

The user selects the scenarios/attack trees to understand which components are linked to a specific
scenario/attack tree. Upon clicking on a certain leaf node, the model shows model components that
are involved, such as assets (annotated with their quantitative values), control mechanisms, and ac-
tors.
We have learned from the previous step that embedding of components to attack tree labels is supported in the
current TRESPASS process. However, we also learned that no visualisations of attack tree are brought to the user
during the process until the visualisation stage arrives. Therefore, SP16 is dropped from the list of specifications as
it is not aligned with the TRESPASS workflow. Finally, the user can also search components using the search bar
functionality (SP25), which would most likely be placed in the visualisation results screen. This step is in essence a
continuation of the previous step.

The link from the previous step brings us to the conclusion that processes involved in this step do not display
di�erences between a private cloud context and an outsourced cloud context.

The user annotates explanations of security decisions next to the analysis results in plaintext format.
For example, the user can type in one or more security decisions that will be made in the next three
months (or any time period) which corresponds to preventing a specific attack step/scenario. This ex-
plicitly shows couplings of decisions and the danger to be mitigated. Alternatively, the user can also
provide a general list of possible countermeasures, among which the user selects a few to be applied
within the next sixmonths (or any time period).
In a common outsourced cloud situation, there is a fair share of risk sharing between the customer and the
provider. Although oftentimes such an agreement remains vague, the SLA facilitates discussion on important points
of liabilities regarding security risks for each party, for example provider’s guarantee of redundancy to help sustain
connectivity (closely related to downtime and availability).

We have specified the following items that can potentially be noted down in the commenting feature: Next
steps to be taken listing action items related to the decisions taken, Project champion to be held in charge for the

4https://trespass-tkb.itrust.lu/anm/
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deployment of the program and contact persons, and Next cycle to control the decision. Following up on the
suggestions of the experts, a devoted section for discussing vulnerabilities would also be helpful, although this is
not unique to the outsourced cloud context. Adding an Others section is always helpful to cover points that do not
fall into one of the aforementioned categories. Considering the variety of issues that might have to be dealt with,
each topic can become independent headings within the comment section. Readers should be aware that security
decisions entail more than investing in countermeasures, but also for instance decisions to accept certain risks (that
are deemed as negligible according to the analysis results).

The lesson learned in this step is that in an outsourced cloud context, many security decisions will involve
the cloud provider and therefore this feature becomes increasingly important (1) to clarify the shared security
responsibilities between the organisation and the cloud provider and (2) to establish accountability that these
security decisions are taken within the context of the results and that when things go haywire, there is written proof
that such decisions were mutually agreed. We also believe that within such context, the general comments would be
more interesting than the node-level (or attack path-specific) comments. Possibilities for importing the comments
(and the visualisation results) could be considered so that the cloud provider would also have visibility to the results
(of course by taking into account data confidentiality concerns).

Themodel can be saved for future references or adjustments.
7.3.2. Scenario 2 exercised in Use Case 3
As is the case with Chapter 6, Scenario 2 is meant to help use explore the specifications related to the dynamic view
goal. In this Scenario, we select one type of possible change from the various types of changes that could happen
in the organisation as acknowledged in Section 5.2.3 and apply it to Use Case 3.

Scenario 2: Changes
For this case study, we envision one type of change, which is changes in attacker profiles. Based on a recent attack
attempt in HGZ, Inc. - another cloud-utilising organisation - ITL would like to rerun an analysis while taking into
consideration an alleged type of attacker profile that was not considered previously, which is Vendor. In the attack
attempt on HGZ, a third-party hardware contractor had tried to penetrate into the virtual infrastructure early in the
morning to steal a highly confidential file. The attempt was discovered after the customer administrator discovered
an unusual login attempt outside o�ce hour. The drive behind the attack is still under investigation, but it is
highly suspected that a competitor of HGZ has paid a generous bribe to the contractor. In accordance with this, ITL
has decided to include every third-party contractor it is working with to have a more robust risk assessment. Of
course the attack attempt itself can be regarded as a change that should be considered, but since ITL has very little
information regarding the attack steps, it decided not to regard this as a change for the time being.

The user receives push notifications from one of the available data extraction tools or requests auto-
mateddata extraction. Thepushnotifications inform theuser that there havebeenupdates in the data
based on changes detected by the input tools (see Step 3)
Firstly, the new attacker profile Vendor is inserted into the knowledge base in XML format with the following
declaration:

< p r o f i l e i d = " AP00 1 2 "
codename= " Vendor "
d e s c r i p t i o n = " B u s i n e s s p a r t n e r who s e e k s i n s i d e i n f o r m a t i o n f o r f i n a n c i a l a d v a n t a g e
o v e r c om p e t i t o r s "
b u d g e t = " 40000 "
s k i l l = "M"
t ime = "D "
/ >

A pop-up notification indicating that a new attacker profile has been inserted will show up. This push notification
is however not unique to the outsourced cloud context. In a private cloud context this type of change is also possible.

The user opens the file containing the model used in the previous assessment. The file also contains
the previous analysis results.
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Following up on the push notifications, the user adapts the model where needed to represent the
changes observed, bymoving, deleting, or adding elements and changing properties.
In response to the new attacker profile added, ITL adds the administrator of its current printer service into the
model, named Printer Admin. The printers in ITL work with intranet and are maintained by a third-party service
provider. Although the service administrator has limited access, ITL is worried that he could bypass the virtual
firewall and gain access to the virtual database server stealthily. For the analysis, the Printer Admin is assigned the
attacker profile Vendor. The user can annotate comments as to why he is assigned under that attacker profile and
not other possible profiles such as Outsider Trained, and that he is assumed as malicious for the purpose of the
analysis.

Alerts will be issued to the user when important updates have been made, or when user action is re-
quired to assist in the updates.
The Git system has now captured the addition of the new Printer Admin in the TRESPASS model. The di� between
the old model and the new model can be shown in the front-end in a pop-up summary as shown in Chapter 6.

The user re-runs the analysis to identify any differences in the analysis results given the new condi-
tions.
The Git system used in the knowledge base can register the timestamp of commit of the analysis file and version
is automatically registered. The only pitfall we see from SP30 is that the owner might not be captured by the Git
system. In hindsight this should not be an issue if there is only one person who does the risk assessment in the
whole organisation. Otherwise, attribution problem could emerge as to who did what changes and under what
reasons.

Alerts are issuedwhen changes in the underlying data lead to significant changes in risk.
With the help of the git-di� functionality happening in the back-end, it is possible to capture the di�erence between
analysis result instances saved in the knowledge base, as specified in SP31. However, a user interface is needed so
that this di� result is intelligible by the user.

Themodel can be saved for future references or adjustments.
7.4. Analysis of single-case mechanism experiment
We start o� by describing the process behind the selection of the case for the experiment. Two candidates were
considered for the selection. The first candidate is a case on private cloud infrastructure with very similar physical
and organisational settings to the design case. The uniqueness of this case lies in the di�erent attack vectors
described, which are more focused towards technical. Unlike the design case, this case is part of a restricted
deliverable within the project, which would require special permission for publishing. Another concern that was
raised was that there is a high possibility that this case would bear much similarity with the design case, therefore
providing little room to reflect on. The second case which we decided to go with was seen to be unique enough for
the reasons we already explicated.

Another important point we wish to convey is that the validation process is very dynamic because a large part
of it depends on the ongoing progress made within the project. The verification sessions conducted with experts
provided many valuable inputs, for instance with regards to the visibility to the project’s decisions that have impact
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on our design, not to mention the important concerns with regards to how the specifications can be refined. We
also gained access to a demo environment of the ANM that has helped us understand the interaction between the
user and the system, as well as the configuration of the knowledge base.

In the following sections we describe how we draw descriptive inference (from Descriptions), abductive inference
(from Explanations), and analogic inference (from Generalisations). Finally, in Answers we tackle the knowledge
question posed in the experiment: Does the trace model work in di�erent contexts of cloud computing environments,
namely both in private and outsourced contexts?

7.4.1. Descriptions
In this section we explicate how we draw descriptive inference from the case. We begin by explaining the data
with which we devised the experiment. As explained, the case for experiment was retrieved from a publication on
argumentation-based risk assessment activity, polished with details that bring coherence to the situation we seek
(outsourced cloud). The first scenario was also derived from one of the arguments resulting from the same work,
and the Use Case is essentially a repetition of the one used in Chapter 6. We safely claim that at this point no
extensive data manipulation was involved, rather sticking to the ‘default value’.

Apart from these publicly available data, we are also grateful for being given access to the internal TRESPASS
Subversion (SVN) repository, which caters a plethora of data and work in progress that we could utilise during the
validation step. The ANM demo environment also allows us to fiddle around and have a flavour of the final version
of the TRESPASS tools. Last but not least, constant communication with researchers with the TRESPASS project
supplied a fruitful exchange of ideas and discussions.

The profound di�erence from the design case throughout deployment of the Use Cases was imminent during the
steps that encompass the model creation stage in TRESPASS . A lot of underlying assumptions had to be formulated
to compensate for the lack of information in the customer’s end. However, we could not fully demonstrate the
di�erences of an outsourced cloud context to the a private one as the demo environment is still unfolding and many
features we expect to see have not yet been placed. We also realise the importance of the post-analysis activities
(making security decisions), in which we try to enlist the types of possible decisions that could be made. In our
case of an IaaS setting, usually the customer is responsible for the identity and access management, its own data, its
applications, and its operating system, while the provider is responsible for the virtualisation, network, infrastructure,
and physical infrastructure5. However, we foresee some grey areas in this. For example, it could be the case that
the customer discovers a certain network vulnerabilities before the provider does; how does the customer then deal
with this? The security decisions should clearly address these issues. For the customer, training the administrator
to skilfully handle compliance issues is almost certainly a must.

7.4.2. Explanations
In this section, we unravel the logic behind abductive inference from the experiment. Di�erences in the experiment
are foreseen to mainly come from the architectural di�erences between the design case and the case for experiment.
We have tried to minimise distortions coming from the treatment instrument: we employed the same Use Cases to
apply the scenarios. More specifically, the architectural inference we draw is highly influenced by the abstraction
level of the case. We have deliberately chosen to zoom in the customer’s infrastructure and not focus on other
tenants’ infrastructure. Indeed, these are elements that could help provide a fuller picture of the real-world situations.
For example, if the organisation is knowledgeable of how many tenants are residing in the cloud solution it inhabits,
then logically the organisation would be able to predict more scenarios that could lead to undesirable situations.
Another piece of information that could also help is the contract or the SLA. We also decided not to insert a mock
SLA into the picture (which would be a valuable source to derive policies) because it would make our analysis busy
and unfocused, which is not our intention.

