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Drug-resistant M. tuberculosis is a threat to global TB control efforts. 
Failure to identify and appropriately treat patients with drug-resistant  
TB can lead to increased mortality, nosocomial outbreaks and the 
expansion of drug resistance1. Five percent of M. tuberculosis cases 
worldwide are now MDR, which is defined as having resistance to 

both isoniazid and rifampicin2. Therapeutic regimens for MDR-TB 
can exceed 18 months and include agents that often entail significant 
adverse effects3. As of the present, 0.5% of global TB cases are considered  
extensively drug resistant (XDR), which is defined as MDR with addi-
tional resistance both to fluoroquinolones and at least one second-line 
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injectable drug2. XDR-TB has incredibly poor treatment outcomes: in 
one long-term cohort of patients with XDR-TB in South Africa, only 
19% of patients had a favorable outcome4.

The global frontline molecular diagnostic for drug-resistant  
M. tuberculosis, Xpert MTB/RIF, simultaneously detects the presence 
of M. tuberculosis and identifies rifampicin resistance5. Although this 
assay identifies patients harboring rifampicin-resistant strains for the 
initiation of MDR-TB treatment, it may not identify resistance at the 
earliest available opportunity. In a recent analysis of genomes from a 
large collection of M. tuberculosis clinical isolates from South Africa6, 
Cohen et al. showed that the overwhelming majority of MDR-TB and 
XDR-TB strains evolved resistance to isoniazid before resistance to 
rifampicin. This result was consistent with another recent genomic 
analysis of strains from Russia7 and from an MDR-TB outbreak in 
Argentina7. In addition, analysis of phenotypic drug-susceptibility 
tests from a large, global collection of strains collected during TB 
drug resistance surveys indicated that isoniazid resistance is acquired 
before rifampicin resistance8. Furthermore, a recent meta-analysis 
revealed that patients harboring isoniazid-resistant strains have 
higher rates of treatment failure, relapse and acquisition of multidrug 
resistance relative to patients with drug-susceptible strains9.

Collectively, these results suggest that, to detect resistance as soon 
as possible and to prevent MDR-TB and XDR-TB strains from evolv-
ing, molecular diagnostic tests for M. tuberculosis should include the 
earliest resistance-conferring mutations to emerge; however, the iden-
tities of these MDR ‘harbinger’ mutations remain undefined. To close 
this gap in understanding, we undertook a large-scale analysis of a 
global data set of whole-genome sequences from 5,310 M. tuberculosis 
strains, including 868 newly sequenced strains and 4,442 previously 
published strains, to determine the order of acquisition of drug- 
resistance mutations and to identify which mutations occur early 
along the pathway toward MDR and which might, therefore, serve as 
early sentinels in the development of MDR.

RESULTS
Drug resistance arises by similar mechanisms across the globe
To examine global phylogeographical patterns, including the order of 
evolution of drug-resistance mutations in M. tuberculosis, we compiled 
a set of 8,316 whole-genome sequences from clinical M. tuberculosis 
strains that were either newly sequenced as part of this study or were 
sequenced as part of 14 published studies that used Illumina technol-
ogy (Supplementary Table 1)6,10–23. After quality filtering (Online 
Methods), our data set included 5,310 genome sequences that repre-
sented M. tuberculosis strains from 48 countries and 17 United Nations 
(UN)-defined geographical regions (Supplementary Figs. 1–4,  
Supplementary Tables 1–3 and Supplementary Note). Although 
our data set represented a broad diversity of TB strains from many 
global regions, the phylogeographical distribution of the strains did 
not perfectly match the actual distribution of TB burden worldwide 
(Supplementary Fig. 1b); however, all seven known global lineages 
of M. tuberculosis24 were represented (lineage 1, EAI or Indo-Oceanic 
lineage; lineage 2, Beijing lineage; lineage 3, CAS or Central Asian 
lineage; lineage 4, Euro-American lineage; lineage 5, Mycobacterium 
africanum West African type I; lineage 6, M. africanum West African 
type II; and the deep-branching lineage 7), as well as Mycobacterium 
bovis. As expected, lineages 1–4 were predominant (99.2%), con-
sistent with the previously described limited geographical and host  
distributions of lineages 5–7 (Supplementary Table 3)22,25,26.

To examine the distribution of drug resistance in our sample, for 
each of the isolate genomes, we computationally predicted resist-
ance to eight drugs27 using a curated list of polymorphisms associ-
ated with resistance (Supplementary Table 4). Because phenotypic 
drug-resistance information was unavailable for most of the data sets,  
we did not incorporate phenotypic information into our analysis.  
We identified a total of 392 unique drug-resistance-associated poly-
morphisms in at least one strain (Supplementary Tables 2 and 5). 
Relative to the expected global rates for resistance, we observed higher 

North America
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Northern Europe
Eastern  Europe

