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Abstract—As with many aspects of modern life, wind now-
casting and forecasting are integral parts of aviation and Air
Traffic Management (ATM). This study investigates the use of a
Denoising Diffusion Probabilistic Model (DDPM) for nowcasting
(inpainting) and forecasting (image-to-video) of wind fields using
aircraft-derived meteorological data. The DDPM, implemented
with a U-Net backbone, demonstrated strong performance in
nowcasting tasks, outperforming previous models such as the
Lagrangian transportation-based Meteo-Particle (MP) model and
Physically Inspired Neural Network (PINN) approach with a
29% improvement in magnitude error and a 62% reduction in
directional error. The nowcasting model achieved a magnitude
error of 2.03 m/s and a directional error of 4.2°, based on 190 test
samples from late 2024. A key contribution lies in the DDPMs
ability to produce more consistent and lower-variance predictions
than prior methods. The RMSE improved on the PINN results by
29%, to 3.99 m/s. Despite these successes, forecasting proved sig-
nificantly more challenging, with no meaningful results achieved.
The study used ECMWF CERRA reanalysis data for training
and evaluated model performance with simulated aircraft tracks
on known wind fields and with real aircraft-derived data from
the The Royal Netherlands Meteorological Institute (KNMI)’s
EMADDC dataset split into model input and validation subsets.
High computational demands restricted testing capabilities, and
uncertainty quantification and severe weather conditions remain
challenging for the model.

Index Terms—wind nowcasting, diffusion model, meteorology,
wind forecasting

I. INTRODUCTION

ACCURATE weather forecasting is vital to aviation flight
planning and safety. Wind speed and direction play a

critical role among the many factors involved. They influence
decisions such as selecting optimal flight trajectories and
determining active runway usage at airports. Wind data also
supports strategic decision-making by Air Traffic Controllers
(ATCos), helping to maintain safe airspace by balancing traffic
capacity and demand [1]. This becomes especially important
during extreme weather conditions, significantly affecting air
traffic capacity. As noted by Marinescu et al., wind is a
significant source of uncertainty in both current and future
Air Traffic Management (ATM) systems [2].

Consequently, there is a high demand for accurate wind
nowcasting and forecasting, allowing Air Navigation Service
Providers (ANSPs) and airlines alike to safely and efficiently
conduct day-to-day operations.

Accurate weather forecasting is particularly challenging.
Complications arise due to the non-linear dynamic nature of

the atmosphere, introducing significant uncertainty. Variations
in measurement methods and numerical solvers, each with
strengths and weaknesses, further contribute to the complexity
[3]. State-of-the-art Numerical Weather Prediction (NWP)
models are sensitive to initial conditions, which impact the
prediction, especially as the forecast horizon increases. The
current approach is probabilistic, where an ensemble of initial
conditions slightly perturbed from measurement data is used
to quantify the uncertainty in the model [4].

Advancements in data assimilation techniques (nowcasting)
such as 4DVAR increase the accuracy of initial conditions, and
hence forecasts [5]. Data assimilation is also used to improve
representations of previous states of the atmosphere, so-called
reanalyses. Large, spatially and temporally dense, reanalysis
datasets exist, for example, the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5 dataset (1950-
present) [6]. Despite this, local real-time forecasts remain
difficult. This is precisely what airlines and ANSPs need to
make well-informed decisions1.

Local real-time, accurate forecasts require local real-time,
accurate data. To this end, meteorological conditions derived
from aircraft surveillance data can be used to initialize assim-
ilation procedures, which can then be used for forecasting.
Sun et al. have identified two main approaches: ground-
based trajectory observations and interrogated aircraft data
[7]. Both have been successfully implemented for wind field
assimilation procedures [8, 9]. These nowcasting procedures
are analogous to image inpainting, a typical application of
Deep Learning (DL).

DL has also been applied to weather forecasting. Despite
success in predicting global weather patterns, extreme weather
conditions remain problematic [10, 11]. Unlike NWP, DL
models lack uncertainty handling [11]. Although there is great
potential for combined DL and NWP approaches.

Using everyday images as an initial condition to create
semantically accurate videos has been accomplished. Diffusion
class DL models obtain the best results [12]. This technique
is hypothesized to accurately display the evolution of a wind
field in time (i.e., forecast), just as everyday images can be
extrapolated into the future in the form of a video. In this case,
each successive frame is a future state of the wind field.

1This follows from conversations with Air Traffic Control the Netherlands
(LVNL).



This study seizes the opportunity to utilize aircraft surveil-
lance data as a partially available wind field, in combination
with a state-of-the-art DL architecture, a Denoising Diffusion
Probabilistic Model (DDPM). Posed as an inpainting problem
for nowcasting (assimilation), followed by an image-to-video
forecast, the objective is to improve real-time wind field
estimation. The structure of this work is as follows. First,
Section II presents related work and necessary background
information. In Section III, the data sources for training and
inference will be described. Next, Section IV explains the
principles of the model architecture. Section V describes
the error metrics and the training and validation procedures
for nowcasting and forecasting. Section VI presents relevant
results, Section VII discusses these results, and conclusions
are made in Section VIII.

II. RELATED WORK

The current methods and the new model must be well
understood in order to apply the new model properly. They are
presented first. Notable open-source methods currently used
for weather field reconstruction with aircraft surveillance data
include the Meteo-Particle (MP) (Subsection II-A) and with a
Physically Inspired Neural Network (PINN) (Subsection II-B).
Furthermore, the state-of-the-art in generative DL methods and
their current applications will be discussed (Subsection II-C).

A. Meteo-Particle model

Sun et al.’s Meteo-Particle (MP) is a weather field recon-
struction model, based on Lagrangian transportation, using
aircraft surveillance data [7]. Particles carry information on
the state of wind and temperature through space. They are
generated at locations where measurements have been made
and propagate through space with a Gaussian random walk
model, biased by lateral wind, while decaying over time. One
can estimate information at any location within the spatial
bounds by combining the weighted states of nearby particles.

The model assumes the true states of wind and temperature
are geographically and temporally stable at a scale of tens of
kilometers and minutes, respectively. Furthermore, the burst
error rate of single-aircraft observations is assumed to be low.
This is hard to avoid, although the effects are reduced with
the addition of probabilistic measurement rejection.

Various factors influence the confidence level of an estima-
tion. These include the number of particles in the vicinity of
the target location, the mean distances between these particles
and the target location, the homogeneity of states carried
by the particles, and lastly, the strength of the particles as
determined by an aging function. The model output could be
combined with Global Forecast System (GFS) estimates in
low-confidence areas. Zhu et al. improved precision and accu-
racy by introducing a mixed evaluation index and optimizing
constant parameters and control factors [13].

The MP model can be used for short-term forecasting. A
prior is created with a short history of estimated states at the
desired location. This is a statistical model as a function of
time. A Gaussian process regressor then uses this as input.

Using various kernels (combined in summation or multiplica-
tion) that represent the properties of the system, a covariance
function can be constructed to make a forecast. Sun et al. use
a constant kernel, a squared exponential kernel, and a white
noise kernel to describe the system.

B. Physically Inspired Neural Network

Malfliet approached the same problem with a Physically
Inspired Neural Network (PINN), used for inpainting [14].
The U-net architecture (encoder/dense-blocks/decoder blocks
with skip connections [15]) was used. This research investi-
gated the added value of incorporating physical processes into
the cost function. Besides the observational loss (difference
between predicted and truth fields), continuity and vorticity
were considered.

This research’s scope excluded specific weather phenomena
such as convection, jet streams, and thunderstorms. It assumed
2D flow on isobarics, and similarly to the MP model, it
assumed stable flow geographically and temporally on the
scale of tens of kilometers and minutes, respectively.

Atmospheric flow occurs at multiple scales, which makes
the U-net architecture suitable because of its performance in
identifying features at different scales [15]. Notably, given the
problem being treated as an inpainting task, partial convolu-
tions are used to cope with the unknown values.

Similarly to the MP model, GFS data was included in the
background in addition to the aircraft measurements as input,
to assist the model. This was especially useful to guide the
model during low flight activity (i.e., nighttime) and in areas
with few measurements.

ECMWF ERA5 reanalysis data [6] and GFS [16] data were
used to train the model. These datasets contain U-component
(West-East), V-component (South-North), and geopotential
height information of distinct pressure levels [14]. Vorticity
and continuity losses were included in the loss function to
introduce awareness of physical processes, in addition to the
standard observational loss.

Malfliet’s model was validated using a portion of the sim-
ulated input as a validation sample and real flight data. In the
former, complete ERA5 reanalysis wind fields were masked
to simulate aircraft paths, with the unmasked regions used to
validate the output. In the latter, a set of aircraft-derived data
was split, with some flight tracks being used as input to the
model and others to validate the output of the model.

C. State-of-the-art Deep Learning for Content Generation

Generative Artificial Intelligence (AI) is currently one of
the most popular research topics within computer vision. Its
impact is widespread, from computer graphics to art, design,
and medical imaging [12]. In the realm of image and video
generation, diffusion models have prevailed to yield the best
results, surpassing other methods such as General Adversarial
Networks (GANS) [17, 18, 19] and auto-regressive Transform-
ers [20, 21, 22]. While commonly used to generate content
based on text input (text-to-image), these methods can also
be used for image inpainting. The application of this paper is
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inpainting; however, it is now done with wind fields instead of
everyday images. The strength of diffusion models lies in their
ability to generate semantically correct and diverse samples.

Diffusion models are a class of latent variable probabilistic
generative models. Inspired by nonequilibrium thermodynam-
ics, the algorithm involves incrementally transforming a com-
plex distribution (such as an image) into unstructured noise,
and learning to reverse this diffusion process [23]. The former
is referred to as the forward process or diffusion process
and the latter as the reverse process. Additionally, there is
a sampling procedure to generate new data.

There are three primary methods, namely, Score-based
Generative Models (SGMs), Stochastic Differential Equa-
tionss (SDEs), and Denoising Diffusion Probabilistic Models
(DDPMs). The forward process is shared between them and
is defined by a time-indexed (diffusion time) Markov chain
that incrementally adds Gaussian noise to the data following
a variance schedule [23].

SGM use a neural network trained with score matching
[24] to learn the score [25] of the logarithmic data density.
The logarithmic data density is defined as the gradient of the
log-density function at the input data point [26]. This is often
visualized as a vector field directing where the log data density
grows most [26]. With score matching, a model can be trained
to estimate the score of a probability density without the prob-
ability density itself. This is crucial because the probability
density function is intractable in complex real-world situations.
Samples are produced using annealed Langevin dynamics.
This allows the production of samples from a probability
density using the score function. To summarize this method,
data is perturbed with varying noise, and a neural network is
trained to approximate the score at each noise level. Samples
are then generated by chaining the learned score functions
together, simulating the true reverse process [12].

The Score SDE method generalizes the concept of perturb-
ing data at multiple noise levels to an infinite number of noise
scales [12]. The diffusion process is modeled as a solution to
an SDE. Samples are then generated through a reverse-time
SDE [27].