With regards to changes, it may be tempting to think that the change scenario that has been devised should
represent the outsourced cloud context. Here we argue that the organisation su�ers from high information asym-
metry. For instance, lack of visibility prevents the organisation from predicting a change in the number of tenants
co-residing in the cloud solution. The organisation is confined to model only internal changes or changes that
are publicly known. Through the exercise with the outsourced cloud context we find it very hard to capture the
multi-tenancy nature of the cloud context and its associated risks, unless the. We argue that a complete and accurate
risk analysis in such context can only be performed by the cloud provider itself, who has full knowledge of how the
cloud infrastructure is configured. Unfortunately, service level agreements (SLA) often indicate that such risks are
transferred to the customer, which obviously do not make complete sense for the reasons stated above.

5https://blog.cloudsecurityalliance.org/2016/06/14/securing-hybrid-cloud-skills-need/

https://blog.cloudsecurityalliance.org/2016/06/14/securing-hybrid-cloud-skills-need/
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An obvious limitation of an analysis for the outsourced cloud context is that it requires every node (actor, virtual
infrastructure, location) to be modelled in order for the calculation of the possible attack scenarios. Again this is
very di�cult to do in such a context. From the modeller/risk assessor perspective, there are a lot of unknown
information regarding the infrastructure due to multiple tenants and mixed configuration of di�erent physical and
virtual machines. A cloud customer such as ITL has neither control nor information on the physical infrastructure
of the cloud provider and resource allocation which might give rise to unpredictable attack vectors (e.g. side-channel
attacks). A simple example is the decision to assign to which actor class the Customer Administrator belongs.
Furthermore, could he be regarded as a potential attacker? Our trace model tries to provide clarity by for example
giving the space to give context on a model component. In this scenario, the model only takes into account the
virtual infrastructure of ITL, simply because there is no knowledge about the virtual infrastructure of other tenants.

7.4.3. Generalisations
In this section, we finally illuminate the process behind the last type of inference we conduct: analogic inference.
The intended scope of our generalisation is cloud infrastructures, regardless of their context (private/public/hybrid).
We attempted to capture this intended generalisation by choosing a case that sits at the other extremity from the
design case (fully private; provider and customer is the same entity - fully outsourced by third-party provider).
Between the extremities lie several possible configurations in the spectrum, for example the cloud provider o�ers
private virtualised server to the customer. By doing this, we attempt to seize elements that would also be relevant
in the configurations between the extremities. However, we cannot strongly claim that this is the case; a hybrid
infrastructure might have unique situations that do not appear in both a private and outsourced context.

We start by studying the similarities of the case with real-world context. We believe that the case is a very
common situation in real life, where an organisation chooses to pay for an instance in a multi-tenant model. The
size of ITL as an organisation makes it very possible that in real-life it would go for this type of solution, because it
will benefit from the economies of scale of a multi-tenancy situation. As we have addressed in the explanation for
abductive inference, we chose to keep the same Use Cases to minimise distortion coming from di�erent treatments
and we did not leave out any steps of the Use Cases as presented in the design phase. The only alteration we intend
to bring as a treatment is the choice of scenarios applied to the Use Case. By employing di�erent scenarios, we
explored other pieces of the cloud jigsaw that could provide new perspectives in validating the trace model.

However, we may have left out several relevant facts in order to achieve the desired generalisation. The
most important of this could be provider-specific facts. Each renowned cloud provider (Microsoft Azure, Amazon
Web Services, etc.) has been placed under scrutiny by researchers, giving rise to the discovery of many specific
vulnerabilities and risks that could not be found in other solutions o�ered by other providers. Each provider also
has its own unique configuration and resource allocation model, which may sometimes be left unknown unless we
decide to hire an instance of their solution. To keep our validation experiment slim, we have decided not to include
these provider-specific facts in the risk assessment, but instead opted for an “imaginary” provider whose specific
risks and vulnerabilities are up for exploration.

Finally, we wish to address the possibility of generalising the functionalities of the trace model to other case
studies in TRESPASS . Generalisation to other TRESPASS case studies are harder to infer, since the case studies can
be very context-specific. Some features and processes may apply uniquely to a specific case. Within TRESPASS these
case studies are are also strongly distinguished from one another, leaving little space for them to converge. We
made a conscious choice to concentrate solely on the cloud case study in designing the trace model. However, we
have attempted to mix examples with the IPTV case study where applicable to show that the design criteria may
sometimes generally apply to the other case studies and are not case-bound.

7.4.4. Answers
In this section we give answer to the question Does the trace model work in di�erent contexts of cloud computing
environments, namely both in private and outsourced contexts?. We also briefly discuss what the result of the
experiment implies for the knowledge goal (validating the trace model) and the improvement goal. The short answer
to our knowledge question is Yes. We have seen that the design of the trace model as it stands now does support
the extremities of the di�erent cloud context spectrum. The main lesson we learned is that in di�erent situations,
some features may appear to be more prominent than other features, based on the uniqueness of the situation.
In order for the trace model to capture this, its feature should be flexible enough to allow new dimensions to be
captured, but also have enough structure so that the user is intuitively guided towards fulfilling traceability links
that we seek. Results of the experiment show that where the features are relevant to the outsourced context (e.g.
features to add comments to the model and enlist security decisions), our design is flexible enough to capture the
di�erences and might only need minor tweaks (e.g. additional headings) to satisfy its requirements. Lastly, we also
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believe that the design of the trace model is closely aligned to the definition of traceability in cyber risk assessment
as we have formulated in Chapter 4. This is visible in the processes and features that are strictly cascaded down
from the static view goals and the dynamic view goal of traceability articulated from the definition.

The experiment combined with expert opinion is more powerful than it would have been had we not consulted
experts for their opinion. Using information from the experts, we could see which features are not aligned with the
TRESPASS process, and we also learned what features have been partially supported in the back-end (which implies
that front-end support is where we should focus on). Other validation methods such as technical action research
(which involves a real-life case study) and statistical di�erence-making experiments (which uses samples of di�erent
validation models) could also be applied to test the trace model.

7.5. Validated specifications
Based on the discussion with experts and the single-case mechanism experiment, we refine the specifications
originally featured in Table 6.5. In Table 7.1 we indicate the original specification and the modifications done as
necessary. Added details or deleted specifications are marked as (+) or (-). No preceding marks means that the
modification is still up for further investigation. It turned out that the single case mechanism experiment provided
less contributions in validating the trace model. We suspect that this is caused by the limitation of a tangible
prototype with which we could experiment.

Table 7.1: Summary of validated specifications

Code Original specification Modification
Source of
validation

SP2
Metadata data_domain and data_type for model
components.

(+) Annotate with explanation of the fields O

SP3
Metadata data_source, created_by, and
last_updated_by for model components.

(+) Metadata date_of_origin (+) Annotate
with explanation of the fields O

SP4 Storage of model components metadata in knowledge base. (no change) -

SP5 Metadata measurement_type for model components.
(+) Metadata aggregation_level (+)
Annotate with explanation of the fields and
make the measurement_type field open

O

SP6
Metadata created_on, last_updated_on, and status for
model components.

(+) Annotate with explanation of the Status
field

-

SP7 Functionality to import manual model during model creation. (+) Feature to upload minutes of meeting O

SP8 Functionality to tag pictures during model creation. (no change) -

SP9
Metadata templatemodel, genericattacker, or
genericentity for generic elements or templates.

(+) Values No and Modified for the metadata O

SP10
Sub-wizard Comments during model creation and functionality
to add comments to model components.

(no change) -

SP11 Unique label for parameters in APLTool.
Create format for node IDs (APLxxx) and
attach them to the parameters

O,E

SP12
Parameters for augmentation and annotation are pushed back to
the knowledge back for storage.

(-) already implemented E

SP15
Linkage of model components in XML format to attack tree
nodes.

(-) already implemented O,E

SP16
Functionality to show metadata fields of model components in
attack tree nodes.

(-) duplication with SP24 O

SP17 Metadata data_id for model components.
(-) parameters are class-specific, not
instance-specific O

SP18 Metadata id for attacker profiles. (-) already implemented O,E

SP19
Metadata timestamp, origin, and version for data
imported into the knowledge base.

(+) Metadata to indicate sharing permission
Permission. Possible values: Restricted and
Public.

O
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Table 7.1 Summary of validated specifications (continued)

Code Original specification Modification
Source of
validation

SP20
Linkage of Actors or Assets to unique parameter labels in
APLTool.

(-) already implemented O

SP22 Metadata node id for nodes generated in APLTool. Create format for node IDs (APLxxx) O

SP23
Linkage of parameter name defined in APLTool to analysis
tools.

(-) already implemented O

SP24 Functionality to show node id in visualisation results. (+) show parameters of model components
and calculation of values

O

SP25 Functionality for global search of entity. Results to be shown visually, not in a list. O

SP26
Sub-wizard Comments in visualisation interface for general
comments and functionality to attach comments to individual
nodes visualised.

(+) Heading to categorise comments. O,E

SP27 Storage of comments in navigator map in .txt format. Change format to rich text instead of plain
text.

O

SP28
Push notifications of updates from external data sources or
automated data extraction tools.

Start incrementally by first writing script for
automated update, then proceed to
developing user interface.

O

SP29
Functionality to generate summary of changes made to the
model.

(+) Add warning that changes have been made O

SP30
Metadata timestamp, owner, and version for analysis
results.

(-) Delete owner. TRESPASS does not
recognise di�erent users. O

SP31 Functionality for comparison of di�erent analysis results file.
(+) Comparison of countermeasures and their
costs, and comparison of visualisations. O

Note: O: Opinions; E : Experiment

To wrap up this chapter, we reflect on how these specifications on traceability have been taken into account
in TRESPASS . We begin by evaluating the role of the knowledge base as a central data repository in the TRESPASS
process. The fact that every process and data (including quantitative parameters for the attack tree) virtually has a
linkage with the knowledge base benefits us in enshrining the desired trace links. We have also noticed that model
components are accounted for in the attack tree labels, making it possible for the user to understand the attack
steps in terms of the model components and trace them back to the model. This structure gets retained until the
attack tree gets annotated with quantitative parameters, enabling the users to make sense of these parameters in
the context of the models. The fact that attackers are considered as part of the model (an actor can be assigned
to a certain attacker profile) is worth our attention. With regards to actors, the current process is already equipped
with the capability to spawn a unique identifier for every attacker involved in the analysis with the goal of being
able to connect the model with the attackers used. Installing necessary metadata for managing data could undergo
immediate implementation as this does not require relatively high workload. Specifications requiring further user
interface development could be placed lower in the priority order, followed by specifications supporting dynamic
analysis in TRESPASS . In sum, opportunities to imbue traceability in TRESPASS are still open for exploration.
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Conclusions and discussion

This chapter sums up the findings and results of the thesis in its entirety. Answers to every sub-research question
and our main research question are delineated here. Also brought into the discussion are the recommendations for
TRESPASS based on the validated trace model. We reflect on limitations encountered during writing the thesis and
designing the trace model. Finally, we outline some possible future research opportunities based on our findings.