Central Asia

Eastern Asia

Southern Asia

Western Africa

Southern Africa

Southern Europe
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Figure 1  Geographical distribution of M. tuberculosis isolates by drug-resistance (DR) pattern. (a) Distribution of the 5,310 M. tuberculosis isolates 
included in our data set by DR genotype (pie charts) and by 11 UN geographical subregions (coloring); the plot is not meant to indicate the overall 
global incidence of TB or drug resistance. There were no strains in our data set from geographical regions that are shaded in gray. UN geographical 
subregions with fewer than 30 strains were excluded from this figure. The map was modified from a blank map of UN geographical subregions  
(https://commons.wikimedia.org/wiki/File:Geografiaj_subregionoj_la%C5%AD_Unui%C4%9Dintaj_Nacioj_malplene.svg; licensed under CC  
BY-SA 3.0 via Wikimedia Commons; http://commons.wikimedia.org/wiki/). (b) The overall proportion of drug-resistant strains identified among all  
5,310 M. tuberculosis isolates in our data set.
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rates of resistance; 962 strains (18%) had mutations for both rifampicin 
and isoniazid resistance and lacked mutations for ofloxacin and kan-
amycin resistance (MDR sensu stricto), and 257 (5%) of strains had 
mutations for resistance to all four drugs that define XDR (rifampicin, 
isoniazid, ofloxacin and kanamycin) (Supplementary Table 6). 
Another 409 (8%) strains carried mutations causing pre-XDR levels 
of resistance (MDR genotype plus mutations conferring resistance 
to either ofloxacin or kanamycin). Over half of the sequenced strains 
did not have any resistance-conferring mutation and were thus pre-
dicted to be drug susceptible (Fig. 1, Supplementary Figs. 4–6 and 
Supplementary Table 2).

Drug resistance was identified in nearly all (15 of 17) of the UN 
regions (http://unstats.un.org/unsd/methods/m49/m49regin.htm) for 
which we had data, although its regional distribution varied consider-
ably (Supplementary Figs. 7–10 and Supplementary Note). In cer-
tain regions of the globe, we observed large numbers of closely related 
strains with nearly identical sets of resistance-conferring mutations, 
which could be attributed to clonal transmission. Because our data 
set contained isolates from several known outbreaks6,13, rather than 
focusing on the total number of strains with each mutation, we instead 
examined the number of times each mutation evolved in different  
global regions by counting independent arisals, or the number of sep-
arate evolutions of a specific mutation occurring at defined positions 
in the phylogeny for a specific geography. Using parsimony-based 
analysis to reconstruct mutation gains and losses at all nodes across 
the phylogeny (Online Methods), we observed that the distribution 
of arisals of specific mutations was fairly constant across the globe, 
in contrast to the uneven distribution of strains with these muta-
tions (Supplementary Tables 7 and 8, and Supplementary Note), 
suggesting that drug resistance has arisen via similar mechanisms  
irrespective of geography. This was also true for the evolution of MDR 
and XDR strains, which we calculated within our data set to have 
evolved independently 573 and 138 times, respectively. Along with 
frequent, repeated, de novo arisals, person-to-person transmission—as 
predicted when all strains descending from a common ancestor in the 
phylogeny shared the same MDR genotype—was also an important 
contributor to the observed MDR cases. Of the 573 arisals, 360 (63%) 
led to a single MDR strain in our data set (de novo evolution), whereas 

213 arisals (37%) resulted in two or more descendant MDR strains, 
probably indicating person-to-person transmission of MDR-TB.

Isoniazid resistance overwhelmingly arises before rifampicin 
resistance across all lineages, geographical regions and time
In an earlier analysis involving a smaller data set of strains from South 
Africa6, we showed that isoniazid resistance evolved before rifampicin 
resistance in almost all cases. To determine whether this ordering of 
mutation acquisition was also observed in a globally diverse set of 
strains, we used a parsimony-based analysis to examine the order of 
pairwise arisals of drug-resistance mutations. We filtered out portions 
of the phylogeny with ambiguous topologies (Online Methods) and 
only included nodes at which explicit ordering could be established6. 
In agreement with our previous results6, we found that resistance 
to first-line drugs generally evolved before resistance to second-line 
drugs (Supplementary Note), as would be expected from the order 