Lastly, DDPM, the chosen method, involves two Markov
chains for the forward and reverse process. The reverse pro-
cess learns transition kernels to reverse the forward process
with a neural network [12]. The two most common network
architectures are the U-Net [15] and Transformer [28]. Initially
proposed for image segmentation, the U-Net has a U-shaped
encoder-decoder architecture. The downsampling layers of the
encoder combined with skip connections to the upsampling
layers of the decoder allow the model to learn data features at
various levels. The Transformer also has an encoder-decoder
structure and includes self-attention functions. These measure
significance between all inputs regardless of spatial location
[28]. A U-Net structure is often added to Transformers to get
the benefit of both [29]. This is beyond the scope of this paper,
however. Learning is done by optimizing for the variational
lower bound. A key property of both network architectures is
that the data dimensionality is conserved between input and

output. This is necessary to preserve the dimensions of the
latents during the reverse process. Sampling is done by starting
with a random vector from the prior distribution and sampling
ancestrally through the learned transition kernels of the reverse
Markov chain, to produce an output.

III. DATA SOURCES

This chapter explains the data sources used in this work.
First, aircraft-derived meteorological data are discussed (Sub-
section III-A), followed by a description of the model training
data (Subsection III-B). These are crucial as they determine
the model’s restrictions and reveal opportunities.

A. Aircraft-Derived Meteorological Data

The source of the real-time data used to initialize the now-
casting of wind fields is aircraft-derived. Automatic Depen-
dent Surveillance-Broadcast (ADS-B) combined with Mode-S
Comm-B responses from aircraft interrogated by Secondary
Surveillance Radar (SSR) will be used to derive the meteoro-
logical data.

The ADS-B technology requires no interrogation. The in-
formation the messages contain, also in Mode-S format, is
automatically broadcast twice per second and can be received
by anyone with a (low-cost off-the-shelf) receiver [30]. Flight
states such as location, altitude, and ground speed are included.
Airspeed is not transmitted, so SSR interrogation responses
are needed. Note that here ground speed means relative speed
between the aircraft and the ground, whereas airspeed means
the relative speed between the aircraft and the surrounding air.

SSR replies are not designed to be read by entities other
than the SSR itself. Unlike ADS-B, the message contains no
information on its contents. This is because the interrogating
radar knows the target aircraft and the expected information
in the message. Using open data like this, in a way it was
not initially designed for, poses challenges in identifying the
International Civil Aviation Organization (ICAO) address of
the broadcasting aircraft [7].

A reliable way to identify the ICAO address of an aircraft is
by cross-referencing with ADS-B data, in addition to a reverse
parity check. To obtain the information in the transmission,
many checks assuming different message types must be made.
This is further elaborated upon by Sun et al. in their paper on
weather field reconstruction [7]. Measurement, transmission,
and truncation errors should not be forgotten. The truncation
of values can also lower the numerical resolution of measure-
ments [31].

While not used in this research, the open-source library,
pyModeS, can be used to handle the ADS-B and Mode-
S Comm-B transmissions [32]. The preprocessing done by
this library reduces the uncertainty caused by the potential
errors mentioned and incorrect Mode-S Comm-B message
type identification.

The ADS-B and Mode-S Comm-B supply the following
aircraft states:

• Barometric altitude
• Ground speed (GS)
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Fig. 1. Inference of wind vector from GS and TAS vectors. χa, χg , and χw

refer to the airspeed, ground speed, and wind headings, respectively. Image
taken from Sun et al. [7], https://doi.org/10.1371/journal.pone.0205029.g002

• True airspeed (TAS)
• Indicated airspeed (IAS)
• Mach number

The wind vector can be derived with knowledge of the GS and
TAS in combination with heading and track angle (Fig. 1) [7]:

−→
V wind =

−→
V GS −

−→
V TAS (1)

Since the TAS update frequency is lower than desired, TAS is
also calculated with IAS or Mach number when combined with
knowledge of temperature. The temperature can be derived
from TAS and pressure. Further details regarding inference
of meteorological conditions in this way are described by
de Leege et al. [33] and Sun et al. [7].

Barometric altitude determines if aircraft are on the same
pressure level (isobaric). Calculated with measured pressure
and International Standard Atmosphere (ISA) standard sea
level pressure [33], it is used to determine the flight level at
which an aircraft flies. Importantly, often barometric altitude
does not coincide with geometric altitude. This is because
the pressure at a geometric altitude can vary depending on
where on the globe an aircraft is. Safety is ensured using a
common reference standard (ISA) based on pressure. Aircraft
flight levels are based on this standard and will be used in this
work.

This study will use data from the European Meteorological
Aircraft Derived Data Center (EMADDC) [34]. This wind data
is derived in the same way as described earlier.

B. Model Training Data

To train the model, windfields from the ECMWFs Coper-
nicus European Regional ReAnalysis (CERRA) [35] dataset
have been used. This assimilation system has been optimized
for the European area (Fig. 2) and was chosen for its high
vertical and horizontal resolution. The horizontal grid spacing
is 5.5km, and 106 vertical (model) levels exist between the
surface and the 1 hPa pressure level. The temporal density
is 3 hours, with analyses at UTC 00, 03, 06, etc. This work
concentrates on cruise altitudes; hence, data from model levels
45 to 54 were applicable for training [36]. This corresponds
to approximately FL300 to FL400 in steps of around 10

Fig. 2. The CERRA model domain.

flight levels. The dataset contains information on U and V
wind components, temperature, and specific humidity. Given
computational constraints, specific humidity was left out of
the model to keep the model size as small as possible.

IV. DENOISING DIFFUSION PROBABILISTIC MODEL

The model aims to learn the data distribution of wind fields
and use this to generate new, semantically accurate wind fields.
The model description is divided into three parts.

The forward process is first discussed (Subsection IV-A).
During this process, the training data is perturbed with Gaus-
sian noise until it is pure Gaussian noise. This is a prerequisite
for the reverse process, the part of the model trained to
approximate the original data distribution.

Next, the reverse process, including the neural network
architecture that acts as the backbone, is explained (Subsection
IV-B). The network configuration slightly differs depending
on whether the goal is nowcasting or forecasting. During this
process, the network is trained to undo the perturbations from
the forward process.

Lastly, the sample inference procedure is discussed (Subsec-
tion IV-C). This includes how the available part of the wind
field is used to guide the generation of the complete wind field
from the learned data distribution in the nowcasting scenario.
Additionally, it includes how forecasting is done, guided by a
complete nowcast.

A. Forward Process

The forward process starts with a sample from a real data
distribution x0 ∼ q(x). The process ends with a sample
equivalent to isotropic Gaussian noise. While similar to the
encoder of a Variational Autoencoder (VAE), the forward
process only adds noise for perturbation and does not have
any trainable parameters [23]. First, the general noise addition
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process will be discussed. The rationale behind variance
scheduling during this noise addition process follows, with
a useful reparameterization discussed last.

1) Sample Noising: The initial sample, x0, is a complete
wind/temperature field. Gaussian noise is added to the sam-
ple in T steps, resulting in a sequence of noisy samples
x1, . . . ,xT . Eq. (2) describes a single noise addition step,
where βt represents the variance of the noise.

q(xt|xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
(2)

The forward process is a Markov process, meaning that the
state at each step depends only on the state at the previous
step. The state at any step T is thus described by Eq. (3).

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1) (3)

The sample x0 gradually becomes indishtinguable as t be-
comes larger. As T → ∞, the sample (xT ) becomes equivalent
to an isotropic Gaussian distribution (Fig. 3).

2) Variance Scheduling: The variance schedule, or amount
of noise added at each diffusing step, is defined by {βt ∈
(0, 1)}Tt=1. The goal of variance scheduling is threefold. The
final sample, xT , should be approximately Gaussian, too
rapid or slow signal deconstruction should be avoided, and
stable and efficient learning of the reverse process should be
facilitated.

The signal should ideally be destroyed minimally near t = 0
and t = T , with a linear dropoff in the middle. This balances
the requirement to achieve as close to pure noise as possible by
the end of the forward process, without destroying the signal
too quickly or adding too much noise when nearing t = T .
This is closely associated with the requirement for stable and
efficient learning. Let αt := 1 − βt and ᾱt := Πt

i=0αi.
αt represents how much of the signal is retained during a
step in the chain, and ᾱt represents how much of the signal
remains at any diffusion step t. With this in mind, the chosen
ᾱt schedule is cosine-based. The cosine schedule used (Eq.
4) was designed by Nichol and Dhariwal [37]. To prevent
βt from being too small near t = 0, a small offset, s, is
introduced. The value of s has been set to 0.008, as was
done by Nichol and Dhariwal. It has a linear drop-off of ᾱ in
the middle of the diffusion process, while being more subtle
near the start and end of the diffusion process (Fig. 4). In
practice, βt (βt =

ᾱt

ᾱt−1
) is clipped to be no bigger than 0.999

to prevent singularities near t = T . This balances the three
aforementioned goals.

ᾱt =
f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
· π
2

)2

(4)

3) Reparamatization: A useful property of the forward pro-
cess is that the sample xt at any arbitrary step t can be obtained
in a closed form using the so-called reparameterization trick
[38]. This writes a random variable as a deterministic function

of a noise variable. Recall αt := 1 − βt, ᾱt := Πt
i=0αi, and

let the noise ϵt−1, ϵt−2, · · · ∼ N (0, I).

xt =
√
αtxt−1 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2

= . . .

=
√
ᾱtx0 +

√
1− ᾱtϵ

(5)

q(xt|x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt)I

)
(6)

Two Gaussians are merged in line two of Eq. (5). Note
that merging two Gaussians of different variance, such as
N (0, σ2

1I) and N (0, σ2
2I) results in a new distribution de-

scribed by N (0, (σ2
1+σ2

2)I). In this case the merged standard
deviation is

√
(1− αt) + αt(1− αt−1) =

√
1− αtαt−1.

B. Reverse Process

The goal of the reverse process is to reverse the forward
process. Firstly, the theory on how this process is learned
will be elaborated upon, followed by a description of the
architecture of the neural network trained to learn according
to the theory.

1) Modeling the posterior distribution: In an ideal world,
one would sample from q(xt−1|xt), recreating the original
sample from a Gaussian noise input. Given that βt is small
enough, q(xt−1|xt) will also be Gaussian. Unfortunately,
q(xt−1|xt) needs to use the entire dataset and is intractable.
Thus, a model, pθ, of the conditional probabilities must be
learned to approximate the ideal reverse process (Eq. (7)). The
process starts at p(xT ) = N (xT ;0, I).