8.1. Conclusion
We begin by answering the sub-research questions and research question posed in Chapter 1, section 1.3. For easy
reference, we reiterate these questions as follows, starting from SRQ1 to the main RQ.

SRQ1: How can the notion of traceability be defined and specified in the domain of cyber risk assessment?

The answer to this question is encapsulated in the formal definition of traceability in cyber risk assessment we
have formulated at the end of Chapter 4, which is:

In the realm of cyber risk assessment, traceability is the ability to show the rationales behind risks by
generating bidirectional trace links spanning from the input to the risk treatment decisions, annotated
with relevant and meaningful contextual information at each intermediate step. In its dynamic sense,
traceability supports representation of relevant changes and its impact in the risk assessment process.

Our definition implicitly states that there are two sides of the traceability coin: a non-dynamic side and a
dynamic side. The non-dynamic side (in Chapter 5 onwards simply referred to as static) construes that traceability
should be represented by bidirectional trace links spanning from data sources to the product of the risk assessment
activity - risk treatment decisions. This means that both tracing of results and tracking of data should be supported,
with the goal of providing rationales why certain risks apply. The dynamic side introduces the concept of changes
in risk assessment and how the two can be linked together.

To the best of our knowledge, such a formal definition has not been yet formulated. The Discussion section
extends this elaboration by comparing it to an existing notion of traceability in cyber risk assessment. Having
answered the first SRQ, we move on to the second SRQ, which is:

SRQ2: What are the requirements to provide a traceability support for TRESPASS in the form of a trace
model applied in a cloud computing environment?

We readjust our focus by taking the answer to SRQ1 and translating it to TRESPASS context. In Chapter 5 we have
stipulated goals for the trace model based on the static-dynamic duality of our definition as part of the problem
investigation phase in the design science approach. In Chapter 6, these goals are unfolded into requirements that
the trace model needs to fulfil along with requirements tapped from interviews and Use Cases. The combined
activities yielded a total of 31 requirements covering functional requirements, user requirements, and non-functional
requirements. These requirements are summarised in Table 6.2. We also posited contribution arguments for these
requirements. The requirements we have specified are unpacked into design criteria that enlist the processes, tools,
and concepts needed to fulfil them. Using Use Cases from TRESPASS, these design criteria are diced to become
design specifications, summed up in Table 6.5. This concludes the treatment design phase in the design science
approach. The final phase - treatment validation- is addressed in SRQ3 as follows:
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SRQ3: How can the trace model be verified and tested to see whether it fulfils its requirements and is
applicable to similar cloud environments?

Still within the TRESPASS context, the specifications of the trace model are verified in this step to see whether
they actually resonate with the requirements by generating expert opinions. We also took into account whether
some of these requirements have been taken into account. They are then tested to infer applicability to di�erent
cloud computing contexts. The verification and validation activity produced information regarding feasibility of
implementation in the project, how (parts of) the specifications are currently being approached in TRESPASS , as
well opportunities for further improvements. This resulted in a list of validated specifications presented in Table 7.1
according to the results of the treatment validation activities.

The answers to the sub-research questions conflate to provide the answer to our main research question:

RQ: How can traceability be incorporated in cyber risk assessment?

The short answer to this question is by referring to the trace model that we have designed. Figure 8.1 shows
an attempt to highlight the features of the trace model in each stage of the integrated TRESPASS process. The
Post-analysis stage is distinctively marked as it is not part of the o�cial TRESPASS process. Were we to liken the
TRESPASS steps to the activities of a cyber risk assessment process, we could say that the Data Collection stage
would be comparable to the Context Establishment stage. Risk Identification is covered in Model Creation stage and
parts of the Analysis stage. Risk Analysis falls naturally within the Analysis stage, and Risk Evaluation activity is
made possible during the Visualisation stage. Risk Treatment is eventually represented by the Post-analysis stage in
our diagram. We factor in the dimension of time in our depiction of the features to show that the trace model does
not only help a cross-sectional risk assessment activity, but it should assist maintenance of the activity through the
course of time.

To conclude, we believe that the answers to the (sub-)research questions have fulfilled the objectives we set
out in Chapter 1: contribute to the cyber risk assessment body of knowledge by formulating a formal definition of
traceability in that domain and contribute towards the development of TRESPASS model by generating support for
traceability in the form of a trace model. These contributions are:

• A formal definition of traceability in cyber risk assessment which exhibits both a static view and a dynamic
view;

• Application of metadata not only to provide more context during Context Establishment, Risk Identification,
and Risk Analysis activities, but also the context of the entire risk assessment exercise;

• Demonstration of building linkage between Context Establishment stage and Risk Identification stage via
identifying the entities involved in the manual risk model; and

• Application of text-based explanation to support linkage between Context Establishment and Risk Identification
activities, as well as Risk Evaluation results and Risk Treatment decisions.

These contributions are explicated further in Section 8.2.2.

8.2. Discussion
Nearly every topic can fit into the discussion section, but we will restrict the discussion to subjects that we think
would be interesting. Firstly, we evaluate and reflect on the expected contributions of this thesis to TRESPASS
process. We also reflect on how our approach stands up against what is o�ered by CORAS and how the two can
potentially complement each other. Secondly, we also take this opportunity to ponder upon the repercussions of
our trace model for risk assessment practice in general.

8.2.1. TRESPASS-specific contribution and comparison to CORAS
From the initial semi-structured interviews, we learned that some experts suggested tool support as the ideal form
for the trace model. However, we also find that language extension is necessary. The trace model would have
to be versatile enough to be extended in di�erent formats, and sometimes internal embeddings are necessary in
order to connect model components between the stages. Judging from the amount of human interaction with the
trace model, we can conclude that the traceability support is semi-automated. Some of the features can be pre-
programmed into the tools, but some features require substantial amount of human input from the interface. This
research is aimed to contribute to one of the final deliverables in TRESPASS on best practices for model maintenance.
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Figure 8.1: Summary of trace model features in TRESPASS

We would argue that traceability can potentially extend beyond only model maintenance. Traceability, as we have
learned while composing this thesis, belongs as early as the stage of context establishment. It not only identifies
which data would be necessary and how to maintain good record of them, but also supports a good chain of custody
towards the context of the analysis.

How CORAS deals with traceability has been explained in Section 6.2. We think it is important to reiterate that
TRESPASS and CORAS depart from di�erent points with respect to traceability. CORAS’ main point of departure
is change management which includes di�erent perspectives of changes. This change management strategy places
emphasis on a mapping model that marries a risk model to a target model [147]. Our proposed traceability support
departs from a pot pourri of concepts processed from literature from domains such as requirements engineering,
food industry, and data provenance. Having said that, we attempt to provide a fair comparison of both these
approaches.

We begin by revisiting the three perspectives of changes put forth by developers of CORAS, maintenance
perspective, before-after perspective, and continuous evolution perspective. In Chapter 2 we have made our case of
why we think that with respect to changes, TRESPASS should focus on the maintenance perspective. Our design of
the trace model and its ability to handle changes is centred on this view. For example, we find it important for risk
assessors to document an analysis results and be able to conveniently return to it, hence the specifications to provide
metadata of analysis results (provide context of analysis) and compare di�erent analysis results (to understand the
e�ect of changes). To help the reader analyse how our trace model di�ers from that of CORAS, Table 8.1 compares
the quintessential features from both approaches. A discussion thereof follows.
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Table 8.1: Comparison of TRESPASS and CORAS trace models

Aspect TRESPASS CORAS

Format
Various (metadata, processes, language embeddings,
extension to tools)

Tool support

Relation to formal
definition

Captures both the static and dynamic view of
traceability

Emphasises the dynamic view (changes)

Coverage
Traceability from data collection activities until
post-analysis activities

Traceability between risk model and target model

Support for handling
changes

Partial, not solely focused on handling changes
Focuses on automated identification and propagation
of changes

Approach to handling
changes

Maintenance perspective Before-after perspective

The target model in CORAS is represented by the TRESPASS model, whereas the risk model in CORAS is
analogous to the attack tree in TRESPASS (the risk model reports findings of threats, vulnerabilities, threat scenarios
and unwanted incidents involving the assets in the target model). TRESPASS does not treat the trace model as a
literal/separate model that bridges the risk model and the target model. Instead, the trace model framework is
designed to be incorporated in the process, both in the construction of the models and the linkage of the two. Both
trace models are alike in some aspects. They both intend to assist users in speedily identifying changes in the target
of analysis by making use of di� features and support representation of change-impacted risks in the target systems.
In the next section, we discuss the contribution of the trace model beyond TRESPASS .

8.2.2. Contributions to risk assessment body of knowledge
This section first discusses the static view and dynamic view of traceability as we discovered in our research, then
we move on to a discourse on the benefits of traceability to risk assessment practice in general.

As we have acknowledged early in this thesis, fixing the lack of understanding of what traceability in risk
assessment entails is our point of departure in this research. Our findings suggest that traceability does not go
only as far as changes are concerned; it implicitly demands to be present even before the actual risk assessment
process begins and after the risk assessment process is finished. This is because traceability covers a lot of grounds
in the risk assessment “lifecycle”: starting from managing and keeping track of the necessary data until assisting
(security) decision makers to relate the results to their decisions. A new cycle could resurge when these decisions
are used as inputs to perform another risk assessment and it basically continues down the road. As we show
in Figure 8.1, it is important to acknowledge the importance of traceability in an instance of a risk assessment
activity, but equally important is to see how it fits in the bigger picture of dynamic risk assessment. In Chapter 1
we have stated that risk assessment is only a part of a continuous risk management process; communication and
consultation and monitoring and review activities are also important to ensure the continuity of an organisation’s
risk management process. Refsdal et al repeatedly stress the importance of a good information system to support
these two activities [147]. The aforementioned traceability feature for information sharing can for example help
the organisation refer to the appropriate databases and repositories of emerging risks, if such databases do not
exist internally within the organisation. The feature to keep risk treatment strategies (security decisions) can help
organisation establish a proper periodical review mechanism to evaluate the e�ectiveness of applied controls and
inform all relevant stakeholders of the risk assessment status. The feature to inform users of changes in external data
sources, can act as trigger to re-monitor and review the risk assessment process. Eventually, the ability to compare
analysis results in terms of countermeasures or most possible attack vectors will help stakeholders conduct reviews
and draw conclusions on the progress of the organisation’s risk management process in a speedy manner.

