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A general model is presented for short-range hydrodynamic interactions and head-
on particle-particle/wall collisions. The model has been embedded in two distinct
numerical methods for fully resolved simulation of finite-size particles in a viscous
fluid. It accounts for the material properties of the particles and lubrication effects
prior to collision that cannot be fully resolved on a fixed grid. We demonstrate that
the model is able to reproduce experimental data for the coefficient of restitution
of particle-wall collisions over a wide range of Stokes number based on the parti-
cle impact velocity. The set of model parameters we selected and more generally
the modelling approach we propose can be efficiently used for fully resolved simu-
lations of moderately dense solid-liquid suspensions. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4817382]

I. INTRODUCTION

Particulate flows are ubiquitous in industrial and natural processes, from coal combustors, reac-
tive fluidized beds to sediment transport in coastal areas or rivers. According to the review paper of
Elghobashi,1 collisions play a role for particle volume fraction larger than 0.1%. Direct hydrodynamic
interactions and particle-particle or particle-wall collisions are important features which control the
overall dynamics of the flow for moderately concentrated suspension.2 Efficient numerical models
are highly desirable to predict the physics of those complex flows3 and to optimize the design of in-
dustrial devices involving dispersed two-phase flows. Recent numerical techniques4–6 provide useful
tools to simulate suspension flows seeded with finite size particles. Although computing resources
are continuously increasing, such simulations do not accurately capture short range hydrodynamic
interactions and collisions. Indeed, for fixed grid methods (immersed boundary method,7 fictitious
domain,8 penalty method, . . . ), the flow resolution to simulate film drainage becomes insufficient
when the number of grid points within the particle-particle gap is below four. Local refinement of
the grid (see Refs. 9 and 10 and Figure 1) would be required but is far too expensive for three-
dimensional simulations of thousands of particles. Alternatively, simplified models may be used to
represent unresolved hydrodynamic interactions and solid collisions or simply to prevent numerical
overlapping of particles. We propose a general approach to account simultaneously for lubrication
forces and particle contact based on a multilayer soft sphere model.

The simulation of granular flows through discrete particle models is often used when hydrody-
namic interactions are negligible. In such models, the drag force on the particles is parameterized,
possibly with a correction for a finite volume fraction but the fluid flow is not solved. Particle
contacts and collision events are modelled with spring-dashpot interaction forces11, 12 whose pa-
rameters have to be determined based on material properties. In another context, repulsive forces
have been used to prevent particle overlapping13 and to mimic hydrodynamic lubrication forces.14
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FIG. 1. Fully resolved drainage of an intervening film layer between a particle and a wall with 150 grid points over the
particle radius and 40 grid points over the gap width.

In none of these studies, the local interaction between two approaching particles (or between a
particle and a wall) has been compared to existing experiments on rebounds. When two solids
are approaching and eventually collide, three interaction mechanisms are successively occurring
for macroscopic particles. When the separation distance is large (more than one or two radii for
spherical particles), fluid interactions generate a deceleration of the solid body. Those long range
hydrodynamic interactions are readily captured by different methods (Immersed Boundary Method,
Fictitious Domain-Distributed Lagrange Multiplier, . . . ) for finite size particles simulations. When
the separation distance is lower than one fourth of the particle radius, the Reynolds number (based
on the relative velocity, the gap width, and the fluid kinematic viscosity) is often low and lubrication
repulsive forces dramatically damp the impact velocity. Theoretically, for perfectly smooth surfaces
actual contact never occur while the lubrication force becomes infinitely large in the limit of zero
gap width. At very small gap width, the continuum approach underlying the Navier-Stokes equations
breaks down as molecular effects are not included and solid contact occurs. Several phenomena may
lead to lubrication breakdown (non-continuum effect,15 surface roughness,16 or residual Brownian
motion). Then, a local deformation of solid surfaces due to rapid pressure increase in the liquid
film (Refs. 17 and 18) or solid contact occurs. The solid-solid collision can be characterized by a
dry restitution coefficient ed (ratio of rebound velocity to particle impact velocity in the absence of
fluid such as in vacuum) which depends on particle material. Including the effect of hydrodynamic
interactions, several authors19–21 proposed to model the overall collision process with an effective
restitution coefficient e. This coefficient depends on particle and fluid properties through an impact
Stokes number defined as St = 2