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t))

(7)

Together, q and p form a VAE. The Variational Lower Bound
(VLB) can be maximized as a proxy for learning how to
perfectly model the true latent posterior distribution [39]. The
definitions below can describe it [37]:

Lvlb := L0 + L1 + . . .+ LT−1 + LT (8)
L0 := − log pθ(x0|x1) (9)

Lt−1 := DKL (q(xt−1|xt,x0) ∥ pθ(xt−1|xt)) (10)
LT := DKL (q(xT |x0) ∥ p(xT )) (11)

L0 (Eq. (9)) represents the reconstruction likelihood of the
decoder from the variational distribution [39]. In other words,
this measures whether the chosen parametrization of the latents
is suitable. LT (Eq. (11)), the prior matching term, represents
how close the output of the forward process, p(xT ), is to
a standard Gaussian. It is not trainable and is zero under
our assumptions [39]. All other terms in Eq. (8) are Kull-
back–Leibler (KL) divergences between two Gaussian distri-
butions, namely pθ(xt−1|xt) is compared directly to forward
process posteriors, which are tractable when conditioned on
x0. These can be evaluated in closed form. By reparameteriz-
ing and using Bayes’ theorem, the posterior q(xt−1 | xt,x0)

5



x0 · · · xt−1 xt · · · xT

q(xt|xt−1)

Fig. 3. Depiction of the forward process of a DDPM. x0 is a sample from a real data distribution, in this case, a wind/temperature field. Gaussian noise is
added stepwise. As T → ∞, xT , the sample becomes equivalent to an isotropic Gaussian distribution. Inspired by an image from Ho et al. [23].

Fig. 4. Schedule of ᾱt, representing how much of the signal remains at any
diffusion step t, throughout the entire diffusion process. Inspired by Nichol
and Dhariwal [37].

can be calculated in terms of β̃t and µ̃t(xt,x0). They are
defined as follows [23]:

β̃t :=
1− ᾱt−1

1− ᾱt
βt (12)

µ̃t(xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (13)

q(xt−1 | xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI) (14)

Given this, the objective of Eq. (8) is a sum of terms, Lt−1.
Reparametrization (Eq. (6)) allows simple sampling from any
timestep of the forward process to estimate Lt−1 using Eq. (7)
and Eq. (14). Randomly sampling t and taking the expected
value of Lt−1 given t, x0 and ϵ, can be done to estimate Lvlb.

Various options exist to parameterize µθ(xt, t) in the prior.
It could be directly predicted with a neural network. x0

could also be predicted, using Eq. (13) to obtain µθ(xt, t).
Furthermore, ϵ (the noise) could be predicted. Eq. (5) and Eq.
(13) can then be used to derive Eq. (15), where ϵθ is a function
approximator for predicting ϵ from xt.

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(15)

Ho et al. found that this approach, to predict ϵ, works best,
particularly when combined with a reweighted loss function:

Lsimple = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
(16)

This is the Mean Squared Error (MSE) between the true and
predicted noise. The improved results are explained by the
connection with generative score matching [40].

Currently, there is no learning signal for Σθ(xt, t)). The
chosen parameterization is an interpolation between σ2

t = βt

and σ2
t = β̃t in the log domain, representing the upper and

lower bounds of the variance. The former is the variance
given by q(x0) being Gaussian noise (unknown, random final
generated sample). The latter is the variance given a delta
function (deterministic final generated sample, recall Eq. (12)).
The model outputs a vector, v, with one component per
dimension. This can be turned into a variance as follows [37]:

Σθ(xt, t) = e(v log βt+(1−v) log β̃t) (17)

v is unconstrained, meaning the model could predict variances
outside the previously mentioned range. Although in practice,
this is not observed [37].

We now define a final, hybrid, objective:

Lhybrid = Lsimple + λLvlb (18)

λ is set to 0.001 to prevent Lvlb from overwhelming Lsimple.
2) Neural Network Architecture (U-Net): The choice of

neural network is heavily determined by the requirement to
have equal input and output dimensions. The U-Net is the
most common for DDPMs [41], and will also be utilized here.
The U-Net [15] has an encoder-decoder structure (contracting
path and expansive path) of blocks. The contracting path
diminishes spatial dimensions and enlarges the number of
feature channels with downsampling. Compressing the input,
each block contains a combination of convolutional layers,
group/batch normalizations, attention layers, and max-pooling
layers. After the contracting path, there is the bottleneck.
There, the sample is in its most compressed and abstracted
form. Next is the expansive path, where the spatial information
is upsampled. This path mirrors the contracting path, resulting
in the output having the same dimensions as the input. Skip
connections link encoder feature maps to the corresponding
decoder feature maps. This is crucial to the success of this
architecture. They assist in the creation of better features
and prevent gradient degradation during backpropagation [41].
The network configuration used for nowcasting was based
on Nichol and Dhariwal’s codebase (OpenAI), described in
Appendix A. The network configuration used for forecasting
was based on an adaptation by Rombach et al. [42], described
in Appendix B.
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C. Inference

Currently, the model is trained as an unconditional decoder.
Starting with Gaussian noise, it is possible to sample seman-
tically correct wind fields based on the data distribution on
which it has been trained. However, the goal is to guide
the final sample with an input. In the case of nowcasting,
this input is a partially complete wind field, and in the case
of forecasting, this is a complete nowcasted field at the 0th
time frame. The following sampling procedure, the so-called
Repaint approach of Lugmayr et al. [43], will ensure this
happens by adjusting the unconditional reverse process.

After each reverse process step, a masking procedure is
applied to condition the next reverse process step on the known
region. Let m denote a mask, which is the same size as the
input; it contains a one at every pixel location that is known,
and a zero at every unknown pixel location. The known region,
xknown
t−1 , at any reverse process step is then defined by Eq.

(19), which is deterministic. The unknown region, xunknown
t−1 , is

sampled from the model and is defined by Eq. (20). The output
of the reverse step is a combination xknown

t−1 and xunknown
t−1 , as

given by the mask, m, in Eq. (21). This procedure is illustrated
in Fig. 5.

xknown
t−1 ∼ N

(√
ᾱtx0, (1− ᾱt) I

)
(19)

xunknown
t−1 ∼ N (µθ(xt, t),Σθ(xt, t)) (20)

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1 (21)

Applying this procedure solely guides the output of the
DDPM based on the given context from the known region.
However, the surrounding unknown regions are not semanti-
cally coherent with the mask. The unknown regions are, thus,
not harmonized well enough with the known regions [43]. To
create harmony in the final output, a characteristic of a DDPM
- the aim to create structures consistent with the training
data distribution - is leveraged. The concept of resampling
allows this characteristic to be utilized optimally. Resampling
involves diffusing the output of a reverse step, xt−1, back in
the forward direction, to xt, by sampling from Eq. (2). Despite
this adding noise back to the sample, some information in
xunknown
t−1 , which was conditioned by xknown

t , is preserved in
xunknown
t . This results in a new xunknown

t that is, firstly, more
harmonized with xknown

t and, secondly, contains conditional
information from it. Despite harmonizing a single step, it will
not add to the semantic meaning of the entire reverse process.
To achieve the latter, a time horizon for resampling is defined.
This is the jump length, j. In the discussed example, j = 1.
The number of times this resampling procedure is done, per
jump length, is defined as r. In the final model, T is set to
250 timesteps, r = 10, and j = 10. The 250 timesteps indicate
that, during the inference process, given that a total of 1000
diffusion steps were taken during training, four reverse diffu-
sion steps are executed per inference timestep. This is to speed
up the inference process. Furthermore, j = 10 indicates that
ten inference timesteps are taken before resampling occurs,
and r = 10 indicates that the resampling process occurs ten
times. The result is that, starting at inference step 250, the

sample will be denoised to inference step 240. Then, it is
renoised, with the conditioning information gained, ten times
back and forth between inference steps 240 and 250, before
being denoised to inference step 230. Here it will be denoised
and noised ten times between inference steps 230 and 240,
before taking reverse steps to inference step 220, and so on.
A pseudocode for the entire inference procedure is provided
in Algorithm 1 for a situation where j = 1 and U = r. More
details on the implementation can be found in the original
paper from Lugmayr et al. [43]. This procedure is unique and
useful for this application because the mask can be anything.
The mask is not a part of the training process.

Algorithm 1 Inpainting using the RePaint approach [43].
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: for u = 1, . . . , U do
4: ϵ ∼ N (0, I) if t > 1, else ϵ = 0
5: xknown

t−1 =
√
ᾱtx0 + (1− ᾱt)ϵ

6: z ∼ N (0, I) if t > 1, else z = 0

7: xunknown
t−1 = 1√

αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz

8: xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1

9: if u < U and t > 1 then
10: xt ∼ N (

√
1− βtxt−1, βtI)

11: end if
12: end for
13: end for
14: return x0

V. NOWCASTING AND FORECASTING

The essence of the nowcasting problem is to learn a model
of the data distribution of a wind field at cruise altitude. Once
learned, samples can be generated from the model. The sample
generation can then be conditioned with the available part of
the wind fields to generate a semantically correct, harmonized,
complete wind field. The forecasting problem is similar, with
time as an extra dimension, and the mask covering (only) the
entire nowcasted frame. The domain of interest in this research
is a 528km by 528km box centered on Schiphol. This chapter
outlines the training routine for nowcasting and forecasting
(Subsection V-A). Next is the validation setup, which includes
the error metrics and the nowcasting and forecasting setup
(Subsection V-B).

A. Training Setup

Both the forecasting and nowcasting models have been
trained in two spatial dimensions due to computational con-
straints. Given the three channels, U-component wind, V-
component wind, and temperature, when nowcasting in two
spatial dimensions, it is already 3D for the computer. Adding
a third spatial dimension is equivalent to 4D computations.
In the case of forecasting, with the added time dimension, it
is equivalent to 5D. With the available computing power, it
was not possible to train the models in more than two spatial
dimensions.
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Fig. 5. Illustration of Repaint approach to conditional inference of a DDPM. At each step, the known region is sampled from the input (top), and the unknown
region is sampled from the output of the previous step (bottom). In the first reverse step, the unknown region is sampled from the Gaussian noise prior. This
figure is inspired by a figure from Lugmayr et al. [43].

1) Nowcasting Model Training: The nowcasting model was
trained on samples from the CERRA dataset. The subset used
contained 192 samples on every even day of the month in
2020, at model level 45, corresponding to FL400. The wind
is assumed to behave the same way between FL300 and
FL400. This is a necessary assumption due to computational
constraints. Training a model per flight level is not possible
within the given timeframe. See Appendix A for the sample
transformations, model parameters, and diffusion parameters.
The author found good results after 500,000 training steps.
Further training provided little benefit.

2) Forecasting Model Training: The forecasting model was
trained on a subset of the CERRA dataset containing 186 sam-
ples, each containing four frames from 12:00, 15:00, 18:00,
and 21:00 on every even day of the month in 2018, again at
model level 45 (see Paragraph V-A1). See Appendix B for
the sample transformations, model parameters, and diffusion
parameters. The author trained the model for 800,000 steps,
and no notable difference in results was observed by increasing
the number of training steps.

B. Validation Setup

First, the error metrics and the general behavior of the wind
above The Netherlands will be described, followed by the
validation setups for nowcasting and forecasting.

1) Error Metrics: Error metrics allow comparison between
this work and others.

a) Absolute Magnitude Error: The absolute magnitude
error (∆Vmag) is computed by taking the absolute difference
(Eq. (22)).

∆Vmag = |
−→
V pred −

−→
V obs| (22)

b) Absolute Direction Error: The direction error (∆θ)
can be calculated with a rearranged version of the dot product
formula (Eq. (23)).