The features of the trace model can be generalised for usage beyond TRESPASS . Using the list of scientific
contributions given in Section 8.1, we frame the quintessential features in generic risk assessment concepts. We start
with the application of metadata in various stages of risk assessment process. Within Context Establishment, the use
of metadata is especially helpful in classifying information and identifying its source. During the interviews, we have
repeatedly heard that expert judgement is an important input in establishing the context of risk assessment. This is
also the case in CORAS [57]. The usage of metadata can help risk assessors identify the experts that contribute to
the risk assessment and the context in which the information was given. Our application of metadata in supporting
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risk assessment can complement existing research on metadata-based risk assessment1 and provenance-based risk
assessment, which heavily relies on Dublin Core Metadata Initiative (DCMI) [32]. In the latter case, our proposed
metadata fields provide deeper insight into the data employed. Risk Identification is commonly associated with
creation of a model of the target of analysis of risk assessment. Often included are the relevant assets, actors,
threats, and vulnerabilities as elements in the model. Metadata can be used to identify these instances and provide
unique identification to activate provenance in the risk assessment. Metadata can also support Risk Analysis activities
by providing context to external data used in the analysis such as timestamp, origin, and version. Data from
public repositories such as OWASP (The Open Web Application Security Project)2 and OVAL3 can be clearly identified
when used during the Risk Analysis. Ultimately, metadata records such as timestamp and version help provide
overarching context of the risk assessment process and answer questions such as when it was conducted, has there
been previous assessments of the same target of analysis, etc.

One of the goals of the Context Establishment is to define the internal context, external context, and the
goals and objectives of the risk management process. For this purpose, meetings with stakeholders related to risk
management are held. Outcomes taking the form of minutes of meeting or a simplified diagram or model of the
organisation will later be used as input. When using computerised risk assessment tools, these models or decisions
will have to be translated into meaningful information to feed the Risk Analysis process. The trace model to support
tagging and establishing linkage between manual model and ‘automated’ model of the target of analysis is useful in
this case. Risk assessors can understand why certain entities are included in the model based on the stakeholders
meetings and similarly during Risk Identification stage risk assessors can conveniently return to the manual model
to make sense of the ‘automated’ model.

During Context Establishment and Risk Identification, text-based explanation can be used to delineate the scope
of analysis and determine the abstraction level necessary to perform the risk assessment. Such explanation can
also be utilised to express focus on a particular component of the organisation (asset or actor) and noteworthy
assumptions that underlie the analysis. Risk Treatment decisions can also be substantiated in text-based explanation
that include choices of controls and their justification based on the Risk Evaluation results (assuming that risk
mitigation is the chosen treatment), timeline of monitoring and evaluation of controls e�ectiveness based on the
Risk Treatment decisions. Virtually any Risk Treatment decisions, including risk sharing, risk acceptance, and risk
avoidance can be traced back to the Risk Evaluation control provided enough explanation exists. Our choice to
implement free text field to support this feature o�ers flexibility in accommodating this purpose.

Finally, these benefits of traceability in risk assessment certainly come at a price. We think one of the most
obvious handicap is the decreasing ease of use or usability of the system (it is assumed that most cyber risk
assessment activities are performed with help of a computer-based tool). By having users performing additional
tasks for traceability purposes (e.g. inserting comments). To overcome this problem, these additional tasks may be
positioned as optional activities, aside from what is minimally needed to perform risk assessment. In other words,
system developers should find the perfect balance between traceability and usability to produce the optimum level
of e�ciency of the risk assessment system. Researches on user experience (UX) may be beneficial in achieving
this. Reduced e�ciency is another foreseeable by-product of enforcing traceability. Due to the amount of user
input required, a risk assessment can potentially become a verbose process. One way to prevent this problem is to
automate the tasks needed to support traceability such that scalability is made possible. These include metadata
generation, automatic tagging of entities in manual model, and so on.

8.3. Limitations
There were obviously limitations encountered during the process of compiling this thesis. One of the most imminent
limitation is the fact the project will end in October 2016. This decision cascaded down to our decision of not taking
implementation into account. We were also locked in to prior decisions that have been made within the project. A
case of this is when we learned that parameters for Actors are kept within classes and not instance-unique, which
therefore revokes the need to have specific data ID for the parameter on actor’s susceptibility. Another limitation was
that our research is done in parallel with the development of the interface prototype and therefore we were limited to
envisioning how our features would substantiate in terms of the GUI of the tools. Finally, we could only address one
case of a socio-technical system in this thesis. To produce a versatile framework for traceability in risk assessment
that is applicable to every socio-technical system is to bite more than we can chew. Even within the TRESPASS
project, we could only cover one of the five case studies (IPTV, ATM, telco and e3 fraud are not considered). We hope

1http://www.oclc.org/content/dam/research/events/2012/10-02e.pdf
2https://www.owasp.org/index.php/Main_Page
3https://oval.cisecurity.org/
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at some point our work can inspire those who are interested in the area of socio-technical security/risk and develop
a more bespoke approach to other domains. Lastly, we created the trace model with a tool-based risk assessment
model in mind. Paper-based risk assessment would require manual workarounds to establish traceability, although
in principle some of our ideas can be applicable to such an exercise. Keeping information of data in separate
documents (comparable to metadata) and documenting risk treatment decisions carefully help preserve traceability
of the exercise.

Keeping in mind that implementing the trace model to TRESPASS during the last few months of the project
would be a tough call, we would like to o�er recommendations on how traceability should become an inseparable
part of the risk assessment. In general, risk assessment processes demand an abundant supply of data in various
shapes and sizes coming from a multitude of sources and spanning a wide time horizon. Meticulous data governance
becomes obligatory, and the concept of traceability could give risk assessors or decision makers pointers on where
to start. A feedback we hear during the semi-structured interviews is that knowledge sharing on risk assessment is
increasingly becoming best practice in industries. Establishing traceability on data management can facilitate the
knowledge sharing activities by drawing links to the relevant databases and also by setting the appropriate level
of sharing permission intended for a wider audience. At the end of the risk assessment process, traceability can
also serve as a cornerstone for evidence-based security, in case there is a need to revisit the results in the future.
An example of this is traceability to help understand the context behind the modelling process and why certain
parts were abstracted out, when the very parts that have been left out contributed to an unwanted event. For these
reasons, we believe our research has a high practical relevance in high-tech organisations. In sum, we encourage
risk assessors to infuse traceability into their assessments for the aforementioned benefits it can potentially bring.
While what we have done covers a wide spectrum of application, we also think working incrementally with one part
at a time (e.g. with data management or with supporting decision making) is also possible and to a certain degree
depends on the need of the organisation.

8.4. Reflection and possible future research direction
In this section we briefly reflect upon the process leading to the completion of this thesis. As a personal reflection,
we realise that the writing process of this thesis has involved a lot of creative process. There have been di�cult
times when we think that our ideas are mere wishful thinking. However, consulting experts has helped us in
understanding how our ideas can be refined. This happened iteratively. Hence, we believe that as with other design
problems, there is not a one-size-fits-all design for the trace model and that there are ideas in other forms that
could fulfil the same objectives we were trying to achieve. An evident and practical continuation of this work is
to put the design into implementation and evaluate it in an iterative process. Further development can be done
by referring to established standards, for example addition of metadata as necessary according to DCMI. Text-based
explanation on context establishment (data collection stage in TRESPASS ) and risk treatment decisions can also be
developed further by providing structure in the language such that parsing is enabled and meaningful bits can be
juiced out of the text.

We hope that our ideas can be propelled in follow-up researches after TRESPASS is finished, for instance
researches that would fit under Horizon 2020 call on Digital Security Focus Area. Upcoming topics that could
be relevant include Addressing Advanced Cyber Security Threats and Threat Actors (DS-07-2017) and Privacy, Data
Protection, Digital Identities (DS-08-2017). Our ideas on identifying changes in input data (e.g. new threat agents) and
data management can contribute to researches on the aforesaid topics. We also hope our ideas can serve as design
guidelines for projects with similar objectives, such as the projects CISP (Collaborative and Confidential Information
Sharing and Analysis for Cyber Protection)4 and PROTECTIVE (Proactive Risk Management through Improved Cyber
Situational Awareness)5 (both due to commence in late 2016). For example, CISP aims to “facilitate the definition,
analysis, management, enforcement and dissolution of data sharing agreements; going from high level descriptions
(close to natural language) to system enforceable data usage policies”. Our ideas on establishing various metadata
for managing input data (such as Permission) can serve as pointers to achieve this goal. One of the goals in
PROTECTIVE is to rank “critical alerts based on the potential damage the attack can inflict on the threatened assets
and hence to the organisations business. High impact alerts that target important hosts will have a higher priority
than other alerts”. Our idea to compare di�erent analysis results can be translated into comparison of alerts and
help decision makers make sense of their relative importance and assist prioritisation.

In a more abstract vein of research, researchers may start considering traceability in (model-based) risk assess-
ment as a distinct value to pursue. In Chapter 6, we hinted at the notion of techno-regulation to achieve traceability

4http://cordis.europa.eu/project/rcn/202687_en.html
5http://cordis.europa.eu/project/rcn/202674_en.html
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by design or traceability by default. Pursuant to this end are a lot of exploratory questions. One instance is to
investigate how value sensitive design can incorporate traceability in risk assessment from the pre-design stage.
Friedman et al define value sensitive design (VSD) as an approach to design technology that considers human values
throughout the design process [63]. Privacy, universal usability, freedom from bias, autonomy and accountability are
some values that are commonly implicated in the design of information systems [63]. Others add security, trust,
ownership, and human welfare to the list [84]. It is yet unorthodox to consider traceability as a separate value in
itself.

Therefore, can stakeholders in risk assessment view traceability as a value? Should traceability be considered
as a value in itself, or a meta-value that lays foundation for other commonly known values, such as transparency
and accountability [85]? How does it interact with other values? How can traceability enable good governance of
(any) risk assessment process? Where does it role lie? Finally, could traceability as a value conflict with other
values in risk models, such as usability or e�ciency? What kinds of trade-o� can be made? These pointers show
that traceability has a potentially strong connection with risk assessment, albeit under-researched. We already see
a growing interest in addressing the relation between values and risk assessment: the research project CANVAS
(Constructing an Alliance for Value-driven Cybersecurity) which will also start in late 2016 attempts to imbue values
and fundamental rights into technology development in cyber security6.

Cyber risk is a real and growing threat. Over the years, in the spirit of the Fourth Industrial Revolution and
the prevalence of cyber-physical systems, the role of traceability (or whatever domain-specific jargon applies) in risk
assessment will become more crucial for organisations. We are certain that in the coming years the link between
traceability and risk assessment will become more relevant, such that traceability potentially becomes an emerging
area of interest within risk studies. We do hope that our research has provided the reader a foretaste of this.