9
RUρp

μ f
, where U is the particle velocity prior to contact, μf the fluid

viscosity, R the particle radius, and ρp its density. The correlation given by Legendre et al.,22 based
on multiple experimental data sets, reproduces this evolution e

ed
= exp

(− 35
St

)
over a wide range of

physical properties for particle-wall rebound or particle-particle collision.19

In this article a general model including lubrication and collision forces is proposed and validated
over the whole range of impact Stokes number (from complete viscous damping to dry collision).
The interaction model will be detailed together with proposed parameters provided by extensive
testing. The paper is concluded by simulations of particle colliding onto a plane wall for a wide
range of impact Stokes number. We fix the particle diameter to be discretized with 16 grid points
which is of common use for the simulation of finite size particles in a viscous fluid. A fictitious
domain approach based on a Cartesian fixed grid has been chosen as a computational framework for
the implementation of the complete collision model. An implicit tensorial penalty method allows to
account for solid behavior in the volume occupied by particles, while the fluid incompressibility is
achieved with an augmented Lagrangian method. To prevent particle deformations, the solid volume
fraction in each cell is updated assuming an exact spherical shape. A detailed presentation of the
finite size particle simulations and precise validations are presented elsewhere.23 It is worthwhile to
mention that the present model can be easily implemented in any code (based on IBM, Immersed
Interface Method, etc.) accounting for finite size particles.
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FIG. 2. Multilayer model for hydrodynamic interaction and head-on collision of a spherical particle onto a plane wall.

II. DESCRIPTION OF THE MODEL

The multilayer interaction model is sketched in Figure 2 for particle-particle or particle-wall
collision where ε is the ratio between the distance δ separating solid surfaces and the particle radius.
It is positive before contact and negative when the particle overlaps the wall. Lubrication interaction
prior to collision is supplemented by a soft-sphere model for solid contact which becomes active
when the particle overlaps with the wall. Originally, this approach has been proposed by Breugem,24

who embedded the multilayer model in a direct-forcing immersed boundary method for finite-size
particles.25 We demonstrate the capability of the model to reproduce experimental data for the head-
on collision of a spherical particle onto a plane wall with both numerical approaches of finite size
particle simulation. Based on extensive testing and validation, we have derived optimal values for
the model parameters, which can be used for fully resolved simulations of moderately concentrated
particle suspensions.

A. Lubrication effect

When two solid surfaces embedded in a viscous fluid come close to contact, lubrication
theory26, 27 provides analytical expressions of the hydrodynamic force (Eq. (1)) due to viscous
fluid drainage. For a head-on or normal collision, the force is parallel to the line of centers of two
colliding particles or orthogonal to the wall in case of a particle-wall collision. un is the particle
velocity along the normal direction (for particle-particle collision, un is the particle velocity in the
relative framework). An extension to lubrication corrections for non-normal collision or with ro-
tating particles could be achieved following Breugem.24 The amplification factor λ for the Stokes
drag acting on a single sphere is given in Eqs. (2) and (3) for particle-particle and particle-wall
interaction, respectively. The short range lubrication force is activated for a prescribed distance,
εal (Fig. 2). When ε > εal, no correction to the hydrodynamic interaction is needed (Fl = 0 for
ε = εal) while the primary numerical simulation can resolve the dynamics sufficiently until lubrication
dominates

Fl(ε, un) = −6πμ f Run [λ (ε) − λ (εal)] , (1)
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λpp = 1

2ε
− 9

20
Ln (ε) − 3

56
εLn (ε) + 1.346 + O (ε) , (2)

λpw = 1

ε
− 1

5
Ln (ε) − 1

21
εLn (ε) + 0.9713 + O (ε) . (3)

The lubrication force for smooth particles diverges as the separation distance tends to zero.
Breakdown of continuum assumptions and/or roughness effects yields saturation of the hydrody-
namic force. The lubrication force is kept constant (constant Stokes amplification factor when ε is
lower than ε1 and larger than ε2) until it is largely dominated by solid-solid interaction corresponding
to slight numerical overlapping of surfaces.

Surface roughness can be accounted for in the present model by adapting the Stokes amplification
factor for ε lower than ε1. Note that we model surface roughness in this study, rather than resolving
it for reason of computational feasibility as the typical height of the surface roughness elements is
assumed to be very small compared to the sphere radius for polished spheres.20 The location of the
solid surface can be thought as the nominal position of the rough wall.

B. Solid-solid interaction

For collision of steel spheres, the collision time is typically 10−9 s. This is much smaller than a
typical time step for suspension flow simulation; resolving a collision in time is thus computationally
not feasible. Instead, slight overlap (negative overlap distance δ) of solid surfaces is allowed for
a limited number of time steps and the spring-dashpot model (Eq. (4)) provides a simple way to
reproduce elastic (ed = 1, where ed is the dry collision coefficient) or inelastic collisions (ed < 1),
following the soft sphere approach. me characterizes the mass of solids involved in the collision,

me = (
m−1

1 + m−1
2

)−1
for particle-particle collision and me = m for particle-wall collision

Fs = −knδ − βnun, (4)

kn = −me
(
π2 + [Lned ]2

)

[Nc�t]2 , βn = −2me [Lned ]