∆θ = arccos

−→
V pred ·

−→
V obs

|
−→
V pred| · |

−→
V obs|

(23)

Fig. 6. Distributions of wind magnitude and direction of the CERRA training
dataset in the area of interest (528km by 528km box centered on Schiphol).
The magnitude of the wind in generally in the order of 10s of m/s and the
direction is almost exclusively Westerly (from West to East).

c) Root-Mean Square Error (RMSE): The Root-Mean
Square Error (RMSE) can be determined by Eq. (24). It
combines the wind field’s magnitude and direction error in
one metric.

RMSE =

√
Σ[(upred − uobs)2 + (vpred − vobs)2]

nobs
(24)

2) Behavior of Wind Above The Netherlands: The absolute
magnitude error and absolute direction error metrics can be
put into context by the distributions of the magnitude and the
direction of representative wind conditions in the domain of
interest (528km by 528km box centered on Schiphol). This
is done in Fig. 6 with the entire CERRA training dataset.
Regarding wind magnitude, it is generally in the order of 10s
of m/s. With occasional locations where the wind is less than
5 m/s, the most common conditions are between 5 m/s and 40
m/s. Sometimes, the magnitude increases above 50 m/s, but
this is uncommon. Regarding the wind direction, it is almost
exclusively Westerly (from West to East), nearly always re-
maining between a North-Westerly and South-Westerly wind.
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Fig. 7. An example of the U-component of a complete wind field from the
CERRA dataset (left) and the input to the model (right). The input to the
model is the Ground Truth wind field masked with real aircraft trajectories.

3) Nowcasting Validation: The nowcasting model was val-
idated in two ways. First, a mask based on real aircraft paths
was used over a complete reanalysis wind field. The model
output was then compared to the entire unmasked wind field.
Second, data derived from aircraft measurements was split
into model input and validation sets. A nowcast was done
with the input set, and the model output was compared to
the validation set at locations where the validation set was
present. Both methods utilized the sample aircraft trajectory
dataset (EMADDC). The first method only used the flight
paths, whereas the second used the wind/temperature data
derived from the aircraft measurements. The aircraft trajectory
set came from between approximately FL362 and FL372, from
15:00 to 15:15, in January or February 2024. The goal was
to use data from all aircraft climbing to or at FL370. This
is generally the flight level where most aircraft observations
are available [14]. The time of day was chosen arbitrarily to
represent daytime flight activity. The period was selected based
on the most recent available EMADDC data.

a) Using Reanalysis Data: Using 190 wind fields from
the 2019 CERRA dataset, yet unseen by the model, in com-
bination with real aircraft flight paths to create a mask, the
model was validated. The masks were based on a random
element of the set of real aircraft trajectories mentioned above.
Fig. 7 visualizes an example of this. The remaining masks are
in Appendix C. The model’s output is a complete windfield
and was compared to the entire ground truth field using both
RMSE and absolute magnitude/direction error.

b) Using Aircraft Measurements: The model was also
validated with 190 samples at 15:00 from July to December
2024, and splitting this into model input and validation subsets
(Fig. 8). The input subset consisted of 80% of the flights
in a trajectory set, where the remaining 20% was used for
validation. The input subset was fed into the model to generate
a complete nowcast, and the output was compared at locations
where the validation subset had a value with both RMSE and
absolute magnitude/direction error.

4) Forecasting Validation: The forecasting model was val-
idated using an input of the same description as the training
data, but unseen to the model. The validation data was

Fig. 8. An example of the model input (green) and validation (orange) subsets
from a complete EMADDC sample window.

taken from the period January and February 2024. In this
forecasting case, the mask is the first frame of the series.
The forecasted frames of the output were compared to the
ground truth CERRA frames using both RMSE and absolute
magnitude/direction error.

VI. RESULTS

This section will present the results. First, nowcasting
results will be presented with reanalysis data and aircraft
measurements (Subsection VI-A). Second, forecasting results
will be presented with reanalysis data (Subsection VI-B).

A. Nowcasting Results

The nowcasting model was sampled 190 times with each
method. The error metrics discussed only measure results
for unmasked areas. The average magnitude error was 2.91
m/s for the reanalysis method and 2.03 m/s for the aircraft
measurement split method. Fig. 9 shows boxplots of these
distributions. The average directional error was 11.3° for the
reanalysis method and 4.3° for the aircraft measurement split
method. Fig. 10 shows boxplots of these distributions.

To put the outliers into perspective, within the area of inter-
est, the training dataset showed magnitudes generally between
5 m/s and 40 m/s and directions within a 90° range. This
indicates that occasionally the model predicts a magnitude and
direction potentially on the opposite extreme of the distribution
of common wind behavior.

Furthermore, the average RMSE was 4.94 m/s and 3.99 m/s,
respectively. The reanalysis data method displaying a higher
RMSE is attributed to the fact that the validation pixels are
on average much further from the mask pixels than with the
aircraft data split method. This is because generally aircraft
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Fig. 9. Boxplot showing nowcasting magnitude error results. The results were
based on 190 samples using the reanalysis data method (left) and 190 samples
using the aircraft measurement split method (right).

Fig. 10. Boxplot showing nowcasting directional error results. The results
were based on 190 samples using the reanalysis data method (left) and 190
samples using the aircraft measurement split method (right). Outliers above
90° have been removed from the plot for readability.

paths cluster in specific areas. Some of these paths are masks,
and others are validation pixels. Previous work, namely the
MP model [7] and the PINN [14], show an average magnitude
error of 4.78 m/s and 2.85 m/s, respectively, and an average
directional error of 17.3° and 11.2°, respectively. The DDPM
improves on the best of these (PINN) by 29% and 62% for
magnitude and directional error, respectively, when using the
results from the aircraft measurement data method. The results
from the aircraft measurement data validation method are used
because it is the same validation method as used by Malfliet
with the PINN.

Fig. 11 shows an example of a single realization of the
model with CERRA validation data. This figure illustrates how
errors are distributed within the domain, depending on the
available flight measurements. The top right of the domain
has few measurements, and this is also where the magnitude
error is the highest. Furthermore, in areas of rapid changes of
magnitude, as seen in the center of the top half of the ground
truth, the model struggles.

Experiments with 5x ensemble nowcasting were also per-
formed; these produced better results than single realizations.
Despite this, the author concluded that using an ensemble,
firstly, removed too much detail from the output, and secondly,
could not be fairly evaluated as an ensemble average well-
suited to the available error metrics. This topic is elaborated

upon in Appendix D.

B. Forecasting Results

The forecasting model was sampled 50 times using the
reanalysis data method. The error metrics discussed only
measure results for unmasked areas. The average magnitude
and directional errors at the various forecasting horizons
are presented in Table I. Boxplots are presented, showing
the distributions of the magnitude (Fig. 12) and directional
(Fig. 13) errors at the various forecasting horizons.

Despite being able to produce coherent and semantically
correct wind fields, the forecasting model was unsuccessful
in making useful predictions. The average magnitude error,
directional error, and RMSE are high and are the same across
all forecasting horizons. Given the distribution of the wind
magnitude and direction (Subsubsection V-B2), these averages
suggest that the model output is no better than a guess within
the range of the most common conditions, around the mean
of the input. This is supported by the fact that the error does
not increase with forecasting horizon, which is expected.

The development of errors within the domain of the fore-
casting model is less clear than for nowcasting. Illustrated in
Fig. 17 of Appendix E, the model struggles to be conditioned
by the input (nowcast). This behavior is suggestive that the
mean of the input conditions the output well, but the details
are not utilized.

Table I
Forecasting errors using the reanalysis data method at various time horizons.

Forecasting horizon (hours) 3 6 9

Magnitude error (m/s) 8.10 8.11 8.10
Directional error (°) 35.93 35.98 36.04
RMSE (m/s) 11.27 10.76 10.29

VII. DISCUSSION

Paramount to safety and efficiency in ATM, this work
aimed to employ aircraft surveillance data in combination
with a Denoising Diffusion Probabilistic Model (DDPM) for
the nowcasting (inpainting) and forecasting (image-to-video)
of wind fields. With the available data sources (Section III),
a DDPM (Section IV) was applied to both the nowcasting
and forecasting problems (Section V). The model was tested
and showed successful results when nowcasting, but was
unsuccessful in the forecasting task.

The assumptions made in this work are discussed in Sub-
section VII-A. Subsequently, the nowcasting results will be
examined (Subsection VII-B), followed by the forecasting re-
sults (Subsection VII-C). Lastly, recommendations for further
research are provided (Subsection VII-D).

A. Assumptions Underlying the Model’s Application

The necessary assumptions will be presented to clarify the
context in which the results of this research apply. This list
does not include model architecture-level assumptions as they
are not relevant to the application.
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Fig. 11. Wind magnitude plots of a single realization of the nowcasting model. From left to right, the ground truth, the masked ground truth (the model
input), the model output (sample), and the magnitude error.

Fig. 12. Boxplots showing the forecasting magnitude error results, sampled 50
times. From left to right, the distributions of the error at forecasting horizons
of 3, 6, and 9 hours.

Fig. 13. Boxplots showing the forecasting directional error results, sampled 50
times. From left to right, the distributions of the error at forecasting horizons
of 3, 6, and 9 hours.

1) 2-Dimensional flow on constant pressure levels (iso-
baric): The model utilizes input data from a vertical range
of 1000ft, and outputs the predicted wind field in this vertical
range. No data from above or below is used to assist in the
prediction. Hence, no interaction is assumed, despite there
being interaction in practice. This assumption was necessary
due to computational constraints. Extending the model to three
spatial dimensions with 3D convolutions is straightforward to
implement, but requires ∼50x more compute time.

2) Stable conditions at the scale of minutes and kilometers:
The model assumes stable conditions within a 15-minute time
window at constant locations on the assimilation grid. To give
the model sufficient input data to generate reasonable results,
data derived from aircraft over these 15 minutes was needed.
The displacement of these conditions in space was limited
to within the model’s 5.5km square grid elements. Therefore,
severe weather conditions remain an issue, as is with most
other current models. In nominal flow conditions, with gradual
changes in wind magnitude and direction, this assumption has
little impact.

3) Same wind behavior between FL300 and FL400: With
the initial goal of nowcasting and forecasting in three spatial
dimensions not being achieved due to computational con-
straints, the approach for 3D nowcasting and forecasting has
been to stack 2D models on top of each other. Again, due
to computational limitations, it was not realistic to train a
2D model on each model level in the dataset. Therefore, the
assumption was made that the wind’s behavior is the same at
all cruise altitudes. This allowed the use of one 2D model for
all of the isobarics.

B. Nowcasting Discussion

The nowcasting implementation of the DDPM demonstrated
notable improvements over existing wind field nowcasting
methods. All results are presented in Subsection VI-A. This
subsection offers possible explanations for these results.

The model’s accuracy is highly dependent on the mask
coverage. Results showed that in regions with dense aircraft
measurements, performance was strong and the model effec-
tively captured the complexity of the wind field. Conversely,
in areas with sparse mask coverage, errors increased rapidly as
the distance from known wind conditions grew. Small clusters
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of known pixels, typically caused by aircraft climbing through
the FL of interest, do not provide sufficient conditioning.
Instead, a wider spatial distribution of known pixels, such as
those from an aircraft cruising at the relevant FL, is necessary
to guide the model toward an accurate reconstruction of the
complete wind field. This is illustrated in Fig. 11.