6http://cordis.europa.eu/project/rcn/202697_en.html
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A
Glossary of TRESPASS core concepts

The following section presents the definitions of core concepts used in the TRESPASS project, taken from D6.2.2
[195]. Definitions are up-to-date as of March 2016.

A.1. Socio-technical system
Socio-technical system

A socio-technical system is a system consisting of human behaviour, technology and the policies that influence human
behaviour. The key properties in the socio-technical system are entities, interaction possibilities, and quantitative properties
associated with interactions. The quantitative properties include di�culty, risk for attacker, rewards, visibility, excuses.

Socio-technical security model

A socio-technical security model is a model of a socio-technical system specifically focused on security risks in such
systems, consisting of (1) a specification of objects, relations, and capabilities, (2) a specification of possible transformations,
and (3) a specification of what constitutes an attack. The socio-technical security model is made up of several types of
components:

Spatial components

This refers to the geometric representation of its shape in some coordinate space. This is referred to as its geometry.

Social components

A human as an entity that interacts in the model. The human can change location between rooms and can have relations
with entities. Humans are actors who can be malicious or not and can interact with each other.

Locations

Entities in the spatial component.

Object component

The set of all objects.

Objects

Entities that can be moved around between locations.

Digital component

This concerns all programs and data that are present in objects supporting digital data storage, processing and communi-
cation.

Entity

An entity or element is a part of the socio-technical system that is considered separate for the purpose of analysis.

Action

An action is a change to the state of the socio-technical system as represented in the socio-technical security model.

Actor

An actor is an (in)animate object that executes actions.

Asset

An asset is an object related to the organisation that, when unduly accessed, modified or made unavailable would cause
harm to the organisation.

Policy

A policy is a rule regulating access to assets.

115



116 A. Glossary of TRESPASS core concepts

Organisation

An organisation is a socio-technical system consisting of people, buildings, computers, and data, that needs its assets
to achieve its goal. An organisation often formulates policies as operationalisations of the requirement of being able to
achieve the organisation’s goals. An attack will typically violate such policies.

Vulnerability

A vulnerability is a condition in a system, or in the procedures a�ecting the operation of the system, that makes it
possible to perform an action that violates the explicit or implicit security (or survivability) policy of the system.

A.2. Risk
Threat

A Threat is anything that is capable of acting in a manner resulting in harm to an asset and/or the organisation.

Threat event

Threat eventis a threat acting in a way that causes damage to an organization.

Threat event frequency

The Threat event frequency is the frequency with which certain Threat events occur.

Loss

Loss or Damage is any harm inflicted upon the organization which can take various forms such as:

Productivity: a reduction of the organisation to e�ectively produce goods or services in order to generate value

Response: the resources spent while acting following an adverse event

Replacement: the cost to substitute/repair an a�ected asset

Fines and Judgements: the cost of the overall legal procedure deriving from the adverse event

Competitive Advantage: missed opportunities due to the security incident

Reputation: opportunities or sales due to the diminishing corporate image following the event

Loss event

A loss event is the occurrence of loss due to the occurrence of a threat event.

Probable Loss Magnitude Probable loss magnitude(also called impact) is the damage that occurs when an attack scenario
succeeds. A Threat Event may have impact either on one security dimension (confidentiality, integrity, availability) or on
several dimensions and this impact may be complete, high, partial, low, etc. depending on the target (e.g. compromised
asset, crashed service, etc.).

Risk The risk associated with a type of threat event is the frequency of occurrence of loss events due to this threat, times
the expected impact of a loss event.

A.3. Attacks
Attacker

An attacker or adversary is an actor with goals that, when achieved, would harm the organisation. An attacker may cause
threat events by executing actions aimed at achieving his goal. An attacker can be described by the following attributes:

Attacker goal is expressed as utility functions, mapping possible outcomes of attacks to (e.g. monetary) value for
the attacker. An utility function is the minimal data needed to express attacker goals. The utility for the attacker upon
reaching a goal may or may not be di�erent from the (negative) utility (i.e. value of the asset) to the organisation (impact).

Attacker resources are the total amounts of time and money available for the attacker to invest in attack scenarios.

Attacker investment is the amount of resources (time and money) that an attacker decides to apply to the execution
of a specific action or attack scenario.

Attacker skill refers to the attacker’s skills in relation to a high likelihood of successful attack. Characteristics are
often described today in terms of “script kiddie” or “geek”. The skill level is assumed to be constant over the course of
the attack (analysis). A more skilled attacker has a higher likelihood of success with fewer resources. Di�erent skills are
required for human based (e.g. dumpster diving, impersonation, technical support, shoulder surfing, piggybacking, etc.)
than for computer based activities.

Attacker strategy describes the decisions made by the attacker based on the expected utility of scenarios. A stealthy
strategy is one in which an attacker chooses an attack approach that balances the likelihood of success with the likelihood
of detection: attacks that have a reasonably high likelihood of success and at the same time an acceptable likelihood of
detection.

Attacker profile An attacker profile includes attacker motivation/goals, strategy, capabilities, resources, knowledge of
the system and initial access. The attacker profile may include a general attacker skill level, or di�erent skill levels for
di�erent types of attack steps (e.g. technical or social.
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Attack

An attack is a sequence of one or more attack steps intended to achieve the goal of an attacker.

Exploit

An exploit is an action consisting of a single-step (atomic) exploitation of a single vulnerability by an attacker.

Attack step

An attack step is an action (exploit or other activity), potentially available to an attacker in order to reach his goal, and
considered atomic for the purposes of analysis. An attack step has an associated:

Attack step di�culty indicates the resources and time that a particular attacker would have to spend to achieve a
certain likelihood of success. Di�culty thus defines how hard it is to do the action or exploit the vulnerability.

Attack step execution is the execution of an attack step by a specific attacker or attacker type as part of a campaign
toward the adversary’s goal.

Likelihood of success of an attack step execution is a value between 0 and 1 indicating the expectation value of the
outcome, where 1 is success (access acquired) and 0 is failure (in Open Group terms this is called “vulnerability (level)”).
The likelihood of success is dependent on the di�culty of the attack step, the skill of the attacker, and the resources
spent by the attacker.

Attack event

An attack event is an action that contributes to the adversary’s goal, but is not controlled by the attacker. An attack event
has an associated mean time to failure, which indicates the average time an attacker would have to wait before the event
occurs.

Attack scenario

An attack scenario or (composite) attack is a (partially ordered) collection of one or more attack steps and zero or more
attack events, leading to an attacker’s goal, and constituting a threat event for the organisation. The likelihood of success
of an attack scenario depends on the likelihood of success of the steps of which it is composed.

Attack execution is the execution of an attack scenario by a specific attacker or attacker type as part of a campaign
toward his goal.

Threat Capability

The threat capability an attacker applies in an action is the combination of his skill and his investment.

Countermeasure

A countermeasure is a means to reduce the risk of attack, typically by decreasing the attacker’s expected utility. A
countermeasure can be technical (for example, the use of encryption to protect a communications link) or procedural (for
example, the implementation of dual controls) or physical (for example better locks on doors).

Reward

The reward for the attacker consists of the expected benefit when succeeding in getting access to a certain asset.

Utility

The utility of an attack scenario to the attacker is the expected value he obtains from executing it. This value depends on
the expected likelihood of success, the expected reward upon success, the expected investment, probability of detection,
etc. How these components are mapped to a utility value is dependent on the attacker profile (see above). This can be
expresses as a utility function in the attacker profile. The utility for the attacker upon reaching a goal may or may not be
di�erent from the (negative) utility (i.e. value of the asset) to the organisation (impact).

Excuse

An excuse relates to the social environment in which attacks occur. Depending on the subcultures within an organisation,
it may or may not be clear what is acceptable behaviour and what is not. Excuses may influence attacker strategy.

Provocation

Provocations may occur if the location and means of access of valuable assets are easily visible to the attacker. For
example, laptops present on the ground floor are visible through a window. Such provocations may influence attacker
strategy.

A.4. Navigator Maps and Attack Trees
Attack Tree

An attack tree is a hierarchical, graphical diagram for representing and analysing an attack scenario.

Attack navigator

An attack navigator is a tool to support prediction, prioritisation and prevention of complex misuse scenarios.
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Attack navigator map

An attack navigator map is a graphical diagram which presents the relevant infrastructure in relation to the relevant
assets. All possible attack scenarios that allow attackers to achieve their goals can be generated.

Visualisation

Visualisation is either a) forming a mental image of something or imaging it, or b) making something visible to the eye.

Expressivity

Expressivity refers to the power or potential to a�ect a viewer. Expressivity is an index not just of the power to evoke
through visuality, but also it is an index of receptivity, an index of audience reactions.



B
Overview of TRESPASS integration

The following section presents an overview of TRESPASS workflow as described in the TRESPASS tools handbook
(D6.4.2) [197]

Source: TRESPASS project

The Data collection stage prepares for analysis and modelling steps, and may require the gathering of one or more of the
following kinds of data.

Physical data collection provides knowledge about the physical layout of the organisation including locations, buildings,
rooms, doors, windows, etc.

Digital data collection gathers information about the organisation’s IT infrastructure.
Social data collection focuses on organisational and individual data, and results in actor profiles containing, e.g. attributes

of employees, stakeholders, or potential attackers.
Commercial data collection gathers information required for e3fraud analyses, which focus on potential fraud.
Stakeholder goal collection identifies assets and policies the protection of which is critical to one or more stakeholders.
The model creation stage handles the creation of the TRESPASS model and associated actor profiles.
TRESPASS model creation is a key activity resulting in a system model that can be further extended and analysed. The

e3value model creation process is complementary to the main TRESPASS model, for cases requiring a more specific financial

119



120 B. Overview of TRESPASS integration

focus:

Components customisation (optional) takes place before or during the TRESPASS model creation to create specialised
custom model components.

Attacker profile creation creates the attacker profile that the TRESPASS model analysis should consider, based on
ready-made attacker profiles.

Defender/target profile creation creates similar profiles for the other actors in the model based on the social data
gathered in the social data collection activity.

e3value model creation This interactive activity involves using e3value toolkit2 to create business value models. These
models structure the commercial information gathered in the data collection stage in a formal way.

In the analysis stage di�erent analyses are possible depending on the model chosen. The analysis of the TRESPASS model
involves these steps:

1. In the attacker profile selection, the user selects the attacker profile to use in the analysis.

2. The attacker goals creation provides the attack generation with the attacker goals. These can be derived by hand from
the stakeholder goals or deduced automatically from the selected attacker profiles.

3. The scenario selection selects a scenario, consisting of a single pair of attacker and attacker goal, to run the TRESPASS
analysis on.