[Nc�t]
. (5)

kn is the stiffness of the spring and βn the damping coefficient of the dashpot. The nu-
merical collision duration corresponds to Nc fluid time steps: Nc�t. The spring-dashpot repre-
sentation of particle-particle collision comes from the Hertz-Mindlin theory of elastic contact.
Equation (4) is a linearized model and has the advantage to give an analytic expression28 for βn

for a dry inelastic collision ed = exp(−βntn/2me) where tn = Nc�t is the contact time. Therefore,
the physical properties of the solid (Young modulus, Poisson coefficient) are lumped in the dashpot
coefficient. The value of kn fixes the duration of the collision. It comes from a compromise between
the computational cost (if the contact time is too short CPU overhead will be huge due to very small
�t) and the physics of the suspension flow. Granular flows29 are well represented when the collision
time is small compared to flow characteristic time scales (either collective or single particle dynam-
ics). The collision time has to be at least one order of magnitude lower than the shortest time scale
of the suspension flow dynamics. Therefore, Nc has to be selected as small as possible. Note that the
collision cannot be resolved on too few time steps, as otherwise the method becomes numerically
inaccurate (dry collision will not be reproduced when Nc is too small). The determination of kn and
βn proceeds as follows. Based on an estimate of the relevant time scales of the particulate flow,
the collision time tn is fixed which gives the value of kn for a particular value of the dry restitution
coefficient ed (which accounts for the physical properties of the solid). Then, the dashpot parameter
βn is fixed accordingly.

III. NUMERICAL VALIDATION

The lubrication activation and deactivation region, εal and ε2, the region where the lubrication
remains constant, ε1 and the number of time steps per solid collision, Nc has to be determined. Next,
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we discuss how these parameters are selected. To test the response of the model to each parameter
variation, we first neglected the effect of long range hydrodynamic interaction yielding simplified
interaction in 1D (Eq. (6)). It is then discretized in Eqs. (7) and (8) which is similar to Lagrangian
tracking coupled to the Navier-Stokes solver

mẍ = Fl(x, ẋ) + Fs(x, ẋ), (6)

V n+1 = V n + �t

m

(
Fl(X̃ n+ 1

2 , Ṽ n+ 1
2 ) + Fs(X̃ n+ 1

2 , Ṽ n+ 1
2 )

)
, (7)

Ṽ n+ 1
2 = 3

2
V n − 1

2
V n−1, X̃ n+ 1

2 = Xn + 1

2
�tV n. (8)

The time step �t has to be adapted to the lubrication gap and the typical relative velocity
V0. For the simulation of colliding particles, we limited the time step to �t < 0.2 εal R

V0
. In complex

situations, such as turbulent flows, the time step will be evaluated by comparing this constraint to
numerical stability criterion. The use of quasi-static lubrication theory requires two assumptions:
low Reynolds number within the gap and momentum diffusive time scale much smaller than the
time step. Both assumptions lead to the condition St < O(ρ∗ε−1) where ρ* stands for the ratio of
particle to fluid density. The condition is fulfilled over a wide range of impact Stokes numbers for
particles or droplets in air. It is more restrictive for liquid-solid suspensions. When the lubrication
force is activated, we are surely on the upper bound of lubrication theory validity (εal = 0.1 would
restrict the simulations to St < 3.5) but very rapidly when ε < 0.01 the limit on impact St number
spans all the range of behaviors from St � 1 (no rebound) to St ∼ 400 corresponding to e/ed = 0.9.

IV. NUMERICAL TEST

Extensive testing has been carried out and the following conclusions are drawn:

� If Nc < 8, the dry collision corresponding to high Stokes number is not well reproduced. So,
Nc = 8 has been chosen to keep the solid collision time as short as possible. Higher values can
be used with an increased computational cost and no significant enhancement of the reliability
of the results.

� The lubrication activation distance εal modifies the collision total time although it does not
change significantly the restitution coefficient over the range 0.25 > εal > 0.03. εal = �x

R is
suitable for the simulation of finite size particles with R

�x ranging from 4 to 15 depending on
the flow structure at the particle scale. In our case, R

�x = 8 yields εal = 0.125.
� ε1 accounts for the breakdown of the analytic lubrication solution due to the effect of surface

roughness (and to a lesser extent elastic deformation). Extensive numerical tests gave a range
of appropriate values for the model to give correct results over the full range of impact Stokes
numbers. For ε1 < 10−4, the model gives unphysical behavior of the particle-wall interaction.
Above this value, the net effect of this parameter is an increase of the restitution coefficient.
ε1 = 10−3 has been selected.

� The value of ε2 accounts for the complete breakdown of lubrication after many surface rough-
ness elements have been connected with each other. Varying ε2 does not modify the restitution
coefficient. When the overlapping time is long enough, the solid-solid force dominates (see
Figure 3). The particle experiences successively fluid and solid interactions. The velocity and
forces are continuous and evolve smoothly. ε2 = −10−2 is adequate.