2nd resistance1st resistance
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Figure 2  Across the globe, isoniazid resistance was overwhelmingly the 
first step toward drug resistance. Acquisition of a katG mutation affecting 
Ser315 preceded that of all other drug-resistance-conferring mutations 
for the majority of instances in which the order of acquisition could be 
disambiguated. We quantified the pairwise number of evolutions in which 
resistance to one drug preceded resistance to a second drug. Reported 
numbers represent the number of independent evolution events (not the 
number of strains) in which resistance to the drug indicated in the row 
labeled “first resistance” was acquired before resistance to the drug 
indicated in the column labeled “second resistance.” Shading color 
indicates the percentage of evolutionary events in which resistance  
to the first drug clearly predates resistance to the second drug in that  
drug pair. Although mutations in inhA can confer resistance to both 
isoniazid and ethionamide64, we defined genotypic ethionamide 
resistance as being conferred by mutations in only ethA to simplify  
the analysis and to avoid double counting.
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Figure 3  Sequential acquisition of drug-resistance-conferring mutations 
shows that isoniazid-resistance-conferring mutations, specifically katG 
mutation encoding p.Ser315Thr, most often come first in sequential pairs 
of mutations. This figure includes data from 71 drug-resistance-conferring 
mutations with at least ten occurrences in our data set, which represent 
93% of all drug-resistance-conferring mutations in our data set. We used 
PAUP analysis to assign gains of specific mutations to individual nodes 
on the phylogeny and tabulated all routes of drug-resistance acquisition 
across the full strain phylogeny, examining only nodes on the tree where 
drug-resistance mutations arose (i.e., node 1 (mutation A) → node 2 
(mutations B and C) → node 3 (mutation D)). We tabulated the number 
of times each pair of mutations arose sequentially at adjacent nodes (i.e., 
mutations A → B, A → C, B → D, and C → D). We removed node pairs 
that did not meet specific bootstrap and branch-length criteria (Online 
Methods). The ribbons in this figure depict the number of times that 
each pair of mutations arose sequentially at adjacent nodes across the 
entire data set. The width of the ribbon at each end is proportional to 
the number of times mutation A arose before mutation B, or vice versa 
(i.e., a ribbon with a thick end at katG p.Ser315Thr and a thin end at 
rpoB p.Ser450Leu indicates that katG p.Ser315Thr arose before rpoB 
p.Ser450Leu much more frequently than the reverse). Each ribbon  
is colored according to the mutation that more often occurred first in  
each sequential pairing.
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in which antituberculosis drugs are used in clinical practice. We also 
observed that mutations conferring isoniazid resistance overwhelm-
ingly arose before any other mutation implicated in resistance (Fig. 2,  
Supplementary Table 9 and Supplementary Note), despite substan-
tial complexity in the types and ordering of the mutations within our 
data set (Fig. 3). Notably, isoniazid resistance predated rifampicin 
resistance in 96% of pairwise comparisons (155 of 162), a pattern that 
remained true regardless of lineage or geographical source (Fig. 4).  
Although the majority of this effect was due to mutations in the 
katG gene encoding catalase–peroxidase (98%; 114 of 116 pairings), 
non-katG-associated mutations for isoniazid resistance followed this 
same pattern (89%; 41 of 46 pairings). Thus, the provenance of global 
MDR was overwhelmingly isoniazid-resistant strains. In particular, 
strains carrying a katG mutation encoding a p.Ser315Thr substitution 
frequently gained rifampicin resistance, whereas only a very small 
minority (4%) of global MDR arisals were due to a gain of isoniazid 
resistance on a rifampicin-resistant background, despite the presence 
of 48 rifampicin-monoresistant strains and of 152 (3% of total) iso-
lates that were rifampicin resistant but not resistant to isoniazid.

One possible explanation for this notable result is that isoniazid 
entered into clinical use approximately 20 years before rifampicin 
(rifampicin was introduced between 1971 and 1993, depending on 
geography)28, resulting in ancestral M. tuberculosis populations that 
had different amounts of exposure to these drugs, which could have 
affected the order of acquisition of drug resistance to favor resist-
ance to isoniazid before rifampicin resistance. To test this hypothesis, 
we predicted the date for the arisal of each isoniazid- or rifampicin-
resistance mutation using the BEAST software29 and then tallied the 
number of co-arisals of resistance to both drugs that occurred during 
various time periods, starting from a fixed date in the past and extend-
ing to the present, (Online Methods), starting at 1971 (the date of 
introduction of rifampicin) and ending at 2000 (a later date included 
to account for the lag in timing for the widespread use of rifampicin) 
(Supplementary Tables 9–11). Our results showed that, regardless 

of the time period or evolutionary rate chosen (Online Methods and 
Supplementary Note), resistance mediated by katG mutation affect-
ing Ser315 arose before rifampicin resistance 92–98% of the time 
(Supplementary Table 10), indicating that, even during the era when 
isoniazid and rifampicin were given in combination, the emergence of 
isoniazid resistance predated that of rifampicin resistance.