4. To extend attack trees, attack pattern creation and sharing provides libraries with known attack steps. The attack tree
generation can only reach a certain level of abstraction, which may not be su�cient for quantitative analyses.

5. Attack generation transforms the TRESPASS model to an attack tree.

6. Attack tree annotation & augmentation then extends the attack tree with attack patterns and decorates leaf nodes with
parameter values from the data collection stage for quantitative analysis.

7. The attack tree analyses compute quantitative properties of attacks, e.g. utility for the attacker or success probability of
the attack.

The analysis of the e3value model is complementary to the core TRESPASS analysis and has only one step:
For the fraud model generation, the user needs select an attacker and an interval of expected occurrence rates of the

commercial transactions specified by the e3value model. The e3fraud tool then identifies all possible violations of contracts, the
loss for actors, and the delta in profit for the other actors.

The visualisation stage can be used continuously to provide practitioners with feedback regarding the results of their
activities:

1. Fraud model visualisation shows the generated attacks as a ranked list of textual descriptions of the attack steps and
displays charts showing the profitability for each actor.

2. Attack tree visualisation shows the intermediary attack trees.

3. Attack tree analysis visualisation visualises analysis results.



C
Semi-structured interview protocol

Following the principle of any semi-structured interviews, the questions raised will not be limited to those listed
below. Instead, new questions may stem out of these questions, and therefore they could be seen as pointers leading
towards more open questions. As the name suggests, probes are asked when the respondents have di�culty in
understanding the respective questions, or when the discussions need to be stimulated due to responses that are
rather curtailed. The protocol is given as follows:

1. Introduction (5 minutes)

Thank you for agreeing to meet with me. I am Kevin Joseph Syauta from Delft University of Technology. For my Master
thesis, I am speaking with people involved within the TRESPASS project to collect expert opinions. I would like to speak with
you about the concept of traceability in risk assessment and how it relates to TRESPASS. What I learn from today will help
me in writing my Master thesis about traceability in the TRESPASS model, particularly in building a trace model to support
the TRESPASS model. Before we begin, I have to convey that I will not treat your answers as confidential. Your names will
be included in my Master thesis. I would like to ask your permission to record this interview for later analysis. However, the
transcripts of the recording will not be part of my Master thesis. Do you have any questions about the study?

2. Traceability (10 minutes)

(a) How would you define traceability in a risk assessment process? What should it consist of?

PROBE: You could mention three things that come to your mind when hearing the words “traceability” and “risk”.

3. Traceability in TRESPASS (30 minutes)

Now I’d like to take you to delve deeper into the notion of traceability in the context of TRESPASS

(a) What do you think are the opportunities for traceability in TRESPASS?

PROBE: How do you think traceability feature can bring added value to TRESPASS?

(b) What do you think are the necessary requirements to be able to support traceability in TRESPASS? What features
should a traceability support for TRESPASS have?

(c) Ideally, how do you think traceability should be added to TRESPASS? What form should it take?

PROBE: Should it take the form of a language extension, internal embeddings, or a tool support?

(d) Here is a picture of the integration diagram of TRESPASS annotated with possible trace links between its elements
(picture is shown). What do you think of these trace links? Do they make sense? Do you think more links need to be
added? Do you think certain links should not exist?

4. Traceability and dynamic risk assessment (10 minutes)

Now I’d like to hear your opinion on the relation of traceability with dynamic risk assessment.

(a) How do you see the role of traceability in facilitating a dynamic risk assessment?

PROBE: How do you see traceability could help with keeping the validity of a risk picture after changes happened?

5. Final thoughts and closing (5 minutes)

Those were all the questions I wanted to ask. Do you have any final thoughts about the topics we just discussed (traceability)
or TRESPASS project in general that you would like to share?

Thank you for your time.
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Note: Integration diagram is adopted from [190], green arrows are added.



D
Single-case mechanism experiment protocol

1. Knowledge goal

The knowledge goal is to validate the trace model.

2. Improvement goal

The improvement goal is to provide support for traceability in TRESPASS process according to the definition given in
Chapter 4 by developing a trace model with goals formulated in Chapter 5, applied in cloud computing.

3. Current knowledge

The knowledge context consists of the definition of traceability in cyber risk assessment as depicted in Chapter 4 as well
as the concepts and integrated process of TRESPASS.

4. Conceptual framework

The conceptual framework for the trace model is defined in a set of specifications given in Chapter 6. It contains similar
complementary concepts to the trace model as defined in the CORAS method, such as target model (the TRESPASS model)
and risk model (in TRESPASS, attack trees are used), as well as elements of the TRESPASS modelling language such as
Actors, Locations, Assets, Relationships, and Access Policies.

5. Knowledge question

The knowledge question is: Does the trace model work in di�erent contexts of cloud computing environments, namely both
in private and outsourced contexts?

This question is answered by evaluating the currently devised specifications and see whether they are su�cient for the
trace model to work in a di�erent context from the context in which it was designed, or whether they need modifications
or even more specifications need to be added.

6. Intended population

The intended population for the trace model is high-tech organisations using cloud computing architectures who seek to
measure the socio-technical security posture of their organisation using TRESPASS. These population elements are similar
to one another in the sense that they employ virtualisation technologies in their IT architecture. They are dissimilar to one
another in various factors, for instance the complexity of the organisation and the context in which these virtualisation
technologies are deployed (in a private or outsourced context).

7. Object of study

Acquisition of object of study

The validation model is acquired from an existing work on risk assessment in TRESPASS. The case study should at least
be architecturally and contextually di�erent from the case study used to build the trace model. A disconfirming case
(with regards to the case study used in the design phase) is preferred over a confirming one. This way, we can see how
the trace model would perform in a di�erent context and provide more learning points.

We seek to draw architectural inference from the validation case. To ensure that this can be achieved, we pay attention
to the following criteria: analysis, variation, and abstraction. With regards to analysis, the case should provide enough
information about the context of the cloud computing environment. Because our knowledge question is a sensitivity
question, a cloud case study with a varying architecture from the design case is chosen. Finally, the level of abstraction
is kept to be as similar to the design case as possible to minimise distorting influences.

8. Treatment design

Treatment design here means the scenarios that the validation model are exposed to. Similar to how we designed the
trace model, we use an existing Use Case from Chapter 6 and combine it with a scenario. To evaluate the specifications
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for the static view goals, we use Use Case 1 and 2 with a scenario and similarly we evaluate the specifications for the
dynamic view goals with Use Case 3 combined with a di�erent scenario. This is done in a stepwise manner. Another
dimension of the treatment design is the example. Examples given are di�erent from the ones given in the design phase.
This is intended to see whether we need adjustments to the specifications in di�erent settings. More details are described
in Chapter 7.

9. Measurement design

Measurement of the validation is based on the specifications themselves. When these specifications are seen as inadequate
for the trace model to perform in the context of the validation case, a proposal for additional specifications or expansion
of the existing specifications will be formulated.

10. Inference design

Inferences are drawn in three di�erent ways: description, architectural explanation, and generalisation by analogy.
Descriptive inference is mostly presented with a walkthrough of the processes involved in the Use Cases.

With abductive inference, we foresee the possible explanations of the trace model’s behaviour in an outsourced context.
These explanations are grounded on situations that commonly occur with outsourced cloud context. Here we only expect
to draw architectural inference. The other types of inference (causal inference and rational inference) do not apply to our
experiment as we only have one object of study for the experiment (hence no dynamics between di�erent objects of
study) and there are no actors involved in the experiment (independent; therefore no reasons to explain actors’ rationality).

Analogic inference is drawn by analysing how (dis)similar the validation case is to the design case. We also analyse the
treatments applied and the measurement to see how they contribute to the generalisability of the trace model in di�erent
cloud settings.

11. Research execution

The execution phase of the single-case mechanism experiment will be recorded thoroughly, starting from the selection
of the target model up to the measurement phase. This includes the process behind the selection of the validation case,
developments and decisions within the project that influence the validation process, and the usage of available data.

12. Data analysis

Descriptions: Here we explain the steps involved in data preparation and data management as well as the availability
of data necessary for carrying out the experiment. We also briefly address validity of description design, touching base
on support for data preparation and interpretation.

Explanations: Contains explanations of architectural explanations for the observations.

Generalisations: Contains explanations of the validity of the results in similar cases by referring to analogic
inference guidelines, such as the similarity of the object of study and similarity of treatment.

Answers: Contains answers to the knowledge question (point 5) and briefly addresses contribution to knowledge
goal (point 1 and 3) as well as improvement goal (point 2).



E
Concept matrices

This section presents the concept matrices that list prominent themes that show up in literature with respect
to traceability. First presented is the concept matrix for traceability in food sector, followed by traceability in
requirements engineering and in other domains. We also present the results of our investigation on existing
standards and regulations on traceability. We eventually show concept matrices of notions related to traceability,
such as data provenance, digital chain of custody, and audit log.
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Table E.1: Concept matrix for traceability in food sector

Concepts Articles
[35] [217] [126] [149] [78] [210] [114] [127] [211] [163] [2] [13] [123] [77] [102] [51] [146] [179] [48] [122] [58] [170] [150]

Tracing X X X X X X X X
Tracking X X X X X
Traceback system X X X
Product (food/feed/animal/substance) X X X X X X X X X X X X
Stages (production/processing/distribution) X X X X X X X X X
Data collecting/retrieval X X X X
Detection X
Labeling X X X X X X X
Records X
Parameters X
Trace links X
Origin/source X X X X X X X X X
Ownership X
Requirements X
Compliance X
Lifecycle X
History X X X X
Identity X
Map X
Chronology X
Identification X X X X X X
Control X X X
Quality X X
Transparency X X X X
Record-keeping X X
Product properties X
Reporting X
Upstream vs downstream X
Routing X
Tools X
Physical entities X X
Locations X X
Agent X
Codes X
Surveillance X X X
Monitoring X X X
Voluntary vs mandatory traceability X X X X X
Internal traceability X
Chain traceability X
Calibration X
Routes X
Product traceability vs activities traceability X
Traceable Resources Unit (TRU) X
Backward traceability X X
Reference code X
Safety X X X X X X X X X X X X
Tracer substance X
One step up, one step down X X
Liability X
Breadth, depth, precision X
Ex-post traceability X
Physical traceability X
Quality information management X
Batch dispersion X
Bill of lots-batch distribution X
Operation & capacity units X
Item observation X
Authenticity X
Supplier management X
Transformations X
Conventional traceability X
Geographical traceability X
Genetic traceability X X
Chain of custody X
Credibility X
Information transfer functions X
Farm-to-retail traceability X
”From farm to fork“ X X X X X X X X
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Table E.1 Concept matrix for traceability in food sector (continued)
Concepts Articles