In conditions involving convergence or divergence, where
abrupt changes in wind magnitude and direction occur, the
availability of sufficient input data becomes critical. These
complex scenarios are underrepresented in the training data,
as they are rare compared to the prevailing Westerly winds
over Europe. This highlights a key limitation of using deep
learning: functioning as a black-box model. Modifying it to
better capture rare phenomena requires altering the training
dataset itself. This limitation also applies to the PINN and is
a broader characteristic of this class of predictive models.

Moreover, for any given input, multiple semantically valid
wind field completions may exist. A DDPM generates different
realizations with each sampling, based on its learned represen-
tation of the data distribution. This behavior is analogous to
traditional image inpainting, where a partially known image
may correspond to many plausible completions. Consequently,
the model cannot express a level of confidence in its predic-
tions.

The RMSE of the DDPM is significantly lower than that
of both the MP model and the PINN. The author considers
this the primary contribution of this work. The lower RMSE
indicates a reduced spread in the prediction error. While the
inability of DL-based models to quantify uncertainty remains a
drawback, the consistently lower variance in the error implies
a low maximum error, which can serve as a basis for assessing
the model’s suitability for operational use.

C. Forecasting Discussion

The forecasting implementation of the DDPM failed to
produce sensible results. The predicted wind fields were se-
mantically correct, but incoherent with the truth fields. This
indicates that the model was unable to learn the temporal evo-
lution of the wind field distribution. Although the exact reason
for this failure is unknown, several potential explanations are
considered.

Incorporating the time dimension into the model archi-
tecture involved switching to 3D convolutions and appropri-
ately handling time during the upsampling and downsampling
stages. Aside from increasing computational costs, adding an
extra dimension may have introduced sufficient complexity to
the data distribution, making it too difficult for the model to
learn effectively.

Forecasting horizons of 3, 6, and 9 hours were selected
based on the availability of CERRA data. However, these time
intervals may be too long for the model to handle accurately.
The further into the future a forecast attempts to reach, the
more possible future states can arise from a given nowcast
input. Without guidance from physics and with only a limited
training distribution, the model may struggle to converge on a
meaningful distribution of the wind. This is supported by the

results: both the magnitude and variance errors are high but
relatively constant, suggesting that the input exerts minimal
influence on the output.

One possible improvement is to evaluate the forecasting
model at shorter time horizons, similar to the aircraft-based
validation used for nowcasting. For example, using partial
future wind fields from aircraft measurements to compute
forecast errors could provide insight into model performance.
However, obtaining suitable training data for this approach
is challenging. The only feasible option may be to use the
nowcasting model to generate synthetic training data for the
forecasting model. While this is technically viable, it intro-
duces the risk of model collapse, as training a model on its
own generated outputs can quickly degrade performance.

D. Recommendations for Future Work

This research has started investigating the application oppor-
tunities of a DDPM to wind nowcasting and forecasting. There
are several promising opportunities the author recommends be
explored in future research.

A significant assumption is the exclusion of vertical in-
teraction between model layers. This is not representative of
the atmosphere, and much could be gained in exploring the
effects of these interactions. Given the immense computational
requirements of the necessary 3D convolutions, the author
recommends incorporating information from the directly ver-
tically adjacent model levels when generating a wind field.
Modeling all desired levels at once is ideal, but it is not
realistic.

Similar model architectures could be explored, such as
using a Transformer [28] as the neural network backbone.
Furthermore, an Latent Diffusion Model (LDM) [44] could
be used to reduce computational requirements. These models
incorporate an encoder and decoder around the DDPM, such
that the noising and denoising processes are performed in
latent space rather than directly in pixel space, as is the case
with conventional DDPMs. A limitation of this approach is
that it further reduces the interpretability of the model’s inter-
mediate representations, which are already inherently difficult
to understand.

Using aircraft-derived data as input to a model has draw-
backs at times of low aviation activity. Although the current
application is aviation, meaning that the model is most needed
at times of high aviation activity, weather modeling has a
much broader scope. Incorporating existing NWP data could
significantly improve results for other deployments. The au-
thor recommends exploring the convex combination (weighted
average) with a NWP-derived background field during the
inference process to guide the model output.

The model is trained to generate samples based on the data
distribution of its training set. Currently, the model struggles
with severe weather conditions. These are inherently less
common than nominal conditions and, therefore, less common
in the training data distribution. Training the model on only
severe conditions could be beneficial when it is clear from the
aircraft-derived data that the conditions are not nominal.
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The scope of this study is cruise altitudes. This is a good
starting point, as this is where most of the aircraft-derived
data resides. Nevertheless, the applications of DDPMs in the
aviation and ATM sectors are numerous. Combining aircraft-
derived measurements with stationary ground sensors provides
prospects for wind estimation in and around airports. This
has applications for determining active runway use and safety
considerations on the apron related to weather.

VIII. CONCLUSION

The purpose of this study was to explore the effectiveness of
using a Denoising Diffusion Probabilistic Model (DDPM) for
the nowcasting (inpainting) and forecasting (image-to-video)
of wind fields when using aircraft-derived meteorological data.
The experiments demonstrated that a DDPM with a U-Net
neural network backbone is useful for nowcasting wind fields,
given a reasonable set of aircraft-derived meteorological data
as a starting point. Forecasting remains challenging, and the
author could not produce sensible results. Nowcasting results
of previous studies’, including the Lagrangian transportation-
based Meteo-Particle (MP) model [7] and the Physically
Inspired Neural Network (PINN) [14], have been improved
upon - 29% in magnitude error and 62% in directional error
when compared to the previous best (PINN), with the same
validation method. The nowcasting magnitude error is 2.03
m/s, and the directional error is 4.2° when using a test
set of 190 samples at 15:00 from July to December 2024.
The primary contribution of the DDPM lies in its ability
to produce results with significantly reduced error variance,
demonstrating markedly tighter error distributions compared
to prior approaches. This was established by improving the
RMSE of the PINN by 29% to 3.99 m/s.

The ECMWFs CERRA reanalysis dataset was used for
training both the nowcasting and forecasting models. Sim-
ulation of real-world nowcasting performance was done by
masking (previously unseen) complete CERRA windfields
with real aircraft tracks, and comparing the model output to the
true wind field. Additionally, validation was done by splitting
real aircraft-derived meteorological data into a model input
set and an output validation set. The DDPM can successfully
reconstruct wind fields, given a reasonable amount of input
data equivalent to typical daytime aircraft activity in a 528km
by 528km square centered around Schiphol.

The results of this research contribute to the rapidly expand-
ing field of generative Deep Learning (DL) model applications.
It has demonstrated that DDPMs can also be applied in fields
seemingly unrelated to the conventional use of daily image
and video generation. However, limitations of this work exist.
First, the immense computational power required to train the
model restricts testing potential. Second, the issue of handling
converging and diverging weather conditions and quantifying
confidence in the accuracy of the generated wind fields re-
mains unsolved. Lastly, generating reasonable forecasts is yet
to be successfully implemented.

Regarding future research, the author has several recom-
mendations. The extension into the vertical spatial dimension

could provide performance improvements. Exploring other
variants of the DDPM could reveal architectures better suited
to this specific application. Moreover, the inclusion of NWP
assimilations to guide the inference process in low-observed
areas could broaden the scope of its applications. Similarly,
training the model on severe weather conditions is expected
to improve its performance in this domain. The author sees
many opportunities for this model class in the ATM sector
beyond wind field generation at cruise altitudes. Investigating
the usefulness of applications at lower altitudes and closer to
airports could provide efficiency and safety benefits for runway
and apron operations.
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APPENDIX

A. Nowcasting Training, Model, and Diffusion Parameters

Table II
An overview of all of the nowcasting parameters and settings used to get the presented results.

Variable Value Description
Training Parameters
Random horizontal flip p=0.5 -
Random vertical flip p=0.5 -
Random rotation between 0°and 30° -
Center crop to 96x96 pixels2 -
Learning rate (σ) 2e-5 -
Batch size 1 -
Exponential moving aver-
age (EMA) weight

0.9999 Defines the rate at which past weights of the network are maintained. A value of nearly 1 means
that past weights are gradually forgotten.

Weight decay 0.1 L2 regularization strength, preventing overfitting by discouraging large weights in the network.
Diffusion parameters
Number of diffusion steps 1000 This is the number of times that noise is added/removed during the forward/backward process.
Number of timesteps 250 This is the number of steps taken in the training/inference process. With 1000 diffusion steps,

a quarter of the diffusion steps were evaluated. This speeds up training and inference time.
Model parameters
Image size 3x96x96 96x96 image with 3 channels (U-component, V-component and Temperature).
Number of channels 256 This determines the base number of feature channels in the U-Net.
Number of heads 4 This specifies the number of attention heads in the self-attention layers (both down- and

upsampling sides) of the U-Net.
Number of residual blocks 2 Indicates the number of residual blocks at each level of the U-Net.
Number of channels per
head

64 This is determined by dividing the number of channels by the number of heads.

Attention resolutions 12,6 Specifies at which spatial resolutions the model applies attention blocks.
Channel multiplier 1,2,3,4 Specifies the feature channel multiplier at each level of the U-net. Given we have 256 channels,

the levels would have 256, 256, 512, etc. channels.
Dropout 0.1 This controls the dropout rate (regularization). 0.1 indicates that during each forward pass during

training, 10% of the neurons will be set to 0.
Gradient checkpointing true This is a GPU memory-saving technique. It slows training time because not all intermediate

activations needed for backpropagation are saved. These activations are recalculated during
backpropagation. This was necessary given the available hardware.

ResBlock UpDown true Determines whether upsampling and downsampling are integrated into the residual blocks (true)
or handled by separate layers (false).

Scale Shift Normalization true Determines whether to apply learned scaling and shifting of the normalized output (after
normalizing the activations within a layer).

Inference Parameters
Jump length (j) 10 The resampling time horizon. This indicates the number of inference time steps across which

resampling occurs (i.e., the total amount of renoising inference time steps ).
Number of resamples per
resampling procedure (r)

10 The number of re-noising steps within the resampling jump length. It must be smaller than the
jump length, and the jump length must be divisible by it.

B. Forecasting Training, Model, and Diffusion Parameters

Table III
An overview of all of the forecasting parameters and settings used to get the presented results. Only additions and changes to values as compared to the

nowcasting table (Tab. A.II).

Variable Value Description
Model parameters
Image size 3x4x96x96 There are four tensors in the time dimension. The current winf field (which is the input) and

three future realizations.
Seq. factor - Addition of a variable in the up- and downsampling blocks of the U-Net to indicate to the model

that there is a difference between each of the four frames, and that the sequence is important.

2Achieving the desired 528x528 km grid, given the CERRA data’s 5.5km grid spacing.
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C. Nowcasting Masks for Sampling with Reanalysis Data

Fig. 14. The set of masks used when sampling the nowcasting model with the reanalysis dataset. For each sample, a random mask from this set is used.
They are intended to be representative of nominal daytime flight activity.