Diagnostics for early detection of pre-MDR M. tuberculosis
Contributors to the current global burden of MDR-TB include not only 
historical emergences of MDR strains, which led to person-to-person 
transmission of MDR-TB, but also ongoing de novo evolution. Of the 
573 MDR arisals in our data set, we estimated that 67% occurred since 
2004. Thus, new strategies for curbing the emergence of MDR strains, 
such as identifying strains that are precursors to MDR strains, will 
be critical to the control of MDR strains worldwide. Xpert MTB/RIF,  
currently one of the frontline diagnostic tests used to exclusively iden-
tify rifampicin-resistance-conferring mutations in the rifampicin-
resistance-determining region (RRDR) of rpoB5, is commonly used 
globally as a proxy for detecting MDR-TB. The most common order-
ing observed, of isoniazid resistance before rifampicin resistance, 
indicates that Xpert MTB/RIF serves as an appropriate proxy for 
MDR-TB and is well-suited to detect MDR strains in all geographical 
regions and all lineages of M. tuberculosis (Fig. 4). However, because 
mutations that result in rifampicin resistance (detectable by Xpert 
MTB/RIF) are rarely the first drug-resistance-conferring mutations 
to emerge, oftentimes by the time a mutation that is detectable by the 
Xpert MTB/RIF assay develops, there is pre-existing resistance to mul-
tiple additional drugs, including second-line drugs (Fig. 5). Because 
we excluded nodes at which we were unable to disambiguate the rela-
tive ordering of the acquisition of pairs of drug-resistance-associated  
mutations, our estimates represent a lower bound on the number 
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Figure 4  In all lineages and global regions, the katG mutation encoding 
p.Ser315Thr occurs first, and few examples of converse ordering are 
observed. We separately recalculated phylogenies for isolates from 
patients in each of the 11 UN subregions and five lineages with greater 
than 30 representatives. This figure depicts the pairwise ordering 
of the katG p.Ser315Thr mutation (INH1) in relation to mutations 
conferring resistance to the three other XDR-defining drugs (rifampicin 
(RIF), kanamycin (KAN) and ofloxacin (OFL)), within each individual 
M. tuberculosis lineage and geographical region. The numbers here do 
not necessarily add up to the same total number as that in Figure 2, as 
the analyses of regions and lineages were performed individually, which 
can affect the number of arisals. Gray shading indicates that there were 
not sufficient pairings for analysis. Data are not shown for the following 
regions and lineages, as there were insufficient pairings: West Africa, 
Southern Europe, Central Asia, Northern America, lineage 1 and M. bovis.
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Figure 5  Non-rifampicin drug resistance often precedes the arisal of 
mutations that are detectable by the Xpert MTB/RIF assay. Data are  
shown here for nodes at which an Xpert MTB/RIF–detectable mutation 
arose. (a) Percentage of nodes at which an Xpert MTB/RIF–detectable 
mutation arose and for which resistance to each of eight drugs 
unambiguously preceded its arisal. Drug-resistance events that appeared 
to arise coincidentally with the Xpert MTB/RIF node were excluded  
from this representation. More than one additional drug-resistance 
event could precede a single Xpert MTB/RIF node. No strains contained 
additional rifampicin-resistance-conferring mutations that arose 
before those detectable by the Xpert MTB/RIF assay. The percentage 
of Xpert-assay-detectable mutations that are preceded by the presence 
of additional mutations that cause drug resistance is likely much 
higher, as we were unable to disambiguate ordering for a substantial 
number of nodes at which additional mutations arose at the same node 
(Supplementary Fig. 11). (b) Percentage of nodes at which resistance  
to one or more other drugs unambiguously preceded the arisal of 
mutations that were detectable by the Xpert MTB/RIF assay. 13% of  
Xpert MTB/RIF arisal nodes unambiguously had no additional drug-
resistance-conferring mutations arising prior to the arisal of the Xpert 
MTB/RIF–detectable mutation.
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of nodes at which resistance to other drugs was gained before a 
rifampicin-resistance-conferring mutation could be detected by the 
Xpert MTB/RIF (Supplementary Fig. 11).

Diagnostics that identify mutations present before the emergence 
of multidrug resistance would provide an opportunity to identify drug 
resistance during a period in which there are both greater therapeutic 
options and improved treatment outcomes30. Although the results 
from our pairwise ordering of resistance acquisition clearly demon-
strated that katG p.Ser315Thr–mediated isoniazid resistance is among 
the earliest to evolve, our pairwise approach necessarily oversimplified 
the complex process of MDR-TB evolution. Thus, in a complementary 
approach to identify other possible sentinels of complex resistance, we 
cataloged all of the resistance-conferring mutations that commonly 
evolved before the development of MDR-TB (which we refer to as 
‘pre-MDR-TB mutations’). For this set of mutations, we quantified 
the fraction of MDR-defining nodes at which one of these pre-MDR-
TB mutations had evolved before the development of MDR-TB to 
determine how much resistance to other drugs had unambiguously 
arisen before the emergence of multidrug resistance (Fig. 6). Our 
analysis identified a set of 16 resistance-conferring mutations (of 340 
total found among MDR and XDR strains) that arose before MDR-
TB a minimum of two independent times (Supplementary Table 12  
and Supplementary Note).

Unexpectedly, we observed resistance-conferring mutations for 
all eight drugs among this set of pre-MDR-TB mutations. However, 
many of these mutations evolved infrequently (Fig. 6b), and thus 
would likely have low negative predictive value if their sequences were 
included on a diagnostic panel aimed at identifying pre-MDR-TB.  
In contrast, the katG mutation encoding p.Ser315Thr, which confers 
isoniazid resistance, stood out as a frequently occurring mutation 

(Fig. 6b) with very few instances of resistance to other drugs aris-
ing before its gain (Fig. 6a). Despite the high level of complexity in 
the stepwise acquisition of drug-resistance-conferring mutations in  
M. tuberculosis (Fig. 3), the katG mutation encoding p.Ser315Thr was 
by far the most common mutation to evolve before the emergence 
of multidrug resistance (Fig. 2, Supplementary Tables 12 and 13, 
and Supplementary Note). Of the 321 independent arisals of katG 
p.Ser315Thr in our data set, 302 (94%) occurred at the earliest node 
in which drug resistance was present.

DISCUSSION
We constructed the largest global data set of M. tuberculosis whole 
genomes analyzed to date, consisting of genomes from 5,310 diverse 
strains. Although the global distribution of strains in this data 
set does not reflect the global incidence of TB for some regions 
(Supplementary Fig. 1b), our unique data set had a broad geo-
graphical distribution and deep sampling of drug-resistant strains, 
including MDR and XDR strains from multiple lineages and regions. 
We were, therefore, able to dissect the step-by-step evolution of drug  
resistance and to identify harbinger resistance-conferring mutations 
that emerged before development of MDR-TB.