[35] [217] [126] [149] [78] [210] [114] [127] [211] [163] [2] [13] [123] [77] [102] [51] [146] [179] [48] [122] [58] [170] [150]
Producer-traceable X
Processor-traceable X
Retail-traceable X
National origin-traceable X
Classification X
Logistics traceability X
Qualitative traceability X
Aggregated information flow X
Modeling X
Data processing X
Presentation of data X
Static vs dynamic data X
Mandatory vs optional data X
Value-added & value-based marketing X
Crisis management X
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Table E.2: Concept matrix for traceability in requirements engineering

Concepts Articles
[12] [145] [136] [41] [178] [5] [75] [119] [173] [70] [42] [54] [74] [228] [98] [142]

Tracing X X
Product X
Stages (development/specification/deployment/use) X
Trace links (satisfaction, rationale, evolution, dependency) X X X X X
Origin X
Source code X X X
Documentation X
Stakeholder X X
Stakeholder requirements X X X X X X X
Maintenance X
Impact analysis X X X
Changes X X X
Reuse X
Index X
Lifecycle X
Dependencies X X
Artifacts X X
Relationship X
Design X X X
Implementation X
Objects X
Low-end users vs high-end users X
Map X
Backward traceability X X X X
Forward traceability X X X X
Validity X X
Test-cases X X
Design rationale X X
Gold-plating X
Evolutionary change X X X
Event-based traceability X
Traceability path X
Event-based traceability X
Direct vs indirect dependencies X
Requirements-to-design traceability X
Requirements-to-source-code-and-test-cases traceability X
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Table E.2 Concept matrix for traceability in requirements engineering (continued)

Concepts Articles
[12] [145] [136] [41] [178] [5] [75] [119] [173] [70] [42] [54] [74] [228] [98] [142]

Requirements-and-design-to-design-rationale traceability X
Evolution of requirements and design X
Root-cause analysis X
Evolutionary tracing X
Transformations X
Metamodel X X
Believability: Accuracy, Stability, Utility X
Discernability X
Endurability X
Traceability matrix X
Active traceability X
Requirements-to-object model X
Inter-requirement traceability rules X
Pre-requirements-specifications traceability X
Post-requirements-specifications traceability X
In-place traceability X
Trace dependency X
Information retrievability X X X X X X X
Pre-traceability X
Post-traceability X
Representation information X
Specification information X
Agreement information X
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Table E.3: Concept matrix for traceability in other domains

Concepts Articles
Clinical chemistry Complex systems Cryptography Geoscience Manufacturing Medical science Metrology Quality management Supply chain

[132] [131] [166] [174] [53] [172] [112] [18] [176] [175] [55] [97] [69] [219] [159] [104] [153] [17] [67] [209]

Tracing X X X X X
Tracking X X X X
Product X
Stages X
Origin X X
Stakeholder requirements X X
Relationship X
Design X
Implementation X
Identity X X
Map X
Identification X
Unforgeability X
Exculpability X
Coalition-resistance X
Measurement data X X
Instrument X X
Chain traceability X
Calibration X X
Traceable Resource Unit (TRU) X
Backward traceability X
Forward traceability X
Digital fingerprint X
Transfer protocol X X
Chain of materials X
Flow X
Breadth, depth, precision X
Verification X
Timestamp X
Classification X
Active traceability X
Passive traceability X
Chain of comparisons X
Metrological traceability X
Traceability lot X
Activity X
Responsible actor X
Global identifier X
Actor identifier X
Traceable entity identifier X
SI traceability X
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Table E.4: Standards and regulations on traceability

Standard/Regulation Institution Domain Definition Source

IEEE Std. 29148-2011 Systems and
software engineering – Life cycle

processes – Requirements
engineering

IEEE Requirements engineering

“A software requirements
specification is traceable if (i) the
origin of each of its requirements is
clear and if (ii) it facilitates the
referencing of each requirement in
future development or enhancement

documentation”

[70]

GS1 Global Traceability Standard GS1 Supply chain

“The ability to track forward the
movement through specified stage(s)
of the extended supply chain and
trace backward the history,

application, or location of that
which is under consideration”

[118]

Regulation (EC) No 178/2002 1 EU Food sector

“The ability to trace and follow a
food, feed, food-producing animal or
substance intended to be, or expected
to be incorporated into a food or

feed, through all stages of
production, processing and

distribution”

[109]

Regulation (EC) No 1830/2003 2 EU GMOs

“The ability to trace GMOs and
products produced from GMOs at all
stages of their placing on the market

through the production and
distribution chains”

[137]

International Vocabulary of
Metrology – Basic and general

concepts and associated terms (VIM)

JCGM (Joint Committee for Guides
in Metrology)

Metrology

“Property of a measurement result
whereby the result can be related to
a reference through a documented
unbroken chain of calibrations, each
contributing to the measurement

uncertainty”

[23]

Principles for Traceability/Product
Tracing as a Tool within a Food

Inspection and Certification System
Codex Alimentarius Commission Food sector

“The ability to follow the movement
of a food through specified stage(s) of

production, processing and
distribution”

[43]

1In e�ect since January 1, 2005
2In e�ect since November 7, 2003
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Table E.4 Standards and regulations on traceability (continued)

Standard/Regulation Institution Domain Definition Source

ISO 17511:2003 (In vitro diagnostic
medical devices – Measurement of
quantities in biological samples –
Metrological traceability of values
assigned to calibrators and control

materials)

ISO Metrology

“Property of the result of a
measurement or the value of a

calibration material whereby it can
be related to stated references
through an unbroken chain of
comparisons all having stated

uncertainties”

[95]

ISO 9000:2000 (Quality management
systems – Fundamentals and

vocabulary)
ISO Quality management systems

“Ability to trace the history,
application or location of that which

is under consideration”
[59]
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Table E.5: Concept matrix for traceability in data provenance

Concepts Articles
[168] [25] [29] [19] [169] [129] [10] [227] [158] [105] [61] [130] [60] [49] [36] [128] [125] [96] [30] [28] [83] [34] [205] [226] [225] [110] [161] [22]

Lineage X X X
Pedigree X
Information X
Sources X X
Derivation X
Derivation history X X
Data product X X
Ancestral data product X
Transformation X
Workflows X X X X X X X X
Data quality X
Audit trail X
Replication recipes X
Attribution X
Data-oriented provenance X
Process-oriented provenance X
Granularity X
Annotations X X
Inversion X
Metadata X X
Metadata model X
Data acquisition and compilation X
Conversions X
Transformations X
Query-based data processing X
Service-based data processing X
Workflow model X
Version management X
Where-provenance X X X X X X X X
Why-provenance X X X X X X X X
How-provenance X X X
Location X
Path X
Uncertain database X
Process provenance X X
Service invocations X X
Globally Unique Identifier (GUID) X
Provenance lifecycle X
Process documentation X X
Documentation of execution X
User-tailored provenance queries X
Chain of ownership X
Context X
Workflow outputs X
Workflow inputs X
Workflow definitions X
Intermediate data results X
Workflow execution X
Internal provenance X
External provenance X
Semantic provenance X
System provenance/workflow provenance X
Two degrees of separation X
Application-level provenance X
Execution provenance X
Workflow templates X
Workflow instances X
Passive monitoring X
Overriding X
Instrumentation X
Artefacts X
Processes X
Agents X
Causal dependency X X
Abstraction X
Prospective provenance X X
Retrospective provenance X X
User-defined information X X
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Table E.5 Concept matrix for traceability in data provenance (continued)
Concepts Articles

[168] [25] [29] [19] [169] [129] [10] [227] [158] [105] [61] [130] [60] [49] [36] [128] [125] [96] [30] [28] [83] [34] [205] [226] [225] [110] [161] [22]
Capture mechanism X
Representational model X
Infrastructure for storage, access, queries X
Eager/bookkeeping/annotation approach X X
Lazy/non-annotation approach X
Logbook X
Directed Acyclic Graph (DAG) X
Provenance architecture X
Coarse-grain provenance X
Fine-grain provenance X
Provenance of non-answers X
Instance-level provenance X
Dataset-level provenance X
Provenance store X
Provenance factorisation X
Business provenance X
Auditing X
Traceability X
Data provenance X
Organisation provenance X
Knowledge provenance X
Dependencies X
Change-based provenance X
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Table E.6: Concept matrix for digital chain of custody

Concepts Articles
[27] [64] [103] [81] [44] [46] [20] [45] [66] [16] [160]

Documentation X X
Maintenance X X
Chronological history X X
Electronic user identification X X
Digital signature X X X
Automatic audit trail X X
Non-repudiability properties X
Digital logs X
Audit records X
Who, what, where, why, when, how X X X X X X
Digital Evidence Management Framework (DEMF) X
Characteristics X
Dynamics X
Factors X
Institutions X
Integrity X X
Evidence collection X
Evidence preservation X
Analysis X
Reporting X
Data handling X X X X
Confidentiality X
Authenticity X
Reliability X
Data provenance X
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Table E.7: Concept matrix for audit log

Concepts Articles
[156] [208] [154] [155] [18] [207] [206] [26] [177] [204] [157] [3] [180] [224] [139] [203] [50] [4] [68] [106]

Process mining X X X X X X X X
Conformance checking X X X X X
Business alignment X X X
Process discovery X X X X X
Event log X X X X X X
Event log X X X
Process instance X X X X X
Activity X X X X
Timestamp X X X X X
Performer X X X X
Event sequences/traces X X X
Fitness X X
Structural appropriateness X X
Behavioural appropriateness X X
Process perspective X
Organisational perspective X
Case perspective X
Process log X
Forward security X X
Integrity X
Chronological order X
Correction of data X
Unique identifier X
Business process X
Task X
Agent X
Case X X X
Case data X
Role X
Push mode X
Pull mode X
Originator X X
Data elements X
Data elements X
Session X
Event X
Blind-Aggregate-Forward logging X
State-based auditing X
Transition-based auditing X
F-measure X
Propagation graphs X
Workflow X X
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Table E.7 Concept matrix for audit log (continued)

Concepts Articles
[156] [208] [154] [155] [18] [207] [206] [26] [177] [204] [157] [3] [180] [224] [139] [203] [50] [4] [68] [106]

Information Control Net X





F
Sub-wizards of the Attack Navigator Map

This section presents the list of sub-wizards currently supported within the Attack Navigator Map as also presented
in D6.3.1 [196]. The sub-wizards appear in the right part of the interface of Attack Navigator Map during model
creation.
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G
Additional figures and listings used in Chapter

6 and Chapter 7

This Appendix contains additional figures and listings that are required to assist explanation of the Use Cases during
the design phase, as well as the validation phase. A clear indication of the context and usage precedes every listing
where applicable.