D. Ensemble Nowcasting Results

The nowcasting model has also been sampled as an ensemble with the CERRA dataset. With this approach, the model was sampled five times
with the same input (i.e., the same ground truth and mask), and the average of each pixel value was taken. In the context of conventional
NWP, ensembles are made by perturbing the inputs of a model to various degrees and taking the average of the results. In the context of
a DDPM, this initial perturbation is not done because the model’s output is different every time. This is due to the nature of the model
architecture.
Fig. 15 and Fig. 16 show the wind magnitude output of a single realization of the model and a five-member ensemble realization. The
ensemble wind fields are significantly smoothed as compared to the single realizations. Tab. IV and Tab. V display the ensemble errors in
comparison to the single realization errors for the reanalysis data and aircraft measurement validation methods, respectively. The ensemble
method shows a notable difference, especially with the reanalysis data method. It may be the case that the chosen error metrics are well-suited
to the inherent side effects of averaging. The author has decided not to use this ensemble method because the goal of implementing a model
as complex as a DDPM is to capture the details of the wind’s behavior. By taking the average of multiple model realizations, these fine
details are lost. This is also noticeable when comparing Fig. 15 and Fig. 16. Furthermore, no relevant suitable alternative error metrics have
been found to compare the methods more fairly.

Table IV
Average nowcasting errors when sampling the model once as compared to a five-member ensemble with the CERRA reanalysis data method.

Av. Magnitude Av. Directional RMSE
error (m/s) error (°)

1x Sample 2.91 11.3 4.94
5x Ensemble 2.24 8.5 3.72

Table V
Average nowcasting errors when sampling the model once as compared to a five-member ensemble with the aircraft measurement data method.

Av. Magnitude Av. Directional RMSE
error (m/s) error (°)

1x Sample 2.03 4.4 3.99
5x Ensemble 1.92 4.3 3.84
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Fig. 15. Wind magnitude output of a single model realization.

Fig. 16. Wind magnitude output of an ensemble of 5 model realizations.
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E. Forecasting Magnitude Error Example

Fig. 17. Wind magnitude plots of a single realization of the forecasting model. From left to right, the ground truth nowcast (model input), followed by the
3-hour, 6-hour, and 9-hour forecasts. The top row is the ground truth for each of the forecasting horizons, the middle row is the model realization, and the
bottom row is the magnitude error. The nowcast magnitude error is zero everywhere because it is the input to the model and assumed to be correct.
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1 Introduction

The weather is unique because it affects everyone - all the time. Good forecasting can save lives and
poor forecasting can cost a lot of money (World Meteorological Organization, 2023). The wind plays
a large role in weather forecasting, especially in the aviation industry. It is a dominant source of
uncertainty in the current and future paradigm of Air Traffic Management (ATM) (Marinescu et al.,
2022), influencing almost all aspects of operations. This is not only the case for aviation. Constant
development in this sector is essential for facilitating a sustainable future in all domains.

Wind fields are important in determining optimal trajectories and weather risk, as well as active run-
way use at airports, in addition to contributing to Air Traffic Controller (ATCo) decision-making to
keep airspaces manageable, and hence safe (Steiner et al., 2010). Within the commercial aviation
industry, there is a high demand for accurate wind now- and forecasting, allowing air traffic service
providers (ANSPs) and airlines alike to safely and efficiently conduct day-to-day operations.

Accurate wind field generation is particularly challenging due to the non-linear dynamic nature of the
atmosphere, in addition to uncertainties, and variety in measurement methods as well as numerical
solvers (Martin Leutbecher, 2007). Advancements have been, and are constantly being made in an
effort to increase the accuracy of forecasts (Bauer et al., 2015). Often, however, these forecasts lack
local real-time accuracy. This is exactly what is needed by airlines and ANSPs to make well-informed
decisions. This follows from conversations with Air Traffic Control the Netherlands (LVNL).

To address this problem, two-dimensional (2D) wind field reconstruction models have been developed.
There is a Monte Carlo method, the so-called Meteo-Particle (MP) model, which propagates particles
through space with a Gaussian random walk model (Sun et al., 2018). The wind can then be estimated
by interpolating surrounding particles. Furthermore, a physically inspired cost function U-net neural
network has also been applied for inpainting partially available wind fields (Malfliet, 2023). These
methods both struggled in converging or diverging wind conditions and in less observed areas.

Machine learning (ML) has also been applied with purely data-driven approaches (Keisler, 2022; Lam
et al., 2023). Success has been observed in predicting global weather patterns, struggling with ex-
treme weather conditions. A potential solution to this in the future is to deviate from the common
minimization of Root Mean Squared Error (RMSE) scoring method (Maskell, 2023). When compared
to state-of-the-art Numerical Weather Prediction (NWP) models, ML models lack in uncertainty han-
dling (Lam et al., 2023). Despite this, there is great potential for combined ML and NWP approaches.

Additional research in this domain is needed to investigate real-time spatially dense machine learning
techniques for the reconstruction of wind fields. This project will target this with a diffusion probabilis-
tic model using aircraft surveillance data, in three dimensions (3D), applied to the aviation industry.
If successful, this work has the potential to be applied further in a wide range of disciplines, such as
general weather forecasting.
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2 Literature Study

To gain more knowledge on the problem, as well as explore current advancements and challenges in the
domain of wind and weather prediction, a literature study has been done on multiple relevant topics.
The starting point was previous work with similar research objectives. This was followed by a study
of the past and current state of numerical weather prediction. Lastly, machine learning methods in
weather prediction were analyzed and the link to other computer vision machine learning methods was
made, posing the author with an opportunity for the current research.

2.1 Previous Work on Wind Field Reconstruction

This section will concentrate on the previous work done in an effort to improve wind field reconstruction
capabilities at high altitudes. Firstly, the data source and how the data is obtained will be explained,
followed by an explanation of the Meteo-Particle model (Sun et al., 2018) and a physically inspired
neural network approach (Malfliet, 2023).

2.1.1 Data from aircraft for Partial Wind Fields

Obtaining the data
In the past, multiple methods for extracting wind data from aircraft have been devised. One such
method was observing the trajectories of aircraft from the ground and estimating the wind velocity by
combining Bayesian filtering and ground speed. This method requires assumptions of quasi-constant
wind velocity and constant aircraft airspeed during maneuvers. This idea was first developed by Hol-
lister et al., 1989 and was later extended (Delahaye et al., 2003, D. Delahaye and Puechmorel, 2009).

Another method, applied by The Royal Netherlands Meteorological Institute (KNMI), uses Mode-S to
construct wind vectors and temperature observations (De Haan, 2011). This showed good quality wind
observations, comparable to the poorly available Aircraft Meteorological Data Relay (AMDAR) obser-
vations, after correction and calibration. However, the temperature observations, even after correction
were insufficient. Further research managed to further improve the results (De Haan & Stoffelen, 2012).

Since then, data gathered by interrogating aircraft has become the norm for estimating local wind (and
other weather) conditions through Automatic Dependent Surveillance-Broadcast (ADS-B) (de Leege
et al., 2013, De Jong et al., 2014). Important to note is that ADS-B data was not originally intended
for this use. This will be discussed further later in this section.

Currently, as is also used by Sun et al., 2018, the best option is to combine ADS-B and Mode-S data
sources to infer the wind at locations where aircraft are flying. ADS-B enabled aircraft broadcast
information including GPS coordinates, barometric altitude, and ground speed at a near-constant rate
(de Leege et al., 2013). Mode-S is gathered in the form of Comm-B messages when a Secondary
Surveillance Radar (SSR) interrogates an aircraft. Included in this down-link includes parameters
such as aircraft position, velocity, operational parameters, and meteorological data. It is however
challenging to interpret these Mode-S Comm-B replies. This is because the ICAO address of the
originating aircraft is not directly known with only the Comm-B message. Additionally challenges in
acquiring the content of the message and the quality of the content (certainty of values) exist. Sun
et al., 2018 solve these issues as follows.

• The ICAO address can be obtained by performing a reverse parity check of the Comm-B messages
and cross-referencing the resulting addresses with ADS-B, which is always correct if the message
is not corrupt.

• The content of the messages, or BDS code, contains status bits that indicate whether or not spe-
cific aircraft parameters are available in the message. Multiple checks assuming various message
times need to be performed since messages can match multiple BDS codes.
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• Lastly, the quality of the messages is checked, which may be altered due to faulty aircraft
measurements or transmission errors. Messages can also have a lower resolution due to the
truncation of values (De Haan, 2011). This process occurs after signal processing and can be
done with the PyModeS library, which also handles ADS-B decoding (Sun et al., 2020).

Deriving wind speed and temperature
With the now decoded ADS-B and Mode-S Comm-B reply data, the aircraft state can be used to derive
wind speed and temperature. Despite not being intended for this purpose, the computed values are
accurate. The following method is used by Sun et al., 2018 to do these computations. Note that only
the computations for Mach numbers above 0.3 are shown, as these are the most relevant conditions
for this research.

ADS-B provides:

• Barometric altitude

• Ground speed

And Mode-S Comm-B messages provide:

• True airspeed (TAS) (BDS 5,0)

• Mach number (BDS 7,0)

The final goal of the calculations is to get the TAS and the temperature. Although the TAS can be
directly read from Mode-S, the update rate of BDS 5,0 is low, hence it is also calculated with the
temperature and Mach number. Mach number (BDS 7,0) has a higher update rate. This is not an
issue since the temperature was desired anyway, and is assumed to be relatively constant within the
update intervals. Given ISA conditions Equation 1 is used to calculate the temperature and Equation 2
is then used to calculate the TAS at an increased update rate. a0, the speed of sound at sea level, is
340.29ms−1 and T0, the temperature at sea level, is 288.15K.

T =
V 2
tas,50 · T0

M2 · a20
(1)

Vtas = M · a0
√

T

T0
(2)

Combining the resulting TAS with the heading, ground speed, and tack angle the wind vector can be
obtained with Equation 3. This is based on Figure 1 (Sun et al., 2018).

−→
Vw =

−→
Vgs −

−−→
Vtas (3)

Figure 1: The relation between TAS, GS, and the wind vector. χg, χa and χw are track angle, aircraft
heading, and wind direction, with respect to the true north, respectively (Sun et al., 2018).
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2.1.2 Meteo-Particle Model

This subsection will describe the model proposed by Sun et al., 2018, which was designed with the
same objective in mind as that of this project, although having a different approach. Furthermore,
the additions to the model by Zhu et al., 2021 are noted.

The model itself
In the Meteo-Partical (MP) model, particles carry information on the state of wind and temperature
through space. They are generated at locations where measurements have been made and propagate
through space while decaying over time. One can infer the wind at any location within the spatial
bounds by combining the weighted states of nearby particles.

The model requires several assumptions, namely that the true states of wind and temperature are
geographically and temporally stable at the scale of tens of kilometers and minutes, respectively. Ad-
ditionally, it is assumed that the burst error rate of observations from a single aircraft is low despite the
implementation of probabilistic measurement rejection within the model. This probabilistic rejection
is based on a tolerance parameter and the state of the current wind field.