We observed that MDR-TB and XDR-TB evolved many independ-
ent times, in different lineages and regions of the world, suggesting 
that there are many ‘permissive’ environments that have allowed MDR-
TB and XDR-TB to emerge repeatedly. Molecular diagnostic tests for 
drug-resistant TB could be improved by incorporating knowledge 
of the global patterns of resistance emergence. We observed that the 
distribution of arisals of specific resistance-conferring mutations was 
fairly constant across the globe, indicating that drug resistance has 
arisen via common mechanisms worldwide. Thus, a universal diag-
nostic for detecting resistance to the eight drugs examined here may 
be achievable without the need for regional specialization. Without 
phenotypic drug-susceptibility data for all included strains, we were 
not able to identify previously unknown drug-resistance-conferring 
mutations or to quantify the amount of drug resistance that remains 
unexplained by our curated list of polymorphisms; however, we expect 
this amount to be small27.

By dissecting the step-by-step evolution of drug-resistant  
M. tuberculosis across the phylogeny, we observed that patterns in the 
order of emergence of drug resistance also appeared to be conserved 
globally. In particular, across all lineages and geographical regions,  
isoniazid resistance overwhelmingly arose before rifampicin resist-
ance. Some regions of the world, such as Iran31, are reported to have 
a high incidence of rifampicin resistance; however, our results suggest 
that rifampicin monoresistance rarely leads to MDR-TB. Although the 
effects of convergent evolution among frequently evolving mutations 
could cause isoniazid resistance evolutions to be dated further back 
in time than when they actually occurred, we took care to minimize 
such effects (Supplementary Note). In support of our results, this 
relative ordering of isoniazid and rifampicin resistance is consistent 
with prior findings based on genomic data showing that isoniazid  
resistance arises before rifampicin resistance in Russia7, South 
Africa6 and South America7, as well as with analysis of a large global  
collection of phenotypic data8.

Why would isoniazid resistance arise first? We showed that the ear-
lier clinical introduction of isoniazid was not a major contributor to 
the earlier arisal of isoniazid resistance; our dating analysis indicates 
that isoniazid resistance arose before rifampicin resistance across all 
time periods, including recently (Supplementary Note). However, 
there are many alternative, although not definitive, explanations for 
this preferential ordering. Isoniazid is a prodrug, which must first be 
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Figure 6  katG p.Ser315Thr is a commonly occurring mutation with very 
little resistance to other drugs arising prior to its occurrence. (a) The 
percentage of nodes at which resistance to another drug unambiguously 
preceded the arisal of the indicated mutation, for each of the 16 pre-MDR 
mutations. The percentage of nodes at which another drug-resistance-
conferring mutation had already arisen prior to the pre-MDR mutation 
is likely much higher, as we were unable to disambiguate ordering for a 
substantial number of nodes for which additional mutations arose at the 
same node. (b) The number of independent arisals for each of the 16 pre-
MDR (or harbinger) mutations. Because there are two mutations at the 
Met306 codon in embB, the nucleotide change at position 4,247,609 is 
also indicated for these two variants.
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activated by KatG (encoded by katG), the catalase–peroxidase32, to 
form an adduct with nicotinamide adenine dinucleotide (NAD)33, 
which then inhibits InhA (encoded by inhA), an NADH-dependent 
enoyl-acyl carrier protein reductase34, and ultimately inhibits mycolic 
acid biosynthesis35. The major mechanisms of isoniazid resistance 
include mutations in katG, a non-essential gene, which result in 
failure to activate isoniazid, and either upregulation or target modi-
fication of InhA. Rifampicin inhibits the β subunit of the mycobac-
terial RNA polymerase, encoded by a single, essential gene, rpoB36. 
M. tuberculosis cells grown in vitro have higher spontaneous muta-
tion rates toward isoniazid resistance than rifampicin resistance37,38, 
which could be due to the greater number of mutations that can lead 
to isoniazid resistance as compared to rifampicin resistance, i.e., any 
inactivating mutation within katG can result in isoniazid resistance, 
whereas only specific non-inactivating mutations in rpoB can result in 
rifampicin resistance. However, we observed that a single mutation in 
katG, which results in a substitution of serine to threonine at position 
315, accounted for the majority of isoniazid-resistance arisals and 
that, overall, there were ~20% more independent arisals of resistance 
to rifampicin than there were to isoniazid, indicating that the relative 
rates of resistance in vivo may differ from those calculated in vitro.

Another possible explanation for the ordering is that isoniazid-
resistant strains, including those carrying the prevalent katG muta-
tion encoding p.Ser315Thr, are more likely to develop resistance to 
other drugs. Although previous in vitro studies have shown a differ-
ence in the types of rifampicin-resistance-conferring mutations that 
arise on isoniazid-resistant backgrounds39, there is no evidence that  
isoniazid-resistant strains are transformed into ‘hypermutators’ (ref. 40).  
Furthermore, the sequence surrounding the Ser315 codon in katG 
does not seem to be susceptible to mutation nor does it seem to be a 
mutational hotspot in vitro37. However, as we and others have shown, 
this specific mutation is common among isoniazid-resistant clinical 
isolates, indicating that it is well tolerated in vivo. This is probably due 
to the fact that this mutation preserves mycobacterial catalase activity 
while still preventing activation of isoniazid41. This preserved fitness 
may affect the evolutionary adaptive landscape42,43 through which  
M. tuberculosis may acquire future resistance. Such a fitness landscape, 
which takes into account the relative fitness of different combinations 
of resistance-conferring and compensatory mutations, may produce 
a restricted set of evolutionary paths leading to MDR-TB.