G.1. Chapter 6
G.1.1. Social engineering attack scenario
The attack tree and the language for the social engineering scenario are given as follows:

(Note: Likelihoods are assumed for the purpose of this example)

< ? xml v e r s i on = ’ 1 . 0 ’ ? >
< a d t r e e >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Ge t f i l e X < / l a b e l >
< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > Ge t l o g i n c r e d e n t i a l s < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > B r u t e f o r c e a t t a c k < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l >Open s o u r c e i n t e l l i g e n c e < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 4 < / p a r ame t e r >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Ge t B i g & apo s ; s em a i l a d d r e s s + l o g i n p a s swo rd + CV< / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > S o c i a l e n g i n e e r B i g t o r e g i s t e r < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > C r e a t e b a c k g r o und s t o r y f o r f a k e c o n f e r e n c e + f a k e webpage < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 8 < / p a r ame t e r >
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< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > C a l l B i g < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 8 < / p a r ame t e r >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " s w i t c h R o l e = " y e s " >
< l a b e l > C r e a t e aw a r e n e s s t r a i n i n g < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 3 < / p a r ame t e r >
< / node >
< / node >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " s w i t c h R o l e = " y e s " >
< l a b e l > S e t up maximum l o g i n a t t emp t < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 8 < / p a r ame t e r >
< / node >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > S p e a r p h i s h B i g < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > C l on e i n t r a n e t l o g i n page < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > R e s e a r c h i n t r a n e t e n v i r o nmen t < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 2 5 < / p a r ame t e r >
< node r e f i n em e n t = " c o n j u n c t i v e " s w i t c h R o l e = " y e s " >
< l a b e l > R e i n f o r c e V i r t u a l F i r e w a l l 1 < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 8 7 < / p a r ame t e r >
< / node >
< / node >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > R e s e a r c h Sydney& apo s ; s b e h a v i o u r < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 1 5 < / p a r ame t e r >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Ge t i n f o on a c u s t ome r i s s u e < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 3 5 < / p a r ame t e r >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " s w i t c h R o l e = " y e s " >
< l a b e l > C r e a t e aw a r e n e s s t r a i n i n g < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 3 < / p a r ame t e r >
< / node >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > S h o u l d e r s u r f v i a v i d e o s u r v e i l l a n c e < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > I n s t a l l o f f i c e −wide v i d e o s u r v e i l l a n c e < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Con v i n c e B i g < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 4 < / p a r ame t e r >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > C r e a t e f a k e w e b s i t e and p r omo t i o n < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 8 5 < / p a r ame t e r >
< / node >
< / node >
< / node >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Ga in a c c e s s t o l a p t o p < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Ge t t empo r a r y badge < / l a b e l >
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< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > S p o o f B i g < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 3 5 < / p a r ame t e r >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > S p o o f e x t e r n a l c o n t r a c t o r < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 8 < / p a r ame t e r >
< / node >
< node r e f i n em e n t = " c o n j u n c t i v e " s w i t c h R o l e = " y e s " >
< l a b e l > C r e a t e s t r i c t p o l i c y on badge i s s u a n c e < / l a b e l >
< p a r ame t e r doma in I d = " P r o b S u c c 1 " c a t e g o r y = " b a s i c " > 0 . 4 < / p a r ame t e r >
< / node >
< / node >
< / node >
< / node >
< domain i d = " P r o b S u c c 1 " >
< c l a s s > l u . u n i . a d t o o l . doma ins . a d t p r e d e f i n e d . P r o b S u c c < / c l a s s >
< t o o l > ADToo l2 < / t o o l >
< / domain >
< / a d t r e e >

G.2. Example of ArgueSecure arguments
ArgueSecure arguments can also be uploaded to support explanation of modelling activities (CR7 and CR8).

Figure G.1: Snapshot of ArgueSecure arguments for outsourced cloud environment

Source: The TRESPASS project repository

G.3. Model components parameters for ITL
account

id: account-sydney

label: Sydney-admin

damage_financial: $ 500,0001

damage_reputation: Very high

badge

id: badge-terry

label:badge Terry

cloneability: Low2

value: High 3

1Estimation, as compromise of Sydney’s account may very likely lead to compromise of fileX.
2Assumed, since Terry always carries his badge inside his pocket and rarely leaves it in open space.
3Terry’s badge grants him full physical access to the whole o�ce.
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damage_financial: N/A

damage_reputation: N/A

door

id: door-external

label: External Door

size: Large

transparency: None

burglar_resistance: High (RC4)

virtual_machine

id: vm1

label: VM1

value: N/A

moveability: High

OS: Linux

damage_financial: $ 500,000

damage_reputation: Very high

G.4. Updated model of the organisation

Figure G.2: Updated map of ITL

G.5. Chapter 7
G.5.1. VM image attack scenario
The attack tree for the VM image attack scenario is given as follows:
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G.5.2. Attack Tree Analyzer input language
The input language for Attack Tree Analyzer has been rewritten in XML language, providing more explicit explanation
regarding the values implied in the nodes. An excerpt for an attack tree for e-voting (courtesy of Cybernetica) is
given as follows:

< ? xml v e r s i on = " 1 . 0 " e n c o d i n g = " UTF−8 " ? >
< a d t r e e
x m l n s : x s i = " h t t p : / / www . w3 . o r g / 2 0 0 1 / XMLSchema− i n s t a n c e "
x s i : n oN ame s p a c e S c h ema L o c a t i o n = " h t t p : / / r e s e a r c h . c y b e r . ee / ~ a n t o n c / a d t r e e . x sd "
p r o f i t = " 1 000000 " >
< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > V o t i n g t r e e < / l a b e l >
< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > M a n i p u l a t i o n a t t a c k < / l a b e l >
< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > A t t a c k v o t e r ’ s e n v i r onmen t < / l a b e l >
< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > Malware < / l a b e l >
< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Vo t e mo d i f y i n g malware < / l a b e l >
< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > De v e l o p malware < / l a b e l >
< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > Vo t e c h a n g i n g ma lware ML1 < / l a b e l >
< p a r ame t e r name = " c o s t " c l a s s = " nume r i c " > 9 600 < / p a r ame t e r >
< p a r ame t e r name = " l i k e l i h o o d " c l a s s = " o r d i n a l " >V < / p a r ame t e r >
< p a r ame t e r name = " d i f f i c u l t y " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name = " t ime " c l a s s = " o r d i n a l " >HR < / p a r ame t e r >
< / node >
< node r e f i n em e n t = " d i s j u n c t i v e " >
< l a b e l > Vo t e b l o c k i n g ma lware ML2 < / l a b e l >
< p a r ame t e r name = " c o s t " c l a s s = " nume r i c " > 7 6 8 0 < / p a r ame t e r >
< p a r ame t e r name = " l i k e l i h o o d " c l a s s = " o r d i n a l " > L < / p a r ame t e r >
< p a r ame t e r name = " d i f f i c u l t y " c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name = " t ime " c l a s s = " o r d i n a l " >HR < / p a r ame t e r >
< / node >

G.5.3. Timestamp information
Vulnerabilities that can be identified (and taken into account) for the cloud infrastructure are stored in a JSON format
file with such declaration:

" meta " : { " d a t e − c r e a t e d " : " 20 16 −04 −07 T 1 6 : 3 5 : 3 5 . 1 1 1 7 9 7 + 0 2 : 0 0 "
" epoch − c r e a t e d " : 1 4 6 0 0 3 9 7 3 5 . 1 1 1 7 9 7 } ,

The "meta" declaration and "epoch-created" basically provide the same information that helps users
identify the point of time when the vulnerabilities were registered into the knowledge base. The former presents the
information in a human-readable version and the latter computer-readable.
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Similarly, the file that contains the data for cloud parameters has the capability to record timestamp of creation
and version in RDF N3 format:

meta : me t a d a t a a meta : Me t aDa t a ;
meta : c r e a t i o n _ d a t e " 20 16 −0 1 −29 T 1 7 : 4 9 : 2 9 + 0 1 : 0 0 " ;
meta : v e r s i o n " 0 . 1 "

Finally, every instance-specific model persistence has the following metadata for identification:

{ " meta " : { " epoch − c r e a t e d " : 1 4 6 4 4 1 9 8 9 6 . 7 9 1 5 1 5 6 , " d a t e −mod i f i e d " :
" 20 16 −05 −28 T07 : 1 8 : 1 6 . 7 9 1 5 5 1 + 0 0 : 0 0 " , " d a t e − c r e a t e d " :
" 20 16 −05 −28 T07 : 1 8 : 1 6 . 7 9 1 5 1 6 + 0 0 : 0 0 " , " d a t e − p e r s i s t e d " :
" 20 16 −05 −28 T07 : 1 8 : 1 6 . 7 9 1 6 8 8 + 0 0 : 0 0 " , " epoch − p e r s i s t e d " : 1 4 6 4 4 1 9 8 9 6 . 7 9 1 6 8 8 ,
" epoch −mod i f i e d " : 1 4 6 4 4 1 9 8 9 6 . 7 9 1 5 5 1 } }

G.6. Unique identification for parameters
The APLTool should be able to generate unique ID for its nodes, under the format of APLxxx. The parameters
should be connected to this node ID, through XSLT transformation.

< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > P l a c e ma lware i n i t em_vm 1 < / l a b e l >
< i d > APL002 < / i d )
< p a r ame t e r name = \ t e x t b f { " c o s t − s u c c e s s − r a t i o _ A P L 0 0 2 " } c l a s s = " nume r i c " >0 < / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " c o s t _ A P L 0 0 2 " } c l a s s = " nume r i c " > 2000 < / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " d i f f i c u l t y _ A P L 0 0 2 " } c l a s s = " o r d i n a l "H < / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " l i k e l i h o o d _ A P L 0 0 2 " } c l a s s = " o r d i n a l " >V< / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " t ime _APL002 " } c l a s s = " o r d i n a l " >D< / p a r ame t e r >

< node r e f i n em e n t = " c o n j u n c t i v e " >
< l a b e l > Launch r e s o u r c e e x h a u s t i o n a t t a c k < / l a b e l >
< i d > APL003 < / i d )
< p a r ame t e r name = \ t e x t b f { " c o s t − s u c c e s s − r a t i o _ A P L 0 0 3 " } c l a s s = " nume r i c " >0 < / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " c o s t _ A P L 0 0 3 " } c l a s s = " nume r i c " > 500 < / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " d i f f i c u l t y _ A P L 0 0 3 " } c l a s s = " o r d i n a l " >M< / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " l i k e l i h o o d _ A P L 0 0 3 " } c l a s s = " o r d i n a l " >V< / p a r ame t e r >
< p a r ame t e r name = \ t e x t b f { " t ime _APL003 " } c l a s s = " o r d i n a l " >HR< / p a r ame t e r >
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