To test the model, we carried out simulations for the following physical parameters: a steel
particle with a diameter 3 × 10−3m and density 7780 kg m−3 is approaching the wall with different
initial velocities in a viscous fluid (density ρ f = 1000 kg m−3 and viscosity μf = 3.82 × 10−3Pa s).
The domain is large enough to prevent confinement effects.

In Fig. 4, we present our results together with simulations of Breugem24 for similar parameters.
The agreement with experiments is very good over the full range of impact Stokes number. With the
prescribed parameters, this simple model which accounts successively for long-range hydrodynamic
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FIG. 3. Comparison of the different force contributions (FS, Fl) during a collision onto a wall. V is the particle velocity.
St = 18 and εal = 0.125. The model parameters are: Nc = 8, ε1 = 10−3, and ε2 = −10−2.

interactions (by solving the Navier-Stokes equations with fully resolved particles), the short-range
lubrication effect and finally the solid-solid collision is able to reproduce particle-particle or particle-
wall collision. The dissipation of particle kinetic energy by the fluid is correctly reproduced. This
is a major effect in solid-liquid suspensions. This approach is suitable for any numerical method
handling finite size particles simulation in a viscous fluid.

Three or more particles interacting at the same time with each other is no problem. The contacts
are treated one by one and the net collision force acting on a particle is the sum of the collision
forces from each contact. The model have been used in configurations with volume fraction varying
up to 40% without any problem.

V. PARTICLE COLLISIONS IN A TURBULENT FLOW

To test the collision model under realistic conditions encountered in particle laden flows,
the response of finite size particles in isotropic homogeneous turbulence has been analyzed. Direct
numerical simulations of the Navier-Stokes equations for a tri-periodic domain have been performed.
The turbulence level is sustained by renormalization of the fluctuation intensity at each time step.30

This provides a base flow which is statistically steady although preserving the temporal and spatial
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FIG. 4. Simulations results compared to the correlation22 based on experiments. Triangles (blue online), cases presented
by Breugem24 reproduced with our numerical approach and implicit scheme. Circles, results obtained by Breugem24 with a
direct-forcing IBM. Squares, our results with a Lagrangian Volume Of Fluid tensorial penalty method.
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FIG. 5. Snapshot of 512 particles seeded in a tri-periodic cubic domain with vorticity contours in red and blue colors. The
particulate volumetric fraction is 3%.

fluctuations of the turbulent structures. The Reynolds number based on the Taylor microscale is
equal to 73 with a total resolution of 2563 grid cells. In this flow, 512 spherical particles (the solid
material is characterised by a dry coefficient ed = 0.97) have been randomly seeded (Fig. 5) and their
dynamics followed over more than ten integral time scales to get converged statistics. Following the
numerical requirements to obtain a precise representation of the particle induced perturbation and
the correct simulation of collisions, the particle diameter has been fixed to 22 Kolmogorov length
scales. The overall particle volumetric concentration is 3% which generates minor modification
of the flow statistics when gravity is neglected. The particle to fluid density ratio is one which
corresponds to Stokes numbers 26 based on the Kolmogorov time scale and 1.5 based on the large-
eddy turnover time scale (in this context the Stokes number compares the particle relaxation time to
the fluid flow time scale). For this moderate particle concentration, only binary collisions are likely
to occur. Statistics of the two-phase flow correspond to a particle agitation close to the fluid velocity

fluctuation (
u′

p

u′
f

= 0.92).

Due to the finite size of the particles and the presence of local shear and vortices, particle
collisions do occur. The characteristic time between two collisions in the domain is 100 Kolmogorov
time scales. Examples of particle trajectories highlighting the occurrence of collisions are presented
in Fig. 6.

Under the particle laden turbulence conditions we simulated, the major conclusion which can
be drawn is that including the solid-fluid model of collision reduces the effective collision coefficient
from ed = 0.97 to below 0.1 on many collisions. This is an important insight which can have dramatic
effect of the turbulent suspension dynamics.

Assuming that the mesh grid is the same for single phase and two-phase simulations, the CPU
overhead of our model will be simply related to the reduction of the time step to account for particle
collisions. The Courant–Friedrichs–Lewy criterion and the requirement of ten time steps within a
collision generates moderate CPU overhead to include particle collisions in the fluid flow solver.
Further development of the model24 will lead to a complete modelling of general rebounds including
oblique collisions, rotation, and friction (see Schäfer et al.,28 Rosa et al.,31 and Deen et al.32 for a
review in the context of fluidized beds).
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FIG. 6. Trajectories of six particles. The origin of each trajectory has been translated to coincide at the initial time. Symbols
materialize collisions with another particle of the turbulent suspension.
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