A third possibility is that there is differential drug availability 
within the body, either due to pharmacokinetic effects44,45 or to dif-
ferential rates of clinical penetration of the drugs into lesions46, that 
may influence the order of emergence of mutations. Current treat-
ment regimens that result in suboptimal dosing of rifampicin47–49 
may result in effective mono-exposure to isoniazid, increasing the 
likelihood of developing isoniazid resistance first. Isoniazid preventa-
tive therapy (IPT)50, the treatment of suspected cases of latent TB with 
only isoniazid, could provide an opportunity for isoniazid resistance 
to develop before exposure to other drugs. However, IPT is not com-
monly used in most of the countries for which we have assembled 
data and, therefore, is unlikely to have a major role in the early arisal 
of isoniazid resistance in our data set.

Early identification and appropriate treatment of individuals with 
isoniazid-monoresistant strains, including treatment with non- 
isoniazid-based regimens51, may prevent the selection and eventual 
transmission of strains with resistance to additional drugs. The world-
wide case rate of isoniazid monoresistance is estimated to be as high 
as 2–15% (refs. 52–56), or 200,000–1,400,000 cases per year. Several 
studies have shown that patients harboring isoniazid-monoresistant 

strains have worse clinical outcomes than those harboring susceptible 
strains57–59, and enhanced treatment regimens for patients with such 
strains resulted in lower rates of treatment failure and acquired drug 
resistance59. A recent large meta-analysis revealed substantially worse 
treatment outcomes—including higher rates of MDR acquisition—
when patients with isoniazid-resistant strains were treated with treat-
ment regimens recommended by the World Health Organization that 
contained only first-line TB drugs9. One large retrospective cohort 
study also points to early detection of isoniazid monoresistance for 
improved outcomes52. In particular, the katG mutation encoding 
p.Ser315Thr has been associated with unfavorable treatment outcome 
and increased relapse in one population60. These and other results 
challenge the predictions of an earlier mathematical modeling study, 
which prognosticated that incorporation of isoniazid resistance onto 
a molecular test in India would provide only a negligible benefit to 
the control of MDR-TB61.

Our large data set confirms that Xpert MTB/RIF, currently the 
most widely used rapid molecular diagnostic for the diagnosis of  
M. tuberculosis and MDR-TB, performs excellently as a surro-
gate marker for multidrug resistance, irrespective of strain lineage 
and/or regional source. However, as it detects only rifampicin- 
resistance-conferring mutations, Xpert MTB/RIF does not identify 
drug resistance at the earliest available opportunity. Thus, diagnostic 
algorithms that rely upon application of Xpert MTB/RIF alone will 
allow rifampicin-susceptible but otherwise drug-resistant strains 
to propagate unchecked. In fact, our evolutionary analysis indi-
cates that, by the time a Xpert MTB/RIF–identifiable rifampicin- 
resistance-conferring mutation is acquired, oftentimes multiple addi-
tional resistance-conferring mutations are already present. Additional 
commercially available diagnostics, such as the Hain MTBDRplus and 
Hain MTBDRsl ver. 2.0 line-probe assays, are available and detect a 
broader set of drug-resistance-conferring mutations. Despite logisti-
cal considerations that make practical application of this technology 
more difficult—such as moderate turnaround times and the need for 
specialized laboratory facilities—line-probe assays are able to detect 
isoniazid resistance (Hain MTBDRplus) with excellent specificity62. 
However, current diagnostic algorithms in certain TB-endemic 
countries63 call for the application of these tests only after rifampicin 
resistance has been identified by Xpert MTB/RIF. Therefore, more 
comprehensive diagnostic tests are not being appropriately used to 
their full potential to identify rifampicin-susceptible but otherwise 
drug-resistant strains.