The particles carrying the desired states propagate through space with a Gaussian random walk model,
with a bias in lateral wind direction (but not in vertical wind direction). With each step, the age of
each particle is increased and resampling occurs to remove particles outside the spatial boundaries and
ensure there are more newer particles than older particles in the system.

To compute the wind at a specific location, the weighted values from neighboring particles are used.
The weights are dependent on the relative location of the particle and the distance the particle is from
its origin. When the temperature is calculated the origin altitude of the particle is additionally taken
into account. Importantly, there is no fixed grid, the domain is continuous.

When the wind and temperature fields have been reconstructed, the confidence level of estimates is
determined by a number of factors. These include the number of particles in the vicinity of the target
location, the mean distances between these particles and the target location, the homogeneity of states
carried by the particles, and lastly the strength of the particles as determined by an aging function.

Short-term forecasting
By making a statistical model as a function of time, in the form of a Gaussian process predictor, a
prior over functions is fitted over the observations. With different kernels (covariance functions), the
forecast can be derived from the prior. Sun et al., 2018 use a summation of 3 different kernels.

Further optimization of the model
Zhu et al., 2021 used the MP model as a base and improved the precision and accuracy by introducing
a mixed evaluation index, documenting periods during the day and altitudes at which the number of
aircraft is scarce, and lastly by optimizing constant parameters and control factors of the model. They
were able to slightly improve the mode and concluded that the MP model is suitable for situations
with large observation datasets.

2.1.3 Physically Inspired Neural Networks

A paper by Malfliet, 2023 introduces another method for reaching the same goals, by using a physically
inspired neural network. This paper used the data gathering and preparation as proposed by Sun et al.,
2018 for the MP model. The implementation included the use of an encoder/dense-blocks/decoder
composition with a U-net structure and skip connections, where the cost function was used to incorpo-
rate physical processes such as continuity and vorticity in addition to the observational loss (difference
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between predicted and truth fields).

To train and validate this model, ERA5 reanalysis data (Bell et al., 2021) and GFS data (National
Weather Service, 2015) were used. Noteworthy is that for training the data was split on entire aircraft
trajectories, not randomly. An exception to this was with forecasting, where data was split with time.
To assist the model where there are little or no aircraft measurements, the input was combined with
GFS data.

The resulting model showed a better representation of the wind fields than the MP model (40% mag-
nitude error decrease, 27% directional error decrease) or the GFS alone, although the contribution of
physical losses remains unclear. The effect of adding vorticity to the cost function is inconclusive, and
the effect of adding divergence is minimal. This is because these loss functions both smooth the flow
fields, which can coincidentally improve or deteriorate the results.

To produce the model, Malfliet, 2023 was required to make assumptions such as that the flow was
stable and non-turbulent and the scale of minutes and at an altitude of 10km. This means that the
model is not valid during extreme weather events, in addition to affecting the model outputs in general
converging/diverging wind conditions. Furthermore, since the model was in cartesian coordinates the
curvature of the earth was not taken into account. These assumptions are necessary to make, but
sketch the applicability of the model well.

2.2 Numerical Weather Prediction

The goal of this project is to improve upon the current system of predicting wind fields. To this end,
an understanding of the current state-of-the-art in wind field prediction, and hence general weather
prediction, algorithms is necessary. This section will summarize the traditional numerical weather pre-
diction (NWP) approach, and describe data assimilation as well as the impact of ensemble forecasts
and reanalysis datasets.

NWP methods use the Navier-Stokes equations, mass continuity (including earth rotation) with the
first law of thermodynamics and the ideal gas law to predict, in space and time, the state of wind,
pressure, density, and temperature in the atmosphere. Since the conception of the idea at the beginning
of the 20th century, the forecast skill has continually increased significantly on all scales (Bauer et al.,
2015) up to even 10 days in advance.

2.2.1 Data Assimilation and Ensemble Forecasts

Data assimilation, meaning the production of weather predictions for the current time based on earlier
observations (Jeppesen, 2017), is an important topic to investigate. The strength of this technique lies
in the use of data in a time frame as opposed to at a specific point in time (Guzzi, 2016). The source
of data can be anything from weather stations, radiosondes, satellites, ground-based radar, or even air-
craft and ships (Jeppesen, 2017). Aircraft data for assimilation will be the main topic in this subsection.

The biggest benefit of using aircraft data is that the observations are high-resolution (in space and
time), making them ideal for nowcasting and short-range forecasting up to 2-3 hours (De Haan &
Stoffelen, 2012). Ensemble weighted averages have been shown to produce good results (Kikuchi et
al., 2018). Polynomial chaos expansion-based Gaussian process regression has also promising results
(Marinescu et al., 2023). These methods perform very well near the flight paths of aircraft, which is
where the research discussed in Section 2.1 and the current research comes in intending to fill in the
areas where there are few flights.
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An important technique used in NWP data assimilation is ensemble forecasting. With a particular
set of observations, the uncertainty of a forecast can be determined by slightly perturbing the initial
conditions for separate simulation runs, creating an ensemble of many forecasts. The set of this
ensemble of forecasts represents the uncertainty in the initial conditions as well as the approximations
in the model. With that, a forecast that indicates the chance of, for example, the temperature rising
above a specific threshold, can be made as opposed to a single deterministic forecast (Jeppesen, 2020).
As will be explored later in the literature review, this is a huge advantage of NWP over machine
learning methods of forecasting weather conditions. The drawback, however, which machine learning
techniques do solve, is the large amount of computational effort and time required to make the forecasts.

2.2.2 Reanalysis datasets derived from NWP

A byproduct of many years of gathering data for NWP and the improvement of NWP methods is
the creation of large reanalysis datasets. A reanalysis in this context refers to the complete picture
of past weather and climate (Jeppesen, 2023). It is the combination of observations with past short-
range weather forecasts rerun with modern forecasting models and is made through data assimilation
(Jeppesen, 2023). This is particularly useful for training data-driven machine learning models as will
become clear in the next section.

Currently, the two most complete and high-resolution reanalysis datasets publically available are the
European Centre for Medium-Range Forecasts’s (ECMWF) ERA5 dataset (Hersbach et al., 2020)
and the U.S. National Science Foundation’s (NSF) Global Forecast System (GFS) (National Weather
Service, 2015).

2.3 Machine Learning in Weather Forecasting

In recent years applying machine learning algorithms to the topic of weather forecasting has increased
in popularity and effectiveness rapidly. Global weather forecasting has been a main topic of interest,
with local high-resolution forecasting being less common but showing potential for improvements over
traditional methods.

Graph neural networks (Lam et al., 2023, Keisler, 2022) and well as deep convolutional neural networks
(Weyn et al., 2019) are common examples of successfully implemented machine learning architectures.
These models are often much faster and have a lower computational cost (once trained), but show
mixed results. With some models claiming to perform better than current operational NWP models
in test cases (Bi et al., 2022, Lam et al., 2023) and others having potential but requiring further
development (Weyn et al., 2019, Keisler, 2022).

These fully machine learning-based methods for forecasting still rely heavily on Integrated Forecast-
ing Systems (IFS) for training and validation, as well as for initial conditions to base the forecast on
(Maskell, 2023). This is not an issue, however, it should be made clear that ML models add to the
current forecasting methods rather than replace them. Potential ways to further improve data-driven
machine learning methods is to reduce the smoothing of predictions, allowing the forecasts to predict
extremes (when the models are at their most valuable). This could be achieved by stepping away from
training models to minimize RMSE, towards a generative approach (Maskell, 2023). Additionally, the
way that ML approaches handle uncertainty is worse than NWP methods and is still in development
(Lam et al., 2023).

As identified by researchers attempting fully data-driven as well as physics-aware neural network
approaches, it has become clear that weather predictions can be made in a similar fashion to computer
vision inpainting techniques (Schweri et al., 2021, Bi et al., 2022). This is especially the case for high-
resolution local predictions such as in the scope of this project. Therefore, taking inspiration from
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other domains within machine learning, such as applying partial convolutions to image inpainting
(Liu et al., 2018) could produce good results. Diffusion probabilistic models are known for generating
image samples extremely well (Ho et al., 2020) or generating a video from an image (Wang et al.,
2024), however, they have also shown promise for image inpainting (Lugmayr et al., 2022, Saharia
et al., 2022, Corneanu et al., 2024). This machine-learning architecture will be the basis of the coming
research, applied to wind fields instead of images of daily objects and scenes.
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3 Research Question(s)

Research Objective

As a consequence of the background research the research objective is decided to be:

To contribute to the development of accurate wind field reconstruction by investigating the applications
of a diffusion probabilistic model to partially available wind fields.

This objective can be divided into three secondary objectives. The first is to gain a comprehensive
understanding of the diffusion probabilistic model and tools that can be used to achieve the desired
goals by applying them to simplified versions of the problem. The second is to extensively evaluate
the model by applying it first in 2D, then in 3D, and exploring short-term forecasting capabilities by
extending the model to 4D. The last objective is to quantify the applicability of the model in the avia-
tion industry by testing the output on Air Traffic Flow Management (ATFM) decision support tooling.

Scope

To accomplish the objectives of this project, a scope has been defined as a foundation for the research
to be conducted. The focus will lie on using aircraft surveillance data as a source, and on constructing
wind fields at altitudes where there are aircraft. This means at cruise altitudes for en route locations
and lower altitudes near airports.

Research Questions

Following the research objectives and the scope, the research questions can be set. These questions
intend to fulfill the objective within the given scope. The goal is to set a structure for the coming
research. These research questions are subject to change during the project, if necessary.

Research Question 1

How can a diffusion probabilistic model be utilized to create accurate and useful wind field
estimations based on aircraft surveillance data?

Sub-questions

1. How does the output of the model in 2D compare to current methods for wind field
reconstruction?

2. What are the implications of extending the model to 3D and how do these affect the
accuracy of the results?

3. Can the model be applied to short-term forecasting? If so, how does it compare to current
models?

Research Question 2

How does the accuracy of ATFM decision support tooling change when used with the output
of the model?
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4 Methods, tools and expected results

In the process of answering the aforementioned research questions, a brief literature review will be
completed. Subsequently, a number of methods will be used, which are introduced in this section.

Preparation for model training
When making a model designed to construct a wind field when only a part of the wind field is known,
it is clear that there is no way to validate the accuracy of the predictions without the complete wind
field. Hence, the partial wind field needs to be simulated on a dataset that is complete. The chosen
data is the ECMWF global reanalysis data. This is a suitable option because it has data for every
hour since 1940 and is easily accessible online in .grib format.

To this end, firstly a target region for which nowcasting is desired needs to be selected and the most
flown aircraft routes, commonly known as ”highways in the sky”, within this region distinguished.
Following this, complete weather reanalysis data needs to be obtained and split. For each input, there
will be a masked version, only containing wind field data at locations where aircraft fly, and a complete
wind field to compare the output against. The entire dataset will be split, with approximately 80%
for training, 10% for validation, and the last 10% for testing.