Through an evolutionary analysis of a diverse, global data set 
encompassing the genomes of 5,310 strains of M. tuberculosis, we 
observed that recent de novo emergence of MDR-TB in the past 
10 years is a substantial contributor to global MDR today. Thus, to 
stem the development of additional MDR strains, one should seek to 
identify drug-resistant strains in the pre-MDR stage, during which 
there are additional therapeutic options and improved treatment 
outcomes. The identification of harbinger mutations, such as the 
katG mutation encoding p.Ser315Thr, may serve as an early warn-
ing signal that multidrug resistance may soon develop. Focusing on 
common, early-occurring mutations could improve the design of 
diagnostic tests that are aimed at targeting the earliest-occurring 
signatures of drug-resistant bacteria. Future prospective research will 
be needed to determine whether these harbinger mutations increase 
the risk of MDR M. tuberculosis emergence in a given population.  
If substantiated, then surveillance efforts for harbinger mutations may 
assist organizations to better allocate intensified TB control resources 
to at-risk areas and to target drug resistance in the pre-MDR stage.
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Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Whole-genome sequencing and data sets. References detailing the sequencing 
methods for the published data sets can be found in Supplementary Table 1. 
Sequencing data for the TB Antibiotic Resistance Catalog (TB-ARC) projects 
(Supplementary Table 1) were generated at the Broad Institute, as in Cohen 
et al.6. Additional information about samples for each of these unpublished 
projects can be found at the Broad Institute website (https://olive.broadinstitute.
org/projects/tb_arc). The goal of the TB-ARC project was to create a catalog 
of mutations for antibiotic resistance in M. tuberculosis to inform diagnostics.  
As such, strains from each of the countries represented both drug-sensi-
tive and drug-resistant isolates that would enable curation of such a catalog.  
For the data set from India, 223 drug-resistant and drug-sensitive strains, repre-
sentative of lineages found in India (particularly lineages 1 and 3) were selected 
from studies in Tiruvallur and Madurai in Southern India and sequenced. 
For the MRC data set, 189 primarily drug-resistant strains from South 
Africa and Swaziland were selected for sequencing. For the CDRC data set,  
179 genomes from South Korea and Uganda, with a wide variety of drug-
resistance patterns, as well as extensive characterization of drug-susceptibility 
profiles, were sequenced. For the data set from Sweden, 150 genomes were 
collected, primarily from Sweden’s immigrant population. This set included 
a complete collection of all 141 MDR and XDR strains identified nationwide 
in Sweden in the period from 2003 to 2013. For the data set from Moldova, 95 
genomes were selected from the countrywide specimen and data repositories. 
For the data set from Romania, 34 genomes were sequenced, with the goal of 
describing drug-resistant strains that were circulating in Romania and their 
diversity. For the data set from Iran, 33 primarily highly drug-resistant sam-
ples, including totally drug-resistant (TDR) samples, were sequenced.

The study protocol for these TB-ARC projects was approved by the 
Massachusetts Institute of Technology Committee on the Use of Humans as 
Experimental Subjects. Informed consent was obtained from all subjects, or 
else an appropriate waiver of consent was obtained.

For all of these TB-ARC projects, genomic DNA was extracted using pub-
lished methods65. Library preparation and whole-genome sequencing (WGS) 
were performed as previously described on the Illumina HiSeq 2000 at the 
Broad Institute66. Sequencing data were submitted to the Sequence Read 
Archive (SRA) at NCBI under the umbrella BioProject identifiers listed in 
Supplementary Table 1.

Alignments. Raw read data for 8,136 strains were downloaded from the 
SRA (see SRA accession codes in Supplementary Table 1). Reads were 
mapped onto the genomic sequence of the M. tuberculosis reference strain 
H37Rv (GenBank accession number CP003248.2) using BWA version 0.7.10  
(ref. 67). Variants were identified using Pilon version 1.11 as described66. The 
global M. tuberculosis lineage designations used in our analysis, as well as each 
strain’s spoligotype, were predicted using digital spoligotyping, as described 
in Cohen et al.6.

We eliminated 824 strains that did not pass our quality control filters: 
average sequencing depth of coverage >20×; fraction of long insertions <0.2; 
ambiguity rate <0.5 (to remove samples that were suspected to represent mixes 
of different genotypes); number of low-coverage bases <250,000; and having 
a single match to one lineage in our lineage-prediction algorithm. We also 
eliminated strains for which Pilon analysis failed three times. Of the remaining 
7,312 samples, we removed 1,970 strains with no ‘country’ metadata or descrip-
tion in a publication, 19 strains with substantial non-tuberculous mycobacte-
rial contamination, as well as 13 additional duplicate patient samples. Use of 
these filters resulted in a final set of 5,310 strains for analysis.

The Emu software68 was run to canonicalize variants. We conducted phylo-
genetic analyses for the entire set of 5,310 strains, as well as for a subset corre-
sponding to each lineage and each United Nations geographical subregion with 
>30 strains (Supplementary Table 3). For each set, all sites with unambiguous 
single-nucleotide polymorphisms (SNPs) in at least one strain were combined 
into a concatenated alignment. Ambiguous positions were treated as missing 
data. The concatenated alignment was then were used to generate a midpoint-
rooted phylogenetic tree using FastTree69 version 2.1.8.

Drug-resistance mutations. A curated list of genomic polymorphisms that 
confer drug resistance was defined for eight drugs: rifampicin, ethambutol,  

isoniazid, ethionamide, ofloxacin, pyrazinamide, streptomycin and kanamycin. 
This was based on a literature review and consideration of current molecular 
drug-resistance diagnostics. All mutations incorporated in current molecu-
lar diagnostics in standard practice were included. This included the Xpert 
MTB/RIF5 (http://www.cepheid.com/us/cepheid-solutions/clinical-ivd-tests/
critical-infectious-diseases/xpert-mtb-rif), the Hain Genotype MTBDRplus 
(http://www.hain-lifescience.de/en/products/microbiology/mycobacteria/
tuberculosis/genotype-mtbdrplus.html), the Hain Genotype MTBDRsl Line 
Probe Assay (http://www.hain-lifescience.de/en/products/microbiology/ 
mycobacteria/tuberculosis/genotype-mtbdrsl.html), as well as the Hain 
MTBDRsl Line Probe Assay v. 2.0 (http://www.hain-lifescience.de/en/products/ 
microbiology/mycobacteria/tuberculosis/genotype-mtbdrsl.html). Additional 
resistance-conferring mutations were selected for inclusion based on laboratory 
evidence and recent compelling genomic evidence that these mutations encode 
for resistance (Supplementary Tables 4 and 5). Because of greater uncertainty 
in calling longer variants in our data, we excluded insertions and deletions 
that were longer than 10 bp. Using this curated list, we identified 392 drug- 
resistance-conferring mutations among the 231,898 total variants observed in 
our full data set across 5,310 strains.