Development of diffusion model
Based on an investigation into the diffusion model architecture, the model needs to be developed and
adapted to the current application in 2D and then in 3D. The model will be written in Python, as is
common practice with ML research. The PyTorch library will utilized for its superior flexibility for
academic research. No special hardware is strictly necessary to train and run the model, given the
modest size of the problem.

The model will be validated and tested, with a cyclic process of hyperparameter tuning applied for the
best results that the model architecture can provide. It can then be directly compared to other wind
field reconstruction models currently found in the literature. This will be done on the same datasets
used to evaluate the current models (Sun et al., 2018, Malfliet, 2023). It is expected that the diffusion
model will show a lower error magnitude and variance in wind speeds and behave better in converging
and diverging wind conditions. This can be displayed with boxplots, for example.

Extension to short-term forecasting
The model will be extended into 4D, with the fourth dimension being time. Multiple methods will
be explored, as it is not possible to know beforehand which will perform best. Firstly, the model will
be trained in the same way as previously but trained to a reanalysis dataset in the future compared
to the masked input. Furthermore, as can be done with images that are converted to videos (Wang
et al., 2024), the nowcasted output may be able to be extended to forecasts.

There are currently no short-term forecasting methods that can easily be directly compared to the
implementation of the diffusion model. As such, the model will be compared to itself in 2D. It is
expected that the model will perform better in high vertical wind conditions, but suffer in most other
conditions due to the significantly increased complexity of the model.

Testing on operational infrastructure
With the trained, tested, and validated Python diffusion model, the outputs can be used to perform
testing with ATFM decision support tooling. The LVNL Decision Support Tool (DST) will use the
outputs of the model as an input and the Estimated Time of Arrival (ETOA) of aircraft can be
measured. The accuracy and variance of the output of the DST can be compared to output when using
the current operational input, provided by The Royal Netherlands Meteorological Institute (KNMI).
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5 Planning

In this section, the project’s planning will be elaborated upon. The planning will be detailed from
the time of submitting this proposal up until the mid-term (27=-01-2025). The planning after the
mid-term will only be briefly discussed and will be made at a later stage when well-informed plan-
ning can be made. First, a description of all of the tasks that need to be completed will be given and
their duration will be estimated. Next a diagrammatic representation of the workflow will be provided.

To ensure that the goals of the project are met within the set amount of time, the approach will be to
make the planning in a bottom-up fashion; starting with the outputs and working backward as required.

The end goal is to have a model in three forms. Namely, in 2D, 3D, and 4D. They all build off each
other and hence will also be made in that order. Secondly, the model needs to be tested on opera-
tional ATFM decision support tooling. Additionally, the results need to be gathered, discussed, and
presented in a scientific paper-like format. Before any of this can happen, the author also needs a deep
understanding of both the tools to complete these tasks as well as the theory of the model.

With the above in mind, the following steps need to be completed before the mid-term:

• Learn how to utilize the Python PyTorch library correctly (1 week).

• Learn the details of the diffusion probabilistic model network architecture (1 week).

• Gather input data for the model (instant, however, the chance of issues is high, so hence process
must be started immediately).

• Understand how to design the output of the model to be suitable for ATFM decision support
tooling by talking to KDC stakeholders (continuous process, 1/2 week spread over a longer
period).

• Construct, train, and optimize hyperparameters of the model in 2D (3 weeks).

• Prepare a mid-term report and presentation (1 1/2 weeks).

With the goal to achieve the above before the mid-term, the following remains to be completed before
the end of the research:

• Further 2D model hyperparameter tuning post-mid-term evaluation (1 week).

• Extension of model to 3D + hyperparameter tuning (4 weeks).

• Extension of model to 4D + hyperparameter tuning (4 weeks).

• Test model with ATFM decision support tooling (1 week).

• Iterate the model to yield better results with operational tooling (1 week).

• Write the scientific report describing all methods, results, and conclusions (2 weeks).

• Prepare final presentation (2 weeks).

These are the steps foreseen by the author in this project and have been visualized in the form of a
Gantt chart in Appendix A. Lastly, some additional remarks on the planning have been taken into
consideration when constructing the Gannt chart. All processes before the initial construction of the
model are independent of each other and can in principle be done in parallel. Construction of the model,
training, and hyperparameter tuning have been combined into blocks as the process is iterative, and
they are all dependent on each other. Lastly, holidays total 4 planned weeks at this stage. Space for
unforeseen circumstances and delays has been accounted for between the mid-term and the green-light
meeting (currently blank in the chart).
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6 Conclusions

The aim of this research proposal was to introduce the project’s area of interest, define the advance-
ments, challenges, and opportunities, provide an overview of the relevant literature, and develop clear
research questions. Additionally, a plan for the research activities has been provided. This report lays
the foundations for the research to be completed in the coming academic year.

A literature study has been performed to gain valuable insights into the current state of the research
field. Firstly, previous work with similar objectives from Sun et al., 2018 and Malfliet, 2023 was dis-
cussed. This was followed by an analysis of the past and current state of numerical weather prediction
methods. To conclude the literature study, machine learning methods in weather prediction were an-
alyzed and the link to other computer vision machine learning methods was made.

Given the high demand for accurate wind now- and forecasting by airlines and ANSPs to be able to
safely and efficiently conduct day-to-day operations and the rise of various machine learning network
architectures, the research proposed is as follows: develop a diffusion probabilistic model for accurate
wind fiend reconstruction in 2D, 3D and 4D with aircraft derived wind data as input. The goal is to
compare this new application of machine learning models to previous work and to observe the effects
on current operational ATFM decision support tooling.

The aforementioned goals are intended to be achieved by first thoroughly understanding the tools that
can be used to make the model as well as understanding the model architecture itself. This will be
followed by the implementation of the model in Python and the extension from 2D to 3D. The methods
for expanding the model to 4D will require various approaches to find which is the most suitable for
this new application.

Lastly, detailed planning of the first research phase of the project (until 27/01/2024) was presented
and rough planning of the research activities of the second research phase was outlined. The current
planning suggests that the 2D model be complete by the end of the first research phase.
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C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G.,
Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., . . . Thépaut, J.-N. (2020). The ERA5
global reanalysis [Publisher: Wiley]. Quarterly Journal of the Royal Meteorological Society,
146 (730), 1999–2049. https://doi.org/10.1002/qj.3803

Ho, J., Jain, A., & Abbeel, P. (2020, December). Denoising Diffusion Probabilistic Models [arXiv:2006.11239
[cs, stat]]. https://doi.org/10.48550/arXiv.2006.11239

Hollister, W. M., Bradford, E. R., & Welch, J. D. (1989). Using aircraft radar tracks to estimate winds
aloft.

Jeppesen, J. (2017, March). Fact sheet: Ensemble weather forecasting. Retrieved September 17, 2024,
from https://www.ecmwf. int/en/about/media- centre/focus/2017/fact- sheet- ensemble-
weather-forecasting

Jeppesen, J. (2020, March). Fact sheet: Earth system data assimilation. Retrieved September 17, 2024,
from https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-earth-system-
data-assimilation

Jeppesen, J. (2023, August). Fact sheet: Reanalysis. Retrieved September 17, 2024, from https://www.
ecmwf.int/en/about/media-centre/focus/2023/fact-sheet-reanalysis

12



Keisler, R. (2022, February). Forecasting Global Weather with Graph Neural Networks [arXiv:2202.07575
[physics]]. https://doi.org/10.48550/arXiv.2202.07575

Kikuchi, R., Misaka, T., Obayashi, S., Inokuchi, H., Oikawa, H., & Misumi, A. (2018). Nowcast-
ing algorithm for wind fields using ensemble forecasting and aircraft flight data [ eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/met.1704].Meteorological Applications, 25 (3),
365–375. https://doi.org/10.1002/met.1704

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S.,
Ewalds, T., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott,
J., Pritzel, A., Mohamed, S., & Battaglia, P. (2023). Learning skillful medium-range global
weather forecasting [Publisher: American Association for the Advancement of Science]. Sci-
ence. https://doi.org/10.1126/science.adi2336

Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., & Catanzaro, B. (2018, December). Image
Inpainting for Irregular Holes Using Partial Convolutions [arXiv:1804.07723 [cs]]. https://doi.
org/10.48550/arXiv.1804.07723

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Gool, L. V. (2022, August). RePaint:
Inpainting using Denoising Diffusion Probabilistic Models [arXiv:2201.09865]. https ://doi .
org/10.48550/arXiv.2201.09865

Malfliet, J. M. L. (2023, January). Estimating Wind Fields Using Physically Inspired Neural Networks
With Aircraft Surveillance Data [Doctoral dissertation, Delft University of Technology].

Marinescu, M., Olivares, A., Staffetti, E., & Sun, J. (2023). Polynomial Chaos Expansion-Based En-
hanced Gaussian Process Regression for Wind Velocity Field Estimation from Aircraft-Derived
Data. Mathematics, 11 (4). https://doi.org/10.3390/math11041018

Marinescu, M., Olivares, A., Staffetti, E., & Sun, J. (2022). On the Estimation of Vector Wind Profiles
Using Aircraft-Derived Data and Gaussian Process Regression. Aerospace, 9 (7), 377. https:
//doi.org/10.3390/aerospace9070377

Martin Leutbecher, T. N. P. (2007). Ensemble forecasting. Retrieved September 17, 2024, from https:
//www.ecmwf.int/en/elibrary/75394-ensemble-forecasting

Maskell, K. (2023, June). The rise of machine learning in weather forecasting. Retrieved September 19,
2024, from https://www.ecmwf.int/en/about/media-centre/science-blog/2023/rise-machine-
learning-weather-forecasting

National Weather Service. (2015, January). NCEP GFS 0.25 Degree Global Forecast Grids Historical
Archive. https://doi.org/10.5065/D65D8PWK

Saharia, C., Chan, W., Chang, H., Lee, C. A., Ho, J., Salimans, T., Fleet, D. J., & Norouzi, M. (2022,
May). Palette: Image-to-Image Diffusion Models [arXiv:2111.05826 [cs]]. https://doi.org/10.
48550/arXiv.2111.05826

Schweri, L., Foucher, S., Tang, J., Azevedo, V. C., Günther, T., & Solenthaler, B. (2021). A Physics-
Aware Neural Network Approach for Flow Data Reconstruction From Satellite Observations
[Publisher: Frontiers]. Frontiers in Climate, 3. https://doi.org/10.3389/fclim.2021.656505

Steiner, M., Bateman, R., Megenhardt, D., Liu, Y., Xu, M., Pocernich, M., & Krozel, J. (2010).
Translation of Ensemble Weather Forecasts into Probabilistic Air Traffic Capacity Impact.
Air Traffic Control Quarterly, 18, 229–254. https://doi.org/10.2514/atcq.18.3.229

Sun, J., Vu, H., Ellerbroek, J., & Hoekstra, J. M. (2020). pyModeS: Decoding Mode-S Surveillance
Data for Open Air Transportation Research. IEEE Transactions on Intelligent Transportation
Systems, 21 (7), 2777–2786. https://doi.org/10.1109/TITS.2019.2914770
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