Recent reports suggest that currently tabulated mutation sets account for 
the majority of phenotypic resistance27,70,71. Based on tabulated mutation sets, 
pyrazinamide phenotypic resistance was predicted with lower sensitivity, based 
on genotype, than other drugs in one recent analysis70. However, including 
all loss-of-function mutations in pncA in the mutation set, as we have done in 
this study, would likely greatly improve sensitivity in predicting phenotypic 
pyrazinamide resistance based on genotype.

Evolution of drug-resistance-conferring mutations. We used PAUP72 version 
4.0b10 to reconstruct gains and losses of drug-resistance-conferring muta-
tions across the phylogenetic tree. We performed this analysis both for the full 
phylogeny of all 5,310 strains, as well as for individual phylogenies for each 
of the 11 geographic subregions and five lineages with >30 strains. PAUP was 
run using a cost matrix that assigned a 20× greater cost for a loss event relative 
to that of a gain event.

When examining the relative ordering of resistance-conferring mutations at 
two different nodes, we removed portions of the tree with potentially ambigu-
ous topology. We removed node pairs from our analysis when the ancestral 
node had a bootstrap value <90%, as well as node pairs for which the longest of 
the individual branch lengths separating them was >10−4. 25% of the branches 
in our phylogeny had branch lengths >10−4. Our combined branch length and 
bootstrap filtering removed a total of 48% of the node pairs.

Assigning dates to phylogeny nodes. BEAST29 version 1.8.2 was used to esti-
mate dates of acquisition of drug-resistance-conferring mutations in the phyl-
ogenies of strains belonging to lineages 1–4. Lineages 1 and 3 contained a small 
enough number of strains to run BEAST (494 and 431 strains, respectively). 
However, because the numbers of strains in lineages 2 and 4 were greater than 
those allowed by the current capabilities of the BEAST algorithm, we subdi-
vided these lineages into subsets of 400–700 strains and ran BEAST separately 
on each of these subsets. First, we removed very closely related strains from 
lineages 2 and 4. To do this, we clustered strains using simple agglomerative 
hierarchical clustering. For each cluster that contained multiple sequences with 
<10 SNP differences in the core region aligning to H37RV, we kept only one 
strain. This reduced the number of unique strains in lineage 2 to 978, and the 
number of unique strains in lineage 4 to 1,556. We then manually examined the 
phylogenies to split the remaining lineage 2 strains into two clades (lineage 2a 
with 462 strains, and lineage 2b with 516 strains) and the remaining lineage 4 
strains into three clades (lineage 4a with 423 strains, lineage 4b with 413 strains 
and lineage 4c with 720 strains). We constructed a phylogenetic tree for each of 
these seven subsets using FastTree69 version 2.1.8 (one tree from lineage 1, two 
trees from lineage 2, one tree from lineage 3 and three trees from lineage 4).  
We then ran BEAST to estimate dates of acquisition of drug resistance muta-
tions in these seven clades representing lineages 1–4.

Because of the large size of our data set and the small spread in sample isola-
tion dates, we used simplified parameters and a fixed evolutionary rate. We ran 
BEAST twice, using two fixed values for the evolutionary rate (representing 
an upper and lower bound of possible evolutionary rates). Because of the wide 
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range of evolutionary rates previously observed in M. tuberculosis, including 
varying rates for different strains6,12,20,38,73–75, we used a lower bound of 0.3 
mutations per genome per year (ref. 73) and an upper bound of 0.6 mutations 
per genome per year (ref. 6) to cover the entire range of published rates across 
all lineages. Isolation dates for each sample were used as input to BEAST. If 
our metadata included only a range of isolation dates, then we selected the 
midpoint of this date range. We enforced the topology of our input tree that 
was generated using FastTree69. We used the following parameters when run-
ning BEAST: GTR, empirical base frequencies and no site heterogeneity model. 
BEAST was run for a minimum of 10 million iterations, sampling every 1,000 
iterations. The program Tracer was used to examine mixing and effective 
sample size to assess chain length and model convergence. If the effective 
sample size (ESS) with 10 million iterations for all variables was not >100, 
then BEAST was run for additional iterations, until ESS values were all >100.  
The first 1 million iterations were excluded as ‘burn-in’. Estimated dates are 
given with 95% highest-posterior-density (HPD) intervals.

We also used the BEAST data to calculate a date for the arisal of each MDR 
node. To calculate the number of strains descending from each MDR node, 
we included the closely related strains that were removed after performing 
the hierarchical clustering.

Data availability. Newly sequenced TB-ARC data have been deposited in 
the Sequence Read Archive (SRA) under accession codes PRJNA235852 
(India), PRJNA217391 (MRC), PRJNA219826 (CDRC), PRJNA200335 
(Belarus), PRJNA229360 (Sweden), PRJNA220218 (Moldova), PRJNA233386 
(Romania), and PRJNA237443 (Iran). Accessions for all newly sequenced  
data, as well as previously published data, are listed in Supplementary Table 1.  

Data are also available on the Broad Institute’s website (https://olive. 
broadinstitute.org/projects/tb_arc).
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